1
|
Hu H, Wan S, Hu Y, Wang Q, Li H, Zhang N. Deciphering the role of APOE in cerebral amyloid angiopathy: from genetic insights to therapeutic horizons. Ann Med 2025; 57:2445194. [PMID: 39745195 DOI: 10.1080/07853890.2024.2445194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/26/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Cerebral amyloid angiopathy (CAA), characterized by the deposition of amyloid-β (Aβ) peptides in the walls of medium and small vessels of the brain and leptomeninges, is a major cause of lobar hemorrhage in elderly individuals. Among the genetic risk factors for CAA that continue to be recognized, the apolipoprotein E (APOE) gene is the most significant and prevalent, as its variants have been implicated in more than half of all patients with CAA. While the presence of the APOE ε4 allele markedly increases the risk of CAA, the ε2 allele confers a protective effect relative to the common ε3 allele. These allelic variants encode three APOE isoforms that differ at two amino acid positions. The primary physiological role of APOE is to mediate lipid transport in the brain and periphery; however, it has also been shown to be involved in a wide array of biological functions, particularly those involving Aβ, in which it plays a known role in processing, production, aggregation, and clearance. The challenges posed by the reliance on postmortem histological analyses and the current absence of an effective intervention underscore the urgency for innovative APOE-targeted strategies for diagnosing CAA. This review not only deepens our understanding of the impact of APOE on the pathogenesis of CAA but can also help guide the exploration of targeted therapies, inspiring further research into the therapeutic potential of APOE.
Collapse
Affiliation(s)
- Hantian Hu
- Tianjin Medical University, Tianjin, China
| | - Siqi Wan
- Tianjin Medical University, Tianjin, China
| | - Yuetao Hu
- Tianjin Medical University, Tianjin, China
| | - Qi Wang
- Tianjin Medical University, Tianjin, China
| | - Hanyu Li
- Tianjin Medical University, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Yu L, Shi H, Gao T, Xu W, Qian H, Jiang J, Yang X, Zhang X. Exomeres and supermeres: Current advances and perspectives. Bioact Mater 2025; 50:322-343. [PMID: 40276541 PMCID: PMC12020890 DOI: 10.1016/j.bioactmat.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Recent studies have revealed a great diversity and complexity in extracellular vesicles and particles (EVPs). The developments in techniques and the growing awareness of the particle heterogeneity have spurred active research on new particle subsets. Latest discoveries highlighted unique features and roles of non-vesicular extracellular nanoparticles (NVEPs) as promising biomarkers and targets for diseases. These nanoparticles are distinct from extracellular vesicles (EVs) in terms of their smaller particle sizes and lack of a bilayer membrane structure and they are enriched with diverse bioactive molecules particularly proteins and RNAs, which are widely reported to be delivered and packaged in exosomes. This review is focused on the two recently identified membraneless NVEPs, exomeres and supermeres, to provide an overview of their biogenesis and contents, particularly those bioactive substances linked to their bio-properties. This review also explains the concepts and characteristics of these nanoparticles, to compare them with other EVPs, especially EVs, as well as to discuss their isolation and identification methods, research interests, potential clinical applications and open questions.
Collapse
Affiliation(s)
- Li Yu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Hui Shi
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Tingxin Gao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
3
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
4
|
Chemello K, Guedon AF, Techer R, Jaafar AK, Guilhen S, Swietek MJ, Lambert G, Gallo A. Apolipoprotein E Plasma Concentrations Are Predictive of Recurrent Strokes: Insights From the SPARCL Trial. J Am Heart Assoc 2025; 14:e036630. [PMID: 40240927 DOI: 10.1161/jaha.124.036630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/25/2024] [Indexed: 04/18/2025]
Abstract
BACKGROUND In the SPARCL (Stroke Prevention by Aggressive Reduction in Cholesterol Levels) trial, atorvastatin (80 mg per day) was compared with placebo in patients with recent stroke or transient ischemic attack and no known coronary artery disease. Given the central role of apoE (apolipoprotein E) in lipoprotein metabolism and in the central nervous system, we assessed the contribution of apoE to subsequent cerebrovascular and cardiovascular events in this trial. METHODS AND RESULTS ApoE concentrations and major isoforms (E2/E3/E4) were determined by liquid-chromatography high resolution mass-spectrometry in plasma samples collected at baseline from 4348 SPARCL participants. Patients in the lowest quartile were compared with those in the highest quartiles of apoE concentrations. Multivariable-adjusted hazard-ratios (HR) and 95% CIs were calculated using Cox proportional hazards regression models. We found a significant association between low apoE concentrations and the risk of recurrent strokes or cerebrovascular events (HR, 1.401 [95% CI, 1.154-1.701], P<0.001 and 1.467 [95% CI, 1.260-1.708], P<0.001) driven by a higher incidence of ischemic strokes and transient ischemic attacks in the entire cohort as well as separately in each treatment arm of SPARCL. In contrast, apoE concentrations did not significantly associate with the incidence of hemorrhagic strokes in SPARCL. We also found a significant association between reduced apoE concentrations and the risk of subsequent coronary events (HR, 1.373 ([95% CI, 1.064-1.772], P=0.015) in the entire cohort that was, however, significant only in the placebo arm of SPARCL. CONCLUSIONS Low apoE concentrations are predictive of recurring cerebrovascular events in patients with a history of stroke or transient ischemic attack. REGISTRATION URL: https://www.clinicaltrials.gov; Identifier: NTC00147602.
Collapse
Affiliation(s)
- Kévin Chemello
- Université de La Réunion, Inserm, UMR1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI) Sainte-Pierre (Réunion) France
- School of Biomedical Sciences, Faculty of Medicine and Health University of New South Wales Sydney NSW Australia
| | - Alexis F Guedon
- Département Hospitalo Universitaire Inflammation Immunopathologie Biothérapie (DMUi3), Sorbonne Université, AP-HP, Service de Médecine Interne Paris France
| | - Romuald Techer
- Université de La Réunion, Inserm, UMR1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI) Sainte-Pierre (Réunion) France
| | - Ali K Jaafar
- Université de La Réunion, Inserm, UMR1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI) Sainte-Pierre (Réunion) France
- EMBL Australia Node for Single Molecule Sciences and School of Biomedical Sciences, Faculty of Medicine and Health University of New South Wales Sydney NSW Australia
| | - Sam Guilhen
- Université de La Réunion, Inserm, UMR1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI) Sainte-Pierre (Réunion) France
| | | | - Gilles Lambert
- Département Hospitalo Universitaire Inflammation Immunopathologie Biothérapie (DMUi3), Sorbonne Université, AP-HP, Service de Médecine Interne Paris France
| | - Antonio Gallo
- Université de La Réunion, Inserm, UMR1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI) Sainte-Pierre (Réunion) France
- Department of Nutrition Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, INSERM UMR1166, IHU-ICAN, Lipidology and cardiovascular prevention Unit Paris France
| |
Collapse
|
5
|
Cassiano LMG, de Paula JJ, Rosa DV, Miranda DM, Romano-Silva MA, Coimbra RS. Vitamin B12 as an epidrug for regulating peripheral blood biomarkers in long COVID-associated visuoconstructive deficit. Sci Rep 2025; 15:9438. [PMID: 40108145 PMCID: PMC11923054 DOI: 10.1038/s41598-025-86637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/13/2025] [Indexed: 03/22/2025] Open
Abstract
Approximately four months after recovering from a mild COVID-19 infection, around 25% of individuals developed visuoconstructive deficit (VCD), which was found to be correlated with an increase in peripheral immune markers and alterations in structural and metabolic brain imaging. Recently, it has been demonstrated that supplemental vitamin B12 regulates hyperinflammation during moderate and severe COVID-19 through methyl-dependent epigenetic mechanisms. Herein, whole peripheral blood cultures were produced using samples obtained from patients with confirmed persistent VCD, and controls without impairment, between 10 and 16 months after mild COVID-19. This experimental model was used to assess the leukocyte expression patterns of 11 biomarkers previously associated with VCD in long COVID and explore the potential of pharmacological B12 in regulating these genes. The results showed that patients with persistent VCD displayed continued upregulation of CCL11 and LIF compared to controls. It is worth noting that elevated serum levels of CCL11 have been previously linked to age-related neurodegenerative diseases. Notably, the addition of 1 nM of vitamin B12 to blood cultures from individuals with VCD normalized the mRNA levels of CCL11, upregulated the neuroprotective HGF, and, to a lesser extent, downregulated CSF2 and CXCL10. There was an inverse correlation observed between CCL11 mRNA levels and methylation levels of specific cytosines in its promoter region. These findings underscore the significance of systemic inflammation in persistent VCD associated with long COVID. Moreover, the study provides evidence suggesting that B12, acting as an epidrug, shows promise as a therapeutic approach for addressing this cognitive impairment.
Collapse
Affiliation(s)
- Larissa M G Cassiano
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Av. Augusto de Lima, Belo Horizonte, 1517, Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jonas J de Paula
- Departamento de Psiquiatria, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniela V Rosa
- Departamento de Psiquiatria, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Débora M Miranda
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Departamento de Pediatria, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marco A Romano-Silva
- Departamento de Psiquiatria, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Roney S Coimbra
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Av. Augusto de Lima, Belo Horizonte, 1517, Brazil.
| |
Collapse
|
6
|
Lewandowski M, Busch R, Marschner JA, Merk D. Comparative Evaluation and Profiling of Chemical Tools for the Nuclear Hormone Receptor Family 2. ACS Pharmacol Transl Sci 2025; 8:854-870. [PMID: 40046426 PMCID: PMC7617459 DOI: 10.1021/acsptsci.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Nuclear receptors regulate transcription in response to ligand signals and enable the pharmacological control of gene expression. However, many nuclear receptors are still poorly explored and are not accessible to ligand-based target identification studies. In particular, most members of the NR2 family are among the least studied proteins of the class, and apart from the retinoid X receptors (RXR), validated NR2 ligands are very rare. Here, we gathered the NR2 modulators reported in literature for comparative profiling in uniform test systems. Most candidate compounds displayed insufficient on-target activity or selectivity to be used as chemical tools for NR2 receptors underscoring the urgent need for further NR2 ligand development. Nevertheless, a small NR2 modulator set could be assembled for application in a chemogenomic fashion. There are 48 ligand-activated transcription factors in humans forming the superfamily of nuclear receptors (NRs, Figure 1a),1,2 which translate (endogenous) ligand signals into changes in gene expression patterns.3 The multifaceted roles of NRs span pivotal physiological processes, encompassing metabolism, inflammation, and cellular differentiation.4 Over decades, the NR1 and NR3 receptor families, including (steroid) hormone receptors and lipid sensors, have emerged as well-explored therapeutic targets of essential drugs like, for example, glucocorticoids as anti-inflammatory drugs, estrogen receptor modulators as contraceptives and anticancer agents, and PPAR agonists as oral antidiabetics.5-7 Despite this progress, a significant portion of the NR superfamily remains understudied, particularly within the NR2 family which comprises the hepatocyte nuclear factor-4 receptors (HNF4α/γ; NR2A1/2), the retinoid X receptors (RXRα/β/γ; NR2B1-3), the testicular receptors (TR2/4; NR2C1/2), the tailless-like receptors (TLX and PNR; NR2E1/3), and the COUP-TF-like receptors (COUP-TF1/2, V-erBA-related gene; NR2F1/2/6).8,9 Apart from RXR, all NR2 receptors are considered as orphan, and their ligands remain widely elusive. Therefore, chemical tools for most NR2 receptors are rare and poorly annotated posing an obstacle to target identification and validation studies. To enable chemogenomics on NR2 receptors and improve annotation, of the few available ligands, we gathered a scarce collection of NR2 modulators (agonists, antagonists, inverse agonists) for comparative evaluation and profiling. While the NR2B family (RXR) is well covered with high-quality ligands and a few early tools are available for NR2E1, we found the available ligands of the NR2A and NR2C families of insufficient quality to be used as chemical tools.
