1
|
Delobelle Q, Inizan TJ, Adjoua O, Lagardère L, Célerse F, Maréchal V, Piquemal J. High-Resolution Molecular-Dynamics Simulations of the Pyruvate Kinase Muscle Isoform 1 and 2 (PKM1/2). Chemistry 2025; 31:e202402534. [PMID: 39614705 PMCID: PMC11973853 DOI: 10.1002/chem.202402534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
Glucose metabolism plays a pivotal role in physiological processes and cancer growth. The final stage of glycolysis, converting phosphoenolpyruvate (PEP) into pyruvate, is catalyzed by the pyruvate kinase (PK) enzyme. Whereas PKM1 is mainly expressed in cells with high energy requirements, PKM2 is preferentially expressed in proliferating cells, including tumor cells. Structural analysis of PKM1 and PKM2 is essential to design new molecules with antitumoral activity. To understand their structural dynamics, we performed extensive high-resolution molecular dynamics (MD) simulations using adaptive sampling techniques coupled to the polarizable AMOEBA force field. Performing more than 6 μs of simulation, we considered all oligomerization states of PKM2 and propose structural insights for PKM1 to further study the PKM2-specific allostery. We focused on key sites including the active site and the natural substrate Fructose Bi-Phosphate (FBP) fixation pocket. Additionally, we present the first MD simulation of biologically active PKM1 and uncover important similarities with its PKM2 counterpart bound to FBP. We also analysed TEPP-46's fixation, a pharmacological activator binding a different pocket, on PKM2 and highlighted the structural differences and similarities compared to PKM2 bound to FBP. Finally, we determined potential new cryptic pockets specific to PKM2 for drug targeting.
Collapse
Affiliation(s)
- Quentin Delobelle
- Centre de Recherche Saint-Antoine – Team “Biologie et Thérapeutique du Cancer”, UMRS 938 INSERMParisFrance
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, UMR 761675005ParisFrance
| | - Théo Jaffrelot Inizan
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, UMR 761675005ParisFrance
- University of California BerkeleyBakar Institute of Digital Materials for the PlanetCollege of Computing, Data Science, and SocietyBerkeley94720USA
| | - Olivier Adjoua
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, UMR 761675005ParisFrance
| | - Louis Lagardère
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, UMR 761675005ParisFrance
| | - Frédéric Célerse
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, UMR 761675005ParisFrance
- Sorbonne Université, CNRS, IPCM75005ParisFrance
| | - Vincent Maréchal
- Centre de Recherche Saint-Antoine – Team “Biologie et Thérapeutique du Cancer”, UMRS 938 INSERMParisFrance
| | - Jean‐Philip Piquemal
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, UMR 761675005ParisFrance
| |
Collapse
|
2
|
Wang Y, Xu N, Ndzie Noah ML, Chen L, Zhan X. Pyruvate Kinase M1/2 Proteoformics for Accurate Insights into Energy Metabolism Abnormity to Promote the Overall Management of Ovarian Cancer Towards Predictive, Preventive, and Personalized Medicine Approaches. Metabolites 2025; 15:203. [PMID: 40137167 PMCID: PMC11944880 DOI: 10.3390/metabo15030203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Ovarian cancer (OC) is a global health problem that frequently presents at advanced stages, is predisposed to recurrence, readily develops resistance to platinum-based drugs, and has a low survival rate. Predictive, preventive, and personalized medicine (PPPM/3PM) offers an integrated solution with the use of genetic, proteomic, and metabolic biomarkers to identify high-risk individuals for early detection. Metabolic reprogramming is one of the key strategies employed by tumor cells to adapt to the microenvironment and support unlimited proliferation. Pyruvate kinases M1 and M2 (PKM1/2) are encoded by the PKM gene, a pivotal enzyme in the last step of the glycolytic pathway, which is at the crossroads of aerobic oxidation and the Warburg effect to serve as a potential regulator of glucose metabolism and influence cellular energy production and metabolic reprogramming. Commonly, the ratio of PKM1-to-PKM2 is changed in tumors compared to normal controls, and PKM2 is highly expressed in OC to induce a high glycolysis rate and participate in the malignant invasion and metastatic characteristics of cancer cells with epithelial/mesenchymal transition (EMT). PKM2 inhibitors suppress the migration and growth of OC cells by interfering with the Warburg effect. Proteoforms are the final structural and functional forms of a gene/protein, and the canonical protein PKM contains all proteoforms encoded by the same PKM gene. The complexity of PKM can be elucidated by proteoformics. The OC-specific PKM proteoform might represent a specific target for therapeutic interventions against OC. In the framework of PPPM/3PM, the OC-specific PKM proteoform might be the early warning and prognosis biomarker. It is important to clarify the molecular mechanisms of PKM proteoforms in cancer metabolism. This review analyzes the expression, function, and molecular mechanisms of PKM proteoforms in OC, which help identify specific biomarkers for OC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China
- Department of Gynecology, Gaotang County Medical Center, Liaocheng 252800, China
| | - Nuo Xu
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
| | - Marie Louise Ndzie Noah
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics & Jinan Key Laboratory of Cancer Multiomics, Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan 250117, China
| | - Xianquan Zhan
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics & Jinan Key Laboratory of Cancer Multiomics, Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan 250117, China
| |
Collapse
|
3
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Marcos M, Salete-Granado D, Chacón-Arnaude M, Pérez-Nieto MÁ, Kemmerling U, Concepción JL, Michels PAM, Quiñones W. Exploring glycolytic enzymes in disease: potential biomarkers and therapeutic targets in neurodegeneration, cancer and parasitic infections. Open Biol 2025; 15:240239. [PMID: 39904372 PMCID: PMC11793985 DOI: 10.1098/rsob.240239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Glycolysis, present in most organisms, is evolutionarily one of the oldest metabolic pathways. It has great relevance at a physiological level because it is responsible for generating ATP in the cell through the conversion of glucose into pyruvate and reducing nicotinamide adenine dinucleotide (NADH) (that may be fed into the electron chain in the mitochondria to produce additional ATP by oxidative phosphorylation), as well as for producing intermediates that can serve as substrates for other metabolic processes. Glycolysis takes place through 10 consecutive chemical reactions, each of which is catalysed by a specific enzyme. Although energy transduction by glucose metabolism is the main function of this pathway, involvement in virulence, growth, pathogen-host interactions, immunomodulation and adaptation to environmental conditions are other functions attributed to this metabolic pathway. In humans, where glycolysis occurs mainly in the cytosol, the mislocalization of some glycolytic enzymes in various other subcellular locations, as well as alterations in their expression and regulation, has been associated with the development and progression of various diseases. In this review, we describe the role of glycolytic enzymes in the pathogenesis of diseases of clinical interest. In addition, the potential role of these enzymes as targets for drug development and their potential for use as diagnostic and prognostic markers of some pathologies are also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso2373223, Chile
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
| | - Marirene Chacón-Arnaude
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - María Á. Pérez-Nieto
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, Soria42002, Spain
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile8380453, Chile
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Paul A. M. Michels
- School of Biological Sciences, University of Edinburgh, The King’s Buildings, EdinburghEH9 3FL, UK
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| |
Collapse
|
4
|
Liu Y, Ho C, Wen D, Sun J, Liu Y, Li Q, Zhang Y, Gao Y. PKM2-mediated collagen XVII expression is critical for wound repair. JCI Insight 2025; 10:e184457. [PMID: 39841618 PMCID: PMC11856949 DOI: 10.1172/jci.insight.184457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Chronic wounds have emerged as a tough clinical challenge. An improved understanding of wound-healing mechanisms is paramount. Collagen XVII (COL17), a pivotal constituent of hemidesmosomes, holds considerable promise for regulating epidermal cell adhesion to the basement membrane as well as for epidermal cell motility and self-renewal of epidermal stem cells. However, the precise role of COL17 in wound repair remains elusive, and the upstream regulatory mechanisms involved have not been fully elucidated. In this study, we delineated the temporal and spatial expression patterns of COL17 at the epidermal wound edge. Subsequently, we investigated the indispensable role of COL17 in keratinocyte activation and reepithelialization during wound healing, demonstrating the restoration of the normal repair process by COL17 overexpression in diabetic wounds. Notably, we identified a key transcriptional signaling pathway for COL17, wherein pyruvate kinase isozyme M2 (PKM2) promotes phosphorylation of STAT3, leading to its activation and subsequent induction of COL17 expression upon injury. Ultimately, by manipulating this pathway using the PKM2 nuclear translocator SAICAR, we revealed a promising therapeutic strategy for enhancing the healing of chronic wounds.
Collapse
|
5
|
Jemal M, Getinet M, Amare GA, Tegegne BA, Baylie T, Mengistu EF, Osman EE, Chura Waritu N, Adugna A. Non-metabolic enzyme function of pyruvate kinase M2 in breast cancer. Front Oncol 2024; 14:1450325. [PMID: 39411137 PMCID: PMC11473492 DOI: 10.3389/fonc.2024.1450325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Breast cancer (BC) is a prevalent malignant tumor in women, and its incidence has been steadily increasing in recent years. Compared with other types of cancer, it has the highest mortality and morbidity rates in women. So, it is crucial to investigate the underlying mechanisms of BC development and identify specific therapeutic targets. Pyruvate kinase M2 (PKM2), an important metabolic enzyme in glycolysis, has been found to be highly expressed in BC. It can also move to the nucleus and interact with various transcription factors and proteins, including hypoxia-inducible factor-1α (HIF-1α), signal transducer and activator of transcription 3 (STAT3), β-catenin, cellular-myelocytomatosis oncogene (c-Myc), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mammalian sterile 20-like kinase 1 (MST1). This interaction leads to non-metabolic functions that control the cell cycle, proliferation, apoptosis, migration, invasion, angiogenesis, and tumor microenvironment in BC. This review provides an overview of the latest advancements in understanding the interactions between PKM2 and different transcription factors and proteins that influence the initiation and progression of BC. It also examined how natural drugs and noncoding RNAs affect various biological processes in BC cells through the regulation of the non-metabolic enzyme functions of PKM2. The findings provide valuable insights for improving the prognosis and developing targeted therapies for BC in the coming years.
