1
|
Zhou L, Xiong Y, Wang Y, Meng Y, Zhang W, Shen M, Zhang X, Li S, Ren B, Li R, Han Y, Zhang J, Cao S, Du W, Sun Q, Wei F, An X, Yang L, Zhang Y, Ma W, Xu W, Zhang Y, Jiang J, Xu X, Xia J, Liu L, Ren X. A Phase IB Trial of Autologous Cytokine-Induced Killer Cells in Combination with Sintilimab, Monoclonal Antibody Against Programmed Cell Death-1, plus Chemotherapy in Patients with Advanced Non-Small-Cell Lung Cancer. Clin Lung Cancer 2022; 23:709-719. [PMID: 35995696 DOI: 10.1016/j.cllc.2022.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/28/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Can the Cytokine-induced killer (CIK) cells in combination with immune checkpoint inhibitor further improve the efficacy of chemotherapy in non-small cell lung cancer (NSCLC) patients? What are the adverse reactions of this combination therapy? But these problems are not clear. Therefore, we conducted a phase 1b trial to evaluate the safety and efficacy of autologous CIK cells therapy combined with Sintilimab, antibody against programmed cell death-1, plus chemotherapy in untreated, advanced NSCLC patients. PATIENTS AND METHODS Patients with stage IIIB/IIIC/IV NSCLC received Sintilimab, platinum-based doublet chemotherapy, and CIK cells every 3 weeks for 4 cycles, then maintenance treatment with Sintilimab in squamous and with Sintilimab plus pemetrexed in non-squamous NSCLC until disease progression or unacceptable toxicity or 2 years. The primary endpoints were safety and objective response rate (ORR). RESULTS Thirty-four patients received the treatment. 94.1% of patients experienced treatment-related adverse events (TRAEs). Grade 3 or greater TRAEs occurred in 64.7% of patients. One (2.9%) patient died of grade 5 immune-related pneumonia. The ORR and DCR were 82.4% (95% CI, 65.5%-93.2%) and 100.0% (95% CI, 89.7%-100.0%), respectively. Objective responses were evaluated in 14 of 15 non-squamous patients (93.3%; 95% CI, 68.1%-99.8%) and in 14 of 19 squamous patients (73.7%; 95% CI, 48.8%-90.9%). Median PFS was 19.3 months (95% CI, 8.3 months to not available). CONCLUSION Autologous CIK cells immunotherapy in combination with Sintilimab plus chemotherapy was well tolerable and showed encouraging efficacy in patients with previously untreated, advanced NSCLC (ClinicalTrials.gov number, NCT03987867).
Collapse
Affiliation(s)
- Li Zhou
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Yanjuan Xiong
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Yang Wang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Yuan Meng
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Weihong Zhang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Meng Shen
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Xinwei Zhang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Shuzhan Li
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Baozhu Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Runmei Li
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Ying Han
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Jiali Zhang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Shui Cao
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Weijiao Du
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Xiumei An
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Yuwei Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Wenchao Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Wengui Xu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jianchuan Xia
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Liang Liu
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China.
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China.
| |
Collapse
|
2
|
Cao S, Hung YW, Wang YC, Chung Y, Qi Y, Ouyang C, Zhong X, Hu W, Coblentz A, Maghami E, Sun Z, Lin HH, Ann DK. Glutamine is essential for overcoming the immunosuppressive microenvironment in malignant salivary gland tumors. Theranostics 2022; 12:6038-6056. [PMID: 35966597 PMCID: PMC9373812 DOI: 10.7150/thno.73896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: Immunosuppression in the tumor microenvironment (TME) is key to the pathogenesis of solid tumors. Tumor cell-intrinsic autophagy is critical for sustaining both tumor cell metabolism and survival. However, the role of autophagy in the host immune system that allows cancer cells to escape immune destruction remains poorly understood. Here, we determined if attenuated host autophagy is sufficient to induce tumor rejection through reinforced adaptive immunity. Furthermore, we determined whether dietary glutamine supplementation, mimicking attenuated host autophagy, is capable of promoting antitumor immunity. Methods: A syngeneic orthotopic tumor model in Atg5+/+ and Atg5flox/flox mice was established to determine the impact of host autophagy on the antitumor effects against mouse malignant salivary gland tumors (MSTs). Multiple cohorts of immunocompetent mice were used for oncoimmunology studies, including inflammatory cytokine levels, macrophage, CD4+, and CD8+ cells tumor infiltration at 14 days and 28 days after MST inoculation. In vitro differentiation and in vivo dietary glutamine supplementation were used to assess the effects of glutamine on Treg differentiation and tumor expansion. Results: We showed that mice deficient in the essential autophagy gene, Atg5, rejected orthotopic allografts of isogenic MST cells. An enhanced antitumor immune response evidenced by reduction of both M1 and M2 macrophages, increased infiltration of CD8+ T cells, elevated IFN-γ production, as well as decreased inhibitory Tregs within TME and spleens of tumor-bearing Atg5flox/flox mice. Mechanistically, ATG5 deficiency increased glutamine level in tumors. We further demonstrated that dietary glutamine supplementation partially increased glutamine levels and restored potent antitumor responses in Atg5+/+ mice. Conclusions: Dietary glutamine supplementation exposes a previously undefined difference in plasticity between cancer cells, cytotoxic CD8+ T cells and Tregs.
