1
|
Feng WD, Liu DN, Shang YF, Zhang WF, Xu S, Feng DH, Wang YH. Neuroimmune modulators derived from natural products: Mechanisms and potential therapies. Pharmacol Ther 2025; 269:108830. [PMID: 40015519 DOI: 10.1016/j.pharmthera.2025.108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/26/2024] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Neuroimmunology is a multidisciplinary field that investigates the interactions between the nervous and immune systems. Neuroimmune interactions persist throughout the entire lifespan, and their dysregulation can lead to the onset and development of multiple diseases. Despite significant progress over the past decades in elucidating the interaction between neuroscience and immunology, the exact mechanism underlying neuroimmune crosstalk has not yet been fully elucidated. In recent years, natural products have emerged as a promising avenue for the therapeutic implications of neuroimmune diseases. Naturally derived anti-neuroimmune disease agents, such as polyphenols, flavonoids, alkaloids, and saponins, have been extensively studied for their potential neuroimmune modulatory effects. This comprehensive review delves into the specific molecular mechanisms of bidirectional neuro-immune interactions, with particular emphasis on the role of neuro-immune units. The review synthesizes a substantial body of evidence from in vitro and in vivo experiments as well as clinical studies, highlighting the therapeutic potential of various natural products in intervening in neuroimmune disorders.
Collapse
Affiliation(s)
- Wan-Di Feng
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dong-Ni Liu
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu-Fu Shang
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Fang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuang Xu
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dan-Hong Feng
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue-Hua Wang
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Huerta TS, Chen AC, Chaudhry S, Tynan A, Morgan T, Park K, Adamovich-Zeitlin R, Haider B, Li JH, Nagpal M, Zanos S, Pavlov VA, Brines M, Zanos TP, Chavan SS, Tracey KJ, Chang EH. Neural representation of cytokines by vagal sensory neurons. Nat Commun 2025; 16:3840. [PMID: 40268933 PMCID: PMC12019601 DOI: 10.1038/s41467-025-59248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
The nervous system coordinates with the immune system to detect and respond to harmful stimuli. Inflammation is a universal response to injury and infection that involves the release of cytokines. While it is known that information about cytokines is transmitted from the body to the brain, how the nervous system encodes specific cytokines in the form of neural activity is not well understood. Using in vivo calcium imaging, we show that vagal sensory neurons within the nodose ganglia exhibit distinct real-time neuronal responses to inflammatory cytokines. Some neurons respond selectively to individual cytokines, while others encode multiple cytokines with distinct activity patterns. In male mice with induced colitis, inflammation increased the baseline activity of these neurons but decreased responsiveness to specific cytokines, reflecting altered neural excitability. Transcriptomic analysis of vagal ganglia from colitis mice revealed downregulation of cytokine signaling pathways, while neuronal activity pathways were upregulated. Thus, nodose ganglia neurons perform real-time encoding of cytokines at the first neural station in a body-brain axis, providing a new framework for studying the dynamic nature of neuroimmune communication.
Collapse
Affiliation(s)
- Tomás S Huerta
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Adrian C Chen
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Saher Chaudhry
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Aisling Tynan
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Timothy Morgan
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kicheon Park
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Richard Adamovich-Zeitlin
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Bilal Haider
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Jian Hua Li
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Mitali Nagpal
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Valentin A Pavlov
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Michael Brines
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sangeeta S Chavan
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| | - Eric H Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| |
Collapse
|
3
|
Wibisono S, Wibisono P, Chen CH, Sun J, Liu Y. The Caenorhabditis elegans neuronal GPCR OCTR-1 modulates longevity responses to both warm and cold temperatures. iScience 2025; 28:112279. [PMID: 40264795 PMCID: PMC12013480 DOI: 10.1016/j.isci.2025.112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 01/27/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Many animal species live longer in cold climates than in warm climates, which was traditionally explained using the rate of living theory, i.e., higher temperatures increase chemical reaction rates, thus speeding up the aging process. However, recent studies have identified specific molecules and cells that are involved in longevity responses to temperature, indicating that such responses are not simply thermodynamic but are regulated processes. Here, we report that Caenorhabditis elegans lacking the neuronal G protein-coupled receptor OCTR-1 have extended lifespans at a warm temperature but shortened lifespans at a cold temperature, demonstrating that OCTR-1 modulates temperature-induced longevity responses. These responses are regulated by the OCTR-1-expressing, chemosensory ASH neurons. Furthermore, the OCTR-1 pathway controls such responses to warm and cold temperatures by regulating the expressions of immune response genes and the intestinal transcriptional factor ELT-2, respectively. Overall, our study provides cellular and molecular insights into the relationship between temperature and longevity.
Collapse
Affiliation(s)
- Shawndra Wibisono
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Phillip Wibisono
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Chia-Hui Chen
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Jingru Sun
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Yiyong Liu
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
- Genomics Core, Washington State University, Spokane, WA, USA
| |
Collapse
|
4
|
Tse-Kang S, Wani KA, Pukkila-Worley R. Patterns of pathogenesis in innate immunity: insights from C. elegans. Nat Rev Immunol 2025:10.1038/s41577-025-01167-0. [PMID: 40247006 DOI: 10.1038/s41577-025-01167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
The cells in barrier tissues can distinguish pathogenic from commensal bacteria and target inflammatory responses only in the context of infection. As such, these cells must be able to identify pathogen infection specifically and not just the presence of an infectious organism, because many innocuous bacteria express the ligands that activate innate immunity in other contexts. Unravelling the mechanisms that underly this specificity, however, is challenging. Free-living nematodes, such as Caenorhabditis elegans, are faced with a similar dilemma, as they live in microorganism-rich habitats and eat bacteria as their source of nutrition. Nematodes lost canonical mechanisms of pattern recognition during their evolution and have instead evolved mechanisms to identify specific ligands or symptoms in the host that indicate active infection with an infectious microorganism. Here we review how C. elegans surveys for these patterns of pathogenesis to activate innate immune defences. Collectively, this work demonstrates that using C. elegans as an experimental platform to study host-pathogen interactions at barrier surfaces reveals primordial and fundamentally important principles of innate immune sensing in the animal branch of the tree of life.
Collapse
Affiliation(s)
- Samantha Tse-Kang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Han C, Zhu X, Sokol CL. Neuroimmune Circuits in Allergic Diseases. Annu Rev Immunol 2025; 43:367-394. [PMID: 39977604 DOI: 10.1146/annurev-immunol-082423-032154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Communication between the nervous and immune systems is evolutionarily conserved. From primitive eukaryotes to higher mammals, neuroimmune communication utilizes multiple complex and complementary mechanisms to trigger effective but balanced responses to environmental dangers such as allergens and tissue damage. These responses result from a tight integration of the nervous and immune systems, and accumulating evidence suggests that this bidirectional communication is crucial in modulating the initiation and development of allergic inflammation. In this review, we discuss the basic mechanisms of neuroimmune communication, with a focus on the recent advances underlying the importance of such communication in the allergic immune response. We examine neuronal sensing of allergens, how neuropeptides and neurotransmitters regulate allergic immune cell functions, and how inflammatory factors derived from immune cells coordinate complex peripheral and central nervous system responses. Furthermore, we highlight how fundamental aspects of host biology, from aging to circadian rhythm, might affect these pathways. Appreciating neuroimmune communications as an evolutionarily conserved and functionally integrated system that is fundamentally involved in type 2 immunity will provide new insights into allergic inflammation and reveal exciting opportunities for the management of acute and chronic allergic diseases.
Collapse
Affiliation(s)
- Cai Han
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Xueping Zhu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
6
|
Xiao Y, Cui Y, Zhang Y, Fu W, Liu Y, Liu F. Berberine hydrochloride enhances innate immunity to protect against pathogen infection via p38 MAPK pathway. Front Immunol 2025; 16:1536143. [PMID: 40092994 PMCID: PMC11906452 DOI: 10.3389/fimmu.2025.1536143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
The p38 MAPK pathway, an evolutionarily conserved mechanism, plays a crucial role in defending hosts against bacterial infections in both mammals and nematodes. Activating p38 MAPK signaling has been identified as a promising strategy to strengthen innate immunity and enhance resistance to pathogenic infections across various organisms.Berberine hydrochloride (BH), an isoquinoline alkaloid derived from Coptis, is known for its diverse biological activities, including anticancer, antibacterial, anti-inflammatory, lipid-lowering, and hepatoprotective effects. However, its impact on innate immunity and the associated molecular mechanisms remains unclear. In this study, we discovered that 10 μM Berberine hydrochloride enhanced resistance against both Gram-negative pathogens, such as Pseudomonas aeruginosa, Salmonella enterica and Gram-positive pathogen Listeria monocytogenes. Notably, Berberine hydrochloride improved pathogen resistance by reducing bacterial load in the intestine. Screening of classical innate immune pathways in Caenorhabditis elegans revealed that Berberine hydrochloride conferred protection against infections through the p38 MAPK pathway, specifically by activating p38/PMK-1 signaling in the intestine to bolster innate immunity. Furthermore, Berberine hydrochloride also stimulated innate immunity in mice via the p38 MAPK pathway and significantly reduced bacterial load in the lungs. These findings indicate that Berberine hydrochloride may have therapeutic potential for protecting host from infectious diseases.
