1
|
Delaby M, Yang L, Jacq M, Gallagher KA, Kysela DT, Hughes V, Pulido F, Veyrier FJ, VanNieuwenhze MS, Brun YV. Phenotypic plasticity in cell elongation among closely related bacterial species. Nat Commun 2025; 16:5099. [PMID: 40456757 PMCID: PMC12130487 DOI: 10.1038/s41467-025-60005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/07/2025] [Indexed: 06/11/2025] Open
Abstract
Cell elongation in bacteria has been studied over many decades, in part because its underlying mechanisms are targets of numerous antibiotics. While multiple elongation modes have been described, little is known about how these strategies vary across species and in response to evolutionary and environmental influences. Here, we use fluorescent D-amino acids to track the spatiotemporal dynamics of bacterial cell elongation, revealing unsuspected diversity of elongation modes among closely related species of the family Caulobacteraceae. We identify species-specific combinations of dispersed, midcell and polar elongation that can be either unidirectional or bidirectional. Using genetic, cell biology, and phylogenetic approaches, we demonstrate that evolution of unidirectional-midcell elongation is accompanied by changes in the localization of the peptidoglycan synthase PBP2. Our findings reveal high phenotypic plasticity in elongation mechanisms, with implications for our understanding of bacterial growth and evolution.
Collapse
Affiliation(s)
- Marie Delaby
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Liu Yang
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Biosphere Sciences and Engineering, Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, California, USA
| | - Maxime Jacq
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Kelley A Gallagher
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - David T Kysela
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Velocity Hughes
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Synthesis by Velocity, Malmö, Sweden
| | - Francisco Pulido
- Bacterial Symbionts Evolution, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada
| | - Frederic J Veyrier
- Bacterial Symbionts Evolution, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada
| | | | - Yves V Brun
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada.
- Department of Biology, Indiana University, 1001 E. 3rd St, Bloomington, IN, USA.
| |
Collapse
|
2
|
Dunn CM, Foust DJ, Gao Y, Biteen JS, Shaw SL, Kearns DB. Nascent flagellar basal bodies are immobilized by rod assembly in Bacillus subtilis. mBio 2025:e0053025. [PMID: 40396775 DOI: 10.1128/mbio.00530-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025] Open
Abstract
Flagella are complex, trans-envelope nanomachines that localize in species-specific patterns on the cell surface. Here, we study the localization dynamics of the earliest stage of basal body formation in Bacillus subtilis using a fluorescent fusion to the C-ring protein FliM. We find that B. subtilis basal bodies do not exhibit dynamic subunit exchange and are largely stationary at steady state, consistent with flagellar assembly through the peptidoglycan (PG). However, rare mobile basal bodies were observed, and the prevalence of mobile basal bodies is elevated both early in basal body assembly and when the rod is mutated. Thus, basal body mobility is a precursor to patterning, and we propose that rod polymerization probes the PG superstructure for pores of sufficient diameter to permit rod transit. Furthermore, mutation of the rod disrupts basal body patterning in a way that phenocopies mutation of the cytoplasmic flagellar patterning protein FlhF. We infer that rod synthesis and the cytoplasmic regulators coordinate flagellar assembly by interpreting a grid-like pattern of pores, pre-existent in the PG. IMPORTANCE Bacteria insert flagella in a species-specific pattern on the cell body, but how patterns are achieved is poorly understood. In bacteria with a single polar flagellum, a marker protein localizes to the cell pole and nucleates the assembly of the flagellum at that site. Bacillus subtilis assembles ~25 basal bodies over the length of the cell in a grid-like pattern and lacks proteins required for their polar targeting. Here, we show that B. subtilis basal bodies are mobile soon after assembly and become immobilized when the flagellar rod transits the peptidoglycan (PG) wall. Moreover, defects in the flagellar rod lead to a more-random distribution of flagella and an increase in polar basal bodies. We conclude that the peritrichous patterning of flagella of B. subtilis is different from the polar patterning of other bacteria, and we infer that the B. subtilis rod probes the PG for holes that can accommodate the machine.
Collapse
Affiliation(s)
- Caroline M Dunn
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Daniel J Foust
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Yongqiang Gao
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
3
|
Henthorn D, Wilson S, Tank RK, Mallard W, Fadero T, Gao R, Garner EC. Bacillus subtilis twisting arises from torsional stress established by cell wall insertion and released by hydrolase-mediated cell wall cleavage. Mol Biol Cell 2025; 36:ar56. [PMID: 40105931 PMCID: PMC12086570 DOI: 10.1091/mbc.e24-09-0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/07/2025] [Accepted: 03/10/2025] [Indexed: 03/21/2025] Open
Abstract
The cell walls of rod-shaped Gram-positive bacteria are thick, multilayered networks that chirally twist as cells elongate. The underlying basis of twisting is not known, but probing the processes underlying this phenomenon may give insights into how cell wall material is inserted, how it evolves during cleavage, and the mechanics within the sacculus. In Bacillus subtilis, we see cell chains lacking hydrolases twist far slower than chains of wild-type cells, indicating that cell wall cleavage modulates the twisting rate. We see that when cells within chains separate, the two nascent ends rotate as they separate. Together, this suggests there is torsional stress within the cell wall that, when unreleased, perturbs overall chain morphology. Unlike Escherichia coli, we see that twisting does not arise from MreB's angle of motion, as its angle is identical in both fast-twisting wild-type cells and slow-twisting hydrolase-deficient cells. Rather, the circumferential insertion of glycans appears to establish this torsional stress, as increasing Rod complex activity by deleting ponA causes cells to twist faster than wild-type cells. Together, these experiments suggest the twisting of B. subtilis cells arises from radial glycan insertion, which somehow causes torsional stress in the wall that is later released by hydrolase activity.
Collapse
Affiliation(s)
- Daniel Henthorn
- Department of Molecular and Cellular Biology, Harvard University, MA 02138
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, MA 02138
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| | - Raveen K. Tank
- Krebs Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department of Physics and Astronomy, University of Sheffield S3 7RH, Sheffield, United Kingdom
- The Florey Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - William Mallard
- Department of Molecular and Cellular Biology, Harvard University, MA 02138
| | - Tanner Fadero
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Ruixuan Gao
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
- Departments of Chemistry and Biological Sciences, University of Illinois Chicago, Chicago, IL 60607
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, MA 02138
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
4
|
Zinck CB, Carracoi V, Kloos ZA, Wachter J, Schwartz CL, Stewart PE, Jacobs-Wagner C, Rosa PA, Takacs CN. Bactofilins are essential spatial organizers of peptidoglycan insertion in the Lyme disease spirochete Borrelia burgdorferi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.647816. [PMID: 40291658 PMCID: PMC12027072 DOI: 10.1101/2025.04.09.647816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The Lyme disease spirochete Borrelia burgdorferi has a distinctive pattern of growth. Newly-born cells elongate by primarily inserting peptidoglycan at mid-cell, while in longer cells, additional insertion sites form at the one-quarter and three-quarter positions along the cell length. It is not known how peptidoglycan insertion is concentrated at these locations in B. burgdorferi. In other bacteria, multi-protein complexes are known to synthesize new peptidoglycan and are often organized by cytoskeletal proteins. We show here that B. burgdorferi 's zonal concentration of peptidoglycan insertion requires BB0538 (BbbA) and BB0245 (BbbB), two members of the bactofilin class of cytoskeletal proteins. Bactofilin depletion redistributes peptidoglycan insertion along the cell length. Prolonged bactofilin depletion arrested growth in culture and induced extensive cell blebbing, indicating that B. burgdorferi bactofilins are essential for viability. Fluorescent protein fusions of BbbA and BbbB localized to areas of peptidoglycan insertion, with BbbB accumulation preceding peptidoglycan insertion at these sites. Similar to peptidoglycan insertion, BbbB localization was disrupted upon depletion of BbbA. Our results show that BbbB relies on BbbA for its localization, and that together, BbbA and BbbB direct the spatial patterning of new peptidoglycan insertion in B. burgdorferi . IMPORTANCE The spirochetal bacterium Borrelia burgdorferi causes Lyme disease, the most prevalent vector-borne infection in North America and Europe. Cellular replication, which requires growth and division of the peptidoglycan cell wall, facilitates B. burgdorferi transmission to, and dissemination within, new hosts. Cellular replication is therefore essential for pathogenesis. Bactofilins regulate peptidoglycan-related processes in several bacteria. However, these functions are typically non-essential for cellular replication, as bactofilin-encoding genes can be readily deleted in multiple bacterial species. In contrast, we show that the B. burgdorferi bactofilins BbbA and BbbB are essential for cellular viability and direct zonal peptidoglycan insertion. Our findings broaden the spectrum of known bactofilin functions and advance our understanding of how peptidoglycan insertion is regulated in this unusual, medically important spirochete bacterium.
Collapse
|
5
|
Bergeron JRC, Lale-Farjat SLM, Lewicka HM, Parry C, Kollman JM. A family of bacterial actin homologs forms a three-stranded tubular structure. Proc Natl Acad Sci U S A 2025; 122:e2500913122. [PMID: 40073056 PMCID: PMC11929497 DOI: 10.1073/pnas.2500913122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
The cytoskeleton is crucial for cell organization and movement. In Eukaryotes, it largely consists of the protein actin, that forms a double-stranded linear filamentous structure in the presence of ATP and disassemble upon ATP hydrolysis. Bacteria also possess actin homologs, that drive fundamental cellular processes, including cell division, shape maintenance, and DNA segregation. Like eukaryotic actin, bacterial actins assemble into dynamic polymers upon ATP binding, however variation in interactions between strands gives rise to striking diversity of filament architectures. Here, we report a family of bacterial actins of unknown function, conserved among the Verrucomicrobiota phylum, which assembles into a unique tubular structure in the presence of ATP. A cryo-EM structure of the filaments reveals that it consists of three strands, unlike other described bacterial actin structures. This architecture provides further insights into the organization of actin-like filaments and has implications for understanding the diversity and evolution of the bacterial cytoskeleton.
