1
|
Funaioli T, Cesari C, Berti B, Bortoluzzi M, Femoni C, Forti F, Iapalucci MC, Scorzoni G, Zacchini S. Chemical and Electrochemical Investigation of the Oxidation of a Highly Reduced Fe 6C Iron Carbide Carbonyl Cluster: A Synthetic Route to Heteroleptic Fe 6C and Fe 5C Clusters. Inorg Chem 2025; 64:9744-9757. [PMID: 40327361 DOI: 10.1021/acs.inorgchem.5c01014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
A chemical and electrochemical investigation of the redox chemistry of [Fe6C(CO)15]4- is reported and supported by computational studies. Depending on the experimental conditions, the original Fe6C cage is retained or partially degraded to Fe5C. Chemical oxidation of [Fe6C(CO)15]4- with [Cp2Fe][PF6], [C7H7][BF4], or Me3NO affords the previously reported [Fe6C(CO)16]2-, whereas oxidation in the presence of a base (Na2CO3 or NaOH) results in the new carbonate-carbide cluster [Fe6C(CO)14(CO3)]4-. Oxidation of [Fe6C(CO)15]4- in the presence of a phosphine ligand produces the heteroleptic species [Fe6C(CO)15(PTA)]2- and [Fe5C(CO)13(PPh3)]2-. Reaction of [Fe6C(CO)15]4- with alkylating or acylating agents (MeI, CF3SO3Me, and MeCOCl) affords the acetyl-carbide cluster [Fe5C(CO)13(COMe)]3-, with partial oxidative degradation of the original Fe6C cage. The new clusters have been spectroscopically and structurally characterized. The redox chemistry of [Fe6C(CO)15]4- was further investigated by electrochemical and spectroelectrochemical methods. According to computational outcomes, the spectroelectrochemical oxidation of [Fe6C(CO)15]4- follows an EEC mechanism, leading to the formation of [Fe6C(CO)16]2-. The [Fe6C(CO)15]3- intermediate can accumulate and be spectroscopically detected. These new chemical and electrochemical findings have been supported and corroborated by computational methods. DFT calculations suggest an EEC pathway also for the reverse electrochemical process, i.e., reduction of [Fe6C(CO)16]2- to [Fe6C(CO)15]4-.
Collapse
Affiliation(s)
- Tiziana Funaioli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Cristiana Cesari
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Beatrice Berti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi, Ca' Foscari University of Venice, Via Torino 155, 30175 Mestre (Ve), Italy
| | - Cristina Femoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Francesca Forti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Maria Carmela Iapalucci
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Giorgia Scorzoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
2
|
Nakamura T, Tsuruta Y, Egi A, Tanaka H, Nishibayashi Y, Yoshizawa K. Theoretical Study of Imide Formation in Nitrogen Fixation Catalyzed by Molybdenum Complex Bearing PCP-Type Pincer Ligand with Metallocenes. Inorg Chem 2025; 64:9124-9136. [PMID: 40253718 DOI: 10.1021/acs.inorgchem.5c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Homogeneous catalysts using a mononuclear molybdenum nitride (Mo≡N) complex bearing PCP-type pincer ligands allow nitrogen fixation under very mild conditions. The catalytic cycle involves three hydrogenation processes yielding an Mo-ammine complex [MoI(NH3)(PCP)] from the Mo-nitride complex [MoI(N)(PCP)]. We primarily focused on the first hydrogenation step, forming an Mo-imide complex [MoI(NH)(PCP)] since previous experimental and theoretical studies suggest that imide formation is the rate-limiting step in the catalytic cycle. The choice of protonating agent and reductant strongly influences the catalytic reactivity in imide formation. In this computational quantum chemical study, 2,4,6-collidinium (ColH+) was employed as the protonation agent, while metallocenes Cp2MII and decamethylmetallocenes Cp*2MII (M = V, Cr, Mn, Fe, Co, and Ni) were employed as reductants. The reaction of ColH+ with the metallocenes yields protonated metallocenes, where a cyclopentadienyl ring of the metallocenes is protonated. Protonated Cp*2CrII and Cp*2CoII are potential proton-coupled electron transfer (PCET) mediators to facilitate the imide formation of [MoI(N)(PCP)] with low activation free energies. The concerted reaction mechanism was compared with the stepwise reaction, where ColH+ directly protonates [MoI(N)(PCP)], followed by reduction with the decamethylmetallocenes. Furthermore, we analyzed how proton transfer and electron transfer are concerted in the reaction of the PCET mediators with [MoI(N)(PCP)] by tracing electronic states along the reaction coordinates.
Collapse
Affiliation(s)
- Taiji Nakamura
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Tsuruta
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Takiharu-cho, Minami-ku, Nagoya 457-8530, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazunari Yoshizawa
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Liu YA, Lee CC, Górecki K, Stiebritz MT, Duffin C, Solomon JB, Ribbe MW, Hu Y. Heterologous synthesis of a simplified nitrogenase analog in Escherichia coli. SCIENCE ADVANCES 2025; 11:eadw6785. [PMID: 40315313 PMCID: PMC12047441 DOI: 10.1126/sciadv.adw6785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/28/2025] [Indexed: 05/04/2025]
Abstract
The heterologous synthesis of a nitrogen-fixing system in a non-diazotrophic organism is a long-sought-after goal because of the crucial importance of nitrogenase for agronomy, energy, and the environment. Here, we report the heterologous synthesis of a two-component nitrogenase analog from Azotobacter vinelandii, which consists of the reductase component (NifH) and the cofactor maturase (NifEN), in Escherichia coli. Metal, electron paramagnetic resonance, and activity analyses verify the cluster composition and functional competence of the heterologously expressed NifH and NifEN. Nuclear magnetic resonance, nanoscale secondary ion mass spectrometry, and growth experiments further illustrate the ability of the NifH/NifEN system to reduce N2 and incorporate the reduced N into the cellular mass. These results establish NifEN/NifH as a simplified nitrogenase analog that could be optimized and engineered to facilitate transgenic expression and biotechnological adaptations of this important metalloenzyme.
Collapse
Affiliation(s)
- Yiling A. Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Kamil Górecki
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Martin T. Stiebritz
- Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, D-91052 Erlangen, Germany
| | - Calder Duffin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Joseph B. Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| |
Collapse
|
4
|
Huang X, Uemura Y, Ardana-Lamas F, Frankenberger P, Knoll M, Yousef H, Wang H, Heder S, Nachtegaal M, Smolentsev G, Wang L, Zhu LF, Milne C, Lima F. A high-energy Laue X-ray emission spectrometer at the FXE instrument at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:506-523. [PMID: 40163362 PMCID: PMC12067320 DOI: 10.1107/s1600577525001389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/14/2025] [Indexed: 04/02/2025]
Abstract
The high-energy-resolution X-ray emission spectroscopy (XES) spectrometers available at the Femtosecond X-ray Experiment (FXE) instrument of the European XFEL operate in Bragg (reflective) geometry, with optimum performance in the range between 5 and 15 keV. However, they quickly lose efficiency above around 15 keV due to the decrease in reflectivity of the crystal analyzers at such high photon energies. This hampers high-energy-resolution spectroscopy experiments on heavy elements (e.g. 4d metals), which thus do not fully profit from the high-photon-energy capabilities of the European XFEL. Here we present the design, implementation and performance of a novel high-resolution XES spectrometer operating in Laue (transmission) geometry optimized for measurements at high photon energies (>15 keV). The High-Energy Laue X-ray emIssiOn Spectrometer (HELIOS) operates mainly in dispersive mode by placing the crystal analyzer inside or outside the Rowland circle. The Laue spectrometer performance in terms of energy resolution and efficiency is presented and discussed. Two Laue analyzers, silicon and quartz, have been tested at SuperXAS of the Swiss Light Source and at FXE of the European XFEL. The quartz analyzer was found to be about 2.7 times more efficient than the silicon one. The Laue spectrometer energy resolution (ΔE/E) reached at the FXE instrument is around 1.2 × 10-4. Depending on different user requests, the resolution can be further increased by using higher diffraction orders. The new Laue spectrometer increases the existing portfolio of XES spectrometers at FXE, enabling efficient implementation of ultrafast X-ray spectroscopies with high energy resolution at photon energies above 15 keV. This spectrometer will allow the expansion of studies in the field of ultrafast sciences, particularly including investigation of 4d elements using hard X-rays.
Collapse
Affiliation(s)
- X. Huang
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Y. Uemura
- European XFELHolzkoppel 422869SchenefeldGermany
| | | | | | - M. Knoll
- European XFELHolzkoppel 422869SchenefeldGermany
| | - H. Yousef
- European XFELHolzkoppel 422869SchenefeldGermany
| | - H. Wang
- European XFELHolzkoppel 422869SchenefeldGermany
| | - S. Heder
- European XFELHolzkoppel 422869SchenefeldGermany
| | - M. Nachtegaal
- Center for Energy and Environmental SciencesPaul Scherrer InstituteCH-5232VilligenSwitzerland
- Center for Photon SciencePaul Scherrer InstituteCH-5232VilligenSwitzerland
| | - G. Smolentsev
- Center for Energy and Environmental SciencesPaul Scherrer InstituteCH-5232VilligenSwitzerland
- Center for Photon SciencePaul Scherrer InstituteCH-5232VilligenSwitzerland
| | - L. Wang
- Department of Modern PhysicsUniversity of Science and Technology of China230026HefeiPeople’s Republic of China
| | - L. F. Zhu
- Department of Modern PhysicsUniversity of Science and Technology of China230026HefeiPeople’s Republic of China
| | - C. Milne
- European XFELHolzkoppel 422869SchenefeldGermany
| | - F.A. Lima
- European XFELHolzkoppel 422869SchenefeldGermany
| |
Collapse
|
5
|
Le LN, He T, Joyce JP, Oyala PH, DeBeer S, Agapie T. Molybdenum-Iron-Sulfur Cluster with a Bridging Carbide Ligand as a Partial FeMoco Model: CO Activation, EPR Studies, and Bonding Insight. J Am Chem Soc 2025; 147:11216-11226. [PMID: 40112093 PMCID: PMC11969536 DOI: 10.1021/jacs.4c17893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
Nitrogenase enzymes catalyze the reduction of N2 to NH3 at a complex Fe-M (M = Mo, Fe, or V) cofactor (FeMco), which displays eight metal centers and sulfide and carbide bridges with a MFe7S8C composition. The role of the unusual μ6-carbide ligand and its effects on the metal centers remain unclear. Here, we describe the transfer of a carbide ligand to a MoFe3S3 cluster supported by a bisphenoxide ligand from a previously reported terminal Mo carbide complex to yield a pentametallic cluster of MoS3Fe3CMo composition, which also displays a bridging CO that resembles the lo-CO form of nitrogenase. This cluster has an S = 1/2 spin state amenable to studies by pulse EPR spectroscopy, revealing a significantly larger carbide 13C hyperfine interaction (aiso(13C) = 12.5 MHz) than any observed for various states of FeMoco studied by EPR thus far (|aiso(13C)| = 0.89 to 2.7 MHz). This report provides a strategy for the synthesis of carbide-containing iron-sulfur clusters relevant to nitrogenase cluster modeling, as well as benchmarking information for the metal-carbon interactions by EPR methods.
Collapse
Affiliation(s)
- Linh N.