Collapse
Affiliation(s)
- Yi Xiao
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yingwen Cui
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan Zhang
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wenqiao Fu
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yun Liu
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Liu
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
7
|
Xiao Y, Li L, Han C, Huang T, Ren S, Wang X, Xing Q, Liu F. Chlorogenic acid inhibits Pseudomonas toxin pyocyanin and activates mitochondrial UPR to protect host against pathogen infection. Sci Rep 2025; 15:5508. [PMID: 39953205 PMCID: PMC11829045 DOI: 10.1038/s41598-025-90255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Mitochondria are required for protecting host against pathogenic bacteria by activating mitochondrial unfolded protein response (UPRmt). Chlorogenic acid (CGA), a phenolic acid compound of green coffee extracts and tea has been shown to exhibit activities such as antioxidant, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, neuroprotective, anti-obesity. However, whether CGA regulates innate immunity and the underlying molecular mechanisms remain unknown. In this study, we found that CGA increased resistance to Gram-negative pathogen Pseudomonas aeruginosa PA14 in dose dependent manner. Meanwhile, CGA enhanced innate immunity in Caenorhabditis elegans by reducing intestinal bacterial burden. CGA also inhibited the proliferation of pathogenic bacteria. Importantly, CGA inhibited the production of Pseudomonas toxin pyocyanin (PYO) to protect C. elegans from P. aeruginosa PA14 infection. Furthermore, CGA activated the UPRmt and expression of antibacterial peptide genes to promote innate immunity in C. elegans via transcription factor ATFS-1(activating transcription factor associated with stress-1). Unexpectedly, CGA enhanced innate immunity independently of other known innate immune pathways. Intriguingly, CGA also protected mice from P. aeruginosa PA14 infection and activated UPRmt. Our work revealed a conserved mechanism by which CGA promoted innate immunity and boosted its therapeutic application in the treatment of pathogen infection.
Collapse
Affiliation(s)
- Yi Xiao
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Linlu Li
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Chao Han
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Tingyun Huang
- Department of Pediatric, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shuangjie Ren
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaoqin Wang
- Department of Pediatric, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qianlu Xing
- Department of Pediatric, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Fang Liu
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
8
|
Xiao Y, Zhang L, Zhou H, Cui Y, Chen K, Zhang H, Wu Q, Liu F. Berberine extends healthspan and delays neurodegenerative diseases in Caenorhabditis elegans through ROS-dependent PMK-1/SKN-1 activation. Arch Gerontol Geriatr 2025; 128:105644. [PMID: 39357500 DOI: 10.1016/j.archger.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Oxidative stress, or the chronic generation of reactive oxygen species (ROS), is thought to contribute to the progression of aging and aging related diseases. However, low degree of ROS generation has repeatedly been shown to be associated with beneficial outcomes via activation of protective signaling pathways. Berberine, a natural alkaloid isolated from Rhizomacoptidis, has a long history of medicinal use in both Ayurvedic and traditional Chinese medicine, which possesses anti-cancer, anti-inflammatory and anti-neurodegenerative properties. In this study, we utilize Caenorhabditis elegans to examine the mechanisms by which berberine influences healthspan and neurodegenerative diseases. We find that 10 μM berberine significantly extends healthy lifespan in wild type C. elegans. We further show that berberine generates ROS, which is followed by activation of PMK-1/SKN-1 to extend healthspan. Intriguingly, berberine also delays neurodegenerative diseases such as Alzheimer's and polyglutamine diseases in a PMK-1/SKN-1dependent manner. Our work suggests that berberine may be a viable candidate for the prevention and treatment of aging and aging related diseases.
Collapse
Affiliation(s)
- Yi Xiao
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China.
| | - Li Zhang
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Hanlin Zhou
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Yingwen Cui
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Keer Chen
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Han Zhang
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Qinyi Wu
- Yunnan University of Chinese Medicine, Kunming, Yunnan 650000, China.
| | - Fang Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China.
| |
Collapse
|
9
|
Lei M, Tan Y, Ke J, Wang M, He Z, Ou G, Tu H, Tan W. Loss of cilia in chemosensory neurons inhibits pathogen avoidance in Caenorhabditis elegans. Microbes Infect 2024; 26:105370. [PMID: 38843949 DOI: 10.1016/j.micinf.2024.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
Pathogen avoidance is a crucial and evolutionarily conserved behavior that enhances survival by preventing infection in diverse species, including Caenorhabditis elegans (C. elegans). This behavior relies on multiple chemosensory neurons equipped with cilia that are exposed to the external environment. However, the specific role of neuronal cilia in pathogen avoidance has not been completely elucidated. Herein, we discovered that osm-3(p802) mutants, which lack chemosensory neuronal cilia, exhibit slower avoidance of the pathogen Pseudomonas aeruginosa PA14, but not Escherichia coli OP50. This observation was consistent when osm-3(p802) mutants were exposed to P. aeruginosa PAO1. Following an encounter with PA14, the pumping, thrashing, and defecation behaviors of osm-3 mutants were comparable to those of the wild-type. However, the osm-3 mutants demonstrated reduced intestinal colonization of PA14, suggesting that they have stronger intestinal clearance ability. We conducted RNA-seq to identify genes responding to external stimuli that were differentially expressed owing to the loss of osm-3 and PA14 infection. Using RNAi, we demonstrated that three of these genes were essential for normal pathogen avoidance. In conclusion, our findings demonstrate that the loss of chemosensory neuronal cilia reduces pathogen avoidance in C. elegans while delaying intestinal colonization.
Collapse
Affiliation(s)
- Ming Lei
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yanheng Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Jingyi Ke
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Mengqi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Zeyang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Guangshuo Ou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Weihong Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Das P, Aballay A, Singh J. Calcineurin inhibition enhances Caenorhabditis elegans lifespan by defecation defects-mediated calorie restriction and nuclear hormone signaling. eLife 2024; 12:RP89572. [PMID: 39485281 PMCID: PMC11530235 DOI: 10.7554/elife.89572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Calcineurin is a highly conserved calcium/calmodulin-dependent serine/threonine protein phosphatase with diverse functions. Inhibition of calcineurin is known to enhance the lifespan of Caenorhabditis elegans through multiple signaling pathways. Aiming to study the role of calcineurin in regulating innate immunity, we discover that calcineurin is required for the rhythmic defecation motor program (DMP) in C. elegans. Calcineurin inhibition leads to defects in the DMP, resulting in intestinal bloating, rapid colonization of the gut by bacteria, and increased susceptibility to bacterial infection. We demonstrate that intestinal bloating caused by calcineurin inhibition mimics the effects of calorie restriction, resulting in enhanced lifespan. The TFEB ortholog, HLH-30, is required for lifespan extension mediated by calcineurin inhibition. Finally, we show that the nuclear hormone receptor, NHR-8, is upregulated by calcineurin inhibition and is necessary for the increased lifespan. Our studies uncover a role for calcineurin in the C. elegans DMP and provide a new mechanism for calcineurin inhibition-mediated longevity extension.
Collapse
Affiliation(s)
- Priyanka Das
- Department of Biological Sciences, Indian Institute of Science Education and ResearchMohaliIndia
| | - Alejandro Aballay
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Jogender Singh
- Department of Biological Sciences, Indian Institute of Science Education and ResearchMohaliIndia
| |
Collapse
|
11
|
Lan YA, Guo JX, Yao MH, Kang YT, Liao ZR, Jing YH. The Role of Neuro-Immune Interactions in the Pathology and Pathogenesis of Allergic Rhinitis. Immunol Invest 2024; 53:1013-1029. [PMID: 39042045 DOI: 10.1080/08820139.2024.2382792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
BACKGROUND Allergic rhinitis (AR) is a non-infectious inflammatory disease of the nasal mucosa mediated by IgE and involving a variety of immune cells such as mast cells. In previous studies, AR was considered as an isolated disease of the immune system. However, recent studies have found that the nervous system is closely related to the development of AR. Bidirectional communication between the nervous and immune systems plays an important role in AR. SUMMARY The nervous system and immune system depend on the anatomical relationship between nerve fibers and immune cells, as well as various neurotransmitters, cytokines, inflammatory mediators, etc. to produce bidirectional connections, which affect the development of AR. KEY MESSAGES This article reviews the impact of neuro-immune interactions in AR on the development of AR, including neuro-immune cell units.
Collapse
Affiliation(s)
- Ya-An Lan
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jia-Xi Guo
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Min-Hua Yao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yi-Ting Kang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Zi-Rui Liao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
12
|
Tse-Kang SY, Pukkila-Worley R. Lysosome-related organelle integrity suppresses TIR-1 aggregation to restrain toxic propagation of p38 innate immunity. Cell Rep 2024; 43:114674. [PMID: 39299237 PMCID: PMC11492801 DOI: 10.1016/j.celrep.2024.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
Innate immunity in bacteria, plants, and animals requires the specialized subset of Toll/interleukin-1/resistance gene (TIR) domain proteins that are nicotinamide adenine dinucleotide (NAD+) hydrolases. Aggregation of these TIR proteins engages their enzymatic activity, but it is unknown how this protein multimerization is regulated. Here, we discover that TIR oligomerization is controlled to prevent immune toxicity. We find that p38 propagates its own activation in a positive feedback loop, which promotes the aggregation of the lone enzymatic TIR protein in the nematode C. elegans (TIR-1, homologous to human sterile alpha and TIR motif-containing 1 [SARM1]). We perform a forward genetic screen to determine how the p38 positive feedback loop is regulated. We discover that the integrity of the specific lysosomal subcompartment that expresses TIR-1 is actively maintained to limit inappropriate TIR-1 aggregation on the membranes of these organelles, which restrains toxic propagation of p38 innate immunity. Thus, innate immunity in C. elegans intestinal epithelial cells is regulated by specific control of TIR-1 multimerization.
