1
|
Rozema D, Maître JL. Forces Shaping the Blastocyst. Cold Spring Harb Perspect Biol 2025; 17:a041519. [PMID: 38951024 PMCID: PMC12047664 DOI: 10.1101/cshperspect.a041519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The blastocyst forms during the first days of mammalian development. The structure of the blastocyst is conserved among placental mammals and is paramount to the establishment of the first mammalian lineages. The blastocyst is composed of an extraembryonic epithelium, the trophectoderm (TE), that envelopes a fluid-filled lumen and the inner cell mass (ICM). To shape the blastocyst, embryos transit through three stages driven by forces that have been characterized in the mouse embryo over the past decade. The morphogenetically quiescent cleavage stages mask dynamic cytoskeletal remodeling. Then, during the formation of the morula, cells pull themselves together and the strongest ones internalize. Finally, the blastocyst forms after the pressurized lumen breaks the radial symmetry of the embryo before expanding in cycles of collapses and regrowth. In this review, we delineate the force patterns sculpting the blastocyst, based on our knowledge on the mouse and, to some extent, human embryos.
Collapse
Affiliation(s)
- David Rozema
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, 75005 Paris, France
| | - Jean-Léon Maître
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, 75005 Paris, France
| |
Collapse
|
2
|
Arnould S, Benassayag C, Merle T, Monier B, Montemurro M, Suzanne M. Epithelial apoptosis: A back-and-forth mechanical interplay between the dying cell and its surroundings. Semin Cell Dev Biol 2025; 168:1-12. [PMID: 39986249 DOI: 10.1016/j.semcdb.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Apoptosis is an essential cellular process corresponding to a programmed cell suicide. It has long been considered as a cell-autonomous process, supposed to have no particular impact on the surrounding tissue. However, it has become clear in the last 15 years that epithelial apoptotic cells interact mechanically and biochemically with their environment. Here, we explore recent literature on apoptotic mechanics from an individual dying cell to the back-and-forth interplay with the neighboring epithelial tissue. Finally, we discuss how caspases, key regulators of apoptosis, appear to have a dual function as a cytoskeleton regulator favoring either cytoskeleton degradation or dynamics independently of their apoptotic or non-apoptotic role.
Collapse
Affiliation(s)
- Stéphanie Arnould
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Corinne Benassayag
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Tatiana Merle
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Bruno Monier
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Marianne Montemurro
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
3
|
Balaghi N, Fernandez-Gonzalez R. Waves of change: Dynamic actomyosin networks in embryonic development. Curr Opin Cell Biol 2024; 91:102435. [PMID: 39378575 DOI: 10.1016/j.ceb.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
As animals develop, molecules, cells, and cell ensembles move in beautifully orchestrated choreographies. Movement at each of these scales requires generation of mechanical force. In eukaryotic cells, the actomyosin cytoskeleton generates mechanical forces. Continuous advances in in vivo microscopy have enabled visualization and quantitative assessment of actomyosin dynamics and force generation, within and across cells, in living embryos. Recent studies reveal that actomyosin networks can form periodic waves in vivo. Here, we highlight contributions of actomyosin waves to molecular transport, cell movement, and cell coordination in developing embryos.
Collapse
Affiliation(s)
- Negar Balaghi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada. https://twitter.com/negberry
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
4
|
Kruse K, Berthoz R, Barberi L, Reymann AC, Riveline D. Actomyosin clusters as active units shaping living matter. Curr Biol 2024; 34:R1045-R1058. [PMID: 39437723 DOI: 10.1016/j.cub.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stress generation by the actin cytoskeleton shapes cells and tissues. Despite impressive progress in live imaging and quantitative physical descriptions of cytoskeletal network dynamics, the connection between processes at molecular scales and spatiotemporal patterns at the cellular scale is still unclear. Here, we review studies reporting actomyosin clusters of micrometre size and with lifetimes of several minutes in a large number of organisms, ranging from fission yeast to humans. Such structures have also been found in reconstituted systems in vitro and in theoretical analyses of cytoskeletal dynamics. We propose that tracking these clusters could provide a simple readout for characterising living matter. Spatiotemporal patterns of clusters could serve as determinants of morphogenetic processes that have similar roles in diverse organisms.
Collapse
Affiliation(s)
- Karsten Kruse
- Departments of Theoretical Physics and Biochemistry, University of Geneva, 30 quai Ernest-Ansermet, 1204 Geneva, Switzerland.
| | - Rémi Berthoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France; Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, F-67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, F-67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, F-67400 Illkirch, France
| | - Luca Barberi
- Departments of Theoretical Physics and Biochemistry, University of Geneva, 30 quai Ernest-Ansermet, 1204 Geneva, Switzerland
| | - Anne-Cécile Reymann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France; Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, F-67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, F-67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, F-67400 Illkirch, France
| | - Daniel Riveline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France; Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, F-67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, F-67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, F-67400 Illkirch, France.
| |
Collapse
|
5
|
Gu L, Sauceda R, Brar J, Fessahaye F, Joo M, Lee J, Nguyen J, Teng M, Weng M. A novel protein Moat prevents ectopic epithelial folding by limiting Bazooka/Par3-dependent adherens junctions. Mol Biol Cell 2024; 35:ar110. [PMID: 38922850 PMCID: PMC11321041 DOI: 10.1091/mbc.e24-04-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Contractile myosin and cell adhesion work together to induce tissue shape changes, but how they are patterned to achieve diverse morphogenetic outcomes remains unclear. Epithelial folding occurs via apical constriction, mediated by apical contractile myosin engaged with adherens junctions, as in Drosophila ventral furrow formation. While it has been shown that a multicellular gradient of myosin contractility determines folding shape, the impact of multicellular patterning of adherens junction levels on tissue folding is unknown. We identified a novel Drosophila gene moat essential for differential apical constriction and folding behaviors across the ventral epithelium which contains both folding ventral furrow and nonfolding ectodermal anterior midgut (ectoAMG). We show that Moat functions to downregulate polarity-dependent adherens junctions through inhibiting cortical clustering of Bazooka/Par3 proteins. Such downregulation of polarity-dependent junctions is critical for establishing a myosin-dependent pattern of adherens junctions, which in turn mediates differential apical constriction in the ventral epithelium. In moat mutants, abnormally high levels of polarity-dependent junctions promote ectopic apical constriction in cells with low-level contractile myosin, resulting in expansion of infolding from ventral furrow to ectoAMG, and flattening of ventral furrow constriction gradient. Our results demonstrate that tissue-scale distribution of adhesion levels patterns apical constriction and establishes morphogenetic boundaries.
Collapse
Affiliation(s)
- Lingkun Gu
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Rolin Sauceda
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Jasneet Brar
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Ferdos Fessahaye
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Minsang Joo
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Joan Lee
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | | - Marissa Teng
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Mo Weng
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| |
Collapse
|
6
|
Vanderleest TE, Xie Y, Budhathoki R, Linvill K, Hobson C, Heddleston J, Loerke D, Blankenship JT. Lattice light sheet microscopy reveals 4D force propagation dynamics and leading-edge behaviors in an embryonic epithelium in Drosophila. Curr Biol 2024; 34:3165-3177.e3. [PMID: 38959881 DOI: 10.1016/j.cub.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/04/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
How pulsed contractile dynamics drive the remodeling of cell and tissue topologies in epithelial sheets has been a key question in development and disease. Due to constraints in imaging and analysis technologies, studies that have described the in vivo mechanisms underlying changes in cell and neighbor relationships have largely been confined to analyses of planar apical regions. Thus, how the volumetric nature of epithelial cells affects force propagation and remodeling of the cell surface in three dimensions, including especially the apical-basal axis, is unclear. Here, we perform lattice light sheet microscopy (LLSM)-based analysis to determine how far and fast forces propagate across different apical-basal layers, as well as where topological changes initiate from in a columnar epithelium. These datasets are highly time- and depth-resolved and reveal that topology-changing forces are spatially entangled, with contractile force generation occurring across the observed apical-basal axis in a pulsed fashion, while the conservation of cell volumes constrains instantaneous cell deformations. Leading layer behaviors occur opportunistically in response to favorable phasic conditions, with lagging layers "zippering" to catch up as new contractile pulses propel further changes in cell topologies. These results argue against specific zones of topological initiation and demonstrate the importance of systematic 4D-based analysis in understanding how forces and deformations in cell dimensions propagate in a three-dimensional environment.
Collapse
Affiliation(s)
- Timothy E Vanderleest
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA; Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA
| | - Yi Xie
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Rashmi Budhathoki
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Katie Linvill
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA
| | - Chad Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - John Heddleston
- Cleveland Clinic Florida Research & Innovation Center, Port St. Lucie, FL, USA
| | - Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA.
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| |
Collapse
|
7
|
Morales EA, Wang S. Salivary gland developmental mechanics. Curr Top Dev Biol 2024; 160:1-30. [PMID: 38937029 DOI: 10.1016/bs.ctdb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The salivary gland undergoes branching morphogenesis to elaborate into a tree-like structure with numerous saliva-secreting acinar units, all joined by a hierarchical ductal system. The expansive epithelial surface generated by branching morphogenesis serves as the structural basis for the efficient production and delivery of saliva. Here, we elucidate the process of salivary gland morphogenesis, emphasizing the role of mechanics. Structurally, the developing salivary gland is characterized by a stratified epithelium tightly encased by the basement membrane, which is in turn surrounded by a mesenchyme consisting of a dense network of interstitial matrix and mesenchymal cells. Diverse cell types and extracellular matrices bestow this developing organ with organized, yet spatially varied mechanical properties. For instance, the surface epithelial sheet of the bud is highly fluidic due to its high cell motility and weak cell-cell adhesion, rendering it highly pliable. In contrast, the inner core of the bud is more rigid, characterized by reduced cell motility and strong cell-cell adhesion, which likely provide structural support for the tissue. The interactions between the surface epithelial sheet and the inner core give rise to budding morphogenesis. Furthermore, the basement membrane and the mesenchyme offer mechanical constraints that could play a pivotal role in determining the higher-order architecture of a fully mature salivary gland.
