1
|
Watkins L, Li M, Wu B. Translation elongation: measurements and applications. RNA Biol 2025; 22:1-10. [PMID: 40377059 PMCID: PMC12087489 DOI: 10.1080/15476286.2025.2504727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
Translation converts genetic information in mRNAs into functional proteins. This process occurs in four major steps: initiation, elongation, termination and ribosome recycling; each of which profoundly impacts mRNA stability and protein yield. Over recent decades, regulatory mechanisms governing these aspects of translation have been identified. In this review, we focus on the elongation phase, reviewing the experimental methods used to measure elongation rates and discussing how the measurements shed light on the factors that regulate elongation and ultimately gene expression.
Collapse
Affiliation(s)
- Leslie Watkins
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mulin Li
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Pancsa R, Andreev DE, Dean K. The implication of non-AUG-initiated N-terminally extended proteoforms in cancer. RNA Biol 2025; 22:1-18. [PMID: 40276932 PMCID: PMC12045569 DOI: 10.1080/15476286.2025.2498203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/03/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
Dysregulated translation is a hallmark of cancer, and recent genome-wide studies in tumour cells have uncovered widespread translation of non-canonical reading frames that often initiate at non-AUG codons. If an upstream non-canonical start site is located within a frame with an annotated coding sequence (CDS), such translation events can lead to the production of proteoforms with altered N-termini (PANTs). Certain examples of PANTs from oncogenes (e.g. c-MYC) and tumour suppressors (e.g. PTEN) have been previously linked to cancer. We have performed a systematic computational analysis on recently identified non-AUG initiation-derived N-terminal extensions of cancer-associated proteins, and we discuss how these extended proteoforms may acquire new oncogenic properties. We identified a loss of stability for the N-terminally extended proteoforms of oncogenes TCF-4 and SOX2. Furthermore, we discovered likely functional short linear motifs within the N-terminal extensions of oncogenes and tumour suppressors (SOX2, SUFU, SFPQ, TOP1 and SPEN/SHARP) that could provide an explanation for previously described functionalities or interactions of the proteins. In all, we identify novel cases where PANTs likely show different localization, functions, partner binding or turnover rates compared to the annotated proteoforms. Therefore, we propose that alterations in the stringency of translation initiation, often seen under conditions of cellular stress, may result in reprogramming of translation to generate novel PANTs that influence cancer progression.
Collapse
Affiliation(s)
- Rita Pancsa
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dmitry E. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Zhang J, Qian W. Functional synonymous mutations and their evolutionary consequences. Nat Rev Genet 2025:10.1038/s41576-025-00850-1. [PMID: 40394196 DOI: 10.1038/s41576-025-00850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/22/2025]
Abstract
Synonymous mutations are coding mutations that do not alter protein sequences. Commonly thought to have little to no functional consequence, synonymous mutations have been widely used in evolutionary analyses that require neutral markers, including those foundational for the neutral theory. However, recent studies suggest that synonymous mutations can influence nearly every step in the expression of genetic information and may often be strongly non-neutral. We review the extent and mechanisms of these phenotypic and fitness effects and discuss the implications of the functionality and non-neutrality of synonymous mutations for various analyses and conclusions pertinent to genetics, evolution, conservation and disease.
Collapse
Affiliation(s)
- Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Wenfeng Qian
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Aviles-Huerta D, Del Pizzo R, Kowar A, Baig AH, Palazzo G, Stepanova E, Amaya Ramirez CC, D'Agostino S, Ratto E, Pechincha C, Siefert N, Engel H, Du S, Cadenas-De Miguel S, Miao B, Cruz-Vilchez VM, Müller-Decker K, Elia I, Sun C, Palm W, Loayza-Puch F. Dual Ribosome Profiling reveals metabolic limitations of cancer and stromal cells in the tumor microenvironment. Nat Commun 2025; 16:4652. [PMID: 40389477 DOI: 10.1038/s41467-025-59986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 05/09/2025] [Indexed: 05/21/2025] Open
Abstract
The tumor microenvironment (TME) influences cancer cell metabolism and survival. However, how immune and stromal cells respond to metabolic stress in vivo, and how nutrient limitations affect therapy, remains poorly understood. Here, we introduce Dual Ribosome Profiling (DualRP) to simultaneously monitor translation and ribosome stalling in multiple tumor cell populations. DualRP reveals that cancer-fibroblast interactions trigger an inflammatory program that reduces amino acid shortages during glucose starvation. In immunocompetent mice, we show that serine and glycine are essential for optimal T cell function and that their deficiency impairs T cell fitness. Importantly, immune checkpoint blockade therapy imposes amino acid restrictions specifically in T cells, demonstrating that therapies create distinct metabolic demands across TME cell types. By mapping codon-resolved ribosome stalling in a cell‑type‑specific manner, DualRP uncovers metabolic crosstalk that shapes translational programs. DualRP thus offers a powerful, innovative approach for dissecting tumor cell metabolic interplay and guiding combined metabolic-immunotherapeutic strategies.
Collapse
Affiliation(s)
- Daniela Aviles-Huerta
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Rossella Del Pizzo
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Alexander Kowar
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ali Hyder Baig
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Giuliana Palazzo
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ekaterina Stepanova
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Cinthia Claudia Amaya Ramirez
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Sara D'Agostino
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Edoardo Ratto
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
- Division of Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Catarina Pechincha
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
- Division of Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Nora Siefert
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
- Division of Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Helena Engel
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
- Immune Regulation in Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Shangce Du
- Immune Regulation in Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | | | - Beiping Miao
- Immune Regulation in Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Victor M Cruz-Vilchez
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Karin Müller-Decker
- Core Facility Tumor Models, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Ilaria Elia
- Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium
| | - Chong Sun
- Immune Regulation in Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Wilhelm Palm
- Division of Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Fabricio Loayza-Puch
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany.
| |
Collapse
|
5
|
Tomuro K, Iwasaki S. Advances in ribosome profiling technologies. Biochem Soc Trans 2025:BST20253061. [PMID: 40380882 DOI: 10.1042/bst20253061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/30/2025] [Indexed: 05/19/2025]
Abstract
Ribosome profiling (or Ribo-seq) has emerged as a powerful approach for revealing the regulatory mechanisms of protein synthesis, on the basis of deep sequencing of ribosome footprints. Recent innovations in Ribo-seq technologies have significantly enhanced their sensitivity, specificity, and resolution. In this review, we outline emerging Ribo-seq derivatives that overcome barriers in low inputs, rRNA contamination, data calibration, and single-cell applications. These advances enable detailed insights into translational control across diverse biological contexts.
Collapse
Affiliation(s)
- Kotaro Tomuro
- RNA Systems Biochemistry Laboratory, Pioneering Research Institute, RIKEN, Wako, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, Pioneering Research Institute, RIKEN, Wako, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
6
|
Lu T, Ma P, Fang H, Chen A, Xu J, Kuang X, Wang M, Su L, Wang S, Zhang Y, Wang J, Yang B, Shi DL, Zhou Y, Gong Q, Liu X, Mao B, Shao M. Prkra dimer senses double-stranded RNAs to dictate global translation efficiency. Mol Cell 2025; 85:2032-2047.e9. [PMID: 40280134 DOI: 10.1016/j.molcel.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/27/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Double-stranded RNAs (dsRNAs), known as conserved pathogen-associated molecular patterns, activate the integrated stress response via interferon-induced protein kinase R (PKR), leading to global translation inhibition. However, the interferon system is inactive in pluripotent cells, leaving the mechanisms of dsRNA sensing and translational control unclear. In this study, we utilized early zebrafish embryos as a model of pluripotent cells and discovered a PKR-independent blockage of translation initiation by dsRNA stimulation. Prkra dimer was identified as the genuine dsRNA sensor. Upon dsRNA binding, the dimerized dsRNA-binding domain 3 of Prkra becomes activated to sequester the eIF2 complexes from the translation machinery, inhibiting global protein synthesis. This distinctive embryonic stress response restricts RNA virus replication in zebrafish embryos, is conserved in mouse embryonic stem cells, and compensates PKR function in differentiated cells. Therefore, the Prkra-mediated dsRNA sensing and translation control may serve as a common strategy for cells to adapt to environmental stresses.
Collapse
Affiliation(s)
- Tong Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; National Resource Center for Non-Human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Hailing Fang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Aijun Chen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Jianlin Xu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xi Kuang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Qingdao 266237, China
| | - Ling Su
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Sen Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Qingdao 266237, China
| | - Yizhuang Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Jiasheng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Boya Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - De-Li Shi
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8263, INSERM U1345, Development, Adaptation, and Ageing, Paris, France; Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Qianqian Gong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China; Shandong University, Yuanchen Joint Biomedical Technology Laboratory, Qingdao 266237, China.
| | - Bingyu Mao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; National Resource Center for Non-Human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China.
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China; Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Qingdao 266237, China; Shandong University, Yuanchen Joint Biomedical Technology Laboratory, Qingdao 266237, China.
| |
Collapse
|
7
|
Wang J, Deng X, Jian T, Yin S, Chen L, Vergnes L, Li Z, Liu H, Lee R, Lim SY, Bahn JH, Xiao X, Zhu X, Hu G, Reue K, Liu Y, Fan G. DNA methyltransferase 1 modulates mitochondrial function through bridging m 5C RNA methylation. Mol Cell 2025; 85:1999-2016.e11. [PMID: 40328247 DOI: 10.1016/j.molcel.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/25/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
DNA methyltransferase 1 (DNMT1) is an enzyme known for DNA methylation maintenance. Point mutations in its replication focus targeting sequence (RFTS) domain lead to late-onset neurodegeneration, such as autosomal dominant cerebellar ataxia-deafness and narcolepsy (ADCA-DN) disorder. Here, we demonstrated that DNMT1 has the capability to bind to mRNA transcripts and facilitate 5-methylcytosine (m5C) RNA methylation by recruiting NOP2/Sun RNA methyltransferase 2 (NSUN2). RNA m5C methylation, in turn, promotes RNA stability for those genes modulating mitochondrial function. When the DNMT1 RFTS domain is mutated in mice, it triggers aberrant DNMT1-RNA interaction and significantly elevated m5C RNA methylation and RNA stability for a portion of metabolic genes. Consequently, increased levels of metabolic RNA transcripts contribute to cumulative oxidative stress, mitochondrial dysfunction, and neurological symptoms. Collectively, our results reveal a dual role of DNMT1 in regulating both DNA and RNA methylation, which further modulates mitochondrial function, shedding light on the pathogenic mechanism of DNMT1 mutation-induced neurodegeneration.
