1
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 PMCID: PMC11691477 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Li YX, Zhao LM, Zhang XZ, Ma XK, Liang JQ, Gan TJ, Gong H, Jiang YL, Wu Y, Song YT, Zhang Y, Li Y, Chen XT, Xu CH, Ouyang XY, Li-Ling J, Zhang H, Xie HQ. Smooth muscle extracellular matrix modified small intestinal submucosa conduits promote peripheral nerve repair. Biomaterials 2025; 321:123346. [PMID: 40253732 DOI: 10.1016/j.biomaterials.2025.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
Challenges still exist to develop an ideal cell-free nerve guidance conduit (NGC) providing a favorable microenvironment for rapid and successful nerve regeneration. Proteomic analysis revealed that extracellular matrix (ECM) derived from smooth muscle cells (SMCs) was abundant in nerve-related active proteins and significantly enriched signaling pathways involved in nerve regeneration. However, whether NGCs based on SMCs-derived ECM modification strategy promote nerve regeneration remains unclear. In the study, we investigated the neuroregenerative effect of SMCs-derived ECM and developed a novel NGC (MyoNerve) by coating small intestinal submucosa (SIS) with SMCs-derived ECM. The SMCs-ECM was rich in neurotrophic factors, which endowed MyoNerve with remarkable neuroregenerative capabilities by promoting the expression of genes implicated in aspects of neuronal maintenance and activating signaling pathways involved in nerve regeneration. In vitro, MyoNerve exhibited excellent bioactivity for accelerating angiogenesis, regulating macrophages polarization, promoting the proliferation, migration and elongation of Schwann cells, enhancing differentiation of PC12 cells, and inducing the neurite outgrowth of dorsal root ganglia. In the model of rat sciatic nerve 10 mm defect, MyoNerve showed great potential for functional nerve regeneration by promoting angiogenesis, proliferation and migration of Schwann cells and neuron, axonal regeneration, remyelination, and neurological functional recovery.
Collapse
Affiliation(s)
- Ya-Xing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Long-Mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu-Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xi-Kun Ma
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
| | - Jing-Qi Liang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ting-Jiang Gan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
| | - Heng Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
| | - Yu-Ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Zhang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Ting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cong-Hui Xu
- Department of Radiology, Chengdu Shangjin Nanfu Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang-Yu Ouyang
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Xizang Autonomous Region, Chengdu, Sichuan, 610041, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China.
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
3
|
St-Cyr G, Garneau D, Gévry N, Blouin R. Quantitative phosphoproteomics reveals that nestin is a downstream target of dual leucine zipper kinase during retinoic acid-induced neuronal differentiation of Neuro-2a cells. BMC Mol Cell Biol 2025; 26:10. [PMID: 40140778 PMCID: PMC11938613 DOI: 10.1186/s12860-025-00535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/20/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Dual leucine zipper kinase (DLK) is critical for neurite outgrowth in the developing nervous system and during nerve regeneration, but the underlying mechanisms remain largely unknown. To address this issue, we generated stable shRNA-mediated DLK-depleted Neuro-2a cell lines and analyzed their phosphoproteome after induction of neuronal differentiation by retinoic acid (RA). RESULTS Here, we report the identification of 32 phosphopeptides that exhibited significant differences in relative abundance between control and DLK-depleted cells. Two of the most downregulated phosphopeptides identified after DLK depletion were derived from nestin, a type VI intermediate filament (IF) protein typically expressed in neural progenitor cells. The reduced abundance of these phosphopeptides in response to DLK knockdown was validated using parallel reaction monitoring (PRM)-based quantitative proteomics and paired with a concomitant reduction in nestin mRNA and protein expression, indicating that the decrease in nestin phosphorylation was due to a decrease in total nestin in DLK-depleted cells compared to control cells. This DLK-mediated regulation of nestin expression had no apparent effect on neurite formation because nestin knockdown alone was not sufficient to impair RA-induced neurite extension in parental Neuro-2a cells, and nestin overexpression failed to rescue the neurite outgrowth defect observed in DLK-depleted Neuro-2a cells. CONCLUSIONS Together, these results demonstrate that nestin is a novel downstream target of DLK signaling but not a mediator of its ability to promote neurite outgrowth during neuronal differentiation.
Collapse
Affiliation(s)
- Guillaume St-Cyr
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Daniel Garneau
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nicolas Gévry
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Blouin
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
4
|
Sun Y, Zhou J, Debnath A, Xie B, Wang Z, Jin Y. Multiple regulators constrain the abundance of Caenorhabditis elegans DLK-1 in ciliated sensory neurons. G3 (BETHESDA, MD.) 2025; 15:jkaf004. [PMID: 39854273 PMCID: PMC11917482 DOI: 10.1093/g3journal/jkaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
The conserved MAP3K DLKs are widely known for their functions in synapse formation, axonal regeneration and degeneration, and neuronal survival, notably under traumatic injury and chronic disease conditions. In contrast, their roles in other neuronal compartments are much less explored. Through an unbiased forward genetic screening in C. elegans for altered patterns of GFP-tagged DLK-1 expressed from the endogenous locus, we have recently uncovered a mechanism by which the abundance of DLK-1 is tightly regulated by intraflagellar transport in ciliated sensory neurons. Here, we report additional mutants identified from the genetic screen. Most mutants exhibit increased accumulation of GFP::DLK-1 in sensory endings, and the levels of misaccumulated GFP::DLK-1 are exacerbated by loss of function in cebp-1, the b-Zip transcription factor acting downstream of DLK-1. We identify several new mutations in genes encoding proteins functioning in intraflagellar transport and cilia assembly, in components of BBSome, MAPK-15, and DYF-5 kinases. We report a novel mutation in the chaperone HSP90 that causes misaccumulation of GFP::DLK-1 and up-regulation of CEBP-1 selectively in ciliated sensory neurons. We also find that the guanylate cyclase ODR-1 constrains GFP::DLK-1 abundance throughout cilia and dendrites of AWC neurons. Moreover, in odr-1 mutants, AWC cilia display distorted morphology, which is ameliorated by loss of function in dlk-1 or cebp-1. These data expand the landscape of DLK-1 signaling in ciliated sensory neurons and underscore a high degree of cell- and neurite- specific regulation.
Collapse
Affiliation(s)
- Yue Sun
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Junxiang Zhou
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Arunima Debnath
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bokun Xie
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhiping Wang
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Davison CA, Garcia D, Feng C, Hao H, Jorgensen EM, Hammarlund M. The neuron-intrinsic membrane skeleton is required for motor neuron integrity throughout lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639536. [PMID: 40060495 PMCID: PMC11888272 DOI: 10.1101/2025.02.23.639536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Axons experience physical stress throughout an organism's lifetime, and disruptions in axonal integrity are hallmarks of both neurodegenerative diseases and traumatic injuries. The spectrin-based membrane periodic skeleton (MPS) is proposed to have a crucial role in maintaining axonal strength, flexibility, and resilience. To investigate the importance of the intrinsic MPS for GABAergic motor neuron integrity in C. elegans, we employed the auxin-inducible degron system to degrade β-spectrin/UNC-70 in a cell-type specific and time-dependent manner. Degradation of β-spectrin from all neurons beginning at larval development resulted in widespread axon breakage and regeneration in VD/DD GABAergic motor neurons in both larval and adult animals. Similarly, targeted degradation of β-spectrin in GABA neurons alone resulted in extensive breakage. Moreover, we found that depleting β-spectrin from the mature nervous system also induced axon breaks. By contrast, epidermal β-spectrin was not required for axon integrity of VD/DD neurons. These findings demonstrate the cell-intrinsic importance of neuronal β-spectrin/UNC-70 for axon integrity both during development and in adulthood.
Collapse
Affiliation(s)
- Carrie Ann Davison
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Daniela Garcia
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Chengye Feng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Hongyan Hao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Erik M Jorgensen
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, Salt Lake City, UT, USA
| | - Marc Hammarlund
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Lead Contact
| |
Collapse
|
6
|
Ding Y, Yang H, Gao J, Tang C, Peng YY, Ma XM, Li S, Wang HY, Lu XM, Wang YT. Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration. Mol Cell Biochem 2025:10.1007/s11010-025-05209-y. [PMID: 39841406 DOI: 10.1007/s11010-025-05209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/04/2025] [Indexed: 01/23/2025]
Abstract
Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria. Mitochondrial transport proteins regulate the positioning and movement of mitochondria to maintain normal energy metabolism. Recent studies have shown a close relationship between mitochondrial transport proteins and synaptic plasticity, providing a new direction for the study of adaptive changes in the central nervous system and new targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huan Yang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xin-Mei Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
7
|
Hintermayer MA, Juźwik CA, Morquette B, Hua E, Zhang J, Drake S, Shi SS, Rambaldi I, Vangoor V, Pasterkamp J, Moore C, Fournier AE. A miR-383-5p Signaling Hub Coordinates the Axon Regeneration Response to Inflammation. J Neurosci 2024; 44:e1822232024. [PMID: 39266301 PMCID: PMC11529811 DOI: 10.1523/jneurosci.1822-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
Neuroinflammation can positively influence axon regeneration following injury in the central nervous system. Inflammation promotes the release of neurotrophic molecules and stimulates intrinsic proregenerative molecular machinery in neurons, but the detailed mechanisms driving this effect are not fully understood. We evaluated how microRNAs are regulated in retinal neurons in response to intraocular inflammation to identify their potential role in axon regeneration. We found that miR-383-5p is downregulated in retinal ganglion cells in response to zymosan-induced intraocular inflammation. MiR-383-5p downregulation in neurons is sufficient to promote axon growth in vitro, and the intravitreal injection of a miR-383-5p inhibitor into the eye promotes axon regeneration following optic nerve crush. MiR-383-5p directly targets ciliary neurotrophic factor (CNTF) receptor components, and miR-383-5p inhibition sensitizes adult retinal neurons to the outgrowth-promoting effects of CNTF. Interestingly, we also demonstrate that CNTF treatment is sufficient to reduce miR-383-5p levels in neurons, constituting a positive-feedback module, whereby initial CNTF treatment reduces miR-383-5p levels, which then disinhibits CNTF receptor components to sensitize neurons to the ligand. Additionally, miR-383-5p inhibition derepresses the mitochondrial antioxidant protein peroxiredoxin-3 (PRDX3) which was required for the proregenerative effects associated with miR-383-5p loss-of-function in vitro. We have thus identified a positive-feedback mechanism that facilitates neuronal CNTF sensitivity in neurons and a new molecular signaling module that promotes inflammation-induced axon regeneration.