Collapse
Affiliation(s)
- Max Lewandowski
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377Munich, Germany
| | - Romy Busch
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377Munich, Germany
| | - Julian A. Marschner
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377Munich, Germany
| | - Daniel Merk
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377Munich, Germany
| |
Collapse
|
7
|
Jurutka PW, Khan Z, Kaneko I, Sausedo MA, Shahani PH, MacNeill M, Grozic A, Bhogal J, Swierski J, Wentzel MR, Chhun C, Applegate MT, Raban S, Ibrahim S, Alwaeli K, Feldman TL, Pomeroy KJ, Sarnowski JT, Nguyen N, Ziller JW, Ma N, van der Vaart A, Hackney JF, Marshall PA, Wagner CE. Modeling, synthesis and cell-based evaluation of pyridine-substituted analogs of CD3254 and fluorinated analogs of CBt-PMN as novel therapeutics. Bioorg Med Chem 2025; 119:118059. [PMID: 39808894 DOI: 10.1016/j.bmc.2024.118059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Six pyridine analogs of (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid-or CD3254 (11)-in addition to two novel analogs of 1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1H-benzo[d][1,2,3]triazole-5-carboxylic acid (CBt-PMN or 23) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), an FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Treatment with 1 often elicits side-effects by disrupting or provoking other RXR-dependent nuclear receptors and cellular pathways. All analogs were assessed through modeling for their ability to bind RXR and then evaluated in human colon and kidney cells employing an RXR-RXR mammalian-2-hybrid (M2H) system and in an RXRE-controlled transcriptional assay. The EC50 values for these analogs, and their corresponding effectiveness in activating both LXR/LXRE and the Sterol Regulatory Element Binding Protein (SREBP) promoter in comparison to 1, suggests that these compounds likely display a range of therapeutic potential and differential side effect profiles. Several analogs also exhibited reduced retinoic-acid-receptor (RAR) cross-signaling implying that they possess enhanced selectivity towards activation of cellular RXR versus RAR pathways. These results show that modifying potent rexinoids such as CD3254 or partial agonists such as CBt-PMN can result in improved target receptor selectivity and enhanced potency, such as compounds 26, 27 and 28 in this study, compared with approved therapeutics such as compound 1, where these three compounds exhibited similar potency as 1, but 26 and 27 lower RAR and SREBP activation than 1.
Collapse
Affiliation(s)
- Peter W Jurutka
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA; Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Zainab Khan
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Ichiro Kaneko
- Research Institute for Food and Nutritional Sciences, School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Michael A Sausedo
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Pritika H Shahani
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Mairi MacNeill
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Aleksandra Grozic
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Jaskaran Bhogal
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Johnathon Swierski
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Michael R Wentzel
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Christine Chhun
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Michael T Applegate
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - San Raban
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Samir Ibrahim
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Karar Alwaeli
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Tracie L Feldman
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Kayla J Pomeroy
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Joseph T Sarnowski
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Natalia Nguyen
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, 576 Rowland Hall, Irvine, CA 92697, USA
| | - Ning Ma
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, CHE 205, Tampa, FL 33620, USA
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, CHE 205, Tampa, FL 33620, USA
| | - Jennifer F Hackney
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Pamela A Marshall
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Carl E Wagner
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA.
| |
Collapse
|
8
|
Asvos X, El Mubarak MA, Karampelas T, Rampias T, Tamvakopoulos C, Sivolapenko GB, Papakyriakou A, Topouzis S, Vassilatis DK, Fokas D. BRF110, an Orally Active Nurr1-RXRα-Selective Rexinoid, Enhances BDNF Expression without Elevating Triglycerides. J Med Chem 2025; 68:4763-4786. [PMID: 39945195 PMCID: PMC11874024 DOI: 10.1021/acs.jmedchem.4c03046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
We report the discovery of a Nurr1-RXRα heterodimer-selective rexinoid which emerged from the structural modification of aminopyrimidine XCT0135908. Although XCT0135908 demonstrated high selectivity for the Nurr1-RXRα heterodimer over other RXRα dimerization partners, its poor in vivo stability and limited brain penetration hindered its utility. Structure-activity relationship (SAR) studies alongside bioactivity evaluations of a diverse series of substituted pyrimidines led to BRF110, a brain-penetrant compound retaining the selective activation of the Nurr1-RXRα heterodimer. BRF110, as XCT0135908, protects dopaminergic cells against the Parkinson's disease-related toxin MPP+ and increases BDNF transcription in mice. Notably, BRF110, in contrast to the market-approved pan-RXR agonist bexarotene, did not elevate triglyceride levels, indicating that enhanced heterodimer selectivity can mitigate off-target in vivo side effects of rexinoids. These findings highlight the potential of heterodimer-selective scaffolds as a strategy for improving the therapeutic profile of rexinoids, addressing significant challenges in the clinical development of RXR-targeting molecules.
Collapse
Affiliation(s)
- Xenophon Asvos
- Department
of Materials Science and Engineering, University
of Ioannina, Ioannina 45110, Greece
| | | | - Theodoros Karampelas
- Center
for Clinical Research, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Theodoros Rampias
- Center
for Clinical Research, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Constantin Tamvakopoulos
- Center
for Clinical Research, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | | | - Athanasios Papakyriakou
- Institute
of Biosciences and Applications, National
Centre for Scientific Research “Demokritos”, Athens 15341, Greece
| | - Stavros Topouzis
- Department
of Pharmacy, University of Patras, Patras 26504, Greece
| | - Demetrios K. Vassilatis
- Center
for Clinical Research, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Demosthenes Fokas
- Department
of Materials Science and Engineering, University
of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
9
|
Divya, Faruq M, Nazir SS, Kaushik P, Parvez S, Vohora D. Ganaxolone Reverses the Effect of Amyloid β-Induced Neurotoxicity by Regulating the Liver X Receptor Expression in APP Transfected SH-SY5Y Cells and Murine Model of Alzheimer's Disease. J Neurochem 2025; 169:e70007. [PMID: 39936324 DOI: 10.1111/jnc.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/06/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025]
Abstract
Inhibiting β-amyloid aggregation and enhancing its clearance are the key strategies in Alzheimer's disease (AD) treatment. Liver X receptors (LXRs) plays a crucial role in cholesterol homeostasis and inflammation, and their activation can clear Aβ aggregates in AD. Allopregnanolone, a neurosteroid, positively influences AD through LXR regulation, while ganaxolone, its synthetic analog, is known for its neuroprotective properties. This study explores the effect of ganaxolone on LXR activation and regulation of genes involved in mitigating Aβ toxicity and tauopathy in SH-SY5Y cells transfected with APP695 Swe/Ind plasmid and an Aβ1-42 induced AD mouse model. Molecular docking stimulations indicated ganaxolone's binding and interaction with LXRβ. Subsequently, transfected neuronal cells exhibited increased mRNA levels of APP, TNF-α and IL-1β, decreased cell viability, reduced MMP and altered protein expression of Aβ, LXR, BCL-2, APOE, ABCA1, along with increased levels of mROS, Bax, and caspase 3 activity. Ganaxolone treatment significantly abrogated Aβ-induced effect in transfected neuronal cells by enhancing LXRβ expression, inducing LXR:RXR colocalization, thereby increasing APOE and ABCA1 expression. It also decreased tau mRNA levels in transfected cells. Importantly, in AD mice, ganaxolone ameliorated cognitive impairment, reduced Aβ toxicity, tau levels, and neuroinflammatory markers, restored mitochondrial function, and decreased neuronal apoptosis. Taken together, these novel results highlight the central role of LXR in mediating Aβ-induced toxicity and provide preclinical evidence for ganaxolone as a potential agent to reduce toxicity in an LXR-dependent manner. This may serve as a promising treatment strategy to slow or prevent neurodegeneration in AD patients.
Collapse
Affiliation(s)
- Divya
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammed Faruq
- Division of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Sheikh Sana Nazir
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
10
|
Ma L, Tan ECK, Goudey B, Jin L, Pan Y. Unraveling the bidirectional link between cancer and dementia and the impact of cancer therapies on dementia risk: A systematic review and meta-analysis. Alzheimers Dement 2025; 21:e14540. [PMID: 39807644 PMCID: PMC11851135 DOI: 10.1002/alz.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/21/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Observational studies on the cancer-dementia relationship have yielded controversial results. This study systematically reviews the evidence to clarify this association. We searched Embase, Global Health, Ovid Medline, and APA PsycInfo. Colorectal and lung cancers showed the greatest risk reduction for all-cause dementia (ACD) and Alzheimer's disease (AD), respectively, while melanoma and colorectal cancers had the largest reduction in vascular dementia (VaD). Prostate cancer survivors on androgen deprivation therapy (ADT) had a higher risk of ACD/AD, while breast cancer patients on tamoxifen had a lower AD risk. Chemotherapy was linked to a reduced AD risk. ACD patients saw a 30% risk reduction for bladder, colorectal, and lung cancers, while AD patients had a ≈ 35% reduction for bladder and lung cancers. Our study urges clinicians to monitor cognitive function in cancer patients, especially those on ADT, tamoxifen, or chemotherapy and highlights the need for research into cancer-dementia mechanisms. HIGHLIGHTS: Cancer survivors have an 8% to 14% lower risk of dementia, while those with dementia have a 25% lower cancer risk. Colorectal and non-melanoma skin cancers were associated with reduced risks of all-cause dementia (ACD; 16%/9%), Alzheimer's disease (AD; 13%/5%), and vascular dementia (VaD; 24%/9%). Lung cancer reduced AD risk by 17%, and melanoma reduced VaD risk by 27%. ACD and AD patients had lower risks of lung (30%/36%), bladder (32%/34%), breast (26%/20%), and colorectal (31%/28%) cancers. Tamoxifen and chemotherapy reduced AD risk, while androgen deprivation therapy increased ACD risk.