Collapse
Affiliation(s)
- Samantha Y Tse-Kang
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
13
|
Wu J, Shao Y, Hua X, Wang Y, Wang D. Nanoplastic at environmentally relevant concentrations induces toxicity across multiple generations associated with inhibition in germline G protein-coupled receptor CED-1 in Caenorhabditis elegans. CHEMOSPHERE 2024; 364:143011. [PMID: 39098352 DOI: 10.1016/j.chemosphere.2024.143011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
Nanoplastics at environmentally relevant concentrations (ERCs) could cause transgenerational toxicity on organisms. Caenorhabditis elegans is an important model for the study of transgenerational toxicology of pollutants. Nevertheless, the underlying mechanisms for the control of transgenerational nanoplastic toxicity by germline signals remain largely unclear. In C. elegans, exposure to 1-100 μg/L polystyrene nanoparticle (PS-NP) decreased expression of germline ced-1 encoding a G protein-coupled receptor at parental generation (P0-G). After PS-NP exposure at P0-G, transgenerational decrease in germline ced-1 expression could be detected. Meanwhile, the susceptibility to transgenerational PS-NP toxicity was observed in ced-1(RNAi) animals. After PS-NP exposure at P0-G, germline RNAi of ced-1 increased expressions of met-2 and set-6 encoding histone methylation transferases. The susceptibility of ced-1(RNAi) to transgenerational PS-NP toxicity could be inhibited by RNAi of met-2 and set-6. Moreover, in PS-NP exposed met-2(RNAi) and set-6(RNAi) nematodes, expressions of ins-39, wrt-3, and/or efn-3 encoding secreted ligands were decreased. Therefore, our results demonstrated that inhibition in germline CED-1 mediated the toxicity induction of nanoplastics at ERCs across multiple generations in nematodes.
Collapse
Affiliation(s)
- Jingwei Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yuting Shao
- School of Public Health, Southeast University, Nanjing, China
| | - Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
14
|
Hao W, Luo D, Jiang Y, Wan S, Li X. An overview of sphingosine-1-phosphate receptor 2: Structure, biological function, and small-molecule modulators. Med Res Rev 2024; 44:2331-2362. [PMID: 38665010 DOI: 10.1002/med.22044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, there has been a notable increase in research on sphingosine-1-phosphate receptor 2 (S1PR2), which is a type of G-protein-coupled receptor. Upon activation by S1P or other ligands, S1PR2 initiates downstream signaling pathways such as phosphoinositide 3-kinase (PI3K), Mitogen-activated protein kinase (MAPK), Rho/Rho-associated coiled-coil containing kinases (ROCK), and others, contributing to the diverse biological functions of S1PR2 and playing a pivotal role in various physiological processes and disease progressions, such as multiple sclerosis, fibrosis, inflammation, and tumors. Due to the extensive biological functions of S1PR2, many S1PR2 modulators, including agonists and antagonists, have been developed and discovered by pharmaceutical companies (e.g., Novartis and Galapagos NV) and academic medicinal chemists for disease diagnosis and treatment. However, few reviews have been published that comprehensively overview the functions and regulators of S1PR2. Herein, we provide an in-depth review of the advances in the function of S1PR2 and its modulators. We first summarize the structure and biological function of S1PR2 and its pathological role in human diseases. We then focus on the discovery approach, design strategy, development process, and biomedical application of S1PR2 modulators. Additionally, we outline the major challenges and future directions in this field. Our comprehensive review will aid in the discovery and development of more effective and clinically applicable S1PR2 modulators.
Collapse
Affiliation(s)
- Wanting Hao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Dongdong Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shengbiao Wan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Marine Biomedical Research, Institute of Qingdao, Qingdao, China
| |
Collapse
|
15
|
Wibisono P, Liu Y, Roberts KP, Baluya D, Sun J. Neuronal GPCR NMUR-1 regulates energy homeostasis in response to pathogen infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602733. [PMID: 39026696 PMCID: PMC11257582 DOI: 10.1101/2024.07.09.602733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
A key question in current immunology is how the innate immune system generates high levels of specificity. Our previous study in Caenorhabditis elegans revealed that NMUR-1, a neuronal G protein-coupled receptor homologous to mammalian receptors for the neuropeptide neuromedin U (NMU), regulates distinct innate immune responses to different bacterial pathogens. Here, by using quantitative proteomics and functional assays, we discovered that NMUR-1 regulates F1FO ATP synthase and ATP production in response to pathogen infection, and that such regulation contributes to NMUR-1-mediated specificity of innate immunity. We further demonstrated that ATP biosynthesis and its contribution to defense is neurally controlled by the NMUR-1 ligand CAPA-1 and its expressing neurons ASG. These findings indicate that NMUR-1 neural signaling regulates the specificity of innate immunity by controlling energy homeostasis as part of defense against pathogens. Our study provides mechanistic insights into the emerging roles of NMU signaling in immunity across animal phyla.
Collapse
Affiliation(s)
- Phillip Wibisono
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Yiyong Liu
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
- Genomics Core, Washington State University, Spokane, WA, USA
| | - Kenneth P Roberts
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Dodge Baluya
- Tissue Imaging, Metabolomics and Proteomics Laboratory, Washington State University, Pullman, WA, USA
| | - Jingru Sun
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
16
|
Hu X, Hoffmann DS, Wang M, Schuhmacher L, Stroe MC, Schreckenberger B, Elstner M, Fischer R. GprC of the nematode-trapping fungus Arthrobotrys flagrans activates mitochondria and reprograms fungal cells for nematode hunting. Nat Microbiol 2024; 9:1752-1763. [PMID: 38877225 PMCID: PMC11222155 DOI: 10.1038/s41564-024-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Initiation of development requires differential gene expression and metabolic adaptations. Here we show in the nematode-trapping fungus, Arthrobotrys flagrans, that both are achieved through a dual-function G-protein-coupled receptor (GPCR). A. flagrans develops adhesive traps and recognizes its prey, Caenorhabditis elegans, through nematode-specific pheromones (ascarosides). Gene-expression analyses revealed that ascarosides activate the fungal GPCR, GprC, at the plasma membrane and together with the G-protein alpha subunit GasA, reprograms the cell. However, GprC and GasA also reside in mitochondria and boost respiration. This dual localization of GprC in A. flagrans resembles the localization of the cannabinoid receptor CB1 in humans. The C. elegans ascaroside-sensing GPCR, SRBC66 and GPCRs of many fungi are also predicted for dual localization, suggesting broad evolutionary conservation. An SRBC64/66-GprC chimaeric protein was functional in A. flagrans, and C. elegans SRBC64/66 and DAF38 share ascaroside-binding sites with the fungal GprC receptor, suggesting 400-million-year convergent evolution.
Collapse
Affiliation(s)
- Xiaodi Hu
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - David S Hoffmann
- Department of Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Mai Wang
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Lars Schuhmacher
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Maria C Stroe
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Birgit Schreckenberger
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Marcus Elstner
- Department of Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany.
| |
Collapse
|
17
|
Pu X, Qi B. Lysosomal dysfunction by inactivation of V-ATPase drives innate immune response in C. elegans. Cell Rep 2024; 43:114138. [PMID: 38678555 DOI: 10.1016/j.celrep.2024.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Pathogens target vacuolar ATPase (V-ATPase) to inhibit lysosomal acidification or lysosomal fusion, causing lysosomal dysfunction. However, it remains unknown whether cells can detect dysfunctional lysosomes and initiate an immune response. In this study, we discover that dysfunction of lysosomes caused by inactivation of V-ATPase enhances innate immunity against bacterial infections. We find that lysosomal V-ATPase interacts with DVE-1, whose nuclear localization serves as a proxy for the induction of mitochondrial unfolded protein response (UPRmt). The inactivation of V-ATPase promotes the nuclear localization of DVE-1, activating UPRmt and inducing downstream immune response genes. Furthermore, pathogen resistance conferred by inactivation of V-ATPase requires dve-1 and its downstream immune effectors. Interestingly, animals grow slower after vha RNAi, suggesting that the vha-RNAi-induced immune response costs the most energy through activation of DVE-1, which trades off with growth. This study reveals how dysfunctional lysosomes can trigger an immune response, emphasizing the importance of conserving energy during immune defense.
Collapse
Affiliation(s)
- Xuepiao Pu
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bin Qi
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
18
|
Xiao Y, Han C, Li X, Zhu X, Li S, Jiang N, Yu C, Liu Y, Liu F. S-Adenosylmethionine (SAM) diet promotes innate immunity via histone H3K4me3 complex. Int Immunopharmacol 2024; 131:111837. [PMID: 38471365 DOI: 10.1016/j.intimp.2024.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
S-adenosylmethionine (SAM) was a methyl donor for modifying histones, which had crucial roles in lipid accumulation, tissue injury, and immune responses. SAM fluctuation might be linked to variations in histone methylation. However, the underlying molecular mechanisms of whether the SAM diet influenced the immune response via histone modification remained obscure. In this study, we utilized the Caenorhabditis elegans as a model to investigate the role of SAM diet in innate immunity. We found that 50 μM SAM increased resistance to Gram-negative pathogen Pseudomonas aeruginosa PA14 by reducing the bacterial burden in the intestine. Furthermore, through the genetic screening in C. elegans, we found that SAM functioned in germline to enhance innate immunity via an H3K4 methyltransferase complex to upregulate the immune response genes, including irg-1 and T24B8.5. Intriguingly, SAM also protected mice from P. aeruginosa PA14 infection by reducing the bacterial burden in lung. These findings provided insight into the mechanisms of molecular connections among SAM diet, histone modifications and innate immunity.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Chao Han
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xiaocong Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Sanhua Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nian Jiang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Changyan Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yun Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Fang Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
19
|
Shang S, Gao F, Zhang Q, Song T, Wang W, Liu D, Gong Y, Lu X. 0.263 terahertz irradiation induced genes expression changes in Caenorhabditis elegans. iScience 2024; 27:109391. [PMID: 38532884 PMCID: PMC10963221 DOI: 10.1016/j.isci.2024.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The biosafety of terahertz (THz) waves has emerged as a new area of concern with the gradual application of terahertz radiation. Even though many studies have been conducted to investigate the influence of THz radiation on living organisms, the biological effects of terahertz waves have not yet been fully revealed. In this study, Caenorhabditis elegans (C. elegans) was used to evaluate the biological consequences of whole-body exposure to 0.263 THz irradiation. The integration of transcriptome sequencing and behavioral tests of C. elegans revealed that high-power THz irradiation damaged the epidermal ultrastructures, inhibited the expression of the cuticle collagen genes, and impaired the movement of C. elegans. Moreover, the genes involved in the immune system and the neural system were dramatically down-regulated by high-power THz irradiation. Our findings offer fresh perspectives on the biological impacts of high-power THz radiation that could cause epidermal damage and provoke a systemic response.
