1
|
Kecskés S, Mészáros M, Dvorácskó S, Szabó Í, Porkoláb G, Barna L, Harazin A, Szecskó A, Menyhárt Á, Bari F, Deli MA, Penke B, Farkas E, Veszelka S. The impact of the novel σ 1 receptor ligand (S)-L1 on brain endothelial cells and cerebrovascular reactivity challenged by ischemia. Eur J Pharmacol 2025; 1000:177724. [PMID: 40348322 DOI: 10.1016/j.ejphar.2025.177724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/14/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Intracellular sigma-1 receptors (σ1 receptors) have a versatile function through the regulation of lipid rafts, neuroreceptors and ion channels, and can influence signal transduction and neuronal plasticity. Since decreased activity of σ1 receptors is a common pathological feature in the early stages of many neurological diseases, σ1 receptor agonists may represent a promising therapeutic tool for the treatment of these disorders. In this study, we aimed to comprehensively investigate the potential protective effects of the novel synthetic σ1 receptor agonist (S)-L1 against endothelial endoplasmic reticulum (ER) stress and cerebral ischemia. In binding affinity experiments, we showed that (S)-L1 has a high affinity and selectivity for σ1 receptor with virtually no affinity for any of the other receptors tested. Next, (S)-L1 exerted protection against endoplasmic reticulum stress in human brain endothelial cells, consistent with the localization of σ1 receptors in endothelial cells. Furthermore, (S)-L1 penetration was demonstrated across the cell culture model of the blood-brain barrier, providing a rationale for neuronal action in addition to endothelial protection. Finally, (S)-L1 inhibited spreading depolarization, suppressed apoptosis and rescued astrocytes in a rat model of cerebral ischemia. Based on our results, (S)-L1 exerts a protective effect on both brain endothelial cells and neural tissue. Moreover, since these experiments revealed no affinity for serotonergic receptors, the compound holds promise as an adjuvant therapy for the treatment of cerebrovascular disease without potential psychedelic side effects.
Collapse
Affiliation(s)
- Szilvia Kecskés
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u. 4, Szeged, 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi School of Medicine and Faculty of Science and Informatics, University of Szeged, Somogyi u. 4, Szeged, 6720, Hungary
| | - Mária Mészáros
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary; One Health Institute, Faculty of Health Sciences, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Szabolcs Dvorácskó
- Laboratory of Biomolecular Structure and Pharmacology, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Írisz Szabó
- Department of Medical Physics and Informatics, Albert Szent-Györgyi School of Medicine and Faculty of Science and Informatics, University of Szeged, Korányi fasor 9, Szeged, 6720, Hungary; Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Gergő Porkoláb
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary; Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Lilla Barna
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Harazin
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Anikó Szecskó
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ákos Menyhárt
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u. 4, Szeged, 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi School of Medicine and Faculty of Science and Informatics, University of Szeged, Somogyi u. 4, Szeged, 6720, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Albert Szent-Györgyi School of Medicine and Faculty of Science and Informatics, University of Szeged, Korányi fasor 9, Szeged, 6720, Hungary
| | - Mária A Deli
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Botond Penke
- Department of Medical Chemistry, Albert Szent-Györgyi School of Medicine, University of Szeged, Dóm tér 8, Szeged, 6720, Hungary
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u. 4, Szeged, 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi School of Medicine and Faculty of Science and Informatics, University of Szeged, Somogyi u. 4, Szeged, 6720, Hungary.
| | - Szilvia Veszelka
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
2
|
Schimmelpfennig J, Jankowiak-Siuda K. Exploring DMT: Endogenous role and therapeutic potential. Neuropharmacology 2025; 268:110314. [PMID: 39832530 DOI: 10.1016/j.neuropharm.2025.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
N,N-Dimethyltryptamine (DMT) is a naturally occurring amine and psychedelic compound, found in plants, animals, and humans. While initial studies reported only trace amounts of DMT in mammalian brains, recent findings have identified alternative methylation pathways and DMT levels comparable to classical neurotransmitters in rodent brains, calling for a re-evaluation of its biological role and exploration of this inconsistency. This study evaluated DMT's biosynthetic pathways, focusing on indolethylamine N-methyltransferase (INMT) and its isoforms, and possible regulatory mechanisms, including alternative routes of synthesis and how physiological conditions, such as stress and hypoxia influence DMT levels. This review considers the impact of endogenous regulatory factors on DMT synthesis and degradation, particularly under conditions affecting monoamine oxidase (MAO) efficiency and activity. We also examined DMT's potential roles in various physiological processes, including neuroplasticity and neurogenesis, mitochondrial homeostasis, immunomodulation, and protection against hypoxia and oxidative stress. DMT's lipophilic properties allow it to cross cell membranes and activate intracellular 5-HT2A receptors, contributing to its role in neuroplasticity. This suggests DMT may act as an endogenous ligand for intracellular receptors, highlighting its broader biological significance beyond traditional receptor pathways. The widespread evolutionary presence of DMT's biosynthetic pathways across diverse species suggests it may play essential roles in various developmental stages and cellular adaptation to environmental challenges, highlighting the neurobiological significance of DMT and its potential clinical applications. We propose further research to explore the role of endogenous DMT, particularly as a potential neurotransmitter.
Collapse
|
3
|
Falchi-Carvalho M, Palhano-Fontes F, Wießner I, Barros H, Bolcont R, Laborde S, Ruschi B Silva S, Montanini D, C Barbosa D, Teixeira E, Florence-Vilela R, Almeida R, K A de Macedo R, Arichelle F, J Pantrigo É, V Costa-Macedo J, da Cruz Nunes JA, de Araújo Costa Neto LA, Nunes Ferreira LF, Dantas Corrêa L, da Costa Bezerra RB, Arcoverde E, Galvão-Coelho N, B Araujo D. Rapid and sustained antidepressant effects of vaporized N,N-dimethyltryptamine: a phase 2a clinical trial in treatment-resistant depression. Neuropsychopharmacology 2025; 50:895-903. [PMID: 40258990 PMCID: PMC12032144 DOI: 10.1038/s41386-025-02091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/14/2025] [Accepted: 03/11/2025] [Indexed: 04/23/2025]
Abstract
Depression affects over 185 million people worldwide, with approximately one-third classified as treatment-resistant depression (TRD). Current treatments, such as oral antidepressants, often take around 3 weeks to become effective, with no immediate anti-suicidal benefits. The field urgently needs innovative therapies that provide rapid relief. Psychedelics like psilocybin and ayahuasca have shown promising antidepressant effects; however, their long duration (several hours) makes them costly and impractical for public health systems. N,N-Dimethyltryptamine (DMT), an endogenous psychedelic also found in ayahuasca, offers a viable alternative with a short duration of action (10-20 min) and non-invasive inhalation administration. Unlike ayahuasca, which contains monoamine oxidase inhibitors, vaporized DMT acts quickly and poses fewer pharmacological interaction risks. This open-label trial evaluated inhaled DMT for TRD for the first time, within the framework of interventional psychiatry. Fourteen patients (Nfemale = 6) participated in a fixed-order, dose-escalation study (15 mg and 60 mg). The treatment was safe, well-tolerated, and produced manageable psychedelic effects with no serious adverse events. A subpopulation using antidepressants showed similar safety outcomes. Results showed rapid and sustained antidepressant effects, with an average reduction of 21.14 points on the Montgomery-Asberg Depression Rating Scale by day 7 (p < 0.001). The response rate was 85.71%, and the remission rate was 57.14% 7 days post-administration, lasting up to 3 months. Suicidal ideation significantly decreased, with no severe ideation the day after dosing. Vaporized DMT offers a non-invasive, time-efficient, and cost-effective alternative to other psychedelics and traditional antidepressants, supporting its role in interventional psychiatry and public health. Clinicaltrials.gov NCT06094907.
Collapse
Affiliation(s)
- Marcelo Falchi-Carvalho
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Clinical Medicine, Health Science Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Fernanda Palhano-Fontes
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil.
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
- University Hospital Onofre Lopes, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| | - Isabel Wießner
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Handersson Barros
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Raynara Bolcont
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Sophie Laborde
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Sérgio Ruschi B Silva
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Daniel Montanini
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
| | - David C Barbosa
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- University Hospital Onofre Lopes, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Ewerton Teixeira
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
| | | | - Raissa Almeida
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Rosana K A de Macedo
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Flávia Arichelle
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
| | - Érica J Pantrigo
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - José V Costa-Macedo
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - João Arthur da Cruz Nunes
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Department of Clinical Medicine, Health Science Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Luiz Antonio de Araújo Costa Neto
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Department of Clinical Medicine, Health Science Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Luis Fernando Nunes Ferreira
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Luísa Dantas Corrêa
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Romária Bárbara da Costa Bezerra
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Emerson Arcoverde
- Department of Clinical Medicine, Health Science Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- University Hospital Onofre Lopes, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Nicole Galvão-Coelho
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Draulio B Araujo
- Center for Advanced Medical Psychedelics (CAMP), Natal, Rio Grande do Norte, Brazil.
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
- University Hospital Onofre Lopes, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
4
|
Gupta S, Bhatnagar RK, Gupta D, K MK, Chopra A. The evolution of N, N-Dimethyltryptamine: from metabolic pathways to brain connectivity. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06777-z. [PMID: 40210737 DOI: 10.1007/s00213-025-06777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
RATIONALE N, N-Dimethyltryptamine (DMT), a potent serotonergic psychedelic, bridges ancient wisdom and modern science. The mechanisms underlying its powerful psychedelic effects and out-of-body experiences continue to intrigue scientists. The functional role of DMT remains ambiguous. This paper explores the endogenous presence of DMT in the human body and its diverse neuroregulatory functions, which influence hierarchical brain connectivity, and the mechanisms driving its psychedelic effects. OBJECTIVE This paper aims to analyze DMT-receptor binding, its effects on neuronal modulation, brain oscillations, and connectivity, and its influence on hallucinations, out-of-body experiences, and cognitive functions. RESULTS DMT administration induces significant changes in brain wave dynamics, including reduced alpha power, increased delta power, and heightened Lempel-Ziv complexity, reflecting enhanced neural signal diversity. Functional neuroimaging studies reveal that DMT enhances global functional connectivity (GFC), particularly in transmodal association cortices such as the salience network, frontoparietal network, and default mode network, correlating with ego dissolution. The receptor density-dependent effects of DMT were mapped to brain regions rich in serotonin 5-HT2A receptors, supporting its role in modulating consciousness and neuroplasticity. CONCLUSION This integrated analysis provides insights into the profound effects of DMT on human cognition, and consciousness, and its role in enhancing natural well-being. As we uncover the endogenous functions of DMT, it becomes clear that the study of its biology reveals a complex interplay between brain chemistry and consciousness.
Collapse
Affiliation(s)
- Swanti Gupta
- Department of Zoology, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Maharaj Kumari K
- Department of Chemistry, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Amla Chopra
- Department of Zoology, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India.
| |
Collapse
|
5
|
Barker SA. N, N-dimethyltryptamine (DMT) in rodent brain: Concentrations, distribution, and recent pharmacological data. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111259. [PMID: 39832749 DOI: 10.1016/j.pnpbp.2025.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Renewed interest in the clinical use of psychedelic drugs acknowledges their therapeutic effectiveness. It has also provided a changing frame of reference for older psychedelic drug study data, especially regarding concentrations of N, N-dimethyltryptamine (DMT) reported in rodent brains and recent discoveries in DMT receptor interactions in rat brain neurons and select brain areas. The mode of action of DMT in its newly defined role as a neuroplastogen, its effectiveness in treating neuropsychiatric disorders, and its binding to intracellular sigma-1 and 5HT2a receptors may define these possible roles. Recent data also show psychedelics promote neuroplasticity via activation of sigma-1 receptors associated with the endoplasmic reticulum and binding to 5-HT2a receptors predominantly related to the intracellular membrane of the Golgi apparatus in cortical neurons and the failure of DMT to occupy cell surface 5-HT2a receptors. While DMT has been proposed as the endogenous ligand for sigma-1, there is no identified ligand for intracellular 5-HT2a receptors, which serotonin cannot acquire. DMT is proposed to be the missing endogenous ligand. These data further suggest that DMT may be involved in brain development in rat pups. Brain levels of DMT have also been shown to be elevated by stress in the rat and appear to be under an inducible, adaptive, physiological regulatory system control. With DMT acting as the natural ligand for intracellular 5HT2a receptors in the Golgi, it may also explain the subjective effects observed from the administration of psychedelics in general and define some of the natural roles for DMT in particular.