Collapse
Affiliation(s)
- Liwei Ma
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Edwin C. K. Tan
- School of PharmacyFaculty of Medicine and HealthThe University of SydneyCamperdownNew South WalesAustralia
| | - Benjamin Goudey
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- The ARC Training Centre in Cognitive Computing for Medical TechnologiesThe University of MelbourneCarltonVictoriaAustralia
| | - Liang Jin
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Yijun Pan
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
11
|
Zhou X, Cao H, Jiang Y, Chen Y, Zhong H, Fu WY, Lo RMN, Wong BWY, Cheng EYL, Mok KY, Kwok TCY, Mok VCT, Ip FCF, Alzheimer's Disease Neuroimaging Initiative, Miyashita A, Hara N, Ikeuchi T, Hardy J, Chen Y, Fu AKY, Ip NY. Transethnic analysis identifies SORL1 variants and haplotypes protective against Alzheimer's disease. Alzheimers Dement 2025; 21:e14214. [PMID: 39655505 PMCID: PMC11772736 DOI: 10.1002/alz.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 01/03/2025]
Abstract
INTRODUCTION The SORL1 locus exhibits protective effects against Alzheimer's disease (AD) across ancestries, yet systematic studies in diverse populations are sparse. METHODS Logistic regression identified AD-associated SORL1 haplotypes in East Asian (N = 5249) and European (N = 8588) populations. Association analysis between SORL1 haplotypes and AD-associated traits or plasma biomarkers was conducted. The effects of non-synonymous mutations were assessed in cell-based systems. RESULTS Protective SORL1 variants/haplotypes were identified in the East Asian and European populations. Haplotype Hap_A showed a strong protective effect against AD in East Asians, linked to less severe AD phenotypes, higher SORL1 transcript levels, and plasma proteomic changes. A missense variant within Hap_A, rs2282647-C allele, was linked to a lower risk of AD and decreased expression of a truncated SORL1 protein isoform. DISCUSSION Our transethnic analysis revealed key SORL1 haplotypes that exert protective effects against AD, suggesting mechanisms of the protective role of SORL1 in AD. HIGHLIGHTS We examined the AD-protective mechanisms of SORL1 in the general population across diverse ancestral backgrounds by jointly analyzing data from three East Asian cohorts (ie, mainland China, Hong Kong, and Japan) and a European cohort. Comparative analysis unveiled key ethnic-specific SORL1 genetic variants and haplotypes. Among these, the SORL1 minor haplotype, Hap_A, emerged as the primary AD-protective factor in East Asians. Hap_A exerts significant AD-protective effects in both APOE ε4 carriers and non-carriers. SORL1 haplotype Hap_A is associated with cognitive function, brain volume, and the activity of specific neuronal and immune-related pathways closely connected to AD risk. Protective variants within Hap_A are linked to increased SORL1 expression in human tissues. We identified an isoform-specific missense variant in Hap_A that modifies the function and levels of a truncated SORL1 protein isoform that is poorly investigated.
Collapse
Affiliation(s)
- Xiaopu Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
| | - Han Cao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
| | - Yuanbing Jiang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Yuewen Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
- SIAT–HKUST Joint Laboratory for Brain ScienceShenzhenGuangdongChina
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhen–Hong Kong Institute of Brain Science – Shenzhen Fundamental Research InstitutionsShenzhenGuangdongChina
| | - Huan Zhong
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Wing Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
| | - Ronnie Ming Nok Lo
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Bonnie Wing Yan Wong
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Elaine Yee Ling Cheng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Kin Ying Mok
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| | - Timothy C. Y. Kwok
- Therese Pei Fong Chow Research Centre for Prevention of Dementia, Division of Geriatrics, Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongChina
| | - Vincent C. T. Mok
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Division of Neurology, Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongChina
| | - Fanny C. F. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
| | | | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research InstituteNiigata UniversityNiigataJapan
| | - John Hardy
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
- Institute for Advanced StudyThe Hong Kong University of Science and TechnologyHong KongChina
| | - Yu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
- SIAT–HKUST Joint Laboratory for Brain ScienceShenzhenGuangdongChina
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhen–Hong Kong Institute of Brain Science – Shenzhen Fundamental Research InstitutionsShenzhenGuangdongChina
| | - Amy K. Y. Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
- SIAT–HKUST Joint Laboratory for Brain ScienceShenzhenGuangdongChina
| | - Nancy Y. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
- SIAT–HKUST Joint Laboratory for Brain ScienceShenzhenGuangdongChina
| |
Collapse
|
12
|
Komai M, Takasugi N. Potential treatment of Alzheimer's disease astrocyte pathology based on nuclear lipid regulation. Neural Regen Res 2024; 21:01300535-990000000-00642. [PMID: 39688557 PMCID: PMC12094534 DOI: 10.4103/nrr.nrr-d-24-01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Affiliation(s)
- Masato Komai
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
13
|
Li JD, He SL, Wang GH, Chen JJ, Liu XZ, Wang TQ, Zhou M, Du CC, Chen HF, Tian WJ. Filicinic acid based meroterpenoids from Hypericum elodeoides and their anti-Alzheimer's disease effects. Bioorg Chem 2024; 153:107787. [PMID: 39243738 DOI: 10.1016/j.bioorg.2024.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
(±)-Elodeoidileons A-L (1-12), 12 pairs of previously undescribed filicinic acid based meroterpenoids were isolated from Hypericum elodeoides with unique linear or angular 6/6/6 ring core. Modern spectroscopic techniques, modified Mosher's method and quantum chemical calculations were used to identify the planner structures and configurations of 1-12. Additionally, the potential biosynthetic pathways for 1-12 were anticipated. Moreover, biological activity assessments suggested that 1a, 5a, and 11b could activate Retinoid X receptor-α (RXRα) transcription and enhance the ATP-binding cassette transporter A1 (ABCA1) protein's expression. Fluorescence titration assay suggested that 1a might have a direct interaction with the RXRα-LBD protein, with an estimated Kd value of 5.85 μM. Moreover, molecular docking study confirmed the binding of 1a to RXRα and further validated by cellular thermal shift assay (CETSA). Thus, compound 1a may promote β-amyloid (Aβ) clearance by targeting RXRα and upregulating the expression of the ABCA1 protein, showing promise as anti-Alzheimer's agent.
Collapse
Affiliation(s)
- Jing-Dian Li
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Shou-Lun He
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Guang-Hui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jun-Jie Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Xiang-Zhong Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Tian-Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Mi Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Chun-Chun Du
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Hai-Feng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China.
| | - Wen-Jing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
14
|
Soto TB, Tenconi PE, Buzzi ED, Dionisio L, Mateos MV, Rotstein NP, Spitzmaul G, Politi LE, German OL. Activation of retinoid X receptors protects retinal neurons and pigment epithelial cells from BMAA-induced death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119816. [PMID: 39159686 DOI: 10.1016/j.bbamcr.2024.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Exposure to the non-protein amino acid cyanotoxin β-N-methylamino-L-alanine (BMAA), released by cyanobacteria found in many water reservoirs has been associated with neurodegenerative diseases. We previously demonstrated that BMAA induced cell death in both retina photoreceptors (PHRs) and amacrine neurons by triggering different molecular pathways, as activation of NMDA receptors and formation of carbamate-adducts was only observed in amacrine cell death. We established that activation of Retinoid X Receptors (RXR) protects retinal cells, including retina pigment epithelial (RPE) cells from oxidative stress-induced apoptosis. We now investigated the mechanisms underlying BMAA toxicity in these cells and those involved in RXR protection. BMAA addition to rat retinal neurons during early development in vitro increased reactive oxygen species (ROS) generation and polyADP ribose polymers (PAR) formation, while pre-treatment with serine (Ser) before BMAA addition decreased PHR death. Notably, RXR activation with the HX630 agonist prevented BMAA-induced death in both neuronal types, reducing ROS generation, preserving mitochondrial potential, and decreasing TUNEL-positive cells and PAR formation. This suggests that BMAA promoted PHR death by substituting Ser in polypeptide chains and by inducing polyADP ribose polymerase activation. BMAA induced cell death in ARPE-19 cells, a human epithelial cell line; RXR activation prevented this death, decreasing ROS generation and caspase 3/7 activity. These findings suggest that RXR activation prevents BMAA harmful effects on retinal neurons and RPE cells, supporting this activation as a broad-spectrum strategy for treating retina degenerations.
Collapse
Affiliation(s)
- Tamara B Soto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Paula E Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Edgardo D Buzzi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Leonardo Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guillermo Spitzmaul
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Olga L German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
15
|
Viña J, Borrás C, Mas-Bargues C. Free radicals in Alzheimer's disease: From pathophysiology to clinical trial results. Free Radic Biol Med 2024; 225:296-301. [PMID: 39370055 DOI: 10.1016/j.freeradbiomed.2024.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
In this review, we examine the role of oxidative stress in the pathophysiology of Alzheimer's Disease (AD). Amyloid-beta (Aβ) induces damage not only extracellularly but also within the intracellular environment. Mitochondria, a principal source of free radicals, are closely associated with Aβ, as it binds to heme, thereby disrupting the normal electron flow in the respiratory chain. At the turn of the century, it was hypothesized that the majority, if not all, pathological events in AD are linked to free radical damage. Notably, free radicals also possess signaling capabilities that contribute to the disease's progression. A substantial body of evidence suggests that radical signaling is implicated in the relationship between amyloid-β and tau hyperphosphorylation. Antioxidant therapy represents a potential strategy to delay the progression from cognitive impairment to overt dementia. Enhancing endogenous antioxidant defenses, for instance, through polyphenol supplementation, offers a promising approach to partially prevent dementia onset, particularly in at-risk populations. Understanding the redox-related pathophysiology of AD opens new avenues for prevention and treatment, providing a source of hope in the fight against Alzheimer's Disease.
Collapse
Affiliation(s)
- José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| |
Collapse
|
16
|
Pareek A, Singhal R, Pareek A, Ghazi T, Kapoor DU, Ratan Y, Singh AK, Jain V, Chuturgoon AA. Retinoic acid in Parkinson's disease: Molecular insights, therapeutic advances, and future prospects. Life Sci 2024; 355:123010. [PMID: 39181315 DOI: 10.1016/j.lfs.2024.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Parkinson's disease (PD) is a common and progressively worsening neurodegenerative disorder characterized by abnormal protein homeostasis and the degeneration of dopaminergic neurons, particularly in the substantia nigra pars compacta. The prevalence of PD has doubled in the past 25 years, now affecting over 8.5 million individuals worldwide, underscoring the need for effective management strategies. While current pharmacological therapies provide symptom relief, they face challenges in treating advanced PD stages. Recent research highlights the therapeutic benefits of retinoic acid (RA) in PD, demonstrating its potential to mitigate neuroinflammation and oxidative stress, regulate brain aging, promote neuronal plasticity, and influence circadian rhythm gene expression and retinoid X receptor heterodimerization. Additionally, RA helps maintain intestinal homeostasis and modulates the enteric nervous system, presenting significant therapeutic potential for managing PD. This review explores RA as a promising alternative to conventional therapies by summarizing the molecular mechanisms underlying its role in PD pathophysiology and presenting up-to-date insights into both preclinical and clinical studies of RA in PD treatment. It also delves into cutting-edge formulations incorporating RA, highlighting ongoing efforts to refine therapeutic strategies by integrating RA into novel treatments. This comprehensive overview aims to advance progress in the field, contribute to the development of effective, targeted treatments for PD, and enhance patient well-being. Further research is essential to fully explore RA's therapeutic potential and validate its efficacy in PD treatment.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India.