Collapse
Affiliation(s)
- Mohammed Jemal
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Temesgen Baylie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Enyew Fenta Mengistu
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Enatnesh Essa Osman
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Nuredin Chura Waritu
- Department of Biomedical Sciences, School of Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
6
|
Jin C, Hu W, Wang Y, Wu H, Zeng S, Ying M, Hu X. Deciphering the interaction between PKM2 and the built-in thermodynamic properties of the glycolytic pathway in cancer cells. J Biol Chem 2024; 300:107648. [PMID: 39121998 PMCID: PMC11402776 DOI: 10.1016/j.jbc.2024.107648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Most cancer cells exhibit high glycolysis rates under conditions of abundant oxygen. Maintaining a stable glycolytic rate is critical for cancer cell growth as it ensures sufficient conversion of glucose carbons to energy, biosynthesis, and redox balance. Here we deciphered the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway. Knocking down or knocking out PKM2 induced a thermodynamic equilibration in the glycolytic pathway, characterized by the reciprocal changes of the Gibbs free energy (ΔG) of the reactions catalyzed by PFK1 and PK, leading to a less exergonic PFK1-catalyzed reaction and a more exergonic PK-catalyzed reaction. The changes in the ΔGs of the two reactions cause the accumulation of intermediates, including the substrate PEP (the substrate of PK), in the segment between PFK1 and PK. The increased concentration of PEP in turn increased PK activity in the glycolytic pathway. Thus, the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway maintains the reciprocal relationship between PK concentration and its substrate PEP concentration, by which, PK activity in the glycolytic pathway can be stabilized and effectively counteracts the effect of PKM2 KD or KO on glycolytic rate. In line with our previous reports, this study further validates the roles of the thermodynamics of the glycolytic pathway in stabilizing glycolysis in cancer cells. Deciphering the interaction between glycolytic enzymes and the thermodynamics of the glycolytic pathway will promote a better understanding of the flux control of glycolysis in cancer cells.
Collapse
Affiliation(s)
- Chengmeng Jin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Hu
- Center for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Yuqi Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Siying Zeng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minfeng Ying
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xun Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Wang CR, Gong JH, Zhao ZB, Zhu Q, Shu B, Hu JJ, Cai D, Liu XY, Dai X, Qiu C, Gong JP, Zhong GC. m 6A demethylation of FOSL1 mRNA protects hepatoma cells against necrosis under glucose deprivation. Cell Death Differ 2024; 31:1029-1043. [PMID: 38762597 PMCID: PMC11303728 DOI: 10.1038/s41418-024-01308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
Stress-adaptive mechanisms enabling cancer cells to survive under glucose deprivation remain elusive. N6-methyladenosine (m6A) modification plays important roles in determining cancer cell fate and cellular stress response to nutrient deficiency. However, whether m6A modification functions in the regulation of cancer cell survival under glucose deprivation is unknown. Here, we found that glucose deprivation reduced m6A modification levels. Increasing m6A modification resulted in increased hepatoma cell necrosis under glucose deprivation, whereas decreasing m6A modification had an opposite effect. Integrated m6A-seq and RNA-seq revealed potential targets of m6A modification under glucose deprivation, including the transcription factor FOSL1; further, glucose deprivation upregulated FOSL1 by inhibiting FOSL1 mRNA decay in an m6A-YTHDF2-dependent manner through reducing m6A modification in its exon1 and 5'-UTR regions. Functionally, FOSL1 protected hepatoma cells against glucose deprivation-induced necrosis in vitro and in vivo. Mechanistically, FOSL1 transcriptionally repressed ATF3 by binding to its promoter. Meanwhile, ATF3 and MAFF interacted via their leucine zipper domains to form a heterodimer, which competed with NRF2 for binding to antioxidant response elements in the promoters of NRF2 target genes, thereby inhibiting their transcription. Consequently, FOSL1 reduced the formation of the ATF3-MAFF heterodimer, thereby enhancing NRF2 transcriptional activity and the antioxidant capacity of glucose-deprived-hepatoma cells. Thus, FOSL1 alleviated the necrosis-inducing effect of glucose deprivation-induced reactive oxygen species accumulation. Collectively, our study uncovers the protective role of m6A-FOSL1-ATF3 axis in hepatoma cell necrosis under glucose deprivation, and may provide new targets for cancer therapy.
Collapse
Affiliation(s)
- Chun-Rui Wang
- Department of Infectious Diseases, Institute for Viral Hepatitis, the Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun-Hua Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Bo Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Zhu
- Department of Nutrition and Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Bian Shu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie-Jun Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Cai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin-Yi Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Dai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chan Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo-Chao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Ma L, Li H, Xu H, Liu D. The potential roles of PKM2 in cerebrovascular diseases. Int Immunopharmacol 2024; 139:112675. [PMID: 39024754 DOI: 10.1016/j.intimp.2024.112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Pyruvate kinase M2 (PKM2), a key enzyme involved in glycolysis,plays an important role in regulating cell metabolism and growth under different physiological conditions. PKM2 has been intensively investigated in multiple cancer diseases. Recent years, many studies have found its pivotal role in cerebrovascular diseases (CeVDs), the disturbances in intracranial blood circulation. CeVDs has been confirmed to be closely associated with oxidative stress (OS), mitochondrial dynamics, systemic inflammation, and local neuroinflammation in the brain. It has further been revealed that PKM2 exerts various biological functions in the regulation of energy supply, OS, inflammatory responses, and mitochondrial dysfunction. The roles of PKM2 are closely related to its different isoforms, expression levels in subcellular localization, and post-translational modifications. Therefore, summarizing the roles of PKM2 in CeVDs will help further understanding the molecular mechanisms of CeVDs. In this review, we illustrate the characteristics of PKM2, the regulated PKM2 expression, and the biological roles of PKM2 in CeVDs.
Collapse
Affiliation(s)
- Ling Ma
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Huatao Li
- Department of Stroke Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Hu Xu
- Department of Stroke Center, Shandong Second Medical University, Weifang, Shandong 261000, China
| | - Dianwei Liu
- Department of Stroke Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Department of Neurosurgery, XuanWu Hospital Capital Medical University Jinan Branch, Jinan, Shandong 250100, China.
| |
Collapse
|
9
|
Wu B, Liang Z, Lan H, Teng X, Wang C. The role of PKM2 in cancer progression and its structural and biological basis. J Physiol Biochem 2024; 80:261-275. [PMID: 38329688 DOI: 10.1007/s13105-024-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Pyruvate kinase M2 (PKM2), a subtype of pyruvate kinase (PK), has been shown to play an important role in the development of cancer. It regulates the last step of glycolytic pathway. PKM2 has both pyruvate kinase and protein kinase activity, and the conversion of these two functions of PKM2 depends on the mutual change of dimer and tetramer. The dimerization of PKM2 can promote the proliferation and growth of tumor cells, so inhibiting the dimerization of PKM2 is essential to curing cancer. The aggregation of PKM2 is regulated by both endogenous and exogenous cofactors as well as post-translational modification (PTM). Although there are many studies on the different aggregation of PKM2 in the process of tumor development, there are few summaries in recent years. In this review, we first introduce the role of PKM2 in various biological processes of tumor growth. Then, we summarize the aggregation regulation mechanism of PKM2 by various endogenous cofactors such as Fructose-1, 6-diphosphate (FBP), various amino acids, and post-translational modification (PTMs). Finally, the related inhibitors and agonists of PKM2 are summarized to provide reference for regulating PKM2 aggregation in the treatment of cancer in the future.
Collapse
Affiliation(s)
- Bingxin Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zuhui Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huan Lan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaojun Teng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Lv S, Cao M, Luo J, Fu K, Yuan W. Search progress of pyruvate kinase M2 (PKM2) in organ fibrosis. Mol Biol Rep 2024; 51:389. [PMID: 38446272 DOI: 10.1007/s11033-024-09307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Fibrosis is characterized by abnormal deposition of the extracellular matrix (ECM), leading to organ structural remodeling and loss of function. The principal cellular effector in fibrosis is activated myofibroblasts, which serve as the main source of matrix proteins. Metabolic reprogramming, transitioning from mitochondrial oxidative phosphorylation to aerobic glycolysis, is widely observed in rapidly dividing cells such as tumor cells and activated myofibroblasts and is increasingly recognized as a fundamental pathogenic basis in organ fibrosis. Targeting metabolism represents a promising strategy to mitigate fibrosis. PKM2, a key enzyme in glycolysis, plays a pivotal role in metabolic reprogramming through allosteric regulation, impacting both metabolic and non-metabolic pathways. Therefore, metabolic reprogramming induced by PKM2 activation is involved in the occurrence and development of fibrosis in various organs. A comprehensive understanding of the role of PKM2 in fibrotic diseases is crucial for seeking new anti-fibrotic therapeutic targets. In this context, we summarize PKM2's role in glycolysis, mediating the intricate mechanisms underlying fibrosis in multiple organs, and discuss the potential value of PKM2 inhibitors and allosteric activators in future clinical treatments, aiming to identify novel therapeutic targets for proliferative fibrotic diseases.
Collapse
Affiliation(s)
- Shumei Lv
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Mengfei Cao
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Jie Luo
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Kewei Fu
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Wei Yuan
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China.
| |
Collapse
|
11
|
Liang LJ, Yang FY, Wang D, Zhang YF, Yu H, Wang Z, Sun BB, Liu YT, Wang GZ, Zhou GB. CIP2A induces PKM2 tetramer formation and oxidative phosphorylation in non-small cell lung cancer. Cell Discov 2024; 10:13. [PMID: 38321019 PMCID: PMC10847417 DOI: 10.1038/s41421-023-00633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024] Open
Abstract
Tumor cells are usually considered defective in mitochondrial respiration, but human non-small cell lung cancer (NSCLC) tumor tissues are shown to have enhanced glucose oxidation relative to adjacent benign lung. Here, we reported that oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) inhibited glycolysis and promoted oxidative metabolism in NSCLC cells. CIP2A bound to pyruvate kinase M2 (PKM2) and induced the formation of PKM2 tetramer, with serine 287 as a novel phosphorylation site essential for PKM2 dimer-tetramer switching. CIP2A redirected PKM2 to mitochondrion, leading to upregulation of Bcl2 via phosphorylating Bcl2 at threonine 69. Clinically, CIP2A level in tumor tissues was positively correlated with the level of phosphorylated PKM2 S287. CIP2A-targeting compounds synergized with glycolysis inhibitor in suppressing cell proliferation in vitro and in vivo. These results indicated that CIP2A facilitates oxidative phosphorylation by promoting tetrameric PKM2 formation, and targeting CIP2A and glycolysis exhibits therapeutic potentials in NSCLC.