V. Le
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Tianyi He
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Justin P. Joyce
- Department
of Inorganic Spectroscopy, Max Planck Institute
for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Paul H. Oyala
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Serena DeBeer
- Department
of Inorganic Spectroscopy, Max Planck Institute
for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Theodor Agapie
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Hu Y, Ribbe MW. NifEN: a versatile player in nitrogenase assembly, catalysis and evolution. J Biol Inorg Chem 2025; 30:135-149. [PMID: 39663240 DOI: 10.1007/s00775-024-02086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024]
Abstract
The Mo-nitrogenase catalyzes the reduction of N2 to NH3 at the cofactor of its catalytic NifDK component. NifEN shares considerable homology with NifDK in primary sequence, tertiary structure and associated metallocenters. Better known for its biosynthetic function to convert an all-iron precursor (L-cluster; [Fe8S9C]) to a mature cofactor (M-cluster; [(R-homocitrate) MoFe7S9C]), NifEN also mimics NifDK in catalyzing substrate reduction at ambient conditions. The recently discovered ability of NifEN to reduce N2 to NH3 is particularly interesting, as it points to NifEN as a plausible, prototype ancient nitrogenase during evolution. Moreover, the dual function of NifEN in assembly and catalysis makes it a great template to reconstruct the functional variants or equivalents of NifDK, which could facilitate the mechanistic investigation and heterologous synthesis of nitrogenase. This perspective provides an overview of our recent studies of NifEN, with a focus on the implications of its functional versatility for nitrogenase assembly, catalysis and evolution.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA.
| |
Collapse
|
7
|
Mei B, Mao J, Liang Z, Sun F, Yang S, Li J, Ma J, Song F, Jiang Z. Reversible Angle Distortion-Dependent Electrochemical CO 2 Reduction on Cobalt Phthalocyanine. J Am Chem Soc 2025; 147:5819-5827. [PMID: 39919306 DOI: 10.1021/jacs.4c14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Deducing the local electronic and atomic structural changes in active sites during electrochemical carbon dioxide reduction is essential for elucidating the intrinsic mechanisms and developing highly active catalysts that are stable for a long duration. Herein, utilizing operando valence-to-core X-ray emission spectroscopy and high energy-resolution fluorescence detected X-ray absorption near-edge structure, combined with spectroscopic calculations, the atomic and electronic structure evolutions of the model cobalt phthalocyanine (CoPc) were quantitatively elucidated. Under real reaction conditions, CoPc undergoes reversible angle distortion while maintaining a constant metal-ligand bond length, causing changes in the energy levels of split d orbitals and electron density of molecular orbitals. The angle distortion further influences intrinsic interactions among the ligands, intermediates, and metal centers. The reversible change in the bond angle with the CO Faraday efficiency was also determined, demonstrating the robustness. The demonstrated findings serve as an important contribution to determine the structure-performance relationship of CoPc which enlightens the further rational design of atomically dispersed site catalysts with high activity and to emphasize the capabilities of the high energy resolution X-ray spectroscopy toward analyzing metal-implanted N-doped carbon catalysts.
Collapse
Affiliation(s)
- Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Jianing Mao
- Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, P. R. China
| | - Zhaofeng Liang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Shuai Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, P. R. China
| | - Ji Li
- Zhejiang Institute of Photoelectronics, Jinhua 321025, P. R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Fei Song
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Zheng Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
8
|
Wahl IM, Sengupta K, van Gastel M, Decamps L, DeBeer S. Understanding the P-Cluster of Vanadium Nitrogenase: an EPR and XAS Study of the Holo vs. Apo Forms of the Enzyme. Chembiochem 2025; 26:e202400833. [PMID: 39544119 PMCID: PMC11823357 DOI: 10.1002/cbic.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
The catalytic moiety of nitrogenases contains two complex metalloclusters: The M-cluster (also called cofactor), where the catalytic reduction of substrates takes place, and the [Fe8S7] P-cluster responsible for electron transfer. Due to discrepancies between crystallography and EPR spectroscopy, the exact structure of the P-cluster in the VFe protein remains a topic of debate. Herein, we use an apo-form of VFe (which retains the P-cluster but lacks the FeVco) to study the VFe P-cluster. SDS-PAGE and NativePAGE showed a heterogeneous composition of the VFe and the apo-VFe samples with the presence of α1β2δ2 and α1β2 complexes. The parallel mode EPR measurements of IDS oxidized MoFe, apo-MoFe, and VFe samples reveal a signal at g=12 associated with the two-electron oxidized state of the P-cluster (P2+) for all three samples, albeit with different intensities. In contrast, no P2+ was observed for IDS oxidized apo-VFe. Additionally, comparisons between apo-MoFe, apo-VFe and the model complex (NBu4)2[Fe4S4(SPh)4] via EXAFS measurements showed that apo-VFe does not contain a fully formed [Fe8S7] P-cluster, but rather is comprised of fragmented iron-sulfur clusters. Our results point to a possible variation in the structure of the P-cluster in the different forms of the nitrogenase.
Collapse
Affiliation(s)
- Isis M. Wahl
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–36Mülheim an der Ruhr45470Germany
| | - Kushal Sengupta
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–36Mülheim an der Ruhr45470Germany
| | - Maurice van Gastel
- Department of Molecular Theory and SpectroscopyMax-Planck-Institut für KohlenforschungKaiser-Wilhem-Platz 1Mülheim an der Ruhr45470Germany
| | - Laure Decamps
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–36Mülheim an der Ruhr45470Germany
| | - Serena DeBeer
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–36Mülheim an der Ruhr45470Germany
| |
Collapse
|
9
|
Sengupta K, Joyce JP, Decamps L, Kang L, Bjornsson R, Rüdiger O, DeBeer S. Investigating the Molybdenum Nitrogenase Mechanistic Cycle Using Spectroelectrochemistry. J Am Chem Soc 2025; 147:2099-2114. [PMID: 39746667 PMCID: PMC11744760 DOI: 10.1021/jacs.4c16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Molybdenum nitrogenase plays a crucial role in the biological nitrogen cycle by catalyzing the reduction of dinitrogen (N2) to ammonia (NH3) under ambient conditions. However, the underlying mechanisms of nitrogenase catalysis, including electron and proton transfer dynamics, remain only partially understood. In this study, we covalently attached molybdenum nitrogenase (MoFe) to gold electrodes and utilized surface-enhanced infrared absorption spectroscopy (SEIRA) coupled with electrochemistry techniques to investigate its catalytic mechanism. Our biohybrid system enabled electron transfer via a mild mediator, likely mimicking the natural electron flow through the P-cluster to FeMoco, the enzyme's active site. For the first time, we experimentally observed both terminal and bridging S-H stretching frequencies, resulting from the protonation of bridging sulfides in FeMoco during turnover conditions providing direct evidence of their role in catalysis. These experimental observations are further supported by QM/MM calculations. Additionally, we investigated CO inhibition, demonstrating both CO binding and unbinding dynamics under electrochemical conditions. These insights not only advance our understanding of the mechanistic cycle of molybdenum nitrogenase but also establish a foundation for studying alternative nitrogenases, including vanadium and iron nitrogenases.
Collapse
Affiliation(s)
- Kushal Sengupta
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Justin P. Joyce
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Laure Decamps
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Liqun Kang
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | | | - Olaf Rüdiger
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| |
Collapse
|
10
|
Narehood SM, Cook BD, Srisantitham S, Eng VH, Shiau AA, McGuire KL, Britt RD, Herzik MA, Tezcan FA. Structural basis for the conformational protection of nitrogenase from O 2. Nature 2025; 637:991-997. [PMID: 39779844 PMCID: PMC11812610 DOI: 10.1038/s41586-024-08311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/30/2024] [Indexed: 01/11/2025]
Abstract
The low reduction potentials required for the reduction of dinitrogen (N2) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O2)1-3. Such O2 sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O2-respiring organisms to support the high energy demand of catalytic N2 reduction4. To counter O2 damage to nitrogenase, diazotrophs use O2 scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O2 concentrations4-8. A last line of damage control is provided by the 'conformational protection' mechanism9, in which a [2Fe:2S] ferredoxin-family protein termed FeSII (ref. 10) is activated under O2 stress to form an O2-resistant complex with the nitrogenase component proteins11,12. Despite previous insights, the molecular basis for the conformational O2 protection of nitrogenase and the mechanism of FeSII activation are not understood. Here we report the structural characterization of the Azotobacter vinelandii FeSII-nitrogenase complex by cryo-electron microscopy. Our studies reveal a core complex consisting of two molybdenum-iron proteins (MoFePs), two iron proteins (FePs) and one FeSII homodimer, which polymerize into extended filaments. In this three-protein complex, FeSII mediates an extensive network of interactions with MoFeP and FeP to position their iron-sulphur clusters in catalytically inactive but O2-protected states. The architecture of the FeSII-nitrogenase complex is confirmed by solution studies, which further indicate that the activation of FeSII involves an oxidation-induced conformational change.
Collapse
Affiliation(s)
- Sarah M Narehood
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Brian D Cook
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Suppachai Srisantitham
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Vanessa H Eng
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Angela A Shiau
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Kelly L McGuire
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Mark A Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Siegbahn PEM. Sulfide release and rebinding in the mechanism for nitrogenase. J Comput Chem 2024; 45:2835-2841. [PMID: 39189512 DOI: 10.1002/jcc.27494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Nitrogenases are the only enzymes that activate the strong triple bond in N2. The mechanism for the activation has been very difficult to determine in spite of decades of work. In previous modeling studies it has been suggested that the mechanism for nitrogen activation starts out by four pre-activation steps (A0-A4) before catalysis. That suggestion led to excellent agreement with experimental Elecrtron Paramagnetic Resonance (EPR) observations in the step where N2 becomes protonated (E4). An important part of the pre-activation is that a sulfide is released. In the present paper, the details of the pre-activation are modeled, including the release of the sulfide. Several possible transition states for the release have been obtained. An A4(E0) state is reached which is very similar to the E4 state. For completeness, the steps going back from A4(E0) to A0 after catalysis are also modeled, including the insertion of a sulfide.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
12
|
Ghosh B, Ahmed S, Phukan AK. Unravelling the potential of low-valent tunable vanadium complexes in the nitrogen reduction reaction (NRR). Dalton Trans 2024; 53:19179-19195. [PMID: 39502072 DOI: 10.1039/d4dt02217c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Density functional theory calculations have been carried out to investigate the potential of several hitherto unknown low-valent tripodal vanadium complexes towards conversion of dinitrogen to ammonia as a function of different equatorial (PiPr2 and SiPr) and bridgehead groups (B, C and Si). All the newly proposed vanadium complexes were probed towards understanding their efficiency in some of the key steps involved in the dinitrogen fixation process. They were found to be successful in preventing the release of hydrazine during the nitrogen reduction reaction. We have performed a comprehensive mechanistic study by considering all the possible pathways (distal, alternate and hybrid) to understand the efficiency of some of the proposed catalysts towards the dinitrogen reduction process. The exergonic reaction free energies obtained for some of the key steps and the presence of thermally surmountable barrier heights involved in the catalytic cycle indicate that these complexes may be considered as suitable platforms for the functionalization of dinitrogen.