Collapse
Affiliation(s)
- Julien R. C. Bergeron
- Randall Centre for Cell and Molecular Biophysics, King’s College London, LondonSE1 1UL, United Kingdom
- Prosemble group LTD, LondonSE1 1UL, United Kingdom
| | - Shamar L. M. Lale-Farjat
- Randall Centre for Cell and Molecular Biophysics, King’s College London, LondonSE1 1UL, United Kingdom
| | - Hanna M. Lewicka
- Randall Centre for Cell and Molecular Biophysics, King’s College London, LondonSE1 1UL, United Kingdom
| | - Chloe Parry
- Randall Centre for Cell and Molecular Biophysics, King’s College London, LondonSE1 1UL, United Kingdom
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, WA98195
| |
Collapse
|
6
|
Stuckenschneider L, Graumann PL. Localization and Single Molecule Dynamics of Bacillus subtilis Penicillin-Binding Proteins Depend on Substrate Availability and Are Affected by Stress Conditions. Cells 2025; 14:429. [PMID: 40136678 PMCID: PMC11940910 DOI: 10.3390/cells14060429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
We have used single molecule tracking to investigate dynamics of four penicillin-binding proteins (PBPs) in Bacillus subtilis to shed light on their possible modes of action. We show that Pbp2a, Pbp3, Pbp4, and Pbp4a, when expressed at very low levels, show at least two distinct states of mobility: a state of slow motion, likely representing molecules involved in cell wall synthesis, and a mode of fast motion, likely representing freely diffusing molecules. Except for Pbp4, all other PBPs showed about 50% molecules in the slow mobility state, suggesting that roughly half of all molecules are engaged in a substrate-bound mode. We observed similar coefficients for the slow mobility state for Pbp4 and Pbp4a on the one hand, and for Pbp2a and Pbp3 on the other hand, indicating possible joint activities, respectively. Upon induction of osmotic stress, Pbp2a and Pbp4a changed from a pattern of localization mostly at the lateral cell membrane to also include localization at the septum, revealing that sites of preferred positioning for these two PBPs can be modified during stress conditions. While Pbp3 became more dynamic after induction of osmotic stress, Pbp4 became more static, showing that PBPs reacted markedly differently to envelope stress conditions. The data suggest that PBPs could take over functions in cell wall synthesis during different stress conditions, increasing the resilience of cell wall homeostasis in different environmental conditions. All PBPs lost their respective localization pattern after the addition of vancomycin or penicillin G, indicating that patterns largely depend on substrate availability. Our findings show that PBPs rapidly alter between non-targeted motion through the cell membrane and capture at sites of active cell wall synthesis, most likely guided by complex formation with other cell wall synthesis enzymes.
Collapse
Affiliation(s)
- Lisa Stuckenschneider
- SYNMIKRO, Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043 Marburg, Germany;
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Peter L. Graumann
- SYNMIKRO, Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043 Marburg, Germany;
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
7
|
Bardetti P, Barber F, Rojas ER. Non-linear stress-softening of the bacterial cell wall confers cell shape homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.03.611099. [PMID: 39282265 PMCID: PMC11398337 DOI: 10.1101/2024.09.03.611099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The bacillus - or rod - is a pervasive cellular morphology among bacteria. Rod-shaped bacteria elongate without widening by reinforcing their cell wall anisotropically, along the cell's circumference, but it is unknown how cells adaptively tune anisotropy to homeostatically control cell width. Through super-resolution measurements of cell wall mechanical properties, we discovered that the Bacillus subtilis cell wall exhibits non-linear stress-softening exclusively in the circumferential direction. Furthermore, during steady-state growth the cell wall is inflated precisely to the acute non-linear transition. Physics-based theory correctly predicted that this transition underlies the negative feedback that governs cell width homeostasis. In other words, the cell wall is a "smart material" whose exotic mechanical properties are exquisitely adapted to execute cellular morphogenesis.
Collapse
Affiliation(s)
- Paola Bardetti
- Department of Biology, New York University, New York, New York, 10003, USA
| | - Felix Barber
- Department of Biology, New York University, New York, New York, 10003, USA
| | - Enrique R. Rojas
- Department of Biology, New York University, New York, New York, 10003, USA
| |
Collapse
|
8
|
Shlosman I, Vettiger A, Bernhardt TG, Kruse AC, Loparo JJ. The hit-and-run of cell wall synthesis: LpoB transiently binds and activates PBP1b through a conserved allosteric switch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628440. [PMID: 39713382 PMCID: PMC11661203 DOI: 10.1101/2024.12.13.628440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The peptidoglycan (PG) cell wall is the primary protective layer of bacteria, making the process of PG synthesis a key antibiotic target. Class A penicillin-binding proteins (aPBPs) are a family of conserved and ubiquitous PG synthases that fortify and repair the PG matrix. In gram-negative bacteria, these enzymes are regulated by outer-membrane tethered lipoproteins. However, the molecular mechanism by which lipoproteins coordinate the spatial recruitment and enzymatic activation of aPBPs remains unclear. Here we use single-molecule FRET and single-particle tracking in E. coli to show that a prototypical lipoprotein activator LpoB triggers site-specific PG synthesis by PBP1b through conformational rearrangements. Once synthesis is initiated, LpoB affinity for PBP1b dramatically decreases and it dissociates from the synthesizing enzyme. Our results suggest that transient allosteric coupling between PBP1b and LpoB directs PG synthesis to areas of low peptidoglycan density, while simultaneously facilitating efficient lipoprotein redistribution to other sites in need of fortification.
Collapse
|
9
|
Delaby M, Yang L, Jacq M, Gallagher KA, Kysela DT, Hughes V, Pulido F, Veyrier FJ, VanNieuwenhze MS, Brun YV. Phenotypic plasticity in bacterial elongation among closely related species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622495. [PMID: 39574579 PMCID: PMC11581012 DOI: 10.1101/2024.11.07.622495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Cell elongation is a fundamental component of the bacterial cell cycle and has been studied over many decades, in part owing to its mechanisms being a target of numerous antibiotic classes. While several distinct modes of cell elongation have been described, these studies have largely relied on a handful of model bacterial species. Therefore, we have a limited view of the diversity of cell elongation approaches that are employed by bacteria, and how these vary in response to evolutionary and environmental influences. Here, by employing fluorescent D-amino acids (FDAAs) to track the spatiotemporal dynamics of elongation, we reveal previously unsuspected diversity of elongation modes among closely related species of the Caulobacteraceae, with species-specific combinations of dispersed, midcell and polar elongation that can be either unidirectional or bidirectional. Using genetic, cell biology, and phylogenetic approaches, we demonstrate that evolution of unidirectional-midcell elongation is accompanied by changes in the localization pattern of the peptidoglycan synthase PBP2 and infer that elongation complexes display a high degree of phenotypic plasticity, both among the Caulobacteraceae and more widely among the Alphaproteobacteria. Demonstration that even closely related bacterial species employ highly distinct mechanisms of cell elongation reshapes our understanding of the evolution and regulation of bacterial cell growth, with broad implications for bacterial morphology, adaptation, and antibiotic resistance.
Collapse
Affiliation(s)
- Marie Delaby
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec) H3C 3J7, Canada
| | - Liu Yang
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec) H3C 3J7, Canada
- Current Address: Biosphere Sciences and Engineering, Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, California, 91101, United States
| | - Maxime Jacq
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec) H3C 3J7, Canada
| | - Kelley A Gallagher
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec) H3C 3J7, Canada
- Current address: Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - David T Kysela
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec) H3C 3J7, Canada
| | - Velocity Hughes
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec) H3C 3J7, Canada
- Synthesis by Velocity, Malmö, Sweden
| | - Francisco Pulido
- Bacterial Symbionts Evolution, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, H7V 1B7, Canada
| | - Frederic J. Veyrier
- Bacterial Symbionts Evolution, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, H7V 1B7, Canada
| | - Michael S. VanNieuwenhze
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Yves V. Brun
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec) H3C 3J7, Canada
- Department of Biology, Indiana University, 1001 E. 3 St, Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Petek-Seoane NA, Rodriguez J, Derman AI, Royal SG, Lord SJ, Lawrence R, Pogliano J, Mullins RD. Polymer dynamics of Alp7A reveals how two critical concentrations govern assembly of dynamically unstable actin-like proteins. Mol Biol Cell 2024; 35:ar145. [PMID: 39320937 PMCID: PMC11617094 DOI: 10.1091/mbc.e23-11-0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/09/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Dynamically unstable polymers capture and move cellular cargos in bacteria and eukaryotes, but regulation of their assembly remains poorly understood. Here we describe polymerization of Alp7A, a bacterial actin-like protein (ALP) that distributes copies of plasmid pLS20 among daughter cells in Bacillus subtilis. Purified ATP-Alp7A forms dynamically unstable polymers with a high critical concentration for net assembly (ccN = 10.3 µM), but a much lower critical concentration for filament elongation (ccE = 0.6 µM). Rapid nucleation and stabilization of Alp7A polymers by the accessory factor, Alp7R, decrease ccN into the physiological range. Stable populations of Alp7A filaments appear under two conditions: (i) when Alp7R slows catastrophe rates or (ii) when Alp7A concentrations are high enough to promote filament bundling. These results reveal how dynamic instability maintains high steady-state concentrations of monomeric Alp7A, and how accessory factors regulate Alp7A assembly by modulating ccN independently of ccE.
Collapse
Affiliation(s)
| | - Johnny Rodriguez
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco 94158, CA
| | - Alan I. Derman
- Department of Molecular Biology, UCSD, San Diego 92037, CA
| | | | - Samuel J. Lord
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco 94158, CA
| | - Rosalie Lawrence
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco 94158, CA
| | - Joe Pogliano
- Department of Molecular Biology, UCSD, San Diego 92037, CA
| | - R. Dyche Mullins
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco 94158, CA
| |
Collapse
|
11
|
Gilman MS, Shlosman I, Guerra DDS, Domecillo M, Fivenson EM, Bourett C, Bernhardt TG, Polizzi NF, Loparo JJ, Kruse AC. MreC-MreD structure reveals a multifaceted interface that controls MreC conformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617240. [PMID: 39416049 PMCID: PMC11482812 DOI: 10.1101/2024.10.08.617240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The peptidoglycan (PG) cell wall is critical for bacterial growth and survival and is a primary antibiotic target. MreD is an essential accessory factor of the Rod complex, which carries out PG synthesis during elongation, yet little is known about how MreD facilitates this process. Here, we present the cryo-electron microscopy structure of Thermus thermophilus MreD in complex with another essential Rod complex component, MreC. The structure reveals that a periplasmic-facing pocket of MreD interacts with multiple membrane-proximal regions of MreC. We use single-molecule FRET to show that MreD controls the conformation of MreC through these contacts, inducing a state primed for Rod complex activation. Using E. coli as a model, we demonstrate that disrupting these interactions abolishes Rod complex activity in vivo. Our findings reveal the role of MreD in bacterial cell shape determination and highlight its potential as an antibiotic target.
Collapse
Affiliation(s)
- Morgan S.A. Gilman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Irina Shlosman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daniel D. Samé Guerra
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Masy Domecillo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana Farber Cancer Institute, Harvard Medical School Boston, Massachusetts 02115, USA
| | - Elayne M. Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Claire Bourett
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nicholas F. Polizzi
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana Farber Cancer Institute, Harvard Medical School Boston, Massachusetts 02115, USA
| | - Joseph J. Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
12
|
Sogues A, Sleutel M, Petit J, Megrian D, Bayan N, Wehenkel AM, Remaut H. Cryo-EM structure and polar assembly of the PS2 S-layer of Corynebacterium glutamicum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611363. [PMID: 39282302 PMCID: PMC11398520 DOI: 10.1101/2024.09.05.611363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The polar-growing Corynebacteriales have a complex cell envelope architecture characterized by the presence of a specialized outer membrane composed of mycolic acids. In some Corynebacteriales, this mycomembrane is further supported by a proteinaceous surface layer or 'S-layer', whose function, structure and mode of assembly remain largely enigmatic. Here, we isolated ex vivo PS2 S-layers from the industrially important Corynebacterium glutamicum and determined its atomic structure by 3D cryoEM reconstruction. PS2 monomers consist of a six-helix bundle 'core', a three-helix bundle 'arm', and a C-terminal transmembrane (TM) helix. The PS2 core oligomerizes into hexameric units anchored in the mycomembrane by a channel-like coiled-coil of the TM helices. The PS2 arms mediate trimeric lattice contacts, crystallizing the hexameric units into an intricate semipermeable lattice. Using pulse-chase live cell imaging, we show that the PS2 lattice is incorporated at the poles, coincident with the actinobacterial elongasome. Finally, phylogenetic analysis shows a paraphyletic distribution and dispersed chromosomal location of PS2 in Corynebacteriales as a result of multiple recombination events and losses. These findings expand our understanding of S-layer biology and enable applications of membrane-supported self-assembling bioengineered materials.