Collapse
Affiliation(s)
- Li-Jun Liang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fu-Ying Yang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan-Fei Zhang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Basic Medicine, Anhui Medical College, Hefei, Anhui, China
| | - Hong Yu
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pharmacology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - Zheng Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bei-Bei Sun
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Tao Liu
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Gui-Zhen Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Shen MY, Di YX, Wang X, Tian FX, Zhang MF, Qian FY, Jiang BP, Zhou XP, Zhou LL. Panax notoginseng saponins (PNS) attenuate Th17 cell differentiation in CIA mice via inhibition of nuclear PKM2-mediated STAT3 phosphorylation. PHARMACEUTICAL BIOLOGY 2023; 61:459-472. [PMID: 36794740 PMCID: PMC9936999 DOI: 10.1080/13880209.2023.2173248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Rheumatoid arthritis (RA) is an autoimmune disease with aberrant Th17 cell differentiation. Panax notoginseng (Burk.) F. H. Chen (Araliaceae) saponins (PNS) have an anti-inflammatory effect and can suppress Th17 cell differentiation. OBJECTIVE To investigate mechanisms of PNS on Th17 cell differentiation in RA, and the role of pyruvate kinase M2 (PKM2). MATERIALS AND METHODS Naive CD4+T cells were treated with IL-6, IL-23 and TGF-β to induce Th17 cell differentiation. Apart from the Control group, other cells were treated with PNS (5, 10, 20 μg/mL). After the treatment, Th17 cell differentiation, PKM2 expression, and STAT3 phosphorylation were measured via flow cytometry, western blots, or immunofluorescence. PKM2-specific allosteric activator (Tepp-46, 50, 100, 150 μM) and inhibitor (SAICAR, 2, 4, 8 μM) were used to verify the mechanisms. A CIA mouse model was established and divided into control, model, and PNS (100 mg/kg) groups to assess an anti-arthritis effect, Th17 cell differentiation, and PKM2/STAT3 expression. RESULTS PKM2 expression, dimerization, and nuclear accumulation were upregulated upon Th17 cell differentiation. PNS inhibited the Th17 cells, RORγt expression, IL-17A levels, PKM2 dimerization, and nuclear accumulation and Y705-STAT3 phosphorylation in Th17 cells. Using Tepp-46 (100 μM) and SAICAR (4 μM), we demonstrated that PNS (10 μg/mL) inhibited STAT3 phosphorylation and Th17 cell differentiation by suppressing nuclear PKM2 accumulation. In CIA mice, PNS attenuated CIA symptoms, reduced the number of splenic Th17 cells and nuclear PKM2/STAT3 signaling. DISCUSSION AND CONCLUSIONS PNS inhibited Th17 cell differentiation through the inhibition of nuclear PKM2-mediated STAT3 phosphorylation. PNS may be useful for treating RA.
Collapse
Affiliation(s)
- Mei-Yu Shen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Yu-Xi Di
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiang Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Feng-Xiang Tian
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Ming-Fei Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Fei-Ya Qian
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Bao-Ping Jiang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Xue-Ping Zhou
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Ling-Ling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
13
|
Takagi F, Tomonaga S, Funaba M, Matsui T. Changes in metabolite content in the kidneys and skeletal muscles of rats fed magnesium-restricted diets. J Nutr Biochem 2023; 122:109454. [PMID: 37788722 DOI: 10.1016/j.jnutbio.2023.109454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/31/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
A metabolomic study was performed on the kidneys and skeletal muscles of rats fed diets containing varying contents of Mg for 4 weeks. The kidneys are divided into two parts, the aerobic cortex and the anaerobic medulla, that differ in metabolism. The relative contents of 3-phosphoglyceric acid, 2-phosphoglyceric acid, and phosphoenolpyruvic acid increased with Mg restriction in both renal regions. In contrast, pyruvic acid content decreased with Mg restriction in the diets, suggesting an inhibitory conversion of phosphoenolpyruvic acid to pyruvic acid. The lactic acid content increased in both regions of the kidneys of Mg-restricted rats, implying changes towards a more glycolytic metabolism, possibly resulting from the impairment of mitochondrial function. There are two types of muscle fibers: glycolytic fast and oxidative slow muscle fibers. The soleus muscle consists of slow muscle fibers, whereas the gastrocnemius muscle consists of a combination of fast and slow muscle fibers. Similar to the changes in the kidneys, the contents of 3-phosphoglyceric acid, 2-phosphoglyceric acid, phosphoenolpyruvic acid, and lactic acid increased in the soleus and gastrocnemius muscles with dietary Mg restriction. Unlike in the kidney, pyruvic acid content increased in the soleus muscle in response to Mg restriction. Severe Mg restriction decreased contents of carnosine and its constituent β-alanine and increased the levels of purine derivatives such as xanthine and uric acid in the gastrocnemius muscle. The present study suggests a region-dependent sensitivity to dietary restriction of Mg, which may lead to the onset of various metabolic disorders.
Collapse
Affiliation(s)
- Fuka Takagi
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shozo Tomonaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Cui Y, Sun Y, Li D, Zhang Y, Zhang Y, Cao D, Cao X. The crosstalk among the physical tumor microenvironment and the effects of glucose deprivation on tumors in the past decade. Front Cell Dev Biol 2023; 11:1275543. [PMID: 38020920 PMCID: PMC10646288 DOI: 10.3389/fcell.2023.1275543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The occurrence and progression of tumors are inseparable from glucose metabolism. With the development of tumors, the volume increases gradually and the nutritional supply of tumors cannot be fully guaranteed. The tumor microenvironment changes and glucose deficiency becomes the common stress environment of tumors. Here, we discuss the mutual influences between glucose deprivation and other features of the tumor microenvironment, such as hypoxia, immune escape, low pH, and oxidative stress. In the face of a series of stress responses brought by glucose deficiency, different types of tumors have different coping mechanisms. We summarize the tumor studies on glucose deficiency in the last decade and review the genes and pathways that determine the fate of tumors under harsh conditions. It turns out that most of these genes help tumor cells survive in glucose-deprivation conditions. The development of related inhibitors may bring new opportunities for the treatment of tumors.
Collapse
Affiliation(s)
- Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuzheng Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Huo A, Xiong X. PAICS as a potential target for cancer therapy linking purine biosynthesis to cancer progression. Life Sci 2023; 331:122070. [PMID: 37673296 DOI: 10.1016/j.lfs.2023.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/02/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Tumor cells are required to undergo metabolic reprogramming for rapid development and progression, and one of the metabolic characteristics of cancer cells is the excessive synthesis and utilization of nucleotides. Abnormally increased nucleotides and their metabolites not only directly accelerate tumor cell progression but also indirectly act on stromal cells in the tumor microenvironment (TME) via a paracrine manner to regulate tumor progression. Purine nucleotides are mainly produced via de novo nucleotide synthesis in tumor cells; therefore, intervening in their synthesis has emerged as a promising strategy in anti-tumor therapy. De novo purine synthesis is a 10-step reaction catalyzed by six enzymes to synthesize inosine 5-monophosphate (IMP) and subsequently synthesize AMP and GMP. Phosphoribosylaminoimidazole carboxylase/phosphori-bosylaminoimidazole succinocarboxamide synthetase (PAICS) is a bifunctional enzyme that catalyzes de novo purine synthesis. Aberrantly elevated PAICS expression in various tumors is associated with poor prognosis. Evidence suggests that PAICS and its catalytic product, N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR), could inhibit tumor cell apoptosis and promote the growth, epithelial-mesenchymal transition (EMT), invasion, and metastasis by regulating signaling pathways such as pyruvate kinase M2 (PKM2), extracellular signal-related kinases 1 and 2 (ERK1/2), focal adhesion kinase (FAK) and so on. This review summarizes the structure, biological functions and the molecular mechanisms of PAICS in cancer development and discusses its potential to be a target for tumor therapy.
Collapse
Affiliation(s)
- Anqi Huo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
16
|
Duperray M, Hardet F, Henriet E, Saint-Marc C, Boué-Grabot E, Daignan-Fornier B, Massé K, Pinson B. Purine Biosynthesis Pathways Are Required for Myogenesis in Xenopus laevis. Cells 2023; 12:2379. [PMID: 37830593 PMCID: PMC10571971 DOI: 10.3390/cells12192379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Purines are required for fundamental biological processes and alterations in their metabolism lead to severe genetic diseases associated with developmental defects whose etiology remains unclear. Here, we studied the developmental requirements for purine metabolism using the amphibian Xenopus laevis as a vertebrate model. We provide the first functional characterization of purine pathway genes and show that these genes are mainly expressed in nervous and muscular embryonic tissues. Morphants were generated to decipher the functions of these genes, with a focus on the adenylosuccinate lyase (ADSL), which is an enzyme required for both salvage and de novo purine pathways. adsl.L knockdown led to a severe reduction in the expression of the myogenic regulatory factors (MRFs: Myod1, Myf5 and Myogenin), thus resulting in defects in somite formation and, at later stages, the development and/or migration of both craniofacial and hypaxial muscle progenitors. The reduced expressions of hprt1.L and ppat, which are two genes specific to the salvage and de novo pathways, respectively, resulted in similar alterations. In conclusion, our data show for the first time that de novo and recycling purine pathways are essential for myogenesis and highlight new mechanisms in the regulation of MRF gene expression.
Collapse
Affiliation(s)
- Maëlle Duperray
- Institut de Biochimie et Génétique Cellulaires, CNRS, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| | - Fanny Hardet
- CNRS, IMN, UMR 5293, Université de Bordeaux, F-33000 Bordeaux, France
| | - Elodie Henriet
- CNRS, IMN, UMR 5293, Université de Bordeaux, F-33000 Bordeaux, France
| | - Christelle Saint-Marc
- Institut de Biochimie et Génétique Cellulaires, CNRS, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| | - Eric Boué-Grabot
- CNRS, IMN, UMR 5293, Université de Bordeaux, F-33000 Bordeaux, France
| | - Bertrand Daignan-Fornier
- Institut de Biochimie et Génétique Cellulaires, CNRS, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| | - Karine Massé
- CNRS, IMN, UMR 5293, Université de Bordeaux, F-33000 Bordeaux, France
| | - Benoît Pinson
- Institut de Biochimie et Génétique Cellulaires, CNRS, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
17
|
Pandey AK, Ganguly HK, Sinha SK, Daniels KE, Yap GPA, Patel S, Zondlo NJ. An Inherent Difference between Serine and Threonine Phosphorylation: Phosphothreonine Strongly Prefers a Highly Ordered, Compact, Cyclic Conformation. ACS Chem Biol 2023; 18:1938-1958. [PMID: 37595155 DOI: 10.1021/acschembio.3c00068] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Phosphorylation and dephosphorylation of proteins by kinases and phosphatases are central to cellular responses and function. The structural effects of serine and threonine phosphorylation were examined in peptides and in proteins, by circular dichroism, NMR spectroscopy, bioinformatics analysis of the PDB, small-molecule X-ray crystallography, and computational investigations. Phosphorylation of both serine and threonine residues induces substantial conformational restriction in their physiologically more important dianionic forms. Threonine exhibits a particularly strong disorder-to-order transition upon phosphorylation, with dianionic phosphothreonine preferentially adopting a cyclic conformation with restricted ϕ (ϕ ∼ -60°) stabilized by three noncovalent interactions: a strong intraresidue phosphate-amide hydrogen bond, an n → π* interaction between consecutive carbonyls, and an n → σ* interaction between the phosphate Oγ lone pair and the antibonding orbital of C-Hβ that restricts the χ2 side-chain conformation. Proline is unique among the canonical amino acids for its covalent cyclization on the backbone. Phosphothreonine can mimic proline's backbone cyclization via noncovalent interactions. The preferred torsions of dianionic phosphothreonine are ϕ,ψ = polyproline II helix > α-helix (ϕ ∼ -60°); χ1 = g-; χ2 ∼ +115° (eclipsed C-H/O-P bonds). This structural signature is observed in diverse proteins, including in the activation loops of protein kinases and in protein-protein interactions. In total, these results suggest a structural basis for the differential use and evolution of threonine versus serine phosphorylation sites in proteins, with serine phosphorylation typically inducing smaller, rheostat-like changes, versus threonine phosphorylation promoting larger, step function-like switches, in proteins.