Collapse
Affiliation(s)
- Shuting Cao
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yu-Wen Hung
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yi-Chang Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yiyin Chung
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yue Qi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Ching Ouyang
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Xiancai Zhong
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Weidong Hu
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Alaysia Coblentz
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Ellie Maghami
- Division of Head and Neck Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zuoming Sun
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - H. Helen Lin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - David K. Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Thongchot S, Jirapongwattana N, Luangwattananun P, Chiraphapphaiboon W, Chuangchot N, Sa-nguanraksa D, O-Charoenrat P, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Adoptive Transfer of Anti-Nucleolin T Cells Combined with PD-L1 Inhibition against Triple-Negative Breast Cancer. Mol Cancer Ther 2022; 21:727-739. [PMID: 35313339 PMCID: PMC9377762 DOI: 10.1158/1535-7163.mct-21-0823] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 03/02/2022] [Indexed: 01/18/2023]
Abstract
Dendritic cell (DC)-based T-cell activation is an alternative immunotherapy in breast cancer. The anti-programmed death ligand 1 (PD-L1) can enhance T-cell function. Nucleolin (NCL) is overexpressed in triple-negative breast cancer (TNBC). The regulation of PD-L1 expression through autophagy and the anti-PD-L1 peptide to help sensitize T cells for NCL-positive TNBC cell killing has not been evaluated. Results showed the worst clinical outcome in patients with high NCL and PD-L1. Self-differentiated myeloid-derived antigen-presenting cells reactive against tumors presenting NCL or SmartDCs-NCL producing GM-CSF and IL-4, could activate NCL-specific T cells. SmartDCs-NCL plus recombinant human ribosomal protein substrate 3 (RPS3) successfully induced maturation and activation of DCs characterized by the reduction of CD14 and the induction of CD11c, CD40, CD80, CD83, CD86, and HLA-DR. Interestingly, SmartDCs-NCL plus RPS3 in combination with anti-PD-L1 peptide revealed significant killing activity of the effector NCL-specific T cells against NCLHigh/PD-L1High MDA-MB-231 and NCLHigh/PD-L1High HCC70 TNBC cells at the effector: a target ratio of 5:1 in 2-D and 10:1 in the 3-D culture system; and increments of IFNγ by the ELISpot assay. No killing effect was revealed in MCF-10A normal mammary cells. Mechanistically, NCL-specific T-cell-mediated TNBC cell killing was through both apoptotic and autophagic pathways. Induction of autophagy by curcumin, an autophagic stimulator, inhibited the expression of PD-L1 and enhanced cytolytic activity of NCL-specific T cells. These findings provide the potential clinical approaches targeting NCLHigh/PD-L1High TNBC cells with NCL-specific T cells in combination with a PD-L1 inhibitor or autophagic stimulator.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Niphat Jirapongwattana
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piriya Luangwattananun
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wannasiri Chiraphapphaiboon
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, International Graduate Program in Medical Biochemistry and Molecular Biology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nisa Chuangchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Doonyapat Sa-nguanraksa
- Department of Clinical Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-thai Yenchitsomanus
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
The Role of Autophagy in Tumor Immune Infiltration in Colorectal Cancer. Anal Cell Pathol (Amst) 2022; 2022:2055676. [PMID: 35321516 PMCID: PMC8938087 DOI: 10.1155/2022/2055676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
Objective. This study is aimed at exploring the association between autophagy and tumor immune infiltration (TII) in colorectal cancer (CRC). Methods and Materials. We downloaded the transcriptome profiling and clinical data for CRC from The Cancer Genome Atlas (TCGA) database and obtained the normal colon transcriptome profiling data from Genotype-Tissue Expression Project (GTEx) database. The list of autophagy-related signatures was obtained from the Human Autophagy Database. We isolated the autophagy-related genes from the CRC gene expression matrix and constructed an autophagy-related prognostic (ARP) risk model. Then, we constructed a multiROC curve to validate the prognostic ability of the ARP risk model. CIBERSORT was used to determine the fractions of 22 immune cells in each CRC sample, and the association between these TII cells and CRC clinical variables was further investigated. Finally, we estimated the association of 3 hub-ARP signatures and 20 different types of TII cell distribution. Results. We classified 447 CRC patients into 224 low-risk and 223 high-risk patients using the median ARP risk score. According to the univariate survival test results, except for gender (
), age (
), cancer stage, and pathological stage T, M, and N were closely correlated with the prognosis of CRC patients (
). Multivariate survival analysis results indicate that age and rescore were the only independent prognostic indicators with significant differences (
). After merging the immune cell distribution (by CIBERSORT) with the CRC clinical data, the results indicate that activated macrophage M0 cells exhibited the highest clinical response, which included cancer stage and stage T, N, and M. Additionally, six immune cells were closely associated with cancer stage, including regulatory T cells (Tregs), gamma delta T cells, follicular helper T cells, activated memory CD4 T cells, activated NK cells, and resting dendritic cells. Finally, we evaluated the correlation of ARP signatures with TII cell distribution. Compared with the other correlation, NRG1 and plasma cells (↑), risk score and macrophage M1 (↑), NRG1 and dendritic cell activated (↑), CDKN2A and T cell CD4 memory resting (↓), risk score and T cell CD8 (↑), risk score and T cell CD4 memory resting (↓), and DAPK1 and T cell CD4 memory activated (↓) exhibited a stronger association (
). Conclusions. In summary, we explored the correlation between the risk of autophagy and the TII microenvironment in CRC patients. Furthermore, we integrated different CAR signatures with tumor-infiltrating immune cells and found robust associations between different levels of CAR signature expression and immune cell infiltrating density.