Collapse
Affiliation(s)
- Matthew A Hintermayer
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Camille A Juźwik
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Barbara Morquette
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Elizabeth Hua
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Julia Zhang
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Sienna Drake
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Shan Shan Shi
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Isabel Rambaldi
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Vamshi Vangoor
- Department of Translation Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht 3584 CG, Netherlands
| | - Jeroen Pasterkamp
- Department of Translation Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht 3584 CG, Netherlands
| | - Craig Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Alyson E Fournier
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
8
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
9
|
Wu W, Zhang J, Chen Y, Chen Q, Liu Q, Zhang F, Li S, Wang X. Genes in Axonal Regeneration. Mol Neurobiol 2024; 61:7431-7447. [PMID: 38388774 DOI: 10.1007/s12035-024-04049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
This review explores the molecular and genetic underpinnings of axonal regeneration and functional recovery post-nerve injury, emphasizing its significance in reversing neurological deficits. It presents a systematic exploration of the roles of various genes in axonal regrowth across peripheral and central nerve injuries. Initially, it highlights genes and gene families critical for axonal growth and guidance, delving into their roles in regeneration. It then examines the regenerative microenvironment, focusing on the role of glial cells in neural repair through dedifferentiation, proliferation, and migration. The concept of "traumatic microenvironments" within the central nervous system (CNS) and peripheral nervous system (PNS) is discussed, noting their impact on regenerative capacities and their importance in therapeutic strategy development. Additionally, the review delves into axonal transport mechanisms essential for accurate growth and reinnervation, integrating insights from proteomics, genome-wide screenings, and gene editing advancements. Conclusively, it synthesizes these insights to offer a comprehensive understanding of axonal regeneration's molecular orchestration, aiming to inform effective nerve injury therapies and contribute to regenerative neuroscience.
Collapse
Affiliation(s)
- Wenshuang Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fuchao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
10
|
Chen X, Shen Y, Song Z, Wang X, Yao H, Cai Y, Zhao ZA, Hu B. microRNA-2184 orchestrates Mauthner-cell axon regeneration in zebrafish via syt3 modulation. J Genet Genomics 2024; 51:911-921. [PMID: 38582297 DOI: 10.1016/j.jgg.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
MicroRNAs (miRNAs) play a significant role in axon regeneration following spinal cord injury. However, the functions of numerous miRNAs in axon regeneration within the central nervous system (CNS) remain largely unexplored. Here, we elucidate the positive role of microRNA-2184 (miR-2184) in axon regeneration within zebrafish Mauthner cells (M-cells). The upregulation of miR-2184 in a single M-cell can facilitate axon regeneration, while the specific sponge-induced silencing of miR-2184 leads to impeded regeneration. We show that syt3, a downstream target of miR-2184, negatively regulates axon regeneration, and the regeneration suppression modulated by syt3 depends on its binding to Ca2+. Furthermore, pharmacological stimulation of the cAMP/PKA pathway suggests that changes in the readily releasable pool may affect axon regeneration. Our data indicate that miR-2184 promotes axon regeneration of M-cells within the CNS by modulating the downstream target syt3, providing valuable insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Xinghan Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueru Shen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zheng Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinliang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huaitong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuan Cai
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Ang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
11
|
Thornburg-Suresh EJC, Summers DW. Microtubules, Membranes, and Movement: New Roles for Stathmin-2 in Axon Integrity. J Neurosci Res 2024; 102:e25382. [PMID: 39253877 PMCID: PMC11407747 DOI: 10.1002/jnr.25382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Neurons establish functional connections responsible for how we perceive and react to the world around us. Communication from a neuron to its target cell occurs through a long projection called an axon. Axon distances can exceed 1 m in length in humans and require a dynamic microtubule cytoskeleton for growth during development and maintenance in adulthood. Stathmins are microtubule-associated proteins that function as relays between kinase signaling and microtubule polymerization. In this review, we describe the prolific role of Stathmins in microtubule homeostasis with an emphasis on emerging roles for Stathmin-2 (Stmn2) in axon integrity and neurodegeneration. Stmn2 levels are altered in Amyotrophic Lateral Sclerosis and loss of Stmn2 provokes motor and sensory neuropathies. There is growing potential for employing Stmn2 as a disease biomarker or even a therapeutic target. Meeting this potential requires a mechanistic understanding of emerging complexity in Stmn2 function. In particular, Stmn2 palmitoylation has a surprising contribution to axon maintenance through undefined mechanisms linking membrane association, tubulin interaction, and axon transport. Exploring these connections will reveal new insight on neuronal cell biology and novel opportunities for disease intervention.
Collapse
Affiliation(s)
| | - Daniel W Summers
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
12
|
Duarte VN, Lam VT, Rimicci DS, Thompson-Peer KL. Calcium plays an essential role in early-stage dendrite injury detection and regeneration. Prog Neurobiol 2024; 239:102635. [PMID: 38825174 PMCID: PMC11305834 DOI: 10.1016/j.pneurobio.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Dendrites are injured in a variety of clinical conditions such as traumatic brain and spinal cord injuries and stroke. How neurons detect injury directly to their dendrites to initiate a pro-regenerative response has not yet been thoroughly investigated. Calcium plays a critical role in the early stages of axonal injury detection and is also indispensable for regeneration of the severed axon. Here, we report cell and neurite type-specific differences in laser injury-induced elevations of intracellular calcium levels. Using a human KCNJ2 transgene, we demonstrate that hyperpolarizing neurons only at the time of injury dampens dendrite regeneration, suggesting that inhibition of injury-induced membrane depolarization (and thus early calcium influx) plays a role in detecting and responding to dendrite injury. In exploring potential downstream calcium-regulated effectors, we identify L-type voltage-gated calcium channels, inositol triphosphate signaling, and protein kinase D activity as drivers of dendrite regeneration. In conclusion, we demonstrate that dendrite injury-induced calcium elevations play a key role in the regenerative response of dendrites and begin to delineate the molecular mechanisms governing dendrite repair.
Collapse
Affiliation(s)
- Vinicius N Duarte
- Dept of Developmental and Cell Biology, University of California, Irvine, United States
| | - Vicky T Lam
- Dept of Developmental and Cell Biology, University of California, Irvine, United States
| | - Dario S Rimicci
- Dept of Developmental and Cell Biology, University of California, Irvine, United States
| | - Katherine L Thompson-Peer
- Dept of Developmental and Cell Biology, University of California, Irvine, United States; Center for the Neurobiology of Learning and Memory, Irvine, CA, United States; Sue and Bill Gross Stem Cell Research Center, Irvine, CA, United States; Reeve-Irvine Research Center, Irvine, CA, United States.
| |
Collapse
|
13
|
Wang F, Zhang S, Xu Y, He W, Wang X, He Z, Shang J, Zhenyu Z. Mapping the landscape: A bibliometric perspective on autophagy in spinal cord injury. Medicine (Baltimore) 2024; 103:e38954. [PMID: 39029042 PMCID: PMC11398829 DOI: 10.1097/md.0000000000038954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a severe condition that often leads to persistent damage of nerve cells and motor dysfunction. Autophagy is an intracellular system that regulates the recycling and degradation of proteins and lipids, primarily through lysosomal-dependent organelle degradation. Numerous publications have highlighted the involvement of autophagy in the secondary injury of SCI. Therefore, gaining a comprehensive understanding of autophagy research is crucial for designing effective therapies for SCI. METHODS Dates were obtained from Web of Science, including articles and article reviews published from its inception to October 2023. VOSviewer, Citespace, and SCImago were used to visualized analysis. Bibliometric analysis was conducted using the Web of Science data, focusing on various categories such as publications, authors, journals, countries, organizations, and keywords. This analysis was aimed to summarize the knowledge map of autophagy and SCI. RESULTS From 2009 to 2023, the number of annual publications in this field exhibited wave-like growth, with the highest number of publications recorded in 2020 (44 publications). Our analysis identified Mei Xifan as the most prolific author, while Kanno H emerged as the most influential author based on co-citations. Neuroscience Letters was found to have published the largest number of papers in this field. China was the most productive country, contributing 232 publications, and Wenzhou Medical University was the most active organization, publishing 39 papers. CONCLUSION We demonstrated a comprehensive overview of the relationship between autophagy and SCI utilizing bibliometric tools. This article could help to enhance the understanding of the field about autophagy and SCI, foster collaboration among researchers and organizations, and identify potential therapeutic targets for treatment.
