1
|
Gupta A, Mirarab S, Turakhia Y. Accurate, scalable, and fully automated inference of species trees from raw genome assemblies using ROADIES. Proc Natl Acad Sci U S A 2025; 122:e2500553122. [PMID: 40314967 PMCID: PMC12088440 DOI: 10.1073/pnas.2500553122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Current genome sequencing initiatives across a wide range of life forms offer significant potential to enhance our understanding of evolutionary relationships and support transformative biological and medical applications. Species trees play a central role in many of these applications; however, despite the widespread availability of genome assemblies, accurate inference of species trees remains challenging due to the limited automation, substantial domain expertise, and computational resources required by conventional methods. To address this limitation, we present ROADIES, a fully automated pipeline to infer species trees starting from raw genome assemblies. In contrast to the prominent approach, ROADIES incorporates a unique strategy of randomly sampling segments of the input genomes to generate gene trees. This eliminates the need for predefining a set of loci, limiting the analyses to a fixed number of genes, and performing the cumbersome gene annotation and/or whole genome alignment steps. ROADIES also eliminates the need to infer orthology by leveraging existing discordance-aware methods that allow multicopy genes. Using the genomic datasets from large-scale sequencing efforts across four diverse life forms (placental mammals, pomace flies, birds, and budding yeasts), we show that ROADIES infers species trees that are comparable in quality to the state-of-the-art studies but in a fraction of the time and effort, including on challenging datasets with rampant gene tree discordance and complex polyploidy. With its speed, accuracy, and automation, ROADIES has the potential to vastly simplify species tree inference, making it accessible to a broader range of scientists and applications.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Computer Science and Engineering, University of California, San Diego, CA92093
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego, CA92093
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego, CA92093
| |
Collapse
|
2
|
Brownstein CD, Harrington RC, Alencar LRV, Bellwood DR, Choat JH, Rocha LA, Wainwright PC, Tavera J, Burress ED, Muñoz MM, Cowman PF, Near TJ. Phylogenomics establishes an Early Miocene reconstruction of reef vertebrate diversity. SCIENCE ADVANCES 2025; 11:eadu6149. [PMID: 40333985 PMCID: PMC12057688 DOI: 10.1126/sciadv.adu6149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/28/2025] [Indexed: 05/09/2025]
Abstract
Oceans blanket more than two-thirds of Earth's surface, yet marine biodiversity is disproportionately concentrated in coral reefs. Investigating the origins of this exceptional diversity is crucial for predicting how reefs will respond to anthropogenic disturbances. Here, we use a genome-scale dataset to reconstruct the evolutionary history of the wrasses and parrotfishes (Labridae), which rank among the most species-rich and ecologically diverse lineages of reef fishes. We show that major labrid clades experienced pulses of evolutionary innovation and accelerated diversification during the Miocene approximately 20 to 15 million years ago that the origin of no single phenotypic trait can explain. These results draw parallels to the evolutionary histories of many clades after mass extinctions and corroborate recent fossil evidence for an Early Miocene extinction event in oceanic vertebrates and changes in coral reef faunal composition. Our data provide genomic evidence for a major Early Miocene reassembly of reef faunas.
Collapse
Affiliation(s)
- Chase D. Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, Class of 1954 Environmental Science Center, 21 Sachem Street, New Haven, CT 06511, USA
| | - Richard C. Harrington
- Department of Natural Resources, Marine Resources Research Institute, 217 Ft. Johnson Road, Charleston, SC 29412, USA
| | - Laura R. V. Alencar
- Department of Ecology and Evolutionary Biology, Yale University, Class of 1954 Environmental Science Center, 21 Sachem Street, New Haven, CT 06511, USA
| | - David R. Bellwood
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - John H. Choat
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Luiz A. Rocha
- Section of Ichthyology, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118, USA
| | - Peter C. Wainwright
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Jose Tavera
- Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Edward D. Burress
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Martha M. Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, Class of 1954 Environmental Science Center, 21 Sachem Street, New Haven, CT 06511, USA
- Peabody Museum, Yale University, 21 Sachem Street, New Haven CT 06511, USA
| | - Peter F. Cowman
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Biodiversity and Geosciences Program, Queensland Museum Tropics, Townsville, QLD 4810, Australia
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology, Yale University, Class of 1954 Environmental Science Center, 21 Sachem Street, New Haven, CT 06511, USA
- Peabody Museum, Yale University, 21 Sachem Street, New Haven CT 06511, USA
| |
Collapse
|
3
|
Deng DW, Ménard A, Deng AY. Modularized Genes in an Adrenal Pathway Reveal a Novel Mechanism in Hypertension Pathogenesis. Int J Mol Sci 2025; 26:3782. [PMID: 40332416 PMCID: PMC12027864 DOI: 10.3390/ijms26083782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Human epidemiological studies have statistically localized a multitude of quantitative trait loci (QTLs) for blood pressure (BP). However, their potential pathogenic mechanisms causing hypertension remain mysterious. To fill this void, we utilized congenic knock-in genetics to physiologically analyze the BP effects of individual and combinational QTLs. The effect magnitude from a single QTL in vivo ranged from 33.8 to 59.8%. 'Double' and multiple combinations of QTLs exhibited the same BP impact as a single QTL alone. Consequently, the products of these QTLs seemed to belong to the same pathway involved in physiological BP regulations. From this, we identified a novel pathway of hypertension pathogenesis in vivo controlled by the CUE domain containing 1 protein (Cuedc1). This pathway physiologically modulates blood pressure, aldosterone production, and renal and cardiac functions. CUEDC1 originated from common mammalian ancestors, partly explaining similar blood pressures between humans and rodents on this shared mechanistic basis. A translation of CUEDC1 into diagnostic and treatment applications to humans seems individualized and mechanistic because humans and rats may utilize the same BP-regulating mechanisms involving CUEDC1. The future sustainability of post-GWAS will depend on a balanced and robust 'ecosystem' provided by model studies that are founded on the physiologies and mechanisms of BP regulations in vivo.
Collapse
Affiliation(s)
| | | | - Alan Y. Deng
- Department of medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
4
|
Close RA, Reijenga BR. Tetrapod species-area relationships across the Cretaceous-Paleogene mass extinction. Proc Natl Acad Sci U S A 2025; 122:e2419052122. [PMID: 40131953 PMCID: PMC12002258 DOI: 10.1073/pnas.2419052122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Mass extinctions are rare but catastrophic events that profoundly disrupt biodiversity. Widely accepted consequences of mass extinctions, such as biodiversity loss and the appearance of temporary "disaster taxa," imply that species-area relationships (SARs, or how biodiversity scales with area) should change dramatically across these events: Specifically, both the slope (the rate of accumulation of new species with increasing area) and intercept (the density of species at local scales) of the power-law relationship should decrease. However, these hypotheses have not been tested, and the contribution of variation in the SAR to diversity dynamics in deep time has been neglected. We use fossil data to quantify nested SARs in North American terrestrial tetrapods through the Cretaceous-Paleogene (K/Pg) mass extinction (Campanian-Ypresian). We show that SARs vary substantially through time and among groups. In the pre-extinction interval (Maastrichtian), unusually shallow SAR slopes (indicating low beta diversity or provinciality) drive low total regional diversity in dinosaurs, mammals, and other tetrapods. In the immediate postextinction interval (Danian), the explosive diversification of mammals drove high regional diversity via a large increase in SAR slope (indicating higher beta diversity or provinciality), and only a limited increase in SAR intercept. This contradicts the expectation that postextinction biotas should be regionally homogenized by the spread of disaster taxa and impoverished by diversity loss. This early postextinction increase in SAR slope was followed in the Thanetian-Selandian ([Formula: see text]4.4. myr later) by increases in the intercept, indicating that diversity dynamics at local and regional scales did not change in synchrony.
Collapse
Affiliation(s)
- Roger Adam Close
- Department of Earth Sciences, University of Oxford, OxfordOX1 3AN, United Kingdom
| | | |
Collapse
|
5
|
Quiñones SI, Luna CA, Miño-Boilini ÁR, Candela AM, Zurita AE. Ontogeny and associated changes of the extinct sloth Simomylodon uccasamamensis (Xenarthra, Mylodontidae) from the Pliocene of the eastern Puna, Argentina. J Anat 2025; 246:171-189. [PMID: 39404197 PMCID: PMC11737310 DOI: 10.1111/joa.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 01/19/2025] Open
Abstract
Within Xenarthra (Eocene-Recent), Folivora developed (late Eocene-Recent) a remarkable diversity with respect to ecology and taxonomy over its evolutionary history. Knowledge of the diversity achieved by members of this clade in high-altitude areas of South America (i.e., Altiplano and Puna regions of Peru, Bolivia, and northwestern Argentina) has been improved in recent decades. A particular example involves the late Neogene Mylodontidae Simomylodon uccasamamensis, known mostly from multiple specimens recovered from the Bolivian Altiplano. Although several anatomical descriptions of this ground sloth have been published, almost nothing is known about its ontogenetic development and the associated morphological changes. Here we describe and compare new specimens of S. uccasamamensis from the upper level of the Tafna Formation (Pliocene) in the eastern Puna (ca. 3800 masl), Argentina, representing the southernmost record of this species. The new material is represented by specimens showing different ontogenetic stages, from infant to adult. One subadult specimen reached an estimated body mass of ca. 232 kg. The comparative study of external and internal morphology (the latter obtained from CT scans and radiography) shows remarkable changes in the mandible and molariforms associated with ontogeny; in addition, evidence suggests that the mfs2-3 are the first functional teeth, followed by mf1 and cf1. Based on our body mass estimates (ca. 232 kg.), we inferred an average lifespan of 14 years, 9-month gestation time, and sexual maturation at 4.1 years, quite similar to the values we obtained based on estimated body masses of adult specimens from Bolivia published by previous authors. Along its latitudinal distribution (ca. 14° S-21° S) S. uccasamamensis co-occurred with other ground sloths (e.g., Megatheriinae, Thalassocninae, and Scelidotheriinae), suggesting niche partitioning. The presence of this medium-sized ground sloth is consistent with the similarity between the faunas of eastern Puna and the Bolivian Altiplano during the Pliocene, which is also concordant with what was observed in other clades, such as Rodentia and Notoungulata.
Collapse
Affiliation(s)
- Sofía I Quiñones
- Laboratorio de Evolución de Vertebrados y Ambientes Cenozoicos, Centro de Ecología Aplicada del Litoral (CECOAL-CONICET) and Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Carlos A Luna
- Laboratorio de Evolución de Vertebrados y Ambientes Cenozoicos, Centro de Ecología Aplicada del Litoral (CECOAL-CONICET) and Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Ángel R Miño-Boilini
- Laboratorio de Evolución de Vertebrados y Ambientes Cenozoicos, Centro de Ecología Aplicada del Litoral (CECOAL-CONICET) and Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Adriana M Candela
- División Paleontología Vertebrados, Museo de La Plata, CONICET, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alfredo E Zurita
- Laboratorio de Evolución de Vertebrados y Ambientes Cenozoicos, Centro de Ecología Aplicada del Litoral (CECOAL-CONICET) and Universidad Nacional del Nordeste, Corrientes, Argentina
| |
Collapse
|
6
|
Okawa K, Kijima M, Ishii M, Maeda N, Yasumura Y, Sakaguchi M, Kimura M, Uehara M, Tabata E, Bauer PO, Oyama F. Hyperactivation of human acidic chitinase (Chia) for potential medical use. J Biol Chem 2025; 301:108100. [PMID: 39706263 PMCID: PMC11773036 DOI: 10.1016/j.jbc.2024.108100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Accumulation of environmental chitin in the lungs can lead to pulmonary fibrosis, characterized by inflammatory infiltration and fibrosis in acidic chitinase (Chia)-deficient mice. Transgenic expression of Chia in these mice ameliorated the symptoms, indicating the potential of enzyme supplementation as a promising therapeutic strategy for related lung diseases. This study focuses on utilizing hyperactivated human Chia, which exhibits low activity. We achieved significant activation of human Chia by incorporating nine amino acids derived from the crab-eating monkey (Macaca fascicularis) Chia, known for its robust chitin-degrading activity. The modified human Chia retained high activity across a broad pH spectrum and exhibited enhanced thermal stability. The amino acid substitutions associated with hyperactivation of human Chia activity occurred species specifically in monkey Chia. This discovery highlights the potential of hyperactivated Chia in treating pulmonary diseases resulting from chitin accumulation in human lungs.