Collapse
Affiliation(s)
- Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| | - Fei Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| | - Qi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| | - Tao Song
- Terahertz Science and Technology Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wei Wang
- Terahertz Science and Technology Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Diwei Liu
- Terahertz Science and Technology Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yubin Gong
- Terahertz Science and Technology Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| |
Collapse
|
20
|
Deng L, Gillis JE, Chiu IM, Kaplan DH. Sensory neurons: An integrated component of innate immunity. Immunity 2024; 57:815-831. [PMID: 38599172 PMCID: PMC11555576 DOI: 10.1016/j.immuni.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
The sensory nervous system possesses the ability to integrate exogenous threats and endogenous signals to mediate downstream effector functions. Sensory neurons have been shown to activate or suppress host defense and immunity against pathogens, depending on the tissue and disease state. Through this lens, pro- and anti-inflammatory neuroimmune effector functions can be interpreted as evolutionary adaptations by host or pathogen. Here, we discuss recent and impactful examples of neuroimmune circuitry that regulate tissue homeostasis, autoinflammation, and host defense. Apparently paradoxical or conflicting reports in the literature also highlight the complexity of neuroimmune interactions that may depend on tissue- and microbe-specific cues. These findings expand our understanding of the nuanced mechanisms and the greater context of sensory neurons in innate immunity.
Collapse
Affiliation(s)
- Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Jacob E Gillis
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA.
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
21
|
Xiao Y, Hong CA, Liu F, Shi D, Zhu X, Yu C, Jiang N, Li S, Liu Y. Caffeic acid activates mitochondrial UPR to resist pathogen infection in Caenorhabditis elegans via the transcription factor ATFS-1. Infect Immun 2024; 92:e0049423. [PMID: 38294242 PMCID: PMC10929418 DOI: 10.1128/iai.00494-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Mitochondria play roles in the resistance of Caenorhabditis elegans against pathogenic bacteria by regulating mitochondrial unfolded protein response (UPRmt). Caffeic acid (CA) (3,4-dihydroxy cinnamic acid) is a major phenolic compound present in several plant species, which exhibits biological activities such as antioxidant, anti-fibrosis, anti-inflammatory, and anti-tumor properties. However, whether caffeic acid influences the innate immune response and the underlying molecular mechanisms remains unknown. In this study, we find that 20 µM caffeic acid enhances innate immunity to resist the Gram-negative pathogen Pseudomonas aeruginosa infection in C. elegans. Meanwhile, caffeic acid also inhibits the growth of pathogenic bacteria. Furthermore, caffeic acid promotes host immune response by reducing the bacterial burden in the intestine. Through genetic screening in C. elegans, we find that caffeic acid promotes innate immunity via the transcription factor ATFS-1. In addition, caffeic acid activates the UPRmt and immune response genes for innate immune response through ATFS-1. Our work suggests that caffeic acid has the potential to protect patients from pathogen infection.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Cao-an Hong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dandan Shi
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Changyan Yu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nian Jiang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yun Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
22
|
Otarigho B, Butts AF, Aballay A. Neuronal NPR-15 modulates molecular and behavioral immune responses via the amphid sensory neuron-intestinal axis in C. elegans. eLife 2024; 12:RP90051. [PMID: 38446031 PMCID: PMC10942643 DOI: 10.7554/elife.90051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
The survival of hosts during infections relies on their ability to mount effective molecular and behavioral immune responses. Despite extensive research on these defense strategies in various species, including the model organism Caenorhabditis elegans, the neural mechanisms underlying their interaction remain poorly understood. Previous studies have highlighted the role of neural G-protein-coupled receptors (GPCRs) in regulating both immunity and pathogen avoidance, which is particularly dependent on aerotaxis. To address this knowledge gap, we conducted a screen of mutants in neuropeptide receptor family genes. We found that loss-of-function mutations in npr-15 activated immunity while suppressing pathogen avoidance behavior. Through further analysis, NPR-15 was found to regulate immunity by modulating the activity of key transcription factors, namely GATA/ELT-2 and TFEB/HLH-30. Surprisingly, the lack of pathogen avoidance of npr-15 mutant animals was not influenced by oxygen levels. Moreover, our studies revealed that the amphid sensory neuron ASJ is involved in mediating the immune and behavioral responses orchestrated by NPR-15. Additionally, NPR-15 was found to regulate avoidance behavior via the TRPM (transient receptor potential melastatin) gene, GON-2, which may sense the intestinal distension caused by bacterial colonization to elicit pathogen avoidance. Our study contributes to a broader understanding of host defense strategies and mechanisms underlining the interaction between molecular and behavioral immune responses.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Anna Frances Butts
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Alejandro Aballay
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealthHoustonUnited States
| |
Collapse
|
23
|
Dhakal A, Salim C, Skelly M, Amichan Y, Lamm AT, Hundley HA. ADARs regulate cuticle collagen expression and promote survival to pathogen infection. BMC Biol 2024; 22:37. [PMID: 38360623 PMCID: PMC10870475 DOI: 10.1186/s12915-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND In all organisms, the innate immune system defends against pathogens through basal expression of molecules that provide critical barriers to invasion and inducible expression of effectors that combat infection. The adenosine deaminase that act on RNA (ADAR) family of RNA-binding proteins has been reported to influence innate immunity in metazoans. However, studies on the susceptibility of ADAR mutant animals to infection are largely lacking. RESULTS Here, by analyzing adr-1 and adr-2 null mutants in well-established slow-killing assays, we find that both Caenorhabditis elegans ADARs are important for organismal survival to gram-negative and gram-positive bacteria, all of which are pathogenic to humans. Furthermore, our high-throughput sequencing and genetic analysis reveal that ADR-1 and ADR-2 function in the same pathway to regulate collagen expression. Consistent with this finding, our scanning electron microscopy studies indicate adr-1;adr-2 mutant animals also have altered cuticle morphology prior to pathogen exposure. CONCLUSIONS Our data uncover a critical role of the C. elegans ADAR family of RNA-binding proteins in promoting cuticular collagen expression, which represents a new post-transcriptional regulatory node that influences the extracellular matrix. In addition, we provide the first evidence that ADAR mutant animals have altered susceptibility to infection with several opportunistic human pathogens, suggesting a broader role of ADARs in altering physical barriers to infection to influence innate immunity.
Collapse
Affiliation(s)
- Alfa Dhakal
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, 47405, USA
| | - Chinnu Salim
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Mary Skelly
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Yarden Amichan
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Ayelet T Lamm
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
24
|
Xiao Y, Zhou H, Cui Y, Zhu X, Li S, Yu C, Jiang N, Liu L, Liu F. Schisandrin A enhances pathogens resistance by targeting a conserved p38 MAPK pathway. Int Immunopharmacol 2024; 128:111472. [PMID: 38176342 DOI: 10.1016/j.intimp.2023.111472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Schizandrin A (SA), also known as deoxyschizandrin, is one of the most biologically active lignans isolated from the traditional Chinese medicine Fructus schisandrae chinensis. Schisandrin A has proven benefits for anti-cancer, anti-inflammation, hepatoprotection, anti-oxidation, neuroprotection, anti-diabetes. But the influence of Schisandrin A to the innate immune response and its molecular mechanisms remain obscure. In this study, we found that Schisandrin A increased resistance to not only the Gram-negative pathogens Pseudomonas aeruginosa and Salmonella enterica but also the Gram-positive pathogen Listeria monocytogenes. Meanwhile, Schisandrin A protected the animals from the infection by enhancing the tolerance to the pathogens infection rather than by reducing the bacterial burden. Through the screening of the conserved immune pathways in Caenorhabditis elegans, we found that Schisandrin A enhanced innate immunity via p38 MAPK pathway. Furthermore, Schisandrin A increased the expression of antibacterial peptide genes, such as K08D8.5, lys-2, F35E12.5, T24B8.5, and C32H11.12 by activation PMK-1/p38 MAPK. Importantly, Schisandrin A-treated mice also enhanced resistance to P. aeruginosa PA14 infection and significantly increased the levels of active PMK-1. Thus, promoted PMK-1/p38 MAPK-mediated innate immunity by Schisandrin A is conserved from worms to mammals. Our work provides a conserved mechanism by which Schisandrin A enhances innate immune response and boosts its therapeutic application in the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Hanlin Zhou
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yingwen Cui
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Sanhua Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Changyan Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nian Jiang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Liu Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Fang Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
25
|
Otarigho B, Butts AF, Aballay A. Neuronal NPR-15 modulates molecular and behavioral immune responses via the amphid sensory neuron-intestinal axis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.27.550570. [PMID: 37546751 PMCID: PMC10402133 DOI: 10.1101/2023.07.27.550570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The survival of hosts during infections relies on their ability to mount effective molecular and behavioral immune responses. Despite extensive research on these defense strategies in various species, including the model organism Caenorhabditis elegans, the neural mechanisms underlying their interaction remain poorly understood. Previous studies have highlighted the role of neural G protein-coupled receptors (GPCRs) in regulating both immunity and pathogen avoidance, which is particularly dependent on aerotaxis. To address this knowledge gap, we conducted a screen of mutants in neuropeptide receptor family genes. We found that loss-of-function mutations in npr-15 activated immunity while suppressing pathogen avoidance behavior. Through further analysis, NPR-15 was found to regulate immunity by modulating the activity of key transcription factors, namely GATA/ELT-2 and TFEB/HLH-30. Surprisingly, the lack of pathogen avoidance of npr-15 mutant animals was not influenced by oxygen levels. Moreover, our studies revealed that the amphid sensory neuron ASJ is involved in mediating the immune and behavioral responses orchestrated by NPR-15. Additionally, NPR-15 was found to regulate avoidance behavior via the TRPM gene, GON-2, which may sense the intestinal distension caused by bacterial colonization to elicit pathogen avoidance. Our study contributes to a broader understanding of host defense strategies and mechanisms underlining the interaction between molecular and behavioral immune responses.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anna Frances Butts