Collapse
Affiliation(s)
- Bijoy Ghosh
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India.
| | - Sahtaz Ahmed
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India.
| | - Ashwini K Phukan
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India.
| |
Collapse
|
13
|
Dance I. The mechanism of Mo-nitrogenase: from N 2 capture to first release of NH 3. Dalton Trans 2024; 53:19360-19377. [PMID: 39513199 DOI: 10.1039/d4dt02606c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Mo-nitrogenase hydrogenates N2 to NH3. This report continues from the previous paper [I. Dance, Dalton Trans., 2024, 53, 14193-14211] that described how the active site FeMo-co of the enzyme is uniquely able to capture and activate N2, forming a key intermediate with Fe-bound HNNH. Density functional simulations with a 485+ atom model of the active site and its surroundings are used to describe here the further reactions of this HNNH intermediate. The first step is hydrogenation to form HNNH2 bridging Fe2 and Fe6. Then a single-step reaction breaks the N-N bond, generating an Fe2-NH-Fe6 bridge and forming NH3 bound to Fe6. Then NH3 dissociates from Fe6. Reaction potential energies and kinetic barriers for all steps are reported for the most favourable electronic states of the system. The steps that follow the Fe2-NH-Fe6 intermediate, forming and dissociating the second NH3, and regenerating the resting state of the enzyme, are outlined. These results provide an interpretation of the recent steady-state kinetics data and analysis by Harris et al., [Biochemistry, 2022, 61, 2131-2137] who found a slow step after the formation of the HNNH intermediate. The calculated potential energy barriers for the HNNH2 → NH + NH3 reaction (30-36 kcal mol-1) are larger than the potential energy barriers for the N2 → HNNH reaction (19-29 kcal mol-1). I propose that the post-HNNH slow step identified kinetically is the key HNNH2 → NH + NH3 reaction described here. This step and the N2-capture step are the most difficult in the conversion of N2 to 2NH3. The steps in the complete mechanism still to be computationally detailed are relatively straightforward.
Collapse
Affiliation(s)
- Ian Dance
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
14
|
Krishnapriya VU, Suresh CH. Beyond the triple bond: unlocking dinitrogen activation with tailored superbase phosphines. Dalton Trans 2024; 53:19235-19245. [PMID: 39530230 DOI: 10.1039/d4dt02703e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Activating atmospheric dinitrogen (N2), a molecule with a remarkably strong triple bond, remains a major challenge in chemistry. This theoretical study explores the potential of superbase phosphines, specifically those decorated with imidazolin-2-imine ((ImN)3P) and imidazolin-2-methylidene ((ImCH)3P) to facilitate N2 activation and subsequent hydrazine (H2NNH2) formation. Using density functional theory (DFT) at the M06L/6-311++G(d,p) level, we investigated the interactions between these phosphines and N2. Mono-phosphine-N2 complexes exhibit weak, noncovalent interactions (-0.6 to -7.1 kcal mol-1). Notably, two superbasic phosphines also form high-energy hypervalent complexes with N2, albeit at significantly higher energies. The superbasic nature and potential for the hypervalency of these phosphines lead to substantial N2 activation in bis-phosphine-N2 complexes, where N2 is "sandwiched" between two phosphine moieties through hypervalent P-N bonds. Among the phosphines studied, only (ImN)3P forms an exothermic sandwich complex with N2, stabilized by hydrogen bonding between the ImN substituents and the central N2 molecule. A two-step, exothermic hydrogen transfer pathway from (ImN)3P to N2 results in the formation of a bis-phosphine-diimine (HNNH) sandwich complex. Subsequent hydrogen transfer leads to the formation of a bis-phosphine-hydrazine (H2NNH2) complex, a process that, although endothermic, exhibits surmountable activation barriers. The relatively low energy requirements for this overall transformation suggest its potential feasibility under the optimized conditions. This theoretical exploration highlights the promise of superbase phosphines as a strategy for metal-free N2 activation, opening doors for the development of more efficient and sustainable nitrogen fixation and utilization methods.
Collapse
Affiliation(s)
- Vilakkathala U Krishnapriya
- Chemical Science and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram - 695019, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, 695034, Kerala, India.
| | - Cherumuttathu H Suresh
- Research Centre, University of Kerala, Thiruvananthapuram, 695034, Kerala, India.
- Srinivasa Ramanujan Institute for Basic Sciences, Kerala State Council for Science Technology and Environment, Kottayam, 686501, Kerala, India
| |
Collapse
|
15
|
Liu Y, Su X, Ding J, Zhou J, Liu Z, Wei X, Yang HB, Liu B. Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques. Chem Soc Rev 2024; 53:11850-11887. [PMID: 39434695 DOI: 10.1039/d3cs00967j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Single-atom catalysts (SACs) represent the ultimate size limit of nanoscale catalysts, combining the advantages of homogeneous and heterogeneous catalysts. SACs have isolated single-atom active sites that exhibit high atomic utilization efficiency, unique catalytic activity, and selectivity. Over the past few decades, synchrotron radiation techniques have played a crucial role in studying single-atom catalysis by identifying catalyst structures and enabling the understanding of reaction mechanisms. The profound comprehension of spectroscopic techniques and characteristics pertaining to SACs is important for exploring their catalytic activity origins and devising high-performance and stable SACs for industrial applications. In this review, we provide a comprehensive overview of the recent advances in X-ray based synchrotron radiation techniques for structural characterization and in situ/operando observation of SACs under reaction conditions. We emphasize the correlation between spectral fine features and structural characteristics of SACs, along with their analytical limitations. The development of IMST with spatial and temporal resolution is also discussed along with their significance in revealing the structural characteristics and reaction mechanisms of SACs. Additionally, this review explores the study of active center states using spectral fine characteristics combined with theoretical simulations, as well as spectroscopic analysis strategies utilizing machine learning methods to address challenges posed by atomic distribution inhomogeneity in SACs while envisaging potential applications integrating artificial intelligence seamlessly with experiments for real-time monitoring of single-atom catalytic processes.
Collapse
Affiliation(s)
- Yuhang Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jing Zhou
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhen Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Xiangjun Wei
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
16
|
Martini A, Timoshenko J, Grosse P, Rettenmaier C, Hursán D, Deplano G, Jeon HS, Bergmann A, Roldan Cuenya B. Adsorbate Configurations in Ni Single-Atom Catalysts during CO_{2} Electrocatalytic Reduction Unveiled by Operando XAS, XES, and Machine Learning. PHYSICAL REVIEW LETTERS 2024; 133:228001. [PMID: 39672148 DOI: 10.1103/physrevlett.133.228001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/17/2024] [Indexed: 12/15/2024]
Abstract
Nickel and nitrogen co-doped carbon (Ni-N-C) catalysts are attracting attention due to their exceptionally high performance in the electrocatalytic reduction of CO_{2}(CO_{2}RR) to CO. However, the direct experimental insight into the working mechanism of these catalysts is missing, hindering our fundamental understanding and their further improvement. This work sheds light on the nature of adsorbates forming under CO_{2}RR at singly dispersed Ni sites. In particular, operando high energy resolution fluorescence detected x-ray absorption near edge structure (HERFD-XANES) at the Ni K-edge together with valence-to-core x-ray emission spectroscopy (vtc-XES) and x-ray absorption (XAS) at the Ni L_{3}-edge were employed to unveil the structure and electronic properties of the reaction intermediates. These techniques, coupled with unsupervised and supervised machine learning methodologies and density functional theory, enabled a comprehensive characterization of the local atomistic and electronic structure of the working Ni-N-C catalysts. Specifically, we were able to distinguish between the structural and electronic changes of the Ni sites associated with the CO_{2}RR functionality from the effect of radiation-induced damage, providing direct insight into the bond formation between the Ni centers and CO_{2}RR intermediates such as CO adsorbates.
Collapse
|
17
|
Izu H, Kondo M, Okamura M, Tomoda M, Lee SK, Akai T, Praneeth VKK, Kanaike M, Kawata S, Masaoka S. Precise Manipulation of Electron Transfers in Clustered Five Redox Sites. Angew Chem Int Ed Engl 2024; 63:e202408514. [PMID: 38954391 DOI: 10.1002/anie.202408514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Electron transfers in multinuclear metal complexes are the origin of their unique functionalities both in natural and artificial systems. However, electron transfers in multinuclear metal complexes are generally complicated, and predicting and controlling these electron transfers is extremely difficult. Herein, we report the precise manipulation of the electron transfers in multinuclear metal complexes. The development of a rational synthetic strategy afforded a series of pentanuclear metal complexes which composed of metal ions and 3,5-bis(2-pyridyl)pyrazole (Hbpp) as a platform to probe the phenomena. Electrochemical and spectroscopic investigations clarified overall picture of the electron transfers in the pentanuclear complexes. In addition, unique electron transfer behaviors, in which the reduction of a metal center occurs during the oxidation of the overall complex, were identified. We also elucidated the two dominant factors that determine the manner of the electron transfers. Our results provide comprehensive guidelines for interpreting the complicated electron transfers in multinuclear metal complexes.
Collapse
Grants
- 17H06444, 19H00903, 20K21209, 23H04903, and 24H00464 Japan Society for the Promotion of Science
- 17K19185, 17H05391, 19H04602, 19H05777, 20H02754, 24H02212 Japan Society for the Promotion of Science
- 17H05390 and 16K05735 Japan Society for the Promotion of Science
- 23K13763 Japan Society for the Promotion of Science
- JPMJCR12YH Japan Science and Technology Agency
- JPMJPR20A4 Precursory Research for Embryonic Science and Technology
- JPMJCR20B6 Core Research for Evolutional Science and Technology
- Tokuyama Science Foundation
- Iketani Science and Technology Foundation
- Izumi Science and Technology Foundation
- Mazda Foundation
- 171011 Central Research Institute, Fukuoka University
Collapse
Affiliation(s)
- Hitoshi Izu
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies) Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita, Osaka, 565-0871, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, NE-6, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-4 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Masaya Okamura
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Misa Tomoda
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies) Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Sze Koon Lee
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Takuya Akai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Vijayendran K K Praneeth
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Center of Examination, Somaiya Vidyavihar University, Mumbai, Maharashtra, 400077, India
| | - Mari Kanaike
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Satoshi Kawata
- Department of Chemistry, Faculty of Science, Fukuoka University Nanakuma, Jonan-ku 8-19-1, Fukuoka, 814-0180, Japan
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Fu R, Lei D, Li Z, Zhang H, Zhao X, Tao S. Fe 3O 4 nanostructure films as solar-thermal conversion materials for ammonia synthesis. Chem Commun (Camb) 2024; 60:13055-13058. [PMID: 39435677 DOI: 10.1039/d4cc04112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Here, we report that black photothermal materials elevate solar heating temperatures across high solar absorption and low infrared radiation. Fe3O4 nanostructure films can be heated to 350 °C under light irradiation, and this system shows effective visible-light-driven ammonia synthesis production of 3677 μg g-1 h-1 under gas-solid phase catalysis without noble metals.
Collapse
Affiliation(s)
- Rong Fu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, P. R. China.