Collapse
Affiliation(s)
- Kazuaki Okawa
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masashi Kijima
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Mana Ishii
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Nanako Maeda
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Yudai Yasumura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan; School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan; Japan Society for the Promotion of Science (PD), Tokyo, Japan
| | | | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan.
| |
Collapse
|
7
|
O'Connor LK, Jerrett RM, Price GD, Lyson TR, Lengger SK, Peterse F, van Dongen BE. Terrestrial evidence for volcanogenic sulfate-driven cooling event ~30 kyr before the Cretaceous-Paleogene mass extinction. SCIENCE ADVANCES 2024; 10:eado5478. [PMID: 39693422 DOI: 10.1126/sciadv.ado5478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Alongside the Chicxulub meteorite impact, Deccan volcanism is considered a primary trigger for the Cretaceous-Paleogene (K-Pg) mass extinction. Models suggest that volcanic outgassing of carbon and sulfur-potent environmental stressors-drove global temperature change, but the relative timing, duration, and magnitude of such change remains uncertain. Here, we use the organic paleothermometer MBT'5me and the carbon-isotope composition of two K-Pg-spanning lignites from the western Unites States, to test models of volcanogenic air temperature change in the ~100 kyr before the mass extinction. Our records show long-term warming of ~3°C, probably driven by Deccan CO2 emissions, and reveal a transient (<10 kyr) ~5°C cooling event, coinciding with the peak of the Poladpur "pulse" of Deccan eruption ~30 kyr before the K-Pg boundary. This cooling was likely caused by the aerosolization of volcanogenic sulfur. Temperatures returned to pre-event values before the mass extinction, suggesting that, from the terrestrial perspective, volcanogenic climate change was not the primary cause of K-Pg extinction.
Collapse
Affiliation(s)
- Lauren K O'Connor
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Rhodri M Jerrett
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Gregory D Price
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, UK
| | - Tyler R Lyson
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, CO, USA
| | - Sabine K Lengger
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, UK
- Sensor Systems Division, Silicon Austria Labs, Villach, Austria
| | - Francien Peterse
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Bart E van Dongen
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Almécija S, Pugh KD, Anaya A, Smith CM, Simmons NB, Voss RS, Duncan N, Lunde DP, Viera MK, Hsu T, Gilissen E, Maiolino SA, Winchester JM, Patel BA, Orr CM, Tocheri MW, Delson E, Hammond AS, Boyer DM, Catalano SA. Primate Phenotypes: A Multi-Institution Collection of 3D Morphological Data Housed in MorphoSource. Sci Data 2024; 11:1391. [PMID: 39695181 PMCID: PMC11655552 DOI: 10.1038/s41597-024-04261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
The field of phenomics is experiencing unprecedented advances thanks to the rapid growth of morphological quantification based on three-dimensional (3D) imaging, online data repositories, team-oriented collaborations, and open data-sharing policies. In line with these progressions, we present an extensive primate phenotypic dataset comprising >6,000 3D scans (media) representing skeletal morphologies of 386 individual specimens covering all hominoid genera (except humans) and other selected primates. The digitized specimens are housed in physical collections at the American Museum of Natural History, the National Museum of Natural History, the Royal Museum for Central Africa (Belgium), the Cleveland Museum of Natural History, and Stony Brook University. Our technical validation indicates that despite the diverse digitizing devices used to produce the scans, the final 3D models (meshes) can be safely combined to collect comparable morphometric data. The entire dataset (and detailed associated metadata) is freely available through MorphoSource. Hence, these data contribute to empowering the future of primate phenomics and providing a roadmap for future digitization and archiving of digital data from other collections.
Collapse
Affiliation(s)
- Sergio Almécija
- American Museum of Natural History, Division of Anthropology, New York, NY, USA.
- New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA.
- Institut Català de Paleontology Miquel Crusafont (ICP-CERCA), Cerdanyola del Vallès, Barcelona, Spain.
| | - Kelsey D Pugh
- American Museum of Natural History, Division of Anthropology, New York, NY, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA
- University of Toronto, Department of Anthropology, Toronto, Canada
| | - Alisha Anaya
- Duke University, Department of Evolutionary Anthropology, Durham, NC, USA
| | - Christopher M Smith
- American Museum of Natural History, Division of Anthropology, New York, NY, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA
| | - Nancy B Simmons
- American Museum of Natural History, Department of Mammalogy, Division of Vertebrate Zoology, New York, NY, USA
| | - Robert S Voss
- American Museum of Natural History, Department of Mammalogy, Division of Vertebrate Zoology, New York, NY, USA
| | - Neil Duncan
- American Museum of Natural History, Department of Mammalogy, Division of Vertebrate Zoology, New York, NY, USA
| | - Darrin P Lunde
- National Museum of Natural History, Division of Mammals, Washington, DC, USA
| | - Megan K Viera
- National Museum of Natural History, Division of Mammals, Washington, DC, USA
| | - Teresa Hsu
- National Museum of Natural History, Division of Mammals, Washington, DC, USA
| | - Emmanuel Gilissen
- Royal Museum for Central Africa, Department of African Zoology, Tervuren, Belgium
- Université Libre de Bruxelles, Alzheimer and other tauopathies research group, ULB Center for Diabetes Research (UCDR), Brussels, Belgium
| | | | - Julie M Winchester
- Duke University, Department of Evolutionary Anthropology, Durham, NC, USA
| | - Biren A Patel
- University of Southern California, Keck School of Medicine, Department of Integrative Anatomical Sciences, Los Angeles, CA, USA
- University of Southern California, Department of Biological Sciences, Human and Evolutionary Biology, Los Angeles, CA, USA
| | - Caley M Orr
- University of Colorado School of Medicine, Department of Cell and Developmental Biology, Aurora, CO, USA
- University of Colorado Denver, Department of Anthropology, Denver, CO, USA
| | - Matthew W Tocheri
- Lakehead University, Department of Anthropology, Thunder Bay, Ontario, Canada
- Smithsonian Institution, National Museum of Natural History, Human Origins Program, Washington, DC, USA
- University of Wollongong, Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Eric Delson
- New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA
- Institut Català de Paleontology Miquel Crusafont (ICP-CERCA), Cerdanyola del Vallès, Barcelona, Spain
- American Museum of Natural History, Division of Paleontology, New York, NY, USA
- City University of New York, Lehman College, Department of Anthropology, Bronx, NY, USA
- City University of New York, Graduate Center, PhD Program in Anthropology, New York, NY, USA
| | - Ashley S Hammond
- American Museum of Natural History, Division of Anthropology, New York, NY, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA
| | - Doug M Boyer
- Duke University, Department of Evolutionary Anthropology, Durham, NC, USA
| | - Santiago A Catalano
- American Museum of Natural History, Division of Anthropology, New York, NY, USA
- Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación Miguel Lillo, Unidad Ejecutora Lillo, San Miguel de Tucumán, Argentina
- Universidad Nacional de Tucumán, Facultad de Ciencias Naturales e Instituto Miguel Lillo, San Miguel de Tucumán, Argentina
| |
Collapse
|
9
|
Moffat A, Schuurmans C. The Control of Cortical Folding: Multiple Mechanisms, Multiple Models. Neuroscientist 2024; 30:704-722. [PMID: 37621149 PMCID: PMC11558946 DOI: 10.1177/10738584231190839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The cerebral cortex develops through a carefully conscripted series of cellular and molecular events that culminate in the production of highly specialized neuronal and glial cells. During development, cortical neurons and glia acquire a precise cellular arrangement and architecture to support higher-order cognitive functioning. Decades of study using rodent models, naturally gyrencephalic animal models, human pathology specimens, and, recently, human cerebral organoids, reveal that rodents recapitulate some but not all the cellular and molecular features of human cortices. Whereas rodent cortices are smooth-surfaced or lissencephalic, larger mammals, including humans and nonhuman primates, have highly folded/gyrencephalic cortices that accommodate an expansion in neuronal mass and increase in surface area. Several genes have evolved to drive cortical gyrification, arising from gene duplications or de novo origins, or by alterations to the structure/function of ancestral genes or their gene regulatory regions. Primary cortical folds arise in stereotypical locations, prefigured by a molecular "blueprint" that is set up by several signaling pathways (e.g., Notch, Fgf, Wnt, PI3K, Shh) and influenced by the extracellular matrix. Mutations that affect neural progenitor cell proliferation and/or neurogenesis, predominantly of upper-layer neurons, perturb cortical gyrification. Below we review the molecular drivers of cortical folding and their roles in disease.
Collapse
Affiliation(s)
- Alexandra Moffat
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Tynianskaia L, Heide M. Human-specific genetic hallmarks in neocortical development: focus on neural progenitors. Curr Opin Genet Dev 2024; 89:102267. [PMID: 39378630 PMCID: PMC7617552 DOI: 10.1016/j.gde.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/07/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
The evolutionary expansion of the neocortex in the ape lineage is the basis for the development of higher cognitive abilities. However, the human brain has uniquely increased in size and degree of folding, forming an essential foundation for advanced cognitive functions. This raises the question: what factors distinguish humans from our closest living primate relatives, such as chimpanzees and bonobos, which exhibit comparatively constrained cognitive capabilities? In this review, we focus on recent studies examining (modern) human-specific genetic traits that influence neural progenitor cells, whose behavior and activity are crucial for shaping cortical morphology. We emphasize the role of human-specific genetic modifications in signaling pathways that enhance the abundance of apical and basal progenitors, as well as the importance of basal progenitor metabolism in their proliferation in human. Additionally, we discuss how changes in neuron morphology contribute to the evolution of human cognition and provide our perspective on future directions in the field.
Collapse
Affiliation(s)
- Lidiia Tynianskaia
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077Göttingen, Germany
| | - Michael Heide
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077Göttingen, Germany
| |
Collapse
|
11
|
Silva Rubio C, Kim AB, Milsom WK, Pamenter ME, Smith GR, van Breukelen F. Common tenrecs (Tenrec ecaudatus) reduce oxygen consumption in hypoxia and in hypercapnia without concordant changes to body temperature or heart rate. J Comp Physiol B 2024; 194:869-885. [PMID: 39373763 DOI: 10.1007/s00360-024-01587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Common tenrecs (Tenrec ecaudatus) are fossorial mammals that use burrows during both active and hibernating seasons in Madagascar and its neighboring islands. Prevailing thought was that tenrecs hibernate for 8-9 months individually, but 13 tenrecs were removed from the same sealed burrow 1 m deep from the surface. Such group hibernation in sealed burrows presumably creates a hypoxic and/or hypercapnic environment and suggests that this placental mammal may have an increased tolerance to hypoxia and hypercapnia. Higher tolerances to hypoxia and hypercapnia have been documented for other mammals capable of hibernation and to determine if this is the case for tenrecs, we exposed them to acute hypoxia (4 h of 16 or 7% O2), progressive hypoxia (2 h of 16, 10 and 4% O2), or progressive hypercapnia (2 h of 2, 5 and 10% CO2) at cold (16 °C) or warm (28 °C) ambient temperatures (Ta). Oxygen equilibrium curves were also constructed on the whole blood of tenrecs at 10, 25, and 37 °C to determine if hemoglobin (Hb)-O2 affinity contributes to hypoxia tolerance. In animals held at 16 °C, normoxic and normocapnic levels of oxygen consumption rate (V ˙ O 2 ), body temperature (Tb), and heart rate (HR) were highly variable between individuals. This inter-individual variation was greatly reduced in animals held at 28 °C for oxygen consumption rate and body temperature. Both hypoxia (acute and progressive) and progressive hypercapnia led to decreases inV ˙ O 2 as well as the variation inV ˙ O 2 between animals held at 16 °C. The fall in oxygen consumption rate in 7% O2 independent of changes in body temperature in tenrecs held at 16 °C is unique and not consistent with the typical hypoxic metabolic response seen in other hibernating species that depends on concomitant falls in Tb. In animals held at 28 °C, exposure to O2 levels as low as 4% and CO2 levels as high as 10% had no significant effect onV ˙ O 2 , HR, or Tb, indicative of high tolerance to both hypoxia and hypercapnia. High variation in heart rate remained between individuals in all gas compositions and at all temperatures. Tenrec Hb-O2 affinity was similar to other homeothermic placental mammals and likely does not contribute to the increased hypoxia tolerance. Ultimately, our results suggest changes in Ta dictate physiological responses to hypoxia or hypercapnia in tenrecs, responses more characteristic of reptiles than of most placental mammals. Given that numerous anatomical and physiological characteristics of tenrecs suggest that they may be representative of an ancestral placental mammal, our findings suggest the typical hypoxic metabolic response evolved later in mammalian evolution.