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alejandro Aballay
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, TX
| |
Collapse
|
26
|
Xiao Y, Liu F, Wu Q, Zhu X, Yu C, Jiang N, Li S, Liu Y. Dioscin Activates Endoplasmic Reticulum Unfolded Protein Response for Defense Against Pathogenic Bacteria in Caenorhabditis elegans via IRE-1/XBP-1 Pathway. J Infect Dis 2024; 229:237-244. [PMID: 37499184 DOI: 10.1093/infdis/jiad294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved pathway that senses and responds to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) lumen during bacterial infection. The IRE-1/XBP-1 pathway is a major branch of the UPRER that has been conserved from yeast to human. Dioscin, a steroidal saponin exhibits a broad spectrum of properties. However, whether dioscin influences the immune response and the underlying molecular mechanisms remain obscure. We find that dioscin increases resistance to Gram-negative pathogen Pseudomonas aeruginosa. Furthermore, dioscin also inhibits the growth of pathogenic bacteria. Meanwhile, dioscin enhances the resistance to pathogens by reducing bacterial burden in the intestine. Through genetic screening, we find that dioscin activates the UPRER to promote innate immunity via IRE-1/XBP-1 pathway. Intriguingly, dioscin requires the neural XBP-1 for immune response. Our findings suggest that dioscin may be a viable candidate for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-Based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Liu
- Guizhou Provincial College-Based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qinyi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Changyan Yu
- Guizhou Provincial College-Based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nian Jiang
- Guizhou Provincial College-Based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yun Liu
- Guizhou Provincial College-Based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
27
|
Pu L, Wang J, Lu Q, Nilsson L, Philbrook A, Pandey A, Zhao L, Schendel RV, Koh A, Peres TV, Hashi WH, Myint SL, Williams C, Gilthorpe JD, Wai SN, Brown A, Tijsterman M, Sengupta P, Henriksson J, Chen C. Dissecting the genetic landscape of GPCR signaling through phenotypic profiling in C. elegans. Nat Commun 2023; 14:8410. [PMID: 38110404 PMCID: PMC10728192 DOI: 10.1038/s41467-023-44177-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
G protein-coupled receptors (GPCRs) mediate responses to various extracellular and intracellular cues. However, the large number of GPCR genes and their substantial functional redundancy make it challenging to systematically dissect GPCR functions in vivo. Here, we employ a CRISPR/Cas9-based approach, disrupting 1654 GPCR-encoding genes in 284 strains and mutating 152 neuropeptide-encoding genes in 38 strains in C. elegans. These two mutant libraries enable effective deorphanization of chemoreceptors, and characterization of receptors for neuropeptides in various cellular processes. Mutating a set of closely related GPCRs in a single strain permits the assignment of functions to GPCRs with functional redundancy. Our analyses identify a neuropeptide that interacts with three receptors in hypoxia-evoked locomotory responses, unveil a collection of regulators in pathogen-induced immune responses, and define receptors for the volatile food-related odorants. These results establish our GPCR and neuropeptide mutant libraries as valuable resources for the C. elegans community to expedite studies of GPCR signaling in multiple contexts.
Collapse
Affiliation(s)
- Longjun Pu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Jing Wang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Qiongxuan Lu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lars Nilsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Alison Philbrook
- Department of Biology, MS 008, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Anjali Pandey
- Department of Biology, MS 008, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Lina Zhao
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alan Koh
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Tanara V Peres
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Weheliye H Hashi
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Si Lhyam Myint
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Chloe Williams
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Andre Brown
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Piali Sengupta
- Department of Biology, MS 008, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Johan Henriksson
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
- Integrated Science Lab (Icelab), Umeå University, Umeå, Sweden.
| | - Changchun Chen
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
28
|
Zhang X, Wang Y, Cai Z, Wan Z, Aihemaiti Y, Tu H. A gonadal gap junction INX-14/Notch GLP-1 signaling axis suppresses gut defense through an intestinal lysosome pathway. Front Immunol 2023; 14:1249436. [PMID: 37928537 PMCID: PMC10620905 DOI: 10.3389/fimmu.2023.1249436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Gap junctions mediate intercellular communications across cellular networks in the nervous and immune systems. Yet their roles in intestinal innate immunity are poorly understood. Here, we show that the gap junction/innexin subunit inx-14 acts in the C. elegans gonad to attenuate intestinal defenses to Pseudomonas aeruginosa PA14 infection through the PMK-1/p38 pathway. RNA-Seq analyses revealed that germline-specific inx-14 RNAi downregulated Notch/GLP-1 signaling, while lysosome and PMK-1/p38 pathways were upregulated. Consistently, disruption of inx-14 or glp-1 in the germline enhanced resistance to PA14 infection and upregulated lysosome and PMK-1/p38 activity. We show that lysosome signaling functions downstream of the INX-14/GLP-1 signaling axis and upstream of PMK-1/p38 pathway to facilitate intestinal defense. Our findings expand the understanding of the links between the reproductive system and intestinal defense, which may be evolutionarily conserved in higher organism.
Collapse
Affiliation(s)
| | | | | | | | | | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| |
Collapse
|
29
|
Liu F, Zhang H, Wang H, Zhu X, Li S, Jiang N, Yu C, Liu Y, Xiao Y. The homeodomain transcription factor CEH-37 regulates PMK-1/p38 MAPK pathway to protect against intestinal infection via the phosphatase VHP-1. Cell Mol Life Sci 2023; 80:312. [PMID: 37796333 PMCID: PMC11072455 DOI: 10.1007/s00018-023-04970-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Increasing evidence indicate that the expression of defense genes at the right place and the right time are regulated by host-defense transcription factors. However, the precise mechanisms of this regulation are not well understood. Homeodomain transcription factors, encoded by homeobox genes, play crucial role for the development of multicellular eukaryotes. In this study, we demonstrated that homeodomain transcription factor CEH-37 (known as OTX2 in mammals) was a key transcription factor for host defense in Caenorhabditis elegans. Meanwhile, CEH-37 acted in the intestine to protect C. elegans against pathogen infection. We further showed that the homeodomain transcription factor CEH-37 positively regulated PMK-1/ p38 MAPK activity to promote the intestinal immunity via suppression phosphatase VHP-1. Furthermore, we demonstrated that this function was conserved, because the human homeodomain transcription factor OTX2 also exhibited protective function in lung epithelial cells during Pseudomonas aeruginosa infection. Thus, our work reveal that CEH-37/OTX2 is a evolutionarily conserved transcription factor for defense against pathogen infection. The finding provides a model in which CEH-37 decreases VHP-1 phosphatase activity, allowing increased stimulation of PMK-1/p38 MAPK phosphorylation cascade in the intestine for pathogen resistance.
Collapse
Affiliation(s)
- Fang Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Hongjiao Zhang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Haijuan Wang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Nian Jiang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Changyan Yu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Yun Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China.
| | - Yi Xiao
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China.
| |
Collapse
|
30
|
Wibisono P, Sun J. Pathogen infection induces specific transgenerational modifications to gene expression and fitness in Caenorhabditis elegans. Front Physiol 2023; 14:1225858. [PMID: 37811492 PMCID: PMC10556243 DOI: 10.3389/fphys.2023.1225858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
How pathogen infection in a parental generation affects response in future generations to the same pathogen via epigenetic modifications has been the topic of recent studies. These studies focused on changes attributed to transgenerational epigenetic inheritance and how these changes cause an observable difference in behavior or immune response in a population. However, we questioned if pathogen infection causes hidden epigenetic changes to fitness that are not observable at the population level. Using the nematode Caenorhabditis elegans as a model organism, we examined the generation-to-generation differences in survival of both an unexposed and primed lineage of animals against a human opportunistic pathogen Salmonella enterica. We discovered that training a lineage of C. elegans against a specific pathogen does not cause a significant change to overall survival, but rather narrows survival variability between generations. Quantification of gene expression revealed reduced variation of a specific member of the TFEB lipophagic pathway. We also provided the first report of a repeating pattern of survival times over the course of 12 generations in the control lineage of C. elegans. This repeating pattern indicates that the variability in survival between generations of the control lineage is not random but may be regulated by unknown mechanisms. Overall, our study indicates that pathogen infection can cause specific phenotypic changes due to epigenetic modifications, and a possible system of epigenetic regulation between generations.
Collapse
Affiliation(s)
- Phillip Wibisono
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Jingru Sun
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
31
|
Venkatesh SR, Gupta A, Singh V. Amphid sensory neurons of Caenorhabditis elegans orchestrate its survival from infection with broad classes of pathogens. Life Sci Alliance 2023; 6:e202301949. [PMID: 37258276 PMCID: PMC10233725 DOI: 10.26508/lsa.202301949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
The survival of a host during infection relies on its ability to rapidly sense the invading pathogen and mount an appropriate response. The bacterivorous nematode Caenorhabditis elegans lacks most of the traditional pattern recognition mechanisms. In this study, we hypothesized that the 12 pairs of amphid sensory neurons in the heads of worms provide sensing capability and thus affect survival during infection. We tested animals lacking amphid neurons to three major classes of pathogens, namely-a Gram-negative bacterium Pseudomonas aeruginosa, a Gram-positive bacterium Enterococcus faecalis, and a pathogenic yeast Cryptococcus neoformans By using individual neuronal ablation lines or mutants lacking specific neurons, we demonstrate that some neurons broadly suppress the survival of the host and colonization of all pathogens, whereas other amphid neurons differentially regulate host survival during infection. We also show that the roles of some of these neurons are pathogen-specific, as seen with the AWB odor sensory neurons that promote survival only during infections with P aeruginosa Overall, our study reveals broad and specific roles for amphid neurons during infections.