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Di Lei
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Zhenlu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hangjian Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaofei Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, P. R. China
| | - Shuo Tao
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, P. R. China.
| |
Collapse
|
19
|
Son YJ, Kim D, Park JW, Ko K, Yu Y, Hwang SJ. Heteromultimetallic Platform for Enhanced C-H Bond Activation: Aluminum-Incorporated Dicopper Complex Mimicking Cu-ZSM-5 Structure and Oxidative Reactivity. J Am Chem Soc 2024; 146:29810-29823. [PMID: 39420644 DOI: 10.1021/jacs.4c11614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Bimetallic complexes have sparked interest across various chemical disciplines, driving advancements in research. Recent advancements in this field have shed light on complex reactions in metalloenzymes and unveiled new chemical transformations. Two primary types of bimetallic platforms have emerged: (1) systems where both metals actively participate in reactivity, and (2) systems where one metal mediates the reaction while the other regulates reactivity. This study introduces a novel multinucleating ligand platform capable of integrating both types of bimetallic systems. To demonstrate the significance of this platform, we synthesized a unique dicopper complex incorporating aluminum in its coordination environment. This complex serves as the first structural model for the active site in copper-based zeolites, highlighting the role of aluminum in hydrogen atom abstraction reactivity. Comparative studies of oxidative C-H bond activation revealed that the inclusion of aluminum significantly alters the thermodynamic driving force (by -11 kcal mol-1) for bond activation and modifies the proton-coupled electron-transfer reaction mechanism, resulting in a 14-fold rate increase. Both computational and experimental data support the high modularity of this multinucleating ligand platform, offering a new approach to fine-tune the reactivity of bimetallic complexes.
Collapse
Affiliation(s)
- Yeong Jun Son
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dongyoung Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jae Wan Park
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kwangwook Ko
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yeongjun Yu
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seung Jun Hwang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
20
|
Payne D, Keller LM, Larson J, Bothner B, Colman DR, Boyd ES. Alternative sources of molybdenum for Methanococcus maripaludis and their implication for the evolution of molybdoenzymes. Commun Biol 2024; 7:1337. [PMID: 39414898 PMCID: PMC11484787 DOI: 10.1038/s42003-024-07049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024] Open
Abstract
Molybdoenzymes are essential in global nitrogen, carbon, and sulfur cycling. To date, the only known bioavailable source of molybdenum (Mo) is molybdate. However, in the sulfidic and anoxic (euxinic) habitats that predominate in modern subsurface environments and that were pervasive prior to Earth's widespread oxygenation, Mo occurs as soluble tetrathiomolybdate ion and molybdenite mineral that is not known to be bioavailable. This presents a paradox for how organisms obtain Mo to support molybdoenzymes in these environments. Here, we show that tetrathiomolybdate and molybdenite sustain the high Mo demand of a model anaerobic methanogen, Methanococcus maripaludis, grown via Mo-dependent formate dehydrogenase, formylmethanofuran dehydrogenase, and nitrogenase. Cells grown with tetrathiomolybdate and molybdenite have similar growth kinetics, Mo content, and transcript levels of proteins involved in Mo transport and cofactor biosynthesis when compared to those grown with molybdate, implying similar mechanisms of transport and cofactor biosynthesis. These results help to reconcile the paradox of how Mo is acquired in modern and ancient anaerobes and provide new insight into how molybdoenzymes could have evolved prior to Earth's oxygenation.
Collapse
Affiliation(s)
- Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - James Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
21
|
Wannipurage DC, Yang ES, Chivington AD, Fletcher J, Ray D, Yamamoto N, Pink M, Goicoechea JM, Smith JM. A Transient Iron Carbide Generated by Cyaphide Cleavage. J Am Chem Soc 2024; 146:27173-27178. [PMID: 39287969 DOI: 10.1021/jacs.4c10704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Despite their potential relevance as molecular models for industrial and biological catalysis, well-defined mononuclear iron carbide complexes are unknown, in part due to the limited number of appropriate C1 synthons. Here, we show the ability of the cyaphide anion (C≡P-) to serve as a C1 source. The high spin (S = 2) cyaphide complex PhB(tBuIm)3Fe-C≡P (PhB(tBuIm)3- = phenyl(tris(3-tert-butylimidazol-2-ylidene)borate) is readily accessed using the new cyaphide transfer reagent [Mg(DippNacNac)(CP)]2 (DippNacNac = CH{C(CH3)N(Dipp)}2 and Dipp = 2,6-di(iso-propyl)phenyl). Phosphorus atom abstraction is effected by the three-coordinate Mo(III) complex Mo(NtBuAr)3 (Ar = 3,5-Me2C6H3), which produces the known phosphide (tBuArN)3Mo≡P along with a transient iron carbide complex PhB(tBuIm)3Fe≡C. Electronic structure calculations reveal that PhB(tBuIm)3Fe≡C adopts a doublet ground state with nonzero spin density on the carbide ligand. While isolation of this complex is thwarted by rapid dimerization to afford the corresponding diiron ethynediyl complex, the carbide can be intercepted by styrene to provide an iron alkylidene.
Collapse
Affiliation(s)
- Duleeka C Wannipurage
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Eric S Yang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Austin D Chivington
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jess Fletcher
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Debanik Ray
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nobuyuki Yamamoto
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jose M Goicoechea
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
22
|
Solomon JB, Lee CC, Liu YA, Duffin C, Ribbe MW, Hu Y. Ammonia synthesis via an engineered nitrogenase assembly pathway in Escherichia coli. Nat Catal 2024; 7:1130-1141. [PMID: 39713742 PMCID: PMC11661828 DOI: 10.1038/s41929-024-01229-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/19/2024] [Indexed: 12/24/2024]
Abstract
Heterologous expression of nitrogenase has been actively pursued because of the far-reaching impact of this enzyme on agriculture, energy and environment. Yet, isolation of an active two-component, metallocentre-containing nitrogenase from a non-diazotrophic host has yet to be accomplished. Here, we report the heterologous synthesis of an active Mo-nitrogenase by combining genes from Azotobacter vinelandii and Methanosarcina acetivorans in Escherichia coli. Metal, activity and EPR analyses demonstrate the integrity of the metallocentres in the purified nitrogenase enzyme; whereas growth, nanoSIMS and NMR experiments illustrate diazotrophic growth and 15N enrichment by the E. coli expression strain, as well as accumulation of extracellular ammonia upon deletion of the ammonia transporter that permits incorporation of thus-generated N into the cellular mass of a non-diazotrophic E. coli strain. As such, this study provides a crucial prototype system that could be optimized/modified to enable future transgenic expression and biotechnological adaptations of nitrogenase.
Collapse
Affiliation(s)
- Joseph B. Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
| | - Yiling A. Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
| | - Calder Duffin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
| |
Collapse
|
23
|
Deng Y, Wang JX, Ghosh B, Lu Y. Enzymatic CO 2 reduction catalyzed by natural and artificial Metalloenzymes. J Inorg Biochem 2024; 259:112669. [PMID: 39059175 DOI: 10.1016/j.jinorgbio.2024.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
The continuously increasing level of atmospheric CO2 in the atmosphere has led to global warming. Converting CO2 into other carbon compounds could mitigate its atmospheric levels and produce valuable products, as CO2 also serves as a plentiful and inexpensive carbon feedstock. However, the inert nature of CO2 poses a major challenge for its reduction. To meet the challenge, nature has evolved metalloenzymes using transition metal ions like Fe, Ni, Mo, and W, as well as electron-transfer partners for their functions. Mimicking these enzymes, artificial metalloenzymes (ArMs) have been designed using alternative protein scaffolds and various metallocofactors like Ni, Co, Re, Rh, and FeS clusters. Both the catalytic efficiency and the scope of CO2-reduction product of these ArMs have been improved over the past decade. This review first focuses on the natural metalloenzymes that directly reduce CO2 by discussing their structures and active sites, as well as the proposed reaction mechanisms. It then introduces the common strategies for electrochemical, photochemical, or photoelectrochemical utilization of these native enzymes for CO2 reduction and highlights the most recent advancements from the past five years. We also summarize principles of protein design for bio-inspired ArMs, comparing them with native enzymatic systems and outlining challenges and opportunities in enzymatic CO2 reduction.
Collapse
Affiliation(s)
- Yunling Deng
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Jing-Xiang Wang
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Barshali Ghosh
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
24
|
Al-Romema AA, Plass F, Nizovtsev AV, Kahnt A, Tsogoeva SB. Synthesis and Photo/Radiation Chemical Characterization of a New Redox-Stable Pyridine-Triazole Ligand. Chemphyschem 2024; 25:e202400273. [PMID: 38819992 DOI: 10.1002/cphc.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
Photocatalysis using transition-metal complexes is widely considered the future of effective and affordable clean-air technology. In particular, redox-stable, easily accessible ligands are decisive. Here, we report a straightforward and facile synthesis of a new highly stable 2,6-bis(triazolyl)pyridine ligand, containing a nitrile moiety as a masked anchoring group, using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. The reported structure mimics the binding motif of uneasy to synthesize ligands. Pulse radiolysis under oxidizing and reducing conditions provided evidence for the high stability of the formed radical cation and radical anion 2,6-di(1,2,3-triazol-1-yl)-pyridine compound, thus indicating the feasibility of utilizing this as a ligand for redox active metal complexes and the sensitization of metal-oxide semiconductors (e. g., TiO2 nanoparticles or nanotubes).
Collapse
Affiliation(s)
- Abdulaziz A Al-Romema
- Department of Chemistry and Pharmacy, Chair for Organic Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolas-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Fabian Plass
- Leibniz Institute of Surface Engineering (IOM), Permoserstrasse 15, D-04318, Leipzig, Germany
- Department of Chemistry and Pharmacy, Chair for Physical Chemistry I, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Alexey V Nizovtsev
- Department of Chemistry and Pharmacy, Chair for Organic Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolas-Fiebiger-Strasse 10, 91058, Erlangen, Germany
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya, 117997, Moscow, Russian Federation
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM), Permoserstrasse 15, D-04318, Leipzig, Germany
- Department of Chemistry and Pharmacy, Chair for Physical Chemistry I, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Svetlana B Tsogoeva
- Department of Chemistry and Pharmacy, Chair for Organic Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolas-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| |
Collapse
|
25
|
Zhai X, Xue M, Zhao Q, Zheng Q, Song D, Tung CH, Wang W. Water-catalyzed iron-molybdenum carbyne formation in bimetallic acetylene transformation. Nat Commun 2024; 15:7729. [PMID: 39232032 PMCID: PMC11375111 DOI: 10.1038/s41467-024-52116-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Transition metal carbyne complexes are of fundamental importance in carbon-carbon bond formation, alkyne metathesis, and alkyne coupling reactions. Most reported iron carbyne complexes are stabilized by incorporating heteroatoms. Here we show the synthesis of bioinspired FeMo heterobimetallic carbyne complexes by the conversion of C2H2 through a diverse series of intermediates. Key reactions discovered include the reduction of a μ-η2:η2-C2H2 ligand with a hydride to produce a vinyl ligand (μ-η1:η2-CH = CH2), tautomerization of the vinyl ligand to a carbyne (μ-CCH3), and protonation of either the vinyl or the carbyne compound to form a hydrido carbyne heterobimetallic complex. Mechanistic studies unveil the pivotal role of H2O as a proton shuttle, facilitating the proton transfer that converts the vinyl group to a bridging carbyne.