| | - Runjhun Singhal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | | | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Arun Kumar Singh
- Department of Pharmacy, Vivekananda Global University, Jaipur 303012, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| |
Collapse
|
17
|
Kang S, Lee J, Ali DN, Choi S, Nesbitt J, Min PH, Trushina E, Choi DS. Low to moderate ethanol exposure reduces astrocyte-induced neuroinflammatory signaling and cognitive decline in presymptomatic APP/PS1 mice. Sci Rep 2024; 14:23989. [PMID: 39402264 PMCID: PMC11473946 DOI: 10.1038/s41598-024-75202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Alcohol use disorder has been associated with the development of neurodegenerative diseases, including Alzheimer's disease (AD). However, recent studies demonstrate that moderate alcohol consumption may be protective against dementia and cognitive decline. We examined astrocyte function, low-density lipoprotein (LDL) receptor-related protein 1 (LRP1), and the NF-κB p65 and IKK-α/β signaling pathways in modulating neuroinflammation and amyloid beta (Aβ) deposition. We assessed apolipoprotein E (ApoE) in the brain of APP/PS1 mice using IHC and ELISA in response to low to moderate ethanol exposure (MEE). First, to confirm the intracerebral distribution of ApoE, we co-stained with GFAP, a marker for astrocytes that biosynthesize ApoE. We sought to investigate whether the ethanol-induced upregulation of LRP1 could potentially inhibit the activity of IL-1β and TNF-α induced IKK-α/β towards NF-κB p65, resulting in a reduction of pro-inflammatory cytokines. To evaluate the actual Aβ load in the brains of APP/PS1 mice, we performed with a specific antibody Aβ (Thioflavin S) on both air- and ethanol-exposed groups, subsequently analyzing Aβ levels. We also measured glucose uptake using 18F- fluorodeoxyglucose (FDG)-positron emission tomography (PET). Finally, we investigated whether MEE induced cognitive and memory changes using the Y maze, noble object recognition test, and Morris water maze. Our findings demonstrate that MEE reduced astrocytic glial fibrillary acidic protein (GFAP) and ApoE levels in the cortex and hippocampus in presymptomatic APP/PS1 mice. Interestingly, increased LRP1 protein expression was accompanied by dampening the IKK-α/β-NF-κB p65 pathway, resulting in decreased IL-1β and TNF-α levels in male mice. Notably, female mice show reduced levels of anti-inflammatory cytokines IL-4, and IL-10 without altering IL-1β and TNF-α concentrations. In both males and females, Aβ plaques, a hallmark of AD, were reduced in the cortex and hippocampus of APP/PS1 mice exposed to ethanol starting at pre-symptomatic stage. Consistently, MEE increased FDG-PET-based brain activities and normalized cognitive and memory deficits in the APP/PS1 mice. Our findings suggest that MEE may benefit AD pathology via modulating LRP1 expression, potentially reducing neuroinflammation and attenuating Aβ deposition. Our study implies that reduced astrocyte-derived ApoE and LDL cholesterol levels are critical for attenuating AD pathology.
Collapse
Affiliation(s)
- Shinwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Pharmacology College of Medicine, Soonchunhyang University, 22 Soonchunhyango-ro, Ansan, Chungcheongnam-do, 31508, South Korea
| | - Jeyeon Lee
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Dina N Ali
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sun Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jarred Nesbitt
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Paul H Min
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Eugenia Trushina
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
- Neuroscience Program, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
18
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Das V, Miller JH, Alladi CG, Annadurai N, De Sanctis JB, Hrubá L, Hajdúch M. Antineoplastics for treating Alzheimer's disease and dementia: Evidence from preclinical and observational studies. Med Res Rev 2024; 44:2078-2111. [PMID: 38530106 DOI: 10.1002/med.22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
As the world population ages, there will be an increasing need for effective therapies for aging-associated neurodegenerative disorders, which remain untreatable. Dementia due to Alzheimer's disease (AD) is one of the leading neurological diseases in the aging population. Current therapeutic approaches to treat this disorder are solely symptomatic, making the need for new molecular entities acting on the causes of the disease extremely urgent. One of the potential solutions is to use compounds that are already in the market. The structures have known pharmacokinetics, pharmacodynamics, toxicity profiles, and patient data available in several countries. Several drugs have been used successfully to treat diseases different from their original purposes, such as autoimmunity and peripheral inflammation. Herein, we divulge the repurposing of drugs in the area of neurodegenerative diseases, focusing on the therapeutic potential of antineoplastics to treat dementia due to AD and dementia. We briefly touch upon the shared pathological mechanism between AD and cancer and drug repurposing strategies, with a focus on artificial intelligence. Next, we bring out the current status of research on the development of drugs, provide supporting evidence from retrospective, clinical, and preclinical studies on antineoplastic use, and bring in new areas, such as repurposing drugs for the prion-like spreading of pathologies in treating AD.
Collapse
Affiliation(s)
- Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - John H Miller
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Charanraj Goud Alladi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Lenka Hrubá
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
20
|
Xu L, Wu X, Zhao S, Hu H, Wang S, Zhang Y, Chen J, Zhang X, Zhao Y, Ma R, Huang F, Shi L. Harnessing Nanochaperone-Mediated Autophagy for Selective Clearance of Pathogenic Tau Protein in Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313869. [PMID: 38688523 DOI: 10.1002/adma.202313869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Accumulation of pathological tau is a hallmark of Alzheimer's disease (AD), which correlates more closely with cognitive impairment than does the amyloid-β (Aβ) burden. Autophagy is a powerful process for the clearance of toxic proteins including aberrant tau. However, compromised autophagy is demonstrated in neurodegeneration including AD, and current autophagy inducers remain enormously challenging due to inability of restoring autophagy pathway and lack of targeting specificity. Here, pathogenic tau-specific autophagy based on customized nanochaperone is developed for AD treatment. In this strategy, the nanochaperone can selectively bind to pathogenic tau and maintain tau homeostasis, thereby ensuring microtubule stability which is important for autophagy pathway. Meanwhile, the bound pathogenic tau can be sequestered in autophagosomes by in situ autophagy activation of nanochaperone. Consequently, autophagosomes wrapping with pathogenic tau are able to be trafficked along the stabilized microtubule to achieve successful fusion with lysosomes, resulting in the enhancement of autophagic flux and pathologic tau clearance. After treatment with this nanochaperone-mediated autophagy strategy, the tau burden, neuron damages, and cognitive deficits of AD mice are significantly alleviated in the brain. Therefore, this work represents a promising candidate for AD-targeted therapy and provides new insights into future design of anti-neurodegeneration drugs.
Collapse
Affiliation(s)
- Linlin Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaohui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Shuyue Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Haodong Hu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Silei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yongxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jiajing Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaochen Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Rujiang Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Fan Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300090, P. R. China
| |
Collapse
|
21
|
Tripathi A, Alnakhala H, Brontesi L, Selkoe D, Dettmer U. RXR nuclear receptor signaling modulates lipid metabolism and triggers lysosomal clearance of alpha-synuclein in neuronal models of synucleinopathy. Cell Mol Life Sci 2024; 81:362. [PMID: 39162859 PMCID: PMC11336128 DOI: 10.1007/s00018-024-05373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Disease-modifying strategies for Parkinson disease (PD), the most common synucleinopathy, represent a critical unmet medical need. Accumulation of the neuronal protein alpha-synuclein (αS) and abnormal lipid metabolism have each been implicated in PD pathogenesis. Here, we elucidate how retinoid-X-receptor (RXR) nuclear receptor signaling impacts these two aspects of PD pathogenesis. We find that activated RXR differentially regulates fatty acid desaturases, significantly reducing the transcript levels of the largely brain-specific desaturase SCD5 in human cultured neural cells and PD patient-derived neurons. This was associated with reduced perilipin-2 protein levels in patient neurons, reversal of αS-induced increases in lipid droplet (LD) size, and a reduction of triglyceride levels in human cultured cells. With regard to αS proteostasis, our study reveals that RXR agonism stimulates lysosomal clearance of αS. Our data support the involvement of Polo-like kinase 2 activity and αS S129 phosphorylation in mediating this benefit. The lowering of cellular αS levels was associated with reduced cytotoxicity. Compared to RXR activation, the RXR antagonist HX531 had the opposite effects on LD size, SCD, αS turnover, and cytotoxicity, all supporting pathway specificity. Together, our findings show that RXR-activating ligands can modulate fatty acid metabolism and αS turnover to confer benefit in cellular models of PD, including patient neurons. We offer a new paradigm to investigate nuclear receptor ligands as a promising strategy for PD and related synucleinopathies.
Collapse
Affiliation(s)
- Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA.
| | - Heba Alnakhala
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Lisa Brontesi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA.
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Flieger J, Forma A, Flieger W, Flieger M, Gawlik PJ, Dzierżyński E, Maciejewski R, Teresiński G, Baj J. Carotenoid Supplementation for Alleviating the Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:8982. [PMID: 39201668 PMCID: PMC11354426 DOI: 10.3390/ijms25168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by, among other things, dementia and a decline in cognitive performance. In AD, dementia has neurodegenerative features and starts with mild cognitive impairment (MCI). Research indicates that apoptosis and neuronal loss occur in AD, in which oxidative stress plays an important role. Therefore, reducing oxidative stress with antioxidants is a natural strategy to prevent and slow down the progression of AD. Carotenoids are natural pigments commonly found in fruits and vegetables. They include lipophilic carotenes, such as lycopene, α- and β-carotenes, and more polar xanthophylls, for example, lutein, zeaxanthin, canthaxanthin, and β-cryptoxanthin. Carotenoids can cross the blood-brain barrier (BBB) and scavenge free radicals, especially singlet oxygen, which helps prevent the peroxidation of lipids abundant in the brain. As a result, carotenoids have neuroprotective potential. Numerous in vivo and in vitro studies, as well as randomized controlled trials, have mostly confirmed that carotenoids can help prevent neurodegeneration and alleviate cognitive impairment in AD. While carotenoids have not been officially approved as an AD therapy, they are indicated in the diet recommended for AD, including the consumption of products rich in carotenoids. This review summarizes the latest research findings supporting the potential use of carotenoids in preventing and alleviating AD symptoms. A literature review suggests that a diet rich in carotenoids should be promoted to avoid cognitive decline in AD. One of the goals of the food industry should be to encourage the enrichment of food products with functional substances, such as carotenoids, which may reduce the risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Wojciech Flieger
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Piotr J. Gawlik
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Eliasz Dzierżyński
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Ryszard Maciejewski
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
23
|
Hackney JF, Broatch JE, Dallal RA, Brotherson C, Livingston S, Sabir Z, Reshi SM, Faltermeier Petras SR, Mallick S, Applegate MT, Mellor NJ, Buss K, Blain JM, Wagner CE, Jurutka PW, Marshall PA. Rexinoids Induce Differential Gene Expression in Human Glioblastoma Cells and Protein-Protein Interactions in a Yeast Two-Hybrid System. ACS Chem Neurosci 2024; 15:2897-2915. [PMID: 39012782 DOI: 10.1021/acschemneuro.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Rexinoids are compounds that bind to the rexinoid X receptor (RXR) to modulate gene expression and have been proposed as a new class of therapeutics to treat Alzheimer's disease. Different rexinoids will initiate downstream effects that can be quite marked even though such compounds can be structurally similar and have comparable RXR binding affinities. RXR can both homo- and heterodimerize, and these protein-protein interactions and subsequent transactivating potential lead to differential gene expression, depending on the RXR dimeric partner, additional cofactors recruited, and downstream transcription factors that are up- or downregulated. Expression analysis was performed in the U87 human glioblastoma cell line treated with a panel of rexinoids, and our analysis demonstrated that rexinoids with similar RXR EC50 values can have pronounced differences in differential gene expression. Rexinoid binding likely leads to distinctive RXR conformations that cause major downstream gene expression alterations via modulation of RXR interacting proteins. Yeast two-hybrid analysis of RXR bait with two RXR interacting partners demonstrates that rexinoids drive differential binding of RXR to distinctive protein partners. Physiochemical analysis of the rexinoids reveals that the molecules cluster similarly to their gene expression patterns. Thus, rexinoids with similar RXR binding affinities drive differential gene expression by stimulating additional binding patterns in RXR and its homo- and heteropartners, driven by the physicochemical characteristics of these molecules.