Collapse
Affiliation(s)
- Adrià Sogues
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mike Sleutel
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Julienne Petit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Structural Microbiology Unit, F-75015 Paris, France
| | - Daniela Megrian
- Bioinformatics Unit, Institut Pasteur de Montevideo, 11200 Montevideo, Uruguay
| | - Nicolas Bayan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anne Marie Wehenkel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
13
|
Pöhl S, Giacomelli G, Meyer FM, Kleeberg V, Cohen EJ, Biboy J, Rosum J, Glatter T, Vollmer W, van Teeseling MCF, Heider J, Bramkamp M, Thanbichler M. An outer membrane porin-lipoprotein complex modulates elongasome movement to establish cell curvature in Rhodospirillum rubrum. Nat Commun 2024; 15:7616. [PMID: 39223154 PMCID: PMC11369160 DOI: 10.1038/s41467-024-51790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Curved cell shapes are widespread among bacteria and important for cellular motility, virulence and fitness. However, the underlying morphogenetic mechanisms are still incompletely understood. Here, we identify an outer-membrane protein complex that promotes cell curvature in the photosynthetic species Rhodospirillum rubrum. We show that the R. rubrum porins Por39 and Por41 form a helical ribbon-like structure at the outer curve of the cell that recruits the peptidoglycan-binding lipoprotein PapS, with PapS inactivation, porin delocalization or disruption of the porin-PapS interface resulting in cell straightening. We further demonstrate that porin-PapS assemblies act as molecular cages that entrap the cell elongation machinery, thus biasing cell growth towards the outer curve. These findings reveal a mechanistically distinct morphogenetic module mediating bacterial cell shape. Moreover, they uncover an unprecedented role of outer-membrane protein patterning in the spatial control of intracellular processes, adding an important facet to the repertoire of regulatory mechanisms in bacterial cell biology.
Collapse
Affiliation(s)
- Sebastian Pöhl
- Department of Biology, University of Marburg, Marburg, Germany
| | | | - Fabian M Meyer
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Volker Kleeberg
- Institut für Biologie II, University of Freiburg, Freiburg, Germany
- Pädagogische Forschungsstelle Kassel, Kassel, Germany
| | - Eli J Cohen
- Department of Life Sciences, Imperial College London, London, UK
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Rosum
- Department of Biology, University of Marburg, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Muriel C F van Teeseling
- Department of Biology, University of Marburg, Marburg, Germany
- Institute of Microbiology, Friedrich-Schiller-Universität, Jena, Germany
| | - Johann Heider
- Department of Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Marc Bramkamp
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
14
|
Dunn CM, Foust D, Gao Y, Biteen JS, Shaw SL, Kearns DB. Nascent flagellar basal bodies are immobilized by rod assembly in Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606393. [PMID: 39211283 PMCID: PMC11360914 DOI: 10.1101/2024.08.02.606393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Flagella are complex, trans-envelope nanomachines that localize to species- specific cellular addresses. Here we study the localization dynamics of the earliest stage of basal body formation in Bacillus subtilis using a fluorescent fusion to the C-ring protein FliM. We find that B. subtilis basal bodies do not exhibit dynamic subunit exchange and are largely stationary at steady state, consistent with flagellar assembly through the peptidoglycan. Rare basal bodies were observed to be mobile however, and the frequency of basal body mobility is elevated both early in basal body assembly and when the rod is mutated. Thus, basal body mobility is a precursor to patterning and we propose that rod polymerization probes the peptidoglycan superstructure for pores of sufficient diameter that permit rod completion. Furthermore, mutation of the rod also disrupts basal body patterning in a way that phenocopies mutation of the cytoplasmic flagellar patterning protein FlhF. We infer that conformational changes in the basal body exchange information between rod synthesis and the cytoplasmic patterning proteins to restrict assembly at certain pores established by a grid-like pattern pre-existent in the peptidoglycan itself. IMPORTANCE Bacteria insert flagella in a species-specific pattern on the cell body, but how patterns are achieved is poorly understood. In bacteria with a single polar flagellum, a marker protein localizes to the cell pole and nucleates the assembly of the flagellum at that site. Bacillus subtilis assembles ∼15 flagella over the length of the cell body in a grid-like pattern and lacks all proteins associated with targeted assembly in polarly flagellated bacteria. Here we show that B. subtilis basal bodies are mobile soon after assembly and become immobilized when the flagellar rod transits the peptidoglycan wall. Moreover, defects in the flagellar rod lead to an asymmetric distribution of flagella with respect to the midcell. We conclude that the patterning of flagella is different in B. subtilis , and we infer that the B. subtilis rod probes the peptidoglycan for holes that can accommodate the machine.
Collapse
|
15
|
Dersch S, Graumann PL. Adaptation of Bacillus subtilis MreB Filaments to Osmotic Stress Depends on Influx of Potassium Ions. Microorganisms 2024; 12:1309. [PMID: 39065078 PMCID: PMC11279060 DOI: 10.3390/microorganisms12071309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The circumferential motion of MreB filaments plays a key role in cell shape maintenance in many bacteria. It has recently been shown that filament formation of MreB filaments in Bacillus subtilis is influenced by stress conditions. In response to osmotic upshift, MreB molecules were released from filaments, as seen by an increase in freely diffusive molecules, and the peptidoglycan synthesis pattern became less organized, concomitant with slowed-down cell extension. In this study, biotic and abiotic factors were analysed with respect to a possible function in the adaptation of MreB filaments to stress conditions. We show that parallel to MreB, its interactor RodZ becomes more diffusive following osmotic stress, but the remodeling of MreB filaments is not affected by a lack of RodZ. Conversely, mutant strains that prevent efficient potassium influx into cells following osmotic shock show a failure to disassemble MreB filaments, accompanied by less perturbed cell wall extension than is observed in wild type cells. Because potassium ions are known to negatively affect MreB polymerization in vitro, our data indicate that polymer disassembly is directly mediated by the physical consequences of the osmotic stress response. The lack of an early potassium influx response strongly decreases cell survival following stress application, suggesting that the disassembly of MreB filaments may ensure slowed-down cell wall extension to allow for efficient adaptation to new osmotic conditions.
Collapse
Affiliation(s)
| | - Peter L. Graumann
- Centre for Synthetic Microbiology (SYNMIKRO), Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany;
| |
Collapse
|
16
|
Middlemiss S, Blandenet M, Roberts DM, McMahon A, Grimshaw J, Edwards JM, Sun Z, Whitley KD, Blu T, Strahl H, Holden S. Molecular motor tug-of-war regulates elongasome cell wall synthesis dynamics in Bacillus subtilis. Nat Commun 2024; 15:5411. [PMID: 38926336 PMCID: PMC11208587 DOI: 10.1038/s41467-024-49785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Most rod-shaped bacteria elongate by inserting new cell wall material into the inner surface of the cell sidewall. This is performed by class A penicillin binding proteins (PBPs) and a highly conserved protein complex, the elongasome, which moves processively around the cell circumference and inserts long glycan strands that act as barrel-hoop-like reinforcing structures, thereby giving rise to a rod-shaped cell. However, it remains unclear how elongasome synthesis dynamics and termination events are regulated to determine the length of these critical cell-reinforcing structures. To address this, we developed a method to track individual elongasome complexes around the entire circumference of Bacillus subtilis cells for minutes-long periods using single-molecule fluorescence microscopy. We found that the B. subtilis elongasome is highly processive and that processive synthesis events are frequently terminated by rapid reversal or extended pauses. We found that cellular levels of RodA regulate elongasome processivity, reversal and pausing. Our single-molecule data, together with stochastic simulations, show that elongasome dynamics and processivity are regulated by molecular motor tug-of-war competition between several, likely two, oppositely oriented peptidoglycan synthesis complexes associated with the MreB filament. Altogether these results demonstrate that molecular motor tug-of-war is a key regulator of elongasome dynamics in B. subtilis, which likely also regulates the cell shape via modulation of elongasome processivity.
Collapse
Affiliation(s)
- Stuart Middlemiss
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Matthieu Blandenet
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David M Roberts
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK
| | - Andrew McMahon
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK
| | - James Grimshaw
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joshua M Edwards
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK
| | - Zikai Sun
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin D Whitley
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Thierry Blu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
- Dept of Electrical Engineering, National Taiwan University, Taipei City, Taiwan
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Séamus Holden
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK.
| |
Collapse
|
17
|
Perez AJ, Lamanna MM, Bruce KE, Touraev MA, Page JE, Shaw SL, Tsui HCT, Winkler ME. Elongasome core proteins and class A PBP1a display zonal, processive movement at the midcell of Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2024; 121:e2401831121. [PMID: 38875147 PMCID: PMC11194595 DOI: 10.1073/pnas.2401831121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024] Open
Abstract
Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed nonprocessive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.
Collapse
Affiliation(s)
- Amilcar J. Perez
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Melissa M. Lamanna
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Kevin E. Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Marc A. Touraev
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Julia E. Page
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Sidney L. Shaw
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | | | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| |
Collapse
|
18
|
Perez AJ, Lamanna MM, Bruce KE, Touraev MA, Page JE, Shaw SL, Tsui HCT, Winkler ME. Elongasome core proteins and class A PBP1a display zonal, processive movement at the midcell of Streptococcus pneumoniae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575112. [PMID: 38328058 PMCID: PMC10849506 DOI: 10.1101/2024.01.10.575112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed non-processive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.
Collapse
|
19
|
Whitley KD, Grimshaw J, Roberts DM, Karinou E, Stansfeld PJ, Holden S. Peptidoglycan synthesis drives a single population of septal cell wall synthases during division in Bacillus subtilis. Nat Microbiol 2024; 9:1064-1074. [PMID: 38480901 PMCID: PMC10994842 DOI: 10.1038/s41564-024-01650-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Bacterial cell division requires septal peptidoglycan (sPG) synthesis by the divisome complex. Treadmilling of the essential tubulin homologue FtsZ has been implicated in septal constriction, though its precise role remains unclear. Here we used live-cell single-molecule imaging of the divisome transpeptidase PBP2B to investigate sPG synthesis dynamics in Bacillus subtilis. In contrast to previous models, we observed a single population of processively moving PBP2B molecules whose motion is driven by peptidoglycan synthesis and is not associated with FtsZ treadmilling. However, despite the asynchronous motions of PBP2B and FtsZ, a partial dependence of PBP2B processivity on FtsZ treadmilling was observed. Additionally, through single-molecule counting experiments we provide evidence that the divisome synthesis complex is multimeric. Our results support a model for B. subtilis division where a multimeric synthesis complex follows a single track dependent on sPG synthesis whose activity and dynamics are asynchronous with FtsZ treadmilling.