Collapse
Affiliation(s)
- Jing Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Xiaoqian Deng
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Tianshen Jian
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Shanshan Yin
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linzhi Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhehao Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Huoyuan Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ryan Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sin Yee Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xianmin Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; The Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121.
| |
Collapse
|
8
|
Kuzuoglu-Ozturk D, Nguyen HG, Xue L, Figueredo E, Subramanyam V, Liu I, Bonitto K, Noronha A, Dabrowska A, Cowan JE, Oses-Prieto JA, Burlingame AL, Worland ST, Carroll PR, Ruggero D. Small-molecule RNA therapeutics to target prostate cancer. Cancer Cell 2025; 43:841-855.e8. [PMID: 40118049 DOI: 10.1016/j.ccell.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/20/2024] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
Tuning protein expression by targeting RNA structure using small molecules is an unexplored avenue for cancer treatment. To understand whether this vulnerability could be therapeutically targeted in the most lethal form of prostate cancer, castration-resistant prostate cancer (CRPC), we use a clinical small molecule, zotatifin, that targets the RNA helicase and translation factor eukaryotic initiation factor 4A (eIF4A). Zotatifin represses tumorigenesis in patient-derived and xenograft models and prolonged survival in vivo alongside hormone therapy. Genome-wide transcriptome, translatome, and proteomic analysis reveals two important translational targets: androgen receptor (AR), a key oncogene in CRPC, and hypoxia-inducible factor 1A (HIF1A), an essential cancer modulator in hypoxia. We solve the structure of the 5' UTRs of these oncogenic mRNAs and strikingly observe complex structural remodeling of these select mRNAs by this small molecule. Remarkably, tumors treated with zotatifin become more sensitive to anti-androgen therapy and radiotherapy. Therefore, "translatome therapy" provides additional strategies to treat the deadliest cancers.
Collapse
MESH Headings
- Male
- Humans
- Animals
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Mice
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/pathology
- Xenograft Model Antitumor Assays
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Eukaryotic Initiation Factor-4A/genetics
- Eukaryotic Initiation Factor-4A/antagonists & inhibitors
- Eukaryotic Initiation Factor-4A/metabolism
- Thiohydantoins/pharmacology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- 5' Untranslated Regions
- RNA, Messenger/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- Prostatic Neoplasms/genetics
Collapse
Affiliation(s)
- Duygu Kuzuoglu-Ozturk
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Hao G Nguyen
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Lingru Xue
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Emma Figueredo
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vishvak Subramanyam
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Isabelle Liu
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kenya Bonitto
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Tetrad Graduate Program, University of California, San Francisco, CA, USA
| | - Ashish Noronha
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Adrianna Dabrowska
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Janet E Cowan
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | | - Peter R Carroll
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Agrawal A, Saghatelian A. Identification of microproteins with transactivation activity by polyalanine motif selection. RSC Chem Biol 2025; 6:800-808. [PMID: 40083654 PMCID: PMC11898273 DOI: 10.1039/d4cb00277f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Microproteins are an emerging class of proteins that are encoded by small open reading frames (smORFs) less than or equal to 100 amino acids. The functions of several microproteins have been illuminated through phenotypic screening or protein-protein interaction studies, but thousands of microproteins remain uncharacterized. The functional characterization of microproteins is challenging due to a lack of sequence homology. Here, we demonstrate a strategy to enrich microproteins that contain specific motifs as a means to more rapidly characterize microproteins. Specifically, we used the fact that polyalanine motifs are associated with nuclear proteins to select 58 candidate microproteins to screen for transactivation function. We identified three microproteins with transactivation activity when tested as GAL4-fusions in a cell-based luciferase assay. The results support the continued use of the motif selection strategy for the discovery of microprotein function.
Collapse
Affiliation(s)
- Archita Agrawal
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies La Jolla CA USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies La Jolla CA USA
| |
Collapse
|
10
|
Tiburcio PDB, Chen K, Xu L, Chen KS. Suppressing proteasome activity enhances sensitivity to actinomycin D in diffuse anaplastic Wilms tumor. Cell Rep Med 2025:102133. [PMID: 40347939 DOI: 10.1016/j.xcrm.2025.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/28/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Wilms tumor is the most common pediatric kidney cancer, and diffuse anaplastic Wilms tumor is the most chemoresistant subtype. Here, we explore how Wilms tumor cells evade the chemotherapy actinomycin D, which inhibits ribosomal RNA biogenesis. Using ribosome profiling, protein arrays, and a genome-wide knockout screen, we describe how actinomycin D disrupts protein homeostasis and blocks cell-cycle progression. When ribosomal capacity is limited by actinomycin D treatment, anaplastic Wilms tumor cells preferentially translate proteasome components. Next, we find that the proteasome inhibitor bortezomib sensitizes cells to actinomycin D treatment in vitro and prolongs survival in xenograft models. Lastly, increased levels of proteasome components are associated with anaplastic histology and worse prognosis in Wilms tumor patients. In sum, maintaining protein homeostasis is critical for Wilms tumor proliferation, and it can be therapeutically disrupted by blocking protein synthesis or turnover.
Collapse
Affiliation(s)
- Patricia D B Tiburcio
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Peter O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
VanInsberghe M, van Oudenaarden A. Sequencing technologies to measure translation in single cells. Nat Rev Mol Cell Biol 2025; 26:337-346. [PMID: 39833532 DOI: 10.1038/s41580-024-00822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
Translation is one of the most energy-intensive processes in a cell and, accordingly, is tightly regulated. Genome-wide methods to measure translation and the translatome and to study the complex regulation of protein synthesis have enabled unprecedented characterization of this crucial step of gene expression. However, technological limitations have hampered our understanding of translation control in multicellular tissues, rare cell types and dynamic cellular processes. Recent optimizations, adaptations and new techniques have enabled these measurements to be made at single-cell resolution. In this Progress, we discuss single-cell sequencing technologies to measure translation, including ribosome profiling, ribosome affinity purification and spatial translatome methods.
Collapse
Affiliation(s)
- Michael VanInsberghe
- Oncode Institute, Utrecht, the Netherlands.
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands.
- University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
12
|
Tang H, Jiang F, Zhang Z, Yang J, Li L, Zhang Q. Metabolism-associated protein network constructing and host-directed anti-influenza drug repurposing. Brief Bioinform 2025; 26:bbaf163. [PMID: 40315435 PMCID: PMC12048005 DOI: 10.1093/bib/bbaf163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/05/2025] [Accepted: 03/23/2025] [Indexed: 05/04/2025] Open
Abstract
Host-directed antivirals offer a promising strategy for addressing the challenge of viral resistance. Virus-host interactions often trigger stage-specific metabolic reprogramming in the host, and the causal links between these interactions and virus-induced metabolic changes provide valuable insights for identifying host targets. In this study, we present a workflow for repurposing host-directed antivirals using virus-induced protein networks. These networks capture the dynamic progression of viral infection by integrating host proteins directly interacting with the virus and enzymes associated with significantly altered metabolic fluxes, identified through dual-species genome-scale metabolic models. This approach reveals numerous hub nodes as potential host targets. As a case study, 50 approved drugs with potential anti-influenza virus A (IVA) activity were identified through eight stage-specific IVA-induced protein networks, each comprising 699-899 hub nodes. Lisinopril, saxagliptin, and gliclazide were further validated for anti-IVA efficacy in vitro through assays measuring the inhibition of cytopathic effects and viral titers in A549 cells infected with IVA PR8. This workflow paves the way for the rapid repurposing of host-directed antivirals.
Collapse
Affiliation(s)
- Hao Tang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 Hubei, China
| | - Feng Jiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 Hubei, China
| | - Zhi Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 Hubei, China
| | - Jiaojiao Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Shizishan Street 1, Wuhan, 430070 Hubei, China
| | - Lu Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Shizishan Street 1, Wuhan, 430070 Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Shizishan Street 1, Wuhan, 430070 Hubei, China
| | - Qingye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 Hubei, China
| |
Collapse
|
13
|
Román-Trufero M, Kleijn IT, Blighe K, Zhou J, Saavedra-García P, Gaffar A, Christoforou M, Bellotti A, Abrahams J, Atrih A, Lamont D, Gierlinski M, Jayaprakash P, Michel AM, Aboagye EO, Yuneva M, Masson GR, Shahrezaei V, Auner HW. An ISR-independent role of GCN2 prevents excessive ribosome biogenesis and mRNA translation. Life Sci Alliance 2025; 8:e202403014. [PMID: 40032489 PMCID: PMC11876863 DOI: 10.26508/lsa.202403014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
The integrated stress response (ISR) is a corrective physiological programme to restore cellular homeostasis that is based on the attenuation of global protein synthesis and a resource-enhancing transcriptional programme. GCN2 is the oldest of four kinases that are activated by diverse cellular stresses to trigger the ISR and acts as the primary responder to amino acid shortage and ribosome collisions. Here, using a broad multi-omics approach, we uncover an ISR-independent role of GCN2. GCN2 inhibition or depletion in the absence of discernible stress causes excessive protein synthesis and ribosome biogenesis, perturbs the cellular translatome, and results in a dynamic and broad loss of metabolic homeostasis. Cancer cells that rely on GCN2 to keep protein synthesis in check under conditions of full nutrient availability depend on GCN2 for survival and unrestricted tumour growth. Our observations describe an ISR-independent role of GCN2 in regulating the cellular proteome and translatome and suggest new avenues for cancer therapies based on unleashing excessive mRNA translation.