Collapse
Affiliation(s)
- Jennifer F Hackney
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona 85306, United States
| | - Jennifer E Broatch
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona 85306, United States
| | - Rita A Dallal
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona 85306, United States
| | - Christian Brotherson
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona 85306, United States
| | - Sarah Livingston
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona 85306, United States
| | - Zhela Sabir
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona 85306, United States
| | - Sabeeha Mushtaq Reshi
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona 85306, United States
| | - Samantha R Faltermeier Petras
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona 85306, United States
| | - Sanchita Mallick
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona 85306, United States
| | - Michael T Applegate
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona 85306, United States
| | - Nicholas J Mellor
- Genomics Core, Biosciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Kristina Buss
- Genomics Core, Biosciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Joy M Blain
- Genomics Core, Biosciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Carl E Wagner
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona 85306, United States
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona 85306, United States
| | - Pamela A Marshall
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona 85306, United States
| |
Collapse
|
24
|
Jackson RJ, Hyman BT, Serrano-Pozo A. Multifaceted roles of APOE in Alzheimer disease. Nat Rev Neurol 2024; 20:457-474. [PMID: 38906999 DOI: 10.1038/s41582-024-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene-environment interactions. Although early studies linked APOE to amyloid-β - one of the two culprit aggregation-prone proteins that define AD - in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood-brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| |
Collapse
|
25
|
Agircan D, Parlak TM, Tufan O, Demircioglu M, Dik B. Neuroprotective Effects of Bexarotene and Icariin in a Diabetic Rat Model. Cureus 2024; 16:e68238. [PMID: 39347352 PMCID: PMC11439453 DOI: 10.7759/cureus.68238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Objective Type 2 diabetes mellitus (T2DM), a chronic metabolic disorder affecting over 400 million people globally, is increasingly recognized for its detrimental impact on the central nervous system. T2DM is linked to neurodegenerative diseases like Alzheimer's and vascular dementia. This study investigates the neuroprotective effects of bexarotene and icariin in a T2DM rat model, focusing on brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), and neurofilament-light chain (NfL) levels. Methods Before the study, rats underwent fasting blood glucose tests, lipid profile assessments, and general health evaluations, followed by a high-fat diet for two weeks and a single streptozotocin dose (35 mg/kg). Rats with fasting blood glucose levels ≥250 mg/dl were classified as diabetes mellitus (DM) and continued on the high-fat diet throughout the experiment. Forty-seven male Wistar Albino rats were divided into six groups: a healthy control group, a DM control group, a DM group treated with bexarotene, a DM group treated with icariin, and two DM groups treated with combinations of low and high doses of bexarotene and icariin. After the 45-day treatment, blood samples were collected under thiopental sodium anesthesia, with HbA1c (glycosylated hemoglobin) and hematological parameters analyzed within eight hours, and serum stored at -80°C for further analysis. The animals were then euthanized, and brain tissues were harvested, frozen, and stored at -80°C until further examination. Brain tissues were analyzed for BDNF, GFAP, and NfL levels using ELISA (enzyme-linked immunosorbent assay). For comparing multiple groups, the Kruskal-Wallis test was applied to nonparametric data, and one-way ANOVA was used for parametric data, followed by Bonferroni's post hoc test for pairwise comparisons. Statistical significance was determined with two-tailed tests at p < 0.05. Results Significant changes in GFAP levels were observed across groups (p < 0.001). The DM control group showed the highest GFAP levels, while treatment groups exhibited reductions. The DM control group also showed the highest BDNF levels, while treatment groups exhibited reductions. The DM control group showed the lowest NfL levels, while treatment groups exhibited increments. Conclusion This study highlights the neuroprotective potential of bexarotene and icariin in a diabetic rat model, evidenced by significant changes in GFAP levels. The lack of significant changes in BDNF and NfL suggests that longer study durations may be necessary to observe these effects. Future research should include extended study periods, larger sample sizes, varied dosages, and comprehensive behavioral assessments to better understand the therapeutic potential of these agents.
Collapse
Affiliation(s)
- Dilek Agircan
- Department of Neurology, Faculty of Medicine, Harran University, Sanlıurfa, TUR
| | - Tugba Melike Parlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, TUR
| | - Oznur Tufan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, TUR
| | - Muhammed Demircioglu
- Department of Histology and Embryology, Institute of Health Sciences, Dicle University, Diyarbakir, TUR
| | - Burak Dik
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, TUR
| |
Collapse
|
26
|
Wang H, Guo Y, Zhang X, Zhou X. Bexarotene Induce Differentiation of Myeloid-Derived Suppressor Cells through Arg-1 Signalling Pathway. Transplant Proc 2024; 56:1469-1477. [PMID: 38981763 DOI: 10.1016/j.transproceed.2024.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Cellular therapy has emerged as a promising strategy to minimize the use of conventional immunosuppressive drugs and ultimately induce long-term graft survival. Myeloid-derived suppressor cells (MDSCs) can be used for immunosuppressive treatment of solid organ transplants. METHODS Granular macrophage colony-stimulating factor (GM-CSF) and bexarotene, an X receptor-selective retinoid, were used for in vitro MDSC induction. Cell phenotypes were detected using flow cytometry, while mRNA was detected via real-time PCR. A mouse skin transplantation model was used to verify the inhibitory effects of this treatment. RESULTS The combination of GM-CSF and bexarotene-induced MDSC differentiation. MDSCs induce immune tolerance by inhibiting T-cell proliferation, influencing cytokine secretion, and inducing T-cell transformation into Treg cells. Combination treatment significantly up-regulated Arg-1 expression in MDSCs. The Arg-1 inhibitor nor-NOHA neutralized the immunosuppressive activity of MDSCs, suggesting the involvement of Arg-1 in MDSC-mediated immunosuppression. GM-CSF and bexarotene-induced MDSCs prolong graft survival in mouse skin transplants, exhibiting in vivo immunosuppressive effects. CONCLUSIONS A new method for inducing MDSCs is presented. The combination of GM-CSF and bexarotene induces MDSCs with remarkable regulatory functions. Adoptive transfer of the induced MDSCs extended allograft survival. These results suggest that MDSCs can potentially be used in future clinical transplants to inhibit rejection, reduce adverse events, and induce operative tolerance.
Collapse
Affiliation(s)
- Haozhou Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yinan Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Zhou
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
27
|
Chittimalli K, Adkins S, Arora S, Singh J, Jarajapu YP. An Investigation of the Inflammatory Landscape in the Brain and Bone Marrow of the APP/PS1 Mouse. J Alzheimers Dis Rep 2024; 8:981-998. [PMID: 39114548 PMCID: PMC11305850 DOI: 10.3233/adr-240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024] Open
Abstract
Background The APP/PS1 mouse model recapitulates pathology of human Alzheimer's disease (AD). While amyloid-β peptide deposition and neurodegeneration are features of AD, the pathology may involve inflammation and impaired vascular regeneration. Objective This study evaluated inflammatory environments in the brain and bone marrow (BM), and the impact on brain microvascular density. Methods BM and frontal cortex from male nine-month-old APP/PS1 or the control C57Bl6/j mice were studied. Vascular density and inflammatory cells were evaluated in the sections of frontal cortex by immunohistochemistry. Different subsets of hematopoietic stem/progenitor cells (BM) and monocyte-macrophages were characterized by flow cytometry and by clonogenic assays. Myelopoietic or inflammatory factors were evaluated by real-time RT-PCR or by western blotting. Results CD34+ or CD31+ vascular structures were lower (p < 0.01, n = 6) in the frontal cortex that was associated with decreased number of Lin-Sca-1+cKit+ vasculogenic progenitor cells in the BM and circulation (p < 0.02, n = 6) compared to the control. Multipotent progenitor cells MPP4, common lymphoid, common myeloid and myeloid progenitor cells were higher in the APP/PS1-BM compared to the control, which agreed with increased numbers of monocytes and pro-inflammatory macrophages. The expression of pro-myelopoietic factors and alarmins was higher in the APP/PS1 BM-HSPCs or in the BM-supernatants compared to the control. Frontal cortices of APP/PS1 mice showed higher number of pro-inflammatory macrophages (CD11b+F4/80+ or CD80+) and microglia (OX42+Iba1+). Conclusions These findings show that AD pathology in APP/PS1 mice is associated with upregulated myelopoiesis, which contributes to the brain inflammation and decreased vascularity.
Collapse
Affiliation(s)
- Kishore Chittimalli
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Stephen Adkins
- School of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Yagna P.R. Jarajapu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
28
|
Tong B, Ba Y, Li Z, Yang C, Su K, Qi H, Zhang D, Liu X, Wu Y, Chen Y, Ling J, Zhang J, Yin X, Yu P. Targeting dysregulated lipid metabolism for the treatment of Alzheimer's disease and Parkinson's disease: Current advancements and future prospects. Neurobiol Dis 2024; 196:106505. [PMID: 38642715 DOI: 10.1016/j.nbd.2024.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024] Open
Abstract
Alzheimer's and Parkinson's diseases are two of the most frequent neurological diseases. The clinical features of AD are memory decline and cognitive dysfunction, while PD mainly manifests as motor dysfunction such as limb tremors, muscle rigidity abnormalities, and slow gait. Abnormalities in cholesterol, sphingolipid, and glycerophospholipid metabolism have been demonstrated to directly exacerbate the progression of AD by stimulating Aβ deposition and tau protein tangles. Indirectly, abnormal lipids can increase the burden on brain vasculature, induce insulin resistance, and affect the structure of neuronal cell membranes. Abnormal lipid metabolism leads to PD through inducing accumulation of α-syn, dysfunction of mitochondria and endoplasmic reticulum, and ferroptosis. Great progress has been made in targeting lipid metabolism abnormalities for the treatment of AD and PD in recent years, like metformin, insulin, peroxisome proliferator-activated receptors (PPARs) agonists, and monoclonal antibodies targeting apolipoprotein E (ApoE). This review comprehensively summarizes the involvement of dysregulated lipid metabolism in the pathogenesis of AD and PD, the application of Lipid Monitoring, and emerging lipid regulatory drug targets. A better understanding of the lipidological bases of AD and PD may pave the way for developing effective prevention and treatment methods for neurodegenerative disorders.
Collapse
Affiliation(s)
- Bin Tong
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; School of Ophthalmology and Optometry of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yaoqi Ba
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; School of Ophthalmology and Optometry of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Zhengyang Li
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Caidi Yang
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Kangtai Su
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Haodong Qi
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Deju Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China; Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao Liu
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuting Wu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jitao Ling
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jing Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China.
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| |
Collapse
|
29
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
30
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
31
|
Yu Y, Yu S, Battaglia G, Tian X. Amyloid-β in Alzheimer's disease: Structure, toxicity, distribution, treatment, and prospects. IBRAIN 2024; 10:266-289. [PMID: 39346788 PMCID: PMC11427815 DOI: 10.1002/ibra.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 10/01/2024]
Abstract
Amyloid-β (Aβ) is a pivotal biomarker in Alzheimer's disease (AD), attracting considerable attention from numerous researchers. There is uncertainty regarding whether clearing Aβ is beneficial or harmful to cognitive function. This question has been a central topic of research, especially given the lack of success in developing Aβ-targeted drugs for AD. However, with the Food and Drug Administration's approval of Lecanemab as the first anti-Aβ medication in July 2023, there is a significant shift in perspective on the potential of Aβ as a therapeutic target for AD. In light of this advancement, this review aims to illustrate and consolidate the molecular structural attributes and pathological ramifications of Aβ. Furthermore, it elucidates the determinants influencing its expression levels while delineating the gamut of extant Aβ-targeted pharmacotherapies that have been subjected to clinical or preclinical evaluation. Subsequently, a comprehensive analysis is presented, dissecting the research landscape of Aβ across the domains above, culminating in the presentation of informed perspectives. Concluding reflections contemplate the supplementary advantages conferred by nanoparticle constructs, conceptualized within the framework of multivalent theory, within the milieu of AD diagnosis and therapeutic intervention, supplementing conventional modalities.