Collapse
Affiliation(s)
- Steven A Barker
- Louisiana State University, Department of Comparative Biomedical Sciences, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
6
|
Eliasen JN, Kristiansen U, Kohlmeier KA. Dimethyltryptamine (DMT) and ibogaine elicit membrane effects in HEK cells transiently transfected with the human 5-HT2A receptor. Brain Res 2025; 1850:149425. [PMID: 39732157 DOI: 10.1016/j.brainres.2024.149425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Psychedelics show promise in treating psychiatric disorders. Therapeutic effects appear to involve activation of the 5-Hydroxytryptamine 2A receptor (5-HT2AR), a G protein-coupled receptor (GPCR). Several SNPs of the 5-HT2AR naturally occur, which are associated with differences in receptor function and altered responsiveness to treatments. New compounds suspected to act at the 5-HT2AR are actively being generated. HEK cells are not commonly used to study membrane effects induced by agonists of GPCRs. In this study, for the first time, membrane actions of two psychedelics, dimethyltryptamine (DMT) and ibogaine on HEK cells transiently transfected with either the human wildtype (WT) or the human I197V mutated 5-HT2AR were investigated using whole-cell electrophysiology. Membrane effects were observed in both genotypes and with both drugs in most cells, while no responses were observed in non-transfected HEK cells suggesting that responses were due to 5-HT2AR activation. In HEK cells transfected with the I197V SNP, a significantly shorter duration of the DMT response was observed, however there were no differences in drug-elicited amplitudes between drug or receptor genotype. I-V curves showed a significant effect of drug exposure for both DMT and ibogaine at the highest concentration evaluated. Taken together, our data show transfection of the 5-HT2AR, a GPCR, in HEK cells is able to activate downstream ion channels following exposure to two different 5-HT2AR agonists. Accordingly, investigations of novel compounds suspected to act at 5-HT2ARs can include examination of elicitation of ionic currents in 5-HT2AR transfected HEK cells, and drug effects at SNPs can also be evaluated.
Collapse
Affiliation(s)
- Jannik Nicklas Eliasen
- Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Uffe Kristiansen
- Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristi A Kohlmeier
- Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
7
|
Petrušková A, Guhathakurta D, Akdaş EY, Perelló‐Amorós B, Frischknecht R, Weiss E, Páleníček T, Fejtová A. Serotonergic Psychedelics Rapidly Modulate Evoked Glutamate Release in Cultured Cortical Neurons. J Neurochem 2025; 169:e70020. [PMID: 40022486 PMCID: PMC11871419 DOI: 10.1111/jnc.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/10/2025] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
The serotonergic psychedelics psilocybin, LSD and DMT hold great promise for the development of new treatments for psychiatric conditions such as major depressive disorder, addiction and end-of-life anxiety. Previous studies in both animals and humans have confirmed the effects of these drugs on neuronal activity and plasticity. However, the understanding of the mechanisms of action of these substances is limited. Here we show rapid effects of psychedelics on presynaptic properties, using live cell imaging at the level of single synapses in primary rat cortical neurons. Using the genetically encoded reporter of synaptic vesicle fusion synaptopHluorin, we detected a reduced fraction of synaptic vesicles that fused in response to mild or strong electrical stimulation 3-30 min after application of serotonergic psychedelics. These effects were transient and no longer present 24 h after treatment. While DMT only reduced the total recycling pool, LSD and psilocin also reduced the size of the readily releasable vesicle pool. Imaging with the sensors for glutamate, iGluSnFR, and presynaptic calcium, synGCaMP6, showed that while psilocin and DMT increased evoked glutamate release, LSD and psilocin reduced evoked presynaptic calcium levels. Interestingly, psilocin also affected short-term plasticity leading to a depression of responses to paired stimuli. The rapid and drug-specific modulation of glutamatergic neurotransmission described in this study may contribute to distinct anxiolytic and antidepressant properties of serotonergic psychedelics.
Collapse
Affiliation(s)
- Aneta Petrušková
- Department of Psychiatry and PsychotherapyUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- National Institute of Mental HealthKlecanyCzech Republic
- Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Debarpan Guhathakurta
- Department of Psychiatry and PsychotherapyUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Enes Yağız Akdaş
- Department of Psychiatry and PsychotherapyUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Bartomeu Perelló‐Amorós
- Department of Biology, Animal PhysiologyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Renato Frischknecht
- Department of Biology, Animal PhysiologyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Eva‐Maria Weiss
- Department of Psychiatry and PsychotherapyUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Tomáš Páleníček
- National Institute of Mental HealthKlecanyCzech Republic
- Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Anna Fejtová
- Department of Psychiatry and PsychotherapyUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
8
|
Echeverry C, Pazos M, Torres-Pérez M, Prunell G. Plant-derived compounds and neurodegenerative diseases: Different mechanisms of action with therapeutic potential. Neuroscience 2025; 566:149-160. [PMID: 39725267 DOI: 10.1016/j.neuroscience.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of discrete groups of neurons causing severe disability. The main risk factor is age, hence their incidence is rapidly increasing worldwide due to the rise in life expectancy. Although the causes of the disease are not identified in about 90% of the cases, in the last decades there has been great progress in understanding the basis for neurodegeneration. Different pathological mechanisms including oxidative stress, mitochondrial dysfunction, alteration in proteostasis and inflammation have been addressed as important contributors to neuronal death. Despite our better understanding of the pathophysiology of these diseases, there is still no cure and available therapies only provide symptomatic relief. In an effort to discover new therapeutic approaches, natural products have aroused interest among researchers given their structural diversity and wide range of biological activities. In this review, we focus on three plant-derived compounds with promising neuroprotective potential that have been traditionally used by folk medicine: the flavonoid quercetin (QCT), the phytocannabinoid cannabidiol (CBD)and the tryptamine N,N-dimethyltryptamine (DMT). These compounds exert neuroprotective effects through different mechanisms of action, some overlapping, but each demonstrating a principal biological activity: QCT as an antioxidant, CBD as an anti-inflammatory, and DMT as a promoter of neuroplasticity. This review summarizes current knowledge on these activities, potential therapeutic benefits of these compounds and their limitations as candidates for neuroprotective therapies. We envision that treatments with QCT, CBD, and DMT could be effective either when combined or when targeting different stages of these diseases.
Collapse
Affiliation(s)
- Carolina Echeverry
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Mariana Pazos
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Maximiliano Torres-Pérez
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Giselle Prunell
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
9
|
Nahlawi A, Ptaszek LM, Ruskin JN. Cardiovascular effects and safety of classic psychedelics. NATURE CARDIOVASCULAR RESEARCH 2025; 4:131-144. [PMID: 39910289 DOI: 10.1038/s44161-025-00608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
Psychedelics, used for millennia in spiritual and healing practices, have emerged as promising treatments for mental health conditions including depression, post-traumatic stress disorder (PTSD), substance use disorders and anxiety. Despite the therapeutic potential of psychedelics and their increasing use in both medical and nonmedical settings, there is a paucity of data on their cardiovascular safety. Here we review current evidence on the cardiovascular effects and safety of this unique class of therapeutic agents. The cardiovascular effects and associated risks of classic psychedelics are categorized into three areas: electrophysiological effects and arrhythmia risk, structural effects and valvular heart disease risk, and vascular effects including hypertension and ischemia risks. The Review also emphasizes crucial knowledge gaps that require further basic and clinical investigation including studies in individuals with underlying cardiovascular disease, characterization of important drug-drug interactions and studies on the safety of repetitive, long-term (including microdosing) exposure to classic psychedelics.
Collapse
Affiliation(s)
- Acile Nahlawi
- Corrigan Minehan Heart Centre, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Centre for the Neuroscience of Psychedelics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Leon M Ptaszek
- Corrigan Minehan Heart Centre, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeremy N Ruskin
- Corrigan Minehan Heart Centre, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Centre for the Neuroscience of Psychedelics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Low ZXB, Ng WS, Lim ESY, Goh BH, Kumari Y. The immunomodulatory effects of classical psychedelics: A systematic review of preclinical studies. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111139. [PMID: 39251080 DOI: 10.1016/j.pnpbp.2024.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Emerging evidence suggests that classical psychedelics possess immunomodulatory and anti-inflammatory properties; however, these effects are yet to be well-established. This systematic review aims to provide a timely and comprehensive overview of the immunomodulatory effects of classical psychedelics in preclinical studies. A systematic search was conducted on six databases, including CINAHL, EMBASE, MEDLINE, PsychINFO, Scopus, and Web of Science. Eligible studies targeting classical psychedelics for evaluation of their effects on inflammatory markers and immunomodulation have been included for analysis. Data was extracted from 40 out of 2822 eligible articles, and their risk of bias was assessed using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool and Quality Assessment Tool for In Vitro Studies (QUIN). Studies examined 2,5-dimethoxy-4-iodoamphetamine (DOI; n = 18); psilocybin (4-PO-DMT; n = 9); N,N-dimethyltryptamine (DMT; n = 8); lysergic acid diethylamide (LSD; n = 6); 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT; n = 3); psilocin (4-HO-DMT; n = 3); and mescaline (n = 2). In 36 studies where inflammatory cytokine levels were measured following psychedelic administration, a decrease in at least one inflammatory cytokine was observed in 29 studies. Immune cell activity was assessed in 10 studies and findings were mixed, with an equal number of studies (n = 5 out of 10) reporting either an increase or decrease in immune cell activity. Classical psychedelics were found to alleviate pre-existing inflammation but promote inflammation when administered under normal physiological conditions. This information is anticipated to inform future clinical trials, exploring classical psychedelics' potential to alleviate inflammation in various pathologies.
Collapse
Affiliation(s)
- Zhen Xuen Brandon Low
- Neurological Disorder and Aging (NDA) Research Group, Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Wei Shen Ng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Eugene Sheng Yao Lim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yatinesh Kumari
- Neurological Disorder and Aging (NDA) Research Group, Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
11
|
Mohammad Hosseini A, Khaleghzadeh-Ahangar H, Rahimi A. The immunomodulatory effects of psychedelics in Alzheimer's disease-related dementia. Neuroscience 2025; 564:271-280. [PMID: 39603407 DOI: 10.1016/j.neuroscience.2024.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/03/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Dementia is an increasing disorder, and Alzheimer's disease (AD) is the cause of 60% of all dementia cases. Despite all efforts, there is no cure for stopping dementia progression. Recent studies reported potential effects of psychedelics on neuroinflammation during AD. Psychedelics by 5HT2AR activation can reduce proinflammatory cytokine levels (TNF-α, IL-6) and inhibit neuroinflammation. In addition to neuroinflammation suppression, psychedelics induce neuroplasticity by increasing Brain-derived neurotrophic factor (BDNF) levels through Sigma-1R stimulation. This review discussed the effects of psychedelics on AD from both neuroinflammatory and neuroplasticity standpoints.