Collapse
Affiliation(s)
- Fei Wang
- Department of Orthopedic Surgery, Shaoxing People's Hospital, Zhejiang University, School of Medicine, Shaoxing, Zhejiang Province, China
| | - Songou Zhang
- Ningbo University, School of Medicine, Ningbo, Zhejiang Province, China
| | - Yangjun Xu
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Wei He
- Department of Orthopedic Surgery, Shaoxing People's Hospital, Zhejiang University, School of Medicine, Shaoxing, Zhejiang Province, China
| | - Xiang Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Zhongwei He
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Jinxiang Shang
- Department of Orthopedic, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Zhang Zhenyu
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
14
|
Saijilafu, Ye LC, Zhang JY, Xu RJ. The top 100 most cited articles on axon regeneration from 2003 to 2023: a bibliometric analysis. Front Neurosci 2024; 18:1410988. [PMID: 38988773 PMCID: PMC11233811 DOI: 10.3389/fnins.2024.1410988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
Objective In this study, we used a bibliometric and visual analysis to evaluate the characteristics of the 100 most cited articles on axon regeneration. Methods The 100 most cited papers on axon regeneration published between 2003 and 2023 were identified by searching the Web of Science Core Collection database. The extracted data included the title, author, keywords, journal, publication year, country, and institution. A bibliometric analysis was subsequently undertaken. Results The examined set of 100 papers collectively accumulated a total of 39,548 citations. The number of citations for each of the top 100 articles ranged from 215 to 1,604, with a median value of 326. The author with the most contributions to this collection was He, Zhigang, having authored eight papers. Most articles originated in the United States (n = 72), while Harvard University was the institution with the most cited manuscripts (n = 19). Keyword analysis unveiled several research hotspots, such as chondroitin sulfate proteoglycan, alternative activation, exosome, Schwann cells, axonal protein synthesis, electrical stimulation, therapeutic factors, and remyelination. Examination of keywords in the articles indicated that the most recent prominent keyword was "local delivery." Conclusion This study offers bibliometric insights into axon regeneration, underscoring that the United States is a prominent leader in this field. Our analysis highlights the growing relevance of local delivery systems in axon regeneration. Although these systems have shown promise in preclinical models, challenges associated with long-term optimization, agent selection, and clinical translation remain. Nevertheless, the continued development of local delivery technologies represents a promising pathway for achieving axon regeneration; however, additional research is essential to fully realize their potential and thereby enhance patient outcomes.
Collapse
Affiliation(s)
- Saijilafu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ling-Chen Ye
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jing-Yu Zhang
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ren-Jie Xu
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
15
|
Brar HK, Dey S, Singh P, Pande D, Ghosh-Roy A. Functional Recovery Associated with Dendrite Regeneration in PVD Neuron of Caenorhabditis elegans. eNeuro 2024; 11:ENEURO.0292-23.2024. [PMID: 38548333 PMCID: PMC7615967 DOI: 10.1523/eneuro.0292-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 05/02/2024] Open
Abstract
PVD neuron of Caenorhabditis elegans is a highly polarized cell with well-defined axonal, and dendritic compartments. PVD neuron operates in multiple sensory modalities including the control of both nociceptive touch sensation and body posture. Although both the axon and dendrites of this neuron show a regeneration response following laser-assisted injury, it is rather unclear how the behavior associated with this neuron is affected by the loss of these structures. It is also unclear whether neurite regrowth would lead to functional restoration in these neurons. Upon axotomy, using a femtosecond laser, we saw that harsh touch response was specifically affected leaving the body posture unperturbed. Subsequently, recovery in the touch response is highly correlated to the axon regrowth, which was dependent on DLK-1/MLK-1 MAP Kinase. Dendrotomy of both major and minor primary dendrites affected the wavelength and amplitude of sinusoidal movement without any apparent effect on harsh touch response. We further correlated the recovery in posture behavior to the type of dendrite regeneration events. We found that dendrite regeneration through the fusion and reconnection between the proximal and distal branches of the injured dendrite corresponded to improved recovery in posture. Our data revealed that the axons and dendrites of PVD neurons regulate the nociception and proprioception in worms, respectively. It also revealed that dendrite and axon regeneration lead to the restoration of these differential sensory modalities.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Pallavi Singh
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Devashish Pande
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| |
Collapse
|
16
|
Liu M, Zhang W, Han S, Zhang D, Zhou X, Guo X, Chen H, Wang H, Jin L, Feng S, Wei Z. Multifunctional Conductive and Electrogenic Hydrogel Repaired Spinal Cord Injury via Immunoregulation and Enhancement of Neuronal Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313672. [PMID: 38308338 DOI: 10.1002/adma.202313672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Indexed: 02/04/2024]
Abstract
Spinal cord injury (SCI) is a refractory neurological disorder. Due to the complex pathological processes, especially the secondary inflammatory cascade and the lack of intrinsic regenerative capacity, it is difficult to recover neurological function after SCI. Meanwhile, simulating the conductive microenvironment of the spinal cord reconstructs electrical neural signal transmission interrupted by SCI and facilitates neural repair. Therefore, a double-crosslinked conductive hydrogel (BP@Hydrogel) containing black phosphorus nanoplates (BP) is synthesized. When placed in a rotating magnetic field (RMF), the BP@Hydrogel can generate stable electrical signals and exhibit electrogenic characteristic. In vitro, the BP@Hydrogel shows satisfactory biocompatibility and can alleviate the activation of microglia. When placed in the RMF, it enhances the anti-inflammatory effects. Meanwhile, wireless electrical stimulation promotes the differentiation of neural stem cells (NSCs) into neurons, which is associated with the activation of the PI3K/AKT pathway. In vivo, the BP@Hydrogel is injectable and can elicit behavioral and electrophysiological recovery in complete transected SCI mice by alleviating the inflammation and facilitating endogenous NSCs to form functional neurons and synapses under the RMF. The present research develops a multifunctional conductive and electrogenic hydrogel for SCI repair by targeting multiple mechanisms including immunoregulation and enhancement of neuronal differentiation.
Collapse
Affiliation(s)
- Mingshan Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Wencan Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Shuwei Han
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Dapeng Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Xiaolong Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Xianzheng Guo
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Haosheng Chen
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Haifeng Wang
- Department of Orthopaedics, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Tianqiao District, Jinan, 250033, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, No. 6, Middle Section of Wenchang Avenue, Chuanhui District, Zhoukou, 466001, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
- Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhijian Wei
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| |
Collapse
|
17
|
DeVault L, Mateusiak C, Palucki J, Brent M, Milbrandt J, DiAntonio A. The response of Dual-leucine zipper kinase (DLK) to nocodazole: Evidence for a homeostatic cytoskeletal repair mechanism. PLoS One 2024; 19:e0300539. [PMID: 38574058 PMCID: PMC10994325 DOI: 10.1371/journal.pone.0300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024] Open
Abstract
Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that low dose nocodazole treatment activates DLK signaling. Activation of DLK signaling results in a DLK-dependent transcriptional signature, which we identify through RNA-seq. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes. We identify alterations to the cytoskeleton including actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.
Collapse
Affiliation(s)
- Laura DeVault
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Chase Mateusiak
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Computer Science & Engineering, Washington University, St. Louis, MO, United States of America
| | - John Palucki
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael Brent
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Computer Science & Engineering, Washington University, St. Louis, MO, United States of America
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
18
|
Singh P, Selvarasu K, Ghosh-Roy A. Optimization of RNAi efficiency in PVD neuron of C. elegans. PLoS One 2024; 19:e0298766. [PMID: 38498505 PMCID: PMC10947639 DOI: 10.1371/journal.pone.0298766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
PVD neuron of C. elegans has become an attractive model for the study of dendrite development and regeneration due to its elaborate and stereotype dendrite morphology. RNA interference (RNAi) by feeding E. coli expressing dsRNA has been the basis of several genome wide screens performed using C. elegans. However, the feeding method often fails when it comes to knocking down genes in nervous system. In order to optimize the RNAi conditions for PVD neuron, we fed the worm strains with E. coli HT115 bacteria expressing dsRNA against mec-3, hpo-30, and tiam-1, whose loss of function are known to show dendrite morphology defects in PVD neuron. We found that RNAi of these genes in the available sensitive backgrounds including the one expresses sid-1 under unc-119 promoter, although resulted in reduction of dendrite branching, the phenotypes were significantly modest compared to the respective loss of function mutants. In order to enhance RNAi in PVD neurons, we generated a strain that expressed sid-1 under the promoter mec-3, which exhibits strong expression in PVD. When Pmec-3::sid-1 is expressed in either nre-1(-)lin-15b(-) or lin-15b(-) backgrounds, the higher order branching phenotype after RNAi of mec-3, hpo-30, and tiam-1 was significantly enhanced as compared to the genetic background alone. Moreover, knockdown of genes playing role in dendrite regeneration in the nre-1(-)lin-15b(-), Pmec-3-sid-1[+] background resulted in significant reduction in dendrite regeneration following laser injury. The extent of dendrite regrowth due to the RNAi of aff-1 or ced-10 in our optimized strain was comparable to that of aff-1 and ced-10 mutants. Essentially, our strain expressing sid-1 in PVD neuron, provides an RNAi optimized platform for high throughput screening of genes involved in PVD development, maintenance and regeneration.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Kavinila Selvarasu
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Anindya Ghosh-Roy
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
19
|
Asghari Adib E, Shadrach JL, Reilly-Jankowiak L, Dwivedi MK, Rogers AE, Shahzad S, Passino R, Giger RJ, Pierchala BA, Collins CA. DLK signaling in axotomized neurons triggers complement activation and loss of upstream synapses. Cell Rep 2024; 43:113801. [PMID: 38363678 PMCID: PMC11088462 DOI: 10.1016/j.celrep.2024.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/27/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Axotomized spinal motoneurons (MNs) lose presynaptic inputs following peripheral nerve injury; however, the cellular mechanisms that lead to this form of synapse loss are currently unknown. Here, we delineate a critical role for neuronal kinase dual leucine zipper kinase (DLK)/MAP3K12, which becomes activated in axotomized neurons. Studies with conditional knockout mice indicate that DLK signaling activation in injured MNs triggers the induction of phagocytic microglia and synapse loss. Aspects of the DLK-regulated response include expression of C1q first from the axotomized MN and then later in surrounding microglia, which subsequently phagocytose presynaptic components of upstream synapses. Pharmacological ablation of microglia inhibits the loss of cholinergic C boutons from axotomized MNs. Together, the observations implicate a neuronal mechanism, governed by the DLK, in the induction of inflammation and the removal of synapses.