Collapse
Affiliation(s)
- Claudia Silva Rubio
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| | - Anne B Kim
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Matthew E Pamenter
- Department of Biology and Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1N 9A7, Canada
| | - Gilbecca Rae Smith
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Frank van Breukelen
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
12
|
Graff MM, Belli HM, Wieskotten S, Bresee CS, Krüger Y, Janssen TL, Dehnhardt G, Hartmann MJZ. Spatial arrangement of the whiskers of harbor seals (Phoca vitulina) compared with whisker arrangements of house mice (Mus musculus) and brown rats (Rattus norvegicus). J Exp Biol 2024; 227:jeb247545. [PMID: 39387153 PMCID: PMC11634035 DOI: 10.1242/jeb.247545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Whiskers (vibrissae) are important tactile sensors for most mammals. We introduce a novel approach to quantitatively compare 3D geometry of whisker arrays across species with different whisker numbers and arrangements, focusing on harbor seals (Phoca vitulina), house mice (Mus musculus) and Norway rats (Rattus norvegicus). Whiskers of all three species decrease in arclength and increase in curvature from caudal to rostral. They emerge from the face with elevation angles that vary linearly with dorsoventral position, and with curvature orientations that vary diagonally as linear combinations of dorsoventral and rostrocaudal positions. In seals, this diagonal varies linearly with horizontal emergence angles, and is orthogonal to the diagonal for rats and mice. This work provides the first evidence for common elements of whisker arrangements across species in different mammalian orders. Placing the whisker array model on a CAD model of a seal head enables future mechanical studies of whisker-based sensing, including wake tracking.
Collapse
Affiliation(s)
- Matthew M. Graff
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Hayley M. Belli
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sven Wieskotten
- Institute for Biosciences, University of Rostock, 18057 Rostock, Germany
| | - Chris S. Bresee
- Northwestern University Institute for Neuroscience, Northwestern University, Evanston, IL 60208, USA
| | - Yvonne Krüger
- Institute for Biosciences, University of Rostock, 18057 Rostock, Germany
| | - Thomas L. Janssen
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Guido Dehnhardt
- Institute for Biosciences, University of Rostock, 18057 Rostock, Germany
| | - Mitra J. Z. Hartmann
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
13
|
Toosey WJ, Williamson TE, Shelley SL, Brusatte SL. The osteology of Triisodon crassicuspis (Cope, 1882): New insights into the enigmatic "archaic" placental mammal group "Triisodontidae". PLoS One 2024; 19:e0311187. [PMID: 39527771 PMCID: PMC11554371 DOI: 10.1371/journal.pone.0311187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/14/2024] [Indexed: 11/16/2024] Open
Abstract
Following the end-Cretaceous mass extinction, mammals underwent an increase in body size, taxonomic diversity and ecological specialization throughout the Paleocene, exemplifying their adaptability. One especially enigmatic group is the "Triisodontidae", medium- to large-sized ungulate-like placentals from the Paleocene which are best known from their teeth that exhibit adaptations towards carnivory. The "triisodontids" were the first large carnivorous mammals and pre-date, and may have given rise to, Mesonychia, a group of more specialized placental carnivores. The "triisodontids" have been well-described from dental material, although very little is known about their postcrania. Here, we describe the postcrania of Triisodon crassicuspis-the most completely represented species of the genus to date-from a specimen (NMMNH P-72096) recovered from basal Torrejonian strata of the Nacimiento Formation in the San Juan Basin, New Mexico. Anatomical comparisons reveal that the forelimb long bones of Tri. crassicuspis are robust relative to its size, more so than other "triisodontids". Attachment sites on the ulna are evidence of well-developed muscles involved in powerful extension and flexion of the manus. In Tri. crassicuspis, the range of pronation-supination was limited as evident from the humeroradial morphology. Qualitative functional assessment of osteological features of the forelimb of Tri. crassicuspis is suggestive of terrestrial locomotion with at least moderate digging ability. Re-analyses of the dentition confirmed that Tri. crassicuspis had specializations for carnivory, and provide a body mass estimate of ca. 32-44 kg based on dental proxies. In summary, Tri. crassicuspis was a relatively large and powerful terrestrial animal, and one of the first known placentals to fill a largely carnivorous niche.
Collapse
Affiliation(s)
- William J. Toosey
- School of GeoSciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Thomas E. Williamson
- New Mexico Museum of Natural History and Science, Albuquerque, New Mexico, United States of America
| | - Sarah L. Shelley
- School of GeoSciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Stephen L. Brusatte
- School of GeoSciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
14
|
Wang H, Wu Z, Li T, Zhao J. Phylogenomics resolves the backbone of Poales and identifies signals of hybridization and polyploidy. Mol Phylogenet Evol 2024; 200:108184. [PMID: 39209045 DOI: 10.1016/j.ympev.2024.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Poales, as one of the largest orders of angiosperm, holds crucial economic and ecological importance. Nevertheless, achieving a consensus topology has been challenging in previous studies due to limited molecular data and sparse taxon sampling. The uneven distribution of species diversity among families and the factors leading to elevated species richness in certain lineages have also been subjects of ongoing discussion and investigation. In this study, we conducted a comprehensive sampling, including representatives from all 14 families and 85 taxa of Poales, along with five additional outgroups. To reconstruct the phylogeny of Poales, we employed a combination of coalescent and concatenation methods on three nuclear gene sets (1093, 491, 143) and one plastid gene set (53), which were inferenced from genomic data. We also conducted phylogenetic hypothesis analyses to evaluate two major conflicting nodes detected in phylogenetic analyses. As a result, we successfully resolved the backbone of Poales and provided a timeline for its evolutionary history. We recovered the sister relationship between Typhaceae and Bromeliaceae as the earliest diverging families within Poales. The clade consisting of Ecdeiocoleaceae and Joinvilleaceae was recovered as the sister group of Poaceae. Within the xyrid clade, Mayacaceae and Erioaculaceae + Xyridaceae successively diverged along the backbone of Poales. The topology of [Aristidoideae, ((Micrairoideae, Panicoideae), (Arundinoideae, (Chloridoideae, Danthonioideae)))] within the PACMAD clade has received strong support from multiple findings. We also delved into the underlying biological factors that contributed to the conflicting nodes observed in the phylogenetic analysis. Apart from the uncertainty regarding the sister group of Poaceae caused by cytonuclear discordance, frequent hybridization and polyploidy may have contributed to other conflicting nodes. We identified 26 putative whole-genome duplication (WGD) events within Poales. However, apart from the σ-WGD and the ρ-WGD, we did not observe any potential polyploid events that could be directly linked to the species diversification in specific lineages. Furthermore, there was a significant increase in the net diversification rate of Poales following the K-Pg boundary.
Collapse
Affiliation(s)
- Huijun Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhigang Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Tao Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Jindong Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
15
|
Eberle J, Cohen J, Foster J, Hunt-Foster R, Heckert A. A new Late Cretaceous metatherian from the Williams Fork Formation, Colorado. PLoS One 2024; 19:e0310948. [PMID: 39441759 PMCID: PMC11498682 DOI: 10.1371/journal.pone.0310948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Heleocola piceanus, a new, relatively large metatherian from Upper Cretaceous ('Edmontonian') strata of the Williams Fork Formation in northwestern Colorado is described, based on a recently discovered jaw fragment (MWC 9744), in addition to three isolated teeth initially referred by other studies to Aquiladelphis incus and Glasbius piceanus. Although sharing several morphologic characters with the Lancian genus Glasbius, H. piceanus lower molars are considerably larger than those of Glasbius and differ from the latter in lacking a buccal cingulid, possessing carnassiform notches on the cristid obliqua and entocristid, and bearing an entoconulid on m3. To examine the relationship of Heleocola piceanus to other metatherians, H. piceanus was scored into a previously existing taxon-character matrix. Our phylogenetic analysis recovers H. piceanus as the sister taxon to Glasbius, which is consistent with our morphologic comparisons. H. piceanus represents the oldest member of the Glasbiidae. A regression equation for predicting body mass of dentally conservative metatherians that utilizes the length of m1 estimates the mass of H. piceanus at 855-1170 g, which is comparable in mass to today's muskrat (Ondatra zibethicus) and large relative to other Late Cretaceous pediomyoids. Based upon its molar morphology, specifically the low inflated cusps, low height differential between the trigonid and talonid, and near-bunodont morphology, H. piceanus is interpreted as an omnivore with a plant-dominated diet.
Collapse
Affiliation(s)
- Jaelyn Eberle
- University of Colorado Museum of Natural History and Department of Geological Sciences, University of Colorado, Boulder, Colorado, United States of America
| | - Joshua Cohen
- Biology Department, California State University Northridge, Northridge, California, United States of America
| | - John Foster
- Utah Field House of Natural History State Park Museum, Vernal, Utah, United States of America
| | | | - Andrew Heckert
- Department of Geological & Environmental Sciences, Appalachian State University, Boone, North Carolina, United States of America
| |
Collapse
|
16
|
Yatsuk AA, Triseleva TA, Narchuk EP, Matyukhin AV, Safonkin AF. Morphology of the wings and attachment apparatus in the evolution of the family Hippoboscidae (Diptera). Integr Zool 2024; 19:941-954. [PMID: 38037136 DOI: 10.1111/1749-4877.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Using a complex analysis of the molecular genetics, morphological, and ecological characteristics of Hippoboscidae flies, the phylogenetic structure and trends in the evolution of morphological characters that contribute to the ectoparasitic lifestyle of hippoboscid flies of the north of Eurasia were studied for the first time. The research was carried out on 26 Palearctic species from 10 genera. The analysis of molecular phylogeny revealed the levels of clustering of the family with the species predominantly parasitizing mammals or birds, the time of cluster formation, and the divergence of species in the Palearctic conditions. An independent adaptation to birds occurred in the genera Icosta, Pseudolynchia, Ornithoica, and others. Bird parasites are characterized by bifid tarsal claws, long hooks on pulvilli, and long empodium setae (except genus Ornithoica). Mammalian parasites are characterized by simple tarsal claws, short lobes of hooks on pulvilli, and zones on empodium with short setae. Specialization in empodium and pulvillus morphotypes and wing reduction are higher diverged in mammalian parasites than in bird parasites. The decrease of flight ability and wing reduction independently arose in different subfamilies of Hippoboscidae flies. Our results assume that the tribe Ornithomyini is a paraphyletic group, since, according to the complex of morphological features, the genus Ornithoica can be considered a separate lineage of evolution.