Collapse
Affiliation(s)
- Mónica Román-Trufero
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Istvan T Kleijn
- Department of Mathematics, Imperial College London, London, UK
| | | | - Jinglin Zhou
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Paula Saavedra-García
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Abigail Gaffar
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Marilena Christoforou
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Axel Bellotti
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Joel Abrahams
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Abdelmadjid Atrih
- FingerPrints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Douglas Lamont
- FingerPrints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Marek Gierlinski
- Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Glenn R Masson
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | | | - Holger W Auner
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Hu T, Pang M, Sun Q, Gou Y, Liu J, Wang X, Ma Y, Chen W, Wei C, Liu M, Ding Y, Zhang Y, Liu D, Wu W, Wang P, Zhu H, Li Q, Yang F. Sema3A relieves neuropathic pain by reducing eIF2α phosphorylation via suppressing PI3K/Akt/mTOR pathway. THE JOURNAL OF PAIN 2025; 30:105374. [PMID: 40107588 DOI: 10.1016/j.jpain.2025.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Primary sensory neurons serve as a critical link between the peripheral nervous system (PNS) and the central nervous system (CNS). They represent the initial neural tissue responsible for transmitting sensations and pain. In case where peripheral nerves are injured, nerve fiber regeneration can lead to severe pain. Semaphorin3A (Sema3A), an axon guidance molecule that can be secreted by Schwann cells, has been shown to effectively inhibit the regeneration of embryonic and adult dorsal root ganglion (DRG). However, its role in neuropathic pain and the underlying mechanisms remain unexplored. This study employed a chronic constriction injury (CCI) model of neuropathic pain in mice. We observed that increased expression of Sema3A could alleviate both mechanical and heat nociceptive behaviors in model mice. By overexpressing Sema3A in ipsilateral DRG neurons via DRG injection, we found that the phosphorylation of the PI3K/Akt/mTOR signaling pathway and eukaryotic initiation factor 2α (eIF2α) was inhibited, thereby inhibiting pain. eIF2α is a translation initiation factor and its phosphorylation can regulate global translation. The inhibition of eIF2α phosphorylation through PKR and PERK inhibitors also reduced the expression of ion channels and ultimately alleviated neuropathic pain. We found that Sema3A could suppress the phosphorylation of eIF2α by inhibiting the PI3K/AKT/mTOR pathway, thus affecting pain perception. These findings suggested that alterations in Sema3A expression and eIF2α phosphorylation were involved in the development of neuropathic pain, providing potential new targets for clinical pain-relief drug development. PERSPECTIVE: The expression of Sema3A in DRG neurons was decreased following peripheral nerve injury. Elevating Sema3A levels alleviated neuropathic pain by inhibiting the PI3K/Akt/mTOR pathway and eIF2α phosphorylation, thus affecting ion channel expression in DRG of neuropathic pain model animals. This highlighted Sema3A as potential therapeutic targets for pain relief.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin 300222, China
| | - Miaoyi Pang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qingyu Sun
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yu Gou
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin 300299, China
| | - Jing Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaotong Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yiran Ma
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wen Chen
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chao Wei
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Meng Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yumeng Ding
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yurui Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Dianxin Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hongwei Zhu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
15
|
Kibe A, Buck S, Gribling-Burrer AS, Gilmer O, Bohn P, Koch T, Mireisz CNM, Schlosser A, Erhard F, Smyth RP, Caliskan N. The translational landscape of HIV-1 infected cells reveals key gene regulatory principles. Nat Struct Mol Biol 2025; 32:841-852. [PMID: 39815046 PMCID: PMC12086091 DOI: 10.1038/s41594-024-01468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/03/2024] [Indexed: 01/18/2025]
Abstract
Human immunodeficiency virus-1 (HIV-1) uses a number of strategies to modulate viral and host gene expression during its life cycle. To characterize the transcriptional and translational landscape of HIV-1 infected cells, we used a combination of ribosome profiling, disome sequencing and RNA sequencing. We show that HIV-1 messenger RNAs are efficiently translated at all stages of infection, despite evidence for a substantial decrease in the translational efficiency of host genes that are implicated in host cell translation. Our data identify upstream open reading frames in the HIV-1 5'-untranslated region as well as internal open reading frames in the Vif and Pol coding domains. We also observed ribosomal collisions in Gag-Pol upstream of the ribosome frameshift site that we attributed to an RNA structural fold using RNA structural probing and functional analysis. Antisense oligonucleotides designed to alter the base of this structure decreased frameshift efficiency. Overall, our data highlight the complexity of HIV-1 gene regulation and provide a key resource for decoding of host-pathogen interactions upon HIV-1 infection. Furthermore, we provide evidence for a RNA structural fold including the frameshift site that could serve as a target for antiviral therapy.
Collapse
Affiliation(s)
- Anuja Kibe
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
| | - Stefan Buck
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Anne-Sophie Gribling-Burrer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
- Institute of Molecular and Cellular Biology (CNRS), UPR 9002, University of Strasbourg, Strasbourg, France
| | - Orian Gilmer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
| | - Patrick Bohn
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
| | - Tatyana Koch
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
| | - Chiara Noemi-Marie Mireisz
- Institute of Molecular and Cellular Biology (CNRS), UPR 9002, University of Strasbourg, Strasbourg, France
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Florian Erhard
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
- Institute of Molecular and Cellular Biology (CNRS), UPR 9002, University of Strasbourg, Strasbourg, France
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany.
- Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
16
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2025; 26:298-319. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
17
|
Zhang HY, Fan ZL, Wang C, Li JY, Feng HG, Wang XY, Wang TY. Improved recombinant protein expression using the 5'-untranslated region in Chinese hamster ovary cells. Int J Biol Macromol 2025; 309:142822. [PMID: 40187442 DOI: 10.1016/j.ijbiomac.2025.142822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Chinese hamster ovary (CHO) cells are major expression platforms for the transient production of recombinant therapeutic proteins (RTPs). Most improvement strategies have focused on promoting transcriptional expression in CHO cells. However, methods for promoting the yield of RTPs through translational regulation remain unclear. In this study, we investigated characteristics of the 5'-untranslated region (UTR) that influence recombinant protein expression in CHO cells and identified sequences that have positive effects on protein expression using ribosome sequencing. Some elements and characteristics of 5'-UTR differentially affected the translation of the main open reading frame and increased recombinant protein expression by 1.5-fold in CHO cells. The findings may help relieve the bottleneck of the yield of RTPs on translation enhancement.
Collapse
Affiliation(s)
- Huan-Yu Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453000, China; Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang 453000, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang 453000, China
| | - Chong Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang 453000, China
| | - Jia-Yue Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453000, China; International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang 453000, China
| | - Hui-Gen Feng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang 453000, China; College of Life Science and Technology, North Henan Medical University, Xinxiang 453003, Henan, China.
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453000, China; International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang 453000, China.
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453000, China; International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang 453000, China.
| |
Collapse
|
18
|
Tafrishi A, Alva T, Chartron J, Wheeldon I. Ribo-seq guided design of enhanced protein secretion in Komagataellaphaffii. Metab Eng 2025; 91:228-241. [PMID: 40315981 DOI: 10.1016/j.ymben.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/12/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The production of recombinant proteins requires the precise coordination of various biological processes, including protein synthesis, folding, trafficking, and secretion. The overproduction of a heterologous protein can impose various bottlenecks on these networks. Identifying and alleviating these bottlenecks can guide strain engineering efforts to enhance protein production. The methylotrophic yeast Komagataella phaffii is used for its high capacity to produce recombinant proteins. Here, we use ribosome profiling to identify bottlenecks in protein secretion during heterologous expression of human serum albumin (HSA). Validation of this analysis showed that the knockout of non-essential genes whose gene products target the ER, through co- and post-translational mechanisms, and have high ribosome utilization can increase production of a heterologous protein, HSA. A triple knockout in co-translationally translocated carbohydrate and acetate transporter Gal2p, cell wall maintenance protein Ydr134cp, and the post-translationally translocated cell wall protein Aoa65896.1 increased HSA production by 35 %. This data-driven strain engineering approach uses cell-level information to identify gene targets for phenotype improvement. This specific case identifies hits and creates strains with improved HSA production, with Ribo-seq and bioinformatic analysis to identify non-essential ER targeted proteins that are high ribosome utilizers.
Collapse
Affiliation(s)
- Aida Tafrishi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Troy Alva
- Bioengineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Justin Chartron
- Bioengineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA; Center for Industrial Biotechnology, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
19
|
Zhang J, Shao W, Xu Y, Tian F, Chen J, Wang D, Lin X, He C, Yang X, Staiger D, Ding Y, Yu X, Xiao J. Unveiling the regulatory role of GRP7 in ABA signal-mediated mRNA translation efficiency regulation. Nat Commun 2025; 16:3947. [PMID: 40287405 PMCID: PMC12033289 DOI: 10.1038/s41467-025-59329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Abscisic acid (ABA) is a crucial phytohormone involved in plant growth and stress responses. While the transcriptional regulation triggered by ABA is well-documented, its effects on translational regulation have been less studied. Through Ribo-seq and RNA-seq analyses, we find that ABA treatment not only influences gene expression at the mRNA level but also significantly impacts mRNA translation efficiency (TE) in Arabidopsis thaliana. ABA inhibits global mRNA translation via its core signaling pathway, which includes ABA receptors, protein phosphatase 2Cs (PP2Cs), and SNF1-related protein kinase 2 s (SnRK2s). Upon ABA treatment, Glycine-rich RNA-binding proteins 7 and 8 (GRP7&8) protein levels decrease due to both reduced mRNA level and decreased TE, which diminishes their association with polysomes and leads to a global decline in mRNA TE. The absence of GRP7&8 results in a global impairment of ABA-regulated translational changes, linking ABA signaling to GRP7-dependent modulation of mRNA translation. The regulation of GRP7 on TE relies significantly on its direct binding to target mRNAs. Moreover, mRNA translation efficiency under drought stress is partially dependent on the ABA-GRP7&8 pathways. Collectively, our study reveals GRP7's role downstream of SnRK2s in mediating translation regulation in ABA signaling, offering a model for ABA-triggered multi-route regulation of environmental adaptation.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenna Shao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongxin Xu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fa'an Tian
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinchao Chen
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | - Xiaofei Yang
- John Innes Centre, Norwich Research Park, Norwich, UK
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Yiliang Ding
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing, China.