Collapse
|
5
|
Sianglam P, Ngamdee K, Ngeontae W. Simultaneous preconcentration and fluorescence detection of ATP by a hybrid nanocomposite of magnetic nanoparticles incorporated in mixed metal hydroxide. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:188-198. [PMID: 34935797 DOI: 10.1039/d1ay01593a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A new approach for increasing the sensitivity of adenosine triphosphate (ATP) detection was demonstrated. The assay was based on the synergetic function of a hybrid nanocomposite (MNPs@MMH) composed of magnetic nanoparticles (MNPs) incorporated in a mixed metal hydroxide (MMH). MNPs@MMH can be utilized as an efficient green extractant and peroxidase catalyst. The trace level of ATP in the sample solution was first extracted by the MNPs@MMH hybrid nanocomposite through the ion exchange properties of MMH and adsorbed on the surface of the MNPs@MMH. The concentration of ATP was related to the fluorescence intensity of 2,3-diaminophenazine (DAP) generated from peroxidase-like activity of the MNPs in the presence of H2O2 and o-phenylenediamine (OPD). In the presence of ATP, the active surface of the MNPs was diminished, and the amount of DAP generated was reduced. Thus, the concentration of ATP was related to the degree of fluorescence decrease compared to the fluorescence intensity of the system without ATP. Based on the proposed strategy, a highly sensitive assay for ATP was achieved. This assay exhibited good selectivity for detection of ATP over derivatives and other common anions. The proposed assay allowed the detection of ATP in a concentration range of 2.5-20 μM with a detection limit of 0.41 μM.
Collapse
Affiliation(s)
- Pradthana Sianglam
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kessarin Ngamdee
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wittaya Ngeontae
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Chen Y, Liu X, Guo Y, Wang J, Zhang D, Mei Y, Shi J, Tan W, Zheng JH. Genetically engineered oncolytic bacteria as drug delivery systems for targeted cancer theranostics. Acta Biomater 2021; 124:72-87. [PMID: 33561563 DOI: 10.1016/j.actbio.2021.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022]
Abstract
Drug delivery systems based on genetically engineered oncolytic bacteria have properties that cannot be achieved by traditional therapeutic interventions. Thus, they have attracted considerable attention in cancer therapies. Attenuated bacteria can specifically target and actively penetrate tumor tissues and play an important role in cancer suppression as the "factories" of diverse anticancer drugs. Over the past decades, several bacterial strains including Salmonella and Clostridium have been shown to effectively retard tumor growth and metastasis, and thus improve survival in preclinical models or clinical cases. In this review, we summarize the unique properties of oncolytic bacteria and their anticancer mechanisms and highlight the particular advantages compared with traditional strategies. With the current research progress, we demonstrate the potential value of oncolytic bacteria-based drug delivery systems for clinical applications. In addition, we discuss novel strategies of cancer therapies integrating oncolytic bacteria, which will provide hope to further improve and standardize the current regimens in the near future.
Collapse
|
7
|
Randomized, multicenter, open-label trial of autologous cytokine-induced killer cell immunotherapy plus chemotherapy for squamous non-small-cell lung cancer: NCT01631357. Signal Transduct Target Ther 2020; 5:244. [PMID: 33077722 PMCID: PMC7572396 DOI: 10.1038/s41392-020-00337-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/22/2023] Open
|
8
|
Qiu Q, Gao RR, Xie A, Jiao Y, Dong W. A ratiometric fluorescent sensor with different DNA-templated Ag NCs as signals for ATP detection. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Deng X, Guan W, Qing X, Yang W, Que Y, Tan L, Liang H, Zhang Z, Wang B, Liu X, Zhao Y, Shao Z. Ultrafast Low-Temperature Photothermal Therapy Activates Autophagy and Recovers Immunity for Efficient Antitumor Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4265-4275. [PMID: 31903741 DOI: 10.1021/acsami.9b19148] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Conventional therapeutic approaches to treat malignant tumors such as surgery, chemotherapy, or radiotherapy often lead to poor therapeutic results, great pain, economic burden, and risk of recurrence and may even increase the difficulty in treating the patient. Long-term drug administration and systemic drug delivery for cancer chemotherapy would be accompanied by drug resistance or unpredictable side effects. Thus, the use of photothermal therapy, a relatively rapid tumor elimination technique that regulates autophagy and exerts an antitumor effect, represents a novel solution to these problems. Heat shock protein 90 (HSP90), a protein that reduces photothermal or hypothermic efficacy, is closely related to AKT (protein kinase B) and autophagy. Therefore, it was hypothesized that autophagy could be controlled to eliminate tumors by combining exogenous light with a selective HSP90 inhibitor, for example, SNX-2112. In this study, an efficient tumor-killing strategy using graphene oxide loaded with SNX-2112 and folic acid for ultrafast low-temperature photothermal therapy (LTPTT) is reported. A unique mechanism that achieves remarkable therapeutic performance was discovered, where overactivated autophagy induced by ultrafast LTPTT led to direct apoptosis of tumors and enabled functional recovery of T cells to promote natural immunity for actively participating in the attack against tumors. This LTPTT approach resulted in residual tumor cells being rendered in an "injured" state, opening up the possibility of concurrent antitumor and antirecurrence treatment.