Collapse
Affiliation(s)
| | | | - Emilia P Narchuk
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | | | | |
Collapse
|
17
|
Wilson JD, Huang EJ, Lyson TR, Bever GS. Freshwater fish and the Cretaceous/Palaeogene boundary: a critical assessment of survivorship patterns. Proc Biol Sci 2024; 291:20241025. [PMID: 39196282 DOI: 10.1098/rspb.2024.1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Mass extinctions are major influences on both the phylogenetic structure of the modern biota and our ability to reconstruct broad-based patterns of evolutionary history. The most recent mass extinction is also the most famous-that which implicates a bolide impact in defining the Cretaceous/Palaeogene boundary (K/Pg). Although the biotic effects of this event receive intensive scrutiny, certain ecologically important and diverse groups remain woefully understudied. One such group is the freshwater ray-finned fishes (Actinopterygii). These fish represent 25% of modern vertebrate diversity, yet the isolated and fragmentary nature of their K/Pg fossil record limits our understanding of their diversity dynamics across this event. Here, we address this problem using diversification analysis of molecular-based phylogenies alongside a morphotype analysis of fossils recovered from a unique site in the Denver Basin of western North America that provides unprecedented K/Pg resolution. Our results reveal previously unrecognized signals of post-K/Pg diversification in freshwater clades and suggest that the change was driven by localized and sporadic patterns of extinction. Supported inferences regarding the effects of the K/Pg event on freshwater fish also inform our expectations of how freshwater faunas might recover from the current biodiversity crisis.
Collapse
Affiliation(s)
- Jacob D Wilson
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 Monument Street , Baltimore, MD 21205, USA
| | - E J Huang
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 Monument Street , Baltimore, MD 21205, USA
| | - Tyler R Lyson
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard , Denver, CO 80205, USA
| | - Gabriel S Bever
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 Monument Street , Baltimore, MD 21205, USA
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard , Denver, CO 80205, USA
- Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 North Charles Street , Baltimore, MD 21218, USA
| |
Collapse
|
18
|
Burtner AE, M. Grossnickle D, Santana SE, Law CJ. Gliding toward an understanding of the origin of flight in bats. PeerJ 2024; 12:e17824. [PMID: 39071138 PMCID: PMC11283779 DOI: 10.7717/peerj.17824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Bats are the only mammals capable of powered flight and have correspondingly specialized body plans, particularly in their limb morphology. The origin of bat flight is still not fully understood due to an uninformative fossil record but, from the perspective of a functional transition, it is widely hypothesized that bats evolved from gliding ancestors. Here, we test predictions of the gliding-to-flying hypothesis of the origin of bat flight by using phylogenetic comparative methods to model the evolution of forelimb and hindlimb traits on a dataset spanning four extinct bats and 231 extant mammals with diverse locomotor modes. Our results reveal that gliders exhibit adaptive trait optima (1) toward relatively elongate forelimbs that are intermediate between those of bats and non-gliding arborealists, and (2) toward relatively narrower but not longer hindlimbs that are intermediate between those of non-gliders and bats. We propose an adaptive landscape based on limb length and width optimal trends derived from our modeling analyses. Our results support a hypothetical evolutionary pathway wherein glider-like postcranial morphology precedes a bat-like morphology adapted to powered-flight, setting a foundation for future developmental, biomechanical, and evolutionary research to test this idea.
Collapse
Affiliation(s)
| | - David M. Grossnickle
- University of Washington, Seattle, WA, United States
- Oregon Institute of Technology, Klamath Falls, OR, United States
| | | | - Chris J. Law
- University of Washington, Seattle, WA, United States
- University of Texas at Austin, Austin, United States
| |
Collapse
|
19
|
Keipert S, Gaudry MJ, Kutschke M, Keuper M, Dela Rosa MAS, Cheng Y, Monroy Kuhn JM, Laterveer R, Cotrim CA, Giere P, Perocchi F, Feederle R, Crichton PG, Lutter D, Jastroch M. Two-stage evolution of mammalian adipose tissue thermogenesis. Science 2024; 384:1111-1117. [PMID: 38843333 DOI: 10.1126/science.adg1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/08/2024] [Indexed: 06/16/2024]
Abstract
Brown adipose tissue (BAT) is a heater organ that expresses thermogenic uncoupling protein 1 (UCP1) to maintain high body temperatures during cold stress. BAT thermogenesis is considered an overarching mammalian trait, but its evolutionary origin is unknown. We show that adipose tissue of marsupials, which diverged from eutherian mammals ~150 million years ago, expresses a nonthermogenic UCP1 variant governed by a partial transcriptomic BAT signature similar to that found in eutherian beige adipose tissue. We found that the reconstructed UCP1 sequence of the common eutherian ancestor displayed typical thermogenic activity, whereas therian ancestor UCP1 is nonthermogenic. Thus, mammalian adipose tissue thermogenesis may have evolved in two distinct stages, with a prethermogenic stage in the common therian ancestor linking UCP1 expression to adipose tissue and thermal stress. We propose that in a second stage, UCP1 acquired its thermogenic function specifically in eutherians, such that the onset of mammalian BAT thermogenesis occurred only after the divergence from marsupials.
Collapse
Affiliation(s)
- Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael J Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Maria Kutschke
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michaela Keuper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Margeoux A S Dela Rosa
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Yiming Cheng
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster of Systems Neurology, 81377 Munich, Germany
- Institute for Diabetes and Obesity (IDO), Helmholtz Zentrum München, 85764 Munich, Germany
| | - José M Monroy Kuhn
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich, German Research Center for Environmental Health, German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Rutger Laterveer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Camila A Cotrim
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Peter Giere
- Museum für Naturkunde-Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Fabiana Perocchi
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster of Systems Neurology, 81377 Munich, Germany
- Institute for Diabetes and Obesity (IDO), Helmholtz Zentrum München, 85764 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Dominik Lutter
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich, German Research Center for Environmental Health, German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
20
|
Gupta A, Mirarab S, Turakhia Y. Accurate, scalable, and fully automated inference of species trees from raw genome assemblies using ROADIES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596098. [PMID: 38854139 PMCID: PMC11160643 DOI: 10.1101/2024.05.27.596098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Inference of species trees plays a crucial role in advancing our understanding of evolutionary relationships and has immense significance for diverse biological and medical applications. Extensive genome sequencing efforts are currently in progress across a broad spectrum of life forms, holding the potential to unravel the intricate branching patterns within the tree of life. However, estimating species trees starting from raw genome sequences is quite challenging, and the current cutting-edge methodologies require a series of error-prone steps that are neither entirely automated nor standardized. In this paper, we present ROADIES, a novel pipeline for species tree inference from raw genome assemblies that is fully automated, easy to use, scalable, free from reference bias, and provides flexibility to adjust the tradeoff between accuracy and runtime. The ROADIES pipeline eliminates the need to align whole genomes, choose a single reference species, or pre-select loci such as functional genes found using cumbersome annotation steps. Moreover, it leverages recent advances in phylogenetic inference to allow multi-copy genes, eliminating the need to detect orthology. Using the genomic datasets released from large-scale sequencing consortia across three diverse life forms (placental mammals, pomace flies, and birds), we show that ROADIES infers species trees that are comparable in quality with the state-of-the-art approaches but in a fraction of the time. By incorporating optimal approaches and automating all steps from assembled genomes to species and gene trees, ROADIES is poised to improve the accuracy, scalability, and reproducibility of phylogenomic analyses.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Computer Science and Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| |
Collapse
|
21
|
Liu G, Pan Q, Dai Y, Wang X, Li M, Zhu P, Zhou X. Phylogenomics of Afrotherian mammals and improved resolution of extant Paenungulata. Mol Phylogenet Evol 2024; 195:108047. [PMID: 38460890 DOI: 10.1016/j.ympev.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Molecular investigations have gathered a diverse set of mammals-predominantly African natives like elephants, hyraxes, and aardvarks-into a clade known as Afrotheria. Nevertheless, the precise phylogenetic relationships among these species remain contentious. Here, we sourced orthologous markers and ultraconserved elements to discern the interordinal connections among Afrotherian mammals. Our phylogenetic analyses bolster the common origin of Afroinsectiphilia and Paenungulata, and propose Afrosoricida as the closer relative to Macroscelidea rather than Tubulidentata, while also challenging the notion of Sirenia and Hyracoidea as sister taxa. The approximately unbiased test and the gene concordance factor uniformly recognized the alliance of Proboscidea with Hyracoidea as the dominant topology within Paenungulata. Investigation into sites with extremly high phylogenetic signal unveiled their potential to intensify conflicts in the Paenungulata topology. Subsequent exploration suggested that incomplete lineage sorting was predominantly responsible for the observed contentious relationships, whereas introgression exerted a subsidiary influence. The divergence times estimated in our study hint at the Cretaceous-Paleogene (K-Pg) extinction event as a catalyst for Afrotherian diversification. Overall, our findings deliver a tentative but insightful overview of Afrotheria phylogeny and divergence, elucidating these relationships through the lens of phylogenomics.
Collapse
Affiliation(s)
- Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
22
|
Budd GE, Mann RP. Two Notorious Nodes: A Critical Examination of Relaxed Molecular Clock Age Estimates of the Bilaterian Animals and Placental Mammals. Syst Biol 2024; 73:223-234. [PMID: 37695319 PMCID: PMC11129587 DOI: 10.1093/sysbio/syad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
The popularity of relaxed clock Bayesian inference of clade origin timings has generated several recent publications with focal results considerably older than the fossils of the clades in question. Here, we critically examine two such clades: the animals (with a focus on the bilaterians) and the mammals (with a focus on the placentals). Each example displays a set of characteristic pathologies which, although much commented on, are rarely corrected for. We conclude that in neither case does the molecular clock analysis provide any evidence for an origin of the clade deeper than what is suggested by the fossil record. In addition, both these clades have other features (including, in the case of the placental mammals, proximity to a large mass extinction) that allow us to generate precise expectations of the timings of their origins. Thus, in these instances, the fossil record can provide a powerful test of molecular clock methodology, and why it goes astray, and we have every reason to think these problems are general. [Cambrian explosion; mammalian evolution; molecular clocks.].
Collapse
Affiliation(s)
- Graham E Budd
- Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Villavägen 16 SE 75236, Sweden
| | - Richard P Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
23
|
Geiser F. Regional Intraspecific Differences of Thermal Biology in a Marsupial Hibernator. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:180-189. [PMID: 38875137 DOI: 10.1086/730867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
AbstractDuring periods of torpor, hibernators can reduce metabolic rate (MR) and body temperature (Tb) substantially. However, to avoid physiological dysfunction at low temperatures, they defend Tb at a critical minimum, often between ~0°C and 10°C via an increase in MR. Because thermoregulation during torpor requires extra energy, individuals with lower Tb's and thus minimal MR during torpor should be selected in colder climates. Such inter- and intraspecific variations occur in some placental mammals, but for the evolutionary separate marsupials, available information is scarce. Marsupial eastern pygmy possums (Cercartetus nanus; ~22 g body mass), widely distributed along the Australian southeastern coast including subtropical to alpine areas, were used to test the hypothesis that the defended Tb of torpid individuals is related to the climate of their habitat. Possums were captured from five regions, 1,515 km apart, with midwinter (July) minimum environmental temperatures (min Tenv's) ranging from -3.9°C to 6.6°C. Captive possums in deep torpor were slowly cooled with ambient temperature (Ta), while their MR was measured to determine the minimum torpor metabolic rate (TMR), the Ta at which their MR increased for thermoregulation (min Ta), and the corresponding minimum Tb (min Tb). Partial least squares regression analysis revealed that Ta and Tenv were the strongest explanatory variables for the min Tb. The min Tb and Ta were also correlated with latitude but not elevation of the capture sites. However, the best correlations were observed between the min Tenv and the min Tb and Ta for individuals experiencing min T env > 0 ° C ; these individuals thermoconformed to min Ta's between -0.8°C and 3.7°C, and their min Tb ranged from 0.5°C to 6.0°C and was 0.5°C-2.6°C below the min Tenv at the capture site. In contrast, individuals experiencing a min Tenv of -3.9°C regulated Tb at 0.6 ° C ± 0.2 ° C or 4.5°C above the Tenv. The minimum TMR of all possums did not differ with Ta and thus did not differ among populations and was 2.6% of the basal MR. These data provide new evidence that thermal variables of marsupials are subject to regional intraspecific variation. It suggests that min Tb is a function of the min Tenv but only above 0°C, perhaps because the T b - T a differential for torpid possums in the wild, at a min Tenv of -3.9°C, remains small enough to be compensated by a small increase in MR and does not require the physiological capability for a reduction of Tb below 0°C.