Collapse
Affiliation(s)
- Elham Asghari Adib
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jennifer L Shadrach
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | - Manish K Dwivedi
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Abigail E Rogers
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shameena Shahzad
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brian A Pierchala
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Catherine A Collins
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
20
|
Köster KA, Dethlefs M, Duque Escobar J, Oetjen E. Regulation of the Activity of the Dual Leucine Zipper Kinase by Distinct Mechanisms. Cells 2024; 13:333. [PMID: 38391946 PMCID: PMC10886912 DOI: 10.3390/cells13040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
The dual leucine zipper kinase (DLK) alias mitogen-activated protein 3 kinase 12 (MAP3K12) has gained much attention in recent years. DLK belongs to the mixed lineage kinases, characterized by homology to serine/threonine and tyrosine kinase, but exerts serine/threonine kinase activity. DLK has been implicated in many diseases, including several neurodegenerative diseases, glaucoma, and diabetes mellitus. As a MAP3K, it is generally assumed that DLK becomes phosphorylated and activated by upstream signals and phosphorylates and activates itself, the downstream serine/threonine MAP2K, and, ultimately, MAPK. In addition, other mechanisms such as protein-protein interactions, proteasomal degradation, dephosphorylation by various phosphatases, palmitoylation, and subcellular localization have been shown to be involved in the regulation of DLK activity or its fine-tuning. In the present review, the diverse mechanisms regulating DLK activity will be summarized to provide better insights into DLK action and, possibly, new targets to modulate DLK function.
Collapse
Affiliation(s)
- Kyra-Alexandra Köster
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
| | - Marten Dethlefs
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
| | - Jorge Duque Escobar
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
- University Center of Cardiovascular Science, Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elke Oetjen
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
- Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
21
|
VenkataKrishna LM, Balasubramaniam B, Sushmitha TJ, Ravichandiran V, Balamurugan K. Cronobacter sakazakii infection implicates multifaceted neuro-immune regulatory pathways of Caenorhabditis elegans. Mol Omics 2024; 20:48-63. [PMID: 37818754 DOI: 10.1039/d3mo00167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The neural pathways of Caenorhabditis elegans play a crucial role in regulating host immunity and inflammation during pathogenic infections. To understand the major neuro-immune signaling pathways, this study aimed to identify the key regulatory proteins in the host C. elegans during C. sakazakii infection. We used high-throughput label-free quantitative proteomics and identified 69 differentially expressed proteins. KEGG analysis revealed that C. sakazakii elicited host immune signaling cascades primarily including mTOR signaling, axon regeneration, metabolic pathways (let-363 and acox-1.4), calcium signaling (mlck-1), and longevity regulating pathways (ddl-2), respectively. The abrogation in functional loss of mTOR-associated players deciphered that C. sakazakii infection negatively regulated the lifespan of mutant worms (akt-1, let-363 and dlk-1), including physiological aberrations, such as reduced pharyngeal pumping and egg production. Additionally, the candidate pathway proteins were validated by transcriptional profiling of their corresponding genes. Furthermore, immunoblotting showed the downregulation of mTORC2/SGK-1 during the later hours of pathogen exposure. Overall, our findings profoundly provide an understanding of the specificity of proteome imbalance in affecting neuro-immune regulations during C. sakazakii infection.
Collapse
Affiliation(s)
| | | | - T J Sushmitha
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | | |
Collapse
|
22
|
Taouktsi E, Kyriakou E, Voulgaraki E, Verganelakis D, Krokou S, Rigas S, Voutsinas GE, Syntichaki P. Mitochondrial p38 Mitogen-Activated Protein Kinase: Insights into Its Regulation of and Role in LONP1-Deficient Nematodes. Int J Mol Sci 2023; 24:17209. [PMID: 38139038 PMCID: PMC10743222 DOI: 10.3390/ijms242417209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
p38 Mitogen-Activated Protein Kinase (MAPK) cascades are central regulators of numerous physiological cellular processes, including stress response signaling. In C. elegans, mitochondrial dysfunction activates a PMK-3/p38 MAPK signaling pathway (MAPKmt), but its functional role still remains elusive. Here, we demonstrate the induction of MAPKmt in worms deficient in the lonp-1 gene, which encodes the worm ortholog of mammalian mitochondrial LonP1. This induction is subjected to negative regulation by the ATFS-1 transcription factor through the CREB-binding protein (CBP) ortholog CBP-3, indicating an interplay between both activated MAPKmt and mitochondrial Unfolded Protein Response (UPRmt) surveillance pathways. Our results also reveal a genetic interaction in lonp-1 mutants between PMK-3 kinase and the ZIP-2 transcription factor. ZIP-2 has an established role in innate immunity but can also modulate the lifespan by maintaining mitochondrial homeostasis during ageing. We show that in lonp-1 animals, ZIP-2 is activated in a PMK-3-dependent manner but does not confer increased survival to pathogenic bacteria. However, deletion of zip-2 or pmk-3 shortens the lifespan of lonp-1 mutants, suggesting a possible crosstalk under conditions of mitochondrial perturbation that influences the ageing process. Furthermore, loss of pmk-3 specifically diminished the extreme heat tolerance of lonp-1 worms, highlighting the crucial role of PMK-3 in the heat shock response upon mitochondrial LONP-1 inactivation.
Collapse
Affiliation(s)
- Eirini Taouktsi
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Eleni Kyriakou
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| | - Evangelia Voulgaraki
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| | - Dimitris Verganelakis
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
- Department of Biological Applications & Technology, University of Ioannina, 45500 Ioannina, Greece
| | - Stefania Krokou
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Gerassimos E. Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, 15341 Athens, Greece;
| | - Popi Syntichaki
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| |
Collapse
|
23
|
Sakai Y, Shimizu T, Tsunekawa M, Hisamoto N, Matsumoto K. Rhotekin regulates axon regeneration through the talin-Vinculin-Vinexin axis in Caenorhabditis elegans. PLoS Genet 2023; 19:e1011089. [PMID: 38150455 PMCID: PMC10752531 DOI: 10.1371/journal.pgen.1011089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Axon regeneration requires actomyosin interaction, which generates contractile force and pulls the regenerating axon forward. In Caenorhabditis elegans, TLN-1/talin promotes axon regeneration through multiple down-stream events. One is the activation of the PAT-3/integrin-RHO-1/RhoA GTPase-LET-502/ROCK (Rho-associated coiled-coil kinase)-regulatory non-muscle myosin light-chain (MLC) phosphorylation signaling pathway, which is dependent on the MLC scaffolding protein ALP-1/ALP-Enigma. The other is mediated by the F-actin-binding protein DEB-1/vinculin and is independent of the MLC phosphorylation pathway. In this study, we identified the svh-7/rtkn-1 gene, encoding a homolog of the RhoA-binding protein Rhotekin, as a regulator of axon regeneration in motor neurons. However, we found that RTKN-1 does not function in the RhoA-ROCK-MLC phosphorylation pathway in the regulation of axon regeneration. We show that RTKN-1 interacts with ALP-1 and the vinculin-binding protein SORB-1/vinexin, and that SORB-1 acts with DEB-1 to promote axon regeneration. Thus, RTKN-1 links the DEB-1-SORB-1 complex to ALP-1 and physically connects phosphorylated MLC on ALP-1 to the actin cytoskeleton. These results suggest that TLN-1 signaling pathways coordinate MLC phosphorylation and recruitment of phosphorylated MLC to the actin cytoskeleton during axon regeneration.
Collapse
Affiliation(s)
- Yoshiki Sakai
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Tatsuhiro Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Mayuka Tsunekawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
24
|
Li M, Xu J, Zou Y, Lu J, Ou A, Ma X, Zhang J, Xu Y, Fu L, Liu J, Wang X, Zhou L, Guo J. Motor neuron-specific RhoA knockout delays degeneration and promotes regeneration of dendrites in spinal ventral horn after brachial plexus injury. Neural Regen Res 2023; 18:2757-2761. [PMID: 37449641 DOI: 10.4103/1673-5374.373657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults. Peripheral axotomy of motor neurons results in the retraction of dendritic arbors, and the dendritic arbor can be re-expanded when reinnervation is allowed. RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration. However, the role of RhoA in dendrite degeneration and regeneration is unknown. In this study, we explored the potential role of RhoA in dendrites. A line of motor neuronal RhoA conditional knockout mice was developed by crossbreeding HB9Cre+ mice with RhoAflox/flox mice. We established two models for assaying dendrite degeneration and regeneration, in which the brachial plexus was transection or crush injured, respectively. We found that at 28 days after brachial plexus transection, the density, complexity, and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice. Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28-56 days. The density, complexity, and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice. These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- Mi Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiawei Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ying Zou
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jialing Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Aiyue Ou
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinrui Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yizhou Xu
- Department of Histology and Embryology, School of Basic Medical Sciences; Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lanya Fu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingmin Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xianghai Wang
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| | - Libing Zhou
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Jiasong Guo
- Department of Histology and Embryology, School of Basic Medical Sciences; Department of Spine Orthopedics, Zhujiang Hospital; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| |
Collapse
|
25
|
Estera LA, Walsh SP, Headen JA, Williamson RE, Kalinski AL. Neuroinflammation: Breaking barriers and bridging gaps. Neurosci Res 2023; 197:9-17. [PMID: 34748905 DOI: 10.1016/j.neures.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Neurons are the cells of the nervous system and are responsible for every thought, movement and perception. Immune cells are the cells of the immune system, constantly protecting from foreign pathogens. Understanding the interaction between the two systems is especially important in disease states such as autoimmune or neurodegenerative disease. Unfortunately, this interaction is typically detrimental to the host. However, recent efforts have focused on how neurons and immune cells interact, either directly or indirectly, following traumatic injury to the nervous system. The outcome of this interaction can be beneficial - leading to successful neural repair, or detrimental - leading to functional deficits, depending on where the injury occurs. This review will discuss our understanding of neuron-immune cell interactions after traumatic injury to both the peripheral and central nervous system.