Collapse
Affiliation(s)
- Xiangyu Deng
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| | - Wei Guan
- Ministry-of-Education Key Laboratory for the Green Preparation and of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
| | - Xiangcheng Qing
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Wenbo Yang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Yimei Que
- Department of Hematology, Tongji Hospital Affiliated with Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Lei Tan
- Ministry-of-Education Key Laboratory for the Green Preparation and of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
| | - Hang Liang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Zhicai Zhang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Baichuan Wang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Xiangmei Liu
- Ministry-of-Education Key Laboratory for the Green Preparation and of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| | - Zengwu Shao
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| |
Collapse
|
10
|
Sun M, Hao T, Li X, Qu A, Xu L, Hao C, Xu C, Kuang H. Direct observation of selective autophagy induction in cells and tissues by self-assembled chiral nanodevice. Nat Commun 2018; 9:4494. [PMID: 30374052 PMCID: PMC6206072 DOI: 10.1038/s41467-018-06946-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022] Open
Abstract
The interactions between chiral nanomaterials and organisms are still challenging and mysterious. Here, a chiral nanodevice made of yolk-shell nanoparticles tetrahedron (UYTe), centralized with upconversion nanoparticles (UCNPs), was fabricated to induce autophagy in vivo. The proposed chiral nanodevice displayed a tunable circular dichroism (CD) signal when modified with different enantiomers of glutathione (GSH). Notably, UYTe showed significant chirality-dependent autophagy-inducing ability after D-GSH-modification because the enhanced oxidative stress and accumulation in living cell. The activation of autophagy resulted in the reduced intracellular CD intensity from the disassembly of the structure. The intracellular ATP concentration was simultaneously enhanced in response to autophagy activity, which was quantitatively bio-imaged with the upconversion luminescence (UCL) signal of the UCNP that escaped from UYTe. The autophagy effect induced in vivo by the chiral UYTe was also visualized with UCL imaging, demonstrating the great potential utility of the chiral nanostructure for cellular biological applications.
Collapse
Affiliation(s)
- Maozhong Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, 214122, China
| | - Tiantian Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, 214122, China
| | - Xiaoyun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Aihua Qu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, 214122, China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, 214122, China
| | - Changlong Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, 214122, China.
| |
Collapse
|
11
|
Maiques O, Barceló C, Panosa A, Pijuan J, Orgaz JL, Rodriguez-Hernandez I, Matas-Nadal C, Tell G, Vilella R, Fabra A, Puig S, Sanz-Moreno V, Matias-Guiu X, Canti C, Herreros J, Marti RM, Macià A. T-type calcium channels drive migration/invasion in BRAFV600E melanoma cells through Snail1. Pigment Cell Melanoma Res 2018; 31:484-495. [PMID: 29385656 DOI: 10.1111/pcmr.12690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/23/2017] [Indexed: 12/26/2022]
Abstract
Melanoma is a malignant tumor derived from melanocytes. Once disseminated, it is usually highly resistant to chemotherapy and is associated with poor prognosis. We have recently reported that T-type calcium channels (TTCCs) are overexpressed in melanoma cells and play an important role in melanoma progression. Importantly, TTCC pharmacological blockers reduce proliferation and deregulate autophagy leading to apoptosis. Here, we analyze the role of autophagy during migration/invasion of melanoma cells. TTCC Cav3.1 and LC3-II proteins are highly expressed in BRAFV600E compared with NRAS mutant melanomas, both in cell lines and biopsies. Chloroquine, pharmacological blockade, or gene silencing of TTCCs inhibit the autophagic flux and impair the migration and invasion capabilities, specifically in BRAFV600E melanoma cells. Snail1 plays an important role in motility and invasion of melanoma cells. We show that Snail1 is strongly expressed in BRAFV600E melanoma cells and patient biopsies, and its expression decreases when autophagy is blocked. These results demonstrate a role of Snail1 during BRAFV600E melanoma progression and strongly suggest that targeting macroautophagy and, particularly TTCCs, might be a good therapeutic strategy to inhibit metastasis of the most common melanoma type (BRAFV600E).