Collapse
Affiliation(s)
- Siddharth R Venkatesh
- Department of Developmental Biology & Genetics, Indian Institute of Science, Bangalore, INDIA
| | - Anjali Gupta
- Center for Biosystems, Science and Engineering, Indian Institute of Science, Bangalore, INDIA
| | - Varsha Singh
- Department of Developmental Biology & Genetics, Indian Institute of Science, Bangalore, INDIA
- Center for Biosystems, Science and Engineering, Indian Institute of Science, Bangalore, INDIA
| |
Collapse
|
32
|
Watt NT, McGrane A, Roberts LD. Linking the unfolded protein response to bioactive lipid metabolism and signalling in the cell non-autonomous extracellular communication of ER stress. Bioessays 2023; 45:e2300029. [PMID: 37183938 PMCID: PMC11475223 DOI: 10.1002/bies.202300029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
The endoplasmic reticulum (ER) organelle is the key intracellular site of both protein and lipid biosynthesis. ER dysfunction, termed ER stress, can result in protein accretion within the ER and cell death; a pathophysiological process contributing to a range of metabolic diseases and cancers. ER stress leads to the activation of a protective signalling cascade termed the Unfolded Protein Response (UPR). However, chronic UPR activation can ultimately result in cellular apoptosis. Emerging evidence suggests that cells undergoing ER stress and UPR activation can release extracellular signals that can propagate UPR activation to target tissues in a cell non-autonomous signalling mechanism. Separately, studies have determined that the UPR plays a key regulatory role in the biosynthesis of bioactive signalling lipids including sphingolipids and ceramides. Here we weigh the evidence to combine these concepts and propose that during ER stress, UPR activation drives the biosynthesis of ceramide lipids, which are exported and function as cell non-autonomous signals to propagate UPR activation in target cells and tissues.
Collapse
Affiliation(s)
- Nicole T. Watt
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Anna McGrane
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Lee D. Roberts
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
33
|
Yuan W, Weaver YM, Earnest S, Taylor CA, Cobb MH, Weaver BP. Modulating p38 MAPK signaling by proteostasis mechanisms supports tissue integrity during growth and aging. Nat Commun 2023; 14:4543. [PMID: 37507441 PMCID: PMC10382525 DOI: 10.1038/s41467-023-40317-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The conserved p38 MAPK family is activated by phosphorylation during stress responses and inactivated by phosphatases. C. elegans PMK-1 p38 MAPK initiates innate immune responses and blocks development when hyperactivated. Here we show that PMK-1 signaling is enhanced during early aging by modulating the stoichiometry of non-phospho-PMK-1 to promote tissue integrity and longevity. Loss of pmk-1 function accelerates progressive declines in neuronal integrity and lysosome function compromising longevity which has both cell autonomous and cell non-autonomous contributions. CED-3 caspase cleavage limits phosphorylated PMK-1. Enhancing p38 signaling with caspase cleavage-resistant PMK-1 protects lysosomal and neuronal integrity extending a youthful phase. PMK-1 works through a complex transcriptional program to regulate lysosome formation. During early aging, the absolute phospho-p38 amount is maintained but the reservoir of non-phospho-p38 diminishes to enhance signaling without hyperactivation. Our findings show that modulating the stoichiometry of non-phospho-p38 dynamically supports tissue-homeostasis during aging without hyper-activation of stress response.
Collapse
Affiliation(s)
- Wang Yuan
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yi M Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Svetlana Earnest
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Clinton A Taylor
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
34
|
Liu J, Zhang P, Zheng Z, Afridi MI, Zhang S, Wan Z, Zhang X, Stingelin L, Wang Y, Tu H. GABAergic signaling between enteric neurons and intestinal smooth muscle promotes innate immunity and gut defense in Caenorhabditis elegans. Immunity 2023; 56:1515-1532.e9. [PMID: 37437538 DOI: 10.1016/j.immuni.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
The nervous system is critical for intestinal homeostasis and function, but questions remain regarding its impact on gut immune defense. By screening the major neurotransmitters of C. elegans, we found that γ-aminobutyric acid (GABA) deficiency enhanced susceptibility to pathogenic Pseudomonas aeruginosa PA14 infection. GABAergic signaling between enteric neurons and intestinal smooth muscle promoted gut defense in a PMK-1/p38-dependent, but IIS/DAF-16- and DBL-1/TGF-β-independent, pathway. Transcriptomic profiling revealed that the neuropeptide, FLP-6, acted downstream of enteric GABAergic signaling. Further data determined that FLP-6 was expressed and secreted by intestinal smooth muscle cells and functioned as a paracrine molecule on the intestinal epithelium. FLP-6 suppressed the transcription factors ZIP-10 and KLF-1 that worked in parallel and converged to the PMK-1/p38 pathway in the intestinal epithelia for innate immunity and gut defense. Collectively, these findings uncover an enteric neuron-muscle-epithelium axis that may be evolutionarily conserved in higher organisms.
Collapse
Affiliation(s)
- Junqiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Pei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Zhongfan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Muhammad Irfan Afridi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Shan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Zhiqing Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Xiumei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Lukas Stingelin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Yirong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China.
| |
Collapse
|
35
|
Xiao Y, Liu F, Zhu X, Li S, Meng L, Jiang N, Yu C, Wang H, Qin Y, Hui J, Yu C, Liu Y. Dioscin integrates regulation of monosaturated fatty acid metabolism to extend the life span through XBP-1/SBP-1 dependent manner. iScience 2023; 26:106265. [PMID: 36936783 PMCID: PMC10014289 DOI: 10.1016/j.isci.2023.106265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Delay aging, especially in healthy life extension, brought the most interest to the medical field. Searching for anti-aging drugs with relative safety profiles bring natural products in hotspot. In this study, we find that dioscin promotes the health span extension in wild-type Caenorhabditis elegans. Through the genetic screening in C. elegans, we further reveal that dioscin activates the transcription factor SBP-1/SREBP by the UPRER transcription factor XBP-1 to upregulate transcription of the Δ9 desaturase FAT-5 and FAT-7, resulting in increased monounsaturated fatty acid content which requires for healthy life span extension. Intriguingly, through tissue-specific knockdown, we find that dioscin modulates the health span by activating SBP-1 in the intestine. Unexpectedly, dietary supplementation of POA and OA rescues XBP-1, SBP-1 mutants-induced shortened life span phenotype. Considering the conservation of MUFAs metabolism, dioscin may promote health span in other species, including mammals. Our work suggests that dioscin might be a promising candidate for developing anti-aging agent.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Corresponding author
| | - Fang Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Sanhua Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lingjie Meng
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nian Jiang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Changyan Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haijuan Wang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ying Qin
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jing Hui
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chunbo Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yun Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Corresponding author
| |
Collapse
|
36
|
Zhao Y, Hua X, Rui Q, Wang D. Exposure to multi-walled carbon nanotubes causes suppression in octopamine signal associated with transgenerational toxicity induction in C.elegans. CHEMOSPHERE 2023; 318:137986. [PMID: 36716936 DOI: 10.1016/j.chemosphere.2023.137986] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Multi-walled carbon nanotube (MWCNT), a kind of carbon-based nanomaterials, has been extensively utilized in a variety of fields. In Caenorhabditis elegans, MWCNT exposure can result in toxicity not only at parental generation (P0-G) but also in the offspring. However, the underlying mechanisms remain still largely unknown. DAF-12, a transcriptional factor (TF), was previously found to be activated and involved in transgenerational toxicity control after MWCNT exposure. In this study, we observed that exposure to 0.1-10 μg/L MWCNTs caused the significant decrease in expression of tbh-1 encoding a tyramine beta-hydroxylase with the function to govern the octopamine synthesis, suggesting the inhibition in octopamine signal. After exposure to 0.1 μg/L MWCNT, the decrease in tbh-1 expression could be also detected in F1-G and F2-G. Moreover, in germline cells, the TF DAF-12 regulated transgenerational MWCNT toxicity by suppressing expression and function of TBH-1. Meanwhile, exposure to 0.1-10 μg/L MWCNTs induced the increase in octr-1 expression and the decrease in ser-6 expression. After exposure to 0.1 μg/L MWCNT, the increased octr-1 expression and the decreased ser-6 expression were further observed in F1-G and F2-G. Germline TBH-1 controlled transgenerational MWCNT toxicity by regulating the activity of octopamine receptors (SER-6 and OCTR-1) in offspring. Furthermore, in the offspring, SER-6 and OCTR-1 affected the induction of MWCNT toxicity by upregulating or downregulating the level of ELT-2, a GATA TF. Taken together, these findings suggested possible link between alteration in octopamine related signals and MWCNT toxicity induction in offspring in organisms.