Collapse
Affiliation(s)
- Anil K Pandey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Himal K Ganguly
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Sudipta Kumar Sinha
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar 140001, India
| | - Kelly E Daniels
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
18
|
Cano-Estrada C, de Benito-Gómez L, Escudero-Ferruz P, Ontiveros N, Iglesias-Serret D, López JM. Purine Nucleotide Alterations in Tumoral Cell Lines Maintained with Physiological Levels of Folic Acid. Int J Mol Sci 2023; 24:12573. [PMID: 37628755 PMCID: PMC10454412 DOI: 10.3390/ijms241612573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Most cancer cells have an increased synthesis of purine nucleotides to fulfil their enhanced division rate. The de novo synthesis of purines requires folic acid in the form of N10-formyltetrahydrofolate (10-formyl-THF). However, regular cell culture media contain very high, non-physiological concentrations of folic acid, which may have an impact on cell metabolism. Using cell culture media with physiological levels of folic acid (25 nM), we uncover purine alterations in several human cell lines. HEK293T, Jurkat, and A549 cells accumulate 5'-aminoimidazole-4-carboxamide ribonucleotide (ZMP), an intermediary of the de novo biosynthetic pathway, at physiological levels of folic acid, but not with the artificially high levels (2200 nM) present in regular media. Interestingly, HEK293T and Jurkat cells do not accumulate high levels of ZMP when AICAr, the precursor of ZMP, is added to medium containing 2200 nM folate; instead, ATP levels are increased, suggesting an enhanced de novo synthesis. On the other hand, HeLa and EHEB cells do not accumulate ZMP at physiological levels of folic acid, but they do accumulate in medium containing AICAr plus 2200 nM folate. Expression of SLC19A1, which encodes the reduced folate carrier (RFC), is increased in HEK293T and Jurkat cells compared with HeLa and EHEB, and it is correlated with the total purine nucleotide content at high levels of folic acid or with ZMP accumulation at physiological levels of folic acid. In conclusion, tumoral cell lines show a heterogenous response to folate changes in the media, some of them accumulating ZMP at physiological levels of folic acid. Further research is needed to clarify the ZMP downstream targets and their impact on cell function.
Collapse
Affiliation(s)
- Claudia Cano-Estrada
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Lidia de Benito-Gómez
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d’Investigació Biomèdica de Bellvitge), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Paula Escudero-Ferruz
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Neus Ontiveros
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel Iglesias-Serret
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d’Investigació Biomèdica de Bellvitge), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Facultat de Medicina, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Barcelona, Spain
| | - José M. López
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
19
|
Fu DJ, Wang T. Targeting NEDD8-activating enzyme for cancer therapy: developments, clinical trials, challenges and future research directions. J Hematol Oncol 2023; 16:87. [PMID: 37525282 PMCID: PMC10388525 DOI: 10.1186/s13045-023-01485-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
NEDDylation, a post-translational modification through three-step enzymatic cascades, plays crucial roles in the regulation of diverse biological processes. NEDD8-activating enzyme (NAE) as the only activation enzyme in the NEDDylation modification has become an attractive target to develop anticancer drugs. To date, numerous inhibitors or agonists targeting NAE have been developed. Among them, covalent NAE inhibitors such as MLN4924 and TAS4464 currently entered into clinical trials for cancer therapy, particularly for hematological tumors. This review explains the relationships between NEDDylation and cancers, structural characteristics of NAE and multistep mechanisms of NEDD8 activation by NAE. In addition, the potential approaches to discover NAE inhibitors and detailed pharmacological mechanisms of NAE inhibitors in the clinical stage are explored in depth. Importantly, we reasonably investigate the challenges of NAE inhibitors for cancer therapy and possible development directions of NAE-targeting drugs in the future.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
20
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
21
|
Yan M, Yao J, Lin Y, Yan J, Xie Y, Fu Z, Zhou Y, Wei J, Li X. Tumor cell density dependent IL-8 secretion induces the fluctuation of tregs/CD8 + T cells infiltration in hepatocellular carcinoma: one prompt for the existence of density checkpoint. J Transl Med 2023; 21:202. [PMID: 36932390 PMCID: PMC10022186 DOI: 10.1186/s12967-023-04060-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Tumor cell density is a basic pathological feature of solid tumors. Chemotherapy, radiotherapy, and targeted therapy reduce tumor cell density, whereas unrestricted tumor cell proliferation promotes this feature. The impact of tumor cells on the microenvironment following changes in tumor cell density is still unclear. In this study, we focused on the response of key immune cell subsets to tumor cell density in hepatocellular carcinoma (HCC). METHODS We determined the density of tumor and immune cells in the same area by section staining. We then identified potential mediators using polymerase chain reaction (PCR), enzyme-linked immunofluorescence assay (ELISA), 3D and co-culture, flow cytometry, and lentivirus intervention. The mechanism of lactate promotion was verified using lactate tests, bioinformatics, western blotting, and the above methods. The IL-8/DAPK1/lactate/regulatory T cell (Treg) axis was verified using a mouse liver cancer model. Tumor mutation burden was calculated using maftools in R. RESULTS We found that the Treg/CD8 + T cell ratio is not consistent with tumor cell density in HCC, and a decreased Treg/CD8 + T cell ratio in the range of 5000-6000 cells/mm2 may elicit the possibility for immunotherapy in an immunosuppressive microenvironment. We showed that IL-8 mediates this immune fluctuation and promotes the infiltration of Tregs through the DAPK1/pyruvate kinase activity/lactate axis in HCC. Based on tumor ploidy and mutation burden data, we discussed the potential significance of immune fluctuation in the homeostasis of HCC mutation burden and proposed a "density checkpoint" and "entropy model" to describe this phenomenon. CONCLUSIONS In summary, we report the mode of infiltration of Tregs/CD8 + T cells in response to tumor cell density and provide a new theoretical basis for IL-8 as a therapeutic target and the selection of an immunotherapy window in HCC.
Collapse
Affiliation(s)
- Mengchao Yan
- The First School of Clinical Medical, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jia Yao
- The First School of Clinical Medical, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yan Lin
- The First School of Clinical Medical, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Ye Xie
- The First School of Clinical Medical, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zongli Fu
- SUN YAT-SEN University, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Yongqiang Zhou
- The First School of Clinical Medical, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jiayun Wei
- The First School of Clinical Medical, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
22
|
Nandi S, Dey M. Identification of residues involved in allosteric signal transmission from amino acid binding site of pyruvate kinase muscle isoform 2. PLoS One 2023; 18:e0282508. [PMID: 36897854 PMCID: PMC10004559 DOI: 10.1371/journal.pone.0282508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
PKM2 is a rate-limiting enzyme in the glycolytic process and is involved in regulating tumor proliferation. Several amino acids (AAs) such as Asn, Asp, Val, and Cys have been shown to bind to the AA binding pocket of PKM2 and modulate its oligomeric state, substrate binding affinity, and activity. Although previous studies have attributed that the main chain and side chain of bound AAs are responsible for initiating signal to regulate PKM2, the signal transduction pathway remains elusive. To identify the residues involved in signal transfer process, N70 and N75 located at two ends of a β strand connecting the active site and AA binding pocket were altered. Biochemical studies of these variants with various AA ligands (Asn, Asp, Val, and Cys), illustrate that N70 and N75, along with β1 connecting these residues are part of the signal transduction pathway between the AA binding pocket and the active site. The results demonstrate that mutation of N70 to D prevents the transfer of the inhibitory signal mediated by Val and Cys, whereas N75 to L alteration blocks the activating signal initiated by Asn and Asp. Taken together, this study confirms that N70 is one of the residues responsible for transmitting the inhibitory signal and N75 is involved in the activation signal flow.
Collapse
Affiliation(s)
- Suparno Nandi
- Department of Chemistry, The University of Iowa, Iowa City, IA, United States of America
| | - Mishtu Dey
- Department of Chemistry, The University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
23
|
Muralidhara P, Ewald JC. Protein-Metabolite Interactions Shape Cellular Metabolism and Physiology. Methods Mol Biol 2023; 2554:1-10. [PMID: 36178616 DOI: 10.1007/978-1-0716-2624-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein-metabolite interactions regulate many important cellular processes but still remain understudied. Recent technological advancements are gradually uncovering the complexity of the protein-metabolite interactome. Here, we highlight some classic and recent examples of how protein metabolite interactions regulate metabolism, both locally and globally, and how this contributes to cellular physiology. We also discuss the importance of these interactions in diseases such as cancer.
Collapse
Affiliation(s)
| | - Jennifer C Ewald
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Kim S, Lim SW, Choi J. Drug discovery inspired by bioactive small molecules from nature. Anim Cells Syst (Seoul) 2022; 26:254-265. [PMID: 36605590 PMCID: PMC9809404 DOI: 10.1080/19768354.2022.2157480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Natural products (NPs) have greatly contributed to the development of novel treatments for human diseases such as cancer, metabolic disorders, and infections. Compared to synthetic chemical compounds, primary and secondary metabolites from medicinal plants, fungi, microorganisms, and our bodies are promising resources with immense chemical diversity and favorable properties for drug development. In addition to the well-validated significance of secondary metabolites, endogenous small molecules derived from central metabolism and signaling events have shown great potential as drug candidates due to their unique metabolite-protein interactions. In this short review, we highlight the values of NPs, discuss recent scientific and technological advances including metabolomics tools, chemoproteomics approaches, and artificial intelligence-based computation platforms, and explore potential strategies to overcome the current challenges in NP-driven drug discovery.