Collapse
Affiliation(s)
- Kevin D Whitley
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - James Grimshaw
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David M Roberts
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Eleni Karinou
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Phillip J Stansfeld
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Séamus Holden
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
20
|
Charles-Orszag A, Petek-Seoane NA, Mullins RD. Archaeal actins and the origin of a multi-functional cytoskeleton. J Bacteriol 2024; 206:e0034823. [PMID: 38391233 PMCID: PMC10955848 DOI: 10.1128/jb.00348-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Actin and actin-like proteins form filamentous polymers that carry out important cellular functions in all domains of life. In this review, we sketch a map of the function and regulation of actin-like proteins across bacteria, archaea, and eukarya, marking some of the terra incognita that remain in this landscape. We focus particular attention on archaea because mapping the structure and function of cytoskeletal systems across this domain promises to help us understand the evolutionary relationship between the (mostly) mono-functional actin-like filaments found in bacteria and the multi-functional actin cytoskeletons that characterize eukaryotic cells.
Collapse
Affiliation(s)
- Arthur Charles-Orszag
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| | - Natalie A. Petek-Seoane
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| | - R. Dyche Mullins
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
21
|
Costa SF, Saraiva BM, Veiga H, Marques LB, Schäper S, Sporniak M, Vega DE, Jorge AM, Duarte AM, Brito AD, Tavares AC, Reed P, Pinho MG. The role of GpsB in Staphylococcus aureus cell morphogenesis. mBio 2024; 15:e0323523. [PMID: 38319093 PMCID: PMC10936418 DOI: 10.1128/mbio.03235-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Abstract
For decades, cells of the Gram-positive bacterial pathogen Staphylococcus aureus were thought to lack a dedicated elongation machinery. However, S. aureus cells were recently shown to elongate before division, in a process that requires a shape elongation division and sporulation (SEDS)/penicillin-binding protein (PBP) pair for peptidoglycan synthesis, consisting of the glycosyltransferase RodA and the transpeptidase PBP3. In ovococci and rod-shaped bacteria, the elongation machinery, or elongasome, is composed of various proteins besides a dedicated SEDS/PBP pair. To identify proteins required for S. aureus elongation, we screened the Nebraska Transposon Mutant Library, which contains transposon mutants in virtually all non-essential staphylococcal genes, for mutants with modified cell shape. We confirmed the roles of RodA/PBP3 in S. aureus elongation and identified GpsB, SsaA, and RodZ as additional proteins involved in this process. The gpsB mutant showed the strongest phenotype, mediated by the partial delocalization from the division septum of PBP2 and PBP4, two penicillin-binding proteins that synthesize and cross-link peptidoglycan. Increased levels of these PBPs at the cell periphery versus the septum result in higher levels of peptidoglycan insertion/crosslinking throughout the entire cell, possibly overriding the RodA/PBP3-mediated peptidoglycan synthesis at the outer edge of the septum and/or increasing stiffness of the peripheral wall, impairing elongation. Consequently, in the absence of GpsB, S. aureus cells become more spherical. We propose that GpsB has a role in the spatio-temporal regulation of PBP2 and PBP4 at the septum versus cell periphery, contributing to the maintenance of the correct cell morphology in S. aureus. IMPORTANCE Staphylococcus aureus is a Gram-positive clinical pathogen, which is currently the second cause of death by antibiotic-resistant infections worldwide. For decades, S. aureus cells were thought to be spherical and lack the ability to undergo elongation. However, super-resolution microscopy techniques allowed us to observe the minor morphological changes that occur during the cell cycle of this pathogen, including cell elongation. S. aureus elongation is not required for normal growth in laboratory conditions. However, it seems to be essential in the context of some infections, such as osteomyelitis, during which S. aureus cells apparently elongate to invade small channels in the bones. In this work, we uncovered new determinants required for S. aureus cell elongation. In particular, we show that GpsB has an important role in the spatio-temporal regulation of PBP2 and PBP4, two proteins involved in peptidoglycan synthesis, contributing to the maintenance of the correct cell morphology in S. aureus.
Collapse
Affiliation(s)
- Sara F. Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Bruno M. Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Helena Veiga
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Leonor B. Marques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Simon Schäper
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Marta Sporniak
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Daniel E. Vega
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Ana M. Jorge
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Andreia M. Duarte
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - António D. Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Andreia C. Tavares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Patricia Reed
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Mariana G. Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| |
Collapse
|
22
|
Schiller H, Hong Y, Kouassi J, Rados T, Kwak J, DiLucido A, Safer D, Marchfelder A, Pfeiffer F, Bisson A, Schulze S, Pohlschroder M. Identification of structural and regulatory cell-shape determinants in Haloferax volcanii. Nat Commun 2024; 15:1414. [PMID: 38360755 PMCID: PMC10869688 DOI: 10.1038/s41467-024-45196-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Archaea play indispensable roles in global biogeochemical cycles, yet many crucial cellular processes, including cell-shape determination, are poorly understood. Haloferax volcanii, a model haloarchaeon, forms rods and disks, depending on growth conditions. Here, we used a combination of iterative proteomics, genetics, and live-cell imaging to identify mutants that only form rods or disks. We compared the proteomes of the mutants with wild-type cells across growth phases, thereby distinguishing between protein abundance changes specific to cell shape and those related to growth phases. The results identified a diverse set of proteins, including predicted transporters, transducers, signaling components, and transcriptional regulators, as important for cell-shape determination. Through phenotypic characterization of deletion strains, we established that rod-determining factor A (RdfA) and disk-determining factor A (DdfA) are required for the formation of rods and disks, respectively. We also identified structural proteins, including an actin homolog that plays a role in disk-shape morphogenesis, which we named volactin. Using live-cell imaging, we determined volactin's cellular localization and showed its dynamic polymerization and depolymerization. Our results provide insights into archaeal cell-shape determination, with possible implications for understanding the evolution of cell morphology regulation across domains.
Collapse
Affiliation(s)
- Heather Schiller
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA
| | - Yirui Hong
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA
| | - Joshua Kouassi
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA
| | - Theopi Rados
- Brandeis University, Department of Biology, Waltham, MA, 02453, USA
| | - Jasmin Kwak
- Brandeis University, Department of Biology, Waltham, MA, 02453, USA
| | - Anthony DiLucido
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA
| | - Daniel Safer
- University of Pennsylvania, Department of Physiology, Philadelphia, PA, 19104, USA
| | | | - Friedhelm Pfeiffer
- Biology II, Ulm University, 89069, Ulm, Germany
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Alexandre Bisson
- Brandeis University, Department of Biology, Waltham, MA, 02453, USA.
| | - Stefan Schulze
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA.
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, 14623, USA.
| | | |
Collapse
|
23
|
Singh MK, Kenney LJ. Visualizing the invisible: novel approaches to visualizing bacterial proteins and host-pathogen interactions. Front Bioeng Biotechnol 2024; 12:1334503. [PMID: 38415188 PMCID: PMC10898356 DOI: 10.3389/fbioe.2024.1334503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Host-pathogen interactions play a critical role in infectious diseases, and understanding the underlying mechanisms is vital for developing effective therapeutic strategies. The visualization and characterization of bacterial proteins within host cells is key to unraveling the dynamics of these interactions. Various protein labeling strategies have emerged as powerful tools for studying host-pathogen interactions, enabling the tracking, localization, and functional analysis of bacterial proteins in real-time. However, the labeling and localization of Salmonella secreted type III secretion system (T3SS) effectors in host cells poses technical challenges. Conventional methods disrupt effector stoichiometry and often result in non-specific staining. Bulky fluorescent protein fusions interfere with effector secretion, while other tagging systems such as 4Cys-FLaSH/Split-GFP suffer from low labeling specificity and a poor signal-to-noise ratio. Recent advances in state-of-the-art techniques have augmented the existing toolkit for monitoring the translocation and dynamics of bacterial effectors. This comprehensive review delves into the bacterial protein labeling strategies and their application in imaging host-pathogen interactions. Lastly, we explore the obstacles faced and potential pathways forward in the realm of protein labeling strategies for visualizing interactions between hosts and pathogens.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Linda J. Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
24
|
Liu Y, van den Ent F, Löwe J. Filament structure and subcellular organization of the bacterial intermediate filament-like protein crescentin. Proc Natl Acad Sci U S A 2024; 121:e2309984121. [PMID: 38324567 PMCID: PMC10873595 DOI: 10.1073/pnas.2309984121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
The protein crescentin is required for the crescent shape of the freshwater bacterium Caulobacter crescentus (vibrioides). Crescentin forms a filamentous structure on the inner, concave side of the curved cells. It shares features with eukaryotic intermediate filament (IF) proteins, including the formation of static filaments based on long and parallel coiled coils, the protein's length, structural roles in cell and organelle shape determination and the presence of a coiled coil discontinuity called the "stutter." Here, we have used electron cryomicroscopy (cryo-EM) to determine the structure of the full-length protein and its filament, exploiting a crescentin-specific nanobody. The filament is formed by two strands, related by twofold symmetry, that each consist of two dimers, resulting in an octameric assembly. Crescentin subunits form longitudinal contacts head-to-head and tail-to-tail, making the entire filament non-polar. Using in vivo site-directed cysteine cross-linking, we demonstrated that contacts observed in the in vitro filament structure exist in cells. Electron cryotomography (cryo-ET) of cells expressing crescentin showed filaments on the concave side of the curved cells, close to the inner membrane, where they form a band. When comparing with current models of IF proteins and their filaments, which are also built from parallel coiled coil dimers and lack overall polarity, it emerges that IF proteins form head-to-tail longitudinal contacts in contrast to crescentin and hence several inter-dimer contacts in IFs have no equivalents in crescentin filaments. Our work supports the idea that intermediate filament-like proteins achieve their shared polymerization and mechanical properties through a variety of filament architectures.