Collapse
Affiliation(s)
- Yingyue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Hua
- Medical School, Southeast University, Nanjing, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
37
|
Xiao Y, Zhang L, Zhu X, Qin Y, Yu C, Jiang N, Li S, Liu F, Liu Y. Luteolin promotes pathogen resistance in Caenorhabditis elegans via DAF-2/DAF-16 insulin-like signaling pathway. Int Immunopharmacol 2023; 115:109679. [PMID: 36640711 DOI: 10.1016/j.intimp.2023.109679] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023]
Abstract
The DAF-2/DAF-16 insulin-like signaling pathway was an evolutionarily conserved pathway, which regulated many aspects of organismal physiology, such as pathogen resistance, metabolism, stress response, longevity. Luteolin, a flavone contained in many medical plants and in vegetables, had been shown to exhibit activities such as anti-tumor, anti-oxidant and neuroprotective effects. However, whether the Luteolin influenced the immune response and the underlying molecular mechanisms remained obscure. We found that Luteolin increased resistance to not only the Gram-negative pathogens Pseudomonas aeruginosa and Salmonella enterica but also the Gram-positive pathogens Enterococcus faecalis and Staphylococcus aureus in dose dependent manner. Meanwhile, Luteolin promoted host immune response via inhibiting the growth of pathogenic bacteria. Through the genetic screening in C. elegans, we found that Luteolin promoted innate immunity via DAF-2/DAF-16 insulin-like signaling pathway rather than p38 MAPK pathway and SKN-1. Furthermore, Luteolin activated the DAF-16/FOXO transcription factor for innate immune response. Our work suggested that Luteolin had the potential of improving the patients with pathogen infection.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Li Zhang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ying Qin
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Changyan Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nian Jiang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Sanhua Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Fang Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Yun Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
38
|
Wu J, Yang S, Liu J, Zheng Z, Lei M, Zhang P, Stingelin L, Chen J, Xiong L, Tu H. GABAergic Neuromuscular Junction Suppresses Intestinal Defense of Caenorhabditis elegans by Attenuating Muscular Oxidative Phosphorylation. ACS Chem Neurosci 2022; 13:3427-3437. [PMID: 36441912 DOI: 10.1021/acschemneuro.2c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Innate immunity is an ancient and evolutionarily conserved system that constitutes the first line of host defense against invading microbes. We previously determined that the GABAergic neuromuscular junction (NMJ) suppresses intestinal innate immunity via muscular insulin signaling. Here, we found that a muscular mitochondrial oxidative phosphorylation pathway of Caenorhabditis elegans is involved in GABAergic NMJs-mediated intestinal defense. Deficiency in GABAergic neurotransmission increases reactive oxygen species (ROS) abundance and inhibits the nuclear translocation of SKN-1, whereas exogenous GABA administration represses it. SKN-1 is an important transcription factor involved in oxidative stress and the innate immune response. Moreover, deficiency in GABAergic postsynaptic UNC-49/GABAAR robustly promotes the mitochondrial function of GABAergic postsynaptic muscle cells, which may contribute to the muscular ROS decrease and intestinal SKN-1 suppression, ultimately inhibiting the intestinal defense of C. elegans. Our findings reveal a potential role of muscle mitochondrial ROS in intestinal defense in vivo and expand our understanding of mechanisms of intestinal innate immunity.
Collapse
Affiliation(s)
- Jiayu Wu
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000 Hunan, China
| | - Shengmei Yang
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, 410128 Hunan, China
| | - Junqiang Liu
- College of Biology, Hunan University, Changsha, 410082 Hunan, China
| | - Zhongfan Zheng
- College of Biology, Hunan University, Changsha, 410082 Hunan, China
| | - Ming Lei
- College of Biology, Hunan University, Changsha, 410082 Hunan, China
| | - Pei Zhang
- College of Biology, Hunan University, Changsha, 410082 Hunan, China
| | - Lukas Stingelin
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000 Hunan, China
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, 410128 Hunan, China
| | - Lizhi Xiong
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000 Hunan, China
| | - Haijun Tu
- College of Biology, Hunan University, Changsha, 410082 Hunan, China
| |
Collapse
|
39
|
Zhu X, Liu F, Wu Q, Li S, Ruan G, Yang J, Yu C, Jiang N, Xiao Y, Liu Y. Brevilin A enhances innate immunity and the resistance of oxidative stress in Caenorhabditis elegans via p38 MAPK pathway. Int Immunopharmacol 2022; 113:109385. [DOI: 10.1016/j.intimp.2022.109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
40
|
Liu Y, Zhou J, Zhang N, Wu X, Zhang Q, Zhang W, Li X, Tian Y. Two sensory neurons coordinate the systemic mitochondrial stress response via GPCR signaling in C. elegans. Dev Cell 2022; 57:2469-2482.e5. [DOI: 10.1016/j.devcel.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022]
|
41
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
42
|
Molecular characterization and functional analysis of Bxy-octr-1 in Bursaphelenchus xylophilus. Gene 2022; 823:146350. [PMID: 35189249 DOI: 10.1016/j.gene.2022.146350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022]
Abstract
Bursaphelenchus xylophilus is an invasive plant-parasitic nematode causing the notorious pine wilt disease (PWD) worldwide, which results in huge economic losses. G protein-coupled receptors (GPCRs) play an essential role in mating and reproduction behavior of animals. As a unique biogenic amine in invertebrates, octopamine (OA) can regulate a variety of physiological and behavioral responses by binding specific GPCRs. These specific GPCRs are also called octopamine receptors (OARs), and octr-1 is one of them. However, Bxy-octr-1 is unknown in B. xylophilus. Therefore, we investigated the expression pattern and biological function of Bxy-octr-1. Bioinformatics analysis indicated that Bxy-octr-1 was evolutionarily conserved. The real-time quantitative PCR data revealed that Bxy-octr-1 expression was required throughout the entire life of B. xylophilus. mRNA in situ hybridization showed that Bxy-octr-1 was mainly located in the cephalopharynx, body wall muscle, intestine, and gonadal organs of B. xylophilus. RNA interference (RNAi) showed that embryo hatching rates and locomotion speeds were both dramatically decreased. Obvious abnormal phenotypes were observed in the second-stage of juveniles after RNAi treated. Furthermore, its ontogenesis was stunting. Lack of Bxy-octr-1 reduced fecundity of females, of which 31.25% of them could not successfully ovulate. In addition, the error positioning ratio of the nematode was significantly increased. Our study suggests that Bxy-octr-1 is indispensable for locomotion, early ontogenesis and mating behavior in B. xylophilus.
Collapse
|
43
|
Yu CY, Chang HC. Glutamate signaling mediates C. elegans behavioral plasticity to pathogens. iScience 2022; 25:103919. [PMID: 35252815 PMCID: PMC8889136 DOI: 10.1016/j.isci.2022.103919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Chun-Ying Yu
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Howard C. Chang
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
- Corresponding author
| |
Collapse
|
44
|
Liu F, Wang H, Zhu X, Jiang N, Pan F, Song C, Yu C, Yu C, Qin Y, Hui J, Li S, Xiao Y, Liu Y. Sanguinarine promotes healthspan and innate immunity through a conserved mechanism of ROS-mediated PMK-1/SKN-1 activation. iScience 2022; 25:103874. [PMID: 35243236 PMCID: PMC8857505 DOI: 10.1016/j.isci.2022.103874] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 12/31/2022] Open
Abstract
The longevity of an organism is influenced by both genetic and environmental factors. With respect to genetic factors, a significant effort is being made to identify pharmacological agents that extend lifespan by targeting pathways with a defined role in the aging process. Sanguinarine (San) is a benzophenanthridine alkaloid that exerts a broad spectrum of properties. In this study, we utilized Caenorhabditis elegans to examine the mechanisms by which sanguinarine influences aging and innate immunity. We find that 0.2 μM sanguinarine extends healthspan in C. elegans. We further show that sanguinarine generates reactive oxygen species (ROS), which is followed by the activation of PMK-1/SKN-1pathway to extend healthspan. Intriguingly, sanguinarine increases resistance to pathogens by reducing the bacterial burden in the intestine. In addition, we also find that sanguinarine enhances innate immunity through PMK-1/SKN-1 pathway. Our data suggest that sanguinarine may be a viable candidate for the treatment of age-related disorders. Sanguinarine extends healthspan in C. elegans Sanguinarine-induced ROS activates the PMK-1/SKN-1 pathway to extend healthspan Sanguinarine increases resistance to pathogens by reducing the bacterial burden Sanguinarine enhances innate immunity through PMK-1/SKN-1 pathway
Collapse
Affiliation(s)
- Fang Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Haijuan Wang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Nian Jiang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Feng Pan
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Changwei Song
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Chunbo Yu
- College of Basic Medicine, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Changyan Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Ying Qin
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Jing Hui
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Sanhua Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
- Corresponding author
| | - Yun Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
- Corresponding author
| |
Collapse
|
45
|
Mello DF, Bergemann CM, Fisher K, Chitrakar R, Bijwadia SR, Wang Y, Caldwell A, Baugh LR, Meyer JN. Rotenone Modulates Caenorhabditis elegans Immunometabolism and Pathogen Susceptibility. Front Immunol 2022; 13:840272. [PMID: 35273616 PMCID: PMC8902048 DOI: 10.3389/fimmu.2022.840272] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are central players in host immunometabolism as they function not only as metabolic hubs but also as signaling platforms regulating innate immunity. Environmental exposures to mitochondrial toxicants occur widely and are increasingly frequent. Exposures to these mitotoxicants may pose a serious threat to organismal health and the onset of diseases by disrupting immunometabolic pathways. In this study, we investigated whether the Complex I inhibitor rotenone could alter C. elegans immunometabolism and disease susceptibility. C. elegans embryos were exposed to rotenone (0.5 µM) or DMSO (0.125%) until they reached the L4 larval stage. Inhibition of mitochondrial respiration by rotenone and disruption of mitochondrial metabolism were evidenced by rotenone-induced detrimental effects on mitochondrial efficiency and nematode growth and development. Next, through transcriptomic analysis, we investigated if this specific but mild mitochondrial stress that we detected would lead to the modulation of immunometabolic pathways. We found 179 differentially expressed genes (DEG), which were mostly involved in detoxification, energy metabolism, and pathogen defense. Interestingly, among the down-regulated DEG, most of the known genes were involved in immune defense, and most of these were identified as commonly upregulated during P. aeruginosa infection. Furthermore, rotenone increased susceptibility to the pathogen Pseudomonas aeruginosa (PA14). However, it increased resistance to Salmonella enterica (SL1344). To shed light on potential mechanisms related to these divergent effects on pathogen resistance, we assessed the activation of the mitochondrial unfolded protein response (UPRmt), a well-known immunometabolic pathway in C. elegans which links mitochondria and immunity and provides resistance to pathogen infection. The UPRmt pathway was activated in rotenone-treated nematodes further exposed for 24 h to the pathogenic bacteria P. aeruginosa and S. enterica or the common bacterial food source Escherichia coli (OP50). However, P. aeruginosa alone suppressed UPRmt activation and rotenone treatment rescued its activation only to the level of DMSO-exposed nematodes fed with E. coli. Module-weighted annotation bioinformatics analysis was also consistent with UPRmt activation in rotenone-exposed nematodes consistent with the UPR being involved in the increased resistance to S. enterica. Together, our results demonstrate that the mitotoxicant rotenone can disrupt C. elegans immunometabolism in ways likely protective against some pathogen species but sensitizing against others.