Collapse
|
24
|
Stepien BK, Wielockx B. From Vessels to Neurons-The Role of Hypoxia Pathway Proteins in Embryonic Neurogenesis. Cells 2024; 13:621. [PMID: 38607059 PMCID: PMC11012138 DOI: 10.3390/cells13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Embryonic neurogenesis can be defined as a period of prenatal development during which divisions of neural stem and progenitor cells give rise to neurons. In the central nervous system of most mammals, including humans, the majority of neocortical neurogenesis occurs before birth. It is a highly spatiotemporally organized process whose perturbations lead to cortical malformations and dysfunctions underlying neurological and psychiatric pathologies, and in which oxygen availability plays a critical role. In case of deprived oxygen conditions, known as hypoxia, the hypoxia-inducible factor (HIF) signaling pathway is activated, resulting in the selective expression of a group of genes that regulate homeostatic adaptations, including cell differentiation and survival, metabolism and angiogenesis. While a physiological degree of hypoxia is essential for proper brain development, imbalanced oxygen levels can adversely affect this process, as observed in common obstetrical pathologies such as prematurity. This review comprehensively explores and discusses the current body of knowledge regarding the role of hypoxia and the HIF pathway in embryonic neurogenesis of the mammalian cortex. Additionally, it highlights existing gaps in our understanding, presents unanswered questions, and provides avenues for future research.
Collapse
Affiliation(s)
- Barbara K. Stepien
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Experimental Centre, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
25
|
Bowman J, Lynch VJ. Rapid evolution of genes with anti-cancer functions during the origins of large bodies and cancer resistance in elephants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582135. [PMID: 38463968 PMCID: PMC10925141 DOI: 10.1101/2024.02.27.582135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Elephants have emerged as a model system to study the evolution of body size and cancer resistance because, despite their immense size, they have a very low prevalence of cancer. Previous studies have found that duplication of tumor suppressors at least partly contributes to the evolution of anti-cancer cellular phenotypes in elephants. Still, many other mechanisms must have contributed to their augmented cancer resistance. Here, we use a suite of codon-based maximum-likelihood methods and a dataset of 13,310 protein-coding gene alignments from 261 Eutherian mammals to identify positively selected and rapidly evolving elephant genes. We found 496 genes (3.73% of alignments tested) with statistically significant evidence for positive selection and 660 genes (4.96% of alignments tested) that likely evolved rapidly in elephants. Positively selected and rapidly evolving genes are statistically enriched in gene ontology terms and biological pathways related to regulated cell death mechanisms, DNA damage repair, cell cycle regulation, epidermal growth factor receptor (EGFR) signaling, and immune functions, particularly neutrophil granules and degranulation. All of these biological factors are plausibly related to the evolution of cancer resistance. Thus, these positively selected and rapidly evolving genes are promising candidates for genes contributing to elephant-specific traits, including the evolution of molecular and cellular characteristics that enhance cancer resistance.
Collapse
Affiliation(s)
- Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, 14260, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, 14260, USA
| |
Collapse
|
26
|
Brocklehurst N. The decline and fall of the mammalian stem. PeerJ 2024; 12:e17004. [PMID: 38436024 PMCID: PMC10906263 DOI: 10.7717/peerj.17004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
The mammalian crown originated during the Mesozoic and subsequently radiated into the substantial array of forms now extant. However, for about 100 million years before the crown's origin, a diverse array of stem mammalian lineages dominated terrestrial ecosystems. Several of these stem lineages overlapped temporally and geographically with the crown mammals during the Mesozoic, but by the end of the Cretaceous crown mammals make up the overwhelming majority of the fossil record. The progress of this transition between ecosystems dominated by stem mammals and those dominated by crown mammals is not entirely clear, in part due to a distinct separation of analyses and datasets. Analyses of macroevolutionary patterns tend to focus on either the Mammaliaformes or the non-mammalian cynodonts, with little overlap in the datasets, preventing direct comparison of the diversification trends. Here I analyse species richness and biogeography of Synapsida as a whole during the Mesozoic, allowing comparison of the patterns in the mammalian crown and stem within a single framework. The analysis reveals the decline of the stem mammals occurred in two discrete phases. The first phase occurred between the Triassic and Middle Jurassic, during which the stem mammals were more restricted in their geographic range than the crown mammals, although within localities their species richness remained at levels seen previously. The second phase was a decline in species richness, which occurred during the Lower Cretaceous. The results show the decline of stem mammals, including tritylodontids and several mammaliaform groups, was not tied to a specific event, nor a gradual decline, but was instead a multiphase transition.
Collapse
Affiliation(s)
- Neil Brocklehurst
- Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Chimento NR, Agnolín FL, García-Marsà J, Manabe M, Tsuihiji T, Novas FE. A large therian mammal from the Late Cretaceous of South America. Sci Rep 2024; 14:2854. [PMID: 38310138 PMCID: PMC10838296 DOI: 10.1038/s41598-024-53156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Theria represent an extant clade that comprises placental and marsupial mammals. Here we report on the discovery of a new Late Cretaceous mammal from southern Patagonia, Patagomaia chainko gen. et sp. nov., represented by hindlimb and pelvic elements with unambiguous therian features. We estimate Patagomaia chainko attained a body mass of 14 kg, which is considerably greater than the 5 kg maximum body mass of coeval Laurasian therians. This new discovery demonstrates that Gondwanan therian mammals acquired large body size by the Late Cretaceous, preceding their Laurasian relatives, which remained small-bodied until the beginning of the Cenozoic. Patagomaia supports the view that the Southern Hemisphere was a cradle for the evolution of modern mammalian clades, alongside non-therian extinct groups such as meridiolestidans, gondwanatherians and monotremes.
Collapse
Affiliation(s)
- Nicolás R Chimento
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados (LACEV), Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Av. Ángel Gallardo 470, C1405DJR, Ciudad Autónoma de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Federico L Agnolín
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados (LACEV), Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Av. Ángel Gallardo 470, C1405DJR, Ciudad Autónoma de Buenos Aires, Argentina
- Fundación de Historia Natural "Félix de Azara", Departamento de Ciencias Naturales y Antropología, CEBBAD - Universidad Maimónides, Hidalgo 767, C1405BDB, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jordi García-Marsà
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados (LACEV), Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Av. Ángel Gallardo 470, C1405DJR, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Makoto Manabe
- National Museum of Nature and Science, 4‑1‑1 Amakubo, Tsukuba, 305‑0005, Japan
| | - Takanobu Tsuihiji
- Department of Earth and Planetary Science, The University of Tokyo, 7‑3‑1 Hongo, Bunkyo-ku, Tokyo, 305‑0005, Japan
| | - Fernando E Novas
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados (LACEV), Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Av. Ángel Gallardo 470, C1405DJR, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
28
|
Delicado D, Hauffe T, Wilke T. Fifth mass extinction event triggered the diversification of the largest family of freshwater gastropods (Caenogastropoda: Truncatelloidea: Hydrobiidae). Cladistics 2024; 40:82-96. [PMID: 37712584 DOI: 10.1111/cla.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
The fifth mass extinction event (MEE) at the Cretaceous-Palaeogene (K-Pg) boundary 66 million years ago (Ma) led to massive species loss but also triggered the diversification of higher taxa. Five models have been proposed depending on whether this diversification occurred before, during or after the K-Pg boundary and the rate of species accumulation. While the effects of the K-Pg MEE on vertebrate evolution are relatively well understood, the impact on invertebrates, particularly in freshwater ecosystems, remains controversial. One example is the hyperdiverse Hydrobiidae-the most species-rich family of freshwater gastropods. Whereas some studies place its origin in the Jurassic or even Carboniferous, most fossil records postdate the K-Pg event. We therefore used robustly time-calibrated multi-locus phylogenies of >400 species representing >100 hydrobiid genera to unravel its evolutionary history and patterns of diversification. We found that the family started diversifying shortly after the K-Pg boundary (∼60 Ma; 95% highest posterior density 52-69 Ma). Lineage richness gradually increased to the present and phylogenetic diversity until ∼25 Ma. These findings suggest that diversification was not initially driven by ecological opportunity. Combining the two criteria of timing and rate of diversification, a soft-explosive diversification model of aquatic vertebrates best fits the patterns observed. We also show that most higher hydrobiid taxa (i.e. subfamilies) diversified from the Middle Oligocene to Middle Miocene (i.e. 12-28 Ma). Two of the 15 major clades delimited are described here as new subfamilies (i.e. Bullaregiinae n. subfam. and Pontobelgrandiellinae n. subfam.), whose members are restricted to subterranean waters. Our results are an important contribution to understanding how the fifth MEE has shaped evolution and patterns of biodiversity in continental aquatic systems. Given the high extinction risks faced by many hydrobiids today, they also emphasise the need to study the biodiversity of vulnerable ecosystems.
Collapse
Affiliation(s)
- Diana Delicado
- Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392, Giessen, Germany
| | - Torsten Hauffe
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Thomas Wilke
- Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392, Giessen, Germany
| |
Collapse
|
29
|
Olivier CA, Martin JS, Pilisi C, Agnani P, Kauffmann C, Hayes L, Jaeggi AV, Schradin C. Primate social organization evolved from a flexible pair-living ancestor. Proc Natl Acad Sci U S A 2024; 121:e2215401120. [PMID: 38154063 PMCID: PMC10769843 DOI: 10.1073/pnas.2215401120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2023] [Indexed: 12/30/2023] Open
Abstract
Explaining the evolution of primate social organization has been fundamental to understand human sociality and social evolution more broadly. It has often been suggested that the ancestor of all primates was solitary and that other forms of social organization evolved later, with transitions being driven by various life history traits and ecological factors. However, recent research showed that many understudied primate species previously assumed to be solitary actually live in pairs, and intraspecific variation in social organization is common. We built a detailed database from primary field studies quantifying the number of social units expressing different social organizations in each population. We used Bayesian phylogenetic models to infer the probability of each social organization, conditional on several socioecological and life history predictors. Here, we show that when intraspecific variation is accounted for, the ancestral social organization of primates was inferred to be variable, with the most common social organization being pair-living but with approximately 10 to 20% of social units of the ancestral population deviating from this pattern by being solitary living. Body size and activity patterns had large effects on transitions between types of social organizations. As in other mammalian clades, pair-living is closely linked to small body size and likely more common in ancestral species. Our results challenge the assumption that ancestral primates were solitary and that pair-living evolved afterward emphasizing the importance of focusing on field data and accounting for intraspecific variation, providing a flexible statistical framework for doing so.