Collapse
Affiliation(s)
| | - Hossein Khaleghzadeh-Ahangar
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Atena Rahimi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology and Toxicology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
12
|
Winge T, Schepmann D, Schmidt J, Wünsch B. Synthesis and structure-affinity relationships of spirocyclic σ 1 receptor ligands with tetrahydropyran scaffold. Eur J Med Chem 2025; 281:117002. [PMID: 39547080 DOI: 10.1016/j.ejmech.2024.117002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
The σ1 receptor plays a key role in the regulation of various processes in the human body; it is involved in the development of neurodegenerative and neuropsychiatric diseases and is overexpressed in several human tumors rendering it an important target for potential drug candidates. In this project, spirocyclic σ1 receptor ligands with different substituents in 4- and 9-position were synthesized and investigated for their σ1 receptor affinity and selectivity over related targets. The σ1 affinity of the ligands was correlated with their lipophilicity (logD7.4 value) giving insight into their lipophilic ligand efficiency (LLE). The (pyridin-3-yl)methyl derivative 5i showed a promising balance of high σ1 affinity (Ki(σ1) = 3.9 nM) and selectivity (>250-fold) as well as high LLE of 5.8. 5i has a high plasma protein binding (89 %) and promising metabolic stability in the presence of mouse liver microsomes and NADPH (83 % intact after 90 min). Increasing the size of the piperidine ring of the spirocyclic ligands 5 to an azepane ring led to considerably increased σ1 affinity (Ki(5a) = 1.2 nM, Ki(23a) = 0.42 nM) and selectivity over σ2 receptors (5a: 45-fold, 23a: 150-fold).
Collapse
Affiliation(s)
- Tobias Winge
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Dirk Schepmann
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Judith Schmidt
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Bernhard Wünsch
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany.
| |
Collapse
|
13
|
Nogueira M, Ferreira Golbert DC, Menezes R, Nóbrega de Almeida R, Galvão-Coelho NL, Siroky AN, Lima TZ, Maia H, Leão KE, Leão RN. Serotonergic psychedelic 5-MeO-DMT alters plasticity-related gene expression and generates anxiolytic effects in stressed mice. Mol Psychiatry 2025; 30:50-60. [PMID: 38969716 DOI: 10.1038/s41380-024-02655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Serotonergic psychedelics have potential therapeutic effects in treating anxiety and mood disorders, often after a single dose, and are suggested to have plasticity-inducing action. However, a comprehensive mechanism of action is still lacking. Here, we investigated how a single dose of the short-acting 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) acts on gene expression from microdissected brain regions (anterior cingulate cortex - ACC; basolateral amygdala - BLA; ventral hippocampus CA1 region - vCA1 and dentate gyrus-DG) of naive and stressed mice. Specifically, we compared gene expression of Arc, Zif268, BDNF, CREB, mTORC1, NR2A, TRIP8b, and NFkB in mice injected with 5-MeO-DMT or saline at different time points (1 h, 5 h, or 5 days prior). 5-MeO-DMT altered mRNA expression of immediate early genes Arc and ZiF268 in the ACC, BLA, and vCA1, while NR2A expression was decreased after 5 h in the vCA1. We also found a long-term increase in TRIP8b, a gene related to the modulation of neuronal activity, in the vCA1 after 5 days. Behaviorally, 5-MeO-DMT treated mice showed mixed anxiolytic and anxiogenic effects in the elevated plus maze and open field test 24 h or 5 days after treatment. However, pre-treated mice subjected to acute stress showed both lower corticosterone levels and robust anxiolytic effects of 5-MeO-DMT administration. Together, our findings provide insights into the molecular actions of 5-MeO-DMT in the brain related to anxiolytic effects of behavior.
Collapse
Affiliation(s)
- Margareth Nogueira
- Neurodynamics Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Hearing and Neuronal Activity Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Daiane C Ferreira Golbert
- Neurodynamics Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Sleep, Dreams and Memory Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Richardson Menezes
- Automation and Robotics Laboratory, School of Science and Technology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raíssa Nóbrega de Almeida
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Nicole L Galvão-Coelho
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Andressa N Siroky
- Department of Statistics, Exact and Earth Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thiago Z Lima
- Hearing and Neuronal Activity Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Statistics, Exact and Earth Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Helton Maia
- Automation and Robotics Laboratory, School of Science and Technology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Katarina E Leão
- Hearing and Neuronal Activity Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Richardson N Leão
- Neurodynamics Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
14
|
Ghaznavi S, Ruskin JN, Haggerty SJ, King F, Rosenbaum JF. Primum Non Nocere: The Onus to Characterize the Potential Harms of Psychedelic Treatment. Am J Psychiatry 2025; 182:47-53. [PMID: 39741443 DOI: 10.1176/appi.ajp.20230914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The last few years have seen exponential growth in interest, investment, advocacy, and research into psychedelics as therapeutics. This reflects an optimism about the potential promise of psychedelics as therapeutics. As with all therapeutic interventions, research is needed not only into their benefits but also potential risks. Indeed, when substances with therapeutic potential are scrutinized over time, especially in broad populations with psychiatric and medical comorbidities typically excluded from clinical trials, and applied in less well-regulated or controlled settings, a greater understanding of the cautions emerges. Here, we review the literature on the known and potential harms, including enduring perceptual disturbances; triggering or enhancing the risk for onset of mania or psychosis; overuse, misuse, and dependence; challenging experiences or "bad trips"; risks associated with increased neuroplastic potential; and acute and cumulative cardiovascular effects. Each of these issues is addressed in this review, along with the call for continued research, including recommendations for further research and monitoring.
Collapse
Affiliation(s)
- Sharmin Ghaznavi
- Department of Psychiatry, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Ghaznavi, King, Rosenbaum); Department of Cardiology, Massachusetts General Hospital, Boston (Ruskin); Department of Psychiatry and Neurology, Chemical Neurobiology Laboratory, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Haggerty); Havard Medical School, Boston (Ghaznavi, Ruskin, Haggerty, King, Rosenbaum)
| | - Jeremy N Ruskin
- Department of Psychiatry, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Ghaznavi, King, Rosenbaum); Department of Cardiology, Massachusetts General Hospital, Boston (Ruskin); Department of Psychiatry and Neurology, Chemical Neurobiology Laboratory, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Haggerty); Havard Medical School, Boston (Ghaznavi, Ruskin, Haggerty, King, Rosenbaum)
| | - Stephen J Haggerty
- Department of Psychiatry, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Ghaznavi, King, Rosenbaum); Department of Cardiology, Massachusetts General Hospital, Boston (Ruskin); Department of Psychiatry and Neurology, Chemical Neurobiology Laboratory, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Haggerty); Havard Medical School, Boston (Ghaznavi, Ruskin, Haggerty, King, Rosenbaum)
| | - Franklin King
- Department of Psychiatry, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Ghaznavi, King, Rosenbaum); Department of Cardiology, Massachusetts General Hospital, Boston (Ruskin); Department of Psychiatry and Neurology, Chemical Neurobiology Laboratory, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Haggerty); Havard Medical School, Boston (Ghaznavi, Ruskin, Haggerty, King, Rosenbaum)
| | - Jerrold F Rosenbaum
- Department of Psychiatry, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Ghaznavi, King, Rosenbaum); Department of Cardiology, Massachusetts General Hospital, Boston (Ruskin); Department of Psychiatry and Neurology, Chemical Neurobiology Laboratory, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Haggerty); Havard Medical School, Boston (Ghaznavi, Ruskin, Haggerty, King, Rosenbaum)
| |
Collapse
|
15
|
Ramaekers JG, Reckweg JT, Mason NL. Benefits and Challenges of Ultra-Fast, Short-Acting Psychedelics in the Treatment of Depression. Am J Psychiatry 2025; 182:33-46. [PMID: 39741439 DOI: 10.1176/appi.ajp.20230890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Unlike classical antidepressants, psychedelics such as psilocybin have been shown to induce a rapid antidepressant response. In the wake of this development, interest has emerged in ultra-fast, short-acting psychedelics such as 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and N,N-dimethyltryptamine (DMT) with the expectation that these can produce rapid antidepressant effects following an intense but brief psychedelic intervention. The current paper reviews the clinical pharmacology of 5-MeO-DMT and DMT and their potential benefits and challenges in the treatment of depression. Both compounds display affinities for a variety of monoamine receptors and transporters, but mostly so for serotonergic (5HT) receptors, including 5HT1A and 5HT2A. Early clinical trials in small samples have shown that short interventions (15-30 min) with 5-MeO-DMT and DMT are safe and well tolerated and can induce marked improvement in symptoms of depression within 24 hours that sustain for at least 1 week. Data on long-term efficacy are currently scarce but do suggest a prolongation of the treatment response. Potential benefits of these treatments include flexible, single day dosing regimens, achievement of treatment efficacy independent from integrative therapy, and ease of clinical implementation. Future challenges include establishing the duration of the antidepressant effect and strategies on how to sustain the antidepressant response, optimization of treatment delivery parameters, and a mechanistic understanding of the clinical response. Acceptance of ultra-fast, short-acting psychedelics will depend on future randomized, placebo-controlled trials with a focus on replication, duration and maintenance of antidepressant efficacy in large patient samples.
Collapse
Affiliation(s)
- Johannes G Ramaekers
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Johannes T Reckweg
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Natasha L Mason
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
16
|
Verma K, Prasanth MI, Tencomnao T, Brimson JM. Ligand docking in the sigma-1 receptor compared to the sigma-1 receptor-BiP complex and the effects of agonists and antagonists on C. elegans lifespans. Biomed Pharmacother 2025; 182:117783. [PMID: 39729653 DOI: 10.1016/j.biopha.2024.117783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024] Open
Abstract
Model organisms are commonly used to study human diseases; we set out to understand the relevance of several model organisms with relation to the σ1R protein. The study explored the interactions of σ1R with various agonists, antagonists across different species. Ligand and protein-protein (σ1R-BiP) docking approaches were used to understand the significance of σ1R in modulating neuroprotective mechanisms and its potential role in Alzheimer's. Ligand docking revealed that common σ1R antagonists generally exhibited stronger σ1R binding than commonly used agonists. Human σ1R showed high binding affinity for S1RA and NE100. Orthologs in yeast, slime mold, and C. elegans displayed varied binding affinities, indicating evolutionary adaptation in their binding pockets. We evaluated the relevance of σ1R-ligand interactions in C. elegans, measuring life-spans showing the impact of ligands on lifespan depends on genetic background and amyloid-beta pathology. Haloperidol (5-10 mM) extended wild-type worms' lifespan, but this effect was absent in the σ1R-KO, suggesting at least a partial role for the σ1R. Fluoxetine (5-10 mM) also promoted a small increase in longevity in wild-type worms but was not seen in the σ1R-KO strain. BD1047 (5 & 10 mM) reduced the lifespan of amyloid-beta-expressing transgenic worms, whereas dipentylamine (DPA) (5 mM) significantly increased the lifespan in a σ1R antagonist-sensitive manner. These findings highlight the importance of the σ1R in neurodegeneration and suggest that ligand interactions are modulated by BiP. Further research using in-vitro and in-vivo models is needed to clarify σ1R's therapeutic potential in neurodegenerative diseases, where modulating σ1R could provide neuroprotective effects.