Collapse
Affiliation(s)
- Yue Liu
- Medical Research Council Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, CambridgeCB2 0QH, United Kingdom
| | - Fusinita van den Ent
- Medical Research Council Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, CambridgeCB2 0QH, United Kingdom
| | - Jan Löwe
- Medical Research Council Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
25
|
Guo T, Sperber AM, Krieger IV, Duan Y, Chemelewski VR, Sacchettini JC, Herman JK. Bacillus subtilis YisK possesses oxaloacetate decarboxylase activity and exhibits Mbl-dependent localization. J Bacteriol 2024; 206:e0020223. [PMID: 38047707 PMCID: PMC10810218 DOI: 10.1128/jb.00202-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
YisK is an uncharacterized protein in Bacillus subtilis previously shown to interact genetically with the elongasome protein Mbl. YisK overexpression leads to cell widening and lysis, phenotypes that are dependent on mbl and suppressed by mbl mutations. In the present work, we characterize YisK's localization, structure, and enzymatic activity. We show that YisK localizes as puncta that depend on Mbl. YisK belongs to the fumarylacetoacetate hydrolase (FAH) superfamily, and crystal structures revealed close structural similarity to two oxaloacetate (OAA) decarboxylases: human mitochondrial FAHD1 and Corynebacterium glutamicum Cg1458. We demonstrate that YisK can also catalyze the decarboxylation of OAA (K m = 134 µM, K cat = 31 min-1). A catalytic dead variant (YisK E148A, E150A) retains wild-type localization and still widens cells following overexpression, indicating these activities are not dependent on YisK catalysis. Conversely, a non-localizing variant (YisK E30A) retains wild-type enzymatic activity in vitro but localizes diffusely and no longer widens cells following overexpression. Together, these results suggest that YisK may be subject to spatial regulation that depends on the cell envelope synthesis machinery. IMPORTANCE The elongasome is a multiprotein complex that guides lengthwise growth in some bacteria. We previously showed that, in B. subtilis, overexpression of an uncharacterized putative enzyme (YisK) perturbed function of the actin-like elongasome protein Mbl. Here, we show that YisK exhibits Mbl-dependent localization. Through biochemical and structural characterization, we demonstrate that, like its mitochondrial homolog FAHD1, YisK can catalyze the decarboxylation of the oxaloacetate to pyruvate and CO2. YisK is the first example of an enzyme implicated in central carbon metabolism with subcellular localization that depends on Mbl.
Collapse
Affiliation(s)
- Tingfeng Guo
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Anthony M. Sperber
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Inna V. Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Yi Duan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Veronica R. Chemelewski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Jennifer K. Herman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
26
|
Bapat M, Pande V, Gayathri P. Getting bacterial cells into shape. eLife 2023; 12:e93719. [PMID: 38088194 PMCID: PMC10718527 DOI: 10.7554/elife.93719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The conformational state of a structural protein in bacteria can vary, depending on the concentration level of potassium ions or the nucleotide bound to it.
Collapse
Affiliation(s)
- Mrinmayee Bapat
- Biology Division, Indian Institute of Science Education and ResearchPuneIndia
| | - Vani Pande
- Biology Division, Indian Institute of Science Education and ResearchPuneIndia
| | - Pananghat Gayathri
- Biology Division, Indian Institute of Science Education and ResearchPuneIndia
| |
Collapse
|
27
|
Sun W, Rasmussen C, Vetter R, Paulose J. Geometric mapping from rectilinear material orthotropy to isotropy: Insights into plates and shells. Phys Rev E 2023; 108:065003. [PMID: 38243471 DOI: 10.1103/physreve.108.065003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/01/2023] [Indexed: 01/21/2024]
Abstract
Orthotropic shell structures are ubiquitous in biology and engineering, from bacterial cell walls to reinforced domes. We present a rescaling transformation that maps an orthotropic shallow shell to an isotropic one with a different local geometry. The mapping is applicable to any shell section for which the material orthotropy directions match the principal curvature directions, assuming the commonly used Huber form for the orthotropic shear modulus. Using the rescaling transformation, we derive exact expressions for the buckling pressure as well as the linear indentation response of orthotropic cylinders and general ellipsoids of revolution, which we verify against numerical simulations. Our analysis disentangles the separate contributions of geometric and material anisotropy to shell rigidity. In particular, we identify the geometric mean of orthotropic elastic constants as the key quantifier of material stiffness, playing a role akin to the Gaussian curvature which captures the geometric stiffness contribution. Besides providing insights into the mechanical response of orthotropic shells, our work rigorously establishes the validity of isotropic approximations to orthotropic shells and also identifies situations in which these approximations might fail.
Collapse
Affiliation(s)
- Wenqian Sun
- Institute for Fundamental Science and Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | - Cody Rasmussen
- Institute for Fundamental Science and Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | - Roman Vetter
- Computational Physics for Engineering Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Jayson Paulose
- Institute for Fundamental Science and Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
- Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
28
|
Törk L, Moffatt CB, Bernhardt TG, Garner EC, Kahne D. Single-molecule dynamics show a transient lipopolysaccharide transport bridge. Nature 2023; 623:814-819. [PMID: 37938784 PMCID: PMC10842706 DOI: 10.1038/s41586-023-06709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
Gram-negative bacteria are surrounded by two membranes. A special feature of the outer membrane is its asymmetry. It contains lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet1-3. The proper assembly of LPS in the outer membrane is required for cell viability and provides Gram-negative bacteria intrinsic resistance to many classes of antibiotics. LPS biosynthesis is completed in the inner membrane, so the LPS must be extracted, moved across the aqueous periplasm that separates the two membranes and translocated through the outer membrane where it assembles on the cell surface4. LPS transport and assembly requires seven conserved and essential LPS transport components5 (LptA-G). This system has been proposed to form a continuous protein bridge that provides a path for LPS to reach the cell surface6,7, but this model has not been validated in living cells. Here, using single-molecule tracking, we show that Lpt protein dynamics are consistent with the bridge model. Half of the inner membrane Lpt proteins exist in a bridge state, and bridges persist for 5-10 s, showing that their organization is highly dynamic. LPS facilitates Lpt bridge formation, suggesting a mechanism by which the production of LPS can be directly coupled to its transport. Finally, the bridge decay kinetics suggest that there may be two different types of bridges, whose stability differs according to the presence (long-lived) or absence (short-lived) of LPS. Together, our data support a model in which LPS is both a substrate and a structural component of dynamic Lpt bridges that promote outer membrane assembly.
Collapse
Affiliation(s)
- Lisa Törk
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Caitlin B Moffatt
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
29
|
Goudin A, Ferat JL, Possoz C, Barre FX, Galli E. Recovery of Vibrio cholerae polarized cellular organization after exit from a non-proliferating spheroplast state. PLoS One 2023; 18:e0293276. [PMID: 37883451 PMCID: PMC10602287 DOI: 10.1371/journal.pone.0293276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Vibrio cholerae, the causative agent of cholera epidemics, is a rod-shaped bacterium with a highly polarized cellular organization. It can survive harmful growth conditions by entering a non-proliferating spheroplast state, which involves loss of the cell envelope and polarity. How polarized rod organization cells are formed when the spheroplasts exit the non-proliferating state remains largely uncharacterized. To address this question, we investigated how L-arabinose-induced V. cholerae spheroplasts return to growth. We found that de novo morphogenesis started with the elimination of an excess of periplasm, which was immediately followed by cell elongation and the formation of cell branches with a diameter similar to that of normal V. cholerae cells. Periplasm elimination was driven by bifunctional peptidoglycan synthases involved in cell-wall maintenance, the aPBPs. Elongation and branching relied on the MreB-associated monofunctional peptidoglycan synthase PBP2. The cell division monofunctional peptidoglycan synthase FtsI was not involved in any of these processes. However, the FtsK cell division protein specifically targeted the sites of vesicle extrusion. Genetic material was amplified by synchronous waves of DNA replication as periplasmic elimination began. The HubP polarity factor targeted the tip of the branches as they began to form. However, HubP-mediated polarization was not involved in the efficiency of the recovery process. Finally, our results suggest that the positioning of HubP and the activities of the replication terminus organizer of the two V. cholerae chromosomes, MatP, are independent of cell division. Taken together, these results confirm the interest of L-arabinose-induced V. cholerae spheroplasts to study how cell shape is generated and shed light on the de novo establishment of the intracellular organization and cell polarization in V. cholerae.
Collapse
Affiliation(s)
- Anthony Goudin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jean-Luc Ferat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Christophe Possoz
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Elisa Galli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
30
|
Mao W, Renner LD, Cornilleau C, Li de la Sierra-Gallay I, Afensiss S, Benlamara S, Ah-Seng Y, Van Tilbeurgh H, Nessler S, Bertin A, Chastanet A, Carballido-Lopez R. On the role of nucleotides and lipids in the polymerization of the actin homolog MreB from a Gram-positive bacterium. eLife 2023; 12:e84505. [PMID: 37818717 PMCID: PMC10718530 DOI: 10.7554/elife.84505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/08/2023] [Indexed: 10/12/2023] Open
Abstract
In vivo, bacterial actin MreB assembles into dynamic membrane-associated filamentous structures that exhibit circumferential motion around the cell. Current knowledge of MreB biochemical and polymerization properties in vitro remains limited and is mostly based on MreB proteins from Gram-negative species. In this study, we report the first observation of organized protofilaments by electron microscopy and the first 3D-structure of MreB from a Gram-positive bacterium. We show that Geobacillus stearothermophilus MreB forms straight pairs of protofilaments on lipid surfaces in the presence of ATP or GTP, but not in the presence of ADP, GDP or non-hydrolysable ATP analogs. We demonstrate that membrane anchoring is mediated by two spatially close short hydrophobic sequences while electrostatic interactions also contribute to lipid binding, and show that the population of membrane-bound protofilament doublets is in steady-state. In solution, protofilament doublets were not detected in any condition tested. Instead, MreB formed large sheets regardless of the bound nucleotide, albeit at a higher critical concentration. Altogether, our results indicate that both lipids and ATP are facilitators of MreB polymerization, and are consistent with a dual effect of ATP hydrolysis, in promoting both membrane binding and filaments assembly/disassembly.
Collapse
Affiliation(s)
- Wei Mao
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Lars D Renner
- Leibniz Institute of Polymer Research, and the Max-Bergmann-Center of BiomaterialsDresdenGermany
| | - Charlène Cornilleau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Sana Afensiss
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Sarah Benlamara
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Yoan Ah-Seng
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Herman Van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Sylvie Nessler
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne Université, 75005ParisFrance
| | - Arnaud Chastanet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Rut Carballido-Lopez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| |
Collapse
|
31
|
Martinez M, Petit J, Leyva A, Sogues A, Megrian D, Rodriguez A, Gaday Q, Ben Assaya M, Portela MM, Haouz A, Ducret A, Grangeasse C, Alzari PM, Durán R, Wehenkel AM. Eukaryotic-like gephyrin and cognate membrane receptor coordinate corynebacterial cell division and polar elongation. Nat Microbiol 2023; 8:1896-1910. [PMID: 37679597 PMCID: PMC10522489 DOI: 10.1038/s41564-023-01473-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
The order Corynebacteriales includes major industrial and pathogenic Actinobacteria such as Corynebacterium glutamicum or Mycobacterium tuberculosis. These bacteria have multi-layered cell walls composed of the mycolyl-arabinogalactan-peptidoglycan complex and a polar growth mode, thus requiring tight coordination between the septal divisome, organized around the tubulin-like protein FtsZ, and the polar elongasome, assembled around the coiled-coil protein Wag31. Here, using C. glutamicum, we report the discovery of two divisome members: a gephyrin-like repurposed molybdotransferase (Glp) and its membrane receptor (GlpR). Our results show how cell cycle progression requires interplay between Glp/GlpR, FtsZ and Wag31, showcasing a crucial crosstalk between the divisome and elongasome machineries that might be targeted for anti-mycobacterial drug discovery. Further, our work reveals that Corynebacteriales have evolved a protein scaffold to control cell division and morphogenesis, similar to the gephyrin/GlyR system that mediates synaptic signalling in higher eukaryotes through network organization of membrane receptors and the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Mariano Martinez
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Julienne Petit
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Alejandro Leyva
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Adrià Sogues
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniela Megrian
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Azalia Rodriguez
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Quentin Gaday
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Mathildeb Ben Assaya
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Maria Magdalena Portela
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ahmed Haouz
- Plate-forme de cristallographie, C2RT-Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Adrien Ducret
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, Lyon, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, Lyon, France
| | - Pedro M Alzari
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Anne Marie Wehenkel
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France.
| |
Collapse
|
32
|
Bramkamp M, Scheffers DJ. Bacterial membrane dynamics: Compartmentalization and repair. Mol Microbiol 2023; 120:490-501. [PMID: 37243899 DOI: 10.1111/mmi.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
In every bacterial cell, the plasma membrane plays a key role in viability as it forms a selective barrier between the inside of the cell and its environment. This barrier function depends on the physical state of the lipid bilayer and the proteins embedded or associated with the bilayer. Over the past decade or so, it has become apparent that many membrane-organizing proteins and principles, which were described in eukaryote systems, are ubiquitous and play important roles in bacterial cells. In this minireview, we focus on the enigmatic roles of bacterial flotillins in membrane compartmentalization and bacterial dynamins and ESCRT-like systems in membrane repair and remodeling.