| |
Collapse
|
20
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
21
|
Hong ZH, Zhu L, Gao LL, Zhu Z, Su T, Krall L, Wu XN, Bock R, Wu GZ. Chloroplast precursor protein preClpD overaccumulation triggers multilevel reprogramming of gene expression and a heat shock-like response. Nat Commun 2025; 16:3777. [PMID: 40263324 PMCID: PMC12015282 DOI: 10.1038/s41467-025-59043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Thousands of nucleus-encoded chloroplast proteins are synthesized as precursors on cytosolic ribosomes and posttranslationally imported into chloroplasts. Cytosolic accumulation of unfolded chloroplast precursor proteins (e.g., under stress conditions) is hazardous to the cell. The global cellular responses and regulatory pathways involved in triggering appropriate responses are largely unknown. Here, by inducible and constitutive overexpression of ClpD-GFP to result in precursor protein overaccumulation, we present a comprehensive picture of multilevel reprogramming of gene expression in response to chloroplast precursor overaccumulation stress (cPOS), reveal a critical role of translational activation in the expression of cytosolic chaperones (heat-shock proteins, HSPs), and demonstrate that chloroplast-derived reactive oxygen species act as retrograde signal for the transcriptional activation of small HSPs. Furthermore, we reveal an important role of the chaperone ClpB1/HOT1 in maintaining cellular proteostasis upon cPOS. Together, our observations uncover a cytosolic heat shock-like response to cPOS and provide insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liyu Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhu
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Tong Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Leonard Krall
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Xu-Na Wu
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
Ren S, Li Y, Zhou Z. RiboParser/RiboShiny: an integrated platform for comprehensive analysis and visualization of Ribo-seq data. J Genet Genomics 2025:S1673-8527(25)00119-5. [PMID: 40268050 DOI: 10.1016/j.jgg.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Translation is a crucial step in gene expression. Over the past decade, the development and application of Ribosome profiling (Ribo-seq) have significantly advanced our understanding of translational regulation in vivo. However, the analysis and visualization of Ribo-seq data remain challenging. Despite the availability of various analytical pipelines, improvements in comprehensiveness, accuracy, and user-friendliness are still necessary. In this study, we develop RiboParser/RiboShiny, a robust framework for analyzing and visualizing Ribo-seq data. Building on published methods, we optimize ribosome structure-based and start/stop-based models to improve the accuracy and stability of P-site detection, even in species with a high proportion of leaderless transcripts. Leveraging these improvements, RiboParser offers comprehensive analyses, including quality control, gene-level analysis, codon-level analysis, and the analysis of Ribo-seq variants. Meanwhile, RiboShiny provides a user-friendly and adaptable platform for data visualization, facilitating deeper insights into the translational landscape. Furthermore, the integration of standardized genome annotation renders our platform universally applicable to various organisms with sequenced genomes. This framework has the potential to significantly improve the precision and efficiency of Ribo-seq data interpretation, thereby deepening our understanding of translational regulation.
Collapse
Affiliation(s)
- Shuchao Ren
- National Key Laboratory of Agricultural Microbiology, College of Life Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinan Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhipeng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
23
|
Tani H. Biomolecules Interacting with Long Noncoding RNAs. BIOLOGY 2025; 14:442. [PMID: 40282307 PMCID: PMC12025117 DOI: 10.3390/biology14040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
This review explores the complex interactions between long noncoding RNAs (lncRNAs) and other biomolecules, highlighting their pivotal roles in gene regulation and cellular function. LncRNAs, defined as RNA transcripts exceeding 200 nucleotides without encoding proteins, are involved in diverse biological processes, from embryogenesis to pathogenesis. They interact with DNA through mechanisms like triplex structure formation, influencing chromatin organization and gene expression. LncRNAs also modulate RNA-mediated processes, including mRNA stability, translational control, and splicing regulation. Their versatility stems from their forming of complex structures that enable interactions with various biomolecules. This review synthesizes current knowledge on lncRNA functions, discusses emerging roles in development and disease, and evaluates potential applications in diagnostics and therapeutics. By examining lncRNA interactions, it provides insights into the intricate regulatory networks governing cellular processes, underscoring the importance of lncRNAs in molecular biology. Unlike the majority of previous reviews that primarily focused on individual aspects of lncRNA biology, this comprehensive review uniquely integrates structural, functional, and mechanistic perspectives on lncRNA interactions across diverse biomolecules. Additionally, this review critically evaluates cutting-edge methodologies for studying lncRNA interactions, bridges fundamental molecular mechanisms with potential clinical applications, and highlights their potential.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama 245-0066, Japan
| |
Collapse
|
24
|
Chen JJ. HRI protein kinase in cytoplasmic heme sensing and mitochondrial stress response: Relevance to hematological and mitochondrial diseases. J Biol Chem 2025; 301:108494. [PMID: 40209956 DOI: 10.1016/j.jbc.2025.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Most iron in humans is bound in heme used as a prosthetic group for hemoglobin. Heme-regulated inhibitor (HRI) is responsible for coordinating heme availability and protein synthesis. Originally characterized in rabbit reticulocyte lysates, HRI was shown in 1976 to phosphorylate the α-subunit of eukaryotic initiation factor 2, revealing a new molecular mechanism for regulating protein synthesis. Since then, HRI research has mostly been focused on the biochemistry of heme inhibition through direct binding and heme sensing in balancing heme and globin synthesis to prevent proteotoxicity in erythroid cells. Beyond inhibiting translation of highly translated mRNAs, eukaryotic initiation factor 2α phosphorylation also selectively increases translation of certain poorly translated mRNAs, notably activating transcription factor 4 mRNA, for reprogramming of gene expression to mitigate stress, known as the integrated stress response (ISR). In recent years, there have been novel mechanistic insights of HRI-ISR in oxidative stress, mitochondrial function, and erythroid differentiation during heme deficiency. Furthermore, HRI-ISR is activated upon mitochondrial stress in several cell types, establishing the bifunctional nature of HRI protein. The role of HRI and ISR in cancer development and vulnerability is also emerging. Excitingly, the UBR4 ubiquitin ligase complex has been demonstrated to silence the HRI-ISR by degradation of activated HRI proteins, suggesting additional regulatory processes. Together, these recent advancements indicate that the HRI-ISR mechanistic axis is a target for new therapies for hematological and mitochondrial diseases as well as oncology. This review covers the historical overview of HRI biology, the biochemical mechanisms of regulating HRI, and the biological impacts of the HRI-ISR pathway in human diseases.
Collapse
Affiliation(s)
- Jane-Jane Chen
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
25
|
Zhong A, Li S, Zhang J, Zhao J, Yao C. Endogenous micropeptides as potential diagnostic biomarkers and therapeutic drugs. Front Pharmacol 2025; 16:1545575. [PMID: 40264667 PMCID: PMC12011824 DOI: 10.3389/fphar.2025.1545575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/26/2025] [Indexed: 04/24/2025] Open
Abstract
Micropeptides, these small proteins derived from non-coding RNA, typically consist of no more than 100 amino acids in length. Despite the challenges in analysis and identification, their various critical functions within organisms cannot be overlooked. They play a significant role in maintaining energy metabolism balance, regulating the immune system, and influencing the development of tumors, which also gives them a decisive impact on the occurrence and development of various diseases. This review aims to outline the role and potential value of micropeptides, introducing their tissue classification and distribution, biological functions, and mechanisms, with a focus on their potential as diagnostic markers and therapeutic drugs.
Collapse
Affiliation(s)
- Aixi Zhong
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Shuai Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingxuan Zhang
- Zhongshan College of Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Central Hospital of Dalian University of Technology, Dalian, China
| | - Chenhui Yao
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
de la Peña JB, García G, Campbell ZT. Ribosome profiling reveals that post-transcriptional control of Nalf1 by heterogeneous nuclear ribonucleoprotein L is required for paclitaxel-induced neuropathic pain. Pain 2025:00006396-990000000-00870. [PMID: 40198721 DOI: 10.1097/j.pain.0000000000003577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/05/2025] [Indexed: 04/10/2025]
Abstract
ABSTRACT Sensory neurons are integral to the genesis and maintenance of neuropathic pain. The molecular mechanisms that mediate long-lived changes in their excitability are unclear. Here, we leverage functional genomics approaches to survey changes in RNA abundance and translation in dorsal root ganglion neurons from a mouse model of paclitaxel-induced neuropathic pain. We focus specifically on females as paclitaxel is a first-line therapy for breast cancer. The sequencing data indicate that substantially more changes occur at the level of translation (n = 404) than transcription and decay (n = 109). We discovered that a core subunit of the sodium leak channel (NALCN) channel, auxiliary factor 1 (NALF1), is preferentially translated in response to paclitaxel. This effect is mediated by the RNA-binding protein heterogeneous nuclear ribonucleoprotein L (HNRNP L). Heterogeneous nuclear ribonucleoprotein L binds a 14 base CA-rich element (CARE) in the Nalf1 3' untranslated region (3'UTR). Genetic elimination of either HNRNP L, the Nalf1 CARE motif, or the pore-forming subunit of the nonselective NALCN diminishes pain amplification in vivo. Collectively, these results illustrate that an element situated in a 3'UTR is required for neuropathic pain in female mice.