Collapse
Affiliation(s)
- Danielle F. Mello
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | | | - Kinsey Fisher
- Department of Biology, Duke University, Durham, NC, United States
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, NC, United States
| | - Shefali R. Bijwadia
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Yang Wang
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Alexis Caldwell
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Larry Ryan Baugh
- Department of Biology, Duke University, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University, Durham, NC, United States
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| |
Collapse
|
46
|
Wibisono P, Wibisono S, Watteyne J, Chen CH, Sellegounder D, Beets I, Liu Y, Sun J. Neuronal GPCR NMUR-1 regulates distinct immune responses to different pathogens. Cell Rep 2022; 38:110321. [PMID: 35139379 PMCID: PMC8869846 DOI: 10.1016/j.celrep.2022.110321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/21/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
A key question in current immunology is how the innate immune system generates high levels of specificity. Using the Caenorhabditis elegans model system, we demonstrate that functional loss of NMUR-1, a neuronal G-protein-coupled receptor homologous to mammalian receptors for the neuropeptide neuromedin U, has diverse effects on C. elegans innate immunity against various bacterial pathogens. Transcriptomic analyses and functional assays reveal that NMUR-1 modulates C. elegans transcription activity by regulating the expression of transcription factors involved in binding to RNA polymerase II regulatory regions, which, in turn, controls the expression of distinct immune genes in response to different pathogens. These results uncover a molecular basis for the specificity of C. elegans innate immunity. Given the evolutionary conservation of NMUR-1 signaling in immune regulation across multicellular organisms, our study could provide mechanistic insights into understanding the specificity of innate immunity in other animals, including mammals.
Collapse
Affiliation(s)
- Phillip Wibisono
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Shawndra Wibisono
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Jan Watteyne
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Chia-Hui Chen
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Durai Sellegounder
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Yiyong Liu
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA; Genomics Core, Washington State University, Spokane, WA, USA.
| | - Jingru Sun
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA.
| |
Collapse
|
47
|
Neuropeptide signaling and SKN-1 orchestrate differential responses of the proteostasis network to dissimilar proteotoxic insults. Cell Rep 2022; 38:110350. [PMID: 35139369 DOI: 10.1016/j.celrep.2022.110350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
The protein homeostasis (proteostasis) network (PN) encompasses mechanisms that maintain proteome integrity by controlling various biological functions. Loss of proteostasis leads to toxic protein aggregation (proteotoxicity), which underlies the manifestation of neurodegeneration. How the PN responds to dissimilar proteotoxic challenges and how these responses are regulated at the organismal level are largely unknown. Here, we report that, while torsin chaperones protect from the toxicity of neurodegeneration-causing polyglutamine stretches, they exacerbate the toxicity of the Alzheimer's disease-causing Aβ peptide in neurons and muscles. These opposing effects are accompanied by differential modulations of gene expression, including that of three neuropeptides that are involved in tailoring the organismal response to dissimilar proteotoxic insults. This mechanism is regulated by insulin/IGF signaling and the transcription factor SKN-1/NRF. Our work delineates a mechanism by which the PN orchestrates differential responses to dissimilar proteotoxic challenges and points at potential targets for therapeutic interventions.
Collapse
|
48
|
Peterson ND, Icso JD, Salisbury JE, Rodríguez T, Thompson PR, Pukkila-Worley R. Pathogen infection and cholesterol deficiency activate the C. elegans p38 immune pathway through a TIR-1/SARM1 phase transition. eLife 2022; 11:e74206. [PMID: 35098926 PMCID: PMC8923663 DOI: 10.7554/elife.74206] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Intracellular signaling regulators can be concentrated into membrane-free, higher ordered protein assemblies to initiate protective responses during stress - a process known as phase transition. Here, we show that a phase transition of the Caenorhabditis elegans Toll/interleukin-1 receptor domain protein (TIR-1), an NAD+ glycohydrolase homologous to mammalian sterile alpha and TIR motif-containing 1 (SARM1), underlies p38 PMK-1 immune pathway activation in C. elegans intestinal epithelial cells. Through visualization of fluorescently labeled TIR-1/SARM1 protein, we demonstrate that physiologic stresses, both pathogen and non-pathogen, induce multimerization of TIR-1/SARM1 into visible puncta within intestinal epithelial cells. In vitro enzyme kinetic analyses revealed that, like mammalian SARM1, the NAD+ glycohydrolase activity of C. elegans TIR-1 is dramatically potentiated by protein oligomerization and a phase transition. Accordingly, C. elegans with genetic mutations that specifically block either multimerization or the NAD+ glycohydrolase activity of TIR-1/SARM1 fail to induce p38 PMK phosphorylation, are unable to increase immune effector expression, and are dramatically susceptible to bacterial infection. Finally, we demonstrate that a loss-of-function mutation in nhr-8, which alters cholesterol metabolism and is used to study conditions of sterol deficiency, causes TIR-1/SARM1 to oligomerize into puncta in intestinal epithelial cells. Cholesterol scarcity increases p38 PMK-1 phosphorylation, primes immune effector induction in a manner that requires TIR-1/SARM1 oligomerization and its intrinsic NAD+ glycohydrolase activity, and reduces pathogen accumulation in the intestine during a subsequent infection. These data reveal a new adaptive response that allows a metazoan host to anticipate pathogen threats during cholesterol deprivation, a time of relative susceptibility to infection. Thus, a phase transition of TIR-1/SARM1 as a prerequisite for its NAD+ glycohydrolase activity is strongly conserved across millions of years of evolution and is essential for diverse physiological processes in multiple cell types.
Collapse
Affiliation(s)
- Nicholas D Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Janneke D Icso
- Program in Chemical Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - J Elizabeth Salisbury
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Tomás Rodríguez
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Paul R Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
49
|
Zheng Z, Aihemaiti Y, Liu J, Afridi MI, Yang S, Zhang X, Xu Y, Chen C, Tu H. The bZIP Transcription Factor ZIP-11 Is Required for the Innate Immune Regulation in Caenorhabditis elegans. Front Immunol 2021; 12:744454. [PMID: 34804026 PMCID: PMC8602821 DOI: 10.3389/fimmu.2021.744454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is the first line of host defense against pathogen infection in metazoans. However, the molecular mechanisms of the complex immune regulatory network are not fully understood. Based on a transcriptome profiling of the nematode Caenorhabditis elegans, we found that a bZIP transcription factor ZIP-11 was up-regulated upon Pseudomonas aeruginosa PA14 infection. The tissue specific RNAi knock-down and rescue data revealed that ZIP-11 acts in intestine to promote host resistance against P. aeruginosa PA14 infection. We further showed that intestinal ZIP-11 regulates innate immune response through constituting a feedback loop with the conserved PMK-1/p38 mitogen-activated protein signaling pathway. Intriguingly, ZIP-11 interacts with a CCAAT/enhancer-binding protein, CEBP-2, to mediate the transcriptional response to P. aeruginosa PA14 infection independently of PMK-1/p38 pathway. In addition, human homolog ATF4 can functionally substitute for ZIP-11 in innate immune regulation of C. elegans. Our findings indicate that the ZIP-11/ATF4 genetic program activates local innate immune response through conserved PMK-1/p38 and CEBP-2/C/EBPγ immune signals in C. elegans, raising the possibility that a similar process may occur in other organisms.
Collapse
Affiliation(s)
- Zhongfan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Yilixiati Aihemaiti
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Junqiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Muhammad Irfan Afridi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Shengmei Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Xiumei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Yongfu Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Chunhong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| |
Collapse
|
50
|
Li Z, Gao Y, He C, Wei H, Zhang J, Zhang H, Hu L, Jiang W. Purinergic Receptor P2Y 6 Is a Negative Regulator of NK Cell Maturation and Function. THE JOURNAL OF IMMUNOLOGY 2021; 207:1555-1565. [PMID: 34426542 DOI: 10.4049/jimmunol.2000750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022]
Abstract
NK cells are critical innate immune cells that target the tumor cells and cancer-initiating cells and clear viruses by producing cytokines and cytotoxic granules. However, the role of the purinergic receptor P2Y6 in the NK cells remains largely unknown. In this study, we discovered that the expression of P2Y6 was decreased upon the activation of the NK cells. Moreover, in the P2Y6-deficient mice, we found that the deficiency of P2Y6 promoted the development of the NK precursor cells into immature NK and mature NK cells. We also found that the P2Y6 deficiency increased, but the P2Y6 receptor agonist UDP or UDP analog 5-OMe-UDP decreased the production of IFN-γ in the activated NK cells. Furthermore, we demonstrated that the P2Y6-deficient NK cells exhibited stronger cytotoxicity in vitro and antimetastatic effects in vivo. Mechanistically, P2Y6 deletion promoted the expression of T-bet (encoded by Tbx21), with or without the stimulation of IL-15. In the absence of P2Y6, the levels of phospho-serine/threonine kinase and pS6 in the NK cells were significantly increased upon the stimulation of IL-15. Collectively, we demonstrated that the P2Y6 receptor acted as a negative regulator of the NK cell function and inhibited the maturation and antitumor activities of the NK cells. Therefore, inhibition of the P2Y6 receptor increases the antitumor activities of the NK cells, which may aid in the design of innovative strategies to improve NK cell-based cancer therapy.
Collapse
Affiliation(s)
- Zhenlong Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yaoxin Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Cong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Huan Wei
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongmei Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Lulu Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|