Collapse
Affiliation(s)
- Kanika Verma
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Mani Iyer Prasanth
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - James Michael Brimson
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
17
|
Lima da Cruz RV, Leão RN, Moulin TC. Effects of psychedelics on neurogenesis and broader neuroplasticity: a systematic review. Mol Med 2024; 30:244. [PMID: 39701927 DOI: 10.1186/s10020-024-01013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
In the mammalian brain, new neurons continue to be generated throughout life in a process known as adult neurogenesis. The role of adult-generated neurons has been broadly studied across laboratories, and mounting evidence suggests a strong link to the HPA axis and concomitant dysregulations in patients diagnosed with mood disorders. Psychedelic compounds, such as phenethylamines, tryptamines, cannabinoids, and a variety of ever-growing chemical categories, have emerged as therapeutic options for neuropsychiatric disorders, while numerous reports link their effects to increased adult neurogenesis. In this systematic review, we examine studies assessing neurogenesis or other neurogenesis-associated brain plasticity after psychedelic interventions and aim to provide a comprehensive picture of how this vast category of compounds regulates the generation of new neurons. We conducted a literature search on PubMed and Science Direct databases, considering all articles published until January 31, 2023, and selected articles containing both the words "neurogenesis" and "psychedelics". We analyzed experimental studies using either in vivo or in vitro models, employing classical or atypical psychedelics at all ontogenetic windows, as well as human studies referring to neurogenesis-associated plasticity. Our findings were divided into five main categories of psychedelics: CB1 agonists, NMDA antagonists, harmala alkaloids, tryptamines, and entactogens. We described the outcomes of neurogenesis assessments and investigated related results on the effects of psychedelics on brain plasticity and behavior within our sample. In summary, this review presents an extensive study into how different psychedelics may affect the birth of new neurons and other brain-related processes. Such knowledge may be valuable for future research on novel therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rafael V Lima da Cruz
- Neurodynamics Lab, Brain Institute (ICe), Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| | - Richardson N Leão
- Neurodynamics Lab, Brain Institute (ICe), Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Thiago C Moulin
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
18
|
Ngo A, Fattakhov N, Toborek M. Sigma-1 receptor signaling: A potential therapeutic approach for ischemic stroke. J Cereb Blood Flow Metab 2024; 44:1430-1440. [PMID: 39246093 PMCID: PMC11571975 DOI: 10.1177/0271678x241281547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Strokes constitute over 50% of all neurological diseases, standing as the foremost cause of physical and mental disability. Currently, there are no widely accepted gold standard treatments for ischemic strokes beyond intravenous thrombolysis and mechanical thrombectomy applied during the acute therapeutic window. Therefore, the need for novel treatments targeting crucial signaling mediators involved in ischemic stroke is of utmost importance. The sigma-1 receptor (S1R), a molecular chaperone located at mitochondria-associated endoplasmic reticulum membranes (MAM), has exhibited neuroprotective effects when modulated by synthetic and endogenous agents across various cerebrovascular diseases. In this review, we describe the emerging therapeutic role of S1R agonists and antagonists in regulating blood-brain barrier (BBB) dysfunction, neuroinflammation, and neurocognitive impairment following ischemic stroke.
Collapse
Affiliation(s)
- Alex Ngo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
19
|
Werle I, Bertoglio LJ. Psychedelics: A review of their effects on recalled aversive memories and fear/anxiety expression in rodents. Neurosci Biobehav Rev 2024; 167:105899. [PMID: 39305969 DOI: 10.1016/j.neubiorev.2024.105899] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Threatening events and stressful experiences can lead to maladaptive memories and related behaviors. Existing treatments often fail to address these issues linked to anxiety/stress-related disorders effectively. This review identifies dose ranges associated with specific actions across various psychedelics. We examined psilocybin/psilocin, lysergic acid diethylamide (LSD), N,N-dimethyltryptamine (DMT), mescaline, 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), serotonin 2 A/2 C agonists (e.g., DOI) and 3,4-methylenedioxymethamphetamine (MDMA) on aversive memory extinction and reconsolidation, learned fear, anxiety, and locomotion in rodents. Nearly 400 studies published since 1957 were reviewed. Psychedelics often show biphasic effects on locomotion at doses that enhance extinction learning/retention, impair memory reconsolidation, or reduce learned fear and anxiety. Emerging evidence suggests a dissociation between their prospective benefits and locomotor effects. Under-explored aspects include sex differences, susceptibility to interference as memories age and generalize, repeated treatments, and immediate vs. delayed changes. Validating findings in traumatic-like memory and maladaptive fear/anxiety models is essential. Understanding how psychedelics modulate threat responses and post-retrieval memory processes in rodents may inform drug development and human studies, improving therapeutic approaches for related psychiatric conditions.
Collapse
Affiliation(s)
- Isabel Werle
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Leandro J Bertoglio
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
20
|
Perkins D, Sarris J, Cowley-Court T, Aicher H, Tófoli LF, Carlos Bouso J, Opaleye E, Halman A, Galvão-Coelho N, Schubert V. Associations Between Ayahuasca Use in Naturalistic Settings and Mental Health and Wellbeing Outcomes: Analysis of a Large Global Dataset. J Psychoactive Drugs 2024:1-12. [PMID: 39579192 DOI: 10.1080/02791072.2024.2424288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/25/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
Emerging evidence indicates that ayahuasca consumption may have beneficial mental health effects. This study undertakes the largest analysis to date of associations between naturalistic ayahuasca use and current mental health status via an online cross-sectional survey. The sample included 7,576 participants (average age 41, 47% female) who had consumed ayahuasca in religious, traditional, or non-traditional settings in over 50 countries. Bivariate analysis, multivariate linear regressions and generalized structural equation modeling were used to explore associations between ayahuasca use variables, current mental health (K10, SF-12 MCS), and psychological well-being change (PWG). The number of ayahuasca uses was found to be positively associated with current mental health status (all measures), and this remained highly significant in multivariate models, with little evidence of associations diminishing over time. Variables such as the strength of the mystical experience, self-insights, and community/social variables were also positively associated with current mental health and PWG, while acute extreme fear and integration difficulties were negatively associated. Findings suggest that naturalistic ayahuasca use is associated with better current mental health status and enhanced psychological wellbeing for individuals with and without a history of mental illness, independent of community effects, with certain variables contributing positively or negatively to these effects.
Collapse
Affiliation(s)
- Daniel Perkins
- School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Psychae Institute, Melbourne, Australia
- Centre for Mental Health, Swinburne University of Technology, Melbourne, Australia
| | - Jerome Sarris
- Psychae Institute, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychedelic Research & Therapy Development, University of Zurich, Zurich, Switzerland
| | - Tessa Cowley-Court
- School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Psychae Institute, Melbourne, Australia
| | - Helena Aicher
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Luís Fernando Tófoli
- International Center for Ethnobotanical Education, Research and Service (ICEERS), Barcelona, Spain
| | - Jose Carlos Bouso
- Medical Anthropology Research Center, University of Rovira I Virgili, Tarragona, Spain
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
- Department of Psychobiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Emerita Opaleye
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Andreas Halman
- School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Nicole Galvão-Coelho
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Violeta Schubert
- NICM Health Research Institute, Western Sydney University, Sydney, Australia
| |
Collapse
|
21
|
Chaves C, Dos Santos RG, Dursun SM, Tusconi M, Carta MG, Brietzke E, Hallak JEC. Why N,N-dimethyltryptamine matters: unique features and therapeutic potential beyond classical psychedelics. Front Psychiatry 2024; 15:1485337. [PMID: 39568756 PMCID: PMC11576444 DOI: 10.3389/fpsyt.2024.1485337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Affiliation(s)
- Cristiano Chaves
- NeuroMood Lab, School of Medicine and Kingston Health Sciences Centre (KHSC), Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Rafael G Dos Santos
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
| | - Serdar M Dursun
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Elisa Brietzke
- NeuroMood Lab, School of Medicine and Kingston Health Sciences Centre (KHSC), Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Ubhayarathna M, Langmead CJ, Diepenhorst NA, Stewart GD. Molecular and structural insights into the 5-HT 2C receptor as a therapeutic target for substance use disorders. Br J Pharmacol 2024; 181:4414-4429. [PMID: 37679998 DOI: 10.1111/bph.16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Substance use disorder (SUD) is a chronic condition, with maintained abuse of a substance leading to physiological and psychological alterations and often changes in cognitive and social behaviours. Current therapies include psychotherapy coupled with medication; however, high relapse rates reveal the shortcomings of these therapies. The signalling, expression profile, and neurological function of the serotonin 2C receptor (5-HT2C receptor) make it a candidate of interest for the treatment of SUD. Recently, psychedelics, which broadly act at 5-HT2 receptors, have indicated potential for the treatment of SUD, implicating the 5-HT2C receptor. The modern psychedelic movement has rekindled interest in the 5-HT2C receptor, resulting in many new studies, especially structural analyses. This review explores the structural, molecular and cellular mechanisms governing 5-HT2C receptor function in the context of SUD. This provides the basis of the preclinical and clinical evidence for their role in SUD and highlights the potential for future exploration.
Collapse
Affiliation(s)
- Maleesha Ubhayarathna
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| | - Natalie A Diepenhorst
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| |
Collapse
|
23
|
Inserra A, Campanale A, Rezai T, Romualdi P, Rubino T. Epigenetic mechanisms of rapid-acting antidepressants. Transl Psychiatry 2024; 14:359. [PMID: 39231927 PMCID: PMC11375021 DOI: 10.1038/s41398-024-03055-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.
Collapse
Affiliation(s)
- Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Behavioral Neuroscience Laboratory, University of South Santa Catarina (UNISUL), Tubarão, Brazil., Tubarão, Brazil.
| | | | - Tamim Rezai
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Varese, Italy
| |
Collapse
|
24
|
Caspani G, Ruffell SGD, Tsang W, Netzband N, Rohani-Shukla C, Swann JR, Jefferies WA. Mind over matter: the microbial mindscapes of psychedelics and the gut-brain axis. Pharmacol Res 2024; 207:107338. [PMID: 39111558 DOI: 10.1016/j.phrs.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Psychedelics have emerged as promising therapeutics for several psychiatric disorders. Hypotheses around their mechanisms have revolved around their partial agonism at the serotonin 2 A receptor, leading to enhanced neuroplasticity and brain connectivity changes that underlie positive mindset shifts. However, these accounts fail to recognise that the gut microbiota, acting via the gut-brain axis, may also have a role in mediating the positive effects of psychedelics on behaviour. In this review, we present existing evidence that the composition of the gut microbiota may be responsive to psychedelic drugs, and in turn, that the effect of psychedelics could be modulated by microbial metabolism. We discuss various alternative mechanistic models and emphasize the importance of incorporating hypotheses that address the contributions of the microbiome in future research. Awareness of the microbial contribution to psychedelic action has the potential to significantly shape clinical practice, for example, by allowing personalised psychedelic therapies based on the heterogeneity of the gut microbiota.
Collapse
Affiliation(s)
- Giorgia Caspani
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, East Mall, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| | - Simon G D Ruffell
- Psychae Institute, Melbourne, Australia; School of Population and Global Health, University of Melbourne, 207 Bouverie St, Carlton, VIC 3053, Australia
| | - WaiFung Tsang
- Institute of Psychiatry, Psychology & Neuroscience, King'sCollege London, Department of Psychology, De Crespigny Park, London SE5 8AF, UK
| | - Nigel Netzband
- University of West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Cyrus Rohani-Shukla
- Centre for Psychedelic Research, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 0HS, UK
| | - Jonathan R Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, 12 University Rd, Southampton SO17 1BJ, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, East Mall, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
25
|
Lawrence DW, DiBattista AP, Timmermann C. N, N-Dimethyltryptamine (DMT)-Occasioned Familiarity and the Sense of Familiarity Questionnaire (SOF-Q). J Psychoactive Drugs 2024; 56:443-455. [PMID: 37428989 DOI: 10.1080/02791072.2023.2230568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 07/12/2023]
Abstract
This study investigated the sense of familiarity attributed to N, N-dimethyltryptamine (DMT) experiences. 227 naturalistic inhaled-DMT experiences reporting a sense of familiarity were included. No experiences referenced a previous DMT or psychedelic experience as the source of the familiarity. A high prevalence of concomitant features discordant from ordinary consciousness were identified: features of a mystical experience (97.4%), ego-dissolution (16.3%), and a "profound experience of death" (11.0%). The Sense of Familiarity Questionnaire (SOF-Q) was developed assessing 19 features of familiarity across 5 themes: (1) Familiarity with the Feeling, Emotion, or Knowledge Gained; (2) Familiarity with the Place, Space, State, or Environment; (3) Familiarity with the Act of Going Through the Experience; (4) Familiarity with Transcendent Features; and (5) Familiarity Imparted by an Entity Encounter. Bayesian latent class modeling yielded two stable classes of participants who shared similar SOF-Q responses. Class 1 participants responded, "yes" more often for items within "Familiarity Imparted by an Entity Encounter" and "Familiarity with the Feeling, Emotion, or Knowledge Gained." Results catalogued features of the sense of familiarity imparted by DMT, which appears to be non-referential to a previous psychedelic experience. Findings provide insights into the unique and enigmatic familiarity reported during DMT experiences and offer a foundation for further exploration into this intriguing phenomenon.