Collapse
Affiliation(s)
- Xiaofang Zhai
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Minghui Xue
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Qiuting Zhao
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Qiucui Zheng
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Wenguang Wang
- College of Chemistry, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
26
|
Rana A, Peredkov S, Behrens M, DeBeer S. Probing the Local Environment in Potassium Salts and Potassium-Promoted Catalysts by Potassium Valence-to-Core X-ray Emission Spectroscopy. Inorg Chem 2024; 63:16217-16223. [PMID: 39162299 PMCID: PMC11372750 DOI: 10.1021/acs.inorgchem.4c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Potassium plays an important role in biology as well as a promoter in heterogeneous catalysis. There are, however, limited characterization techniques for potassium available in the literature. This study elucidates the potential of element-selective X-ray emission spectroscopy (XES) for characterizing the coordination environment and the electronic properties of potassium. A series of XES measurements were conducted, primarily focusing on the VtC transition (Kβ2,5) of potassium halides (KCl, KBr, and KI) and oxide-bound potassium salts, including potassium nitrate (KNO3) and potassium carbonate (K2CO3). Across the series of potassium halides, the VtC transition energy is observed to increase, as accurately reproduced by TDDFT calculations. Molecular orbital analysis suggests that the Kβ2,5 transition is primarily derived from halide np contributions, with the primary factor influencing the energy shift being the metal-ligand distances. For oxide ligands, an additional Kβ″ transition appears alongside the Kβ2,5, which is attributed to a low-energy ligand ns, as elucidated by theoretical calculations. Finally, the XES spectra of two potassium-promoted catalysts for ammonia decomposition/synthesis were measured. These spectra show that potassium within the catalyst is distinct from other K salts in the VtC region, which could be promising for understanding the role of potassium as an electronic promoter.
Collapse
Affiliation(s)
- Atanu Rana
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Malte Behrens
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
27
|
Dance I. The activating capture of N 2 at the active site of Mo-nitrogenase. Dalton Trans 2024; 53:14193-14211. [PMID: 39140218 DOI: 10.1039/d4dt01866d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Dinitrogen is inherently inert. This report describes detailed density functional calculations (with a 485+ atom model) of mechanistic steps by which the enzyme nitrogenase activates unreactive N2 at the intact active site FeMo-co, to form a key intermediate with bound HNNH. This mechanism does not bind N2 first and then add H atoms, but rather captures N2 ('N2-ready') that diffuses in through the substrate channel and enters a strategic gallery of H atom donors in the reaction zone, between Fe2 and Fe6. This occurs at the E4 stage of the complete mechanism. Exploration of possible reactions of N2 in this space leads to the conclusion that the first reaction step is transfer of H on Fe7 to one end of N2-ready, soon followed by Fe-N bond formation, and then a second H transfer from bridging S2BH to the other N. Two H-N bonds and one or two N-Fe bonds are formed, in some cases with a single transition state. The variable positions and orientations of N2-ready lead to various reaction trajectories and products. The favourable products resulting from this capture, judged by the criteria of reaction energies, reaction barriers, and mechanistic competence for further hydrogenation reactions in the nitrogenase cycle, have Fe2-NH-NH bonding. The trajectory of one N2 capture reaction is described in detail, and calculations that separate the H atom component and the 'heavy atom' components of the classical activation energy are described, in the context of possible H atom tunneling in the activation of N2-ready. I present arguments for the activation of N2 by the pathway of concerted hydrogenation and binding of N2-ready, alternative to the commonly assumed pathway of binding N2 first, with subsequent hydrogenation. The active site of nitrogenase is well primed for the thermodynamic and kinetic advantages of N2 capture.
Collapse
Affiliation(s)
- Ian Dance
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
28
|
Grieco A, Quereda-Moraleda I, Martin-Garcia JM. Innovative Strategies in X-ray Crystallography for Exploring Structural Dynamics and Reaction Mechanisms in Metabolic Disorders. J Pers Med 2024; 14:909. [PMID: 39338163 PMCID: PMC11432794 DOI: 10.3390/jpm14090909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
Enzymes are crucial in metabolic processes, and their dysfunction can lead to severe metabolic disorders. Structural biology, particularly X-ray crystallography, has advanced our understanding of these diseases by providing 3D structures of pathological enzymes. However, traditional X-ray crystallography faces limitations, such as difficulties in obtaining suitable protein crystals and studying protein dynamics. X-ray free-electron lasers (XFELs) have revolutionized this field with their bright and brief X-ray pulses, providing high-resolution structures of radiation-sensitive and hard-to-crystallize proteins. XFELs also enable the study of protein dynamics through room temperature structures and time-resolved serial femtosecond crystallography, offering comprehensive insights into the molecular mechanisms of metabolic diseases. Understanding these dynamics is vital for developing effective therapies. This review highlights the contributions of protein dynamics studies using XFELs and synchrotrons to metabolic disorder research and their application in designing better therapies. It also discusses G protein-coupled receptors (GPCRs), which, though not enzymes, play key roles in regulating physiological systems and are implicated in many metabolic disorders.
Collapse
Affiliation(s)
| | | | - Jose Manuel Martin-Garcia
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), 28006 Madrid, Spain; (A.G.); (I.Q.-M.)
| |
Collapse
|
29
|
Hirao K, Nakajima T, Chan B. Exploiting the Correlation between the 1s, 2s, and 2p Energies for the Prediction of Core-Level Binding Energies of Si, P, S, and Cl species. J Phys Chem A 2024; 128:6879-6897. [PMID: 39120958 DOI: 10.1021/acs.jpca.4c03252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The binding energies (BEs) of the 1s, 2s, and 2p core electrons of third-period elements (Si, P, S, Cl) were calculated using Hartree-Fock (HF) and B3LYP, BH&HLYP, and LC-BOP ΔSCF, and the shifted KS ΔSCF methods. Linear relationships between two BEs were derived and compared with the Auger parameter. The derived lines are essentially parallel, with only the intercepts differing. The difference in intercepts is due to the lack of electron correlation effects in HF and the self-interaction errors (SIEs) of the functional. The slope is the slope of the linear relationship between the chemical shifts. The straight lines between the 2s and 2p BEs also coincided with the Auger parameter lines, which have a slope of 1 by definition and an intercept being the difference between the 2s and 2p BEs. The shifted KS ΔSCF scheme compensates for SIEs, yielding equations that are approximately invariant. The calculated average gaps for the 2s and 2p BEs are 51.21 eV for Si, 57.48 eV for P, 63.85 eV for S, and 70.48 eV for Cl. The straight lines representing the relationships between the BEs of the 1s and 2s and 1s and 2p electrons are also parallel to each other in ΔSCF and converge into a single line in the shifted ΔSCF scheme. However, these lines are steeper than the Auger parameter line. The derived relationships can be used to predict unknown BEs, which we have applied to many molecules. The results are highly accurate, with mean absolute errors (MAEs) of less than 0.2 eV compared to experimental values.
Collapse
Affiliation(s)
- Kimihiko Hirao
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano, Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Takahito Nakajima
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Bun Chan
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
30
|
Roemelt C, Peredkov S, Neese F, Roemelt M, DeBeer S. Valence-to-core X-ray emission spectroscopy of transition metal tetrahalides: mechanisms governing intensities. Phys Chem Chem Phys 2024; 26:19960-19975. [PMID: 38994715 DOI: 10.1039/d4cp00967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Valence-to-core (VtC) X-ray emission spectroscopy offers the opportunity to probe the valence electronic structure of a system filtered by selection rules. From this, the nature of its ligands can be inferred. While a preceding 1s ionization creates a core hole, in VtC XES this core hole is filled with electrons from mainly ligand based orbitals. In this work, we investigated the trends in the observed VtC intensities for a series of transition metal halides, which spans the first row transition metals from manganese to copper. Further, with the aid of computational studies, we corroborated these trends and identified the mechanisms and factors that dictate the observed intensity trends. Small amounts of metal p contribution to the ligand orbitals are known to give rise to intensity of a VtC transition. By employing an LCAO (linear combination of atomic orbitals) approach, we were able to assess the amount of metal p contribution to the ligand molecular orbitals, as well as the role of the transition dipole moment and correlate these factors to the experimentally observed intensities. Finally, by employing an ano (atomic natural orbital) basis set within the calculations, the nature of the metal p contribution (3p vs. 4p) was qualitatively assessed and their trends discussed within the same transition metal halide series.
Collapse
Affiliation(s)
- Christina Roemelt
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Michael Roemelt
- Humboldt University Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
31
|
Li Y, Xu CQ, Chen C, Zhang Y, Liu S, Zhuang Z, Zhang Y, Zhang Q, Li Z, Chen Z, Zheng L, Cheong WC, Wu K, Jiang G, Xiao H, Lian C, Wang D, Peng Q, Li J, Li Y. Carbon-Boosted and Nitrogen-Stabilized Isolated Single-Atom Sites for Direct Dehydrogenation of Lower Alkanes. J Am Chem Soc 2024. [PMID: 39031766 DOI: 10.1021/jacs.4c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Lower olefins are widely used in the chemical industry as basic carbon-based feedstocks. Here, we report the catalytic system featuring isolated single-atom sites of iridium (Ir1) that can function within the entire temperature range of 300-600 °C and transform alkanes with conversions close to thermodynamics-dictated levels. The high turnover frequency values of the Ir1 system are comparable to those of homogeneous catalytic reactions. Experimental data and theoretical calculations both indicate that Ir1 is the primary catalytic site, while the coordinating C and N atoms help to enhance the activity and stability, respectively; all three kinds of elements cooperatively contribute to the high performance of this novel active site. We have further immobilized this catalyst on particulate Al2O3, and we found that the resulting composite system under mimicked industrial conditions could still give high catalytic performances; in addition, we have also developed and established a new scheme of periodical in situ regeneration specifically for this composite particulate catalyst.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Beijing Single-Atom Catalysis Technology Co., Ltd., Beijing 100094, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shoujie Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zewen Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yaoyuan Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Qiyang Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zheng Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
| | - Weng-Chon Cheong
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Konglin Wu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chao Lian
- Beijing Single-Atom Catalysis Technology Co., Ltd., Beijing 100094, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qing Peng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Yang D, Wang B, Qu J. Construction and Function of Thiolate-Bridged Diiron N xH y Nitrogenase Model Complexes. Acc Chem Res 2024; 57:1761-1776. [PMID: 38861704 DOI: 10.1021/acs.accounts.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
ConspectusBiological nitrogen fixation mediated by nitrogenases has garnered significant research interest due to its critical importance to the development of efficient catalysts for mild ammonia synthesis. Although the active center of the most studied FeMo-nitrogenases has been determined to be a complicated [Fe7S9MoC] hetero-multinuclear metal-sulfur cluster known as the FeMo-cofactor, the exact binding site and reduction pathway of N2 remain a subject of debate. Over the past decades, the majority of studies have focused on mononuclear molybdenum or iron centers as potential reaction sites. In stark contrast, cooperative activation of N2 through bi- or multimetallic centers has been largely overlooked and underexplored, despite the renewed interest sparked by recent biochemical and computational studies. Consequently, constructing bioinspired bi- or multinuclear metallic model complexes presents an intriguing yet challenging prospect. In this Account, we detail our long-standing research on the design and synthesis of novel thiolate-bridged diiron complexes as nitrogenase models and their application to chemical simulations of potential biological N2 reduction pathways.Inspired by the structural and electronic features of the potential diiron active center in the belt region of the FeMo-cofactor, we have designed and synthesized a series of new thiolate-bridged diiron nitrogenase model complexes, wherein iron centers with +2 or +3 oxidation states are coordinated by Cp* as carbon-based donors and thiolate ligands as sulfur donors. Through the synergistic interaction between the two iron centers, unstable diazene (NH═NH) species can be trapped to generate the first example of a [Fe2S2]-type complex bearing a cis-μ-η1:η1-NH═NH subunit. Significantly, this species can not only catalyze the reductive N-N bond cleavage of hydrazine to ammonia but also trigger a stepwise reduction sequence NH═NH → [NH2-NH]- → [NH]2-(+NH3) → [NH2]- → NH3. Furthermore, an unprecedented thiolate-bridged diiron μ-nitride featuring a bent Fe-N-Fe moiety was successfully isolated and structurally characterized. Importantly, this diiron μ-nitride can undergo successive proton-coupled electron transfer processes to efficiently release ammonia in the presence of separate protons and electrons and can even be directly hydrogenated using H2 as a combination of protons and electrons for high-yield ammonia formation. Based on combined experimental and computational studies, we proposed two distinct reductive transformation sequences on the diiron centers, which involve a series of crucial NxHy intermediates. Moreover, we also achieved catalytic N2 reduction to silylamines with [Fe2S2]-type complexes by ligand modulation.Our bioinspired diiron cooperative scaffold may provide a suitable model for probing the potential N2 stepwise reduction pathways from the molecular level. Different from the traditional alternating and distal pathways dominated by mononuclear iron or molybdenum complexes, our proposed alternating transformation route based on the diiron centers may not involve the N2H4 intermediate, and the convergence point of the alternating and terminal pathways is imide, not amide. Our research strategy could inform the design and development of new types of bioinspired catalysts for mild and efficient nitrogen reduction in the future.