Collapse
Affiliation(s)
- Lora A Estera
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Sam P Walsh
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Jordan A Headen
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | | | - Ashley L Kalinski
- Department of Biology, Ball State University, Muncie, IN 47306, USA.
| |
Collapse
|
26
|
Belew MY, Huang W, Florman JT, Alkema MJ, Byrne AB. PARP knockdown promotes synapse reformation after axon injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565562. [PMID: 37961175 PMCID: PMC10635140 DOI: 10.1101/2023.11.03.565562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Injured nervous systems are often incapable of self-repairing, resulting in permanent loss of function and disability. To restore function, a severed axon must not only regenerate, but must also reform synapses with target cells. Together, these processes beget functional axon regeneration. Progress has been made towards a mechanistic understanding of axon regeneration. However, the molecular mechanisms that determine whether and how synapses are formed by a regenerated motor axon are not well understood. Using a combination of in vivo laser axotomy, genetics, and high-resolution imaging, we find that poly (ADP-ribose) polymerases (PARPs) inhibit synapse reformation in regenerating axons. As a result, regenerated parp(-) axons regain more function than regenerated wild-type axons, even though both have reached their target cells. We find that PARPs regulate both axon regeneration and synapse reformation in coordination with proteolytic calpain CLP-4. These results indicate approaches to functionally repair the injured nervous system must specifically target synapse reformation, in addition to other components of the injury response.
Collapse
|
27
|
DeVault L, Mateusiak C, Palucki J, Brent M, Milbrandt J, DiAntonio A. The response of Dual-Leucine Zipper Kinase (DLK) to nocodazole: evidence for a homeostatic cytoskeletal repair mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561227. [PMID: 37873434 PMCID: PMC10592635 DOI: 10.1101/2023.10.06.561227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that a) low dose nocodazole treatment activates DLK signaling and b) DLK signaling mitigates the microtubule damage caused by the cytoskeletal perturbation. We also perform RNA-seq to discover a DLK-dependent transcriptional signature. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes and promoting actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.
Collapse
|
28
|
Mesleh A, Ehtewish H, Lennard K, Abdesselem HB, Al-Shaban F, Decock J, Alajez NM, Arredouani A, Emara MM, Albagha O, Stanton LW, Abdulla SA, Blackburnand JM, El-Agnaf OMA. High-throughput autoantibody screening identifies differentially abundant autoantibodies in autism spectrum disorder. Front Mol Neurosci 2023; 16:1222506. [PMID: 37908488 PMCID: PMC10613655 DOI: 10.3389/fnmol.2023.1222506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by defects in two core domains, social/communication skills and restricted/repetitive behaviors or interests. There is no approved biomarker for ASD diagnosis, and the current diagnostic method is based on clinical manifestation, which tends to vary vastly between the affected individuals due to the heterogeneous nature of ASD. There is emerging evidence that supports the implication of the immune system in ASD, specifically autoimmunity; however, the role of autoantibodies in ASD children is not yet fully understood. MATERIALS AND METHODS In this study, we screened serum samples from 93 cases with ASD and 28 healthy controls utilizing high-throughput KoRectly Expressed (KREX) i-Ome protein-array technology. Our goal was to identify autoantibodies with differential expressions in ASD and to gain insights into the biological significance of these autoantibodies in the context of ASD pathogenesis. RESULT Our autoantibody expression analysis identified 29 differential autoantibodies in ASD, 4 of which were upregulated and 25 downregulated. Subsequently, gene ontology (GO) and network analysis showed that the proteins of these autoantibodies are expressed in the brain and involved in axonal guidance, chromatin binding, and multiple metabolic pathways. Correlation analysis revealed that these autoantibodies negatively correlate with the age of ASD subjects. CONCLUSION This study explored autoantibody reactivity against self-antigens in ASD individuals' serum using a high-throughput assay. The identified autoantibodies were reactive against proteins involved in axonal guidance, synaptic function, amino acid metabolism, fatty acid metabolism, and chromatin binding.
Collapse
Affiliation(s)
- Areej Mesleh
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hanan Ehtewish
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Katie Lennard
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Houari B. Abdesselem
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Fouad Al-Shaban
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Julie Decock
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nehad M. Alajez
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, Qatar University Health, Qatar University, Doha, Qatar
| | - Omar Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Lawrence W. Stanton
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jonathan M. Blackburnand
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Omar M. A. El-Agnaf
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
29
|
Sun Y, Jin Y. An intraflagellar transport dependent negative feedback regulates the MAPKKK DLK-1 to protect cilia from degeneration. Proc Natl Acad Sci U S A 2023; 120:e2302801120. [PMID: 37722038 PMCID: PMC10523469 DOI: 10.1073/pnas.2302801120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/15/2023] [Indexed: 09/20/2023] Open
Abstract
Primary cilia are specialized organelles supporting the development and function of cells and organisms. Intraflagellar transport (IFT) is essential for cilia formation, maintenance, and function. In C. elegans ciliated sensory neurons, IFT interacts with signaling molecules to generate distinct morphological and function features and also to maintain the integrity of cilia. Here, we report an IFT-dependent feedback control on the conserved MAPKKK DLK-1 in the ciliated sensory neurons. DLK proteins are widely known to act in synapse formation, axon regeneration, and degeneration, but their roles in other neuronal compartments are understudied. By forward genetic screening for altered expression of the endogenously tagged DLK-1 we identified multiple ift mutants showing increased DLK-1 accumulation in the defective sensory endings. We show that in response to acute IFT disruption, DLK-1 accumulates rapidly and reversibly. The expression levels of the transcription factor CEBP-1, known to act downstream of DLK-1 in the development and maintenance of synapses and axons, are also increased in the ciliated sensory neurons of ift mutants. Interestingly, the regulation of CEBP-1 expression shows sensory neuron-type dependency on DLK-1. Moreover, in the sensory neuron AWC, which has elaborate cilia morphology, up-regulated CEBP-1 represses DLK-1 at the transcription level, thereby dampening DLK-1 accumulation. Last, the IFT-dependent regulatory loop of DLK-1 and CEBP-1 offers neuroprotection in a cilia degeneration model. These findings uncover a surveillance mechanism in which tight control on the DLK-1 signaling protects cilia integrity in a context-specific manner.
Collapse
Affiliation(s)
- Yue Sun
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
30
|
Grooms NW, Fitzgerald MQ, Zuckerman B, Ureña SE, Weinberger LS, Chung SH. Expression of thioredoxin-1 in the ASJ neuron corresponds with and enhances intrinsic regenerative capacity under lesion conditioning in C. elegans. FEBS Lett 2023; 597:1880-1893. [PMID: 37300530 PMCID: PMC10526644 DOI: 10.1002/1873-3468.14684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
A conditioning lesion of the peripheral sensory axon triggers robust central axon regeneration in mammals. We trigger conditioned regeneration in the Caenorhabditis elegans ASJ neuron by laser surgery or genetic disruption of sensory pathways. Conditioning upregulates thioredoxin-1 (trx-1) expression, as indicated by trx-1 promoter-driven expression of green fluorescent protein and fluorescence in situ hybridization (FISH), suggesting trx-1 levels and associated fluorescence indicate regenerative capacity. The redox activity of trx-1 functionally enhances conditioned regeneration, but both redox-dependent and -independent activity inhibit non-conditioned regeneration. Six strains isolated in a forward genetic screen for reduced fluorescence, which suggests diminished regenerative potential, also show reduced axon outgrowth. We demonstrate an association between trx-1 expression and the conditioned state that we leverage to rapidly assess regenerative capacity.