Collapse
Affiliation(s)
- Charlotte-Anaïs Olivier
- Institut Pluridisciplinaire Hubert Curien, CNRS, Department of Ethology and Evolutionary Physiology, University of Strasbourg, Strasbourg67200, France
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg2050, South Africa
| | - Jordan S. Martin
- Human Ecology Group, Institute of Evolutionary Medicine, University of Zurich, ZurichCH-8057, Switzerland
| | - Camille Pilisi
- Institut Pluridisciplinaire Hubert Curien, CNRS, Department of Ethology and Evolutionary Physiology, University of Strasbourg, Strasbourg67200, France
| | - Paul Agnani
- Institut Pluridisciplinaire Hubert Curien, CNRS, Department of Ethology and Evolutionary Physiology, University of Strasbourg, Strasbourg67200, France
| | - Cécile Kauffmann
- Institut Pluridisciplinaire Hubert Curien, CNRS, Department of Ethology and Evolutionary Physiology, University of Strasbourg, Strasbourg67200, France
| | - Loren Hayes
- Department of Biology, Geology, and Environmental Science, University of Tennessee, Chattanooga37403, TN
| | - Adrian V. Jaeggi
- Human Ecology Group, Institute of Evolutionary Medicine, University of Zurich, ZurichCH-8057, Switzerland
| | - C. Schradin
- Institut Pluridisciplinaire Hubert Curien, CNRS, Department of Ethology and Evolutionary Physiology, University of Strasbourg, Strasbourg67200, France
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg2050, South Africa
| |
Collapse
|
30
|
de Magalhães JP. The longevity bottleneck hypothesis: Could dinosaurs have shaped ageing in present-day mammals? Bioessays 2024; 46:e2300098. [PMID: 38018264 DOI: 10.1002/bies.202300098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023]
Abstract
The evolution and biodiversity of ageing have long fascinated scientists and the public alike. While mammals, including long-lived species such as humans, show a marked ageing process, some species of reptiles and amphibians exhibit very slow and even the absence of ageing phenotypes. How can reptiles and other vertebrates age slower than mammals? Herein, I propose that evolving during the rule of the dinosaurs left a lasting legacy in mammals. For over 100 million years when dinosaurs were the dominant predators, mammals were generally small, nocturnal, and short-lived. My hypothesis is that such a long evolutionary pressure on early mammals for rapid reproduction led to the loss or inactivation of genes and pathways associated with long life. I call this the 'longevity bottleneck hypothesis', which is further supported by the absence in mammals of regenerative traits. Although mammals, such as humans, can evolve long lifespans, they do so under constraints dating to the dinosaur era.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
31
|
Crowell JW, Wible JR, Chester SGB. Basicranial evidence suggests picrodontid mammals are not stem primates. Biol Lett 2024; 20:20230335. [PMID: 38195058 PMCID: PMC10776232 DOI: 10.1098/rsbl.2023.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
The Picrodontidae from the middle Palaeocene of North America are enigmatic placental mammals that were allied with various mammalian groups but are generally now considered to have close affinities to paromomyid and palaechthonid plesiadapiforms based on proposed dental synapomorphies. The picrodontid fossil record consists entirely of dental and gnathic remains except for one partial cranium of Zanycteris paleocenus (AMNH 17180). Here, we use µCT technology to unveil previously undocumented morphology in AMNH 17180, describe and compare the basicranial morphology of a picrodontid for the first time, and incorporate these new data into cladistic analyses. The basicranial morphology of Z. paleocenus is distinct from plesiadapiforms and shares similarities with the Palaeogene Apatemyidae and Nyctitheriidae. Results of cladistic analyses incorporating these novel data suggest picrodontids are not stem primates nor euarchontan mammals and that the proposed dental synapomorphies uniting picrodontids with plesiadapiforms and, by extension, primates evolved independently. Results highlight the need to scrutinize proposed synapomorphies of highly autapomorphic taxa with limited fossil records.
Collapse
Affiliation(s)
- Jordan W. Crowell
- Department of Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - John R. Wible
- Section of Mammals, Carnegie Museum of Natural History, 5800 Baum Boulevard, Pittsburgh, PA 15206, USA
| | - Stephen G. B. Chester
- Department of Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
32
|
Bertrand OC, Jiménez Lao M, Shelley SL, Wible JR, Williamson TE, Meng J, Brusatte SL. The virtual brain endocast of Trogosus (Mammalia, Tillodontia) and its relevance in understanding the extinction of archaic placental mammals. J Anat 2024; 244:1-21. [PMID: 37720992 PMCID: PMC10734658 DOI: 10.1111/joa.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
After successfully diversifying during the Paleocene, the descendants of the first wave of mammals that survived the end-Cretaceous mass extinction waned throughout the Eocene. Competition with modern crown clades and intense climate fluctuations may have been part of the factors leading to the extinction of these archaic groups. Why these taxa went extinct has rarely been studied from the perspective of the nervous system. Here, we describe the first virtual endocasts for the archaic order Tillodontia. Three species from the middle Eocene of North America were analyzed: Trogosus hillsii, Trogosus grangeri, and Trogosus castoridens. We made morphological comparisons with the plaster endocast of another tillodont, Tillodon fodiens, as well as groups potentially related to Tillodontia: Pantodonta, Arctocyonidae, and Cimolesta. Trogosus shows very little inter-specific variation with the only potential difference being related to the fusion of the optic canal and sphenorbital fissure. Many ancestral features are displayed by Trogosus, including an exposed midbrain, small neocortex, orbitotemporal canal ventral to rhinal fissure, and a broad circular fissure. Potential characteristics that could unite Tillodontia with Pantodonta, and Arctocyonidae are the posterior position of cranial nerve V3 exit in relation to the cerebrum and the low degree of development of the subarcuate fossa. The presence of large olfactory bulbs and a relatively small neocortex are consistent with a terrestrial lifestyle. A relatively small neocortex may have put Trogosus at risk when competing with artiodactyls for potentially similar resources and avoiding predation from archaic carnivorans, both of which are known to have had larger relative brain and neocortex sizes in the Eocene. These factors may have possibly exacerbated the extinction of Tillodontia, which showed highly specialized morphologies despite the increase in climate fluctuations throughout the Eocene, before disappearing during the middle Eocene.
Collapse
Affiliation(s)
- Ornella C Bertrand
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
- School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Marina Jiménez Lao
- School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Sarah L Shelley
- School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, Scotland, UK
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
| | - John R Wible
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
| | - Thomas E Williamson
- New Mexico Museum of Natural History and Science, Albuquerque, New Mexico, USA
| | - Jin Meng
- Division of Paleontology, American Museum of Natural History, New York, New York, USA
| | - Stephen L Brusatte
- School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, Scotland, UK
- New Mexico Museum of Natural History and Science, Albuquerque, New Mexico, USA
| |
Collapse
|
33
|
Asar Y, Sauquet H, Ho SYW. Evaluating the Accuracy of Methods for Detecting Correlated Rates of Molecular and Morphological Evolution. Syst Biol 2023; 72:1337-1356. [PMID: 37695237 PMCID: PMC10924723 DOI: 10.1093/sysbio/syad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Determining the link between genomic and phenotypic change is a fundamental goal in evolutionary biology. Insights into this link can be gained by using a phylogenetic approach to test for correlations between rates of molecular and morphological evolution. However, there has been persistent uncertainty about the relationship between these rates, partly because conflicting results have been obtained using various methods that have not been examined in detail. We carried out a simulation study to evaluate the performance of 5 statistical methods for detecting correlated rates of evolution. Our simulations explored the evolution of molecular sequences and morphological characters under a range of conditions. Of the methods tested, Bayesian relaxed-clock estimation of branch rates was able to detect correlated rates of evolution correctly in the largest number of cases. This was followed by correlations of root-to-tip distances, Bayesian model selection, independent sister-pairs contrasts, and likelihood-based model selection. As expected, the power to detect correlated rates increased with the amount of data, both in terms of tree size and number of morphological characters. Likewise, greater among-lineage rate variation in the data led to improved performance of all 5 methods, particularly for Bayesian relaxed-clock analysis when the rate model was mismatched. We then applied these methods to a data set from flowering plants and did not find evidence of a correlation in evolutionary rates between genomic data and morphological characters. The results of our study have practical implications for phylogenetic analyses of combined molecular and morphological data sets, and highlight the conditions under which the links between genomic and phenotypic rates of evolution can be evaluated quantitatively.
Collapse
Affiliation(s)
- Yasmin Asar
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
34
|
Akula SK, Exposito-Alonso D, Walsh CA. Shaping the brain: The emergence of cortical structure and folding. Dev Cell 2023; 58:2836-2849. [PMID: 38113850 PMCID: PMC10793202 DOI: 10.1016/j.devcel.2023.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/08/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The cerebral cortex-the brain's covering and largest region-has increased in size and complexity in humans and supports higher cognitive functions such as language and abstract thinking. There is a growing understanding of the human cerebral cortex, including the diversity and number of cell types that it contains, as well as of the developmental mechanisms that shape cortical structure and organization. In this review, we discuss recent progress in our understanding of molecular and cellular processes, as well as mechanical forces, that regulate the folding of the cerebral cortex. Advances in human genetics, coupled with experimental modeling in gyrencephalic species, have provided insights into the central role of cortical progenitors in the gyrification and evolutionary expansion of the cerebral cortex. These studies are essential for understanding the emergence of structural and functional organization during cortical development and the pathogenesis of neurodevelopmental disorders associated with cortical malformations.
Collapse
Affiliation(s)
- Shyam K Akula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David Exposito-Alonso
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| |
Collapse
|
35
|
Nowack J, Stawski C, Geiser F, Levesque DL. Rare and Opportunistic Use of Torpor in Mammals-An Echo from the Past? Integr Comp Biol 2023; 63:1049-1059. [PMID: 37328423 PMCID: PMC10714912 DOI: 10.1093/icb/icad067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
Torpor was traditionally seen as a winter survival mechanism employed by animals living in cold and highly seasonal habitats. Although we now know that torpor is also used by tropical and subtropical species, and in response to a variety of triggers, torpor is still largely viewed as a highly controlled, seasonal mechanism shown by Northern hemisphere species. To scrutinize this view, we report data from a macroanalysis in which we characterized the type and seasonality of torpor use from mammal species currently known to use torpor. Our findings suggest that predictable, seasonal torpor patterns reported for Northern temperate and polar species are highly derived forms of torpor expression, whereas the more opportunistic and variable forms of torpor that we see in tropical and subtropical species are likely closer to the patterns expressed by ancestral mammals. Our data emphasize that the torpor patterns observed in the tropics and subtropics should be considered the norm and not the exception.
Collapse
Affiliation(s)
- Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Clare Stawski
- School of Science, Technology and Engineering, University of the Sunshine Coast (USC), Maroochydore DC, QLD 4558, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | | |
Collapse
|
36
|
Bowman J, Enard D, Lynch VJ. Phylogenomics reveals an almost perfect polytomy among the almost ungulates ( Paenungulata). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570590. [PMID: 38106080 PMCID: PMC10723481 DOI: 10.1101/2023.12.07.570590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Phylogenetic studies have resolved most relationships among Eutherian Orders. However, the branching order of elephants (Proboscidea), hyraxes (Hyracoidea), and sea cows (Sirenia) (i.e., the Paenungulata) has remained uncertain since at least 1758, when Linnaeus grouped elephants and manatees into a single Order (Bruta) to the exclusion of hyraxes. Subsequent morphological, molecular, and large-scale phylogenomic datasets have reached conflicting conclusions on the branching order within Paenungulates. We use a phylogenomic dataset of alignments from 13,388 protein-coding genes across 261 Eutherian mammals to infer phylogenetic relationships within Paenungulates. We find that gene trees almost equally support the three alternative resolutions of Paenungulate relationships and that despite strong support for a Proboscidea+Hyracoidea split in the multispecies coalescent (MSC) tree, there is significant evidence for gene tree uncertainty, incomplete lineage sorting, and introgression among Proboscidea, Hyracoidea, and Sirenia. Indeed, only 8-10% of genes have statistically significant phylogenetic signal to reject the hypothesis of a Paenungulate polytomy. These data indicate little support for any resolution for the branching order Proboscidea, Hyracoidea, and Sirenia within Paenungulata and suggest that Paenungulata may be as close to a real, or at least unresolvable, polytomy as possible.