Collapse
Affiliation(s)
| | | | | | | | - Jose L Orgaz
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, London, UK
| | - Irene Rodriguez-Hernandez
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, London, UK
| | - Clara Matas-Nadal
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, Lleida, Spain
| | - Gemma Tell
- Melanoma Unit, Department of Dermatology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centre of Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ramón Vilella
- Department of Immunology, Hospital Clínic, Barcelona, Spain
| | - Angels Fabra
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Susana Puig
- Melanoma Unit, Department of Dermatology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centre of Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Victoria Sanz-Moreno
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, London, UK
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, Lleida, Spain.,Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | | | - Rosa M Marti
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, Lleida, Spain.,Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Anna Macià
- University of Lleida, IRBLleida, Lleida, Spain
| |
Collapse
|
12
|
Hu P, Cheng B, He Y, Wei Z, Wu D, Meng Z. Autophagy suppresses proliferation of HepG2 cells via inhibiting glypican-3/wnt/β-catenin signaling. Onco Targets Ther 2018; 11:193-200. [PMID: 29379301 PMCID: PMC5757494 DOI: 10.2147/ott.s150520] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Autophagy plays an important role in the growth and survival of hepatocellular carcinoma (HCC) cells through several target proteins or signaling pathways. Glypican-3 (GPC3) is a new reliable HCC marker, which is involved in tumor growth in HCC, primarily mediated by wnt/β-catenin signaling. Objective The present study aimed to identify the role of autophagy in the proliferation of HepG2 cells through GPC3/wnt/β-catenin signaling. Results and discussion Results demonstrated that induction of autophagy by nutrition starvation and rapamycin treatment led to the downregulation of GPC3 expression in HepG2 cells, accompanied by the decreased expression of wnt downstream target genes (β-catenin, c-myc and cyclin D1). On the other hand, inhibition of autophagy by 3-methyl adenine (3-MA) could rescue rapamycin-directed downregulation of GPC3 and wnt/β-catenin target genes and augment the proliferation of HepG2 cells. Furthermore, interference of GPC3 by siRNA suppressed wnt/β-catenin signaling and attenuated 3-MA stimulation of HepG2 cell proliferation. More interestingly, the mRNA of GPC3 remained unchanged when the protein levels of GPC3 were decreased by autophagy activation, suggesting that induction of autophagy may accelerate the degradation of GPC3. Conclusion These results suggest that autophagy suppresses proliferation of HepG2 cells partially by inhibition of GPC3/wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Pei Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan.,Department of Clinical Laboratory Medicine
| | | | - Yulin He
- Institute of Biomedical Research
| | | | - Dongfang Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan
| | - Zhongji Meng
- Institute of Biomedical Research.,Department of Infectious Disease, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| |
Collapse
|
13
|
Abstract
In this review, Amaravadi et al. discuss recent developments in the role of autophagy in cancer, in particular how autophagy can promote cancer through suppressing p53 and preventing energy crisis, cell death, senescence, and an anti-tumor immune response. Macroautophagy (referred to here as autophagy) is induced by starvation to capture and degrade intracellular proteins and organelles in lysosomes, which recycles intracellular components to sustain metabolism and survival. Autophagy also plays a major homeostatic role in controlling protein and organelle quality and quantity. Dysfunctional autophagy contributes to many diseases. In cancer, autophagy can be neutral, tumor-suppressive, or tumor-promoting in different contexts. Large-scale genomic analysis of human cancers indicates that the loss or mutation of core autophagy genes is uncommon, whereas oncogenic events that activate autophagy and lysosomal biogenesis have been identified. Autophagic flux, however, is difficult to measure in human tumor samples, making functional assessment of autophagy problematic in a clinical setting. Autophagy impacts cellular metabolism, the proteome, and organelle numbers and quality, which alter cell functions in diverse ways. Moreover, autophagy influences the interaction between the tumor and the host by promoting stress adaptation and suppressing activation of innate and adaptive immune responses. Additionally, autophagy can promote a cross-talk between the tumor and the stroma, which can support tumor growth, particularly in a nutrient-limited microenvironment. Thus, the role of autophagy in cancer is determined by nutrient availability, microenvironment stress, and the presence of an immune system. Here we discuss recent developments in the role of autophagy in cancer, in particular how autophagy can promote cancer through suppressing p53 and preventing energy crisis, cell death, senescence, and an anti-tumor immune response.