Collapse
Affiliation(s)
- E Angelo Morales
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States.
| |
Collapse
|
8
|
Jackson JA, Denk-Lobnig M, Kitzinger KA, Martin AC. Change in RhoGAP and RhoGEF availability drives transitions in cortical patterning and excitability in Drosophila. Curr Biol 2024; 34:2132-2146.e5. [PMID: 38688282 PMCID: PMC11111359 DOI: 10.1016/j.cub.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. Although mechanisms have been established for individual cells' dynamic behaviors, the mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a Rho guanine nucleotide exchange factor (RhoGEF) and Rho GTPase activating protein (RhoGAP) pair required for actomyosin waves in egg chambers. Specifically, depletion of the RhoGEF, Ect2, or the RhoGAP, RhoGAP15B, disrupted actomyosin wave induction, and both proteins relocalized from the nucleus to the cortex preceding wave formation. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair, RhoGEF2 and Cumberland GAP (C-GAP), resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly by ∼4 s. We found that C-GAP was recruited to actomyosin waves, and disrupting F-actin polymerization altered the spatial organization of both RhoA signaling and the cytoskeleton in waves. In addition, disrupting F-actin dynamics increased wave period and width, consistent with a possible role for F-actin in promoting delayed negative feedback. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types, such as epithelial and syncytial cells.
Collapse
Affiliation(s)
- Jonathan A Jackson
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; Graduate Program in Biophysics, Harvard University, 86 Brattle Street, Cambridge, MA 02138, USA
| | - Marlis Denk-Lobnig
- Department of Biophysics, University of Michigan, 1109 Geddes Ave., Ann Arbor, MI 48109, USA
| | - Katherine A Kitzinger
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Campàs O, Noordstra I, Yap AS. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat Rev Mol Cell Biol 2024; 25:252-269. [PMID: 38093099 DOI: 10.1038/s41580-023-00688-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 03/28/2024]
Abstract
Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.
Collapse
Affiliation(s)
- Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
10
|
Devitt CC, Weng S, Bejar-Padilla VD, Alvarado J, Wallingford JB. PCP and Septins govern the polarized organization of the actin cytoskeleton during convergent extension. Curr Biol 2024; 34:615-622.e4. [PMID: 38199065 PMCID: PMC10887425 DOI: 10.1016/j.cub.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/25/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Convergent extension (CE) requires the coordinated action of the planar cell polarity (PCP) proteins1,2 and the actin cytoskeleton,3,4,5,6 but this relationship remains incompletely understood. For example, PCP signaling orients actomyosin contractions, yet actomyosin is also required for the polarized localization of PCP proteins.7,8 Moreover, the actin-regulating Septins play key roles in actin organization9 and are implicated in PCP and CE in frogs, mice, and fish5,6,10,11,12 but execute only a subset of PCP-dependent cell behaviors. Septin loss recapitulates the severe tissue-level CE defects seen after core PCP disruption yet leaves overt cell polarity intact.5 Together, these results highlight the general fact that cell movement requires coordinated action by distinct but integrated actin populations, such as lamella and lamellipodia in migrating cells13 or medial and junctional actin populations in cells engaged in apical constriction.14,15 In the context of Xenopus mesoderm CE, three such actin populations are important, a superficial meshwork known as the "node-and-cable" system,4,16,17,18 a contractile network at deep cell-cell junctions,6,19 and mediolaterally oriented actin-rich protrusions, which are present both superficially and deeply.4,19,20,21 Here, we exploited the amenability of the uniquely "two-dimensional" node and cable system to probe the relationship between PCP proteins, Septins, and the polarization of this actin network. We find that the PCP proteins Vangl2 and Prickle2 and Septins co-localize at nodes, and that the node and cable system displays a cryptic, PCP- and Septin-dependent anteroposterior (AP) polarity in its organization and dynamics.
Collapse
Affiliation(s)
- Caitlin C Devitt
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Shinuo Weng
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | | | - José Alvarado
- Department of Physics, University of Texas, Austin, TX 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Collinet C, Bailles A, Dehapiot B, Lecuit T. Mechanical regulation of substrate adhesion and de-adhesion drives a cell-contractile wave during Drosophila tissue morphogenesis. Dev Cell 2024; 59:156-172.e7. [PMID: 38103554 PMCID: PMC10783558 DOI: 10.1016/j.devcel.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
During morphogenesis, mechanical forces induce large-scale deformations; yet, how forces emerge from cellular contractility and adhesion is unclear. In Drosophila embryos, a tissue-scale wave of actomyosin contractility coupled with adhesion to the surrounding vitelline membrane drives polarized tissue invagination. We show that this process emerges subcellularly from the mechanical coupling between myosin II activation and sequential adhesion/de-adhesion to the vitelline membrane. At the wavefront, integrin clusters anchor the actin cortex to the vitelline membrane and promote activation of myosin II, which in turn enhances adhesion in a positive feedback. Following cell detachment, cortex contraction and advective flow amplify myosin II. Prolonged contact with the vitelline membrane prolongs the integrin-myosin II feedback, increases integrin adhesion, and thus slows down cell detachment and wave propagation. The angle of cell detachment depends on adhesion strength and sets the tensile forces required for detachment. Thus, we document how the interplay between subcellular mechanochemical feedback and geometry drives tissue morphogenesis.
Collapse
Affiliation(s)
- Claudio Collinet
- Aix Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, 13288 Marseille, France.
| | - Anaïs Bailles
- Aix Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, 13288 Marseille, France
| | - Benoit Dehapiot
- Aix Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, 13288 Marseille, France
| | - Thomas Lecuit
- Aix Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, 13288 Marseille, France; Collège de France, 11 Place Marcelin Berthelot, Paris, France.
| |
Collapse
|
12
|
Burda I, Martin AC, Roeder AHK, Collins MA. The dynamics and biophysics of shape formation: Common themes in plant and animal morphogenesis. Dev Cell 2023; 58:2850-2866. [PMID: 38113851 PMCID: PMC10752614 DOI: 10.1016/j.devcel.2023.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The emergence of tissue form in multicellular organisms results from the complex interplay between genetics and physics. In both plants and animals, cells must act in concert to pattern their behaviors. Our understanding of the factors sculpting multicellular form has increased dramatically in the past few decades. From this work, common themes have emerged that connect plant and animal morphogenesis-an exciting connection that solidifies our understanding of the developmental basis of multicellular life. In this review, we will discuss the themes and the underlying principles that connect plant and animal morphogenesis, including the coordination of gene expression, signaling, growth, contraction, and mechanical and geometric feedback.
Collapse
Affiliation(s)
- Isabella Burda
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA
| | - Adam C Martin
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA; School of Integrative Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14850, USA.
| | - Mary Ann Collins
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Jackson JA, Denk-Lobnig M, Kitzinger KA, Martin AC. Change in RhoGAP and RhoGEF availability drives transitions in cortical patterning and excitability in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565883. [PMID: 37986763 PMCID: PMC10659369 DOI: 10.1101/2023.11.06.565883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. While mechanisms have been established for individual cells' dynamic behaviors, mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a RhoGEF and RhoGAP pair whose relocalization from nucleus to cortex results in actomyosin waves in egg chambers. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly and RhoGAP recruitment by ~4 seconds. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types.
Collapse
Affiliation(s)
- Jonathan A. Jackson
- Department of Biology, Massachusetts Institute of Technology
- Graduate Program in Biophysics, Harvard University
| | | | | | - Adam C. Martin
- Department of Biology, Massachusetts Institute of Technology
- Lead contact
| |
Collapse
|
14
|
Zhu H, O’Shaughnessy B. Actomyosin pulsing rescues embryonic tissue folding from disruption by myosin fluctuations. RESEARCH SQUARE 2023:rs.3.rs-2948564. [PMID: 37886516 PMCID: PMC10602173 DOI: 10.21203/rs.3.rs-2948564/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
During early development, myosin II mechanically reshapes and folds embryo tissue. A muchstudied example is ventral furrow formation in Drosophila, marking the onset of gastrulation. Furrowing is driven by contraction of actomyosin networks on apical cell surfaces, but how the myosin patterning encodes tissue shape is unclear, and elastic models failed to reproduce essential features of experimental cell contraction profiles. The myosin patterning exhibits substantial cell-to-cell fluctuations with pulsatile time-dependence, a striking but unexplained feature of morphogenesis in many organisms. Here, using biophysical modeling we find viscous forces offer the principal resistance to actomyosin-driven apical constriction. In consequence, tissue shape is encoded in the direction-dependent curvature of the myosin patterning which orients an anterior-posterior furrow. Tissue contraction is highly sensitive to cell-to-cell myosin fluctuations, explaining furrowing failure in genetically perturbed embryos whose fluctuations are temporally persistent. In wild-type embryos this disastrous outcome is averted by pulsatile myosin time-dependence, which rescues furrowing by eliminating high frequencies in the fluctuation power spectrum. This low pass filter mechanism may underlie the usage of actomyosin pulsing in diverse morphogenetic processes across many organisms.