Collapse
Affiliation(s)
- Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk-Jan Scheffers
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
33
|
Ago R, Tahara YO, Yamaguchi H, Saito M, Ito W, Yamasaki K, Kasai T, Okamoto S, Chikada T, Oshima T, Osaka I, Miyata M, Niki H, Shiomi D. Relationship between the Rod complex and peptidoglycan structure in Escherichia coli. Microbiologyopen 2023; 12:e1385. [PMID: 37877652 PMCID: PMC10561026 DOI: 10.1002/mbo3.1385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Peptidoglycan for elongation in Escherichia coli is synthesized by the Rod complex, which includes RodZ. Although various mutant strains of the Rod complex have been isolated, the relationship between the activity of the Rod complex and the overall physical and chemical structures of the peptidoglycan have not been reported. We constructed a RodZ mutant, termed RMR, and analyzed the growth rate, morphology, and other characteristics of cells producing the Rod complexes containing RMR. The growth and morphology of RMR cells were abnormal, and we isolated suppressor mutants from RMR cells. Most of the suppressor mutations were found in components of the Rod complex, suggesting that these suppressor mutations increase the integrity and/or the activity of the Rod complex. We purified peptidoglycan from wild-type, RMR, and suppressor mutant cells and observed their structures in detail. We found that the peptidoglycan purified from RMR cells had many large holes and different compositions of muropeptides from those of WT cells. The Rod complex may be a determinant not only for the whole shape of peptidoglycan but also for its highly dense structure to support the mechanical strength of the cell wall.
Collapse
Affiliation(s)
- Risa Ago
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Yuhei O. Tahara
- Graduate School of ScienceOsaka Metropolitan UniversityOsakaJapan
- The OMU Advanced Research Center for Natural Science and TechnologyOsaka Metropolitan UniversityOsakaJapan
| | - Honoka Yamaguchi
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Motoya Saito
- Department of Biotechnology, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Wakana Ito
- Department of Biotechnology, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Kaito Yamasaki
- Department of Pharmaceutical Engineering, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Taishi Kasai
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Sho Okamoto
- Microbial Physiology Laboratory, Department of Gene Function and PhenomicsNational Institute of GeneticsMishimaShizuokaJapan
| | - Taiki Chikada
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Taku Oshima
- Department of Biotechnology, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Issey Osaka
- Department of Pharmaceutical Engineering, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Makoto Miyata
- Graduate School of ScienceOsaka Metropolitan UniversityOsakaJapan
- The OMU Advanced Research Center for Natural Science and TechnologyOsaka Metropolitan UniversityOsakaJapan
| | - Hironori Niki
- Microbial Physiology Laboratory, Department of Gene Function and PhenomicsNational Institute of GeneticsMishimaShizuokaJapan
- Department of GeneticsThe Graduate University for Advanced Studies, SOKENDAIMishimaShizuokaJapan
| | - Daisuke Shiomi
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| |
Collapse
|
34
|
Fivenson EM, Rohs PDA, Vettiger A, Sardis MF, Torres G, Forchoh A, Bernhardt TG. A role for the Gram-negative outer membrane in bacterial shape determination. Proc Natl Acad Sci U S A 2023; 120:e2301987120. [PMID: 37607228 PMCID: PMC10469335 DOI: 10.1073/pnas.2301987120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023] Open
Abstract
The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure. However, whether the OM also plays a role in morphogenesis has remained unclear. Here, we report that changes in LPS synthesis or modification predicted to strengthen the OM can suppress the growth and shape defects of Escherichia coli mutants with reduced activity in a conserved PG synthesis machine called the Rod complex (elongasome) that is responsible for cell elongation and shape determination. Evidence is presented that OM fortification in the shape mutants restores the ability of MreB cytoskeletal filaments to properly orient the synthesis of new cell wall material by the Rod complex. Our results are therefore consistent with a role for the OM in the propagation of rod shape during growth in addition to its well-known function as a diffusion barrier promoting the intrinsic antibiotic resistance of Gram-negative bacteria.
Collapse
Affiliation(s)
- Elayne M. Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Patricia D. A. Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Andrea Vettiger
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Marios F. Sardis
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Grasiela Torres
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Alison Forchoh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
35
|
Shlosman I, Fivenson EM, Gilman MSA, Sisley TA, Walker S, Bernhardt TG, Kruse AC, Loparo JJ. Allosteric activation of cell wall synthesis during bacterial growth. Nat Commun 2023; 14:3439. [PMID: 37301887 PMCID: PMC10257715 DOI: 10.1038/s41467-023-39037-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The peptidoglycan (PG) cell wall protects bacteria against osmotic lysis and determines cell shape, making this structure a key antibiotic target. Peptidoglycan is a polymer of glycan chains connected by peptide crosslinks, and its synthesis requires precise spatiotemporal coordination between glycan polymerization and crosslinking. However, the molecular mechanism by which these reactions are initiated and coupled is unclear. Here we use single-molecule FRET and cryo-EM to show that an essential PG synthase (RodA-PBP2) responsible for bacterial elongation undergoes dynamic exchange between closed and open states. Structural opening couples the activation of polymerization and crosslinking and is essential in vivo. Given the high conservation of this family of synthases, the opening motion that we uncovered likely represents a conserved regulatory mechanism that controls the activation of PG synthesis during other cellular processes, including cell division.
Collapse
Affiliation(s)
- Irina Shlosman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Elayne M Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Morgan S A Gilman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Tyler A Sisley
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA.
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
36
|
Koyano Y, Okajima K, Mihara M, Yamamoto H. Visualization of Wall Teichoic Acid Decoration in Bacillus subtilis. J Bacteriol 2023; 205:e0006623. [PMID: 37010431 PMCID: PMC10127673 DOI: 10.1128/jb.00066-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Teichoic acids are important for the maintenance of cell shape and growth in Gram-positive bacteria. Bacillus subtilis produces major and minor forms of wall teichoic acid (WTA) and lipoteichoic acid during vegetative growth. We found that newly synthesized WTA attachment to peptidoglycan occurs in a patch-like manner on the sidewall with the fluorescent labeling compound of the concanavalin A lectin. Similarly, WTA biosynthesis enzymes fused to the epitope tags were localized in similar patch-like patterns on the cylindrical part of the cell, and WTA transporter TagH was frequently colocalized with WTA polymerase TagF, WTA ligase TagT, and actin homolog MreB, respectively. Moreover, we found that the nascent cell wall patches, decorated with the newly glucosylated WTA, were colocalized with TagH and WTA ligase TagV. In the cylindrical part, the newly glucosylated WTA patchily inserted into the bottom of the cell wall layer and finally reached the outermost layer of the cell wall after approximately half an hour. Incorporation of newly glucosylated WTA was arrested with the addition of vancomycin but restored with the removal of the antibiotic. These results are consistent with the prevailing model that WTA precursors are attached to newly synthesized peptidoglycan. IMPORTANCE In Gram-positive bacteria, the cell wall is composed of mesh-like peptidoglycan and covalently linked wall teichoic acid (WTA). It is unclear where WTA decorates peptidoglycan to create a cell wall architecture. Here, we demonstrate that nascent WTA decoration occurred in a patch-like manner at the peptidoglycan synthesis sites on the cytoplasmic membrane. The incorporated cell wall with newly glucosylated WTA in the cell wall layer then reached the outermost layer of the cell wall after approximately half an hour. Incorporation of newly glucosylated WTA was arrested with the addition of vancomycin but restored with the removal of the antibiotic. These results are consistent with the prevailing model that WTA precursors are attached to newly synthesized peptidoglycan.
Collapse
Affiliation(s)
- Yutaka Koyano
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Kiyoshirou Okajima
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Mako Mihara
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Hiroki Yamamoto
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| |
Collapse
|
37
|
Willdigg JR, Patel Y, Helmann JD. A Decrease in Fatty Acid Synthesis Rescues Cells with Limited Peptidoglycan Synthesis Capacity. mBio 2023; 14:e0047523. [PMID: 37017514 PMCID: PMC10128001 DOI: 10.1128/mbio.00475-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Proper synthesis and maintenance of a multilayered cell envelope are critical for bacterial fitness. However, whether mechanisms exist to coordinate synthesis of the membrane and peptidoglycan layers is unclear. In Bacillus subtilis, synthesis of peptidoglycan (PG) during cell elongation is mediated by an elongasome complex acting in concert with class A penicillin-binding proteins (aPBPs). We previously described mutant strains limited in their capacity for PG synthesis due to a loss of aPBPs and an inability to compensate by upregulation of elongasome function. Growth of these PG-limited cells can be restored by suppressor mutations predicted to decrease membrane synthesis. One suppressor mutation leads to an altered function repressor, FapR*, that functions as a super-repressor and leads to decreased transcription of fatty acid synthesis (FAS) genes. Consistent with fatty acid limitation mitigating cell wall synthesis defects, inhibition of FAS by cerulenin also restored growth of PG-limited cells. Moreover, cerulenin can counteract the inhibitory effect of β-lactams in some strains. These results imply that limiting PG synthesis results in impaired growth, in part, due to an imbalance of PG and cell membrane synthesis and that B. subtilis lacks a robust physiological mechanism to reduce membrane synthesis when PG synthesis is impaired. IMPORTANCE Understanding how a bacterium coordinates cell envelope synthesis is essential to fully appreciate how bacteria grow, divide, and resist cell envelope stresses, such as β-lactam antibiotics. Balanced synthesis of the peptidoglycan cell wall and the cell membrane is critical for cells to maintain shape and turgor pressure and to resist external cell envelope threats. Using Bacillus subtilis, we show that cells deficient in peptidoglycan synthesis can be rescued by compensatory mutations that decrease the synthesis of fatty acids. Further, we show that inhibiting fatty acid synthesis with cerulenin is sufficient to restore growth of cells deficient in peptidoglycan synthesis. Understanding the coordination of cell wall and membrane synthesis may provide insights relevant to antimicrobial treatment.