Collapse
Affiliation(s)
- Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology. University of Arizona, Tucson, AZ, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| |
Collapse
|
37
|
Wiener SV. Effects of the environment on the evolution of the vertebrate urinary tract. Nat Rev Urol 2023; 20:719-738. [PMID: 37443264 DOI: 10.1038/s41585-023-00794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/15/2023]
Abstract
Evolution of the vertebrate urinary system occurs in response to numerous selective pressures, which have been incompletely characterized. Developing research into urinary evolution led to the occurrence of clinical applications and insights in paediatric urology, reproductive medicine, urolithiasis and other domains. Each nephron segment and urinary organ has functions that can be contextualized within an evolutionary framework. For example, the structure and function of the glomerulus and proximal tubule are highly conserved, enabling blood cells and proteins to be retained, and facilitating the elimination of oceanic Ca+ and Mg+. Urea emerged as an osmotic mediator during evolution, as cells of large organisms required increased precision in the internal regulation of salinity and solutes. As the first vertebrates moved from water to land, acid-base regulation was shifted from gills to skin and kidneys in amphibians. In reptiles and birds, solute regulation no longer occurred through the skin but through nasal salt glands and post-renally, within the cloaca and the rectum. In placental mammals, nasal salt glands are absent and the rectum and urinary tracts became separate, which limited post-renal urine concentration and led to the necessity of a kidney capable of high urine concentration. Considering the evolutionary and environmental selective pressures that have contributed to renal evolution can help to gain an increased understanding of renal physiology.
Collapse
Affiliation(s)
- Scott V Wiener
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
38
|
Padilla S, Prado R, Anitua E. An evolutionary history of F12 gene: Emergence, loss, and vulnerability with the environment as a driver. Bioessays 2023; 45:e2300077. [PMID: 37750435 DOI: 10.1002/bies.202300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
In the context of macroevolutionary transitions, environmental changes prompted vertebrates already bearing genetic variations to undergo gradual adaptations resulting in profound anatomical, physiological, and behavioral adaptations. The emergence of new genes led to the genetic variation essential in metazoan evolution, just as was gene loss, both sources of genetic variation resulting in adaptive phenotypic diversity. In this context, F12-coding protein with defense and hemostatic roles emerged some 425 Mya, and it might have contributed in aquatic vertebrates to the transition from water-to-land. Conversely, the F12 loss in marine, air-breathing mammals like cetaceans has been associated with phenotypic adaptations in some terrestrial mammals in their transition to aquatic lifestyle. More recently, the advent of technological innovations in western lifestyle with blood-contacting devices and harmful environmental nanoparticles, has unfolded new roles of FXII. Environment operates as either a positive or a relaxed selective pressure on genes, and consequently genes are selected or lost. FXII, an old dog facing environmental novelties can learn new tricks and teach us new therapeutic avenues.
Collapse
Affiliation(s)
- Sabino Padilla
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Roberto Prado
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Eduardo Anitua
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
39
|
Osozawa S. Geologically calibrated mammalian tree and its correlation with global events, including the emergence of humans. Ecol Evol 2023; 13:e10827. [PMID: 38116126 PMCID: PMC10728886 DOI: 10.1002/ece3.10827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/09/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
A robust timetree for Mammalia was constructed using the time calibration function of BEAST v1.10.4 and MEGA 11. The analysis involved the application of times of the most recent common ancestors, including a total of 19 mammalian fossil calibration ages following Benton et al. (Palaeontologia Electronica, 2015, 1-106) for their minimum ages. Additionally, fossil calibration ages for Gorilla, Pan, and a geologic event calibration age for otters were incorporated. Using these calibration ages, I constructed a geologically calibrated tree that estimates the age of the Homo and Pan splitting to be 5.69 Ma. The tree carries several significant implications. First, after the initial rifting at 120 Ma, the Atlantic Ocean expanded by over 500 km around Chron 34 (84 Ma), and vicariant speciation between Afrotheria (Africa) and Xenarthra (South America) appears to have commenced around 70 Ma. Additionally, ordinal level differentiations began immediately following the K-Pg boundary (66.0 Ma), supporting previous hypothesis that mammalian radiation rapidly filled ecological niches left vacant by non-avian dinosaurs. I constructed a diagram depicting the relationship between base substitution rate and age using an additional function in BEAST v1.10.4. The diagram reveals an exponential increase in the base substitution rate approaching recent times. This increased base substitution rate during the Neogene period may have contributed to the expansion of biodiversity, including the extensive adaptive radiation that led to the evolution of Homo sapiens. One significant driving factor behind this radiation could be attributed to the emergence and proliferation of C4 grasses since 20 Ma. These grasses have played a role in increasing carbon fixation, reducing atmospheric CO2 concentration, inducing global cooling, and initiating Quaternary glacial-interglacial cycles, thereby causing significant climatic changes.
Collapse
Affiliation(s)
- Soichi Osozawa
- Faculty of Science, Institute of Geology and PaleontologyTohoku UniversitySendaiJapan
| |
Collapse
|
40
|
Traenkner D, Shennib O, Johnson A, Weinbrom A, Taylor MR, Williams ME. Modular Splicing Is Linked to Evolution in the Synapse-Specificity Molecule Kirrel3. eNeuro 2023; 10:ENEURO.0253-23.2023. [PMID: 37977826 DOI: 10.1523/eneuro.0253-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Kirrel3 is a cell-adhesion molecule that instructs the formation of specific synapses during brain development in mouse and Kirrel3 variants may be risk factors for autism and intellectual disabilities in humans. Kirrel3 is predicted to undergo alternative splicing but brain isoforms have not been studied. Here, we present the first in-depth characterization of Kirrel3 isoform diversity in brain using targeted, long-read mRNA sequencing of mouse hippocampus. We identified 19 isoforms with predicted transmembrane and secreted forms and show that even rare isoforms generate detectable protein in the brain. We also analyzed publicly-available long-read mRNA databases from human brain tissue and found 11 Kirrel3 isoforms that, similar to mouse, encode transmembrane and secreted forms. In mice and humans, Kirrel3 diversity arises from alternative, independent use of protein-domain coding exons and alternative early translation-stop signals. Intriguingly, the alternatively spliced exons appear at branch points in the chordate phylogenetic tree, including one exon only found in humans and their closest living relatives, the great apes. Together, these results validate a simple pipeline for analyzing isoform diversity in genes with low expression and suggest that Kirrel3 function is fine-tuned by alternative splicing and may play a role in brain evolution.
Collapse
Affiliation(s)
- Dimitri Traenkner
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Omar Shennib
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Alyssa Johnson
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Adam Weinbrom
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Matthew R Taylor
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Megan E Williams
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
41
|
Hand SJ, Maugoust J, Beck RMD, Orliac MJ. A 50-million-year-old, three-dimensionally preserved bat skull supports an early origin for modern echolocation. Curr Biol 2023; 33:4624-4640.e21. [PMID: 37858341 DOI: 10.1016/j.cub.2023.09.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Bats are among the most recognizable, numerous, and widespread of all mammals. But much of their fossil record is missing, and bat origins remain poorly understood, as do the relationships of early to modern bats. Here, we describe a new early Eocene bat that helps bridge the gap between archaic stem bats and the hyperdiverse modern bat radiation of more than 1,460 living species. Recovered from ∼50 million-year-old cave sediments in the Quercy Phosphorites of southwestern France, Vielasia sigei's remains include a near-complete, three-dimensionally preserved skull-the oldest uncrushed bat cranium yet found. Phylogenetic analyses of a 2,665 craniodental character matrix, with and without 36.8 kb of DNA sequence data, place Vielasia outside modern bats, with total evidence tip-dating placing it sister to the crown clade. Vielasia retains the archaic dentition and skeletal features typical of early Eocene bats, but its inner ear shows specializations found in modern echolocating bats. These features, which include a petrosal only loosely attached to the basicranium, an expanded cochlea representing ∼25% basicranial width, and a long basilar membrane, collectively suggest that the kind of laryngeal echolocation used by most modern bats predates the crown radiation. At least 23 individuals of V. sigei are preserved together in a limestone cave deposit, indicating that cave roosting behavior had evolved in bats by the end of the early Eocene; this period saw the beginning of significant global climate cooling that may have been an evolutionary driver for bats to first congregate in caves.
Collapse
Affiliation(s)
- Suzanne J Hand
- ESSRC, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacob Maugoust
- Institut des Sciences de l'Evolution, UMR 5554 CNRS, IRD, EPHE, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Robin M D Beck
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK.
| | - Maeva J Orliac
- Institut des Sciences de l'Evolution, UMR 5554 CNRS, IRD, EPHE, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
42
|
Wible JR. The ear region of the Philippine flying lemur Cynocephalus volans (Placentalia, Dermoptera). Anat Rec (Hoboken) 2023; 306:2853-2871. [PMID: 36897245 DOI: 10.1002/ar.25174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 03/11/2023]
Abstract
The placental order Dermoptera, which includes two extant species, the Philippine and Sunda flying lemurs, Cynocephalus volans and Galeopterus variegatus, respectively, is generally held to be the sister group of Primates. Yet, little has been reported on their cranial anatomy. Here, the anatomy of the ear region is described and illustrated for a juvenile and adult C. volans based on CT scans. The inclusion of a juvenile is essential as nearly all cranial sutures are fused in the adult. Soft tissues are reconstructed based on sectioned histological pre- and postnatal specimens previously reported by the author. Numerous unusual features are identified, including: a small parasphenoid beneath the basisphenoid, a tensor tympani fossa on the epitympanic wing of the squamosal, a cavum supracochleare for the geniculate ganglion of the facial nerve that is not enclosed in the petrosal bone, a secondary facial foramen between the petrosal and squamosal, a secondary posttemporal foramen leading to the primary one, a subarcuate fossa that is floored in part by a large contribution from the squamosal, a body of the incus larger than the head of the malleus, and a crus longum of the incus that lacks an osseous connection to the lenticular process. Documentation of the anatomy of the Philippine flying lemur ear region is an essential first step in morphological phylogenetic analyses where features of the basicranium are widely sampled.
Collapse
Affiliation(s)
- John R Wible
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
Hellert SM, Grossnickle DM, Lloyd GT, Kammerer CF, Angielczyk KD. Derived faunivores are the forerunners of major synapsid radiations. Nat Ecol Evol 2023; 7:1903-1913. [PMID: 37798433 DOI: 10.1038/s41559-023-02200-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/06/2023] [Indexed: 10/07/2023]
Abstract
Evolutionary radiations generate most of Earth's biodiversity, but are there common ecomorphological traits among the progenitors of radiations? In Synapsida (the mammalian total group), 'small-bodied faunivore' has been hypothesized as the ancestral state of most major radiating clades, but this has not been quantitatively assessed across multiple radiations. To examine macroevolutionary patterns in a phylogenetic context, we generated a time-calibrated metaphylogeny ('metatree') comprising 1,888 synapsid species from the Carboniferous through the Eocene (305-34 Ma) based on 269 published character matrices. We used comparative methods to investigate body size and dietary evolution during successive synapsid radiations. Faunivory is the ancestral dietary regime of each major synapsid radiation, but relatively small body size is only established as the common ancestral state of radiations near the origin of Mammaliaformes in the Late Triassic. The faunivorous ancestors of synapsid radiations typically have numerous novel characters compared with their contemporaries, and these derived traits may have helped them to survive faunal turnover events and subsequently radiate.
Collapse
Affiliation(s)
- Spencer M Hellert
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA.
- Department of Science and Mathematics, Columbia College Chicago, Chicago, IL, USA.
| | - David M Grossnickle
- Department of Biology, University of Washington, Seattle, WA, USA
- Natural Sciences Department, Oregon Institute of Technology, Klamath Falls, OR, USA
| | | | | | - Kenneth D Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| |
Collapse
|
44
|
Tabata E, Kobayashi I, Morikawa T, Kashimura A, Bauer PO, Oyama F. Evolutionary activation of acidic chitinase in herbivores through the H128R mutation in ruminant livestock. iScience 2023; 26:107254. [PMID: 37502259 PMCID: PMC10368815 DOI: 10.1016/j.isci.2023.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/04/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Placental mammals' ancestors were insectivores, suggesting that modern mammals may have inherited the ability to digest insects. Acidic chitinase (Chia) is a crucial enzyme hydrolyzing significant component of insects' exoskeleton in many species. On the other hand, herbivorous animal groups, such as cattle, have extremely low chitinase activity compared to omnivorous species, e.g., mice. The low activity of cattle Chia has been attributed to R128H mutation. The presence of either of these amino acids correlates with the feeding behavior of different bovid species with R and H determining the high and low enzymatic activity, respectively. Evolutionary analysis indicated that selective constraints were relaxed in 67 herbivorous Chia in Cetartiodactyla. Despite searching for another Chia paralog that could compensate for the reduced chitinase activity, no active paralogs were found in this order. Herbivorous animals' Chia underwent genetic alterations and evolved into a molecule with low activity due to the chitin-free diet.