Collapse
Affiliation(s)
- David Wyndham Lawrence
- Department of Family & Community Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada
- Mount Sinai Hospital, Sinai Health System, Toronto, Canada
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Alex P DiBattista
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Christopher Timmermann
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
26
|
Mu H, Ye L, Wang B. Detailed resume of S-methyltransferases: Categories, structures, biological functions and research advancements in related pathophysiology and pharmacotherapy. Biochem Pharmacol 2024; 226:116361. [PMID: 38876259 DOI: 10.1016/j.bcp.2024.116361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Methylation is a vital chemical reaction in the metabolism of many drugs, neurotransmitters, hormones, and exogenous compounds. Among them, S-methylation plays a significant role in the biotransformation of sulfur-containing compounds, particularly chemicals with sulfhydryl groups. Currently, only three S-methyltransferases have been reported: thiopurine methyltransferase (TPMT), thiol methyltransferase (TMT), and thioether methyltransferase (TEMT). These enzymes are involved in various biological processes such as gene regulation, signal transduction, protein repair, tumor progression, and biosynthesis and degradation reactions in animals, plants, and microorganisms. Furthermore, they play pivotal roles in the metabolic pathways of essential drugs and contribute to the advancement of diseases such as tumors. This paper reviews the research progress on relevant structural features, metabolic mechanisms, inhibitor development, and influencing factors (gene polymorphism, S-adenosylmethionine level, race, sex, age, and disease) of S-methyltransferases. We hope that a better comprehension of S-methyltransferases will help to provide a reference for the development of novel strategies for related disorders and improve long-term efficacy.
Collapse
Affiliation(s)
- Hongfei Mu
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Lisha Ye
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Baolian Wang
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
27
|
Fu C, Xiao Y, Zhou X, Sun Z. Insight into binding of endogenous neurosteroid ligands to the sigma-1 receptor. Nat Commun 2024; 15:5619. [PMID: 38965213 PMCID: PMC11224282 DOI: 10.1038/s41467-024-49894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
The sigma-1 receptor (σ1R) is a non-opioid membrane receptor, which responds to a diverse array of synthetic ligands to exert various pharmacological effects. Meanwhile, candidates for endogenous ligands of σ1R have also been identified. However, how endogenous ligands bind to σ1R remains unknown. Here, we present crystal structures of σ1R from Xenopus laevis (xlσ1R) bound to two endogenous neurosteroid ligands, progesterone (a putative antagonist) and dehydroepiandrosterone sulfate (DHEAS) (a putative agonist), at 2.15-3.09 Å resolutions. Both neurosteroids bind to a similar location in xlσ1R mainly through hydrophobic interactions, but surprisingly, with opposite binding orientations. DHEAS also forms hydrogen bonds with xlσ1R, whereas progesterone interacts indirectly with the receptor through water molecules near the binding site. Binding analyses are consistent with the xlσ1R-neurosteroid complex structures. Furthermore, molecular dynamics simulations and structural data reveal a potential water entry pathway. Our results provide insight into binding of two endogenous neurosteroid ligands to σ1R.
Collapse
Affiliation(s)
- Chunting Fu
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Xiao
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoming Zhou
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ziyi Sun
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
28
|
Mondello C, Micali A, Baldino G, Cardia L, Alibrandi A, Asmundo A, Sapienza D, Puzzolo D, Ventura Spagnolo E. "Immunohistochemical analysis of Sigma-1 receptor (σ-1R) expression in human pineal gland in relation to different causes of death". Leg Med (Tokyo) 2024; 69:102434. [PMID: 38493555 DOI: 10.1016/j.legalmed.2024.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/04/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Sigma-1 receptor (σ-1R) modulates cellular signaling pathways, probably acting as a ligand operated chaperone. When activated, the receptor translocates from the interface mitochondrion associated membrane of the endoplasmic reticulum to the cell membrane. σ-1R was demonstrated in some brain regions, including the pineal gland, and was proposed to be involved in several cerebral processes, including neuroprotective responses against homeostasis alterations. On this basis, the immunohistochemical expression of σ-1R in human pineal glands was evaluated, with particular regard to the different causes of death. Thirty-eight pineal glands obtained from forensic autopsies were divided into five groups according to the cause of death: sudden death, drowning, fire fatality, hanging, and hemorrhagic shock, and examined with hematoxylin-eosin stain and immunohistochemistry for σ-1R. Both pinealocytes and perivascular spaces were evaluated. The pineal glands from sudden death were only mildly positive for σ-1R, while a more evident immunopositivity was observed in hanging, fire fatality, hemorrhagic shock, and drowning. These results were confirmed in a two-by-two comparison between the sudden death group and other groups. Our data demonstrate for the first time with immunohistochemical techniques the presence of σ-1R expression in the human pineal gland and propose a direct correlation between σ-1R expression and duration of the death process, in particular when hypoxic conditions and/or excessive psychological stress are present.
Collapse
Affiliation(s)
- Cristina Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Antonio Micali
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Gazzi, Italy
| | - Gennaro Baldino
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Luigi Cardia
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Gazzi, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Via dei Verdi 75, 98122 Messina, Italy
| | - Alessio Asmundo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Daniela Sapienza
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Elvira Ventura Spagnolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| |
Collapse
|
29
|
White E, Kennedy T, Ruffell S, Perkins D, Sarris J. Ayahuasca and Dimethyltryptamine Adverse Events and Toxicity Analysis: A Systematic Thematic Review. Int J Toxicol 2024; 43:327-339. [PMID: 38363085 PMCID: PMC11088222 DOI: 10.1177/10915818241230916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The objective of this paper is to conduct a systematic thematic review of adverse events, safety, and toxicity of traditional ayahuasca plant preparations and its main psychoactive alkaloids (dimethyltryptamine [DMT], harmine, harmaline, and tetrahydroharmine), including discussing clinical considerations (within clinical trials or approved settings). A systematic literature search of preclinical, clinical, epidemiological, and pharmacovigilance data (as well as pertinent reviews and case studies) was conducted for articles using the electronic databases of PubMed and Web of Science (to 6 July 2023) and PsycINFO, ClinicalTrials.gov, and Embase (to 21 September 2022) and included articles in English in peer-reviewed journals. Additionally, reference lists were searched. Due to the breadth of the area covered, we presented the relevant data in a thematic format. Our searches revealed 78 relevant articles. Data showed that ayahuasca or DMT is generally safe; however, some adverse human events have been reported. Animal models using higher doses of ayahuasca have shown abortifacient and teratogenic effects. Isolated harmala alkaloid studies have also revealed evidence of potential toxicity at higher doses, which may increase with co-administration with certain medications. Harmaline revealed the most issues in preclinical models. Nevertheless, animal models involving higher-dose synthetic isolates may not necessarily be able to be extrapolated to human use of therapeutic doses of plant-based extracts. Serious adverse effects are rarely reported within healthy populations, indicating an acceptable safety profile for the traditional use of ayahuasca and DMT in controlled settings. Further randomized, controlled trials with judicious blinding, larger samples, and longer duration are needed.
Collapse
Affiliation(s)
- Eleanor White
- Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Tom Kennedy
- The University of Queensland, Brisbane, QLD, Australia
| | - Simon Ruffell
- Psychae Institue, Melbourne, VIC, Australia
- Onaya Science, Iquitos, Peru
| | - Daniel Perkins
- Psychae Institue, Melbourne, VIC, Australia
- School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- School of Social and Political Science, University of Melbourne, Melbourne, VIC, Australia
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Jerome Sarris
- Psychae Institue, Melbourne, VIC, Australia
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Cheng D, Lei ZG, Chu K, Lam OJH, Chiang CY, Zhang ZJ. N, N-Dimethyltryptamine, a natural hallucinogen, ameliorates Alzheimer's disease by restoring neuronal Sigma-1 receptor-mediated endoplasmic reticulum-mitochondria crosstalk. Alzheimers Res Ther 2024; 16:95. [PMID: 38693554 PMCID: PMC11061967 DOI: 10.1186/s13195-024-01462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Aberrant neuronal Sigma-1 receptor (Sig-1r)-mediated endoplasmic reticulum (ER)- mitochondria signaling plays a key role in the neuronal cytopathology of Alzheimer's disease (AD). The natural psychedelic N, N-dimethyltryptamine (DMT) is a Sig-1r agonist that may have the anti-AD potential through protecting neuronal ER-mitochondrial interplay. METHODS 3×TG-AD transgenic mice were administered with chronic DMT (2 mg/kg) for 3 weeks and then performed water maze test. The Aβ accumulation in the mice brain were determined. The Sig-1r level upon DMT treatment was tested. The effect of DMT on the ER-mitochondrial contacts site and multiple mitochondria-associated membrane (MAM)-associated proteins were examined. The effect of DMT on calcium transport between ER and mitochondria and the mitochondrial function were also evaluated. RESULTS chronic DMT (2 mg/kg) markedly alleviated cognitive impairment of 3×TG-AD mice. In parallel, it largely diminished Aβ accumulation in the hippocampus and prefrontal cortex. DMT restored the decreased Sig-1r levels of 3×TG-AD transgenic mice. The hallucinogen reinstated the expression of multiple MAM-associated proteins in the brain of 3×TG-AD mice. DMT also prevented physical contact and calcium dynamic between the two organelles in in vitro and in vivo pathological circumstances. DMT modulated oxidative phosphorylation (OXPHOS) and ATP synthase in the in vitro model of AD. CONCLUSION The anti-AD effects of DMT are associated with its protection of neuronal ER-mitochondria crosstalk via the activation of Sig-1r. DMT has the potential to serve as a novel preventive and therapeutic agent against AD.
Collapse
Affiliation(s)
- Dan Cheng
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhuo-Gui Lei
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Kin Chu
- Department of Psychology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Oi Jin Honey Lam
- School of Biomedical Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Chun Yuan Chiang
- Digital Centre of State Key Laboratory of Quality Research in Chinese Medicine, Macau, China
| | - Zhang-Jin Zhang
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Shinozuka K, Tabaac BJ, Arenas A, Beutler BD, Cherian K, Evans VD, Fasano C, Muir OS. Psychedelic Therapy: A Primer for Primary Care Clinicians-N,N-Dimethyltryptamine and Ayahuasca. Am J Ther 2024; 31:e112-e120. [PMID: 38518268 DOI: 10.1097/mjt.0000000000001725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND N,N-dimethyltryptamine (DMT) is a naturally occurring serotonergic psychedelic found in natural plants around the globe. As the main psychoactive component in ayahuasca, which also contains monoamine oxidase inhibitors, DMT has been consumed as plant-based brew by indigenous peoples for centuries. Further research is required to delineate the therapeutic utility of DMT. AREAS OF UNCERTAINTY Although previous research has shown that DMT is synthesized endogenously, it may not be produced at physiologically relevant concentrations. Additionally, the phenomenological similarities between the DMT-induced state and near-death experiences led to the popular hypothesis that endogenous DMT is released during the dying process. However, this hypothesis continues to be debated. Generally, DMT and ayahuasca seem to be physiologically and psychiatrically safe, although ayahuasca is known to cause transient vomiting. THERAPEUTIC ADVANCES A double-blind, randomized controlled trial showed that, within 1 week, ayahuasca causes remission in 36% of patients with treatment-resistant depression. According to top-line results from a recent phase IIa trial, 57% of patients with major depressive disorder experienced remission 12 weeks after receiving a single intravenous dose of DMT. LIMITATIONS There has only been a single published double-blind randomized controlled trial on ayahuasca and 2 on DMT. All clinical trials have had small sample sizes (≤34 participants). DMT requires further research to understand its therapeutic and clinical potential as a psychedelic. CONCLUSIONS Preliminary evidence indicates that ayahuasca and DMT may be more effective than existing antidepressants for treating major depressive disorder and treatment-resistant depression.