Collapse
Affiliation(s)
- Yifan Yu
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Shilong Yu
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Xiaohe Tian
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
32
|
Shukla H, John D, Banerjee S, Tiwari AK. Drug repurposing for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:249-319. [PMID: 38942541 DOI: 10.1016/bs.pmbts.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.
Collapse
Affiliation(s)
- Halak Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Diana John
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
33
|
Albadrani HM, Chauhan P, Ashique S, Babu MA, Iqbal D, Almutary AG, Abomughaid MM, Kamal M, Paiva-Santos AC, Alsaweed M, Hamed M, Sachdeva P, Dewanjee S, Jha SK, Ojha S, Slama P, Jha NK. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer's disease. Biomed Pharmacother 2024; 174:116376. [PMID: 38508080 DOI: 10.1016/j.biopha.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder associated with memory loss and a progressive decline in cognitive activity. The two major pathophysiological factors responsible for AD are amyloid plaques (comprising amyloid-beta aggregates) and neurofibrillary tangles (consisting of hyperphosphorylated tau protein). Polyphenols, a class of naturally occurring compounds, are immensely beneficial for the treatment or management of various disorders and illnesses. Naturally occurring sources of polyphenols include plants and plant-based foods, such as fruits, herbs, tea, vegetables, coffee, red wine, and dark chocolate. Polyphenols have unique properties, such as being the major source of anti-oxidants and possessing anti-aging and anti-cancerous properties. Currently, dietary polyphenols have become a potential therapeutic approach for the management of AD, depending on various research findings. Dietary polyphenols can be an effective strategy to tackle multifactorial events that occur with AD. For instance, naturally occurring polyphenols have been reported to exhibit neuroprotection by modulating the Aβ biogenesis pathway in AD. Many nanoformulations have been established to enhance the bioavailability of polyphenols, with nanonization being the most promising. This review comprehensively provides mechanistic insights into the neuroprotective potential of dietary polyphenols in treating AD. It also reviews the usability of dietary polyphenol as nanoformulation for AD treatment.
Collapse
Affiliation(s)
- Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana 124001, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India.; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India.
| |
Collapse
|
34
|
Kim HS, Jung H, Park YH, Heo SH, Kim S, Moon M. Skin-brain axis in Alzheimer's disease - Pathologic, diagnostic, and therapeutic implications: A Hypothetical Review. Aging Dis 2024; 16:901-916. [PMID: 38739932 PMCID: PMC11964427 DOI: 10.14336/ad.2024.0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/06/2024] [Indexed: 05/16/2024] Open
Abstract
The dynamic interaction between the brain and the skin is termed the 'skin-brain axis.' Changes in the skin not only reflect conditions in the brain but also exert direct and indirect effects on the brain. Interestingly, the connection between the skin and brain is crucial for understanding aging and neurodegenerative diseases. Several studies have shown an association between Alzheimer's disease (AD) and various skin disorders, such as psoriasis, bullous pemphigoid, and skin cancer. Previous studies have shown a significantly increased risk of new-onset AD in patients with psoriasis. In contrast, skin cancer may reduce the risk of developing AD. Accumulating evidence suggests an interaction between skin disease and AD; however, AD-associated pathological changes mediated by the skin-brain axis are not yet clearly defined. While some studies have reported on the diagnostic implications of the skin-brain axis in AD, few have discussed its potential therapeutic applications. In this review, we address the pathological changes mediated by the skin-brain axis in AD. Furthermore, we summarize (1) the diagnostic implications elucidated through the role of the skin-brain axis in AD and (2) the therapeutic implications for AD based on the skin-brain axis. Our review suggests that a potential therapeutic approach targeting the skin-brain axis will enable significant advances in the treatment of AD.
Collapse
Affiliation(s)
- Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Haram Jung
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Su-Hak Heo
- Department of Medicinal Bioscience, Konkuk University (Glocal Campus), Chungcheongbuk-do 27478, Korea.
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
- Research Institute for Dementia Science, Konyang University, Daejeon 35365, Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
- Research Institute for Dementia Science, Konyang University, Daejeon 35365, Korea.
| |
Collapse
|
35
|
Rasmussen KL, Frikke-Schmidt R. The current state of apolipoprotein E in dyslipidemia. Curr Opin Lipidol 2024; 35:78-84. [PMID: 38054895 DOI: 10.1097/mol.0000000000000915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE OF REVIEW Apolipoprotein E (apoE) plays a pivotal role in lipid metabolism in the peripheral circulation and in the brain. This has been recognized for decades; however, the importance of the full spectrum of variation in the APOE gene has been less investigated. This review focusses on current progresses in this field with main focus on apoE in dyslipidemia and vascular disease. RECENT FINDINGS Whereas ε4 is the risk increasing allele for Alzheimer disease, ε2 is associated with increased risk for age-related macular degeneration. Rare functional ε2-like variants in APOE have previously been reported to have protective associations for Alzheimer disease but recent findings suggest a simultaneous high risk of age-related macular degeneration, in line with observations for the ε2 allele. SUMMARY ApoE plays an important and well established role in dyslipidemia, vascular disease, and dementia. Recent evidence from large general population studies now also suggests that apoE is involved in age-related macular degeneration. ApoE-targeted therapeutics are being developed for multiple purposes; this heralds a promising change in the approach to disease processes involving apoE. The different risk profile for dementia and age-related macular degeneration should, however, be kept in mind when developing drugs targeting mechanisms resembling these variants.
Collapse
Affiliation(s)
- Katrine L Rasmussen
- Department of Clinical Biochemistry, Nordsjællands Hospital, Hillerød
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
36
|
Lan X, Qin S, Liu H, Guo M, Zhang Y, Jin X, Duan X, Sun M, Liu Z, Wang W, Zheng Q, Liao X, Chen J, Kang Y, Xie Y, Song X. Dual-targeting tigecycline nanoparticles for treating intracranial infections caused by multidrug-resistant Acinetobacter baumannii. J Nanobiotechnology 2024; 22:138. [PMID: 38555444 PMCID: PMC10981309 DOI: 10.1186/s12951-024-02373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is a formidable pathogen responsible for severe intracranial infections post-craniotomy, exhibiting a mortality rate as high as 71%. Tigecycline (TGC), a broad-spectrum antibiotic, emerged as a potential therapeutic agent for MDR A. baumannii infections. Nonetheless, its clinical application was hindered by a short in vivo half-life and limited permeability through the blood-brain barrier (BBB). In this study, we prepared a novel core-shell nanoparticle encapsulating water-soluble tigecycline using a blend of mPEG-PLGA and PLGA materials. This nanoparticle, modified with a dual-targeting peptide Aβ11 and Tween 80 (Aβ11/T80@CSs), was specifically designed to enhance the delivery of tigecycline to the brain for treating A. baumannii-induced intracranial infections. Our findings demonstrated that Aβ11/T80@CSs nanocarriers successfully traversed the BBB and effectively delivered TGC into the cerebrospinal fluid (CSF), leading to a significant therapeutic response in a model of MDR A. baumannii intracranial infection. This study offers initial evidence and a platform for the application of brain-targeted nanocarrier delivery systems, showcasing their potential in administering water-soluble anti-infection drugs for intracranial infection treatments, and suggesting promising avenues for clinical translation.
Collapse
Affiliation(s)
- Xing Lan
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, People's Republic of China
| | - Shugang Qin
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Mengran Guo
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Yupei Zhang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyang Jin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Shihezi University, Xinjiang, China
| | - Xing Duan
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Min Sun
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Shihezi University, Xinjiang, China
| | - Zhenjun Liu
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyan Wang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liao
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Jinpeng Chen
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, People's Republic of China
| | - Yan Kang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| | - Yongmei Xie
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiangrong Song
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Komai M, Noda Y, Ikeda A, Kaneshiro N, Kamikubo Y, Sakurai T, Uehara T, Takasugi N. Nuclear SphK2/S1P signaling is a key regulator of ApoE production and Aβ uptake in astrocytes. J Lipid Res 2024; 65:100510. [PMID: 38280459 PMCID: PMC10907773 DOI: 10.1016/j.jlr.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
The link between changes in astrocyte function and the pathological progression of Alzheimer's disease (AD) has attracted considerable attention. Interestingly, activated astrocytes in AD show abnormalities in their lipid content and metabolism. In particular, the expression of apolipoprotein E (ApoE), a lipid transporter, is decreased. Because ApoE has anti-inflammatory and amyloid β (Aβ)-metabolizing effects, the nuclear receptors, retinoid X receptor (RXR) and LXR, which are involved in ApoE expression, are considered promising therapeutic targets for AD. However, the therapeutic effects of agents targeting these receptors are limited or vary considerably among groups, indicating the involvement of an unknown pathological factor that modifies astrocyte and ApoE function. Here, we focused on the signaling lipid, sphingosine-1-phosphate (S1P), which is mainly produced by sphingosine kinase 2 (SphK2) in the brain. Using astrocyte models, we found that upregulation of SphK2/S1P signaling suppressed ApoE induction by both RXR and LXR agonists. We also found that SphK2 activation reduced RXR binding to the APOE promoter region in the nucleus, suggesting the nuclear function of SphK2/S1P. Intriguingly, suppression of SphK2 activity by RNA knockdown or specific inhibitors upregulated lipidated ApoE induction. Furthermore, the induced ApoE facilitates Aβ uptake in astrocytes. Together with our previous findings that SphK2 activity is upregulated in AD brain and promotes Aβ production in neurons, these results indicate that SphK2/S1P signaling is a promising multifunctional therapeutic target for AD that can modulate astrocyte function by stabilizing the effects of RXR and LXR agonists, and simultaneously regulate neuronal pathogenesis.
Collapse
Affiliation(s)
- Masato Komai
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan; Research Fellow of Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Yuka Noda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Atsuya Ikeda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Nanaka Kaneshiro
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan; Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan.
| |
Collapse
|
38
|
Isigkeit L, Kärcher A, Adouvi G, Arifi S, Merk D. Rational design and virtual screening identify mimetics of the RXR agonist valerenic acid. ChemMedChem 2024; 19:e202300379. [PMID: 38235922 DOI: 10.1002/cmdc.202300379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The ligand-sensing transcription factor retinoid X receptor (RXR) is the universal heterodimer partner of nuclear receptors and involved in multiple physiological processes. Its pharmacological modulation holds therapeutic potential in cancer and neurodegeneration but many available RXR ligands lack specificity. The sesquiterpenoid valerenic acid has been identified as RXR agonist with unprecedented subtype and homodimer preference. Here, we identified simplified mimetics of the complex natural product by rational design and virtual screening that exhibited similar activity profiles on RXR and informed about structural elements contributing to the favorable activity.