Collapse
Affiliation(s)
- Dawei Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Bioreactor Engineering, Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
33
|
Leyser da Costa Gouveia T, Maganas D, Neese F. Restricted Open-Shell Hartree-Fock Method for a General Configuration State Function Featuring Arbitrarily Complex Spin-Couplings. J Phys Chem A 2024; 128:5041-5053. [PMID: 38886177 PMCID: PMC11215774 DOI: 10.1021/acs.jpca.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
In this work, we present a general spin restricted open-shell Hartree-Fock (ROHF) implementation that is able to generate self-consistent field (SCF) wave functions for an arbitrary configuration state function (CSF). These CSFs can contain an arbitrary number of unpaired electrons in arbitrary spin-couplings. The resulting method is named CSF-ROHF. We demonstrate that starting from the ROHF energy expression, for example, the one given by Edwards and Zerner, it is possible to obtain the values of the ROHF vector-coupling coefficients by setting up an open-shell for each group of consecutive parallel-coupled spins dictated by the unique spin-coupling pattern of any given CSF. To achieve this important and nontrivial goal, we employ the machinery of the iterative configuration expansion configuration interaction (ICE-CI) method, which is able to tackle general CI problems on the basis of spin-adapted CSFs. This development allows for the efficient generation of SCF spin-eigenfunctions for systems with complex spin-coupling patterns, such as polymetallic chains and metal clusters, while maintaining SCF scaling with system size (quadratic or less, depending on the specific algorithm and approximations chosen).
Collapse
Affiliation(s)
| | - Dimitrios Maganas
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Frank Neese
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
34
|
Jangid B, Hermes MR, Gagliardi L. Core Binding Energy Calculations: A Scalable Approach with the Quantum Embedding-Based Equation-of-Motion Coupled-Cluster Method. J Phys Chem Lett 2024; 15:5954-5963. [PMID: 38810243 DOI: 10.1021/acs.jpclett.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
We investigated the use of density matrix embedding theory to facilitate the computation of core ionization energies (IPs) of large molecules at the equation-of-motion coupled-cluster singles doubles with perturbative triples (EOM-CCSD*) level in combination with the core-valence separation (CVS) approximation. The unembedded IP-CVS-EOM-CCSD* method with a triple-ζ basis set produced ionization energies within 1 eV of experiment with a standard deviation of ∼0.2 eV for the core65 data set. The embedded variant contributed very little systematic error relative to the unembedded method, with a mean unsigned error of 0.07 eV and a standard deviation of ∼0.1 eV, in exchange for accelerating the calculations by many orders of magnitude. By employing embedded EOM-CC methods, we computed the core ionization energies of the uracil hexamer, doped fullerene, and chlorophyll molecule, utilizing up to ∼4000 basis functions within 1 eV from experimental values. Such calculations are not currently possible with the unembedded EOM-CC method.
Collapse
Affiliation(s)
- Bhavnesh Jangid
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew R Hermes
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
35
|
Hossain K, Atta S, Chakraborty AB, Karmakar S, Majumdar A. Nonheme binuclear transition metal complexes with hydrosulfide and polychalcogenides. Chem Commun (Camb) 2024; 60:4979-4998. [PMID: 38654604 DOI: 10.1039/d4cc00929k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The intriguing chemistry of chalcogen (S, Se)-containing ligands and their capability to bridge multiple metal centres have resulted in a plethora of reports on transition metal complexes featuring hydrosulfide (HS-) and polychalcogenides (En2-, E = S, Se). While a large number of such molecules are strictly organometallic complexes, examples of non-organometallic complexes featuring HS- and En2- with N-/O-donor ligands are relatively rare. The general synthetic procedure for the transition metal-hydrosulfido complexes involves the reaction of the corresponding metal salts with HS-/H2S and this is prone to generate sulfido bridged oligomers in the absence of sterically demanding ligands. On the other hand, the synthetic methods for the preparation of transition metal-polychalcogenido complexes include the reaction of the corresponding metal salts with En2- or the two electron oxidation of low-valent metals with elemental chalcogen, often at an elevated temperature and/or for a long time. Recently, we have developed new synthetic methods for the preparation of two new classes of binuclear transition metal complexes featuring either HS-, or Sn2- and Sen2- ligands. The new method for the synthesis of transition metal-hydrosulfido complexes involved transition metal-mediated hydrolysis of thiolates at room temperature (RT), while the method for the synthesis of transition metal-polychalcogenido complexes involved redox reaction of coordinated thiolates and exogenous elemental chalcogens at RT. An overview of the synthetic aspects, structural properties and intriguing reactivity of these two new classes of transition metal complexes is presented.
Collapse
Affiliation(s)
- Kamal Hossain
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Sayan Atta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Anuj Baran Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
36
|
Geoghegan BL, Bilyj JK, Bernhardt PV, DeBeer S, Cutsail GE. X-ray absorption and emission spectroscopy of N 2S 2 Cu(II)/(III) complexes. Dalton Trans 2024; 53:7828-7838. [PMID: 38624161 DOI: 10.1039/d4dt00085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
This study investigates the influence of ligand charge on transition energies in a series of CuN2S2 complexes based on dithiocarbazate Schiff base ligands using Cu K-edge X-ray absorption spectroscopy (XAS) and Kβ valence-to-core (VtC) X-ray emission spectroscopy (XES). By comparing the formally Cu(II) complexes [CuII(HL1)] (HL12- = dimethyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and [CuII(HL2)] (HL22- = dibenzyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and the formally Cu(III) complex [CuIII(L2)], distinct changes in transition energies are observed, primarily attributed to the metal oxidation state. Density functional theory (DFT) calculations demonstrate how an increased negative charge on the deprotonated L23- ligand stabilizes the Cu(III) center through enhanced charge donation, modulating the core transition energies. Overall, significant shifts to higher energies are noted upon metal oxidation, emphasizing the importance of scrutinizing ligand structure in XAS/VtC XES analysis. The data further support the redox-innocent role of the Schiff base ligands and underscore the criticality of ligand protonation levels in future spectroscopic studies, particularly for catalytic intermediates. The combined XAS-VtC XES methodology validates the Cu(III) oxidation state assignment while offering insights into ligand protonation effects on core-level spectroscopic transitions.
Collapse
Affiliation(s)
- Blaise L Geoghegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, UK
| | - Jessica K Bilyj
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| |
Collapse
|
37
|
Thangudu S, Wu CH, Hwang KC. Photocatalytic Dinitrogen Reduction to Ammonia over Biomimetic FeMoS x Nanosheets. ACS OMEGA 2024; 9:20629-20635. [PMID: 38737058 PMCID: PMC11080007 DOI: 10.1021/acsomega.4c03076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Reduction of atmospheric dinitrogen (N2) to ammonia (NH3) using water and sunlight in the absence of sacrificial reducing reagents at room temperature is very challenging and is considered an eco-friendly approach to meet the rapidly increasing demand for nitrogen storage, fertilizers, and a sustainable society. Currently, ammonia production via the energy-intensive Haber-Bosch process causes ∼350 million tons of carbon dioxide (CO2) emission per year. Interestingly, natural N2 fixation by the nitrogenase enzyme occurs under ambient conditions. Unfortunately, N2 fixation on biomimetic catalysts has rarely been studied. To mimic biological nitrogen fixation, herein, we synthesized the novel iron molybdenum sulfide (FeMoSx) micro-/nanosheets via a simple hydrothermal approach for the first time. Further, we successfully demonstrated the photochemical conversion of N2 to NH3 over a biomimetic FeMoSx photocatalyst. The estimated yield is around 99.79 ± 6.0 μmol/h/g photocatalyst with a quantum efficiency of ∼0.028% at 532 nm visible-light wavelength. Besides, we also systematically studied the influence of key factors to further improve NH3 yields. Overall, this study paves a new pathway to fabricate carbon-free, photochemical N2 fixation materials for future applications.
Collapse
Affiliation(s)
- Suresh Thangudu
- Department
of Chemistry, National Tsing
Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Chein Hou Wu
- Department
of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Kuo Chu Hwang
- Department
of Chemistry, National Tsing
Hua University, Hsinchu 30013, Taiwan R.O.C
| |
Collapse
|
38
|
Mondal T, Leitner W, Hölscher M. Computational design of cooperatively acting molecular catalyst systems: carbene based tungsten- or molybdenum-catalysts with rhodium- or iridium-complexes for the ionic hydrogenation of N 2 to NH 3. Dalton Trans 2024; 53:7890-7898. [PMID: 38634911 DOI: 10.1039/d4dt00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
This density functional theory (DFT) study explores the efficacy of cooperative catalytic systems in enabling the ionic hydrogenation of N2 with H2, leading to NH3 formation. A set of N-heterocyclic carbene-based pincer tungsten/molybdenum metal complexes of the form [(PCP)M1(H)2] (M1 = W/Mo) were chosen to bind N2 at the respective metal centres. Simultaneously, cationic rhodium/iridium complexes of type [Cp*M2{2-(2-pyridyl)phenyl}(CH3CN)]+ (Cp* = C5(CH3)5 and M2 = Rh/Ir), are employed as cooperative coordination partners for heterolytic H2 splitting. The stepwise transfer of protons and hydrides to the bound N2 and intermediate NxHy units results in the formation of NH3. Interestingly, the calculated results reveal an encouraging low range of energy spans ranging from ∼30 to 42 kcal mol-1 depending on different combinations of ligands and metal complexes. The optimal combination of pincer ligand and metal center allowed for an energy span of unprecedented 29.7 kcal mol-1 demonstrating significant potential for molecular catalysts for the N2/H2 reaction system. While exploring obvious potential off-cycle reactions leading to catalyst deactivation, the computed results indicate that no increase in energy span would need to be expected.