Collapse
Affiliation(s)
- Hongkang Zhu
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Ben O’Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
15
|
Zhang P, Medwig-Kinney TN, Goldstein B. Architecture of the cortical actomyosin network driving apical constriction in C. elegans. J Cell Biol 2023; 222:e202302102. [PMID: 37351566 PMCID: PMC10289891 DOI: 10.1083/jcb.202302102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Apical constriction is a cell shape change that drives key morphogenetic events during development, including gastrulation and neural tube formation. The forces driving apical constriction are primarily generated through the contraction of apicolateral and/or medioapical actomyosin networks. In the Drosophila ventral furrow, the medioapical actomyosin network has a sarcomere-like architecture, with radially polarized actin filaments and centrally enriched non-muscle myosin II and myosin activating kinase. To determine if this is a broadly conserved actin architecture driving apical constriction, we examined actomyosin architecture during C. elegans gastrulation, in which two endodermal precursor cells internalize from the surface of the embryo. Quantification of protein localization showed that neither the non-muscle myosin II NMY-2 nor the myosin-activating kinase MRCK-1 is enriched at the center of the apex. Further, visualization of barbed- and pointed-end capping proteins revealed that actin filaments do not exhibit radial polarization at the apex. Our results demonstrate that C. elegans endodermal precursor cells apically constrict using a mixed-polarity actin filament network and with myosin and a myosin activator distributed throughout the network. Taken together with observations made in other organisms, our results demonstrate that diverse actomyosin architectures are used in animal cells to accomplish apical constriction.
Collapse
Affiliation(s)
- Pu Zhang
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Baldwin A, Popov IK, Keller R, Wallingford J, Chang C. The RhoGEF protein Plekhg5 regulates medioapical and junctional actomyosin dynamics of apical constriction during Xenopus gastrulation. Mol Biol Cell 2023; 34:ar64. [PMID: 37043306 PMCID: PMC10295481 DOI: 10.1091/mbc.e22-09-0411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
Apical constriction results in apical surface reduction in epithelial cells and is a widely used mechanism for epithelial morphogenesis. Both medioapical and junctional actomyosin remodeling are involved in apical constriction, but the deployment of medial versus junctional actomyosin and their genetic regulation in vertebrate embryonic development have not been fully described. In this study, we investigate actomyosin dynamics and their regulation by the RhoGEF protein Plekhg5 in Xenopus bottle cells. Using live imaging and quantitative image analysis, we show that bottle cells assume different shapes, with rounding bottle cells constricting earlier in small clusters followed by fusiform bottle cells forming between the clusters. Both medioapical and junctional actomyosin signals increase as surface area decreases, though correlation of apical constriction with medioapical actomyosin localization appears to be stronger. F-actin bundles perpendicular to the apical surface form in constricted cells, which may correspond to microvilli previously observed in the apical membrane. Knockdown of plekhg5 disrupts medioapical and junctional actomyosin activity and apical constriction but does not affect initial F-actin dynamics. Taking the results together, our study reveals distinct cell morphologies, uncovers actomyosin behaviors, and demonstrates the crucial role of a RhoGEF protein in controlling actomyosin dynamics during apical constriction of bottle cells in Xenopus gastrulation.
Collapse
Affiliation(s)
- Austin Baldwin
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Ivan K. Popov
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ray Keller
- Biology Department, University of Virginia, Charlottesville, VA 22903
| | - John Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
17
|
Wang J, Fu Y, Huang W, Biswas R, Banerjee A, Broussard JA, Zhao Z, Wang D, Bjerke G, Raghavan S, Yan J, Green KJ, Yi R. MicroRNA-205 promotes hair regeneration by modulating mechanical properties of hair follicle stem cells. Proc Natl Acad Sci U S A 2023; 120:e2220635120. [PMID: 37216502 PMCID: PMC10235966 DOI: 10.1073/pnas.2220635120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Stiffness and actomyosin contractility are intrinsic mechanical properties of animal cells required for the shaping of tissues. However, whether tissue stem cells (SCs) and progenitors located within SC niche have different mechanical properties that modulate their size and function remains unclear. Here, we show that hair follicle SCs in the bulge are stiff with high actomyosin contractility and resistant to size change, whereas hair germ (HG) progenitors are soft and periodically enlarge and contract during quiescence. During activation of hair follicle growth, HGs reduce contraction and more frequently enlarge, a process that is associated with weakening of the actomyosin network, nuclear YAP accumulation, and cell cycle reentry. Induction of miR-205, a novel regulator of the actomyosin cytoskeleton, reduces actomyosin contractility and activates hair regeneration in young and old mice. This study reveals the control of tissue SC size and activities by spatiotemporally compartmentalized mechanical properties and demonstrates the possibility to stimulate tissue regeneration by fine-tuning cell mechanics.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Yuheng Fu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Wenmao Huang
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Ritusree Biswas
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bangalore560065, India
| | - Avinanda Banerjee
- A*Star Skin Research Institute of Singapore, Singapore138648, Singapore
| | - Joshua A. Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Zhihai Zhao
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Dongmei Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Glen Bjerke
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
| | - Srikala Raghavan
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bangalore560065, India
- A*Star Skin Research Institute of Singapore, Singapore138648, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Kathleen J. Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Rui Yi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
18
|
Francou A, Anderson KV, Hadjantonakis AK. A ratchet-like apical constriction drives cell ingression during the mouse gastrulation EMT. eLife 2023; 12:e84019. [PMID: 37162187 PMCID: PMC10171865 DOI: 10.7554/elife.84019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a fundamental process whereby epithelial cells acquire mesenchymal phenotypes and the ability to migrate. EMT is the hallmark of gastrulation, an evolutionarily conserved developmental process. In mammals, epiblast cells ingress at the primitive streak to form mesoderm. Cells ingress and exit the epiblast epithelial layer and the associated EMT is dynamically regulated and involves a stereotypical sequence of cell behaviors. 3D time-lapse imaging of gastrulating mouse embryos combined with cell and tissue scale data analyses revealed the asynchronous ingression of epiblast cells at the primitive streak. Ingressing cells constrict their apical surfaces in a pulsed ratchet-like fashion through asynchronous shrinkage of apical junctions. A quantitative analysis of the distribution of apical proteins revealed the anisotropic and reciprocal enrichment of members of the actomyosin network and Crumbs2 complexes, potential regulators of asynchronous shrinkage of cell junctions. Loss of function analyses demonstrated a requirement for Crumbs2 in myosin II localization and activity at apical junctions, and as a candidate regulator of actomyosin anisotropy.
Collapse
Affiliation(s)
- Alexandre Francou
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
19
|
Yeh AR, Hoeprich GJ, Goode BL, Martin AC. Bitesize bundles F-actin and influences actin remodeling in syncytial Drosophila embryo development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537198. [PMID: 37131807 PMCID: PMC10153138 DOI: 10.1101/2023.04.17.537198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Actin networks undergo rearrangements that influence cell and tissue shape. Actin network assembly and organization is regulated in space and time by a host of actin binding proteins. The Drosophila Synaptotagmin-like protein, Bitesize (Btsz), is known to organize actin at epithelial cell apical junctions in a manner that depends on its interaction with the actin-binding protein, Moesin. Here, we showed that Btsz functions in actin reorganization at earlier, syncytial stages of Drosophila embryo development. Btsz was required for the formation of stable metaphase pseudocleavage furrows that prevented spindle collisions and nuclear fallout prior to cellularization. While previous studies focused on Btsz isoforms containing the Moesin Binding Domain (MBD), we found that isoforms lacking the MBD also function in actin remodeling. Consistent with this, we found that the C-terminal half of BtszB cooperatively binds to and bundles F-actin, suggesting a direct mechanism for Synaptotagmin-like proteins regulating actin organization during animal development.
Collapse
|
20
|
Zhu H, Oâ Shaughnessy B. Actomyosin pulsing rescues embryonic tissue folding from disruption by myosin fluctuations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533016. [PMID: 36993262 PMCID: PMC10055118 DOI: 10.1101/2023.03.16.533016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
During early development, myosin II mechanically reshapes and folds embryo tissue. A much-studied example is ventral furrow formation in Drosophila , marking the onset of gastrulation. Furrowing is driven by contraction of actomyosin networks on apical cell surfaces, but how the myosin patterning encodes tissue shape is unclear, and elastic models failed to reproduce essential features of experimental cell contraction profiles. The myosin patterning exhibits substantial cell-to-cell fluctuations with pulsatile time-dependence, a striking but unexplained feature of morphogenesis in many organisms. Here, using biophysical modeling we find viscous forces offer the principle resistance to actomyosin-driven apical constriction. In consequence, tissue shape is encoded in the direction-dependent curvature of the myosin patterning which orients an anterior-posterior furrow. Tissue contraction is highly sensitive to cell-to-cell myosin fluctuations, explaining furrowing failure in genetically perturbed embryos whose fluctuations are temporally persistent. In wild-type embryos, this catastrophic outcome is averted by pulsatile myosin time-dependence, a time-averaging effect that rescues furrowing. This low pass filter mechanism may underlie the usage of actomyosin pulsing in diverse morphogenetic processes across many organisms.