Collapse
Affiliation(s)
- Laura Isigkeit
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany
| | - Annette Kärcher
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany
| | - Gustave Adouvi
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany
| | - Silvia Arifi
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany
| | - Daniel Merk
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377, Munich, Germany
| |
Collapse
|
39
|
Cooper O, Hallett P, Isacson O. Upstream lipid and metabolic systems are potential causes of Alzheimer's disease, Parkinson's disease and dementias. FEBS J 2024; 291:632-645. [PMID: 36165619 PMCID: PMC10040476 DOI: 10.1111/febs.16638] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Brain health requires circuits, cells and molecular pathways to adapt when challenged and to promptly reset once the challenge has resolved. Neurodegeneration occurs when adaptability becomes confined, causing challenges to overwhelm neural circuitry. Studies of rare and common neurodegenerative diseases suggest that the accumulation of lipids can compromise circuit adaptability. Using microglia as an example, we review data that suggest increased lipid concentrations cause dysfunctional inflammatory responses to immune challenges, leading to Alzheimer's disease, Parkinson's disease and dementia. We highlight current approaches to treat lipid metabolic and clearance pathways and identify knowledge gaps towards restoring adaptive homeostasis in individuals who are at-risk of losing cognition.
Collapse
Affiliation(s)
- Oliver Cooper
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Penny Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
40
|
Majou D, Dermenghem AL. Effects of DHA (omega-3 fatty acid) and estradiol on amyloid β-peptide regulation in the brain. Brain Res 2024; 1823:148681. [PMID: 37992797 DOI: 10.1016/j.brainres.2023.148681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
In the early stages of sporadic Alzheimer's disease (SAD), there is a strong correlation between memory impairment and cortical levels of soluble amyloid-β peptide oligomers (Aβ). It has become clear that Aβ disrupt glutamatergic synaptic function, which can in turn lead to the characteristic cognitive deficits of SAD, but the actual pathways are still not well understood. This opinion article describes the pathogenic mechanisms underlying cerebral amyloidosis. These mechanisms are dependent on the amyloid precursor protein and concern the synthesis of Aβ peptides with competition between the non-amyloidogenic pathway and the amyloidogenic pathway (i.e. a competition between the ADAM10 and BACE1 enzymes), on the one hand, and the various processes of Aβ residue clearance, on the other hand. This clearance mobilizes both endopeptidases (NEP, and IDE) and removal transporters across the blood-brain barrier (LRP1, ABCB1, and RAGE). Lipidated ApoE also plays a major role in all processes. The disturbance of these pathways induces an accumulation of Aβ. The description of the mechanisms reveals two key molecules in particular: (i) free estradiol, which has genomic and non-genomic action, and (ii) free DHA as a preferential ligand of PPARα-RXRα and PPARɣ-RXRα heterodimers. DHA and free estradiol are also self-regulating, and act in synergy. When a certain level of chronic DHA and free estradiol deficiency is reached, a permanent imbalance is established in the central nervous system. The consequences of these deficits are revealed in particular by the presence of Aβ peptide deposits, as well as other markers of the etiology of SAD.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, rue de Bercy, 75595 Paris Cedex 12, France.
| | | |
Collapse
|
41
|
Twitto-Greenberg R, Liraz-Zaltsman S, Michaelson DM, Liraz O, Lubitz I, Atrakchi-Baranes D, Shemesh C, Ashery U, Cooper I, Harari A, Harats D, Schnaider-Beeri M, Shaish A. 9-cis beta-carotene-enriched diet significantly improved cognition and decreased Alzheimer's disease neuropathology and neuroinflammation in Alzheimer's disease-like mouse models. Neurobiol Aging 2024; 133:16-27. [PMID: 38381472 DOI: 10.1016/j.neurobiolaging.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 02/22/2024]
Abstract
A significant progressive decline in beta-carotene (βC) levels in the brain is associated with cognitive impairment and a higher prevalence of Alzheimer's disease (AD). In this study, we investigated whether the administration of 9-cis beta-carotene (9CBC)-rich powder of the alga Dunaliella bardawil, the best-known source of βC in nature, inhibits the development of AD-like neuropathology and cognitive deficits. We demonstrated that in 3 AD mouse models, Tg2576, 5xFAD, and apoE4, 9CBC treatment improved long- and short-term memory, decreased neuroinflammation, and reduced the prevalence of β-amyloid plaques and tau hyperphosphorylation. These findings suggest that 9CBC has the potential to be an effective preventive and symptomatic AD therapy.
Collapse
Affiliation(s)
- Rachel Twitto-Greenberg
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat-Gan, Israel; The Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel; Department of Pharmacology, Institute for Drug Research, Hebrew University, Jerusalem, Israel; Institutes for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kyrat-Ono, Israel
| | - Daniel M Michaelson
- The Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ori Liraz
- The Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Irit Lubitz
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel
| | | | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Uri Ashery
- The Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel; Institutes for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kyrat-Ono, Israel
| | - Ayelet Harari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Dror Harats
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat-Gan, Israel; The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Aviv Shaish
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat-Gan, Israel; Department of Life Sciences, Achva Academic College, Be'er-Tuvia Regional Council, Israel.
| |
Collapse
|
42
|
Viña J, Borrás C, Mas-Bargues C. Genistein, A Phytoestrogen, Delays the Transition to Dementia in Prodromal Alzheimer's Disease Patients. J Alzheimers Dis 2024; 101:S275-S283. [PMID: 39422955 DOI: 10.3233/jad-240308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease is recognized as a complex condition influenced by multiple factors, necessitating a similarly multifaceted approach to treatment. Ideally, interventions should prioritize averting the progression to dementia. Given the chronic nature of the disease, long-term management strategies are required. Within this framework, lifestyle modifications and dietary supplements emerge as appealing options due to their minimal toxicity, limited side effects, and cost-effectiveness. This study presents findings from a double-blind, placebo-controlled bicentric pilot clinical trial, demonstrating the significant cognitive preservation associated with genistein, a phytoestrogen found in soy and various other dietary sources, among individuals with prodromal Alzheimer's disease. Our prior investigation utilizing APP/PS1 mice elucidated the specific mechanisms through which genistein operates, including anti-amyloid-β, antioxidant, anti-inflammatory, and antiapoptotic effects. These findings underscore the potential of identifying bioactive compounds from dietary sources for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- José Viña
- Department of Physiology, Freshage Research Group, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, Spain
| | - Consuelo Borrás
- Department of Physiology, Freshage Research Group, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, Spain
| | - Cristina Mas-Bargues
- Department of Physiology, Freshage Research Group, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, Spain
| |
Collapse
|
43
|
Kumari S, Kaur P, Singh AK, Ashar MS, Pradhan R, Rao A, Haldar P, Chakrawarty A, Chatterjee P, Dey S. Quantification of COX-2 Level in Alzheimer's Disease Patients to Develop Potential Blood-Based Biomarker for Early Diagnosis and Therapeutic Target. J Alzheimers Dis 2024; 98:699-713. [PMID: 38427490 DOI: 10.3233/jad-231445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disease and symptoms develop gradually over many years. The current direction for medication development in AD is focused on neuro-inflammation and oxidative stress. Amyloid-β (Aβ) deposition activates microglia leading to neuro-inflammation and neurodegeneration induced by activation of COX-2 via NFκB p50 in glioblastoma cells. Objective The study aimed to evaluate the concentration of COX-2 and NFκB p50 in serum of AD, mild cognitive impairment (MCI), and geriatric control (GC) and to establish a blood-based biomarker for early diagnosis and its therapeutic implications. Methods Proteins and their mRNA level in blood of study groups were measured by surface plasmon resonance (SPR) and quantitative polymerase chain reaction (qPCR), respectively. The level of protein was further validated by western blot. The binding study of designed peptide against COX-2 by molecular docking was verified by SPR. The rescue of neurotoxicity by peptide was also checked by MTT assay on SH-SY5Y cells (neuroblastoma cell line). Results Proteins and mRNA were highly expressed in AD and MCI compared to GC. However, COX-2 decreases with disease duration. The peptide showed binding affinity with COX-2 with low dissociation constant in SPR and rescued the neurotoxicity of SH-SY5Y cells by decreasing the level of Aβ, tau, and pTau proteins. Conclusions It can be concluded that COX-2 protein can serve as a potential blood-based biomarker for early detection and can be a good platform for therapeutic intervention for AD.
Collapse
Affiliation(s)
- Sakshi Kumari
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Priyajit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Abhinay Kumar Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mohd Suhail Ashar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Rashmita Pradhan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Abhijit Rao
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Partha Haldar
- Department of Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Avinash Chakrawarty
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Prasun Chatterjee
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
44
|
Ji X, Peng X, Tang H, Pan H, Wang W, Wu J, Chen J, Wei N. Alzheimer's disease phenotype based upon the carrier status of the apolipoprotein E ɛ4 allele. Brain Pathol 2024; 34:e13208. [PMID: 37646624 PMCID: PMC10711266 DOI: 10.1111/bpa.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/05/2023] [Indexed: 09/01/2023] Open
Abstract
The apolipoprotein E ɛ4 allele (APOE4) is universally acknowledged as the most potent genetic risk factor for Alzheimer's disease (AD). APOE4 promotes the initiation and progression of AD. Although the underlying mechanisms are unclearly understood, differences in lipid-bound affinity among the three APOE isoforms may constitute the basis. The protein APOE4 isoform has a high affinity with triglycerides and cholesterol. A distinction in lipid metabolism extensively impacts neurons, microglia, and astrocytes. APOE4 carriers exhibit phenotypic differences from non-carriers in clinical examinations and respond differently to multiple treatments. Therefore, we hypothesized that phenotypic classification of AD patients according to the status of APOE4 carrier will help specify research and promote its use in diagnosing and treating AD. Recent reviews have mainly evaluated the differences between APOE4 allele carriers and non-carriers from gene to protein structures, clinical features, neuroimaging, pathology, the neural network, and the response to various treatments, and have provided the feasibility of phenotypic group classification based on APOE4 carrier status. This review will facilitate the application of APOE phenomics concept in clinical practice and promote further medical research on AD.
Collapse
Affiliation(s)
- Xiao‐Yu Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Xin‐Yuan Peng
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Hai‐Liang Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical NeurobiologyInstitutes of Brain Science, Shanghai Medical College‐Fudan UniversityShanghaiChina
| | - Hui Pan
- Shantou Longhu People's HospitalShantouGuangdongChina
| | - Wei‐Tang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Jie Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Jian Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Nai‐Li Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| |
Collapse
|
45
|
Valencia-Olvera AC, Balu D, Bellur S, McNally T, Saleh Y, Pham D, Ghura S, York J, Johansson JO, LaDu MJ, Tai L. A novel apoE-mimetic increases brain apoE levels, reduces Aβ pathology and improves memory when treated before onset of pathology in male mice that express APOE3. Alzheimers Res Ther 2023; 15:216. [PMID: 38102668 PMCID: PMC10722727 DOI: 10.1186/s13195-023-01353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by cognitive dysfunction and amyloid plaques composed of the amyloid-beta peptide (Aβ). APOE is the greatest genetic risk for AD with APOE4 increasing risk up to ~ 15-fold compared to APOE3. Evidence suggests that levels and lipidation of the apoE protein could regulate AD progression. In glia, apoE is lipidated via cholesterol efflux from intracellular pools, primarily by the ATP-binding cassette transporter A1 (ABCA1). Therefore, increasing ABCA1 activity is suggested to be a therapeutic approach for AD. CS-6253 (CS) is a novel apoE mimetic peptide that was developed to bind and stabilize ABCA1 and maintain its localization into the plasma membrane therefore promoting cholesterol efflux. The goal of this study was to determine whether CS could modulate apoE levels and lipidation, Aβ pathology, and behavior in a model that expresses human APOE and overproduce Aβ. METHODS In vitro, APOE3-glia or APOE4-glia were treated with CS. In vivo, male and female, E3FAD (5xFAD+/-/APOE3+/+) and E4FAD (5xFAD+/-/APOE4+/+) mice were treated with CS via intraperitoneal injection at early (from 4 to 8 months of age) and late ages (from 8 to 10 months of age). ApoE levels, ABCA1 levels and, apoE lipidation were measured by western blot and ELISA. Aβ and amyloid levels were assessed by histochemistry and ELISA. Learning and memory were tested by Morris Water Maze and synaptic proteins were measured by Western blot. RESULTS CS treatment increased apoE levels and cholesterol efflux in primary glial cultures. In young male E3FAD mice, CS treatment increased soluble apoE and lipid-associated apoE, reduced soluble oAβ and insoluble Aβ levels as well as Aβ and amyloid deposition, and improved memory and synaptic protein levels. CS treatment did not induce any therapeutic benefits in young female E3FAD and E4FAD mice or in any groups when treatment was started at later ages. CONCLUSIONS CS treatment reduced Aβ pathology and improved memory only in young male E3FAD, the cohort with the least AD pathology. Therefore, the degree of Aβ pathology or Aβ overproduction may impact the ability of targeting ABCA1 to be an effective AD therapeutic. This suggests that ABCA1-stabilizing treatment by CS-6253 works best in conditions of modest Aβ levels.