Collapse
Affiliation(s)
- Ravi Amaravadi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York 10016, USA; Department of Radiation Oncology, New York University Langone Medical Center, New York, New York 10016, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
14
|
Hou X, Yang C, Zhang L, Hu T, Sun D, Cao H, Yang F, Guo G, Gong C, Zhang X, Tong A, Li R, Zheng Y. Killing colon cancer cells through PCD pathways by a novel hyaluronic acid-modified shell-core nanoparticle loaded with RIP3 in combination with chloroquine. Biomaterials 2017; 124:195-210. [PMID: 28199887 DOI: 10.1016/j.biomaterials.2016.12.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 02/05/2023]
Abstract
Due to extensive apoptosis defects and multidrug resistance, there is great interest regarding non-apoptotic programmed cell death (PCD) pathways, such as lysosomal-mediated programmed cell death (LM-PCD), necroptosis and autophagy. Because there is an intricate effector network among these PCD pathways, it is expected that they may act synergistically in cancer therapy. In this study, chloroquine (CQ) was found to significantly upregulate receptor-interacting protein kinase 3 (RIP3) expression, and RIP3 were involved in CQ-related autophagy. Overexpressed-eGFP-RIP3 co-localized with the selective autophagy receptor p62. mRIP3 overexpression in combination with CQ markedly increased the inhibition rate relative to that observed in the CQ-treatment group. Several experiments, including Hoechst staining, transmission electron microscopy (TEM) observation, the high-mobility group box 1 (HMGB1) release assay, Annexin V/PI staining and immunoblotting of proteins included in PCD pathways, verified that mRIP3 overexpression in combination with CQ induced lysosomal membrane permeabilization (LMP) and necroptosis of cancer cells, leading to cancer cell death. For tumor-targeted delivery, hyaluronic acid (HA)-modified, lipid-coated PLGA nanoparticles loaded with mRIP3-pDNA were prepared and characterized using a particle sizer, differential scanning calorimetry (DSC) and TEM. The nanoparticles exhibited ideal biocompatibility and good tumor-targeting efficiency, and the tumor inhibition rate of HA-Lip-PEI-mRIP3-PLGA-NPs + CQ was 80.2% in the CT26 mouse model. In this study, we attempted to treat tumors by inducing several alternative PCD pathways to shed light on the combination therapy of alternative PCD inducers.
Collapse
Affiliation(s)
- Xueyan Hou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China
| | - Chengli Yang
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, 6#, Xuefu Xi Road, Zunyi, Guizhou, 563006, PR China
| | - Lijing Zhang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, PR China
| | - Tingting Hu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China
| | - Dan Sun
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hua Cao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China
| | - Fan Yang
- Department of Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Gang Guo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China
| | - Changyang Gong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China
| | - Xiaoning Zhang
- Laboratory of Pharmaceutics, School of Medicine, Tsinghua University, 30#, Shuangqing Road, Haidian Dist, Beijing, 100084, PR China
| | - Aiping Tong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China
| | - Rui Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China
| | - Yu Zheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
15
|
Salah FS, Ebbinghaus M, Muley VY, Zhou Z, Al-Saadi KRD, Pacyna-Gengelbach M, O'Sullivan GA, Betz H, König R, Wang ZQ, Bräuer R, Petersen I. Tumor suppression in mice lacking GABARAP, an Atg8/LC3 family member implicated in autophagy, is associated with alterations in cytokine secretion and cell death. Cell Death Dis 2016; 7:e2205. [PMID: 27124579 PMCID: PMC4855672 DOI: 10.1038/cddis.2016.93] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Abstract
GABARAP belongs to an evolutionary highly conserved gene family that has a fundamental role in autophagy. There is ample evidence for a crosstalk between autophagy and apoptosis as well as the immune response. However, the molecular details for these interactions are not fully characterized. Here, we report that the ablation of murine GABARAP, a member of the Atg8/LC3 family that is central to autophagosome formation, suppresses the incidence of tumor formation mediated by the carcinogen DMBA and results in an enhancement of the immune response through increased secretion of IL-1β, IL-6, IL-2 and IFN-γ from stimulated macrophages and lymphocytes. In contrast, TGF-β1 was significantly reduced in the serum of these knockout mice. Further, DMBA treatment of these GABARAP knockout mice reduced the cellularity of the spleen and the growth of mammary glands through the induction of apoptosis. Gene expression profiling of mammary glands revealed significantly elevated levels of Xaf1, an apoptotic inducer and tumor-suppressor gene, in knockout mice. Furthermore, DMBA treatment triggered the upregulation of pro-apoptotic (Bid, Apaf1, Bax), cell death (Tnfrsf10b, Ripk1) and cell cycle inhibitor (Cdkn1a, Cdkn2c) genes in the mammary glands. Finally, tumor growth of B16 melanoma cells after subcutaneous inoculation was inhibited in GABARAP-deficient mice. Together, these data provide strong evidence for the involvement of GABARAP in tumorigenesis in vivo by delaying cell death and its associated immune-related response.