Collapse
|
21
|
Serre JM, Slabodnick MM, Goldstein B, Hardin J. SRGP-1/srGAP and AFD-1/afadin stabilize HMP-1/⍺-catenin at rosettes to seal internalization sites following gastrulation in C. elegans. PLoS Genet 2023; 19:e1010507. [PMID: 36867663 PMCID: PMC10016700 DOI: 10.1371/journal.pgen.1010507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/15/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
A hallmark of gastrulation is the establishment of germ layers by internalization of cells initially on the exterior. In C. elegans the end of gastrulation is marked by the closure of the ventral cleft, a structure formed as cells internalize during gastrulation, and the subsequent rearrangement of adjacent neuroblasts that remain on the surface. We found that a nonsense allele of srgp-1/srGAP leads to 10-15% cleft closure failure. Deletion of the SRGP-1/srGAP C-terminal domain led to a comparable rate of cleft closure failure, whereas deletion of the N-terminal F-BAR region resulted in milder defects. Loss of the SRGP-1/srGAP C-terminus or F-BAR domain results in defects in rosette formation and defective clustering of HMP-1/⍺-catenin in surface cells during cleft closure. A mutant form of HMP-1/⍺-catenin with an open M domain can suppress cleft closure defects in srgp-1 mutant backgrounds, suggesting that this mutation acts as a gain-of-function allele. Since SRGP-1 binding to HMP-1/⍺-catenin is not favored in this case, we sought another HMP-1 interactor that might be recruited when HMP-1/⍺-catenin is constitutively open. A good candidate is AFD-1/afadin, which genetically interacts with cadherin-based adhesion later during embryonic elongation. AFD-1/afadin is prominently expressed at the vertex of neuroblast rosettes in wildtype, and depletion of AFD-1/afadin increases cleft closure defects in srgp-1/srGAP and hmp-1R551/554A/⍺-catenin backgrounds. We propose that SRGP-1/srGAP promotes nascent junction formation in rosettes; as junctions mature and sustain higher levels of tension, the M domain of HMP-1/⍺-catenin opens, allowing maturing junctions to transition from recruitment of SRGP-1/srGAP to AFD-1/afadin. Our work identifies new roles for ⍺-catenin interactors during a process crucial to metazoan development.
Collapse
Affiliation(s)
- Joel M. Serre
- Program in Genetics University of Wisconsin-Madison, Wisconsin, United States of America
| | - Mark M. Slabodnick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, Knox University, Galesburg, Illinois, United States of America
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeff Hardin
- Program in Genetics University of Wisconsin-Madison, Wisconsin, United States of America
- Department of Integrative Biology, University of Wisconsin-Madison, Wisconsin, United States of America
| |
Collapse
|
22
|
Curvature gradient drives polarized tissue flow in the Drosophila embryo. Proc Natl Acad Sci U S A 2023; 120:e2214205120. [PMID: 36724258 PMCID: PMC9963527 DOI: 10.1073/pnas.2214205120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tissue flow during morphogenesis is commonly driven by local constriction of cell cortices, which is caused by the activation of actomyosin contractility. This can lead to long-range flows due to tissue viscosity. However, in the absence of cell-intrinsic polarized forces or polarity in forces external to the tissue, these flows must be symmetric and centered around the region of contraction. Polarized tissue flows have been previously demonstrated to arise from the coupling of such contractile flows to points of increased friction or adhesion to external structures. However, we show with experiments and modeling that the onset of polarized tissue flow in early Drosophila morphogenesis occurs independent of adhesion and is instead driven by a geometric coupling of apical actomyosin contractility to tissue curvature. Particularly, the onset of polarized flow is driven by a mismatch between the position of apical myosin activation and the position of peak curvature at the posterior pole of the embryo. Our work demonstrates how genetic and geometric information inherited from the mother interact to create polarized flow during embryo morphogenesis.
Collapse
|
23
|
Zhang P, Medwig-Kinney TN, Goldstein B. Architecture of the cortical actomyosin network driving apical constriction in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526280. [PMID: 36778218 PMCID: PMC9915510 DOI: 10.1101/2023.01.30.526280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apical constriction is a cell shape change that drives key morphogenetic events during development, including gastrulation and neural tube formation. The forces driving apical constriction are primarily generated through the contraction of apicolateral and/or medioapical actomyosin networks. In the Drosophila ventral furrow, the medioapical actomyosin network has a sarcomere-like architecture, with radially polarized actin filaments and centrally enriched non-muscle myosin II and myosin activating kinase. To determine if this is a broadly conserved actin architecture driving apical constriction, we examined actomyosin architecture during C. elegans gastrulation, in which two endodermal precursor cells internalize from the surface of the embryo. Quantification of protein localization showed that neither the non-muscle myosin II NMY-2 nor the myosin-activating kinase MRCK-1 is enriched at the center of the apex. Further, visualization of barbed- and pointed-end capping proteins revealed that actin filaments do not exhibit radial polarization at the apex. Taken together with observations made in other organisms, our results demonstrate that diverse actomyosin architectures are used in animal cells to accomplish apical constriction. Summary Through live-cell imaging of endogenously-tagged proteins, Zhang, Medwig-Kinney, and Goldstein show that the medioapical actomyosin network driving apical constriction during C. elegans gastrulation is organized diffusely, in contrast to the sarcomere-like architecture previously observed in the Drosophila ventral furrow.
Collapse
Affiliation(s)
- Pu Zhang
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Taylor N. Medwig-Kinney
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
24
|
Daulagala AC, Kourtidis A. ECM Substrates Impact RNAi Localization at Adherens Junctions of Colon Epithelial Cells. Cells 2022; 11:3740. [PMID: 36497003 PMCID: PMC9737857 DOI: 10.3390/cells11233740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The extracellular matrix (ECM) plays crucial roles in tissue homeostasis. Abnormalities in ECM composition are associated with pathological conditions, such as fibrosis and cancer. These ECM alterations are sensed by the epithelium and can influence its behavior through crosstalk with other mechanosensitive complexes, including the adherens junctions (AJs). We have previously shown that the AJs, through their component PLEKHA7, recruit the RNAi machinery to regulate miRNA levels and function. We have particularly shown that the junctional localization of RNAi components is critical for their function. Here, we investigated whether different ECM substrates can influence the junctional localization of RNAi complexes. To do this, we plated colon epithelial Caco2 cells on four key ECM substrates found in the colon under normal or pathogenic conditions, namely laminin, fibronectin, collagen I, and collagen IV, and we examined the subcellular distribution of PLEKHA7, and of the key RNAi components AGO2 and DROSHA. Fibronectin and collagen I negatively impacted the junctional localization of PLEKHA7, AGO2, and DROSHA when compared to laminin. Furthermore, fibronectin, collagen I, and collagen IV disrupted interactions of AGO2 and DROSHA with their essential partners GW182 and DGCR8, respectively, both at AJs and throughout the cell. Combinations of all substrates with fibronectin also negatively impacted junctional localization of PLEKHA7 and AGO2. Additionally, collagen I triggered accumulation of DROSHA at tri-cellular junctions, while both collagen I and collagen IV resulted in DROSHA accumulation at basal areas of cell-cell contact. Altogether, fibronectin and collagens I and IV, which are elevated in the stroma of fibrotic and cancerous tissues, altered localization patterns and disrupted complex formation of PLEKHA7 and RNAi components. Combined with our prior studies showing that apical junctional localization of the PLEKHA7-RNAi complex is critical for regulating tumor-suppressing miRNAs, this work points to a yet unstudied mechanism that could contribute to epithelial cell transformation.
Collapse
Affiliation(s)
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
25
|
Baldwin AT, Kim JH, Wallingford JB. In vivo high-content imaging and regression analysis reveal non-cell autonomous functions of Shroom3 during neural tube closure. Dev Biol 2022; 491:105-112. [PMID: 36113571 PMCID: PMC10118288 DOI: 10.1016/j.ydbio.2022.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/02/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022]
Abstract
During neural tube closure, neural ectoderm cells constrict their apical surfaces to bend and fold the tissue into a tube that will become the central nervous system. Recent data from mice and humans with neural tube defects suggest that key genes required for neural tube closure can exert non-cell autonomous effects on cell behavior, but the nature of these effects remains obscure. Here, we coupled tissue-scale, high-resolution time-lapse imaging of the closing neural tube of Xenopus to multivariate regression modeling, and we show that medial actin accumulation drives apical constriction non-autonomously in neighborhoods of cells, rather than solely in individual cells. To further explore this effect, we examined mosaic crispant embryos and identified both autonomous and non-autonomous effects of the apical constriction protein Shroom3.