Collapse
Affiliation(s)
- June Bryan de la Peña
- Department of Anesthesiology, University of New Mexico, Albuquerque, NM, United States
| | - Guadalupe García
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
27
|
Zhang T, Li Z, Li J, Peng Y. Small open reading frame-encoded microproteins in cancer: identification, biological functions and clinical significance. Mol Cancer 2025; 24:105. [PMID: 40170020 PMCID: PMC11963466 DOI: 10.1186/s12943-025-02278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/24/2025] [Indexed: 04/03/2025] Open
Abstract
The human genome harbors approximately twenty thousand protein-coding genes, and a significant portion of life science research focuses on elucidating their functions and the underlying mechanisms. Recent studies have revealed that small open reading frame (sORF), originating from non-coding RNAs or the 5' leader sequences of messenger RNAs, can be translated into small peptides called microproteins through cap-dependent or cap-independent mechanisms. These microproteins interact with diverse molecular partners to modulate gene expression at multiple regulatory levels, thereby playing critical roles in various biological processes. Notably, sORF-encoded microproteins exhibit aberrant expression patterns in cancer and are implicated in tumor initiation and progression, expanding our understanding of cancer biology. In this review, we introduce the translational mechanisms and identification methods of microproteins, summarize their dysregulation in cancer and their biological functions in regulating gene expression, and emphasize their roles in driving hallmark events of cancer. Furthermore, we discuss their clinical significance as diagnostic and prognostic biomarkers, as well as therapeutic targets.
Collapse
Affiliation(s)
- Tingting Zhang
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Li
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yong Peng
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Ichinose T, Tanimoto H. Profiling translation in the nervous system. J Biochem 2025; 177:239-246. [PMID: 39745834 DOI: 10.1093/jb/mvae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Regulation at the level of translation is critical in the nervous system, such as for the formation of cell-type-specific proteomes or plastic changes in neural circuits. Whilst current knowledge of the translatome is relatively limited compared to transcriptome, a growing array of tools to analyse translation is becoming available. In this review, we discuss techniques for profiling translation on a genome-wide scale with a special emphasis on cell-type-specific analyses in the nervous system. This includes polysome-profiling-seq, Translating Ribosome Affinity Purification (TRAP)-seq and ribosome profiling (Ribo-seq). We review recent advances to achieve spatial resolution of translatome analysis, such as genetic labelling of the targeted cells and cell sorting, and discuss the biological implications of translational regulation in the brain and potential future extensions.
Collapse
Affiliation(s)
- Toshiharu Ichinose
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki-Aoba 6-3, 980-8578, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, 980-8577, Sendai, Miyagi, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, 980-8577, Sendai, Miyagi, Japan
| |
Collapse
|
29
|
Gong P, Gao M, Chen Y, Zhang M, Huang Y, Hu X, Zhao S, Zhang H, Pan M, Cao B, Shen Q, Liu Y, Lozano-Durán R, Wang A, Zhou X, Li F. Cucumber green mottle mosaic virus encodes additional small proteins with specific subcellular localizations and virulence function. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2892-1. [PMID: 40178791 DOI: 10.1007/s11427-024-2892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
The vast majority of known viruses belong to the positive-sense single-stranded RNA (+ssRNA) class. Tobamoviruses are among the most destructive plant viruses and threaten global food security. It is generally accepted that +ssRNA viruses including tobamoviruses encode proteins solely on their positive strand (+RNA). Here, we identified additional open-reading frames (ORFs) in the negative strand of tobamoviruses, named reverse ORFs (rORFs). Using cucumber green mottle mosaic virus (CGMMV) as a model, we detected the corresponding peptides of rORFs by mass spectrometry analysis and confirmed the translation of rORFs by ribosome profiling. Furthermore, we demonstrated that these rORFs may be translated from an internal ribosome entry site. Mutation of rORF1 and rORF2 significantly reduced the virulence of CGMMV, whereas ectopic expression of rORF1 and rORF2 could rescue the pathogenicity of the mutants. While the rORF2 protein localizes at the cell membrane and in the nucleolus, rORF1 colocalizes with peroxisomes, where it interacts with the viral 126-kD replication protein. Additionally, we screened peroxisomal rORF1-interacting proteins using artificial intelligence tools and found that PEX3 mediated rORF1 targeting to peroxisomes. This study reveals that the tobamoviral proteome is larger than previously thought, and sheds light on peroxisomes as novel virulence targets important for virus infectivity.
Collapse
Affiliation(s)
- Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengxin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310030, China
| | - Yalin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yucong Huang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Xiaohua Hu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Siwen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Zhang
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Mengjiao Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Buwei Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingtang Shen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Yong Liu
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, D-72076, Germany
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, N5V 4T3, Canada
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310030, China.
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
30
|
Linder J, Srivastava D, Yuan H, Agarwal V, Kelley DR. Predicting RNA-seq coverage from DNA sequence as a unifying model of gene regulation. Nat Genet 2025; 57:949-961. [PMID: 39779956 PMCID: PMC11985352 DOI: 10.1038/s41588-024-02053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Sequence-based machine-learning models trained on genomics data improve genetic variant interpretation by providing functional predictions describing their impact on the cis-regulatory code. However, current tools do not predict RNA-seq expression profiles because of modeling challenges. Here, we introduce Borzoi, a model that learns to predict cell-type-specific and tissue-specific RNA-seq coverage from DNA sequence. Using statistics derived from Borzoi's predicted coverage, we isolate and accurately score DNA variant effects across multiple layers of regulation, including transcription, splicing and polyadenylation. Evaluated on quantitative trait loci, Borzoi is competitive with and often outperforms state-of-the-art models trained on individual regulatory functions. By applying attribution methods to the derived statistics, we extract cis-regulatory motifs driving RNA expression and post-transcriptional regulation in normal tissues. The wide availability of RNA-seq data across species, conditions and assays profiling specific aspects of regulation emphasizes the potential of this approach to decipher the mapping from DNA sequence to regulatory function.
Collapse
Affiliation(s)
| | | | - Han Yuan
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Vikram Agarwal
- mRNA Center of Excellence, Sanofi Pasteur Inc., Cambridge, MA, USA
| | | |
Collapse
|
31
|
Shukla Y, Ghatpande V, Hu CF, Dickinson DJ, Cenik C. Landscape and regulation of mRNA translation in the early C. elegans embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.13.628416. [PMID: 39829802 PMCID: PMC11741243 DOI: 10.1101/2024.12.13.628416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Animal embryos rely on regulated translation of maternally deposited mRNAs to drive early development. Using low-input ribosome profiling combined with RNA sequencing on precisely staged embryos, we measured mRNA translation during the first four cell cycles of C. elegans development. We uncovered stage-specific patterns of developmentally coordinated translational regulation. We confirmed that mRNA localization correlates with translational eLiciency, though initial translational repression in germline precursors occurs before P-granule association. Our analysis suggests that the RNA-binding protein OMA-1 represses the translation of its target mRNAs in a stage-specific manner, while indirectly promoting the translational eLiciency of other transcripts. These findings illuminate how post-transcriptional mechanisms shape the embryonic proteome to direct cell diLerentiation, with implications for understanding similar regulation across species where maternal factors guide early development.
Collapse
Affiliation(s)
- Yash Shukla
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Vighnesh Ghatpande
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Cindy F. Hu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
32
|
Froschauer K, Svensson SL, Gelhausen R, Fiore E, Kible P, Klaude A, Kucklick M, Fuchs S, Eggenhofer F, Yang C, Falush D, Engelmann S, Backofen R, Sharma CM. Complementary Ribo-seq approaches map the translatome and provide a small protein census in the foodborne pathogen Campylobacter jejuni. Nat Commun 2025; 16:3078. [PMID: 40159498 PMCID: PMC11955535 DOI: 10.1038/s41467-025-58329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
In contrast to transcriptome maps, bacterial small protein (≤50-100 aa) coding landscapes, including overlapping genes, are poorly characterized. However, an emerging number of small proteins have crucial roles in bacterial physiology and virulence. Here, we present a Ribo-seq-based high-resolution translatome map for the major foodborne pathogen Campylobacter jejuni. Besides conventional Ribo-seq, we employed translation initiation site (TIS) profiling to map start codons and also developed a translation termination site (TTS) profiling approach, which revealed stop codons not apparent from the reference genome in virulence loci. Our integrated approach combined with independent validation expanded the small proteome by two-fold, including CioY, a new 34 aa component of the CioAB oxidase. Overall, our study generates a high-resolution annotation of the C. jejuni coding landscape, provided in an interactive browser, and showcases a strategy for applying integrated Ribo-seq to other species to enrich our understanding of small proteomes.
Collapse
Affiliation(s)
- Kathrin Froschauer
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany
| | - Sarah L Svensson
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Elisabetta Fiore
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany
| | - Philipp Kible
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany
| | - Alicia Klaude
- Technische Universität Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Martin Kucklick
- Technische Universität Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Stephan Fuchs
- Robert Koch Institute, Methodenentwicklung und Forschungsinfrastruktur (MF), Berlin, Germany
| | - Florian Eggenhofer
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Chao Yang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Daniel Falush
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Susanne Engelmann
- Technische Universität Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Signalling Research Centre CIBSS, University of Freiburg, Freiburg, Germany
| | - Cynthia M Sharma
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany.
| |
Collapse
|
33
|
Vélez-Bermúdez IC, Lin WD, Chou SJ, Chen AP, Schmidt W. Transcriptome and translatome comparison of tissues from Arabidopsis thaliana. Sci Data 2025; 12:504. [PMID: 40133305 PMCID: PMC11937538 DOI: 10.1038/s41597-025-04805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Translation is one of the multiple complementary steps that orchestrates gene activity. In contrast to the straightforwardness of transcriptional surveys, genome-wide profiles of the translational landscape of plant cells remain technically challenging and are thus less well explored. Protein-coding genes are expressed at a variable degree of efficiency, resulting in pronounced discordance among the regulatory levels that govern gene activity. Ribo-Seq is an extremely useful tool for estimating translation efficiency, but the data sets available for plants are limited. Here, we compare inventories of expressed and translated RNA populations, generated by mRNA sequencing (RNA-Seq) and ribosome footprinting (Ribo-Seq) from shoots and roots of Arabidopsis thaliana seedlings. Our data set provides information on the translational fitness of protein-coding mRNAs that may aid in obtaining a comprehensive picture of the regulatory levels governing genes activity across the genome.