Collapse
Affiliation(s)
- Noa W.F. Grooms
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Michael Q. Fitzgerald
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Binyamin Zuckerman
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Samuel E. Ureña
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Leor S. Weinberger
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Samuel H. Chung
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115, USA
| |
Collapse
|
31
|
Stone MC, Mauger AS, Rolls MM. Ciliated sensory neurons can regenerate axons after complete axon removal. J Exp Biol 2023; 226:jeb245717. [PMID: 37212026 PMCID: PMC10323231 DOI: 10.1242/jeb.245717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
Axon regeneration helps maintain lifelong function of neurons in many animals. Depending on the site of injury, new axons can grow either from the axon stump (after distal injury) or from the tip of a dendrite (after proximal injury). However, some neuron types do not have dendrites to be converted to a regenerating axon after proximal injury. For example, many sensory neurons receive information from a specialized sensory cilium rather than a branched dendrite arbor. We hypothesized that the lack of traditional dendrites would limit the ability of ciliated sensory neurons to respond to proximal axon injury. We tested this hypothesis by performing laser microsurgery on ciliated lch1 neurons in Drosophila larvae and tracking cells over time. These cells survived proximal axon injury as well as distal axon injury, and, like many other neurons, initiated growth from the axon stump after distal injury. After proximal injury, neurites regrew in a surprisingly flexible manner. Most cells initiated outgrowth directly from the cell body, but neurite growth could also emerge from the short axon stump or base of the cilium. New neurites were often branched. Although outgrowth after proximal axotomy was variable, it depended on the core DLK axon injury signaling pathway. Moreover, each cell had at least one new neurite specified as an axon based on microtubule polarity and accumulation of the endoplasmic reticulum. We conclude that ciliated sensory neurons are not intrinsically limited in their ability to grow a new axon after proximal axon removal.
Collapse
Affiliation(s)
- Michelle C. Stone
- Department of Biochemistry and Molecular Biology, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Abigail S. Mauger
- Department of Biochemistry and Molecular Biology, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Melissa M. Rolls
- Department of Biochemistry and Molecular Biology, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
32
|
Sun H, Hobert O. Temporal transitions in the postembryonic nervous system of the nematode Caenorhabditis elegans: Recent insights and open questions. Semin Cell Dev Biol 2023; 142:67-80. [PMID: 35688774 DOI: 10.1016/j.semcdb.2022.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
After the generation, differentiation and integration into functional circuitry, post-mitotic neurons continue to change certain phenotypic properties throughout postnatal juvenile stages until an animal has reached a fully mature state in adulthood. We will discuss such changes in the context of the nervous system of the nematode C. elegans, focusing on recent descriptions of anatomical and molecular changes that accompany postembryonic maturation of neurons. We summarize the characterization of genetic timer mechanisms that control these temporal transitions or maturational changes, and discuss that many but not all of these transitions relate to sexual maturation of the animal. We describe how temporal, spatial and sex-determination pathways are intertwined to sculpt the emergence of cell-type specific maturation events. Finally, we lay out several unresolved questions that should be addressed to move the field forward, both in C. elegans and in vertebrates.
Collapse
Affiliation(s)
- Haosheng Sun
- Department of Cell, Developmental, and Integrative Biology. University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, New York, USA
| |
Collapse
|
33
|
Zhao Y, Gao C, Pan X, Lei K. Emerging roles of mitochondria in animal regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:14. [PMID: 37142814 PMCID: PMC10160293 DOI: 10.1186/s13619-023-00158-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/19/2023] [Indexed: 05/06/2023]
Abstract
The regeneration capacity after an injury is critical to the survival of living organisms. In animals, regeneration ability can be classified into five primary types: cellular, tissue, organ, structure, and whole-body regeneration. Multiple organelles and signaling pathways are involved in the processes of initiation, progression, and completion of regeneration. Mitochondria, as intracellular signaling platforms of pleiotropic functions in animals, have recently gained attention in animal regeneration. However, most studies to date have focused on cellular and tissue regeneration. A mechanistic understanding of the mitochondrial role in large-scale regeneration is unclear. Here, we reviewed findings related to mitochondrial involvement in animal regeneration. We outlined the evidence of mitochondrial dynamics across different animal models. Moreover, we emphasized the impact of defects and perturbation in mitochondria resulting in regeneration failure. Ultimately, we discussed the regulation of aging by mitochondria in animal regeneration and recommended this for future study. We hope this review will serve as a means to advocate for more mechanistic studies of mitochondria related to animal regeneration on different scales.
Collapse
Affiliation(s)
- Yun Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Fudan University, Shanghai, China
| | - Chong Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xue Pan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
34
|
Wlaschin JJ, Donahue C, Gluski J, Osborne JF, Ramos LM, Silberberg H, Le Pichon CE. Promoting regeneration while blocking cell death preserves motor neuron function in a model of ALS. Brain 2023; 146:2016-2028. [PMID: 36342754 PMCID: PMC10411937 DOI: 10.1093/brain/awac415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/16/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease of motor neurons with very few treatment options. We had previously found that motor neuron degeneration in a mouse model of ALS can be delayed by deleting the axon damage sensor MAP3K12 or dual leucine zipper kinase (DLK). However, DLK is also involved in axon regeneration, prompting us to ask whether combining DLK deletion with a way to promote axon regeneration would result in greater motor neuron protection. To achieve this, we used a mouse line that constitutively expresses ATF3, a master regulator of regeneration in neurons. Although there is precedence for each individual strategy in the SOD1G93A mouse model of ALS, these have not previously been combined. By several lines of evidence including motor neuron electrophysiology, histology and behaviour, we observed a powerful synergy when combining DLK deletion with ATF3 expression. The combinatorial strategy resulted in significant protection of motor neurons with fewer undergoing cell death, reduced axon degeneration and preservation of motor function and connectivity to muscle. This study provides a demonstration of the power of combinatorial therapy to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Josette J Wlaschin
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caroline Donahue
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Jacob Gluski
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Jennifer F Osborne
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Leana M Ramos
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Hanna Silberberg
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Fague L, Marsh-Armstrong N. Dual leucine zipper kinase is necessary for retinal ganglion cell axonal regeneration in Xenopus laevis. PNAS NEXUS 2023; 2:pgad109. [PMID: 37152673 PMCID: PMC10162689 DOI: 10.1093/pnasnexus/pgad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/08/2023] [Indexed: 05/09/2023]
Abstract
Retinal ganglion cell (RGC) axons of the African clawed frog, Xenopus laevis, unlike those of mammals, are capable of regeneration and functional reinnervation of central brain targets following injury. Here, we describe a tadpole optic nerve crush (ONC) procedure and assessments of brain reinnervation based on live imaging of RGC-specific transgenes which, when paired with CRISPR/Cas9 injections at the one-cell stage, can be used to assess the function of regeneration-associated genes in vivo in F0 animals. Using this assay, we find that map3k12, also known as dual leucine zipper kinase (Dlk), is necessary for RGC axonal regeneration and acts in a dose-dependent manner. Loss of Dlk does not affect RGC innervation of the brain during development or visually driven behavior but does block both axonal regeneration and functional vision restoration after ONC. Dlk loss does not alter the acute changes in mitochondrial movement that occur within RGC axons hours after ONC but does completely block the phosphorylation and nuclear translocation of the transcription factor Jun within RGCs days after ONC; yet, Jun is dispensable for reinnervation. These results demonstrate that in a species fully capable of regenerating its RGC axons, Dlk is essential for the axonal injury signal to reach the nucleus but may affect regeneration through a different pathway than by which it signals in mammalian RGCs.
Collapse
Affiliation(s)
- Lindsay Fague
- Department of Ophthalmology and Vision Science, UC Davis Eye Center, University of California, Davis, 1275 Med Science Drive Rm. 3451, Davis, CA 95616, USA
| | | |
Collapse
|
36
|
Liu X, Zhao Y, Zou W. Molecular mechanisms of neurite regeneration and repair: insights from C. elegans and Drosophila. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:12. [PMID: 37005942 PMCID: PMC10067779 DOI: 10.1186/s13619-022-00155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/01/2022] [Indexed: 04/04/2023]
Abstract
The difficulties of injured and degenerated neurons to regenerate neurites and regain functions are more significant than in other body tissues, making neurodegenerative and related diseases hard to cure. Uncovering the secrets of neural regeneration and how this process may be inhibited after injury will provide insights into novel management and potential treatments for these diseases. Caenorhabditis elegans and Drosophila melanogaster are two of the most widely used and well-established model organisms endowed with advantages in genetic manipulation and live imaging to explore this fundamental question about neural regeneration. Here, we review the classical models and techniques, and the involvement and cooperation of subcellular structures during neurite regeneration using these two organisms. Finally, we list several important open questions that we look forward to inspiring future research.
Collapse
Affiliation(s)
- Xiaofan Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Yuqing Zhao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University and University of Edinburgh, Jiaxing, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
37
|
Krzystek TJ, White JA, Rathnayake R, Thurston L, Hoffmar-Glennon H, Li Y, Gunawardena S. HTT (huntingtin) and RAB7 co-migrate retrogradely on a signaling LAMP1-containing late endosome during axonal injury. Autophagy 2023; 19:1199-1220. [PMID: 36048753 PMCID: PMC10012955 DOI: 10.1080/15548627.2022.2119351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/09/2022] Open
Abstract
ABBREVIATIONS Atg5: Autophagy-related 5; Atg8a: Autophagy-related 8a; AL: autolysosome; AP: autophagosome; BAF1: bafilomycin A1; BDNF: brain derived neurotrophic factor; BMP: bone morphogenetic protein; Cyt-c-p: Cytochrome c proximal; CQ: chloroquine; DCTN1: dynactin 1; Dhc: dynein heavy chain; EE: early endosome; DYNC1I1: dynein cytoplasmic 1 intermediate chain 1; HD: Huntington disease; HIP1/Hip1: huntingtin interacting protein 1; HTT/htt: huntingtin; iNeuron: iPSC-derived human neurons; IP: immunoprecipitation; Khc: kinesin heavy chain; KIF5C: kinesin family member 5C; LAMP1/Lamp1: lysosomal associated membrane protein 1; LE: late endosome; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K12/DLK: mitogen-activated protein kinase kinase kinase 12; MAPK8/JNK/bsk: mitogen-activated protein kinase 8/basket; MAPK8IP3/JIP3: mitogen-activated protein kinase 8 interacting protein 3; NGF: nerve growth factor; NMJ: neuromuscular junction; NTRK1/TRKA: neurotrophic receptor tyrosine kinase 1; NRTK2/TRKB: neurotrophic receptor tyrosine kinase 2; nuf: nuclear fallout; PG: phagophore; PtdIns3P: phosphatidylinositol-3-phosphate; puc: puckered; ref(2)P: refractory to sigma P; Rilpl: Rab interacting lysosomal protein like; Rip11: Rab11 interacting protein; RTN1: reticulon 1; syd: sunday driver; SYP: synaptophysin; SYT1/Syt1: synaptotagmin 1; STX17/Syx17: syntaxin 17; tkv: thickveins; VF: vesicle fraction; wit: wishful thinking; wnd: wallenda.