Collapse
Affiliation(s)
- Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
- Research Fellow of Japan Society for the Promotion of Science (PD), Koujimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Ikuto Kobayashi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Takuya Morikawa
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Peter O. Bauer
- Bioinova a.s., Videnska 1083, 142 00 Prague, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| |
Collapse
|
45
|
Smith TJ, Sansom RS, Pisani D, Donoghue PCJ. Fossilization can mislead analyses of phenotypic disparity. Proc Biol Sci 2023; 290:20230522. [PMID: 37554036 PMCID: PMC10410227 DOI: 10.1098/rspb.2023.0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Analyses of morphological disparity can incorporate living and fossil taxa to facilitate the exploration of how phenotypic variation changes through time. However, taphonomic processes introduce non-random patterns of data loss in fossil data and their impact on perceptions of disparity is unclear. To address this, we characterize how measures of disparity change when simulated and empirical data are degraded through random and structured data loss. We demonstrate that both types of data loss can distort the disparity of clades, and that the magnitude and direction of these changes varies between the most commonly employed distance metrics and disparity indices. The inclusion of extant taxa and exceptionally preserved fossils mitigates these distortions and clarifies the full extent of the data lost, most of which would otherwise go uncharacterized. This facilitates the use of ancestral state estimation and evolutionary simulations to further control for the effects of data loss. Where the addition of such reference taxa is not possible, we urge caution in the extrapolation of general patterns in disparity from datasets that characterize subsets of phenotype, which may represent no more than the traits that they sample.
Collapse
Affiliation(s)
- Thomas J. Smith
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - Robert S. Sansom
- Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip C. J. Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
46
|
López-Martínez AM, Schönenberger J, von Balthazar M, González-Martínez CA, Ramírez-Barahona S, Sauquet H, Magallón S. Integrating Fossil Flowers into the Angiosperm Phylogeny Using Molecular and Morphological Evidence. Syst Biol 2023; 72:837-855. [PMID: 36995161 DOI: 10.1093/sysbio/syad017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Fossils are essential to infer past evolutionary processes. The assignment of fossils to extant clades has traditionally relied on morphological similarity and on apomorphies shared with extant taxa. The use of explicit phylogenetic analyses to establish fossil affinities has so far remained limited. In this study, we built a comprehensive framework to investigate the phylogenetic placement of 24 exceptionally preserved fossil flowers. For this, we assembled a new species-level data set of 30 floral traits for 1201 extant species that were sampled to capture the stem and crown nodes of all angiosperm families. We explored multiple analytical approaches to integrate the fossils into the phylogeny, including different phylogenetic estimation methods, topological-constrained analyses, and combining molecular and morphological data of extant and fossil species. Our results were widely consistent across approaches and showed minor differences in the support of fossils at different phylogenetic positions. The placement of some fossils agrees with previously suggested relationships, but for others, a new placement is inferred. We also identified fossils that are well supported within particular extant families, whereas others showed high phylogenetic uncertainty. Finally, we present recommendations for future analyses combining molecular and morphological evidence, regarding the selection of fossils and appropriate methodologies, and provide some perspectives on how to integrate fossils into the investigation of divergence times and the temporal evolution of morphological traits. [Angiosperms; fossil flowers; phylogenetic uncertainty; RoguePlots.].
Collapse
Affiliation(s)
- Andrea M López-Martínez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Maria von Balthazar
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - César A González-Martínez
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
47
|
Carlisle E, Janis CM, Pisani D, Donoghue PCJ, Silvestro D. A timescale for placental mammal diversification based on Bayesian modeling of the fossil record. Curr Biol 2023; 33:3073-3082.e3. [PMID: 37379845 PMCID: PMC7617171 DOI: 10.1016/j.cub.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
The timing of the placental mammal radiation has been the focus of debate over the efficacy of competing methods for establishing evolutionary timescales. Molecular clock analyses estimate that placental mammals originated before the Cretaceous-Paleogene (K-Pg) mass extinction, anywhere from the Late Cretaceous to the Jurassic. However, the absence of definitive fossils of placentals before the K-Pg boundary is compatible with a post-Cretaceous origin. Nevertheless, lineage divergence must occur before it can be manifest phenotypically in descendent lineages. This, combined with the non-uniformity of the rock and fossil records, requires the fossil record to be interpreted rather than read literally. To achieve this, we introduce an extended Bayesian Brownian bridge model that estimates the age of origination and, where applicable, extinction through a probabilistic interpretation of the fossil record. The model estimates the origination of placentals in the Late Cretaceous, with ordinal crown groups originating at or after the K-Pg boundary. The results reduce the plausible interval for placental mammal origination to the younger range of molecular clock estimates. Our findings support both the Long Fuse and Soft Explosive models of placental mammal diversification, indicating that the placentals originated shortly prior to the K-Pg mass extinction. The origination of many modern mammal lineages overlapped with and followed the K-Pg mass extinction.
Collapse
Affiliation(s)
- Emily Carlisle
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Christine M Janis
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; Swiss Institute of Bioinformatics, 1700 Fribourg, Switzerland; Department of Biological and Environmental Sciences, University of Gothenburg, 413 19 Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, 413 19 Gothenburg, Sweden.
| |
Collapse
|
48
|
Luo A, Zhang C, Zhou QS, Ho SYW, Zhu CD. Impacts of Taxon-Sampling Schemes on Bayesian Tip Dating Under the Fossilized Birth-Death Process. Syst Biol 2023; 72:781-801. [PMID: 36919368 PMCID: PMC10405359 DOI: 10.1093/sysbio/syad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023] Open
Abstract
Evolutionary timescales can be inferred by molecular-clock analyses of genetic data and fossil evidence. Bayesian phylogenetic methods such as tip dating provide a powerful framework for inferring evolutionary timescales, but the most widely used priors for tree topologies and node times often assume that present-day taxa have been sampled randomly or exhaustively. In practice, taxon sampling is often carried out so as to include representatives of major lineages, such as orders or families. We examined the impacts of different densities of diversified sampling on Bayesian tip dating on unresolved fossilized birth-death (FBD) trees, in which fossil taxa are topologically constrained but their exact placements are averaged out. We used synthetic data generated by simulations of nucleotide sequence evolution, fossil occurrences, and diversified taxon sampling. Our analyses under the diversified-sampling FBD process show that increasing taxon-sampling density does not necessarily improve divergence-time estimates. However, when informative priors were specified for the root age or when tree topologies were fixed to those used for simulation, the performance of tip dating on unresolved FBD trees maintains its accuracy and precision or improves with taxon-sampling density. By exploring three situations in which models are mismatched, we find that including all relevant fossils, without pruning off those that are incompatible with the diversified-sampling FBD process, can lead to underestimation of divergence times. Our reanalysis of a eutherian mammal data set confirms some of the findings from our simulation study, and reveals the complexity of diversified taxon sampling in phylogenomic data sets. In highlighting the interplay of taxon-sampling density and other factors, the results of our study have practical implications for using Bayesian tip dating to infer evolutionary timescales across the Tree of Life. [Bayesian tip dating; eutherian mammals; fossilized birth-death process; phylogenomics; taxon sampling.].
Collapse
Affiliation(s)
- Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qing-Song Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- International College, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
49
|
Weisbecker V, Beck RMD, Guillerme T, Harrington AR, Lange-Hodgson L, Lee MSY, Mardon K, Phillips MJ. Multiple modes of inference reveal less phylogenetic signal in marsupial basicranial shape compared with the rest of the cranium. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220085. [PMID: 37183893 PMCID: PMC10184248 DOI: 10.1098/rstb.2022.0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/17/2022] [Indexed: 05/16/2023] Open
Abstract
Incorporating morphological data into modern phylogenies allows integration of fossil evidence, facilitating divergence dating and macroevolutionary inferences. Improvements in the phylogenetic utility of morphological data have been sought via Procrustes-based geometric morphometrics (GMM), but with mixed success and little clarity over what anatomical areas are most suitable. Here, we assess GMM-based phylogenetic reconstructions in a heavily sampled source of discrete characters for mammalian phylogenetics-the basicranium-in 57 species of marsupial mammals, compared with the remainder of the cranium. We show less phylogenetic signal in the basicranium compared with a 'Rest of Cranium' partition, using diverse metrics of phylogenetic signal (Kmult, phylogenetically aligned principal components analysis, comparisons of UPGMA/neighbour-joining/parsimony trees and cophenetic distances to a reference phylogeny) for scaled, Procrustes-aligned landmarks and allometry-corrected residuals. Surprisingly, a similar pattern emerged from parsimony-based analyses of discrete cranial characters. The consistent results across methods suggest that easily computed metrics such as Kmult can provide good guidance on phylogenetic information in a landmarking configuration. In addition, GMM data may be less informative for intricate but conservative anatomical regions such as the basicranium, while better-but not necessarily novel-phylogenetic information can be expected for broadly characterized shapes such as entire bones. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Vera Weisbecker
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Robin M. D. Beck
- School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
| | - Thomas Guillerme
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | | - Leonie Lange-Hodgson
- School of Biological Sciences, University of Queensland, Saint Lucia, Queensland, 4072, Australia
| | - Michael S. Y. Lee
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- Earth Sciences Section, South Australian Museum, Adelaide, South Australia, 5000 Australia
| | - Karine Mardon
- Centre of Advanced Imaging, University of Queensland, Saint Lucia, Queensland, 4072, Australia
| | - Matthew J. Phillips
- School of Biology & Environmental Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
50
|
Simões TR, Vernygora OV, de Medeiros BAS, Wright AM. Handling Logical Character Dependency in Phylogenetic Inference: Extensive Performance Testing of Assumptions and Solutions Using Simulated and Empirical Data. Syst Biol 2023; 72:662-680. [PMID: 36773019 PMCID: PMC10276625 DOI: 10.1093/sysbio/syad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/08/2022] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Logical character dependency is a major conceptual and methodological problem in phylogenetic inference of morphological data sets, as it violates the assumption of character independence that is common to all phylogenetic methods. It is more frequently observed in higher-level phylogenies or in data sets characterizing major evolutionary transitions, as these represent parts of the tree of life where (primary) anatomical characters either originate or disappear entirely. As a result, secondary traits related to these primary characters become "inapplicable" across all sampled taxa in which that character is absent. Various solutions have been explored over the last three decades to handle character dependency, such as alternative character coding schemes and, more recently, new algorithmic implementations. However, the accuracy of the proposed solutions, or the impact of character dependency across distinct optimality criteria, has never been directly tested using standard performance measures. Here, we utilize simple and complex simulated morphological data sets analyzed under different maximum parsimony optimization procedures and Bayesian inference to test the accuracy of various coding and algorithmic solutions to character dependency. This is complemented by empirical analyses using a recoded data set on palaeognathid birds. We find that in small, simulated data sets, absent coding performs better than other popular coding strategies available (contingent and multistate), whereas in more complex simulations (larger data sets controlled for different tree structure and character distribution models) contingent coding is favored more frequently. Under contingent coding, a recently proposed weighting algorithm produces the most accurate results for maximum parsimony. However, Bayesian inference outperforms all parsimony-based solutions to handle character dependency due to fundamental differences in their optimization procedures-a simple alternative that has been long overlooked. Yet, we show that the more primary characters bearing secondary (dependent) traits there are in a data set, the harder it is to estimate the true phylogenetic tree, regardless of the optimality criterion, owing to a considerable expansion of the tree parameter space. [Bayesian inference, character dependency, character coding, distance metrics, morphological phylogenetics, maximum parsimony, performance, phylogenetic accuracy.].
Collapse
Affiliation(s)
- Tiago R Simões
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Oksana V Vernygora
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | | | - April M Wright
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, USA
| |
Collapse
|