Collapse
Affiliation(s)
- Isabel Cristina Vélez-Bermúdez
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Di4A, Udine, 33100, Italy.
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Bioinformatics Core Lab, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Genomic Technology Core, Academia Sinica, Taipei, 11529, Taiwan
| | - Ai-Ping Chen
- Institute of Plant and Microbial Biology, Genomic Technology Core, Academia Sinica, Taipei, 11529, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
34
|
Pai VJ, Shan H, Donaldson C, Vaughan J, O'Connor C, Liem M, Pinto A, Diedrich J, Saghatelian A. CRISPR-Cas9 Screening Reveals Microproteins Regulating Adipocyte Proliferation and Lipid Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644636. [PMID: 40196549 PMCID: PMC11974709 DOI: 10.1101/2025.03.21.644636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Small open reading frames (smORFs) encode microproteins that play crucial roles in various biological processes, yet their functions in adipocyte biology remain largely unexplored. In a previous study, we identified thousands of smORFs in white and brown adipocytes derived from the stromal vascular fraction (SVF) of mice using ribosome profiling (Ribo-Seq). Here, we expand on this work by identifying additional smORFs related to adipocytes using the in vitro 3T3-L1 preadipocyte model. To systematically investigate the functional relevance of these smORFs, we designed a custom CRISPR/Cas9 guide RNA (sgRNA) library and screened for smORFs influencing adipocyte proliferation and differentiation. Through a dropout screen and fluorescence-assisted cell sorting (FACS) of lipid droplets, we identified dozens of smORFs that regulate either cell proliferation or lipid accumulation. Among these, we validated a novel microprotein as a key regulator of adipocyte differentiation. These findings highlight the potential of CRISPR/Cas9-based screening to uncover functional smORFs and provide a framework for further exploration of microproteins in adipocyte biology and metabolic regulation. Significance Obesity and its associated metabolic disorders pose significant public health challenges, yet the molecular mechanisms regulating adipocyte function remain incompletely understood. Small open reading frames (smORFs) and their encoded microproteins represent an emerging class of regulatory elements with potential roles in metabolism. Here, we leveraged CRISPR/Cas9 screening to functionally characterize smORFs in adipocytes, identifying novel regulators of cell proliferation and lipid metabolism. Our findings demonstrate that conservation is not a prerequisite for smORF function, as we validated a mouse-specific microprotein that modulates adipocyte differentiation. This work establishes a robust pipeline for unbiased smORF discovery and highlights the potential for species-specific microproteins to regulate adipose biology. Future studies in human adipocytes may uncover additional microproteins with therapeutic relevance for obesity and metabolic disease.
Collapse
|
35
|
Chen P, Lin L, Lin X, Liao K, Qiang J, Wang Z, Wu J, Li Y, Yang L, Yao N, Song H, Hong Y, Liu WH, Zhang Y, Chang X, Du D, Xiao C. A Csde1-Strap complex regulates plasma cell differentiation by coupling mRNA translation and decay. Nat Commun 2025; 16:2906. [PMID: 40133358 PMCID: PMC11937441 DOI: 10.1038/s41467-025-58212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Upon encountering antigens, B cells may undergo multiple differentiation paths, including becoming plasma cells and memory B cells. Although it is well-known that transcription factors govern gene expression programs underpinning these fate decisions in transcriptional level, the role of post-transcriptional regulators, with a focus on RNA-binding proteins, in the fate determination are lesser known. Here we find by RNA interactome capture-coupled CRISPR/Cas9 functional screening that the Csde1-Strap complex plays an important role in plasma cell differentiation. Mechanistically, the Csde1-Strap complex establishes the expression kinetics of Bach2, a key regulator of plasma cell differentiation. Bach2 expression is rapidly induced to promote B cell expansion and then decreased to initiate plasma cell differentiation. The Csde1-Strap interaction is critical for their binding to Bach2 mRNA to couple its decay with translation to restrain the magnitude and duration of Bach2 protein expression. In the absence of Csde1 or Strap, Bach2 translation is de-coupled from mRNA decay, leading to elevated and prolonged expression of Bach2 protein and impaired plasma cell differentiation. This study thus establishes the functional RBP landscape in B cells and illustrates the fundamental importance of controlling protein expression kinetics in cell fate determination.
Collapse
Affiliation(s)
- Pengda Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lianghua Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xinyong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Kunyu Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhizhang Wang
- Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liang Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Nan Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Huilin Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Xing Chang
- Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| | - Dan Du
- State Key Laboratory of Cellular Stress Biology, Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
36
|
Miller JB, Brandon JA, Harmon LM, Sabra HW, Lucido CC, Murcia JDG, Nations KA, Payne SH, Ebbert MTW, Kauwe JSK, Ridge PG. Ramp Sequence May Explain Synonymous Variant Association with Alzheimer's Disease in the Paired Immunoglobulin-like Type 2 Receptor Alpha (PILRA). Biomedicines 2025; 13:739. [PMID: 40149715 PMCID: PMC11940050 DOI: 10.3390/biomedicines13030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The synonymous variant NC_000007.14:g.100373690T>C (rs2405442:T>C) in the Paired Immunoglobulin-like Type 2 Receptor Alpha (PILRA) gene was previously associated with decreased risk for Alzheimer's disease (AD) in genome-wide association studies, but its biological impact is largely unknown. Objective: We hypothesized that rs2405442:T>C decreases mRNA and protein levels by destroying a ramp of slowly translated codons at the 5' end of PILRA. Methods: We assessed rs2405442:T>C predicted effects on PILRA through quantitative polymerase chain reactions (qPCRs) and enzyme-linked immunosorbent assays (ELISAs) using Chinese hamster ovary (CHO) cells. RESULTS: Both mRNA (p = 1.9184 × 10-13) and protein (p = 0.01296) levels significantly decreased in the mutant versus the wildtype in the direction that we predicted based on the destruction of a ramp sequence. Conclusions: We show that rs2405442:T>C alone directly impacts PILRA mRNA and protein expression, and ramp sequences may play a role in regulating AD-associated genes without modifying the protein product.
Collapse
Affiliation(s)
- Justin B. Miller
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA (M.T.W.E.)
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - J. Anthony Brandon
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA (M.T.W.E.)
| | - Lauren M. Harmon
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (L.M.H.); (J.D.G.M.); (J.S.K.K.)
| | - Hady W. Sabra
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA (M.T.W.E.)
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Chloe C. Lucido
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA (M.T.W.E.)
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Josue D. Gonzalez Murcia
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (L.M.H.); (J.D.G.M.); (J.S.K.K.)
| | - Kayla A. Nations
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA (M.T.W.E.)
| | - Samuel H. Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (L.M.H.); (J.D.G.M.); (J.S.K.K.)
| | - Mark T. W. Ebbert
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA (M.T.W.E.)
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40506, USA
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (L.M.H.); (J.D.G.M.); (J.S.K.K.)
| | - Perry G. Ridge
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (L.M.H.); (J.D.G.M.); (J.S.K.K.)
| |
Collapse
|
37
|
Deng FY, Zhu GL, Ou KL, Zhu LH, Jia QQ, Wang X, Guo MW, Li B, Li SH, Li XJ, Yin P. Ribosome-associated pathological TDP-43 alters the expression of multiple mRNAs in the monkey brain. Zool Res 2025; 46:263-276. [PMID: 39973136 PMCID: PMC12000131 DOI: 10.24272/j.issn.2095-8137.2024.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/03/2024] [Indexed: 02/21/2025] Open
Abstract
Cytoplasmic accumulation of TDP-43 is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. While current studies have primarily focused on gene regulation mediated by full-length nuclear TDP-43, the potential effects of cytoplasmic TDP-43 fragments remain less explored. Our previous findings demonstrated that primate-specific cleavage of TDP-43 contributes to its cytoplasmic localization, prompting further investigation into its pathological effects. In the cynomolgus monkey brain, we observed that mutant or truncated TDP-43 was transported onto the ribosome organelle. Ribosome-associated transcriptomic analysis revealed dysregulation of apoptosis- and lysosome-related genes, indicating that cytoplasmic TDP-43 induces neurotoxicity by binding to ribosomes and disrupting mRNA expression. These findings provide mechanistic insights into the gain-of-function effects of pathological TDP-43.
Collapse
Affiliation(s)
- Fu-Yu Deng
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, In vitro Diagnostic Reagents Testing Department, Shenzhen, Guangdong 518057, China
| | - Gao-Lu Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Kai-Li Ou
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Long-Hong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qing-Qing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiang Wang
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ming-Wei Guo
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Bang Li
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shi-Hua Li
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China. E-mail:
| | - Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China. E-mail:
| |
Collapse
|
38
|
Penner I, Krämer N, Hirsch J, Büscher N, Schmidt H, Plachter B. Deletion of the Human Cytomegalovirus US2 to US11 Gene Family Members Impairs the Type-I Interferon Response. Viruses 2025; 17:426. [PMID: 40143353 PMCID: PMC11945591 DOI: 10.3390/v17030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Infection of cells with the human cytomegalovirus (HCMV) triggers the expression of interferon-stimulated genes (ISGs). ISGs encode proteins with antiviral functions, such as inhibiting viral replication, promoting cell death of infected cells and enhancing immune responses. HCMV has evolved mechanisms to evade the antiviral effects of ISGs. The viral proteins encoded by the viral genes US7, US8, and US9 have been shown to interfere with interferon induction. US7 to US9 are embedded in a cluster of HCMV genes, termed US2 to US11. The individual members of this gene family interfere on multiple levels with innate and adaptive immune responses to HCMV infection. Using viral mutants with different deletions in US2 to US11, we addressed the question if genes other than US7 to US9 would also influence the IFN responses. Surprisingly, deletion of the complete US2 to US11 gene region led to reduced levels of selected ISGs. Cells infected with viruses in which individual US2 to US11 genes were deleted showed a less pronounced reduction of the selected ISGs. The experiments including RNA-seq analyses indicate that genes of the US2 to US11 gene family have a complex interaction with the IFN-ISG response which is likely regulated on the level of ISG protein stability. As US2-US11 are dispensable for replication in cell culture, the genomic region was frequently used for the insertion of bacterial artificial chromosome vectors in the process of cloning the complete HCMV genome. The results shown here must be considered when viruses derived from BACs with US2-US11 deletions are used and whether appropriate controls must be applied.