Collapse
Affiliation(s)
- Austin T Baldwin
- Dept. of Molecular Biosciences, University of Texas at Austin, United States
| | - Juliana H Kim
- Dept. of Molecular Biosciences, University of Texas at Austin, United States
| | - John B Wallingford
- Dept. of Molecular Biosciences, University of Texas at Austin, United States.
| |
Collapse
|
26
|
Abstract
Contractile force produced by myosin II that binds and pulls constrained filamentous actin is harnessed by cells for diverse processes such as cell division. However, contractile actomyosin systems are vulnerable to an intrinsic aggregation instability that destroys actomyosin architecture if unchecked. Punctate myosin distributions are widely observed, but how cells prevent more advanced aggregation remains unclear. Here, we studied cytokinetic contractile rings in fission yeast cell ghosts lacking component turnover, when myosin aggregated hierarchically. Simulations reproduced the severe organizational disruption and a dead-end state with isolated aggregates and ring tension loss. We conclude that in normal cells, myosin turnover regulates actomyosin contractile instability by continuous injection of homogeneously distributed myosin, permitting functional aggregates to develop but intercepting catastrophic runaway aggregation. Actomyosin contractile force produced by myosin II molecules that bind and pull actin filaments is harnessed for diverse functions, from cell division by the cytokinetic contractile ring to morphogenesis driven by supracellular actomyosin networks during development. However, actomyosin contractility is intrinsically unstable to self-reinforcing spatial variations that may destroy the actomyosin architecture if unopposed. How cells control this threat is not established, and while large myosin fluctuations and punctateness are widely reported, the full course of the instability in cells has not been observed. Here, we observed the instability run its full course in isolated cytokinetic contractile rings in cell ghosts where component turnover processes are absent. Unprotected by turnover, myosin II merged hierarchically into aggregates with increasing amounts of myosin and increasing separation, up to a maximum separation. Molecularly explicit simulations reproduced the hierarchical aggregation which precipitated tension loss and ring fracture and identified the maximum separation as the length of actin filaments mediating mechanical communication between aggregates. In the final simulated dead-end state, aggregates were morphologically quiescent, including asters with polarity-sorted actin, similar to the dead-end state observed in actomyosin systems in vitro. Our results suggest the myosin II turnover time controls actomyosin contractile instability in normal cells, long enough for aggregation to build robust aggregates but sufficiently short to intercept catastrophic hierarchical aggregation and fracture.
Collapse
|
27
|
Thiagarajan R, Bhat A, Salbreux G, Inamdar MM, Riveline D. Pulsations and flows in tissues as two collective dynamics with simple cellular rules. iScience 2022; 25:105053. [PMID: 36204277 PMCID: PMC9531052 DOI: 10.1016/j.isci.2022.105053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/23/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Collective motions of epithelial cells are essential for morphogenesis. Tissues elongate, contract, flow, and oscillate, thus sculpting embryos. These tissue level dynamics are known, but the physical mechanisms at the cellular level are unclear. Here, we demonstrate that a single epithelial monolayer of MDCK cells can exhibit two types of local tissue kinematics, pulsations and long range coherent flows, characterized by using quantitative live imaging. We report that these motions can be controlled with internal and external cues such as specific inhibitors and substrate friction modulation. We demonstrate the associated mechanisms with a unified vertex model. When cell velocity alignment and random diffusion of cell polarization are comparable, a pulsatile flow emerges whereas tissue undergoes long-range flows when velocity alignment dominates which is consistent with cytoskeletal dynamics measurements. We propose that environmental friction, acto-myosin distributions, and cell polarization kinetics are important in regulating dynamics of tissue morphogenesis. Two collective cell motions, pulsations and flows, coexist in MDCK monolayers Each collective movement is identified using divergence and velocity correlations Motion is controlled by the regulation of substrate friction and cytoskeleton A vertex model recapitulates the motion by tuning velocity and polarity alignment
Collapse
Affiliation(s)
- Raghavan Thiagarajan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Alka Bhat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | | | - Mandar M. Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Corresponding author
| | - Daniel Riveline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Corresponding author
| |
Collapse
|
28
|
Costache V, Prigent Garcia S, Plancke CN, Li J, Begnaud S, Suman SK, Reymann AC, Kim T, Robin FB. Rapid assembly of a polar network architecture drives efficient actomyosin contractility. Cell Rep 2022; 39:110868. [PMID: 35649363 PMCID: PMC9210446 DOI: 10.1016/j.celrep.2022.110868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Actin network architecture and dynamics play a central role in cell contractility and tissue morphogenesis. RhoA-driven pulsed contractions are a generic mode of actomyosin contractility, but the mechanisms underlying how their specific architecture emerges and how this architecture supports the contractile function of the network remain unclear. Here we show that, during pulsed contractions, the actin network is assembled by two subpopulations of formins: a functionally inactive population (recruited) and formins actively participating in actin filament elongation (elongating). We then show that elongating formins assemble a polar actin network, with barbed ends pointing out of the pulse. Numerical simulations demonstrate that this geometry favors rapid network contraction. Our results show that formins convert a local RhoA activity gradient into a polar network architecture, causing efficient network contractility, underlying the key function of kinetic controls in the assembly and mechanics of cortical network architectures. RhoA-driven actomyosin contractility plays a key role in driving cell and tissue contractility during morphogenesis. Tracking individual formins, Costache et al. show that the network assembled downstream of RhoA displays a polar architecture, barbed ends pointing outward, a feature that supports efficient contractility and force transmission during pulsed contractions.
Collapse
Affiliation(s)
- Vlad Costache
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Serena Prigent Garcia
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Camille N Plancke
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Simon Begnaud
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Shashi Kumar Suman
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Anne-Cécile Reymann
- IGBMC, CNRS UMR7104, INSERM U1258, and Université de Strasbourg, Illkirch, France
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - François B Robin
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France.
| |
Collapse
|
29
|
Thiagarajan R, Inamdar MM, Riveline D. Interplay between cell height variations and planar pulsations in epithelial monolayers. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:49. [PMID: 35587840 DOI: 10.1140/epje/s10189-022-00201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Biological tissues change their shapes through collective interactions of cells. This coordination sets length and time scales for dynamics where precision is essential, in particular during morphogenetic events. However, how these scales emerge remains unclear. Here, we address this question using the pulsatile domains observed in confluent epithelial MDCK monolayers where cells exhibit synchronous contraction and extension cycles of [Formula: see text] h duration and [Formula: see text] length scale. We report that the monolayer thickness changes gradually in space and time by more than twofold in order to counterbalance the contraction and extension of the incompressible cytoplasm. We recapitulate these pulsatile dynamics using a continuum model and show that incorporation of cell stiffness dependent height variations is critical both for generating temporal pulsations and establishing the domain size. We propose that this feedback between height and mechanics could be important in coordinating the length scales of tissue dynamics.
Collapse
Affiliation(s)
- Raghavan Thiagarajan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS, Université de Strasbourg, Strasbourg, France
- UMR7104, Centre National de la Recherche Scientifique, Illkirch, France
- U964, Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Daniel Riveline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
- Laboratory of Cell Physics ISIS/IGBMC, CNRS, Université de Strasbourg, Strasbourg, France.
- UMR7104, Centre National de la Recherche Scientifique, Illkirch, France.
- U964, Institut National de la Santé et de la Recherche Médicale, Illkirch, France.
| |
Collapse
|
30
|
Lv Z, Zhang N, Zhang X, Großhans J, Kong D. The Lateral Epidermis Actively Counteracts Pulling by the Amnioserosa During Dorsal Closure. Front Cell Dev Biol 2022; 10:865397. [PMID: 35652100 PMCID: PMC9148979 DOI: 10.3389/fcell.2022.865397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Dorsal closure is a prominent morphogenetic process during Drosophila embryogenesis, which involves two epithelial tissues, that is, the squamous amnioserosa and the columnar lateral epidermis. Non-muscle myosin II-driven constriction in the amnioserosa leads to a decrease in the apical surface area and pulls on the adjacent lateral epidermis, which subsequently moves dorsally. The pull by the amnioserosa becomes obvious in an elongation of the epidermal cells, especially of those in the first row. The contribution of the epidermal cell elongation has remained unclear to dorsal closure. Cell elongation may be a mere passive consequence or an active response to the pulling by the amnioserosa. Here, we found that the lateral epidermis actively responds. We analyzed tensions within tissues and cell junctions by laser ablation before and during dorsal closure, the elliptical and dorsal closure stages, respectively. Furthermore, we genetically and optochemically induced chronic and acute cell contraction, respectively. In this way, we found that tension in the epidermis increased during dorsal closure. A correspondingly increased tension was not observed at individual junctions, however. Junctional tension even decreased during dorsal closure in the epidermis. We strikingly observed a strong increase of the microtubule amount in the epidermis, while non-muscle myosin II increased in both tissues. Our data suggest that the epidermis actively antagonizes the pull from the amnioserosa during dorsal closure and the increased microtubules might help the epidermis bear part of the mechanical force.