Collapse
Affiliation(s)
- Kenneth Shinozuka
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Burton J Tabaac
- University of Nevada, Reno School of Medicine, Reno, NV
- Department of Neurology, Carson Tahoe Health, Carson City, NV
| | - Alejandro Arenas
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA
| | - Bryce D Beutler
- University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Kirsten Cherian
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA
| | - Viviana D Evans
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Owen S Muir
- Fermata Health, Brooklyn, New York, NY; and
- Acacia Clinics, Sunnyvale, CA
| |
Collapse
|
32
|
Falchi-Carvalho M, Wießner I, Silva SRB, O Maia L, Barros H, Laborde S, Arichelle F, Tullman S, Silva-Costa N, Assunção A, Almeida R, Pantrigo ÉJ, Bolcont R, Costa-Macedo JV, Arcoverde E, Galvão-Coelho N, Araujo DB, Palhano-Fontes F. Safety and tolerability of inhaled N,N-Dimethyltryptamine (BMND01 candidate): A phase I clinical trial. Eur Neuropsychopharmacol 2024; 80:27-35. [PMID: 38141403 DOI: 10.1016/j.euroneuro.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Psychedelics are being increasingly examined for their therapeutic potential in mood disorders. While the acute effects of ayahuasca, psilocybin, and lysergic acid diethylamide (LSD) last over several hours, inhaled N,N-Dimethyltryptamine (DMT) effects last around 10 min, which might provide a cost- and time-effective alternative to the clinical application of oral psychedelics. We aimed at investigating the safety and tolerability of inhaled DMT (BMND01 candidate). We recruited 27 healthy volunteers to receive a first, lower dose and a second, higher dose (5/20 mg, 7.5/30 mg, 10/40 mg, 12.5/50 mg, or 15/60 mg) of inhaled DMT in an open-label, single-ascending, fixed-order, dose-response study design. We investigated subjective experiences (intensity, valence, and phenomenology), physiological effects (blood pressure, heart rate, respiratory rate, blood oxygen saturation, body temperature), biochemical markers (liver, kidney, and metabolic functions), and adverse events during the acute and post-acute effects of DMT. DMT dose-dependently increased intensity, valence and perceptual ratings. There was a mild, transient, and self-limited increase in blood pressure and heart rate. There were no changes in safety blood biomarkers and no serious adverse events. DMT dose-dependently enhanced subjective experiences and positive valence. Inhaled DMT might be an efficient, non-invasive, safe route of administration, which might simplify the clinical use of this substance. This is the first clinical trial to test the effects of inhaled DMT (BMND01 candidate).
Collapse
Affiliation(s)
- Marcelo Falchi-Carvalho
- Biomind Labs, Brookfield Place, 181 Bay Street, Suite 1800, Toronto, ON M5J 2T9, Canada; Department of Clinical Medicine, Health Science Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Isabel Wießner
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Sérgio Ruschi B Silva
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Lucas O Maia
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Handersson Barros
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Sophie Laborde
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Flávia Arichelle
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Sam Tullman
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Natan Silva-Costa
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Aline Assunção
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Raissa Almeida
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Érica J Pantrigo
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Raynara Bolcont
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Emerson Arcoverde
- University Hospital Onofre Lopes, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Nicole Galvão-Coelho
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Draulio B Araujo
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| | - Fernanda Palhano-Fontes
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
33
|
Hatzipantelis CJ, Olson DE. The Effects of Psychedelics on Neuronal Physiology. Annu Rev Physiol 2024; 86:27-47. [PMID: 37931171 PMCID: PMC10922499 DOI: 10.1146/annurev-physiol-042022-020923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Psychedelics are quite unique among drugs that impact the central nervous system, as a single administration of a psychedelic can both rapidly alter subjective experience in profound ways and produce sustained effects on circuits relevant to mood, fear, reward, and cognitive flexibility. These remarkable properties are a direct result of psychedelics interacting with several key neuroreceptors distributed across the brain. Stimulation of these receptors activates a variety of signaling cascades that ultimately culminate in changes in neuronal structure and function. Here, we describe the effects of psychedelics on neuronal physiology, highlighting their acute effects on serotonergic and glutamatergic neurotransmission as well as their long-lasting effects on structural and functional neuroplasticity in the cortex. We propose that the neurobiological changes leading to the acute and sustained effects of psychedelics might be distinct, which could provide opportunities for engineering compounds with optimized safety and efficacy profiles.
Collapse
Affiliation(s)
- Cassandra J Hatzipantelis
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California, USA;
- Department of Chemistry, University of California, Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - David E Olson
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California, USA;
- Department of Chemistry, University of California, Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA
- Center for Neuroscience, University of California, Davis, Davis, California, USA
| |
Collapse
|
34
|
Barman R, Kumar Bora P, Saikia J, Konwar P, Sarkar A, Kemprai P, Proteem Saikia S, Haldar S, Slater A, Banik D. Hypothetical biosynthetic pathways of pharmaceutically potential hallucinogenic metabolites in Myristicaceae, mechanistic convergence and co-evolutionary trends in plants and humans. PHYTOCHEMISTRY 2024; 218:113928. [PMID: 38035973 DOI: 10.1016/j.phytochem.2023.113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/02/2023]
Abstract
The family Myristicaceae harbour mind-altering phenylpropanoids like myristicin, elemicin, safrole, tryptamine derivatives such as N,N-dimethyltryptamine (DMT) and 5-methoxy N,N-dimethyltryptamine (5-MeO-DMT) and β-carbolines such as 1-methyl-6-methoxy-dihydro-β-carboline and 2-methyl-6-methoxy-1,2,3,4-tetrahydro-β-carboline. This study aimed to systematically review and propose the hypothetical biosynthetic pathways of hallucinogenic metabolites of Myristicaceae which have the potential to be used pharmaceutically. Relevant publications were retrieved from online databases, including Google Scholar, PubMed Central, Science Direct and the distribution of the hallucinogens among the family was compiled. The review revealed that the biosynthesis of serotonin in plants was catalysed by tryptamine 5-hydroxylase (T5H) and tryptophan 5-hydroxylase (TPH), whereas in invertebrates and vertebrates only by tryptophan 5-hydroxylase (TPH). Indolethylamine-N-methyltransferase catalyses the biosynthesis of DMT in plants and the brains of humans and other mammals. Caffeic acid 3-O-methyltransferase catalyses the biosynthesis of both phenylpropanoids and tryptamines in plants. All the hallucinogenic markers exhibited neuropsychiatric effects in humans as mechanistic convergence. The review noted that DMT, 5-MeO-DMT, and β-carbolines were natural protectants against both plant stress and neurodegenerative human ailments. The protein sequence data of tryptophan 5-hydroxylase and tryptamine 5-hydroxylase retrieved from NCBI showed a co-evolutionary relationship in between animals and plants on the phylogenetic framework of a Maximum Parsimony tree. The review also demonstrates that the biosynthesis of serotonin, DMT, 5-MeO-DMT, 5-hydroxy dimethyltryptamine, and β-carbolines in plants, as well as endogenous secretion of these compounds in the brain and blood of humans and rodents, reflects co-evolutionary mutualism in plants and humans.
Collapse
Affiliation(s)
- Rubi Barman
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Pranjit Kumar Bora
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Jadumoni Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Parthapratim Konwar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Aditya Sarkar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India
| | - Phirose Kemprai
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Siddhartha Proteem Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Saikat Haldar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Adrian Slater
- Faculty of School of Health and Allied Sciences, Biomolecular Technology Group, Hawthorn Building HB1.12, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Dipanwita Banik
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India.
| |
Collapse
|
35
|
Mitchell JM, Anderson BT. Psychedelic therapies reconsidered: compounds, clinical indications, and cautious optimism. Neuropsychopharmacology 2024; 49:96-103. [PMID: 37479859 PMCID: PMC10700471 DOI: 10.1038/s41386-023-01656-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
The clinical investigation of psychedelic medicines has blossomed over the last 5 years. Data from a Phase 3 industry trial and a multicenter Phase 2 industry trial, in addition to multiple early phase investigator-initiated and industry trials, have now been published in peer-reviewed journals. This narrative review summarizes both the recent data and the current clinical trials that are being conducted with various classes of "psyche-manifesting" substances, which may prove beneficial in the treatment of a broad range of conditions. Methodological considerations, unique challenges, and next steps for research are discussed in keeping with the uniquely "experiential" nature of these therapies.
Collapse
Affiliation(s)
- Jennifer M Mitchell
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
- Department of Veterans Affairs, Research Service, San Francisco VA Medical Center, San Francisco, CA, USA.
- Berkeley Center for the Science of Psychedelics, University of California Berkeley, Berkeley, CA, USA.
| | - Brian T Anderson
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Berkeley Center for the Science of Psychedelics, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
36
|
Zaretsky TG, Jagodnik KM, Barsic R, Antonio JH, Bonanno PA, MacLeod C, Pierce C, Carney H, Morrison MT, Saylor C, Danias G, Lepow L, Yehuda R. The Psychedelic Future of Post-Traumatic Stress Disorder Treatment. Curr Neuropharmacol 2024; 22:636-735. [PMID: 38284341 PMCID: PMC10845102 DOI: 10.2174/1570159x22666231027111147] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 01/30/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental health condition that can occur following exposure to a traumatic experience. An estimated 12 million U.S. adults are presently affected by this disorder. Current treatments include psychological therapies (e.g., exposure-based interventions) and pharmacological treatments (e.g., selective serotonin reuptake inhibitors (SSRIs)). However, a significant proportion of patients receiving standard-of-care therapies for PTSD remain symptomatic, and new approaches for this and other trauma-related mental health conditions are greatly needed. Psychedelic compounds that alter cognition, perception, and mood are currently being examined for their efficacy in treating PTSD despite their current status as Drug Enforcement Administration (DEA)- scheduled substances. Initial clinical trials have demonstrated the potential value of psychedelicassisted therapy to treat PTSD and other psychiatric disorders. In this comprehensive review, we summarize the state of the science of PTSD clinical care, including current treatments and their shortcomings. We review clinical studies of psychedelic interventions to treat PTSD, trauma-related disorders, and common comorbidities. The classic psychedelics psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) and DMT-containing ayahuasca, as well as the entactogen 3,4-methylenedioxymethamphetamine (MDMA) and the dissociative anesthetic ketamine, are reviewed. For each drug, we present the history of use, psychological and somatic effects, pharmacology, and safety profile. The rationale and proposed mechanisms for use in treating PTSD and traumarelated disorders are discussed. This review concludes with an in-depth consideration of future directions for the psychiatric applications of psychedelics to maximize therapeutic benefit and minimize risk in individuals and communities impacted by trauma-related conditions.