Collapse
Affiliation(s)
- Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea, Seyun Kim
| | - Seol-Wa Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiyeon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
25
|
Metabolites of De Novo Purine Synthesis: Metabolic Regulators and Cytotoxic Compounds. Metabolites 2022; 12:metabo12121210. [PMID: 36557247 PMCID: PMC9788633 DOI: 10.3390/metabo12121210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Cytotoxicity of de novo purine synthesis (DNPS) metabolites is critical to the pathogenesis of three known and one putative autosomal recessive disorder affecting DNPS. These rare disorders are caused by biallelic mutations in the DNPS genes phosphoribosylformylglycineamidine synthase (PFAS), phosphoribosylaminoimidazolecarboxylase/phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS), adenylosuccinate lyase (ADSL), and aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) and are clinically characterized by developmental abnormalities, psychomotor retardation, and nonspecific neurological impairment. At a biochemical level, loss of function of specific mutated enzymes results in elevated levels of DNPS ribosides in body fluids. The main pathogenic effect is attributed to the accumulation of DNPS ribosides, which are postulated to be toxic to the organism. Therefore, we decided to characterize the uptake and flux of several DNPS metabolites in HeLa cells and the impact of DNPS metabolites to viability of cancer cell lines and primary skin fibroblasts. We treated cells with DNPS metabolites and followed their flux in purine synthesis and degradation. In this study, we show for the first time the transport of formylglycinamide ribotide (FGAR), aminoimidazole ribotide (AIR), succinylaminoimidazolecarboxamide ribotide (SAICAR), and aminoimidazolecarboxamide ribotide (AICAR) into cells and their flux in DNPS and the degradation pathway. We found diminished cell viability mostly in the presence of FGAR and AIR. Our results suggest that direct cellular toxicity of DNPS metabolites may not be the primary pathogenetic mechanism in these disorders.
Collapse
|
26
|
Rihan M, Sharma SS. Role of Pyruvate Kinase M2 (PKM2) in Cardiovascular Diseases. J Cardiovasc Transl Res 2022; 16:382-402. [PMID: 36178660 DOI: 10.1007/s12265-022-10321-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
Cardiovascular diseases (CVDs) are the world's leading cause of death, accounting for 32% of all fatalities. Although therapeutic agents are available for CVDs, however, most of them have significant limitations such as the time-dependency effect, hypotension, and bradycardia. To overcome the limitations of current pharmacological therapies, new molecular targets and pathways need to be identified and investigated to provide better treatment options for CVDs. Recent evidence suggested the involvement of pyruvate kinase M2 (PKM2) and targeting PKM2 by its modulators (inhibitors and activators) has shown promising results in several CVDs. PKM2 regulates gene activation in the context of apoptosis, mitosis, hypoxia, inflammation, and metabolic reprogramming. PKM2 modulators might have a significant impact on the molecular pathways involved in CVD pathogenesis. Therefore, PKM2 modulators can be one of the therapeutic options for CVDs. This review provides an insight into PKM2 involvement in various CVDs along with their therapeutic potential.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
27
|
Metabolic remodeling of pyrimidine synthesis pathway and serine synthesis pathway in human glioblastoma. Sci Rep 2022; 12:16277. [PMID: 36175487 PMCID: PMC9522918 DOI: 10.1038/s41598-022-20613-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma is the most common brain tumor with dismal outcomes in adults. Metabolic remodeling is now widely acknowledged as a hallmark of cancer cells, but glioblastoma-specific metabolic pathways remain unclear. Here we show, using a large-scale targeted proteomics platform and integrated molecular pathway-level analysis tool, that the de novo pyrimidine synthesis pathway and serine synthesis pathway (SSP) are the major enriched pathways in vivo for patients with glioblastoma. Among the enzymes associated with nucleotide synthesis, RRM1 and NME1 are significantly upregulated in glioblastoma. In the SSP, SHMT2 and PSPH are upregulated but the upstream enzyme PSAT1 is downregulated in glioblastoma. Kaplan–Meier curves of overall survival for the GSE16011 and The Cancer Genome Atlas datasets revealed that high SSP activity correlated with poor outcome. Enzymes relating to the pyrimidine synthesis pathway and SSP might offer therapeutic targets for new glioblastoma treatments.
Collapse
|
28
|
Miglietta S, Girolimetti G, Marchio L, Sollazzo M, Laprovitera N, Coluccelli S, De Biase D, De Leo A, Santini D, Kurelac I, Iommarini L, Ghelli A, Campana D, Ferracin M, Perrone AM, Gasparre G, Porcelli AM. MicroRNA and Metabolic Profiling of a Primary Ovarian Neuroendocrine Carcinoma Pulmonary-Type Reveals a High Degree of Similarity with Small Cell Lung Cancer. Noncoding RNA 2022; 8:64. [PMID: 36287116 PMCID: PMC9611163 DOI: 10.3390/ncrna8050064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Small cell neuroendocrine carcinoma is most frequently found in the lung (SCLC), but it has been also reported, albeit with a very low incidence, in the ovary. Here, we analyze a case of primary small cell carcinoma of the ovary of pulmonary type (SCCOPT), a rare and aggressive tumor with poor prognosis, whose biology and molecular features have not yet been thoroughly investigated. The patient affected by SCCOPT had a residual tumor following chemotherapy which displayed pronounced similarity with neuroendocrine tumors and lung cancer in terms of its microRNA expression profile and mTOR-downstream activation. By analyzing the metabolic markers of the neoplastic lesion, we established a likely glycolytic signature. In conclusion, this in-depth characterization of SCCOPT could be useful for future diagnoses, possibly aided by microRNA profiling, allowing clinicians to adopt the most appropriate therapeutic strategy.
Collapse
Affiliation(s)
- Stefano Miglietta
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Giulia Girolimetti
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Lorena Marchio
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Noemi Laprovitera
- Unit of Transplant immunobiology and Advanced Cell Therapy, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sara Coluccelli
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Antonio De Leo
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Donatella Santini
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Ivana Kurelac
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Anna Ghelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Davide Campana
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Manuela Ferracin
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Anna Myriam Perrone
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giuseppe Gasparre
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
- Interdepartmental Center of Industrial Research (CIRI) Life Science and Health Technologies, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| |
Collapse
|
29
|
Gao S, Li X, Jiang Q, Liang Q, Zhang F, Li S, Zhang R, Luan J, Zhu J, Gu X, Xiao T, Huang H, Chen S, Ning W, Yang G, Yang C, Zhou H. PKM2 promotes pulmonary fibrosis by stabilizing TGF-β1 receptor I and enhancing TGF-β1 signaling. SCIENCE ADVANCES 2022; 8:eabo0987. [PMID: 36129984 PMCID: PMC9491720 DOI: 10.1126/sciadv.abo0987] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease, and the molecular mechanisms remain poorly understood. Our findings demonstrated that pyruvate kinase M2 (PKM2) promoted fibrosis progression by directly interacting with Smad7 and reinforcing transforming growth factor-β1 (TGF-β1) signaling. Total PKM2 expression and the portion of the tetrameric form elevated in lungs and fibroblasts were derived from mice with bleomycin (BLM)-induced pulmonary fibrosis. Pkm2 deletion markedly alleviated BLM-induced fibrosis progression, myofibroblast differentiation, and TGF-β1 signaling activation. Further study showed that PKM2 tetramer enhanced TGF-β1 signaling by directly binding with Smad7 on its MH2 domain, and thus interfered with the interaction between Smad7 and TGF-β type I receptor (TβR1), decreased TβR1 ubiquitination, and stabilized TβR1. Pharmacologically enhanced PKM2 tetramer by TEPP-46 promoted BLM-induced pulmonary fibrosis, while tetramer disruption by compound 3k alleviated fibrosis progression. Our results demonstrate how PKM2 regulates TGF-β1 signaling and is a key factor in fibrosis progression.
Collapse
Affiliation(s)
- Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Qiuyan Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Qing Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Fangxia Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Shuangling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Ruiqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Jiaoyan Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Jingyan Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Ting Xiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Hui Huang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Shanshan Chen
- Respiratory department, The First Affiliated Hospital of Zhengzhou University, 450003 Zhangzhou, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| |
Collapse
|
30
|
Qais FA, Alomar SY, Imran MA, Hashmi MA. In-Silico Analysis of Phytocompounds of Olea europaea as Potential Anti-Cancer Agents to Target PKM2 Protein. Molecules 2022; 27:molecules27185793. [PMID: 36144527 PMCID: PMC9503632 DOI: 10.3390/molecules27185793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/07/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
Globally, cancer is the second leading cause of mortality and morbidity. The growth and development of cancer are extremely complex. It is caused by a variety of pathways and involves various types of enzymes. Pyruvate kinase M2 (PKM2) is an isoform of pyruvate kinase, that catalyses the last steps of glycolysis to produce energy. PKM2 is relatively more expressed in tumour cells where it tends to exist in a dimer form. Various medicinal plants are available that contain a variety of micronutrients to combat against different cancers. The phytocompounds of the olive tree (Olea europaea) leaves play an important role in inhibiting the proliferation of several cancers. In this study, the phytocompounds of olive leaf extract (OLE) were studied using various in silico tools, such as pkCSM software to predict ADMET properties and PASS Online software to predict anticancer activity. However, the molecular docking study provided the binding energies and inhibition constant and confirmed the interaction between PKM2 and the ligands. The dynamic behaviour, conformational changes, and stability between PKM2 and the top three hit compounds (Verbascoside (Ver), Rutin (Rut), and Luteolin_7_O_glucoside (Lut)) are studied by MD simulations.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh UP-202002, India
- Correspondence: ; Tel.: +91-571-2703516
| | - Suliman Yousef Alomar
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Azhar Imran
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh UP-202002, India
| |
Collapse
|
31
|
Zhao K, Wang X, Zhao D, Lin Q, Zhang Y, Hu Y. lncRNA HITT Inhibits Lactate Production by Repressing PKM2 Oligomerization to Reduce Tumor Growth and Macrophage Polarization. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9854904. [PMID: 35909936 PMCID: PMC9285634 DOI: 10.34133/2022/9854904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/20/2022] [Indexed: 12/21/2022]
Abstract
Lactic acid acidifies the tumor microenvironment and promotes multiple critical oncogenic processes, including immune evasion. Pyruvate kinase M2 (PKM2) is a dominant form of pyruvate kinase (PK) expressed in cancers that plays essential roles in metabolic reprograming and lactate production, rendering it as an attractive therapeutic target of cancer. However, the mechanism underlying PKM2 regulation remains unclear. Here, we show that long noncoding RNA (lncRNA) HIF-1α inhibitor at transcription level (HITT) inhibits lactate production in a PKM2-dependent manner. Mechanistically, it physically interacts with PKM2 mapped to a region that has been involved in both dimer (less-active) and tetramer (more-active) formation, inhibiting PKM2 oligomerization and leading to dramatic reduction of PK activity. Under glucose starvation, HITT was reduced as a result of miR-106 induction, which subsequently facilitates PKM2 oligomerization and increases vulnerability to apoptosis under glucose starvation stress. In addition, the interaction also reduces lactate secretion from cancer cells, which subsequently polarizes macrophages toward an M2-like anti-inflammatory phenotype and thus possibly contributes to immune escape in vivo. This study highlights an important role of an lncRNA in regulating PKM2 activity and also reveals a metabolic regulatory effect of PKM2 on macrophage polarization.