Collapse
Affiliation(s)
- Zhiyi Lv
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Na Zhang
- Department of Biology, Philipps University, Marburg, Germany
| | - Xiaozhu Zhang
- MOE Key Laboratory of Advanced Micro-Structured Materials and School of Physics Science and Engineering, Tongji University, Shanghai, China
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
- Institute for Theoretical Physics and Center for Advancing Electronics Dresden (cfaed), Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, Marburg, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, Marburg, Germany
- *Correspondence: Deqing Kong,
| |
Collapse
|
31
|
Matsuda M, Chu CW, Sokol SY. Lmo7 recruits myosin II heavy chain to regulate actomyosin contractility and apical domain size in Xenopus ectoderm. Development 2022; 149:275389. [PMID: 35451459 PMCID: PMC9188752 DOI: 10.1242/dev.200236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/30/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Apical constriction, or a reduction in size of the apical domain, underlies many morphogenetic events during development. Actomyosin complexes play an essential role in apical constriction; however, the detailed analysis of molecular mechanisms is still pending. Here, we show that Lim domain only protein 7 (Lmo7), a multidomain adaptor at apical junctions, promotes apical constriction in the Xenopus superficial ectoderm, whereas apical domain size increases in Lmo7-depleted cells. Lmo7 is primarily localized at apical junctions and promotes the formation of the dense circumferential actomyosin belt. Strikingly, Lmo7 binds non-muscle myosin II (NMII) and recruits it to apical junctions and the apical cortex. This NMII recruitment is essential for Lmo7-mediated apical constriction. Lmo7 knockdown decreases NMIIA localization at apical junctions and delays neural tube closure in Xenopus embryos. Our findings suggest that Lmo7 serves as a scaffold that regulates actomyosin contractility and apical domain size.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
32
|
Moore RP, Fogerson SM, Tulu US, Yu JW, Cox AH, Sican MA, Li D, Legant WR, Weigel AV, Crawford JM, Betzig E, Kiehart DP. Super-resolution microscopy reveals actomyosin dynamics in medioapical arrays. Mol Biol Cell 2022; 33:ar94. [PMID: 35544300 DOI: 10.1091/mbc.e21-11-0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Arrays of actin filaments (F-actin) near the apical surface of epithelial cells (medioapical arrays) contribute to apical constriction and morphogenesis throughout phylogeny. Here, super-resolution approaches (grazing incidence structured illumination, GI-SIM and lattice light sheet, LLSM) microscopy resolve individual, fluorescently labeled F-actin and bipolar myosin filaments that drive amnioserosa cell shape changes during dorsal closure in Drosophila. In expanded cells, F-actin and myosin form loose, apically domed meshworks at the plasma membrane. The arrays condense as cells contract, drawing the domes into the plane of the junctional belts. As condensation continues, individual filaments are no longer uniformly apparent. As cells expand, arrays of actomyosin are again resolved - some F-actin turnover likely occurs, but a large fraction of existing filaments rearrange. In morphologically isotropic cells, actin filaments are randomly oriented and during contraction, are drawn together but remain essentially randomly oriented. In anisotropic cells, largely parallel actin filaments are drawn closer to one another. Our images offer unparalleled resolution of F-actin in embryonic tissue show that medioapical arrays are tightly apposed to the plasma membrane, are continuous with meshworks of lamellar F-actin and thereby constitute modified cell cortex. In concert with other tagged array components, super-resolution imaging of live specimens will offer new understanding of cortical architecture and function. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Regan P Moore
- Biology Department, Duke University, Durham, NC, 27708, USA.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, 27599, USA and North Carolina State University, Raleigh, NC, 27695, USA
| | | | - U Serdar Tulu
- Biology Department, Duke University, Durham, NC, 27708, USA
| | - Jason W Yu
- Biology Department, Duke University, Durham, NC, 27708, USA
| | - Amanda H Cox
- Biology Department, Duke University, Durham, NC, 27708, USA
| | | | - Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wesley R Legant
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, 27599, USA and North Carolina State University, Raleigh, NC, 27695, USA
| | - Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | | | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.,Departments of Physics and Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | | |
Collapse
|
33
|
Fuentes MA, He B. The cell polarity determinant Dlg1 facilitates epithelial invagination by promoting tissue-scale mechanical coordination. Development 2022; 149:274757. [PMID: 35302584 PMCID: PMC8977094 DOI: 10.1242/dev.200468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022]
Abstract
Epithelial folding mediated by apical constriction serves as a fundamental mechanism to convert flat epithelial sheets into multilayered structures. It remains unknown whether additional mechanical inputs are required for apical constriction-mediated folding. Using Drosophila mesoderm invagination as a model, we identified an important role for the non-constricting, lateral mesodermal cells adjacent to the constriction domain ('flanking cells') in facilitating epithelial folding. We found that depletion of the basolateral determinant Dlg1 disrupts the transition between apical constriction and invagination without affecting the rate of apical constriction. Strikingly, the observed delay in invagination is associated with ineffective apical myosin contractions in the flanking cells that lead to overstretching of their apical domain. The defects in the flanking cells impede ventral-directed movement of the lateral ectoderm, suggesting reduced mechanical coupling between tissues. Specifically disrupting the flanking cells in wild-type embryos by laser ablation or optogenetic depletion of cortical actin is sufficient to delay the apical constriction-to-invagination transition. Our findings indicate that effective mesoderm invagination requires intact flanking cells and suggest a role for tissue-scale mechanical coupling during epithelial folding.
Collapse
Affiliation(s)
- Melisa A Fuentes
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA
| | - Bing He
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA
| |
Collapse
|
34
|
Baldwin AT, Kim JH, Seo H, Wallingford JB. Global analysis of cell behavior and protein dynamics reveals region-specific roles for Shroom3 and N-cadherin during neural tube closure. eLife 2022; 11:e66704. [PMID: 35244026 PMCID: PMC9010020 DOI: 10.7554/elife.66704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Failures of neural tube closure are common and serious birth defects, yet we have a poor understanding of the interaction of genetics and cell biology during neural tube closure. Additionally, mutations that cause neural tube defects (NTDs) tend to affect anterior or posterior regions of the neural tube but rarely both, indicating a regional specificity to NTD genetics. To better understand the regional specificity of cell behaviors during neural tube closure, we analyzed the dynamic localization of actin and N-cadherin via high-resolution tissue-level time-lapse microscopy during Xenopus neural tube closure. To investigate the regionality of gene function, we generated mosaic mutations in shroom3, a key regulator or neural tube closure. This new analytical approach elucidates several differences between cell behaviors during cranial/anterior and spinal/posterior neural tube closure, provides mechanistic insight into the function of shroom3, and demonstrates the ability of tissue-level imaging and analysis to generate cell biological mechanistic insights into neural tube closure.
Collapse
Affiliation(s)
- Austin T Baldwin
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Juliana H Kim
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Hyemin Seo
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| |
Collapse
|
35
|
Özgüç Ö, de Plater L, Kapoor V, Tortorelli AF, Clark AG, Maître JL. Cortical softening elicits zygotic contractility during mouse preimplantation development. PLoS Biol 2022; 20:e3001593. [PMID: 35324889 PMCID: PMC8982894 DOI: 10.1371/journal.pbio.3001593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/05/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown. We have taken advantage of PeCoWaCo to study the awakening of contractility during preimplantation development. We find that PeCoWaCo become detectable in most embryos only after the second cleavage and gradually increase their oscillation frequency with each successive cleavage. To test the influence of cell size reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell size across a 20- to 60-μm range. We find that the stepwise reduction in cell size caused by cleavage divisions does not explain the presence of PeCoWaCo or their accelerating rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. We further identify the programmed down-regulation of the formin Fmnl3 as a required event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, cortical softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before preimplantation morphogenesis. During preimplantation morphogenesis, the mouse embryo relies on forces generated by the actomyosin cytoskeleton. This study uncovers how periodic actomyosin contractions increase in frequency during cleavage stages as blastomeres soften with each cleavage division.
Collapse
Affiliation(s)
- Özge Özgüç
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Ludmilla de Plater
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Varun Kapoor
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Anna Francesca Tortorelli
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Andrew G. Clark
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
- * E-mail:
| |
Collapse
|
36
|
Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells. Proc Natl Acad Sci U S A 2022; 119:2122030119. [PMID: 35165179 PMCID: PMC8872771 DOI: 10.1073/pnas.2122030119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 01/22/2023] Open
Abstract
Cell–cell contact formation is a key step in the evolution of multicellularity. While the molecular and cellular processes underlying cell–cell adhesion and contact formation have been extensively studied, comparably little is known about the physical principles guiding these processes. Actomyosin cortex tension differentially applied at the cell–cell and cell–medium interfaces was shown to promote expansion of the cell–cell contacts. Here, we uncover a nonlinear relationship between cortex tension and cell–cell contact size; in a low-tension regime, cell–cell contact size positively scales with cortex tension, while the high-tension regime promotes small contacts. This change in behavior is due to tension decreasing the turnover of adhesion molecules at the cell–cell contact, limiting contact expansion. Tension of the actomyosin cell cortex plays a key role in determining cell–cell contact growth and size. The level of cortical tension outside of the cell–cell contact, when pulling at the contact edge, scales with the total size to which a cell–cell contact can grow [J.-L. Maître et al., Science 338, 253–256 (2012)]. Here, we show in zebrafish primary germ-layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell–cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. After tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell–cell contact size is limited by tension-stabilizing E-cadherin–actin complexes at the contact.