Collapse
Affiliation(s)
- Ana C Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shreya Bellur
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Thomas McNally
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Yaseen Saleh
- University of Miami/Jackson Healthcare System, Miami, FL, USA
| | - Don Pham
- Department of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Shivesh Ghura
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Leon Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
46
|
Kang S, Lee J, Choi S, Nesbitt J, Min PH, Trushina E, Choi DS. Moderate ethanol exposure reduces astrocyte-induced neuroinflammatorysignaling and cognitive decline in presymptomatic APP/PS1 mice. RESEARCH SQUARE 2023:rs.3.rs-3627637. [PMID: 38077051 PMCID: PMC10705690 DOI: 10.21203/rs.3.rs-3627637/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Background Alcohol use disorder (AUD) has been associated with the development of neurodegenerative diseases, including Alzheimer's disease (AD). However, recent studies demonstrate that moderate alcohol consumption may be protective against dementia and cognitive decline. Methods We examined astrocyte function, low-density lipoprotein (LDL) receptor-related protein 1 (LRP1), and the NF-κB p65 and IKK-α/β signaling pathways in modulating neuroinflammation and amyloid beta (Aβ) deposition. We assessed apolipoprotein E (ApoE) in the mouse brain using IHC and ELISA in response to moderate ethanol exposure (MEE). First, to confirm the intracerebral distribution of ApoE, we co-stained with GFAP, a marker for astrocytes that biosynthesize ApoE. We sought to investigate whether the ethanol-induced upregulation of LRP1 could potentially inhibit the activity of IL-1β and TNF-α induced IKK-α/β towards NF-κB p65, resulting in a reduction of pro-inflammatory cytokines. To evaluate the actual Aβ load in the brains of APP/PS1 mice, we performed with a specific antibody Aβ (Thioflavin S) on both air- and ethanol-exposed groups, subsequently analyzing Aβ levels. We also measured glucose uptake activity using 18F-FDG in APP/PS1 mice. Finally, we investigated whether MEE induced cognitive and memory changes using the Y maze, noble objective recognition (NOR) test, and Morris water maze (MWM). Results Our findings demonstrate that MEE reduced astrocytic glial fibrillary acidic protein (GFAP) and ApoE levels in the cortex and hippocampus in presymptomatic APP/PS1 mice. Interestingly, increased LRP1 protein expression is accompanied by dampening the IKK-α/β-NF-κB p65 pathway, resulting in decreased IL-1β and TNF-α levels in male mice. Notably, female mice show reduced anti-inflammatory cytokines, IL-4, and IL-10 levels without altering IL-1β and TNF-α concentrations. In both males and females, Aβ plaques, a hallmark of AD, were reduced in the cortex and hippocampus of ethanol-exposed presymptomatic APP/PS1 mice. Consistently, MEE increased fluorodeoxyglucose (FDG)-positron emission tomography (PET)-based brain activities and normalized cognitive and memory deficits in the APP/PS1 mice. Conclusions Our findings suggest that MEE may benefit AD pathology via modulating LRP1 expression, potentially reducing neuroinflammation and attenuating Aβ deposition. Our study implies that reduced astrocyte derived ApoE and LDL cholesterol levels are critical for attenuating AD pathology.
Collapse
Affiliation(s)
| | - Jeyeon Lee
- Mayo Clinic College of Medicine, and Science
| | - Sun Choi
- Mayo Clinic College of Medicine, and Science
| | | | - Paul H Min
- Mayo Clinic College of Medicine, and Science
| | | | | |
Collapse
|
47
|
Majeed J, Sabbagh MN, Kang MH, Lawrence JJ, Pruitt K, Bacus S, Reyna E, Brown M, Decourt B. Cancer drugs with high repositioning potential for Alzheimer's disease. Expert Opin Emerg Drugs 2023; 28:311-332. [PMID: 38100555 PMCID: PMC10877737 DOI: 10.1080/14728214.2023.2296079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Despite the recent full FDA approval of lecanemab, there is currently no disease modifying therapy (DMT) that can efficiently slow down the progression of Alzheimer's disease (AD) in the general population. This statement emphasizes the need to identify novel DMTs in the shortest time possible to prevent a global epidemic of AD cases as the world population experiences an increase in lifespan. AREAS COVERED Here, we review several classes of anti-cancer drugs that have been or are being investigated in Phase II/III clinical trials for AD, including immunomodulatory drugs, RXR agonists, sex hormone therapies, tyrosine kinase inhibitors, and monoclonal antibodies. EXPERT OPINION Given the overall course of brain pathologies during the progression of AD, we express a great enthusiasm for the repositioning of anti-cancer drugs as possible AD DMTs. We anticipate an increasing number of combinatorial therapy strategies to tackle AD symptoms and their underlying pathologies. However, we strongly encourage improvements in clinical trial study designs to better assess target engagement and possible efficacy over sufficient periods of drug exposure.
Collapse
Affiliation(s)
- Jad Majeed
- University of Arizona Honors College, Tucson, Arizona, USA
| | - Marwan N. Sabbagh
- Alzheimer’s and Memory Disorders Division, Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Min H. Kang
- Department of Pediatrics, Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kevin Pruitt
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Ellie Reyna
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Maddy Brown
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
- Roseman University of Health Sciences, Las Vegas, Nevada, USA
| |
Collapse
|
48
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
49
|
Smeralda W, Since M, Corvaisier S, Fayolle D, Cardin J, Duprey S, Jourdan JP, Cullin C, Malzert-Freon A. A Biomimetic Multiparametric Assay to Characterise Anti-Amyloid Drugs. Int J Mol Sci 2023; 24:16982. [PMID: 38069305 PMCID: PMC10707238 DOI: 10.3390/ijms242316982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most widespread form of senile dementia worldwide and represents a leading socioeconomic problem in healthcare. Although it is widely debated, the aggregation of the amyloid β peptide (Aβ) is linked to the onset and progression of this neurodegenerative disease. Molecules capable of interfering with specific steps in the fibrillation process remain of pharmacological interest. To identify such compounds, we have set up a small molecule screening process combining multiple experimental methods (UV and florescence spectrometry, ITC, and ATR-FTIR) to identify and characterise potential modulators of Aβ1-42 fibrillation through the description of the biochemical interactions (molecule-membrane Aβ peptide). Three known modulators, namely bexarotene, Chicago sky blue and indomethacin, have been evaluated through this process, and their modulation mechanism in the presence of a biomembrane has been described. Such a well-adapted physico-chemical approach to drug discovery proves to be an undeniable asset for the rapid characterisation of compounds of therapeutic interest for Alzheimer's disease. This strategy could be adapted and transposed to search for modulators of other amyloids such as tau protein.
Collapse
Affiliation(s)
- Willy Smeralda
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Marc Since
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Sophie Corvaisier
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Dimitri Fayolle
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Julien Cardin
- CIMAP, ENSICAEN, UNICAEN, UMR6252 CNRS, CEA, Normandie Université, 6 Bd du Maréchal Juin, 14050 Caen, France; (J.C.); (S.D.)
| | - Sylvain Duprey
- CIMAP, ENSICAEN, UNICAEN, UMR6252 CNRS, CEA, Normandie Université, 6 Bd du Maréchal Juin, 14050 Caen, France; (J.C.); (S.D.)
| | - Jean-Pierre Jourdan
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
- Pharmacie à Usage Intérieur, Centre Hospitalier de Vire, Normandie, 14504 Vire, France
| | | | - Aurélie Malzert-Freon
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| |
Collapse
|
50
|
Rasmussen KL, Luo J, Nordestgaard BG, Tybjærg-Hansen A, Frikke-Schmidt R. APOE and vascular disease: Sequencing and genotyping in general population cohorts. Atherosclerosis 2023; 385:117218. [PMID: 37586954 DOI: 10.1016/j.atherosclerosis.2023.117218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND AND AIMS The apolipoprotein E(APOE) ϵ2/ϵ3/ϵ4 polymorphism plays a central role in lipid metabolism, vascular disease and dementia. The impact of the full range of structural genetic variation in APOE for lipids, lipoproteins and apolipoproteins and for vascular disease in the general population is not known. METHODS We systematically sequenced APOE in 10,296 individuals from the Copenhagen City Heart Study and genotyped nine rare variants (frequency≥2/10,296) in 95,227 individuals from the Copenhagen General Population Study. The UK Biobank was used for validation of common APOE variants. RESULTS Rare mutations in APOE, predicted to be deleterious, are present in 1 in 257 individuals in the general population. In the meta-analysis, multifactorially adjusted hazard ratios (95% confidence intervals) for ϵ44 and ϵ22 versus ϵ33 were 1.15 (1.04-1.26) and 1.02 (0.83-1.24) for ischemic cerebrovascular disease (ICVD), 1.11 (1.04-1.19) and 0.94 (0.83-1.08) for ischemic heart disease (IHD) and 1.03 (0.89-1.17) and 1.49 (1.20-1.87) for peripheral arterial disease (PAD). A multifactorially and ϵ2/ϵ3/ϵ4 adjusted weighted allele score on the continuous scale including all common and rare structural variants showed that for individuals with genetically predicted high plasma apoE and remnant cholesterol the risk for PAD was increased. CONCLUSIONS APOE variants with high apoE, triglycerides, and remnant cholesterol are associated with PAD, whereas common APOE variants with high LDL cholesterol, triglycerides and remnant cholesterol are associated with IHD. APOE variants with low apoE are associated with increased risk of ICVD. These findings highlight that both rare and common structural variations in APOE play a role in vascular disease.
Collapse
Affiliation(s)
- Katrine L Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Department of Clinical Biochemistry, Nordsjællands Hospital, Dyrehavevej 29, DK-3400 Hillerød, Denmark.
| | - Jiao Luo
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Børge G Nordestgaard
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; The Copenhagen City Heart Study, Frederiksberg Hospital, Nordre Fasanvej 57, DK-2000 Frederiksberg, Denmark; Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; The Copenhagen City Heart Study, Frederiksberg Hospital, Nordre Fasanvej 57, DK-2000 Frederiksberg, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| |
Collapse
|