Collapse
|
39
|
Eastman G, Bloom GS, Sotelo-Silveira JR. The use of Benzonase to produce ribosome footprints simplifies translational levels quantification by Ribo-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642103. [PMID: 40161718 PMCID: PMC11952333 DOI: 10.1101/2025.03.07.642103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Gene expression quantification through genomics methods is crucial for understanding diverse biological contexts. Among these methods, ribosome profiling (Ribo-seq) stands out as a valuable tool for uncovering post-transcriptional gene expression regulation by providing a comprehensive view of the translatome. While current protocols are time-intensive with limited variations, we introduced the use of the Benzonase enzyme to generate ribosome footprints from a polysome-enriched fraction that exhibit expected characteristics in size, transcriptome mapping, and periodicity. Comparing translatome from Benzonase- and RNAse I-derived footprints reveals minimal differences underscoring Benzonase's potential to streamline the protocol, reducing time, cost and bias. We further demonstrate Ribo-seq application in primary neuronal cultures, using Benzonase to digest the post-mitochondrial supernatant, thereby bypassing the labor-intensive ribosome/polysome purification step. The introduction of such protocol variations for Ribo-seq, especially for challenging low-input samples, offers a significant advancement of this resource for the community.
Collapse
Affiliation(s)
- Guillermo Eastman
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - George S. Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22903, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - José R. Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, 11600, Uruguay
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| |
Collapse
|
40
|
Cope AL, Schraiber JG, Pennell M. Macroevolutionary divergence of gene expression driven by selection on protein abundance. Science 2025; 387:1063-1068. [PMID: 40048509 DOI: 10.1126/science.ads2658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/24/2025] [Indexed: 03/28/2025]
Abstract
The regulation of messenger RNA (mRNA) and protein abundances is well-studied, but less is known about the evolutionary processes shaping their relationship. To address this, we derived a new phylogenetic model and applied it to multispecies mammalian data. Our analyses reveal (i) strong stabilizing selection on protein abundances over macroevolutionary time, (ii) mutations affecting mRNA abundances minimally impact protein abundances, (iii) mRNA abundances evolve under selection to align with protein abundances, and (iv) mRNA abundances adapt faster than protein abundances owing to greater mutational opportunity. These conclusions are supported by comparisons of model parameters with independent functional genomic data. By decomposing mutational and selective influences on mRNA-protein dynamics, our approach provides a framework for discovering the evolutionary rules that drive divergence in gene expression.
Collapse
Affiliation(s)
- Alexander L Cope
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Genetics, Rutgers University, New Brunswick, NJ, USA
- Human Genetics Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Joshua G Schraiber
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Department of Computational Biology, Cornell University, Ithaca, CA, USA
| |
Collapse
|
41
|
Milenkovic I, Novoa EM. Ribosomal protein paralogues in ribosome specialization. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230387. [PMID: 40045786 PMCID: PMC11883438 DOI: 10.1098/rstb.2023.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 03/09/2025] Open
Abstract
Ribosomes are macromolecular complexes responsible for protein synthesis, comprising ribosomal proteins (RPs) and ribosomal RNA. While most RPs are present as single copies in higher eukaryotes, a handful of them have paralogues that emerged through duplication events. However, it is still unclear why a small subset of RP paralogues were preserved through evolution, and whether they can endow ribosomes with specialized functions. In this review, we focus on RP paralogue pairs present in humans, providing an overview of the most recent findings on RP paralogue functions and their roles in ribosome specialization.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Ivan Milenkovic
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona08003, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona08003, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona08010, Spain
| |
Collapse
|
42
|
Welfer GA, Brady RA, Natchiar SK, Watson ZL, Rundlet EJ, Alejo JL, Singh AP, Mishra NK, Altman RB, Blanchard SC. Impacts of ribosomal RNA sequence variation on gene expression and phenotype. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230379. [PMID: 40045785 PMCID: PMC11883441 DOI: 10.1098/rstb.2023.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 03/09/2025] Open
Abstract
Since the framing of the Central Dogma, it has been speculated that physically distinct ribosomes within cells may influence gene expression and cellular physiology. While heterogeneity in ribosome composition has been reported in bacteria, protozoans, fungi, zebrafish, mice and humans, its functional implications remain actively debated. Here, we review recent evidence demonstrating that expression of conserved variant ribosomal DNA (rDNA) alleles in bacteria, mice and humans renders their actively translating ribosome pool intrinsically heterogeneous at the level of ribosomal RNA (rRNA). In this context, we discuss reports that nutrient limitation-induced stress in Escherichia coli leads to changes in variant rRNA allele expression, programmatically altering transcription and cellular phenotype. We highlight that cells expressing ribosomes from distinct operons exhibit distinct drug sensitivities, which can be recapitulated in vitro and potentially rationalized by subtle perturbations in ribosome structure or in their dynamic properties. Finally, we discuss evidence that differential expression of variant rDNA alleles results in different populations of ribosome subtypes within mammalian tissues. These findings motivate further research into the impacts of rRNA heterogeneities on ribosomal function and predict that strategies targeting distinct ribosome subtypes may hold therapeutic potential.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Griffin A. Welfer
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Ryan A. Brady
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - S. Kundhavai Natchiar
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Zoe L. Watson
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Emily J. Rundlet
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712, USA
| | - Jose L. Alejo
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Anand P. Singh
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Nitish K. Mishra
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Roger B. Altman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Scott C. Blanchard
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| |
Collapse
|
43
|
Zhu D, Hu J, Tan R, Lin X, Wang R, Lu J, Yu B, Xie Y, Ni X, Liang C, Dang Y, Jiang W. Advanced RPL19-TRAP KI-seq method reveals mechanism of action of bioactive compounds. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:16. [PMID: 40042546 PMCID: PMC11882491 DOI: 10.1007/s13659-025-00500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/18/2025] [Indexed: 03/09/2025]
Abstract
Natural products play a crucial role in new drug development, but their druggability is often limited by uncertain molecular targets and insufficient research on mechanisms of action. In this study, we developed a new RPL19-TRAPKI-seq method, combining CRISPR/Cas9 and TRAP technologies, to investigate these mechanisms. We identified and validated seven ribosomal large subunit surface proteins suitable for TRAP, selecting RPL19 for its high enrichment. We successfully established a stable cell line expressing EGFP-RPL19 using CRISPR knock-in and verified its efficiency and specificity in enriching ribosomes and translating mRNA. Integrated with next-generation sequencing, this method allows precise detection of translating mRNA. We validated RPL19-TRAPKI-seq by investigating rapamycin, an mTOR inhibitor, yielding results consistent with previous reports. This optimized TRAP technology provides an accurate representation of translating mRNA, closely reflecting protein expression levels. Furthermore, we investigated SBF-1, a 23-oxa-analog of natural saponin OSW-1 with significant anti-tumor activity but an unclear mechanism. Using RPL19-TRAPKI-seq, we found that SBF-1 exerts its cytotoxic effects on tumor cells by disturbing cellular oxidative phosphorylation. In conclusion, our method has been proven to be a promising tool that can reveal the mechanisms of small molecules with greater accuracy, setting the stage for future exploration of small molecules and advancing the fields of pharmacology and therapeutic development.
Collapse
Affiliation(s)
- Di Zhu
- Laboratory of Tumor Immunology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Renke Tan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaofeng Lin
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ruina Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Junyan Lu
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xiaohua Ni
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Chunmin Liang
- Laboratory of Tumor Immunology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
44
|
Lim CS, Gibbon AK, Tran Nguyen AT, Chieng GSW, Brown CM. RIBOSS detects novel translational events by combining long- and short-read transcriptome and translatome profiling. Brief Bioinform 2025; 26:bbaf164. [PMID: 40221960 PMCID: PMC11994033 DOI: 10.1093/bib/bbaf164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/15/2025] Open
Abstract
Ribosome profiling is a high-throughput sequencing technique that captures the positions of translating ribosomes on RNAs. Recent advancements in ribosome profiling include achieving highly phased ribosome footprints for plant translatomes and more recently for bacterial translatomes. This substantially increases the specificity of detecting open reading frames (ORFs) that can be translated, such as small ORFs located upstream and downstream of the annotated ORFs. However, most genomes (e.g. bacterial genomes) lack the annotations for the transcription start and termination sites. This hinders the systematic discovery of novel ORFs in the 'untranslated' regions in ribosome profiling data. Here, we develop a new computational pipeline called RIBOSS to discover noncanonical ORFs and assess their translational potential against annotated ORFs. The RIBOSS Python modules are versatile, and we use them to analyse both prokaryotic and eukaryotic data. We present a resulting list of noncanonical ORFs with high translational potential in Homo sapiens, Arabidopsis thaliana, and Salmonella enterica. We further illustrate RIBOSS utility when studying organisms with incomplete transcriptome annotations. We leverage long-read and short-read data for reference-guided transcriptome assembly and highly phased ribosome profiling data for detecting novel translational events in the assembled transcriptome for S. enterica. In sum, RIBOSS is the first integrated computational pipeline for noncanonical ORF detection and translational potential assessment that incorporates long- and short-read sequencing technologies to investigate translation. RIBOSS is freely available at https://github.com/lcscs12345/riboss.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| | - Alexandra K Gibbon
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| | - Anh Thu Tran Nguyen
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| | - Gabrielle S W Chieng
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| |
Collapse
|
45
|
Mundodi V, Choudhary S, Smith AD, Kadosh D. Ribosome profiling reveals differences in global translational vs transcriptional gene expression changes during early Candida albicans biofilm formation. Microbiol Spectr 2025; 13:e0219524. [PMID: 39873514 PMCID: PMC11878023 DOI: 10.1128/spectrum.02195-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
Candida albicans, a major human fungal pathogen, can form biofilms on a variety of inert and biological surfaces. C. albicans biofilms allow for immune evasion, are highly resistant to antifungal therapies, and represent a significant complication for a wide variety of immunocompromised patients in clinical settings. While transcriptional regulators and global transcriptional profiles of C. albicans biofilm formation have been well-characterized, much less is known about translational regulation of this important C. albicans virulence property. Here, using ribosome profiling, we define the first global translational profile of genes that are expressed during early biofilm development in a human fungal pathogen, C. albicans. We show that C. albicans biofilm formation involves altered translational regulation of genes and gene classes associated with protein synthesis, pathogenesis, transport, plasma membrane, polarized growth, cell cycle, secretion, and signal transduction. Interestingly, while similar, but not identical, classes of genes showed transcriptional alterations during early C. albicans biofilm development, we observed very little overlap between specific genes that are upregulated or downregulated at the translational vs transcriptional levels. Our results suggest that distinct translational mechanisms play an important role in regulating early biofilm development of a major human fungal pathogen. These mechanisms, in turn, could serve as potential targets for novel antifungal strategies.IMPORTANCEThe major human fungal pathogen Candida albicans is known to form biofilms or complex aggregated microbial communities encased in an extracellular matrix. These biofilms allow C. albicans to escape detection by the immune system as well as resist a variety of antifungal drugs. In this study, we define the first global profile of genes that show altered translation during C. albicans biofilm formation. These genes are involved in a variety of key cellular processes, including polarized growth, pathogenesis, transport, protein synthesis, cell cycle, plasma membrane, signal transduction, and secretion. Interestingly, while similar classes of genes are induced at both the transcriptional and translational levels during early C. albicans biofilm formation, we observed very little overlap among specific genes with altered transcription and translation. Our results suggest that C. albicans biofilm formation is controlled by distinct translational mechanisms, which could potentially be targeted by novel antifungal drugs.