Collapse
Affiliation(s)
- Tamar Glatman Zaretsky
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathleen M. Jagodnik
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Barsic
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josimar Hernandez Antonio
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip A. Bonanno
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn MacLeod
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlotte Pierce
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hunter Carney
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgan T. Morrison
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Saylor
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Danias
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Lepow
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Yehuda
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
37
|
Knowles LG, Armanious AJ, Peng Y, Welsh WJ, James MH. Recent advances in drug discovery efforts targeting the sigma 1 receptor system: Implications for novel medications designed to reduce excessive drug and food seeking. ADDICTION NEUROSCIENCE 2023; 8:100126. [PMID: 37753198 PMCID: PMC10519676 DOI: 10.1016/j.addicn.2023.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Psychiatric disorders characterized by uncontrolled reward seeking, such as substance use disorders (SUDs), alcohol use disorder (AUD) and some eating disorders, impose a significant burden on individuals and society. Despite their high prevalence and substantial morbidity and mortality rates, treatment options for these disorders remain limited. Over the past two decades, there has been a gradual accumulation of evidence pointing to the sigma-1 receptor (S1R) system as a promising target for therapeutic interventions designed to treat these disorders. S1R is a chaperone protein that resides in the endoplasmic reticulum, but under certain conditions translocates to the plasma membrane. In the brain, S1Rs are expressed in several regions important for reward, and following translocation, they physically associate with several reward-related GPCRs, including dopamine receptors 1 and 2 (D1R and D2R). Psychostimulants, alcohol, as well as palatable foods, all alter expression of S1R in regions important for motivated behavior, and S1R antagonists generally decrease behavioral responses to these rewards. Recent advances in structural modeling have permitted the development of highly-selective S1R antagonists with favorable pharmacokinetic profiles, thus providing a therapeutic avenue for S1R-based medications. Here, we provide an up-to-date overview of work linking S1R with motivated behavior for drugs of abuse and food, as well as evidence supporting the clinical utility of S1R antagonists to reduce their excessive consumption. We also highlight potential challenges associated with targeting the S1R system, including the need for a more comprehensive understanding of the underlying neurobiology and careful consideration of the pharmacological properties of S1R-based drugs.
Collapse
Affiliation(s)
- Liam G. Knowles
- Harpur School of Arts and Sciences, Binghamton University, Vestal, NY, USA
| | - Abanoub J. Armanious
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Youyi Peng
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - William J. Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
| | - Morgan H. James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| |
Collapse
|
38
|
Banushi B, Polito V. A Comprehensive Review of the Current Status of the Cellular Neurobiology of Psychedelics. BIOLOGY 2023; 12:1380. [PMID: 37997979 PMCID: PMC10669348 DOI: 10.3390/biology12111380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Psychedelic substances have gained significant attention in recent years for their potential therapeutic effects on various psychiatric disorders. This review delves into the intricate cellular neurobiology of psychedelics, emphasizing their potential therapeutic applications in addressing the global burden of mental illness. It focuses on contemporary research into the pharmacological and molecular mechanisms underlying these substances, particularly the role of 5-HT2A receptor signaling and the promotion of plasticity through the TrkB-BDNF pathway. The review also discusses how psychedelics affect various receptors and pathways and explores their potential as anti-inflammatory agents. Overall, this research represents a significant development in biomedical sciences with the potential to transform mental health treatments.
Collapse
Affiliation(s)
- Blerida Banushi
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Vince Polito
- School of Psychological Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| |
Collapse
|
39
|
Tyagi R, Saraf TS, Canal CE. The Psychedelic N, N-Dipropyltryptamine Prevents Seizures in a Mouse Model of Fragile X Syndrome via a Mechanism that Appears Independent of Serotonin and Sigma1 Receptors. ACS Pharmacol Transl Sci 2023; 6:1480-1491. [PMID: 37854624 PMCID: PMC10580393 DOI: 10.1021/acsptsci.3c00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 10/20/2023]
Abstract
The serotonergic psychedelic psilocybin shows efficacy in treating neuropsychiatric disorders, though the mechanism(s) underlying its therapeutic effects remain unclear. We show that a similar psychedelic tryptamine, N,N-dipropyltryptamine (DPT), completely prevents audiogenic seizures (AGS) in an Fmr1 knockout mouse model of fragile X syndrome at a 10 mg/kg dose but not at lower doses (3 or 5.6 mg/kg). Despite showing in vitro that DPT is a serotonin 5-HT2A, 5-HT1B, and 5-HT1A receptor agonist (with that rank order of functional potency, determined with TRUPATH Gα/βγ biosensors), pretreatment with selective inhibitors of 5-HT2A/2C, 5-HT1B, or 5-HT1A receptors did not block DPT's antiepileptic effects; a pan-serotonin receptor antagonist was also ineffective. Because 5-HT1A receptor activation blocks AGS in Fmr1 knockout mice, we performed a dose-response experiment to evaluate DPT's engagement of 5-HT1A receptors in vivo. DPT elicited 5-HT1A-dependent effects only at doses greater than 10 mg/kg, further supporting that DPT's antiepileptic effects were not 5-HT1A-mediated. We also observed that the selective sigma1 receptor antagonist, NE-100, did not impact DPT's antiepileptic effects, suggesting DPT engagement of sigma1 receptors was not a crucial mechanism. Separately, we observed that DPT and NE-100 at high doses caused convulsions on their own that were qualitatively distinct from AGS. In conclusion, DPT dose-dependently blocked AGS in Fmr1 knockout mice, but neither serotonin nor sigma1 receptor antagonists prevented this action. Thus, DPT might have neurotherapeutic effects independent of its serotonergic psychedelic properties. However, DPT also caused seizures at high doses, showing that DPT has complex dose-dependent in vivo polypharmacology.
Collapse
Affiliation(s)
- Richa Tyagi
- Department of Pharmaceutical
Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Tanishka S. Saraf
- Department of Pharmaceutical
Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Clinton E. Canal
- Department of Pharmaceutical
Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| |
Collapse
|
40
|
Layzell M, Rands P, Good M, Joel Z, Cousins R, Benway T, James E, Routledge C. Discovery and In Vitro Characterization of SPL028: Deuterated N, N-Dimethyltryptamine. ACS Med Chem Lett 2023; 14:1216-1223. [PMID: 37736183 PMCID: PMC10510671 DOI: 10.1021/acsmedchemlett.3c00143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
The psychedelic N,N- dimethyltryptamine (DMT) is in clinical development for the treatment of major depressive disorder. However, when administered via intravenous infusion, its effects are short-lived due to rapid clearance. Here we describe the synthesis of deuterated analogues of DMT with the aim of prolonging the half-life and decreasing the clearance rate while maintaining similar pharmacological effects. The molecule with the greatest degree of deuteration at the α-carbon (N,N-D2-dimethyltryptamine, D2-DMT) demonstrated the longest half-life and intrinsic clearance in hepatocyte mitochondrial fractions when compared with DMT. The in vitro receptor binding profile of D2-DMT was comparable to that of DMT, with the highest affinity at the 5-HT1A, 5-HT2A, and 5-HT2C receptors. D2-DMT was therefore the preferred candidate to consider for further evaluation.
Collapse
Affiliation(s)
- Marie Layzell
- Small
Pharma., 50 Featherstone
Street, London EC1Y 8RT, U.K.
| | - Peter Rands
- Small
Pharma., 50 Featherstone
Street, London EC1Y 8RT, U.K.
| | - Meghan Good
- Small
Pharma., 50 Featherstone
Street, London EC1Y 8RT, U.K.
| | - Zelah Joel
- Small
Pharma., 50 Featherstone
Street, London EC1Y 8RT, U.K.
| | - Rick Cousins
- Cinnabar
Consulting Ltd., 43 Pedley
Lane, Clifton, Beds SG17
5QT, U.K.
| | - Tiffanie Benway
- Small
Pharma., 50 Featherstone
Street, London EC1Y 8RT, U.K.
| | - Ellen James
- Small
Pharma., 50 Featherstone
Street, London EC1Y 8RT, U.K.
| | - Carol Routledge
- Small
Pharma., 50 Featherstone
Street, London EC1Y 8RT, U.K.
| |
Collapse
|
41
|
Pilozzi A, Foster S, Mischoulon D, Fava M, Huang X. A Brief Review on the Potential of Psychedelics for Treating Alzheimer's Disease and Related Depression. Int J Mol Sci 2023; 24:12513. [PMID: 37569888 PMCID: PMC10419627 DOI: 10.3390/ijms241512513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD), the most common form of senile dementia, is poised to place an even greater societal and healthcare burden as the population ages. With few treatment options for the symptomatic relief of the disease and its unknown etiopathology, more research into AD is urgently needed. Psychedelic drugs target AD-related psychological pathology and symptoms such as depression. Using microdosing, psychedelic drugs may prove to help combat this devastating disease by eliciting psychiatric benefits via acting through various mechanisms of action such as serotonin and dopamine pathways. Herein, we review the studied benefits of a few psychedelic compounds that may show promise in treating AD and attenuating its related depressive symptoms. We used the listed keywords to search through PubMed for relevant preclinical, clinical research, and review articles. The putative mechanism of action (MOA) for psychedelics is that they act mainly as serotonin receptor agonists and induce potential beneficial effects for treating AD and related depression.
Collapse
Affiliation(s)
- Alexander Pilozzi
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Simmie Foster
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Depression Clinical & Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David Mischoulon
- Depression Clinical & Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Maurizio Fava
- Depression Clinical & Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
42
|
Rafcikova J, Novakova M, Stracina T. Exploring the Association between Schizophrenia and Cardiovascular Diseases: Insights into the Role of Sigma 1 Receptor. Physiol Res 2023; 72:S113-S126. [PMID: 37565416 PMCID: PMC10660581 DOI: 10.33549/physiolres.935099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/15/2023] [Indexed: 12/01/2023] Open
Abstract
Contemporary society is characterized by rapid changes. Various epidemiological, political and economic crises represent a burden to mental health of nowadays population, which may at least partially explain the increasing incidence of mental disorders, including schizophrenia. Schizophrenia is associated with premature mortality by at least 13-15 years. The leading cause of premature mortality in schizophrenia patients is high incidence of cardiovascular diseases. The specific-cause mortality risk for cardiovascular diseases in schizophrenia patients is more than twice higher as compared to the general population. Several factors are discussed as the factor of cardiovascular diseases development. Intensive efforts to identify possible link between schizophrenia and cardiovascular diseases are made. It seems that sigma 1 receptor may represent such link. By modulation of the activity of several neurotransmitter systems, including dopamine, glutamate, and GABA, sigma 1 receptor might play a role in pathophysiology of schizophrenia. Moreover, significant roles of sigma 1 receptor in cardiovascular system have been repeatedly reported. The detailed role of sigma 1 receptor in both schizophrenia and cardiovascular disorders development however remains unclear. The article presents an overview of current knowledge about the association between schizophrenia and cardiovascular diseases and proposes possible explanations with special emphasis on the role of the sigma 1 receptor.