Collapse
Affiliation(s)
- Kunming Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China 150001.,School of Public Health, Qingdao University, Qingdao, China 266071
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China 150001
| | - Dong Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China 150001
| | - Qingyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China 150001
| | - Yi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China 150001
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China 150001
| |
Collapse
|
32
|
Connor B, Titialii-Torres K, Rockenhaus AE, Passamonte S, Morris AC, Lee YS. Biliverdin regulates NR2E3 and zebrafish retinal photoreceptor development. Sci Rep 2022; 12:7310. [PMID: 35508617 PMCID: PMC9068610 DOI: 10.1038/s41598-022-11502-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
NR2E3 is an orphan nuclear receptor whose loss-of-function causes abnormal retinal photoreceptor development and degeneration. However, despite that many nuclear receptors are regulated by binding of small molecule ligands, biological small molecule ligands regulating NR2E3 have not been identified. Identification of an endogenous NR2E3 ligand might reveal a previously unrecognized component contributing to retinal development and maintenance. Here we report that biliverdin, a conserved green pigment from heme catabolism, regulates NR2E3 and is necessary for zebrafish retinal photoreceptor development. Biliverdin from retinal extracts specifically bound to NR2E3’s ligand-binding domain and induced NR2E3-dependent reporter gene expression. Inhibition of biliverdin synthesis decreased photoreceptor cell populations in zebrafish larvae, and this phenotype was alleviated by exogenously supplied biliverdin. Thus, biliverdin is an endogenous small molecule ligand for NR2E3 and a component necessary for the proper development of photoreceptor cells. This result suggests a possible role of heme metabolism in the regulation of retinal photoreceptor cell development.
Collapse
Affiliation(s)
- Blaine Connor
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | - Abigail E Rockenhaus
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Samuel Passamonte
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Ann C Morris
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Young-Sam Lee
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
33
|
Ouyang J, Sun L, Zeng F, Wu S. Biomarker-activatable probes based on smart AIEgens for fluorescence and optoacoustic imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214438] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Shon H, Matveeva EA, Jull EC, Hu Y, Coupet TA, Lee YS. Evidence Supporting Substrate Channeling between Domains of Human PAICS: A Time-Course Analysis of 13C-Bicarbonate Incorporation. Biochemistry 2022; 61:575-582. [PMID: 35285625 PMCID: PMC8988938 DOI: 10.1021/acs.biochem.1c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human phosphoribosylaminoimidazole carboxylase phosphoribosylaminoimdiazole succinocarboxamide synthetase (PAICS) is a dual activity enzyme catalyzing two consecutive reactions in de novo purine nucleotide synthesis. Crystallographic structures of recombinant human PAICS suggested the channeling of 4-carboxy-5-aminoimidazole-1-ribose-5'-phosphate (CAIR) between two active sites of PAICS, while a prior work of an avian PAICS suggested otherwise. Here, we present time-course mass spectrometric data supporting the channeling of CAIR between domains of recombinant human PAICS. Time-course mass spectral analysis showed that CAIR added to the bulk solution (CAIRbulk) is decarboxylated and re-carboxylated before the accumulation of succinyl-5-aminoimidazole-4-carboxamide-1-ribose-5'-phosphate (SAICAR). An experiment with 13C-bicarbonate showed that SAICAR production was proportional to re-carboxylated CAIR instead of total CAIR or CAIRbulk. This result indicates that the SAICAR synthase domain selectively uses enzyme-made CAIR over CAIRbulk, which is consistent with the channeling model. This channeling between PAICS domains may be a part of a larger channeling process in de novo purine nucleotide synthesis.
Collapse
Affiliation(s)
- Hyungjoo Shon
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Elena A Matveeva
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Ella C Jull
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yijia Hu
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tiffany A Coupet
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Young-Sam Lee
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
35
|
Dutto I, Gerhards J, Herrera A, Souckova O, Škopová V, Smak JA, Junza A, Yanes O, Boeckx C, Burkhalter MD, Zikánová M, Pons S, Philipp M, Lüders J, Stracker TH. Pathway-specific effects of ADSL deficiency on neurodevelopment. eLife 2022; 11:e70518. [PMID: 35133277 PMCID: PMC8871376 DOI: 10.7554/elife.70518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Adenylosuccinate lyase (ADSL) functions in de novo purine synthesis (DNPS) and the purine nucleotide cycle. ADSL deficiency (ADSLD) causes numerous neurodevelopmental pathologies, including microcephaly and autism spectrum disorder. ADSLD patients have normal serum purine nucleotide levels but exhibit accumulation of dephosphorylated ADSL substrates, S-Ado, and SAICAr, the latter being implicated in neurotoxic effects through unknown mechanisms. We examined the phenotypic effects of ADSL depletion in human cells and their relation to phenotypic outcomes. Using specific interventions to compensate for reduced purine levels or modulate SAICAr accumulation, we found that diminished AMP levels resulted in increased DNA damage signaling and cell cycle delays, while primary ciliogenesis was impaired specifically by loss of ADSL or administration of SAICAr. ADSL-deficient chicken and zebrafish embryos displayed impaired neurogenesis and microcephaly. Neuroprogenitor attrition in zebrafish embryos was rescued by pharmacological inhibition of DNPS, but not increased nucleotide concentration. Zebrafish also displayed phenotypes commonly linked to ciliopathies. Our results suggest that both reduced purine levels and impaired DNPS contribute to neurodevelopmental pathology in ADSLD and that defective ciliogenesis may influence the ADSLD phenotypic spectrum.
Collapse
Affiliation(s)
- Ilaria Dutto
- Institute for Research in Biomedicine, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Julian Gerhards
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of TübingenTübingenGermany
- Institute of Biochemistry and Molecular Biology, Ulm UniversityUlmGermany
| | - Antonio Herrera
- Department of Cell Biology, Instituto de Biología Molecular de BarcelonaBarcelonaSpain
| | - Olga Souckova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Václava Škopová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Jordann A Smak
- National Cancer Institute, Center for Cancer Research, Radiation Oncology BranchBethesdaUnited States
| | - Alexandra Junza
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPVTarragonaSpain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos IIIMadridSpain
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPVTarragonaSpain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos IIIMadridSpain
| | - Cedric Boeckx
- ICREABarcelonaSpain
- Institute of Complex Systems (UBICS), Universitat de BarcelonaBarcelonaSpain
- Section of General Linguistics, Universitat de BarcelonaBarcelonaSpain
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of TübingenTübingenGermany
| | - Marie Zikánová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Sebastian Pons
- Department of Cell Biology, Instituto de Biología Molecular de BarcelonaBarcelonaSpain
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of TübingenTübingenGermany
- Institute of Biochemistry and Molecular Biology, Ulm UniversityUlmGermany
| | - Jens Lüders
- Institute for Research in Biomedicine, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Travis H Stracker
- Institute for Research in Biomedicine, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology BranchBethesdaUnited States
| |
Collapse
|
36
|
Zhang Y, Li H, Mai H, Luo D, Ji X, Liu Z, Peng S, Xu X, Zhang Y, Lan R, Li H. A responsive fluorescent probe for detecting and imaging pyruvate kinase M2 in live cells. Chem Commun (Camb) 2022; 58:6494-6497. [DOI: 10.1039/d2cc01211a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we designed and testified a fluorescent probe zy-2 for specific and responsive imaging of pyruvate kinase M2 (PKM2), which can be excited by 419 nm light. A...
Collapse
|
37
|
Liu YZ, Xu MY, Dai XY, Yan L, Li L, Zhu RZ, Ren LJ, Zhang JQZ, Zhang XF, Li JF, Tian YJ, Shi WJ, Liu YQ, Jiang CL, Zhu JB, Chen JK. Pyruvate Kinase M2 Mediates Glycolysis Contributes to Psoriasis by Promoting Keratinocyte Proliferation. Front Pharmacol 2021; 12:765790. [PMID: 34733164 PMCID: PMC8558409 DOI: 10.3389/fphar.2021.765790] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is characterized by keratinocyte proliferation and immune cell infiltration. M2 isoform of pyruvate kinase (PKM2) was reported to have an important role in cell proliferation, which is a rate-limiting enzyme that regulates the final step of glycolysis. However, how PKM2 regulates cell metabolism and proliferation in psoriatic keratinocytes is still poorly understood. Interestingly, we found that PKM2 was highly expressed in psoriatic epidermis from patients and mouse models. PKM2 overexpression promoted keratinocyte glycolytic metabolism while knockdown inhibited keratinocyte proliferation and glycolysis. Mice lacking PKM2 specifically in keratinocytes, pharmacological inhibition of PKM2 or glycolysis inhibited keratinocyte proliferation and showed obvious remission in an imiquimod-induced psoriatic mouse model. Moreover, the inhibitor of the EGF-receptor blocked EGF-stimulated PKM2 expression and glycolysis in keratinocytes. We identify PKM2 as an upregulated gene in psoriasis. PKM2 is essential in keratinocyte over-proliferation and may represent a therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Yun-Zi Liu
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China.,Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, China
| | - Ming-Yuan Xu
- Department of Dermatopathology, Shanghai Skin Disease Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiao-Yu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Lei Li
- The Second Naval Hospital of the Southern Theater of the Chinese People's Liberation Army, Hainan, China
| | - Rui-Zhen Zhu
- Department of Dermatopathology, Shanghai Skin Disease Hospital Affiliated to Tongji University, Shanghai, China
| | - Li-Jun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Ji-Qian-Zhu Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xiao-Fang Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jin-Feng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yi-Jun Tian
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Wen-Jing Shi
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Ye-Qiang Liu
- Department of Dermatopathology, Shanghai Skin Disease Hospital Affiliated to Tongji University, Shanghai, China
| | - Chun-Lei Jiang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, China
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
38
|
Yang GJ, Wu J, Leung CH, Ma DL, Chen J. A review on the emerging roles of pyruvate kinase M2 in anti-leukemia therapy. Int J Biol Macromol 2021; 193:1499-1506. [PMID: 34740687 DOI: 10.1016/j.ijbiomac.2021.10.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/28/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Glycolysis is an important step in respiration and provides energy for cellular processes. Pyruvate kinase M2 (PKM2), a key rate-limiting enzyme of glycolysis, plays an important role in tumor cell metabolism and proliferation. It is also specifically overexpressed in leukemia cells and contributes to leukemic proliferation, differentiation, and drug resistance through both aerobic glycolysis and non-metabolic pathways. In this review, the functions and regulatory roles of PKM2 are firstly introduced. Then, the molecular mechanisms of PKM2 in leukemogenesis are summarized. Next, reported PKM2 modulators and their anti-leukemia mechanisms are described. Finally, the current challenges and the potential opportunities of PKM2 inhibitors or agonists in leukemia therapy are discussed.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jia Wu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Chung-Hang Leung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, 999078, Macao SAR, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
39
|
Patel R, Raj AK, Lokhande KB, Almasri MA, Alzahrani KJ, Almeslet AS, Swamy KV, Sarode GS, Sarode SC, Patil S, Sharma NK. Detection of Nail Oncometabolite SAICAR in Oral Cancer Patients and Its Molecular Interactions with PKM2 Enzyme. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11225. [PMID: 34769743 PMCID: PMC8583651 DOI: 10.3390/ijerph182111225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 01/15/2023]
Abstract
Oncometabolites are known to drive metabolic adaptations in oral cancer. Several oncometabolites are known to be shared between cancer cells and non-cancer cells including microbiotas to modulate the tumor microenvironment. Among potential oncometabolites, succinylaminoimidazolecarboxamide ribose5'-phosphate (SAICAR) supports the growth and invasiveness of cancer cells by pyruvate kinase M2 (PKM2) enzyme in a glucose starved tumor microenvironment. There is a significant gap that shows the detection of SAICAR in biological samples including nails of oral cancer patients. Metabolite identification of SAICAR was investigated in the nails of oral cancer patients using novel vertical tube gel electrophoresis (VTGE) and LC-HRMS. Further molecular docking and molecular dynamics simulations (MDS) were employed to determine the nature of molecular interactions of SAICAR (CHEBI ID:18319) with PKM2 (PDB ID: 4G1N). Molecular docking of SAICAR (CHEBI ID:18319) was performed against pyruvate kinase M2 (PDB ID: 4G1N). Data suggest the presence of oncometabolite SAICAR in nails of oral cancer. Molecular docking of SAICAR with PKM2 showed appreciable binding affinity (-8.0 kcal/mol) with residues including ASP407, THR405, GLU410, ARG443, GLY321, ARG436, HIS439, LYS266, and TYR466. Furthermore, MDS confirmed the specific binding of SAICAR within the activator site of PKM2 and the stability of SAICAR and PKM2 molecular interactions. In conclusion, SAICAR is a promising oncometabolite biomarker present in the nails of oral cancer patients. A significant activation potential of SAICAR exists with the PKM2 enzyme.