Collapse
Affiliation(s)
- F S Salah
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany.,Iraqi Centre for Cancer and Medical Genetics Research, Al-Mustansiriya University, Baghdad, Iraq
| | - M Ebbinghaus
- Institute of Physiology 1, University Hospital - Friedrich Schiller University Jena, Teichgraben 8, Jena D-07743, Germany
| | - V Y Muley
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11, Jena D-07745, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, Jena D-07747, Germany
| | - Z Zhou
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena D-07745, Germany
| | - K R D Al-Saadi
- Iraqi Centre for Cancer and Medical Genetics Research, Al-Mustansiriya University, Baghdad, Iraq
| | - M Pacyna-Gengelbach
- Institute of Pathology, University Medicine Berlin, Campus Charité Mitte, Berlin D-10098, Germany
| | - G A O'Sullivan
- Department of Neurochemistry, Max-Planck Institute for Brain Research, Deutschordenstrasse 46, Frankfurt D-60528, Germany
| | - H Betz
- Department of Neurochemistry, Max-Planck Institute for Brain Research, Deutschordenstrasse 46, Frankfurt D-60528, Germany.,Max-Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg D-69120, Germany
| | - R König
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11, Jena D-07745, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, Jena D-07747, Germany
| | - Z-Q Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena D-07745, Germany.,Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Bachstrasse 18k, Jena D-07743, Germany
| | - R Bräuer
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany
| | - I Petersen
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany
| |
Collapse
|
16
|
Maes H, Agostinis P. Autophagy and mitophagy interplay in melanoma progression. Mitochondrion 2014; 19 Pt A:58-68. [PMID: 25042464 DOI: 10.1016/j.mito.2014.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
Autophagy, or self-eating, is the most extensively studied lysosomal degradation pathway for the recycling of obsolete or damaged cytoplasmic materials, including proteins and organelles. Although this pathway was initially thought to function as trafficking system for 'in bulk' degradation by the lysosomes of cytoplasmic material, it is now widely appreciated that cargo selection by the autophagic machinery is a major process underlying the cytoprotective or--possibly--pro-death functions ascribed to this catabolic process. Indeed increasing evidence suggests that in mammalian cells the removal of dysfunctional or aged mitochondria occurs through a selective degradation pathway known as 'mitophagy'. Due to the crucial role of mitochondria in energy metabolism, redox control and cell survival/death decision, deregulated mitophagy can potentially impact a variety of crucial cell autonomous and non-autonomous processes. Accumulating evidence indicates that during malignant transformation aggressive cancers hijack autophagy to preserve energy fitness and to acquire the plasticity required to adapt to the hostile microenvironment. However, whether and how mitophagy contributes to carcinogenesis, which pathways regulate this process in the cancer cells and how cancer cell-mitophagy impacts and modifies the tumor microenvironment and therapeutic responses, remain largely unanswered issues. In this review, we discuss novel paradigms and pathways regulating mitophagy in mammalian cells and the impact this process might have on one of the most dreadful human malignancies, melanoma.
Collapse
Affiliation(s)
- Hannelore Maes
- Laboratory of Cell Death and Therapy, Department Cellular and Molecular Medicine, KU Leuven, Leuven B-3000, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death and Therapy, Department Cellular and Molecular Medicine, KU Leuven, Leuven B-3000, Belgium.
| |
Collapse
|
17
|
Chen Y, Wei H, Liu F, Guan JL. Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) promotes breast cancer progression through enhancing glucose starvation-induced autophagy and Akt signaling. J Biol Chem 2013; 289:1164-73. [PMID: 24275666 DOI: 10.1074/jbc.m113.526335] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and proliferation. Recent studies have suggested that constitutive activation of mTORC1 in normal cells could lead to malignant tumor development in several tissues. However, the mechanisms of mTORC1 hyperactivation to promote the growth and metastasis of breast or other cancers are still not well characterized. Here, using a new inducible deletion system, we show that deletion of Tsc1 in mouse primary mammary tumor cells, either before or after their transplantation, significantly increased their growth in vivo. The increase in tumor growth was completely rescued by rapamycin treatment, suggesting a major contribution from mTORC1 hyperactivation. Interestingly, glucose starvation-induced autophagy, but not amino acid starvation-induced autophagy, was increased significantly in Tsc1-null tumor cells. Further analysis of these cells also showed an increased Akt activation but no significant changes in Erk signaling. Together, these results provide insights into the mechanism by which hyperactivation of mTORC1 promotes breast cancer progression through increasing autophagy and Akt activation in vivo.
Collapse
Affiliation(s)
- Yongqiang Chen
- From the Divisions of Molecular Medicine and Genetics, Department of Internal Medicine, and
| | | | | | | |
Collapse
|
18
|
Maes H, Rubio N, Garg AD, Agostinis P. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med 2013; 19:428-46. [DOI: 10.1016/j.molmed.2013.04.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/19/2013] [Accepted: 04/25/2013] [Indexed: 12/16/2022]
|
19
|
Meng S, Xu J, Wu Y, Ding C. Targeting autophagy to enhance oncolytic virus-based cancer therapy. Expert Opin Biol Ther 2013; 13:863-73. [PMID: 23488666 DOI: 10.1517/14712598.2013.774365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Autophagy is a conserved catabolic process crucial in maintaining cellular homeostasis. On infection, oncolytic viruses (OVs) perturb the cellular autophagy machinery in infected tumor cells both in vitro and in vivo. Currently, pharmacological modulation of autophagy in OV-infected tumor cells has been shown to augment OV-mediated antitumor effects in preclinical studies. Combination of OVs with autophagy modulators can, therefore, have many potential applications in the future research on targeting autophagy and novel anticancer therapies. AREAS COVERED This review provides a detailed description of known interactions between OVs and autophagy and summarizes the roles of autophagy in OV replication and cell lysis. The recent literature on targeting autophagy with either the autophagy inducers, such as rapamycin, or autophagy inhibitors, such as chloroquine, to increase OV-induced cytotoxicity is reviewed to help researchers in further investigations. The major challenge for investigators is to understand the molecular mechanism underlying the interplay between OV and the autophagy machinery and its effect on oncolysis. EXPERT OPINION Targeting the cellular autophagy machinery could be explored as a new therapeutic strategy to enhance OV-mediated antitumor effects in the future.