Collapse
Affiliation(s)
- Thomas J. Krzystek
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Joseph A. White
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Rasika Rathnayake
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Layne Thurston
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Hayley Hoffmar-Glennon
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Yichen Li
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
38
|
Zhao P, Mondal S, Martin C, DuPlissis A, Chizari S, Ma KY, Maiya R, Messing RO, Jiang N, Ben-Yakar A. Femtosecond laser microdissection for isolation of regenerating C. elegans neurons for single-cell RNA sequencing. Nat Methods 2023; 20:590-599. [PMID: 36928074 DOI: 10.1038/s41592-023-01804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/26/2023] [Indexed: 03/18/2023]
Abstract
Our understanding of nerve regeneration can be enhanced by delineating its underlying molecular activities at single-neuron resolution in model organisms such as Caenorhabditis elegans. Existing cell isolation techniques cannot isolate neurons with specific regeneration phenotypes from C. elegans. We present femtosecond laser microdissection (fs-LM), a single-cell isolation method that dissects specific cells directly from living tissue by leveraging the micrometer-scale precision of fs-laser ablation. We show that fs-LM facilitates sensitive and specific gene expression profiling by single-cell RNA sequencing (scRNA-seq), while mitigating the stress-related transcriptional artifacts induced by tissue dissociation. scRNA-seq of fs-LM isolated regenerating neurons revealed transcriptional programs that are correlated with either successful or failed regeneration in wild-type and dlk-1 (0) animals, respectively. This method also allowed studying heterogeneity displayed by the same type of neuron and found gene modules with expression patterns correlated with axon regrowth rate. Our results establish fs-LM as a spatially resolved single-cell isolation method for phenotype-to-genotype mapping.
Collapse
Affiliation(s)
- Peisen Zhao
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sudip Mondal
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chris Martin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Andrew DuPlissis
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Shahab Chizari
- Deparment of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ke-Yue Ma
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Rajani Maiya
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Institute of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA, USA
| | - Robert O Messing
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Institute of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Deparment of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Adela Ben-Yakar
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute of Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
39
|
Czech VL, O'Connor LC, Philippon B, Norman E, Byrne AB. TIR-1/SARM1 inhibits axon regeneration and promotes axon degeneration. eLife 2023; 12:80856. [PMID: 37083456 PMCID: PMC10121217 DOI: 10.7554/elife.80856] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
Growth and destruction are central components of the neuronal injury response. Injured axons that are capable of repair, including axons in the mammalian peripheral nervous system and in many invertebrate animals, often regenerate and degenerate on either side of the injury. Here we show that TIR-1/dSarm/SARM1, a key regulator of axon degeneration, also inhibits regeneration of injured motor axons. The increased regeneration in tir-1 mutants is not a secondary consequence of its effects on degeneration, nor is it determined by the NADase activity of TIR-1. Rather, we found that TIR-1 functions cell-autonomously to regulate each of the seemingly opposite processes through distinct interactions with two MAP kinase pathways. On one side of the injury, TIR-1 inhibits axon regeneration by activating the NSY-1/ASK1 MAPK signaling cascade, while on the other side of the injury, TIR-1 simultaneously promotes axon degeneration by interacting with the DLK-1 mitogen-activated protein kinase (MAPK) signaling cascade. In parallel, we found that the ability to cell-intrinsically inhibit axon regeneration is conserved in human SARM1. Our finding that TIR-1/SARM1 regulates axon regeneration provides critical insight into how axons coordinate a multidimensional response to injury, consequently informing approaches to manipulate the response toward repair.
Collapse
Affiliation(s)
- Victoria L Czech
- Department of Neurobiology, UMass Chan Massachusetts Medical School
| | | | | | - Emily Norman
- Department of Neurobiology, UMass Chan Massachusetts Medical School
| | | |
Collapse
|
40
|
Wang YL, Grooms NW, Jaklitsch EL, Schulting LG, Chung SH. High-throughput submicron-resolution microscopy of Caenorhabditis elegans populations under strong immobilization by cooling cultivation plates. iScience 2023; 26:105999. [PMID: 36794150 PMCID: PMC9923163 DOI: 10.1016/j.isci.2023.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/19/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite its profound impact on biology, high-resolution in vivo microscopy largely remains low throughput because current immobilization techniques require substantial manual effort. We implement a simple cooling approach to immobilize entire populations of the nematode Caenorhabditis elegans directly on their cultivation plates. Counterintuitively, warmer temperatures immobilize animals much more effectively than the colder temperatures of prior studies and enable clear submicron-resolution fluorescence imaging, which is challenging under most immobilization techniques. We demonstrate 64× z-stack and time-lapse imaging of neurons in adults and embryos without motion blur. Compared to standard azide immobilization, cooling immobilization reduces the animal preparation and recovery time by >98%, significantly increasing experimental speed. High-throughput imaging of a fluorescent proxy in cooled animals and direct laser axotomy indicate that the transcription factor CREB underlies lesion conditioning. By obviating individual animal manipulation, our approach could empower automated imaging of large populations within standard experimental setups and workflows.
Collapse
Affiliation(s)
- Yao L. Wang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Noa W.F. Grooms
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Erik L. Jaklitsch
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | | | - Samuel H. Chung
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
41
|
Lazaro-Pena MI, Cornwell AB, Diaz-Balzac CA, Das R, Macoretta N, Thakar J, Samuelson AV. Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal Caenorhabditis elegans aging and systemically regulates longevity from serotonergic and GABAergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523661. [PMID: 36711523 PMCID: PMC9882034 DOI: 10.1101/2023.01.11.523661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans h omeodomain-interacting p rotein k inase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 is co-expressed with key longevity transcription factors, including daf-16 (FOXO), hlh-30 (TFEB), skn-1 (Nrf2), and hif-1 , which suggests hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and GABAergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity. Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.
Collapse
|
42
|
Zheng B, Tuszynski MH. Regulation of axonal regeneration after mammalian spinal cord injury. Nat Rev Mol Cell Biol 2023; 24:396-413. [PMID: 36604586 DOI: 10.1038/s41580-022-00562-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 01/06/2023]
Abstract
One hundred years ago, Ramón y Cajal, considered by many as the founder of modern neuroscience, stated that neurons of the adult central nervous system (CNS) are incapable of regenerating. Yet, recent years have seen a tremendous expansion of knowledge in the molecular control of axon regeneration after CNS injury. We now understand that regeneration in the adult CNS is limited by (1) a failure to form cellular or molecular substrates for axon attachment and elongation through the lesion site; (2) environmental factors, including inhibitors of axon growth associated with myelin and the extracellular matrix; (3) astrocyte responses, which can both limit and support axon growth; and (4) intraneuronal mechanisms controlling the establishment of an active cellular growth programme. We discuss these topics together with newly emerging hypotheses, including the surprising finding from transcriptomic analyses of the corticospinal system in mice that neurons revert to an embryonic state after spinal cord injury, which can be sustained to promote regeneration with neural stem cell transplantation. These gains in knowledge are steadily advancing efforts to develop effective treatment strategies for spinal cord injury in humans.
Collapse
Affiliation(s)
- Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Research Service, San Diego, CA, USA.
| | - Mark H Tuszynski
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Research Service, San Diego, CA, USA.
| |
Collapse
|
43
|
Ren DL, Hu B, Shao GJ, Wang XL, Wei ML. DUSP2 deletion with CRISPR/Cas9 promotes Mauthner cell axonal regeneration at the early stage of zebrafish. Neural Regen Res 2023; 18:577-581. [DOI: 10.4103/1673-5374.350208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
44
|
Wu J, Wang L, Ervin JF, Wang SHJ, Soderblom E, Ko D, Yan D. GABA signaling triggered by TMC-1/Tmc delays neuronal aging by inhibiting the PKC pathway in C. elegans. SCIENCE ADVANCES 2022; 8:eadc9236. [PMID: 36542715 PMCID: PMC9770988 DOI: 10.1126/sciadv.adc9236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Aging causes functional decline and degeneration of neurons and is a major risk factor of neurodegenerative diseases. To investigate the molecular mechanisms underlying neuronal aging, we developed a new pipeline for neuronal proteomic profiling in young and aged animals. While the overall translational machinery is down-regulated, certain proteins increase expressions upon aging. Among these aging-up-regulated proteins, the conserved channel protein TMC-1/Tmc has an anti-aging function in all neurons tested, and the neuroprotective function of TMC-1 occurs by regulating GABA signaling. Moreover, our results show that metabotropic GABA receptors and G protein GOA-1/Goα are required for the anti-neuronal aging functions of TMC-1 and GABA, and the activation of GABA receptors prevents neuronal aging by inhibiting the PLCβ-PKC pathway. Last, we show that the TMC-1-GABA-PKC signaling axis suppresses neuronal functional decline caused by a pathogenic form of human Tau protein. Together, our findings reveal the neuroprotective function of the TMC-1-GABA-PKC signaling axis in aging and disease conditions.