Collapse
Affiliation(s)
- Totan Mondal
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
| |
Collapse
|
39
|
Li Y, Wei J, Han J, Chen XD. Synthesis and crystal structure of the cluster (Et 4N)[(Tp*)MoFe 3S 3(μ 3-NSiMe 3)(N 3) 3]. Acta Crystallogr E Crystallogr Commun 2024; 80:691-694. [PMID: 38845704 PMCID: PMC11151308 DOI: 10.1107/s2056989024004833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
The title compound, tetra-ethyl-ammonium tri-azido-tri-μ3-sulfido-[μ3-(tri-methyl-sil-yl)aza-nediido][tris-(3,5-di-methyl-pyrazol-1-yl)hydro-borato]triiron(+2.33)molybdenum(IV), (C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3] or (Et4N)[(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3] [Tp* = tris-(3,5-di-methyl-pyrazol-1-yl)hydro-bor-ate(1-)], crystallizes as needle-like black crystals in space group P . In this cluster, the Mo site is in a distorted octa-hedral coordination model, coordinating three N atoms on the Tp* ligand and three μ3-bridging S atoms in the core. The Fe sites are in a distorted tetra-hedral coordination model, coordinating two μ3-bridging S atoms, one μ3-bridging N atom from Me3SiN2-, and another N atom on the terminal azide ligand. This type of heterometallic and heteroleptic single cubane cluster represents a typical example within the Mo-Fe-S cluster family, which may be a good reference for understanding the structure and function of the nitro-genase FeMo cofactor. The residual electron density of disordered solvent mol-ecules in the void space could not be reasonably modeled, thus the SQUEEZE [Spek (2015). Acta Cryst. C71, 9-18] function was applied. The solvent contribution is not included in the reported mol-ecular weight and density.
Collapse
Affiliation(s)
- Yue Li
- Nanjing Normal University, 1 Wenyuan Road, Qixia district, Nanjing, Jiangsu 210023, People’s Republic of China
| | - Jia Wei
- Nanjing Normal University, 1 Wenyuan Road, Qixia district, Nanjing, Jiangsu 210023, People’s Republic of China
| | - Jie Han
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong
| | - Xu-Dong Chen
- Nanjing Normal University, 1 Wenyuan Road, Qixia district, Nanjing, Jiangsu 210023, People’s Republic of China
| |
Collapse
|
40
|
Peredkov S, Pereira N, Grötzsch D, Hendel S, Wallacher D, DeBeer S. PINK: a tender X-ray beamline for X-ray emission spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:622-634. [PMID: 38662410 PMCID: PMC11075709 DOI: 10.1107/s1600577524002200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024]
Abstract
A high-flux beamline optimized for non-resonant X-ray emission spectroscopy (XES) in the tender X-ray energy range has been constructed at the BESSY II synchrotron source. The beamline utilizes a cryogenically cooled undulator that provides X-rays over the energy range 2.1 keV to 9.5 keV. This energy range provides access to XES [and in the future X-ray absorption spectroscopy (XAS)] studies of transition metals ranging from Ti to Cu (Kα, Kβ lines) and Zr to Ag (Lα, Lβ), as well as light elements including P, S, Cl, K and Ca (Kα, Kβ). The beamline can be operated in two modes. In PINK mode, a multilayer monochromator (E/ΔE ≃ 30-80) provides a high photon flux (1014 photons s-1 at 6 keV and 300 mA ring current), allowing non-resonant XES measurements of dilute substances. This mode is currently available for general user operation. X-ray absorption near-edge structure and resonant XAS techniques will be available after the second stage of the PINK commissioning, when a high monochromatic mode (E/ΔE ≃ 10000-40000) will be facilitated by a double-crystal monochromator. At present, the beamline incorporates two von Hamos spectrometers, enabling time-resolved XES experiments with time scales down to 0.1 s and the possibility of two-color XES experiments. This paper describes the optical scheme of the PINK beamline and the endstation. The design of the two von Hamos dispersive spectrometers and sample environment are discussed here in detail. To illustrate, XES spectra of phosphorus complexes, KCl, TiO2 and Co3O4 measured using the PINK setup are presented.
Collapse
Affiliation(s)
- Sergey Peredkov
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, Mülheim an der Ruhr, Germany
| | - Nilson Pereira
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, Mülheim an der Ruhr, Germany
| | - Daniel Grötzsch
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), Institute of Optics and Atomic Physics, Technical University of Berlin, Hardenbergstrasse 36, Berlin, Germany
| | - Stefan Hendel
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, Berlin, Germany
| | - Dirk Wallacher
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, Berlin, Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, Mülheim an der Ruhr, Germany
| |
Collapse
|
41
|
Xie ZL, Jin WT, Zhou ZH. Analyses of the electronic structures of FeFe-cofactors compared with those of FeMo- and FeV-cofactors and their P-clusters. Dalton Trans 2024; 53:6529-6536. [PMID: 38299993 DOI: 10.1039/d3dt04126c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The electronic structures of FeFe-cofactors (FeFe-cos) in resting and turnover states, together with their PN clusters from iron-only nitrogenases, have been calculated using the bond valence method, and their crystallographic data were reported recently and deposited in the Protein Data Bank (PDB codes: 8BOQ and 8OIE). The calculated results have also been compared with those of their homologous Mo- and V-nitrogenases. For FeFe-cos in the resting state, Fe1/2/4/5/6/7/8 atoms are prone to Fe3+, while the Fe3 atom shows different degrees of mixed valences. The results support that the Fe8 atom at the terminal positions of FeFe-cos possesses the same oxidation states as the Mo3+/V3+ atoms of FeMo-/FeV-cos. In the turnover state, the overall oxidation state of FeFe-co is slightly reduced than those in the resting species, and its electronic configuration is rearranged after the substitution of S2B with OH, compatible with those found in CO-bound FeV-co. Moreover, the calculations give the formal oxidation states of 6Fe2+-2Fe3+ for the electronic structures of PN clusters in Fe-nitrogenases. By the comparison of Mo-, V- and Fe-nitrogenases, the overall oxidation levels of 7Fe atoms (Fe1-Fe7) for both FeFe- and FeMo-cos in resting states are found to be higher than that of FeV-co. For the PN clusters in MoFe-, VFe- and FeFe-proteins, they all exhibit a strong reductive character.
Collapse
Affiliation(s)
- Zhen-Lang Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Wan-Ting Jin
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
42
|
Xu G, Cui YS, Jiang XL, Xu CQ, Li J, Chen XD. Synthesis and characterization of iron clusters with an icosahedral [Fe@Fe 12] 16+ Core. Natl Sci Rev 2024; 11:nwad327. [PMID: 38487495 PMCID: PMC10939364 DOI: 10.1093/nsr/nwad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 03/17/2024] Open
Abstract
Iron-metal clusters are crucial in a variety of critical biological and material systems, including metalloenzymes, catalysts, and magnetic storage devices. However, a synthetic high-nuclear iron cluster has been absent due to the extreme difficulty in stabilizing species with direct iron-iron bonding. In this work, we have synthesized, crystallized, and characterized a (Tp*)4W4S12(Fe@Fe12) cluster (Tp* = tris(3,5-dimethyl-1-pyrazolyl)borate(1-)), which features a rare trideca-nuclear, icosahedral [Fe@Fe12] cluster core with direct multicenter iron-iron bonding between the interstitial iron (Fei) and peripheral irons (Fep), as well as Fep···Fep ferromagnetic coupling. Quantum chemistry studies reveal that the stability of the cluster arises from the 18-electron shell-closing of the [Fe@Fe12]16+ core, assisted by its bonding interactions with the peripheral tridentate [(Tp*)WS3]4- ligands which possess both S→Fe donation and spin-polarized Fe-W σ bonds. The ground-state electron spin is theoretically predicted to be S = 32/2 for the cluster. The existence of low oxidation-state (OS ∼ +1.23) iron in this compound may find interesting applications in magnetic storage, spintronics, redox chemistry, and cluster catalysis.
Collapse
Affiliation(s)
- Gan Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yun-Shu Cui
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue-Lian Jiang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xu-Dong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China
| |
Collapse
|
43
|
Hossain K, Roy Choudhury A, Majumdar A. Generation and Reactivity of Polychalcogenide Chains in Binuclear Cobalt(II) Complexes. JACS AU 2024; 4:771-787. [PMID: 38425921 PMCID: PMC10900221 DOI: 10.1021/jacsau.3c00790] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
A series of six binuclear Co(II)-thiolate complexes, [Co2(BPMP)(S-C6H4-o-X)2]1+ (X = OMe, 2; NH2, 3), [Co2(BPMP)(μ-S-C6H4-o-O)]1+ (4), and [Co2(BPMP)(μ-Y)]1+ (Y = bdt, 5; tdt, 6; mnt, 7), has been synthesized from [Co2(BPMP)(MeOH)2(Cl)2]1+ (1a) and [Co2(BPMP)(Cl)2]1+ (1b), where BPMP1- is the anion of 2,6-bis[[bis(2-pyridylmethyl)amino]methyl]-4-methylphenol. While 2 and 3 could allow the two-electron redox reaction of the two coordinated thiolates with elemental sulfur (S8) to generate [Co2(BPMP)(μ-S5)]1+ (8), the complexes, 4-7, could not undergo a similar reaction. An analogous redox reaction of 2 with elemental selenium ([Se]) produced [{Co2(BPMP)(μ-Se4)}{Co2(BPMP)(μ-Se3)}]2+ (9a) and [Co2(BPMP)(μ-Se4)]1+ (9b). Further reaction of these polychalcogenido complexes, 8 and 9a/9b, with PPh3 allowed the isolation of [Co2(BPMP)(μ-S)]1+ (10) and [Co2(BPMP)(μ-Se2)]1+ (11), which, in turn, could be converted back to 8 and 9a upon treatment with S8 and [Se], respectively. Interestingly, while the redox reaction of the polyselenide chains in 9a and 11 with S8 produced 8 and [Se], the treatment of 8 with [Se] gave back only the starting material (8), thus demonstrating the different redox behavior of sulfur and selenium. Furthermore, the reaction of 8 and 9a/9b with activated alkynes and cyanide (CN-) allowed the isolation of the complexes, [Co2(BPMP)(μ-E2C2(CO2R)2)]1+ (E = S: 12a, R = Me; 12b, R = Et; E = Se: 13a, R = Me; 13b, R = Et) and [Co2(BPMP)(μ-SH)(NCS)2] (14), respectively. The present work, thus, provides an interesting synthetic strategy, interconversions, and detailed comparative reactivity of binuclear Co(II)-polychalcogenido complexes.