Collapse
|
37
|
Yao B, Donoughe S, Michaux J, Munro E. Modulating RhoA effectors induces transitions to oscillatory and more wavelike RhoA dynamics in C. elegans zygotes. Mol Biol Cell 2022; 33:ar58. [PMID: 35138935 PMCID: PMC9265151 DOI: 10.1091/mbc.e21-11-0542] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pulsatile RhoA dynamics underlie a wide range of cell and tissue behaviors. The circuits that produce these dynamics in different cells share common architectures based on fast positive and delayed negative feedback through F-actin, but they can produce very different spatiotemporal patterns of RhoA activity. However, the underlying causes of this variation remain poorly understood. Here we asked how this variation could arise through modulation of actin network dynamics downstream of active RhoA in early C. elegans embryos. We find that perturbing two RhoA effectors - formin and anillin - induce transitions from non-recurrent focal pulses to either large noisy oscillatory pulses (formin depletion) or noisy oscillatory waves (anillin depletion). In both cases these transitions could be explained by changes in local F-actin levels and depletion dynamics, leading to changes in spatial and temporal patterns of RhoA inhibition. However, the underlying mechanisms for F-actin depletion are distinct, with different dependencies on myosin II activity. Thus, modulating actomyosin network dynamics could shape the spatiotemporal dynamics of RhoA activity for different physiological or morphogenetic functions. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Baixue Yao
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Cell Biology, University of Chicago, Chicago, IL 60637
| | - Seth Donoughe
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637
| | | | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
38
|
Abstract
Biological systems display a rich phenomenology of states that resemble the physical states of matter - solid, liquid and gas. These phases result from the interactions between the microscopic constituent components - the cells - that manifest in macroscopic properties such as fluidity, rigidity and resistance to changes in shape and volume. Looked at from such a perspective, phase transitions from a rigid to a flowing state or vice versa define much of what happens in many biological processes especially during early development and diseases such as cancer. Additionally, collectively moving confluent cells can also lead to kinematic phase transitions in biological systems similar to multi-particle systems where the particles can interact and show sub-populations characterised by specific velocities. In this Perspective we discuss the similarities and limitations of the analogy between biological and inert physical systems both from theoretical perspective as well as experimental evidence in biological systems. In understanding such transitions, it is crucial to acknowledge that the macroscopic properties of biological materials and their modifications result from the complex interplay between the microscopic properties of cells including growth or death, neighbour interactions and secretion of matrix, phenomena unique to biological systems. Detecting phase transitions in vivo is technically difficult. We present emerging approaches that address this challenge and may guide our understanding of the organization and macroscopic behaviour of biological tissues.
Collapse
Affiliation(s)
- Pierre-François Lenne
- Aix Marseille Univ, CNRS, UMR 7288, IBDM, Turing Center for Living Systems, Marseille, France.
| | - Vikas Trivedi
- European Molecular Biology Laboratory (EMBL), Barcelona, 08003, Spain.
- EMBL Heidelberg, Developmental Biology Unit, Heidelberg, 69117, Germany.
| |
Collapse
|
39
|
Pérez-Verdugo F, Reig G, Cerda M, Concha ML, Soto R. Geometrical characterization of active contraction pulses in epithelial cells using the two-dimensional vertex model. J R Soc Interface 2022; 19:20210851. [PMID: 35078339 PMCID: PMC8790349 DOI: 10.1098/rsif.2021.0851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 01/28/2023] Open
Abstract
Several models have been proposed to describe the dynamics of epithelial tissues undergoing morphogenetic changes driven by apical constriction pulses, which differ in where the constriction is applied, either at the perimeter or in the medial regions. To help discriminate between these models, we analyse the impact of where constriction is applied on the final geometry of the active contracted cell, using the two-dimensional vertex model. We find that medial activity, characterized by a reduction in the reference area, generates anisotropic cell shapes, whereas isotropic cell shapes are produced when the reference perimeter is reduced. When plasticity is included, sufficiently slow processes of medial contractile activity, compared with the characteristic times of elasticity and plasticity, cells can achieve less elongated shapes. Similarly, for perimeter activity, the highest level of contraction is achieved. Finally, we apply the model to describe the apical contractile pulses observed within the epithelial enveloping cell layer during the pre-epiboly of the annual killifish Austrolebias nigripinnis. The analysis of the cell shape changes allowed a global fit of all parameters of the vertex model, with the pulses being quantitatively captured using perimeter activity and area plasticity.
Collapse
Affiliation(s)
| | - Germán Reig
- Escuela de Tecnología Médica y del Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Mauricio Cerda
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile
- Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile
- Center for Medical Informatics and Telemedicine (CIMT), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel L. Concha
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile
- Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Rodrigo Soto
- Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile
| |
Collapse
|
40
|
Moore RP, O'Shaughnessy EC, Shi Y, Nogueira AT, Heath KM, Hahn KM, Legant WR. A multi-functional microfluidic device compatible with widefield and light sheet microscopy. LAB ON A CHIP 2021; 22:136-147. [PMID: 34859808 PMCID: PMC9022779 DOI: 10.1039/d1lc00600b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a microfluidic device compatible with high resolution light sheet and super-resolution microscopy. The device is a 150 μm thick chamber with a transparent fluorinated ethylene propylene (FEP) cover that has a similar refractive index (1.34) to water (1.33), making it compatible with top-down imaging used in light sheet microscopy. We provide a detailed fabrication protocol and characterize the optical performance of the device. We demonstrate that the device supports long-term imaging of cell growth and differentiation as well as the rapid addition and removal of reagents while simultaneously maintaining sterile culture conditions by physically isolating the sample from the dipping lenses used for imaging. Finally, we demonstrate that the device can be used for super-resolution imaging using lattice light sheet structured illumination microscopy (LLS-SIM) and DNA PAINT. We anticipate that FEP-based microfluidics, as shown here, will be broadly useful to researchers using light sheet microscopy due to the ability to switch reagents, image weakly adherent cells, maintain sterility, and physically isolate the specimen from the optics of the instruments.
Collapse
Affiliation(s)
- Regan P Moore
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, 27599, USA.
| | - Ellen C O'Shaughnessy
- Pharmacology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yu Shi
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, 27599, USA.
| | - Ana T Nogueira
- Pharmacology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Katelyn M Heath
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, 27599, USA.
| | - Klaus M Hahn
- Pharmacology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wesley R Legant
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, 27599, USA.
- Pharmacology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
41
|
Chen S, Broedersz CP, Markovich T, MacKintosh FC. Nonlinear stress relaxation of transiently crosslinked biopolymer networks. Phys Rev E 2021; 104:034418. [PMID: 34654176 DOI: 10.1103/physreve.104.034418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/22/2021] [Indexed: 11/07/2022]
Abstract
A long-standing puzzle in the rheology of living cells is the origin of the experimentally observed long-time stress relaxation. The mechanics of the cell is largely dictated by the cytoskeleton, which is a biopolymer network consisting of transient crosslinkers, allowing for stress relaxation over time. Moreover, these networks are internally stressed due to the presence of molecular motors. In this work we propose a theoretical model that uses a mode-dependent mobility to describe the stress relaxation of such prestressed transient networks. Our theoretical predictions agree favorably with experimental data of reconstituted cytoskeletal networks and may provide an explanation for the slow stress relaxation observed in cells.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Tomer Markovich
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Fred C MacKintosh
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.,Department of Chemistry, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
42
|
The origin and the mechanism of mechanical polarity during epithelial folding. Semin Cell Dev Biol 2021; 120:94-107. [PMID: 34059419 DOI: 10.1016/j.semcdb.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Epithelial tissues are sheet-like tissue structures that line the inner and outer surfaces of animal bodies and organs. Their remarkable ability to actively produce, or passively adapt to, complex surface geometries has fascinated physicists and biologists alike for centuries. The most simple and yet versatile process of epithelial deformation is epithelial folding, through which curved shapes, tissue convolutions and internal structures are produced. The advent of quantitative live imaging, combined with experimental manipulation and computational modeling, has rapidly advanced our understanding of epithelial folding. In particular, a set of mechanical principles has emerged to illustrate how forces are generated and dissipated to instigate curvature transitions in a variety of developmental contexts. Folding a tissue requires that mechanical loads or geometric changes be non-uniform. Given that polarity is the most distinct and fundamental feature of epithelia, understanding epithelial folding mechanics hinges crucially on how forces become polarized and how polarized differential deformation arises, for which I coin the term 'mechanical polarity'. In this review, five typical modules of mechanical processes are distilled from a diverse array of epithelial folding events. Their mechanical underpinnings with regard to how forces and polarity intersect are analyzed to accentuate the importance of mechanical polarity in the understanding of epithelial folding.
Collapse
|
43
|
Abstract
The generation of organismal form - morphogenesis - arises from forces produced at the cellular level. In animal cells, much of this force is produced by the actin cytoskeleton. Here, we review how mechanisms of actin-based force generation are deployed during animal morphogenesis to sculpt organs and organisms. Furthermore, we consider how cytoskeletal forces are coupled through cell adhesions to propagate across tissues, and discuss cases where cytoskeletal force or adhesion is patterned across a tissue to direct shape changes. Together, our review provides a conceptual framework that reflects our current understanding of animal morphogenesis and gives perspectives on future opportunities for study.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
44
|
Abstract
The epithelium forms a smart barrier to the external environment that can remodel whilst maintaining tissue integrity, a feature important for development, homeostasis, and function. Its dysregulation can lead to diseases ranging from cancer to vision loss. Epithelial remodeling requires reorganization of a thin sheet of actomyosin cortex under the plasma membrane of polarized cells that form basolateral contacts with neighboring cells and the extracellular matrix (ECM). Rho GTPases act as spatiotemporal molecular switches in this process, controlling localized actomyosin dynamics. However, the molecular mechanisms that control actomyosin dynamics at the apical cortex are poorly understood. This review focusses on a growing body of evidence that suggest myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) plays a conserved role in morphogenetic signaling at the apical cortex in diverse cell and tissue remodeling processes. The possible molecular and mechanistic basis for the diverse functions of MRCK at the apical pole will also be discussed.