Collapse
Affiliation(s)
| | - Yesha Patel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
38
|
Galinier A, Delan-Forino C, Foulquier E, Lakhal H, Pompeo F. Recent Advances in Peptidoglycan Synthesis and Regulation in Bacteria. Biomolecules 2023; 13:biom13050720. [PMID: 37238589 DOI: 10.3390/biom13050720] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Bacteria must synthesize their cell wall and membrane during their cell cycle, with peptidoglycan being the primary component of the cell wall in most bacteria. Peptidoglycan is a three-dimensional polymer that enables bacteria to resist cytoplasmic osmotic pressure, maintain their cell shape and protect themselves from environmental threats. Numerous antibiotics that are currently used target enzymes involved in the synthesis of the cell wall, particularly peptidoglycan synthases. In this review, we highlight recent progress in our understanding of peptidoglycan synthesis, remodeling, repair, and regulation in two model bacteria: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. By summarizing the latest findings in this field, we hope to provide a comprehensive overview of peptidoglycan biology, which is critical for our understanding of bacterial adaptation and antibiotic resistance.
Collapse
Affiliation(s)
- Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Clémentine Delan-Forino
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Elodie Foulquier
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Hakima Lakhal
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| |
Collapse
|
39
|
Abstract
Most bacteria have cell wall peptidoglycan surrounding their plasma membranes. The essential cell wall provides a scaffold for the envelope, protection against turgor pressure and is a proven drug target. Synthesis of the cell wall involves reactions that span cytoplasmic and periplasmic compartments. Bacteria carry out the last steps of cell wall synthesis along their plasma membrane. The plasma membrane in bacteria is heterogeneous and contains membrane compartments. Here, I outline findings that highlight the emerging notion that plasma membrane compartments and the cell wall peptidoglycan are functionally intertwined. I start by providing models of cell wall synthesis compartmentalization within the plasma membrane in mycobacteria, Escherichia coli, and Bacillus subtilis. Then, I revisit literature that supports a role for the plasma membrane and its lipids in modulating enzymatic reactions that synthesize cell wall precursors. I also elaborate on what is known about bacterial lateral organization of the plasma membrane and the mechanisms by which organization is established and maintained. Finally, I discuss the implications of cell wall partitioning in bacteria and highlight how targeting plasma membrane compartmentalization serves as a way to disrupt cell wall synthesis in diverse species.
Collapse
Affiliation(s)
- Alam García-Heredia
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
40
|
Sun Y, Hürlimann S, Garner E. Growth rate is modulated by monitoring cell wall precursors in Bacillus subtilis. Nat Microbiol 2023; 8:469-480. [PMID: 36797487 DOI: 10.1038/s41564-023-01329-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/13/2023] [Indexed: 02/18/2023]
Abstract
How bacteria link their growth rate to external nutrient conditions is unknown. To investigate how Bacillus subtilis cells alter the rate at which they expand their cell walls as they grow, we compared single-cell growth rates of cells grown under agar pads with the density of moving MreB filaments under a variety of growth conditions. MreB filament density increases proportionally with growth rate. We show that both MreB filament density and growth rate depend on the abundance of Lipid II and murAA, the first gene in the biosynthetic pathway creating the cell wall precursor Lipid II. Lipid II is sensed by the serine/threonine kinase PrkC, which phosphorylates RodZ and other proteins. We show that phosphorylated RodZ increases MreB filament density, which in turn increases cell growth rate. We also show that increasing the activity of this pathway in nutrient-poor media results in cells that elongate faster than wild-type cells, which means that B. subtilis contains spare 'growth capacity'. We conclude that PrkC functions as a cellular rheostat, enabling fine-tuning of cell growth rates in response to Lipid II in different nutrient conditions.
Collapse
Affiliation(s)
- Yingjie Sun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Sylvia Hürlimann
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
41
|
Fivenson EM, Rohs PD, Vettiger A, Sardis MF, Torres G, Forchoh A, Bernhardt TG. A role for the Gram-negative outer membrane in bacterial shape determination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527047. [PMID: 36778245 PMCID: PMC9915748 DOI: 10.1101/2023.02.03.527047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure. However, whether the OM also plays a role in morphogenesis has remained unclear. Here, we report that changes in LPS synthesis or modification predicted to strengthen the OM can suppress the growth and shape defects of Escherichia coli mutants with reduced activity in a conserved PG synthesis machine called the Rod system (elongasome) that is responsible for cell elongation and shape determination. Evidence is presented that OM fortification in the shape mutants restores the ability of MreB cytoskeletal filaments to properly orient the synthesis of new cell wall material by the Rod system. Our results are therefore consistent with a role for the OM in the propagation of rod shape during growth in addition to its well-known function as a diffusion barrier promoting the intrinsic antibiotic resistance of Gram-negative bacteria. SIGNIFICANCE The cell wall has traditionally been thought to be the main structural determinant of the bacterial cell envelope that resists internal turgor and determines cell shape. However, the outer membrane (OM) has recently been shown to contribute to the mechanical strength of Gram-negative bacterial envelopes. Here, we demonstrate that changes to OM composition predicted to increase its load bearing capacity rescue the growth and shape defects of Escherichia coli mutants defective in the major cell wall synthesis machinery that determines rod shape. Our results therefore reveal a previously unappreciated role for the OM in bacterial shape determination in addition to its well-known function as a diffusion barrier that protects Gram-negative bacteria from external insults like antibiotics.
Collapse
Affiliation(s)
- Elayne M. Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Patricia D.A. Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Andrea Vettiger
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Marios F. Sardis
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Grasiela Torres
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Alison Forchoh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
42
|
van Wolferen M, Pulschen AA, Baum B, Gribaldo S, Albers SV. The cell biology of archaea. Nat Microbiol 2022; 7:1744-1755. [PMID: 36253512 PMCID: PMC7613921 DOI: 10.1038/s41564-022-01215-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
The past decade has revealed the diversity and ubiquity of archaea in nature, with a growing number of studies highlighting their importance in ecology, biotechnology and even human health. Myriad lineages have been discovered, which expanded the phylogenetic breadth of archaea and revealed their central role in the evolutionary origins of eukaryotes. These discoveries, coupled with advances that enable the culturing and live imaging of archaeal cells under extreme environments, have underpinned a better understanding of their biology. In this Review we focus on the shape, internal organization and surface structures that are characteristic of archaeal cells as well as membrane remodelling, cell growth and division. We also highlight some of the technical challenges faced and discuss how new and improved technologies will help address many of the key unanswered questions.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Buzz Baum
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institute Pasteur, Paris, France.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
43
|
Navarro PP, Vettiger A, Ananda VY, Llopis PM, Allolio C, Bernhardt TG, Chao LH. Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli. Nat Microbiol 2022; 7:1621-1634. [PMID: 36097171 PMCID: PMC9519445 DOI: 10.1038/s41564-022-01210-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/21/2022] [Indexed: 01/19/2023]
Abstract
The bacterial division apparatus catalyses the synthesis and remodelling of septal peptidoglycan (sPG) to build the cell wall layer that fortifies the daughter cell poles. Understanding of this essential process has been limited by the lack of native three-dimensional views of developing septa. Here, we apply state-of-the-art cryogenic electron tomography (cryo-ET) and fluorescence microscopy to visualize the division site architecture and sPG biogenesis dynamics of the Gram-negative bacterium Escherichia coli. We identify a wedge-like sPG structure that fortifies the ingrowing septum. Experiments with strains defective in sPG biogenesis revealed that the septal architecture and mode of division can be modified to more closely resemble that of other Gram-negative (Caulobacter crescentus) or Gram-positive (Staphylococcus aureus) bacteria, suggesting that a conserved mechanism underlies the formation of different septal morphologies. Finally, analysis of mutants impaired in amidase activation (ΔenvC ΔnlpD) showed that cell wall remodelling affects the placement and stability of the cytokinetic ring. Taken together, our results support a model in which competition between the cell elongation and division machineries determines the shape of cell constrictions and the poles they form. They also highlight how the activity of the division system can be modulated to help generate the diverse array of shapes observed in the bacterial domain.
Collapse
Affiliation(s)
- Paula P Navarro
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Andrea Vettiger
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Virly Y Ananda
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Christoph Allolio
- Faculty of Mathematics and Physics, Mathematical Institute, Charles University, Prague, Czech Republic
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Kitahara Y, Oldewurtel ER, Wilson S, Sun Y, Altabe S, de Mendoza D, Garner EC, van Teeffelen S. The role of cell-envelope synthesis for envelope growth and cytoplasmic density in Bacillus subtilis. PNAS NEXUS 2022; 1:pgac134. [PMID: 36082236 PMCID: PMC9437589 DOI: 10.1093/pnasnexus/pgac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/21/2022] [Indexed: 01/29/2023]
Abstract
All cells must increase their volumes in response to biomass growth to maintain intracellular mass density within physiologically permissive bounds. Here, we investigate the regulation of volume growth in the Gram-positive bacterium Bacillus subtilis. To increase volume, bacteria enzymatically expand their cell envelopes and insert new envelope material. First, we demonstrate that cell-volume growth is determined indirectly, by expanding their envelopes in proportion to mass growth, similarly to the Gram-negative Escherichia coli, despite their fundamentally different envelope structures. Next, we studied, which pathways might be responsible for robust surface-to-mass coupling: We found that both peptidoglycan synthesis and membrane synthesis are required for proper surface-to-mass coupling. However, surprisingly, neither pathway is solely rate-limiting, contrary to wide-spread belief, since envelope growth continues at a reduced rate upon complete inhibition of either process. To arrest cell-envelope growth completely, the simultaneous inhibition of both envelope-synthesis processes is required. Thus, we suggest that multiple envelope-synthesis pathways collectively confer an important aspect of volume regulation, the coordination between surface growth, and biomass growth.
Collapse
Affiliation(s)
- Yuki Kitahara
- Département de Microbiologie, Infectiologie, et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada,Université de Paris, Paris, France,Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Enno R Oldewurtel
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Yingjie Sun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Silvia Altabe
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Conicet- and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Conicet- and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
45
|
Spahn C, Gómez-de-Mariscal E, Laine RF, Pereira PM, von Chamier L, Conduit M, Pinho MG, Jacquemet G, Holden S, Heilemann M, Henriques R. DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches. Commun Biol 2022; 5:688. [PMID: 35810255 PMCID: PMC9271087 DOI: 10.1038/s42003-022-03634-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
This work demonstrates and guides how to use a range of state-of-the-art artificial neural-networks to analyse bacterial microscopy images using the recently developed ZeroCostDL4Mic platform. We generated a database of image datasets used to train networks for various image analysis tasks and present strategies for data acquisition and curation, as well as model training. We showcase different deep learning (DL) approaches for segmenting bright field and fluorescence images of different bacterial species, use object detection to classify different growth stages in time-lapse imaging data, and carry out DL-assisted phenotypic profiling of antibiotic-treated cells. To also demonstrate the ability of DL to enhance low-phototoxicity live-cell microscopy, we showcase how image denoising can allow researchers to attain high-fidelity data in faster and longer imaging. Finally, artificial labelling of cell membranes and predictions of super-resolution images allow for accurate mapping of cell shape and intracellular targets. Our purposefully-built database of training and testing data aids in novice users' training, enabling them to quickly explore how to analyse their data through DL. We hope this lays a fertile ground for the efficient application of DL in microbiology and fosters the creation of tools for bacterial cell biology and antibiotic research.