Collapse
Affiliation(s)
- J Rafcikova
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | | | |
Collapse
|
43
|
Wang T, Jia H. The Sigma Receptors in Alzheimer's Disease: New Potential Targets for Diagnosis and Therapy. Int J Mol Sci 2023; 24:12025. [PMID: 37569401 PMCID: PMC10418732 DOI: 10.3390/ijms241512025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Sigma (σ) receptors are a class of unique proteins with two subtypes: the sigma-1 (σ1) receptor which is situated at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), and the sigma-2 (σ2) receptor, located in the ER-resident membrane. Increasing evidence indicates the involvement of both σ1 and σ2 receptors in the pathogenesis of Alzheimer's disease (AD), and thus these receptors represent two potentially effective biomarkers for emerging AD therapies. The availability of optimal radioligands for positron emission tomography (PET) neuroimaging of the σ1 and σ2 receptors in humans will provide tools to monitor AD progression and treatment outcomes. In this review, we first summarize the significance of both receptors in the pathophysiology of AD and highlight AD therapeutic strategies related to the σ1 and σ2 receptors. We then survey the potential PET radioligands, with an emphasis on the requirements of optimal radioligands for imaging the σ1 or σ2 receptors in humans. Finally, we discuss current challenges in the development of PET radioligands for the σ1 or σ2 receptors, and the opportunities for neuroimaging to elucidate the σ1 and σ2 receptors as novel biomarkers for early AD diagnosis, and for monitoring of disease progression and AD drug efficacy.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
- Department of Nuclear Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
44
|
Robinson TS, Osman MA. An Emerging Role for Sigma Receptor 1 in Personalized Treatment of Breast Cancer. Cancers (Basel) 2023; 15:3464. [PMID: 37444574 PMCID: PMC10340381 DOI: 10.3390/cancers15133464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the major progress in treating breast cancer, recurrence remains a problem and types such as triple-negative breast cancer still lack targeted medicine. The orphan Sigma receptor1 (SigmaR1) has emerged as a target in breast cancer, but its mechanism of action is unclear and hinders clinical utility. SigmaR1 is widely expressed in organ tissues and localized to various sub-cellular compartments, particularly the endoplasmic reticulum (ER), the mitochondrial-associated membranes (MAMs) and the nuclear envelope. As such, it involves diverse cellular functions, including protein quality control/ER stress, calcium signaling, cholesterol homeostasis, mitochondrial integrity and energy metabolism. Consequently, SigmaR1 has been implicated in a number of cancers and degenerative diseases and thus has been intensively pursued as a therapeutic target. Because SigmaR1 binds a number of structurally unrelated ligands, it presents an excellent context-dependent therapeutic target. Here, we review its role in breast cancer and the current therapies that have been considered based on its known functions. As SigmaR1 is not classified as an oncoprotein, we propose a model in which it serves as an oligomerization adaptor in key cellular pathways, which may help illuminate its association with variable diseases and pave the way for clinical utility in personalized medicine.
Collapse
Affiliation(s)
| | - Mahasin A. Osman
- Department of Medicine, Division of Oncology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
45
|
Morató X, Fernández-Dueñas V, Pérez-Villamor P, Valle-León M, Vela JM, Merlos M, Burgueño J, Ciruela F. Development of a Novel σ 1 Receptor Biosensor Based on Its Heterodimerization with Binding Immunoglobulin Protein in Living Cells. ACS Chem Neurosci 2023. [PMID: 37191585 DOI: 10.1021/acschemneuro.3c00206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The σ1 receptor (S1R) is a ligand-regulated non-opioid intracellular receptor involved in several pathological conditions. The development of S1R-based drugs as therapeutic agents is a challenge due to the lack of simple functional assays to identify and classify S1R ligands. We have developed a novel nanoluciferase binary technology (NanoBiT) assay based on the ability of S1R to heteromerize with the binding immunoglobulin protein (BiP) in living cells. The S1R-BiP heterodimerization biosensor allows for rapid and accurate identification of S1R ligands by monitoring the dynamics of association-dissociation of S1R and BiP. Acute treatment of cells with the S1R agonist PRE-084 produced rapid and transient dissociation of the S1R-BiP heterodimer, which was blocked by haloperidol. The effect of PRE-084 was enhanced by calcium depletion, leading to a higher reduction in heterodimerization even in the presence of haloperidol. Prolonged incubation of cells with S1R antagonists (haloperidol, NE-100, BD-1047, and PD-144418) increased the formation of S1R-BiP heteromers, while agonists (PRE-084, 4-IBP, and pentazocine) did not alter heterodimerization under the same experimental conditions. The newly developed S1R-BiP biosensor is a simple and effective tool for exploring S1R pharmacology in an easy cellular setting. This biosensor is suitable for high-throughput applications and a valuable resource in the researcher's toolkit.
Collapse
Affiliation(s)
- Xavier Morató
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Biomedical Research Institute, IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Víctor Fernández-Dueñas
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Biomedical Research Institute, IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | | | - Marta Valle-León
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Biomedical Research Institute, IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - José Miguel Vela
- Welab Barcelona, Parc Científic Barcelona, 08028 Barcelona, Spain
| | - Manuel Merlos
- Welab Barcelona, Parc Científic Barcelona, 08028 Barcelona, Spain
| | - Javier Burgueño
- Welab Barcelona, Parc Científic Barcelona, 08028 Barcelona, Spain
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Biomedical Research Institute, IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| |
Collapse
|
46
|
Abstract
Over the past decade, psychedelic compounds have emerged as potentially transformative therapeutics for a variety of intractable neuropsychiatric conditions. However, historically most of the basic science has utilized these compounds as probes to interrogate various endogenous neurotransmitter systems-mainly the serotonin 5-HT2A receptor. With the renewed interest in utilizing these compounds as therapeutics and the explosion in clinical trials, psychedelics have been purported to treat many neuropsychiatric disorders, including depression, cluster headaches, migraines, anxiety, and obsessive-compulsive disorder. It is therefore imperative to understand the biology and pharmacology behind their therapeutic mechanisms as well as expose any potential pitfalls in their widespread use as treatments. This review covers the latest advances in understanding the biological mechanisms, the newest efforts in drug discovery, and potential pitfalls when it comes to utilizing this class of compounds as emerging therapeutics.
Collapse
Affiliation(s)
- Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill
| | - Ryan H Gumpper
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill
| |
Collapse
|
47
|
Malar DS, Thitilertdecha P, Ruckvongacheep KS, Brimson S, Tencomnao T, Brimson JM. Targeting Sigma Receptors for the Treatment of Neurodegenerative and Neurodevelopmental Disorders. CNS Drugs 2023; 37:399-440. [PMID: 37166702 PMCID: PMC10173947 DOI: 10.1007/s40263-023-01007-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
The sigma-1 receptor is a 223 amino acid-long protein with a recently identified structure. The sigma-2 receptor is a genetically unrelated protein with a similarly shaped binding pocket and acts to influence cellular activities similar to the sigma-1 receptor. Both proteins are highly expressed in neuronal tissues. As such, they have become targets for treating neurological diseases, including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), Rett syndrome (RS), developmental and epileptic encephalopathies (DEE), and motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). In recent years, there have been many pre-clinical and clinical studies of sigma receptor (1 and 2) ligands for treating neurological disease. Drugs such as blarcamesine, dextromethorphan and pridopidine, which have sigma-1 receptor activity as part of their pharmacological profile, are effective in treating multiple aspects of several neurological diseases. Furthermore, several sigma-2 receptor ligands are under investigation, including CT1812, rivastigmine and SAS0132. This review aims to provide a current and up-to-date analysis of the current clinical and pre-clinical data of drugs with sigma receptor activities for treating neurological disease.
Collapse
Affiliation(s)
- Dicson S Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokphorn S Ruckvongacheep
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - James M Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Room 409, ChulaPat-1 Building, 154 Rama 1 Road, Bangkok, 10330, Thailand.
| |
Collapse
|
48
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
49
|
Li J, Satyshur KA, Guo LW, Ruoho AE. Sphingoid Bases Regulate the Sigma-1 Receptor-Sphingosine and N, N'-Dimethylsphingosine Are Endogenous Agonists. Int J Mol Sci 2023; 24:3103. [PMID: 36834510 PMCID: PMC9962145 DOI: 10.3390/ijms24043103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Both bioactive sphingolipids and Sigma-1 receptor (S1R) chaperones occur ubiquitously in mammalian cell membranes. Endogenous compounds that regulate the S1R are important for controlling S1R responses to cellular stress. Herein, we interrogated the S1R in intact Retinal Pigment Epithelial cells (ARPE-19) with the bioactive sphingoid base, sphingosine (SPH), or the pain-provoking dimethylated SPH derivative, N,N'-dimethylsphingosine (DMS). As informed by a modified native gel approach, the basal and antagonist (BD-1047)-stabilized S1R oligomers dissociated to protomeric forms in the presence of SPH or DMS (PRE-084 as control). We, thus, posited that SPH and DMS are endogenous S1R agonists. Consistently, in silico docking of SPH and DMS to the S1R protomer showed strong associations with Asp126 and Glu172 in the cupin beta barrel and extensive van der Waals interactions of the C18 alkyl chains with the binding site including residues in helices 4 and 5. Mean docking free energies were 8.73-8.93 kcal/mol for SPH and 8.56-8.15 kcal/mol for DMS, and calculated binding constants were ~40 nM for SPH and ~120 nM for DMS. We hypothesize that SPH, DMS, and similar sphingoid bases access the S1R beta barrel via a membrane bilayer pathway. We further propose that the enzymatic control of ceramide concentrations in intracellular membranes as the primary sources of SPH dictates availability of endogenous SPH and DMS to the S1R and the subsequent control of S1R activity within the same cell and/or in cellular environments.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kenneth A. Satyshur
- Small Molecule Screening Facility, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Arnold E. Ruoho
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
50
|
Perkins D, Ruffell SGD, Day K, Pinzon Rubiano D, Sarris J. Psychotherapeutic and neurobiological processes associated with ayahuasca: A proposed model and implications for therapeutic use. Front Neurosci 2023; 16:879221. [PMID: 36798604 PMCID: PMC9928213 DOI: 10.3389/fnins.2022.879221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 12/12/2022] [Indexed: 02/01/2023] Open
Abstract
Ayahuasca is a psychoactive Amazonian plant brew. It is usually made from the Banisteriopsis caapi vine (Spruce ex Griseb. Morton, Malpighiaceae), which contains three primary harmala alkaloids, along with the leaves of Psychotria viridis (Ruiz et Pavon, Rubiaceae) in which the potent psychedelic dimethyltryptamine (DMT) is found. DMT-harmaloid concoctions have gained popularity in recent years, due to growing anecdotal and scientific reports of therapeutic benefits associated with their consumption. Ayahuasca is now ingested in a variety of different settings across the globe, from traditional ethnobotanical to so called "neo-shamanic" ceremonies. Furthermore, related preparations involving alternative sources of DMT and harmala alkaloids are becoming increasingly common as knowledge of ayahuasca continues to spread internationally. This article reviews the existing literature and draws on original qualitative data from a large cross-sectional study of ayahuasca drinkers, to propose a model of psychotherapeutic processes associated with the consumption of ayahuasca. We assert that it is these processes, facilitated by a range of neurobiological effects, that lead to beneficial mental health and wellbeing outcomes. Our proposed model identifies five key psychotherapeutic processes or effects inherent to the ayahuasca experience; somatic effects; introspection and emotional processing; increased Self-connection; increased spiritual connection, and finally the gaining of insights and new perspectives. We note some important differences in these processes compared with other classic psychedelics as well as the implications of the model for the therapeutic use of ayahuasca. Improved understanding of the psychotherapeutic processes involved with the ayahuasca experience will better equip practitioners to work with this potentially transformative concoction and enable the optimization of therapeutic treatment models for potential clinical use.
Collapse
Affiliation(s)
- Daniel Perkins
- School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia,School of Social and Political Science, University of Melbourne, Melbourne, VIC, Australia,Psychae Institute, Melbourne, VIC, Australia,Centre for Mental Health, Swinburne University, Melbourne, VIC, Australia,*Correspondence: Daniel Perkins,
| | - Simon G. D. Ruffell
- School of Social and Political Science, University of Melbourne, Melbourne, VIC, Australia,Psychae Institute, Melbourne, VIC, Australia,Centre for Mental Health, Swinburne University, Melbourne, VIC, Australia,Onaya Science, Iquitos, Peru
| | | | | | - Jerome Sarris
- Psychae Institute, Melbourne, VIC, Australia,NICM Health Research Institute, Western Sydney University, Sydney, NSW, Australia,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| |
Collapse
|