Collapse
Affiliation(s)
- Ceniz Zihni
- UCL Institute of Ophthalmology, Department of Cell Biology, University College London, London, UK
| |
Collapse
|
45
|
Drewnik ED, Wiesenfahrt T, Smit RB, Park YJ, Pallotto LM, Mains PE. Tissue-specific regulation of epidermal contraction during C. elegans embryonic morphogenesis. G3-GENES GENOMES GENETICS 2021; 11:6273666. [PMID: 33974063 PMCID: PMC8495928 DOI: 10.1093/g3journal/jkab164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
Actin and myosin mediate the epidermal cell contractions that elongate the Caenorhabditis elegans embryo from an ovoid to a tubular-shaped worm. Contraction occurs mainly in the lateral epidermal cells, while the dorsoventral epidermis plays a more passive role. Two parallel pathways trigger actinomyosin contraction, one mediated by LET-502/Rho kinase and the other by PAK-1/p21 activated kinase. A number of genes mediating morphogenesis have been shown to be sufficient when expressed either laterally or dorsoventrally. Additional genes show either lateral or dorsoventral phenotypes. This led us to a model where contractile genes have discrete functions in one or the other cell type. We tested this by examining several genes for either lateral or dorsoventral sufficiency. LET-502 expression in the lateral cells was sufficient to drive elongation. MEL-11/Myosin phosphatase, which antagonizes contraction, and PAK-1 were expected to function dorsoventrally, but we could not detect tissue-specific sufficiency. Double mutants of lethal alleles predicted to decrease lateral contraction with those thought to increase dorsoventral force were previously shown to be viable. We hypothesized that these mutant combinations shifted the contractile force from the lateral to the dorsoventral cells and so the embryos would elongate with less lateral cell contraction. This was tested by examining 10 single and double mutant strains. In most cases, elongation proceeded without a noticeable alteration in lateral contraction. We suggest that many embryonic elongation genes likely act in both lateral and dorsoventral cells, even though they may have their primary focus in one or the other cell type.
Collapse
Affiliation(s)
- Elizabeth D Drewnik
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tobias Wiesenfahrt
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ryan B Smit
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ye-Jean Park
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Linda M Pallotto
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Corresponding author: Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
46
|
LaFoya B, Prehoda KE. Actin-dependent membrane polarization reveals the mechanical nature of the neuroblast polarity cycle. Cell Rep 2021; 35:109146. [PMID: 34010656 PMCID: PMC8174105 DOI: 10.1016/j.celrep.2021.109146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
The Par complex directs fate-determinant segregation from the apical membrane of asymmetrically dividing Drosophila neuroblasts. While the physical interactions that recruit the Par complex have been extensively studied, little is known about how the membrane itself behaves during polarization. We examined the membrane dynamics of neuroblasts and surrounding cells using a combination of super-resolution and time-lapse imaging, revealing cellular-scale movements of diverse membrane features during asymmetric division cycles. Membrane domains that are distributed across the neuroblast membrane in interphase become polarized in early mitosis, where they mediate formation of cortical patches of the Par protein atypical protein kinase C (aPKC). Membrane and protein polarity cycles are precisely synchronized and are generated by extensive actin-dependent forces that deform the surrounding tissue. In addition to suggesting a role for the membrane in asymmetric division, our results reveal the mechanical nature of the neuroblast polarity cycle. LaFoya and Prehoda examine the membrane dynamics of asymmetrically dividing Drosophila neuroblasts and discover that the membrane undergoes a polarity cycle. Their studies show that membrane and protein polarity is precisely correlated and that cellular-scale forces generated during the cycle significantly deform the surrounding tissue.
Collapse
Affiliation(s)
- Bryce LaFoya
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Kenneth E Prehoda
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
47
|
Thiyagarajan S, Wang S, Chew TG, Huang J, Balasubramanian MK, O’shaughnessy B. Myosin turnover controls actomyosin contractile instability.. [DOI: 10.1101/2021.03.18.436017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
AbstractActomyosin contractile force is harnessed for diverse functions, from cell division to morphogenesis during development. However, actomyosin contractility is intrinsically unstable to self-reinforcing spatial variations that destroy actomyosin architecture if unopposed. The full instability was rarely observed, and how cells control the instability is not established. Here, we observed the instability run its full course in isolated cytokinetic contractile rings lacking component turnover. Myosin II aggregated hierarchically into aggregates of growing size and separation up to a maximum. Molecularly explicit simulations reproduced hierarchical aggregation that precipitated tension loss and ring fracture, and identified the maximum separation as the length of actin filaments mediating mechanical communication between aggregates. Late stage simulated aggregates had aster-like morphology with polarity sorted actin, similar to late stage actomyosin systemsin vitro. Our results suggest myosin II turnover controls actomyosin contractile instability in normal cells, setting myosin aggregate size and intercepting catastrophic hierarchical aggregation and fracture.
Collapse
|
48
|
Kunz P, Lehmann C, Pohl C. Differential Thresholds of Proteasome Activation Reveal Two Separable Mechanisms of Sensory Organ Polarization in C. elegans. Front Cell Dev Biol 2021; 9:619596. [PMID: 33634121 PMCID: PMC7900421 DOI: 10.3389/fcell.2021.619596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/19/2021] [Indexed: 01/01/2023] Open
Abstract
Cephalization is a major innovation of animal evolution and implies a synchronization of nervous system, mouth, and foregut polarization to align alimentary tract and sensomotoric system for effective foraging. However, the underlying integration of morphogenetic programs is poorly understood. Here, we show that invagination of neuroectoderm through de novo polarization and apical constriction creates the mouth opening in the Caenorhabditis elegans embryo. Simultaneously, all 18 juxta-oral sensory organ dendritic tips become symmetrically positioned around the mouth: While the two bilaterally symmetric amphid sensilla endings are towed to the mouth opening, labial and cephalic sensilla become positioned independently. Dendrite towing is enabled by the pre-polarized sensory amphid pores intercalating into the leading edge of the anteriorly migrating epidermal sheet, while apical constriction-mediated cell–cell re-arrangements mediate positioning of all other sensory organs. These two processes can be separated by gradual inactivation of the 26S proteasome activator, RPN-6.1. Moreover, RPN-6.1 also shows a dose-dependent requirement for maintenance of coordinated apical polarization of other organs with apical lumen, the pharynx, and the intestine. Thus, our data unveil integration of morphogenetic programs during the coordination of alimentary tract and sensory organ formation and suggest that this process requires tight control of ubiquitin-dependent protein degradation.
Collapse
Affiliation(s)
- Patricia Kunz
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Christina Lehmann
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Christian Pohl
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
49
|
Abstract
Epithelial cells possess the ability to change their shape in response to mechanical stress by remodelling their junctions and their cytoskeleton. This property lies at the heart of tissue morphogenesis in embryos. A key feature of embryonic cell shape changes is that they result from repeated mechanical inputs that make them partially irreversible at each step. Past work on cell rheology has rarely addressed how changes can become irreversible in a complex tissue. Here, we review new and exciting findings dissecting some of the physical principles and molecular mechanisms accounting for irreversible cell shape changes. We discuss concepts of mechanical ratchets and tension thresholds required to induce permanent cell deformations akin to mechanical plasticity. Work in different systems has highlighted the importance of actin remodelling and of E-cadherin endocytosis. We also list some novel experimental approaches to fine-tune mechanical tension, using optogenetics, magnetic beads or stretching of suspended epithelial tissues. Finally, we discuss some mathematical models that have been used to describe the quantitative aspects of accounting for mechanical cell plasticity and offer perspectives on this rapidly evolving field.
Collapse
Affiliation(s)
- Kelly Molnar
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR7622, 9 Quai St-Bernard, 75005 Paris, France
| | - Michel Labouesse
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR7622, 9 Quai St-Bernard, 75005 Paris, France
| |
Collapse
|
50
|
Collinet C, Lecuit T. Programmed and self-organized flow of information during morphogenesis. Nat Rev Mol Cell Biol 2021; 22:245-265. [PMID: 33483696 DOI: 10.1038/s41580-020-00318-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 11/09/2022]
Abstract
How the shape of embryos and organs emerges during development is a fundamental question that has fascinated scientists for centuries. Tissue dynamics arise from a small set of cell behaviours, including shape changes, cell contact remodelling, cell migration, cell division and cell extrusion. These behaviours require control over cell mechanics, namely active stresses associated with protrusive, contractile and adhesive forces, and hydrostatic pressure, as well as material properties of cells that dictate how cells respond to active stresses. In this Review, we address how cell mechanics and the associated cell behaviours are robustly organized in space and time during tissue morphogenesis. We first outline how not only gene expression and the resulting biochemical cues, but also mechanics and geometry act as sources of morphogenetic information to ultimately define the time and length scales of the cell behaviours driving morphogenesis. Next, we present two idealized modes of how this information flows - how it is read out and translated into a biological effect - during morphogenesis. The first, akin to a programme, follows deterministic rules and is hierarchical. The second follows the principles of self-organization, which rests on statistical rules characterizing the system's composition and configuration, local interactions and feedback. We discuss the contribution of these two modes to the mechanisms of four very general classes of tissue deformation, namely tissue folding and invagination, tissue flow and extension, tissue hollowing and, finally, tissue branching. Overall, we suggest a conceptual framework for understanding morphogenetic information that encapsulates genetics and biochemistry as well as mechanics and geometry as information modules, and the interplay of deterministic and self-organized mechanisms of their deployment, thereby diverging considerably from the traditional notion that shape is fully encoded and determined by genes.
Collapse
Affiliation(s)
- Claudio Collinet
- Aix-Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, Marseille, France
| | - Thomas Lecuit
- Aix-Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, Marseille, France. .,Collège de France, Paris, France.
| |
Collapse
|