Collapse
Affiliation(s)
- Christoph Spahn
- Department of Natural Products in Organismic Interaction, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany.
| | | | - Romain F Laine
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
- Micrographia Bio, Translation and Innovation hub 84 Wood lane, W120BZ, London, UK
| | - Pedro M Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lucas von Chamier
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Mia Conduit
- Centre for Bacterial Cell Biology, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, NE24AX, United Kingdom
| | - Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland
| | - Séamus Holden
- Centre for Bacterial Cell Biology, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, NE24AX, United Kingdom
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany.
| | - Ricardo Henriques
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
46
|
Melzer ES, Kado T, García-Heredia A, Gupta KR, Meniche X, Morita YS, Sassetti CM, Rego EH, Siegrist MS. Cell Wall Damage Reveals Spatial Flexibility in Peptidoglycan Synthesis and a Nonredundant Role for RodA in Mycobacteria. J Bacteriol 2022; 204:e0054021. [PMID: 35543537 PMCID: PMC9210966 DOI: 10.1128/jb.00540-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/06/2022] [Indexed: 12/28/2022] Open
Abstract
Cell wall peptidoglycan is a heteropolymeric mesh that protects the bacterium from internal turgor and external insults. In many rod-shaped bacteria, peptidoglycan synthesis for normal growth is achieved by two distinct pathways: the Rod complex, comprised of MreB, RodA, and a cognate class B penicillin-binding protein (PBP), and the class A PBPs (aPBPs). In contrast to laterally growing bacteria, pole-growing mycobacteria do not encode an MreB homolog and do not require SEDS protein RodA for in vitro growth. However, RodA contributes to the survival of Mycobacterium tuberculosis in some infection models, suggesting that the protein could have a stress-dependent role in maintaining cell wall integrity. Under basal conditions, we find here that the subcellular distribution of RodA largely overlaps that of the aPBP PonA1 and that both RodA and the aPBPs promote polar peptidoglycan assembly. Upon cell wall damage, RodA fortifies Mycobacterium smegmatis against lysis and, unlike aPBPs, contributes to a shift in peptidoglycan assembly from the poles to the sidewall. Neither RodA nor PonA1 relocalize; instead, the redistribution of nascent cell wall parallels that of peptidoglycan precursor synthase MurG. Our results support a model in which mycobacteria balance polar growth and cell-wide repair via spatial flexibility in precursor synthesis and extracellular insertion. IMPORTANCE Peptidoglycan synthesis is a highly successful target for antibiotics. The pathway has been extensively studied in model organisms under laboratory-optimized conditions. In natural environments, bacteria are frequently under attack. Moreover, the vast majority of bacterial species are unlikely to fit a single paradigm of cell wall assembly because of differences in growth mode and/or envelope structure. Studying cell wall synthesis under nonoptimal conditions and in nonstandard species may improve our understanding of pathway function and suggest new inhibition strategies. Mycobacterium smegmatis, a relative of several notorious human and animal pathogens, has an unusual polar growth mode and multilayered envelope. In this work, we challenged M. smegmatis with cell wall-damaging enzymes to characterize the roles of cell wall-building enzymes when the bacterium is under attack.
Collapse
Affiliation(s)
- Emily S. Melzer
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Takehiro Kado
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Alam García-Heredia
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Xavier Meniche
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yasu S. Morita
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - E. Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - M. Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
47
|
RefZ and Noc Act Synthetically to Prevent Aberrant Divisions during Bacillus subtilis Sporulation. J Bacteriol 2022; 204:e0002322. [PMID: 35506695 DOI: 10.1128/jb.00023-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During sporulation, Bacillus subtilis undergoes an atypical cell division that requires overriding mechanisms that protect chromosomes from damage and ensure inheritance by daughter cells. Instead of assembling between segregated chromosomes at midcell, the FtsZ-ring coalesces polarly, directing division over one chromosome. The DNA-binding protein RefZ facilitates the timely assembly of polar Z-rings and partially defines the region of chromosome initially captured in the forespore. RefZ binds to motifs (RBMs) located proximal to the origin of replication (oriC). Although refZ and the RBMs are conserved across the Bacillus genus, a refZ deletion mutant sporulates with wild-type efficiency, so the functional significance of RefZ during sporulation remains unclear. To further investigate RefZ function, we performed a candidate-based screen for synthetic sporulation defects by combining ΔrefZ with deletions of genes previously implicated in FtsZ regulation and/or chromosome capture. Combining ΔrefZ with deletions of ezrA, sepF, parA, or minD did not detectably affect sporulation. In contrast, a ΔrefZ Δnoc mutant exhibited a sporulation defect, revealing a genetic interaction between RefZ and Noc. Using reporters of sporulation progression, we determined the ΔrefZ Δnoc mutant exhibited sporulation delays after Spo0A activation but prior to late sporulation, with a subset of cells failing to divide polarly or activate the first forespore-specific sigma factor, SigF. The ΔrefZ Δnoc mutant also exhibited extensive dysregulation of cell division, producing cells with extra, misplaced, or otherwise aberrant septa. Our results reveal a previously unknown epistatic relationship that suggests refZ and noc contribute synthetically to regulating cell division and supporting spore development. IMPORTANCE The DNA-binding protein RefZ and its binding sites (RBMs) are conserved in sequence and location on the chromosome across the Bacillus genus and contribute to the timing of polar FtsZ-ring assembly during sporulation. Only a small number of noncoding and nonregulatory DNA motifs are known to be conserved in chromosomal position in bacteria, suggesting there is strong selective pressure for their maintenance; however, a refZ deletion mutant sporulates efficiently, providing no clues as to their functional significance. Here, we find that in the absence of the nucleoid occlusion factor Noc, deletion of refZ results in a sporulation defect characterized by developmental delays and aberrant divisions.
Collapse
|
48
|
Pande V, Mitra N, Bagde SR, Srinivasan R, Gayathri P. Filament organization of the bacterial actin MreB is dependent on the nucleotide state. J Biophys Biochem Cytol 2022; 221:213108. [PMID: 35377392 PMCID: PMC9195046 DOI: 10.1083/jcb.202106092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/01/2021] [Accepted: 02/11/2022] [Indexed: 12/23/2022] Open
Abstract
MreB, the bacterial ancestor of eukaryotic actin, is responsible for shape in most rod-shaped bacteria. Despite belonging to the actin family, the relevance of nucleotide-driven polymerization dynamics for MreB function is unclear. Here, we provide insights into the effect of nucleotide state on membrane binding of Spiroplasma citri MreB5 (ScMreB5). Filaments of ScMreB5WT and an ATPase-deficient mutant, ScMreB5E134A, assemble independently of the nucleotide state. However, capture of the filament dynamics revealed that efficient filament formation and organization through lateral interactions are affected in ScMreB5E134A. Hence, the catalytic glutamate functions as a switch, (a) by sensing the ATP-bound state for filament assembly and (b) by assisting hydrolysis, thereby potentially triggering disassembly, as observed in other actins. Glu134 mutation and the bound nucleotide exhibit an allosteric effect on membrane binding, as observed from the differential liposome binding. We suggest that the conserved ATP-dependent polymerization and disassembly upon ATP hydrolysis among actins has been repurposed in MreBs for modulating filament organization on the membrane.
Collapse
Affiliation(s)
- Vani Pande
- Indian Institute of Science Education and Research, Pune, India
| | - Nivedita Mitra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institutes, Training School Complex, Anushakti Nagar, Mumbai, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | | | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institutes, Training School Complex, Anushakti Nagar, Mumbai, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | | |
Collapse
|
49
|
Lamanna MM, Maurelli AT. What Is Motion? Recent Advances in the Study of Molecular Movement Patterns of the Peptidoglycan Synthesis Machines. J Bacteriol 2022; 204:e0059821. [PMID: 34928180 PMCID: PMC9017339 DOI: 10.1128/jb.00598-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How proteins move through space and time is a fundamental question in biology. While great strides have been made toward a mechanistic understanding of protein movement, many questions remain. We discuss the biological implications of motion in the context of the peptidoglycan (PG) synthesis machines. We reviewed systems in several bacteria, including Escherichia coli, Bacillus subtilis, and Streptococcus pneumoniae, and present a comprehensive view of our current knowledge regarding movement dynamics. Discrepancies are also addressed because "one size does not fit all". For bacteria to divide, new PG is synthesized and incorporated into the growing cell wall by complex multiprotein nanomachines consisting of PG synthases (transglycosylases [TG] and/or transpeptidases [TP]) as well as a variety of regulators and cytoskeletal factors. Advances in imaging capabilities and labeling methods have revealed that these machines are not static but rather circumferentially transit the cell via directed motion perpendicular to the long axis of model rod-shaped bacteria such as E. coli and B. subtilis. The enzymatic activity of the TG:TPs drives motion in some species while motion is mediated by FtsZ treadmilling in others. In addition, both directed and diffusive motion of the PG synthases have been observed using single-particle tracking technology. Here, we examined the biological role of diffusion regarding transit. Lastly, findings regarding the monofunctional transglycosylases (RodA and FtsW) as well as the Class A PG synthases are discussed. This minireview serves to showcase recent advances, broach mechanistic unknowns, and stimulate future areas of study.
Collapse
Affiliation(s)
- Melissa Mae Lamanna
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| | - Anthony T. Maurelli
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| |
Collapse
|
50
|
Kumar S, Mollo A, Kahne D, Ruiz N. The Bacterial Cell Wall: From Lipid II Flipping to Polymerization. Chem Rev 2022; 122:8884-8910. [PMID: 35274942 PMCID: PMC9098691 DOI: 10.1021/acs.chemrev.1c00773] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The peptidoglycan (PG) cell wall is an extra-cytoplasmic glycopeptide polymeric structure that protects bacteria from osmotic lysis and determines cellular shape. Since the cell wall surrounds the cytoplasmic membrane, bacteria must add new material to the PG matrix during cell elongation and division. The lipid-linked precursor for PG biogenesis, Lipid II, is synthesized in the inner leaflet of the cytoplasmic membrane and is subsequently translocated across the bilayer so that the PG building block can be polymerized and cross-linked by complex multiprotein machines. This review focuses on major discoveries that have significantly changed our understanding of PG biogenesis in the past decade. In particular, we highlight progress made toward understanding the translocation of Lipid II across the cytoplasmic membrane by the MurJ flippase, as well as the recent discovery of a novel class of PG polymerases, the SEDS (shape, elongation, division, and sporulation) glycosyltransferases RodA and FtsW. Since PG biogenesis is an effective target of antibiotics, these recent developments may lead to the discovery of much-needed new classes of antibiotics to fight bacterial resistance.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aurelio Mollo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|