Collapse
Affiliation(s)
- Rushikesh Patel
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (R.P.); (A.K.R.)
| | - Ajay Kumar Raj
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (R.P.); (A.K.R.)
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India;
| | - Mazen A. Almasri
- Oral and Maxillofacial Surgery Department, King Abdulaziz University, Jeddah City 21589, Saudi Arabia;
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Asma Saleh Almeslet
- Oral and Maxillofacial Surgery and Diagnostic Sciences Department, Riyadh Elm University, Riyadh 12611, Saudi Arabia;
| | - K. Venkateswara Swamy
- MIT-School of Bioengineering Sciences & Research, MIT-Art, Design and Technology University, Pune 412201, Maharashtra, India;
| | - Gargi S. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411033, Maharashtra, India;
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411033, Maharashtra, India;
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (R.P.); (A.K.R.)
| |
Collapse
|
40
|
Liu Z, Le Y, Chen H, Zhu J, Lu D. Role of PKM2-Mediated Immunometabolic Reprogramming on Development of Cytokine Storm. Front Immunol 2021; 12:748573. [PMID: 34759927 PMCID: PMC8572858 DOI: 10.3389/fimmu.2021.748573] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
The cytokine storm is a marker of severity of various diseases and increased mortality. The altered metabolic profile and energy generation of immune cells affects their activation, exacerbating the cytokine storm. Currently, the emerging field of immunometabolism has highlighted the importance of specific metabolic pathways in immune regulation. The glycolytic enzyme pyruvate kinase M2 (PKM2) is a key regulator of immunometabolism and bridges metabolic and inflammatory dysfunction. This enzyme changes its conformation thus walks in different fields including metabolism and inflammation and associates with various transcription factors. This review summarizes the vital role of PKM2 in mediating immunometabolic reprogramming and its role in inducing cytokine storm, with a focus on providing references for further understanding of its pathological functions and for proposing new targets for the treatment of related diseases.
Collapse
Affiliation(s)
- Zhijun Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ji Zhu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, China
| | - Dezhao Lu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
41
|
The Intersection of Purine and Mitochondrial Metabolism in Cancer. Cells 2021; 10:cells10102603. [PMID: 34685583 PMCID: PMC8534091 DOI: 10.3390/cells10102603] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
Nucleotides are essential to cell growth and survival, providing cells with building blocks for DNA and RNA, energy carriers, and cofactors. Mitochondria have a critical role in the production of intracellular ATP and participate in the generation of intermediates necessary for biosynthesis of macromolecules such as purines and pyrimidines. In this review, we highlight the role of purine and mitochondrial metabolism in cancer and how their intersection influences cancer progression, especially in ovarian cancer. Additionally, we address the importance of metabolic rewiring in cancer and how the evolving landscape of purine synthesis and mitochondria inhibitors can be potentially exploited for cancer treatment.
Collapse
|
42
|
Wang D, Li C, Zhu Y, Song Y, Lu S, Sun H, Hao H, Xu X. TEPP-46-Based AIE Fluorescent Probe for Detection and Bioimaging of PKM2 in Living Cells. Anal Chem 2021; 93:12682-12689. [PMID: 34505513 DOI: 10.1021/acs.analchem.1c02529] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pyruvate kinase (PK) M2 (PKM2), a glycolytic enzyme, is a hallmark of different types of tumors and plays a significant role in the Warburg effect. However, there is no fluorescent probe for PKM2 that has been reported yet. In this study, TEPC466, a novel TEPP-46-based aggregation-induced emission (AIE) probe for the detection of PKM2, was designed, synthesized, and fully characterized by 1H NMR, 13C NMR, and high-resolution mass spectrometry. When the fluorescent agent, coumarine, was conjugated to TEPP-46, the bioprobe TEPC466 showed a high degree of selectivity and sensitivity for the detection of PKM2 protein via the AIE effect. TEPC466 was then successfully applied in imaging the PKM2 protein in colorectal cancer cells with low toxicity. Moreover, structure-based modeling and the PK activity assay confirmed that TEPC466 has a better binding with PKM2 than TEPP-46, which suggests that TEPC466 could also be a good agonist of PKM2. Taken together, the bioprobe shows potential in selective detection of PKM2 and provides a useful tool for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009 Nanjing, China
| | - Chunmeng Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, China
| | - Ya Zhu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, China
| | - Yunxia Song
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, China
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211816 Nanjing, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009 Nanjing, China
| | - Xiaowei Xu
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009 Nanjing, China
| |
Collapse
|
43
|
Chhipa AS, Patel S. Targeting pyruvate kinase muscle isoform 2 (PKM2) in cancer: What do we know so far? Life Sci 2021; 280:119694. [PMID: 34102192 DOI: 10.1016/j.lfs.2021.119694] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/29/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Cancer is a leading cause of death globally. Cancer cell transformation is the result of intricate crosstalk between intracellular components and proteins. A characteristic feature of cancer cells is the ability to reprogram their metabolic pathways to ensure their infinite proliferative potential. Pyruvate kinase muscle isoform 2 (PKM2) is a glycolytic enzyme that plays crucial roles in cancer, apart from carrying out its metabolic roles. PKM2 is involved in all the major events associated with cancer growth. Modulation of PKM2 activity (dimer inhibition or tetramer activation) has been successful in controlling cancer. However, recent studies provide contrary evidences regarding the oncogenic functions of PKM2. Moreover, several studies have highlighted the cancerous roles of PKM1 isoform in certain contexts. The present review aims at providing the current updates regarding PKM2 targeting in cancer. Further, the review discusses the contradictory results that suggest that both the isoforms of PKM can lead to cancer growth. In conclusion, the review emphasizes revisiting the approaches to target cancer metabolism through PKM to find novel and effective targets for anticancer therapy.
Collapse
Affiliation(s)
| | - Snehal Patel
- Department of Pharmacology, Nirma University, Ahmedabad, Gujarat, India.
| |
Collapse
|
44
|
Lee YB, Min JK, Kim JG, Cap KC, Islam R, Hossain AJ, Dogsom O, Hamza A, Mahmud S, Choi DR, Kim YS, Koh YH, Kim HA, Chung WS, Suh SW, Park JB. Multiple functions of pyruvate kinase M2 in various cell types. J Cell Physiol 2021; 237:128-148. [PMID: 34311499 DOI: 10.1002/jcp.30536] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
Glucose metabolism is a mechanism by which energy is produced in form of adenosine triphosphate (ATP) by mitochondria and precursor metabolites are supplied to enable the ultimate enrichment of mature metabolites in the cell. Recently, glycolytic enzymes have been shown to have unconventional but important functions. Among these enzymes, pyruvate kinase M2 (PKM2) plays several roles including having conventional metabolic enzyme activity, and also being a transcriptional regulator and a protein kinase. Compared with the closely related PKM1, PKM2 is highly expressed in cancer cells and embryos, whereas PKM1 is dominant in mature, differentiated cells. Posttranslational modifications such as phosphorylation and acetylation of PKM2 change its cellular functions. In particular, PKM2 can translocate to the nucleus, where it regulates the transcription of many target genes. It is notable that PKM2 also acts as a protein kinase to phosphorylate several substrate proteins. Besides cancer cells and embryonic cells, astrocytes also highly express PKM2, which is crucial for lactate production via expression of lactate dehydrogenase A (LDHA), while mature neurons predominantly express PKM1. The lactate produced in cancer cells promotes tumor progress and that in astrocytes can be supplied to neurons and may act as a major source for neuronal ATP energy production. Thereby, we propose that PKM2 along with its different posttranslational modifications has specific purposes for a variety of cell types, performing unique functions.
Collapse
Affiliation(s)
- Yoon-Beom Lee
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jung K Min
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Gyu Kim
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Kim Cuong Cap
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,eLmed Inc. #3419, Hallym University, Chuncheon, Kangwon-do, Republic of Korea.,Institute of Research and Development, Duy Tan University, Danang, Vietnam
| | - Rokibul Islam
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, Bangladesh
| | - Abu J Hossain
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Oyungerel Dogsom
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Department of Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Amir Hamza
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Shohel Mahmud
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,National Institute of Biotechnology, Ganakbari, Savar, Dhaka, Bangladesh
| | - Dae R Choi
- Department of Internal Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | - Young-Ho Koh
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | - Hyun-A Kim
- Department of Internal Medicine, Hallym Sacred Heart Hospital, College of Medicine, Hallym University, Ahnyang, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang W Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,eLmed Inc. #3419, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| |
Collapse
|
45
|
Huang X, Pan L, Zuo Z, Li M, Zeng L, Li R, Ye Y, Zhang J, Wu G, Bai R, Zhuang L, Wei L, Zheng Y, Su J, Deng J, Deng S, Zhang S, Zhu S, Che X, Wang C, Wu C, Chen R, Lin D, Zheng J. LINC00842 inactivates transcription co-regulator PGC-1α to promote pancreatic cancer malignancy through metabolic remodelling. Nat Commun 2021; 12:3830. [PMID: 34158490 PMCID: PMC8219694 DOI: 10.1038/s41467-021-23904-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanism underlying pancreatic ductal adenocarcinoma (PDAC) malignancy remains unclear. Here, we characterize a long intergenic non-coding RNA LINC00842 that plays a role in PDAC progression. LINC00842 expression is upregulated in PDAC and induced by high concentration of glucose via transcription factor YY1. LINC00842 binds to and prevents acetylated PGC-1α from deacetylation by deacetylase SIRT1 to form PGC-1α, an important transcription co-factor in regulating cellular metabolism. LINC00842 overexpression causes metabolic switch from mitochondrial oxidative catabolic process to fatty acid synthesis, enhancing the malignant phenotypes of PDAC cells. High LINC00842 levels are correlated with elevated acetylated- PGC-1α levels in PDAC and poor patient survival. Decreasing LINC00842 level and inhibiting fatty acid synthase activity significantly repress PDAC growth and invasiveness in mouse pancreatic xenograft or patient-derived xenograft models. These results demonstrate that LINC00842 plays a role in promoting PDAC malignancy and thus might serve as a druggable target.