Collapse
Affiliation(s)
- Songshu Meng
- Dalian Medical University Cancer Center, Institute of Cancer Stem Cell, 9 Lvshun Road South, Dalian 116044, Chin.
| | | | | | | |
Collapse
|
20
|
Pandey S, Chandravati. Autophagy in cervical cancer: an emerging therapeutic target. Asian Pac J Cancer Prev 2012; 13:4867-71. [PMID: 23244072 DOI: 10.7314/apjcp.2012.13.10.4867] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cervical cancer is a leading cause of morbidity and mortality in women worldwide. Although the human papillomavirus (HPV) is considered the major causative agent of cervical cancer, yet the viral infection alone is not sufficient for cancer progression. The etiopathogenesis of cervical cancer is indeed complex; a precise understanding of the complex cellular/molecular mechanisms underlying the initiation, progression and/ or prevention of the uterine cervix is therefore essential. Autophagy is emerging as an important biological mechanism in targeting human cancers, including cervical cancer. Furthermore, autophagy, a process of cytoplasm and cellular organelle degradation in lysosomes, has been implicated in homeostasis. Autophagic flux may vary depending on the cell/tissue type, thereby altering cell fate under stress conditions leading to cell survival and/or cell death. Autophagy may in turn govern tumor metastasis and subsequent carcinogenesis. Inflammation is a known hallmark of cancer. Vascular insufficiency in tumors, including cervical tissue, leads to depletion of glucose and/or oxygen perturbing the osmotic milieu causing extracellular acidosis in the tumor microenvironment that may eventually result in autophagy. Thus, targeted manipulation of complex autophagic signaling may prove to be an innovative strategy in identification of clinically relevant biomarkers in cervical cancer in the near future.
Collapse
|
21
|
Ramakrishnan R, Huang C, Cho HI, Lloyd M, Johnson J, Ren X, Altiok S, Sullivan D, Weber J, Celis E, Gabrilovich DI. Autophagy induced by conventional chemotherapy mediates tumor cell sensitivity to immunotherapy. Cancer Res 2012; 72:5483-93. [PMID: 22942258 DOI: 10.1158/0008-5472.can-12-2236] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Autophagy attenuates the efficacy of conventional chemotherapy but its effects on immunotherapy have been little studied. Here, we report that chemotherapy renders tumor cells more susceptible to lysis by CTL in vivo. Moreover, bystander tumor cells that did not express antigen were killed by CTL. This effect was mediated by transient but dramatic upregulation of the mannose-6-phosphate receptor (MPR) on the tumor cell surface. Antitumor effects of combined treatment related to the kinetics of MPR upregulation and abrogation of this event abolished the combined effect of immunotherapy and chemotherapy. MPR accumulation on the tumor cell surface during chemotherapy was observed in different mouse tumor models and in patients with multiple myeloma. Notably, this effect was the result of redistribution of the receptor caused by chemotherapy-inducible autophagy. Together, our findings reveal one molecular mechanism through which the antitumor effects of conventional cancer chemotherapy and immunotherapy are realized.
Collapse
Affiliation(s)
- Rupal Ramakrishnan
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cheng H, Ren T, Sun SC. New insight into the oncogenic mechanism of the retroviral oncoprotein Tax. Protein Cell 2012; 3:581-9. [PMID: 22865346 DOI: 10.1007/s13238-012-2047-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/07/2012] [Indexed: 12/29/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1), an etiological factor that causes adult T cell leukemia and lymphoma (ATL), infects over 20 million people worldwide. About 1 million of HTLV-1-infected patients develop ATL, a highly aggressive non-Hodgkin's lymphoma without an effective therapy. The pX region of the HTLV-1 viral genome encodes an oncogenic protein, Tax, which plays a central role in transforming CD4+ T lymphocytes by deregulating oncogenic signaling pathways and promoting cell cycle progression. Expression of Tax following viral entry is critical for promoting survival and proliferation of human T cells and is required for initiation of oncogenesis. Tax exhibits diverse functions in host cells, and this oncoprotein primarily targets IκB kinase complex in the cytoplasm, resulting in persistent activation of NF-κB and upregulation of its responsive gene expressions that are crucial for T cell survival and cell cycle progression. We here review recent advances for the pathological roles of Tax in modulating IκB kinase activity. We also discuss our recent observation that Tax connects the IκB kinase complex to autophagy pathways. Understanding Tax-mediated pathogenesis will provide insights into development of new therapeutics in controlling HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Hua Cheng
- Penn State Hershey Cancer Institute, Hershey, PA 17033, USA.
| | | | | |
Collapse
|