Collapse
Affiliation(s)
- Vasanthakrishna Mundodi
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Saket Choudhary
- Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Andrew D. Smith
- Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - David Kadosh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
46
|
Kraus A, Hess WR. How Small Proteins Adjust the Metabolism of Cyanobacteria Under Stress: The Role of Small Proteins in Cyanobacterial Stress Responses. Bioessays 2025; 47:e202400245. [PMID: 39668401 PMCID: PMC11848123 DOI: 10.1002/bies.202400245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Several recently discovered small proteins of less than 100 amino acids control important, but sometimes surprising, steps in the metabolism of cyanobacteria. There is mounting evidence that a large number of small protein genes have also been overlooked in the genome annotation of many other microorganisms. Although too short for enzymatic activity, their functional characterization has frequently revealed the involvement in processes such as signaling and sensing, interspecies communication, stress responses, metabolism, regulation of transcription and translation, and in the formation of multisubunit protein complexes. Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis. They thrive under a wide variety of conditions as long as there is light and must cope with dynamic changes in the environment. To acclimate to these fluctuations, frequently small regulatory proteins become expressed that target key enzymes and metabolic processes. The consequences of their actions are profound and can even impact the surrounding microbiome. This review highlights the diverse functions of recently discovered small proteins that control cyanobacterial metabolism. It also addresses why many of these proteins have been overlooked so far and explores the potential for implementing metabolic engineering strategies to improve the use of cyanobacteria in biotechnological applications.
Collapse
Affiliation(s)
- Alexander Kraus
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| |
Collapse
|
47
|
Ruiz-Orera J, Hübner N. The non-canonical proteome: a novel contributor to cancer proliferation. Cell Res 2025; 35:155-156. [PMID: 39806169 PMCID: PMC11909265 DOI: 10.1038/s41422-024-01069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Affiliation(s)
- Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Charité-Universitätsmedizin, Berlin, Germany.
- Helmholtz Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
48
|
Hou J, Yu L, Wu C, Wei S, Gao X. Ribosome profiling reveals dynamic translational landscape following X-ray irradiation. Genomics 2025; 117:110987. [PMID: 39755339 DOI: 10.1016/j.ygeno.2025.110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/10/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
X-ray irradiation induces widespread changes in gene expression. Positioned at the bottom of the central dogma, translational regulation responds swiftly to environmental stimuli, fine-tuning protein levels. However, the global view of mRNA translation following X-ray exposure remains unclear. In this study, we systematically investigated X-ray-induced translational alternation using ribosome profiling. Our study revealed a temporary translation inhibition in HEK293T cells following X-ray treatment. A subset of mRNAs experienced translational upregulation by bypassing upstream open reading frames (uORFs). The upregulated genes were enriched in the MAPK signaling pathway, such as MAPKBP1. Suppression of MAPKBP1 inhibited X-ray-induced cell apoptosis. Furthermore, we identified the induction of novel peptides encoded by small open reading frames (smORFs) within long non-coding RNAs (lncRNAs) upon X-ray treatment. Overall, our findings provide a comprehensive overview of the translational landscape within eukaryotic cells following X-ray treatment, offering new insights into DNA damage response.
Collapse
Affiliation(s)
- Jingyu Hou
- Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lei Yu
- Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Canlan Wu
- Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Saisai Wei
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Xiangwei Gao
- Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
49
|
Cornelissen FMG, He Z, Ciputra E, de Haas RR, Beumer‐Chuwonpad A, Noske D, Vandertop WP, Piersma SR, Jiménez CR, Murre C, Westerman BA. The translatome of glioblastoma. Mol Oncol 2025; 19:716-740. [PMID: 39417309 PMCID: PMC11887679 DOI: 10.1002/1878-0261.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GB), the most common and aggressive brain tumor, demonstrates intrinsic resistance to current therapies, resulting in poor clinical outcomes. Cancer progression can be partially attributed to the deregulation of protein translation mechanisms that drive cancer cell growth. In this study, we present the translatome landscape of GB as a valuable data resource. Eight patient-derived GB sphere cultures (GSCs) were analyzed using ribosome profiling and messenger RNA (mRNA) sequencing. We investigated inter-cell-line differences through differential expression analysis at both the translatome and transcriptome levels. Translational changes post-radiotherapy were assessed at 30 and 60 min. The translation of non-coding RNAs (ncRNAs) was validated using in-house and public mass spectrometry (MS) data, whereas RNA expression was confirmed by quantitative PCR (qPCR). Our findings demonstrate that ribosome sequencing provides more detailed information than MS or transcriptional analyses. Transcriptional similarities among GSCs correlate with translational similarities, aligning with previously defined subtypes such as proneural and mesenchymal. Additionally, we identified a broad spectrum of open reading frame types in both coding and non-coding mRNA regions, including long non-coding RNAs (lncRNAs) and pseudogenes undergoing active translation. Translation of ncRNAs into peptides was independently confirmed by in-house data and external MS data. We also observed that translational regulation of histones (downregulated) and splicing factors (upregulated) occurs in response to radiotherapy. These data offer new insights into genome-wide protein synthesis, identifying translationally regulated genes and alternative translation initiation sites in GB under normal and radiotherapeutic conditions, providing a rich resource for GB research. Further functional validation of differentially expressed genes after radiotherapy is needed. Understanding translational control in GB can reveal mechanistic insights and identify currently unknown biomarkers, ultimately enhancing the diagnosis and treatment of this aggressive brain cancer.
Collapse
Affiliation(s)
- Fleur M. G. Cornelissen
- Department of Molecular BiologyUniversity of California, San DiegoLa JollaCAUSA
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - Zhaoren He
- Department of Molecular BiologyUniversity of California, San DiegoLa JollaCAUSA
| | - Edward Ciputra
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - Richard R. de Haas
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMCThe Netherlands
| | | | - David Noske
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - W. Peter Vandertop
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - Sander R. Piersma
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMCThe Netherlands
| | - Connie R. Jiménez
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMCThe Netherlands
| | - Cornelis Murre
- Department of Molecular BiologyUniversity of California, San DiegoLa JollaCAUSA
| | - Bart A. Westerman
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| |
Collapse
|
50
|
Fu XX, Wei B, Huang ZH, Duan R, Deng Y, E Y, Wang SY, Chen SY, Zhang YD, Jiang T. Modulation of mitochondrial functions contributes to the protection of lamotrigine against Alzheimer's disease. J Alzheimers Dis 2025; 104:209-220. [PMID: 39834280 DOI: 10.1177/13872877251314847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
BackgroundOur previous studies have established that the broad-spectrum anti-epileptic drug lamotrigine (LTG) confers protection against cognitive impairments, synapse and nerve cell damage, as well as characteristic neuropathologies in APP/PS1 mice, a mouse model of Alzheimer's disease (AD). However, the precise molecular mechanisms responsible for this protective effect induced by LTG remain largely elusive.ObjectiveIn this study, we aimed to investigate the mechanisms underlying the beneficial effects of LTG against AD.MethodsFive-month-old APP/PS1 mice were treated with 30 mg/kg of LTG daily for three consecutive months. Subsequently, high-throughput ribosome profiling sequencing was conducted to identify differentially translated genes (DTGs) rescued by LTG in the brains of these mice. To gain further insights into the potential functions and pathways of these LTG-rescued DTGs, gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed. RNA expression, protein levels, and translational efficiency were assessed to explore how LTG regulated gene expression processes in AD-related DTGs. Additionally, Aβ42 peptide-stimulated primary neurons were used to uncover the potential mechanisms and signaling pathway by which LTG mitigated oxidative stress under AD context.ResultsFor the first time, we reveal that LTG inactivates mitochondrial complexes in the brains of APP/PS1 mice by suppressing the translational efficiency of mitochondrial complexes-related genes. More importantly, we demonstrate that LTG mitigates mitochondrial-mediated oxidative stress in neurons within the context of AD by activation of SIRT6/PGC-1α pathway.ConclusionsThese findings provide further insights into the mechanisms underlying the protective effects of LTG against AD.
Collapse
Affiliation(s)
- Xin-Xin Fu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
- Department of Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Bin Wei
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zhi-Hang Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, PR China
| | - Yang Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, PR China
| | - Yan E
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Shi-Yao Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Shuai-Yu Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|