Collapse
Affiliation(s)
- Kamal Hossain
- School
of Chemical Sciences, Indian Association
for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Angshuman Roy Choudhury
- Department
of Chemical Sciences, Indian
Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli P.O., Mohali, Punjab 140306, India
| | - Amit Majumdar
- School
of Chemical Sciences, Indian Association
for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
44
|
Siegbahn PEM. Computational Model Study of the Experimentally Suggested Mechanism for Nitrogenase. J Phys Chem B 2024; 128:985-989. [PMID: 38237063 PMCID: PMC10839828 DOI: 10.1021/acs.jpcb.3c07675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
The mechanism for N2 activation in the E4 state of nitrogenase was investigated by model calculations. In the experimentally suggested mechanism, the E4 state is obtained after four reductions to the ground state. In a recent theoretical study, results for a different mechanism have been found in excellent agreement with available Electron Paramagnetic Resonance (EPR) experiments for E4. The two hydrides in E4 leave as H2 concertedly with the binding of N2. The mechanism suggested differs from the experimentally suggested one by a requirement for four activation steps prior to catalysis. In the present study, the experimentally suggested mechanism is studied using the same methods as those used in the previous study on the theoretical mechanism. The computed results make it very unlikely that a structure obtained after four reductions from the ground state has two hydrides, and the experimentally suggested mechanism does therefore not agree with the EPR experiments for E4. Another structure with only one hydride is here suggested to be the one that has been observed to bind N2 after only four reductions of the ground state.
Collapse
Affiliation(s)
- Per E. M. Siegbahn
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
45
|
Chen S, Jelic J, Rein D, Najafishirtari S, Schmidt FP, Girgsdies F, Kang L, Wandzilak A, Rabe A, Doronkin DE, Wang J, Friedel Ortega K, DeBeer S, Grunwaldt JD, Schlögl R, Lunkenbein T, Studt F, Behrens M. Highly loaded bimetallic iron-cobalt catalysts for hydrogen release from ammonia. Nat Commun 2024; 15:871. [PMID: 38286982 PMCID: PMC10824716 DOI: 10.1038/s41467-023-44661-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Ammonia is a storage molecule for hydrogen, which can be released by catalytic decomposition. Inexpensive iron catalysts suffer from a low activity due to a too strong iron-nitrogen binding energy compared to more active metals such as ruthenium. Here, we show that this limitation can be overcome by combining iron with cobalt resulting in a Fe-Co bimetallic catalyst. Theoretical calculations confirm a lower metal-nitrogen binding energy for the bimetallic catalyst resulting in higher activity. Operando spectroscopy reveals that the role of cobalt in the bimetallic catalyst is to suppress the bulk-nitridation of iron and to stabilize this active state. Such catalysts are obtained from Mg(Fe,Co)2O4 spinel pre-catalysts with variable Fe:Co ratios by facile co-precipitation, calcination and reduction. The resulting Fe-Co/MgO catalysts, characterized by an extraordinary high metal loading reaching 74 wt.%, combine the advantages of a ruthenium-like electronic structure with a bulk catalyst-like microstructure typical for base metal catalysts.
Collapse
Affiliation(s)
- Shilong Chen
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Jelena Jelic
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Denise Rein
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
- Faculty of Chemistry, University of Duisburg-Essen, Universtätsstr. 7, 45141, Essen, Germany
| | - Sharif Najafishirtari
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Franz-Philipp Schmidt
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195, Berlin, Germany
| | - Frank Girgsdies
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195, Berlin, Germany
| | - Liqun Kang
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Aleksandra Wandzilak
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Anna Rabe
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118, Kiel, Germany
- Faculty of Chemistry, University of Duisburg-Essen, Universtätsstr. 7, 45141, Essen, Germany
| | - Dmitry E Doronkin
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131, Karlsruhe, Germany
| | - Jihao Wang
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Klaus Friedel Ortega
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Jan-Dierk Grunwaldt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131, Karlsruhe, Germany
| | - Robert Schlögl
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195, Berlin, Germany
| | - Thomas Lunkenbein
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195, Berlin, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131, Karlsruhe, Germany
| | - Malte Behrens
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118, Kiel, Germany.
- Faculty of Chemistry, University of Duisburg-Essen, Universtätsstr. 7, 45141, Essen, Germany.
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, 24118, Kiel, Germany.
| |
Collapse
|
46
|
Guan R, Huang J, Xin J, Chen M, Du P, Li Q, Tan YZ, Yang S, Xie SY. A stabilization rule for metal carbido cluster bearing μ 3-carbido single-atom-ligand encapsulated in carbon cage. Nat Commun 2024; 15:150. [PMID: 38167842 PMCID: PMC10761991 DOI: 10.1038/s41467-023-44567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Metal carbido complexes bearing single-carbon-atom ligand such as nitrogenase provide ideal models of adsorbed carbon atoms in heterogeneous catalysis. Trimetallic μ3-carbido clusterfullerenes found recently represent the simplest metal carbido complexes with the ligands being only carbon atoms, but only few are crystallographically characterized, and its formation prerequisite is unclear. Herein, we synthesize and isolate three vanadium-based μ3-CCFs featuring V = C double bonds and high valence state of V (+4), including VSc2C@Ih(7)-C80, VSc2C@D5h(6)-C80 and VSc2C@D3h(5)-C78. Based on a systematic theoretical study of all reported μ3-carbido clusterfullerenes, we further propose a supplemental Octet Rule, i.e., an eight-electron configuration of the μ3-carbido ligand is needed for stabilization of metal carbido clusters within μ3-carbido clusterfullerenes. Distinct from the classic Effective Atomic Number rule based on valence electron count of metal proposed in the 1920s, this rule counts the valence electrons of the single-carbon-atom ligand, and offers a general rule governing the stabilities of μ3-carbido clusterfullerenes.
Collapse
Affiliation(s)
- Runnan Guan
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Huang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Jinpeng Xin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Muqing Chen
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pingwu Du
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qunxiang Li
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Yuan-Zhi Tan
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Shangfeng Yang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Su-Yuan Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
47
|
Schmidt FV, Schulz L, Zarzycki J, Prinz S, Oehlmann NN, Erb TJ, Rebelein JG. Structural insights into the iron nitrogenase complex. Nat Struct Mol Biol 2024; 31:150-158. [PMID: 38062208 PMCID: PMC10803253 DOI: 10.1038/s41594-023-01124-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/12/2023] [Indexed: 01/24/2024]
Abstract
Nitrogenases are best known for catalyzing the reduction of dinitrogen to ammonia at a complex metallic cofactor. Recently, nitrogenases were shown to reduce carbon dioxide (CO2) and carbon monoxide to hydrocarbons, offering a pathway to recycle carbon waste into hydrocarbon products. Among the three nitrogenase isozymes, the iron nitrogenase has the highest wild-type activity for the reduction of CO2, but the molecular architecture facilitating these activities has remained unknown. Here, we report a 2.35-Å cryogenic electron microscopy structure of the ADP·AlF3-stabilized iron nitrogenase complex from Rhodobacter capsulatus, revealing an [Fe8S9C-(R)-homocitrate] cluster in the active site. The enzyme complex suggests that the iron nitrogenase G subunit is involved in cluster stabilization and substrate channeling and confers specificity between nitrogenase reductase and catalytic component proteins. Moreover, the structure highlights a different interface between the two catalytic halves of the iron and the molybdenum nitrogenase, potentially influencing the intrasubunit 'communication' and thus the nitrogenase mechanism.
Collapse
Affiliation(s)
- Frederik V Schmidt
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Luca Schulz
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan Zarzycki
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Simone Prinz
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Niels N Oehlmann
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Johannes G Rebelein
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
48
|
Einsle O. On the Shoulders of Giants-Reaching for Nitrogenase. Molecules 2023; 28:7959. [PMID: 38138449 PMCID: PMC10745432 DOI: 10.3390/molecules28247959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Only a single enzyme system-nitrogenase-carries out the conversion of atmospheric N2 into bioavailable ammonium, an essential prerequisite for all organismic life. The reduction of this inert substrate at ambient conditions poses unique catalytic challenges that strain our mechanistic understanding even after decades of intense research. Structural biology has added its part to this greater tapestry, and in this review, I provide a personal (and highly biased) summary of the parts of the story to which I had the privilege to contribute. It focuses on the crystallographic analysis of the three isoforms of nitrogenases at high resolution and the binding of ligands and inhibitors to the active-site cofactors of the enzyme. In conjunction with the wealth of available biochemical, biophysical, and spectroscopic data on the protein, this has led us to a mechanistic hypothesis based on an elementary mechanism of repetitive hydride formation and insertion.
Collapse
Affiliation(s)
- Oliver Einsle
- Institute of Biochemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
49
|
Jiang H, Lundgren KJM, Ryde U. Protonation of Homocitrate and the E 1 State of Fe-Nitrogenase Studied by QM/MM Calculations. Inorg Chem 2023; 62:19433-19445. [PMID: 37987624 PMCID: PMC10698722 DOI: 10.1021/acs.inorgchem.3c02329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Nitrogenase is the only enzyme that can cleave the strong triple bond in N2, making nitrogen available for biological life. There are three isozymes of nitrogenase, differing in the composition of the active site, viz., Mo, V, and Fe-nitrogenase. Recently, the first crystal structure of Fe-nitrogenase was presented. We have performed the first combined quantum mechanical and molecular mechanical (QM/MM) study of Fe-nitrogenase. We show with QM/MM and quantum-refinement calculations that the homocitrate ligand is most likely protonated on the alcohol oxygen in the resting E0 state. The most stable broken-symmetry (BS) states are the same as for Mo-nitrogenase, i.e., the three Noodleman BS7-type states (with a surplus of β spin on the eighth Fe ion), which maximize the number of nearby antiferromagnetically coupled Fe-Fe pairs. For the E1 state, we find that protonation of the S2B μ2 belt sulfide ion is most favorable, 14-117 kJ/mol more stable than structures with a Fe-bound hydride ion (the best has a hydride ion on the Fe2 ion) calculated with four different density-functional theory methods. This is similar to what was found for Mo-nitrogenase, but it does not explain the recent EPR observation that the E1 state of Fe-nitrogenase should contain a photolyzable hydride ion. For the E1 state, many BS states are close in energy, and the preferred BS state differs depending on the position of the extra proton and which density functional is used.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Computational Chemistry, Lund University, Chemical Centre, P.O. Box 124, Lund SE-221 00, Sweden
| | - Kristoffer J. M. Lundgren
- Department of Computational Chemistry, Lund University, Chemical Centre, P.O. Box 124, Lund SE-221 00, Sweden
| | - Ulf Ryde
- Department of Computational Chemistry, Lund University, Chemical Centre, P.O. Box 124, Lund SE-221 00, Sweden
| |
Collapse
|
50
|
Einsle O. Catalysis and structure of nitrogenases. Curr Opin Struct Biol 2023; 83:102719. [PMID: 37802004 DOI: 10.1016/j.sbi.2023.102719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
In providing bioavailable nitrogen as building blocks for all classes of biomacromolecules, biological nitrogen fixation is an essential process for all organismic life. Only a single enzyme, nitrogenase, performs this task at ambient conditions and with ATP as an energy source. The assembly of the complex iron-sulfur enzyme nitrogenase and its catalytic mechanism remains a matter of intense study. Recent progress in the structural analysis of the three known isoforms of nitrogenase-differentiated primarily by the heterometal in their active site cofactor-has revealed a degree of structural plasticity of these clusters that suggest two distinct binding sites for substrates and reaction intermediates. A mechanistic proposal based on this finding integrates most of the available experimental data. Furthermore, the first applications of high-resolution cryo-electron microscopy have highlighted further dynamic conformational changes. Structures obtained under turnover conditions support the proposed alternating half-site reactivity in the C2-symmetric nitrogenase complex.
Collapse
Affiliation(s)
- Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany.
| |
Collapse
|