Collapse
Affiliation(s)
- Jieyu Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John F. Ervin
- Bryan Brain Bank and Biorepository, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shih-Hsiu J. Wang
- Department of Pathology & Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erik Soderblom
- Proteomics and Metabolomics Shared Resource and Duke Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Dennis Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Regeneration Next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
45
|
O'Hagan R, Avrutis A, Ramicevic E. Functions of the tubulin code in the C. elegans nervous system. Mol Cell Neurosci 2022; 123:103790. [PMID: 36368428 DOI: 10.1016/j.mcn.2022.103790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Due to their elongated and polarized morphology, neurons rely on the microtubule (MT) cytoskeleton for their shape, as well as for efficient intracellular transport that maintains neuronal function, survival, and connectivity. Although all MTs are constructed from α- and β-tubulins that are highly conserved throughout eukaryotes, different MT networks within neurons exhibit different dynamics and functions. For example, molecular motors must be able to differentially recognize the axonal and dendritic MTs to deliver appropriate cargos to sensory endings and synaptic regions. The Tubulin Code hypothesis proposes that MTs can be specialized in form and function by chemical differences in their composition by inclusion of different α- and β-tubulins into the MT lattice, as well as differences in post-translational enzymatic modifications. The chemical differences encode information that allow MTs to regulate interactions with various microtubule-based molecular motors such as kinesins and dyneins as well as with structural microtubule-associated proteins (MAPs), which can, in turn, modify the function or stability of MTs. Here, we review studies involving C. elegans, a model organism with a relatively simple nervous system that is amenable to genetic analysis, that have contributed to our understanding of how the Tubulin Code can specialize neuronal MT networks to establish differences in neuronal morphology and function. Such studies have revealed molecules and mechanisms that are conserved in vertebrates and have the potential to inform our understanding of neurological diseases involving defects in the cytoskeleton and intracellular transport.
Collapse
Affiliation(s)
- Robert O'Hagan
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America.
| | - Alexandra Avrutis
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America
| | - Ema Ramicevic
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America
| |
Collapse
|
46
|
Wright BA, Kvansakul M, Schierwater B, Humbert PO. Cell polarity signalling at the birth of multicellularity: What can we learn from the first animals. Front Cell Dev Biol 2022; 10:1024489. [PMID: 36506100 PMCID: PMC9729800 DOI: 10.3389/fcell.2022.1024489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The innovation of multicellularity has driven the unparalleled evolution of animals (Metazoa). But how is a multicellular organism formed and how is its architecture maintained faithfully? The defining properties and rules required for the establishment of the architecture of multicellular organisms include the development of adhesive cell interactions, orientation of division axis, and the ability to reposition daughter cells over long distances. Central to all these properties is the ability to generate asymmetry (polarity), coordinated by a highly conserved set of proteins known as cell polarity regulators. The cell polarity complexes, Scribble, Par and Crumbs, are considered to be a metazoan innovation with apicobasal polarity and adherens junctions both believed to be present in all animals. A better understanding of the fundamental mechanisms regulating cell polarity and tissue architecture should provide key insights into the development and regeneration of all animals including humans. Here we review what is currently known about cell polarity and its control in the most basal metazoans, and how these first examples of multicellular life can inform us about the core mechanisms of tissue organisation and repair, and ultimately diseases of tissue organisation, such as cancer.
Collapse
Affiliation(s)
- Bree A. Wright
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia
| | - Bernd Schierwater
- Institute of Animal Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg, Hannover, Germany
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Patrick O. Humbert,
| |
Collapse
|
47
|
Perlegos AE, Shields EJ, Shen H, Liu KF, Bonini NM. Mettl3-dependent m 6A modification attenuates the brain stress response in Drosophila. Nat Commun 2022; 13:5387. [PMID: 36104353 PMCID: PMC9474545 DOI: 10.1038/s41467-022-33085-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
N6-methyladenosine (m6A), the most prevalent internal modification on eukaryotic mRNA, plays an essential role in various stress responses. The brain is uniquely vulnerable to cellular stress, thus defining how m6A sculpts the brain's susceptibility may provide insight to brain aging and disease-related stress. Here we investigate the impact of m6A mRNA methylation in the adult Drosophila brain with stress. We show that m6A is enriched in the adult brain and increases with heat stress. Through m6A-immunoprecipitation sequencing, we show 5'UTR Mettl3-dependent m6A is enriched in transcripts of neuronal processes and signaling pathways that increase upon stress. Mettl3 knockdown results in increased levels of m6A targets and confers resilience to stress. We find loss of Mettl3 results in decreased levels of nuclear m6A reader Ythdc1, and knockdown of Ythdc1 also leads to stress resilience. Overall, our data suggest that m6A modification in Drosophila dampens the brain's biological response to stress.
Collapse
Affiliation(s)
- Alexandra E Perlegos
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emily J Shields
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hui Shen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nancy M Bonini
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
48
|
Wang YL, Grooms NWF, Chung SH. Transverse and axial resolution of femtosecond laser ablation. JOURNAL OF BIOPHOTONICS 2022; 15:e202200042. [PMID: 35583201 DOI: 10.1002/jbio.202200042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Femtosecond lasers are capable of precise ablation that produces surgical dissections in vivo. The transverse and axial resolutions of the laser damage inside the bulk are important parameters of ablation. The transverse resolution is routinely quantified; but the axial resolution is more difficult to measure and is less commonly performed. Using a 1040-nm, 400-fs pulsed laser, and a 1.4-NA objective, we performed ablation inside agarose and glass, producing clear, and persistent damage spots. Near the ablation threshold of both media, we found that the axial resolution is similar to the transverse resolution. We also ablated neuron cell bodies and fibers in Caenorhabditis elegans and demonstrate submicrometer resolution in both the transverse and axial directions, consistent with our results in agarose and glass. Using simple yet rigorous methods, we define the resolution of laser ablation in transparent media along all directions.
Collapse
Affiliation(s)
- Yao L Wang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Noa W F Grooms
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Samuel H Chung
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
49
|
Adula KP, Shorey M, Chauhan V, Nassman K, Chen SF, Rolls MM, Sagasti A. The MAP3Ks DLK and LZK Direct Diverse Responses to Axon Damage in Zebrafish Peripheral Neurons. J Neurosci 2022; 42:6195-6210. [PMID: 35840323 PMCID: PMC9374156 DOI: 10.1523/jneurosci.1395-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinases (MAP3Ks) dual leucine kinase (DLK) and leucine zipper kinase (LZK) are essential mediators of axon damage responses, but their responses are varied, complex, and incompletely understood. To characterize their functions in axon injury, we generated zebrafish mutants of each gene, labeled motor neurons (MNs) and touch-sensing neurons in live zebrafish, precisely cut their axons with a laser, and assessed the ability of mutant axons to regenerate in larvae, before sex is apparent in zebrafish. DLK and LZK were required redundantly and cell autonomously for axon regeneration in MNs but not in larval Rohon-Beard (RB) or adult dorsal root ganglion (DRG) sensory neurons. Surprisingly, in dlk lzk double mutants, the spared branches of wounded RB axons grew excessively, suggesting that these kinases inhibit regenerative sprouting in damaged axons. Uninjured trigeminal sensory axons also grew excessively in mutants when neighboring neurons were ablated, indicating that these MAP3Ks are general inhibitors of sensory axon growth. These results demonstrate that zebrafish DLK and LZK promote diverse injury responses, depending on the neuronal cell identity and type of axonal injury.SIGNIFICANCE STATEMENT The MAP3Ks DLK and LZK are damage sensors that promote diverse outcomes to neuronal injury, including axon regeneration. Understanding their context-specific functions is a prerequisite to considering these kinases as therapeutic targets. To investigate DLK and LZK cell-type-specific functions, we created zebrafish mutants in each gene. Using mosaic cell labeling and precise laser injury we found that both proteins were required for axon regeneration in motor neurons but, unexpectedly, were not required for axon regeneration in Rohon-Beard or DRG sensory neurons and negatively regulated sprouting in the spared axons of touch-sensing neurons. These findings emphasize that animals have evolved distinct mechanisms to regulate injury site regeneration and collateral sprouting, and identify differential roles for DLK and LZK in these processes.
Collapse
Affiliation(s)
- Kadidia Pemba Adula
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Matthew Shorey
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Vasudha Chauhan
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Khaled Nassman
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Shu-Fan Chen
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Alvaro Sagasti
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095,
| |
Collapse
|
50
|
Dendrite regeneration in the vertebrate spinal cord. Dev Biol 2022; 488:114-119. [PMID: 35644253 PMCID: PMC10046145 DOI: 10.1016/j.ydbio.2022.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022]
Abstract
Axon regeneration in response to injury has been documented in many animals over several hundred years. In contrast, how neurons respond to dendrite injury has been examined only in the last decade. So far, dendrite regeneration after injury has been documented in invertebrate model systems, but has not been assayed in a vertebrate. In this study, we use zebrafish motor neurons to track neurons after dendrite injury. We address two major gaps in our knowledge of dendrite regeneration: 1) whether post-synaptic dendrites can regenerate and 2) whether vertebrate dendrites can regenerate. We find that motor neurons survive laser microsurgery to remove one or all dendrites. Outgrowth of new dendrites typically initiated one to three days after injury, and a new, stable dendrite arbor was in place by five days after injury. We conclude that zebrafish motor neurons have the capacity to regenerate a new dendrite arbor.
Collapse
|