Collapse
Affiliation(s)
- Xudong Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ling Pan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lingxing Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rui Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jialiang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guandi Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruihong Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lisha Zhuang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lusheng Wei
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanfen Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiachun Su
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Junge Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuang Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaoping Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shihao Zhu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xu Che
- Department of Abdominal Surgery, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengfeng Wang
- Department of Abdominal Surgery, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rufu Chen
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
46
|
Potential role for pyruvate kinase M2 in the regulation of murine cardiac glycolytic flux during in vivo chronic hypoxia. Biosci Rep 2021; 41:228626. [PMID: 33973628 PMCID: PMC8173528 DOI: 10.1042/bsr20203170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Carbohydrate metabolism in heart failure shares similarities to that following hypoxic exposure, and is thought to maintain energy homoeostasis in the face of reduced O2 availability. As part of these in vivo adaptations during sustained hypoxia, the heart up-regulates and maintains a high glycolytic flux, but the underlying mechanism is still elusive. We followed the cardiac glycolytic responses to a chronic hypoxic (CH) intervention using [5-3H]-glucose labelling in combination with detailed and extensive enzymatic and metabolomic approaches to provide evidence of the underlying mechanism that allows heart survivability. Following 3 weeks of in vivo hypoxia (11% oxygen), murine hearts were isolated and perfused in a retrograde mode with function measured via an intraventricular balloon and glycolytic flux quantified using [5-3H]-glucose labelling. At the end of perfusion, hearts were flash-frozen and central carbon intermediates determined via liquid chromatography tandem mass spectrometry (LC-MS/MS). The maximal activity of glycolytic enzymes considered rate-limiting was assessed enzymatically, and protein abundance was determined using Western blotting. Relative to normoxic hearts, CH increased ex vivo cardiac glycolytic flux 1.7-fold with no effect on cardiac function. CH up-regulated cardiac pyruvate kinase (PK) flux 3.1-fold and cardiac pyruvate kinase muscle isoenzyme M2 (PKM2) protein content 1.4-fold compared with normoxic hearts. CH also augmented cardiac pentose phosphate pathway (PPP) flux, reflected by higher ribose-5-phosphate (R5P) content. These findings support an increase in the covalent (protein expression) and allosteric (flux) control of PKM2 as being central to the sustained up-regulation of the glycolytic flux in the chronically hypoxic heart.
Collapse
|
47
|
Verma H, Cholia RP, Kaur S, Dhiman M, Mantha AK. A short review on cross-link between pyruvate kinase (PKM2) and Glioblastoma Multiforme. Metab Brain Dis 2021; 36:751-765. [PMID: 33651273 DOI: 10.1007/s11011-021-00690-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/10/2021] [Indexed: 12/23/2022]
Abstract
Pyruvate kinase (PK) catalyzes the last irreversible reaction of glycolysis pathway, generating pyruvate and ATP, from Phosphoenol Pyruvate (PEP) and ADP precursors. In mammals, four different tissue-specific isoforms (M1, M2, L and R) of PK exist, which are translated from two genes (PKL and PKR). PKM2 is the highly expressed isoform of PK in cancers, which regulates the aerobic glycolysis via reprogramming cancer cell's metabolic pathways to provide an anabolic advantage to the tumor cells. In addition to the established role of PKM2 in aerobic glycolysis of multiple cancer types, various recent findings have highlighted the non-metabolic functions of PKM2 in brain tumor development. Nuclear PKM2 acts as a co-activator and directly regulates gene transcription. PKM2 dependent transactivation of various oncogenic genes is instrumental in the progression and aggressiveness of Glioblastoma Multiforme (GBM). Also, PKM2 acts as a protein kinase in histone modification which regulates gene expression and tumorigenesis. Ongoing research has explored novel regulatory mechanisms of PKM2 and its association in GBM progression. This review enlists and summarizes the metabolic and non-metabolic roles of PKM2 at the cellular level, and its regulatory function highlights the importance of the nuclear functions of PKM2 in GBM progression, and an emerging role of PKM2 as novel cancer therapeutics.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, Pin Code: 151 401, India
| | - Ravi P Cholia
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, Pin Code: 151 401, India
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, Pin Code: 151 401, India.
| |
Collapse
|
48
|
Gao F, Zhang X, Wang S, Zheng L, Sun Y, Wang G, Song Z, Bao Y. TSP50 promotes the Warburg effect and hepatocyte proliferation via regulating PKM2 acetylation. Cell Death Dis 2021; 12:517. [PMID: 34016961 PMCID: PMC8138007 DOI: 10.1038/s41419-021-03782-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022]
Abstract
Metabolic reprogramming is a hallmark of malignancy. Testes-specific protease 50 (TSP50), a newly identified oncogene, has been shown to play an important role in tumorigenesis. However, its role in tumor cell metabolism remains unclear. To investigate this issue, LC-MS/MS was employed to identify TSP50-binding proteins and pyruvate kinase M2 isoform (PKM2), a known key enzyme of aerobic glycolysis, was identified as a novel binding partner of TSP50. Further studies suggested that TSP50 promoted aerobic glycolysis in HCC cells by maintaining low pyruvate kinase activity of the PKM2. Mechanistically, TSP50 promoted the Warburg effect by increasing PKM2 K433 acetylation level and PKM2 acetylation site (K433R) mutation remarkably abrogated the TSP50-induced aerobic glycolysis, cell proliferation in vitro and tumor formation in vivo. Our findings indicate that TSP50-mediated low PKM2 pyruvate kinase activity is an important determinant for Warburg effect in HCC cells and provide a mechanistic link between TSP50 and tumor metabolism.
Collapse
Affiliation(s)
- Feng Gao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Xiaojun Zhang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Ying Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Guannan Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.
| | - Yongli Bao
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China.
| |
Collapse
|
49
|
Zhang W, Zhang X, Huang S, Chen J, Ding P, Wang Q, Li L, Lv X, Li L, Zhang P, Zhou D, Wen W, Wang Y, Lei Q, Wu J, Hu W. FOXM1D potentiates PKM2-mediated tumor glycolysis and angiogenesis. Mol Oncol 2021; 15:1466-1485. [PMID: 33314660 PMCID: PMC8096781 DOI: 10.1002/1878-0261.12879] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/16/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor growth, especially in the late stage, requires adequate nutrients and rich vasculature, in which PKM2 plays a convergent role. It has been reported that PKM2, together with FOXM1D, is upregulated in late-stage colorectal cancer and associated with metastasis; however, their underlying mechanism for promoting tumor progression remains elusive. Herein, we revealed that FOXM1D potentiates PKM2-mediated glycolysis and angiogenesis through multiple protein-protein interactions. In the presence of FBP, FOXM1D binds to tetrameric PKM2 and assembles a heterooctamer, restraining PKM2 metabolic activity by about a half and thereby promoting aerobic glycolysis. Furthermore, FOXM1D interacts with PKM2 and NF-κB and induces their nuclear translocation with the assistance of the nuclear transporter importin 4. Once in the nucleus, PKM2 and NF-κB complexes subsequently augment VEGFA transcription. The increased VEGFA is secreted extracellularly via exosomes, an event potentiated by the interaction of FOXM1 with VPS11, eventually promoting tumor angiogenesis. Based on these findings, our study provides another insight into the role of PKM2 in the regulation of glycolysis and angiogenesis.
Collapse
Affiliation(s)
- Wei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Sheng Huang
- Department of Breast SurgeryBreast Cancer InstituteFudan University Shanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jianfeng Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qi Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Luying Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xinyue Lv
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Pingzhao Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Danlei Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Wenyu Wen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yiping Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qun‐Ying Lei
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jiong Wu
- Department of Breast SurgeryBreast Cancer InstituteFudan University Shanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghaiChina
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
| |
Collapse
|
50
|
Patel S, Das A, Meshram P, Sharma A, Chowdhury A, Jariyal H, Datta A, Sarmah D, Nalla LV, Sahu B, Khairnar A, Bhattacharya P, Srivastava A, Shard A. Pyruvate kinase M2 in chronic inflammations: a potpourri of crucial protein-protein interactions. Cell Biol Toxicol 2021; 37:653-678. [PMID: 33864549 DOI: 10.1007/s10565-021-09605-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Chronic inflammation (CI) is a primary contributing factor involved in multiple diseases like cancer, stroke, diabetes, Alzheimer's disease, allergy, asthma, autoimmune diseases, coeliac disease, glomerulonephritis, sepsis, hepatitis, inflammatory bowel disease, reperfusion injury, and transplant rejections. Despite several expansions in our understanding of inflammatory disorders and their mediators, it seems clear that numerous proteins participate in the onset of CI. One crucial protein pyruvate kinase M2 (PKM2) much studied in cancer is also found to be inextricably woven in the onset of several CI's. It has been found that PKM2 plays a significant role in several disorders using a network of proteins that interact in multiple ways. For instance, PKM2 forms a close association with epidermal growth factor receptors (EGFRs) for uncontrolled growth and proliferation of tumor cells. In neurodegeneration, PKM2 interacts with apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) to onset Alzheimer's disease pathogenesis. The cross-talk of protein tyrosine phosphatase 1B (PTP1B) and PKM2 acts as stepping stones for the commencement of diabetes. Perhaps PKM2 stores the potential to unlock the pathophysiology of several diseases. Here we provide an overview of the notoriously convoluted biology of CI's and PKM2. The cross-talk of PKM2 with several proteins involved in stroke, Alzheimer's, cancer, and other diseases has also been discussed. We believe that considering the importance of PKM2 in inflammation-related diseases, new options for treating various disorders with the development of more selective agents targeting PKM2 may appear.
Collapse
Affiliation(s)
- Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Anwesha Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Payal Meshram
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Ayushi Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Arnab Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|