1
|
Yang J, Zhao S, Zhi W, Lu T, Qiao H, Liu W, Dou Y, Tan H, Zhou H. Improvement of silage characteristics of Lactobacillus salivarius HMC4 and improvement of silage quality of king grass. Front Microbiol 2024; 15:1468577. [PMID: 39723146 PMCID: PMC11668806 DOI: 10.3389/fmicb.2024.1468577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/07/2024] [Indexed: 12/28/2024] Open
Abstract
The effect of HMC4 produced by protoplast fusion on silage was studied. The silage formula was composed of heterozygote HMC4 (Group C), parent Lactobacillus (Group A) and a combination of two parents (Group B). The fermentation quality and microbial composition of each batch of silage were evaluated. The results showed that the propionic acid concentration in group C was the lowest, but the organic acid content in feed was significantly increased. Groups B and C had slightly lower crude fiber levels than group A, while groups A and C had higher levels of soluble sugars. The dynamic observation of C group showed that the nutrient composition of feed changed gradually with the extension of silage period. High-throughput sequencing revealed fluctuations in microbial composition before and after silage. Over time, Lactobacillus became the dominant strain and its numbers steadily increased.
Collapse
Affiliation(s)
- Jinsong Yang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Songsong Zhao
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Wenbo Zhi
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Tianyu Lu
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Huahua Qiao
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Wei Liu
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Ying Dou
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Haisheng Tan
- College of Materials Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| |
Collapse
|
2
|
Worman HJ, Michaelis S. Prelamin A and ZMPSTE24 in premature and physiological aging. Nucleus 2023; 14:2270345. [PMID: 37885131 PMCID: PMC10730219 DOI: 10.1080/19491034.2023.2270345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
As human longevity increases, understanding the molecular mechanisms that drive aging becomes ever more critical to promote health and prevent age-related disorders. Premature aging disorders or progeroid syndromes can provide critical insights into aspects of physiological aging. A major cause of progeroid syndromes which result from mutations in the genes LMNA and ZMPSTE24 is disruption of the final posttranslational processing step in the production of the nuclear scaffold protein lamin A. LMNA encodes the lamin A precursor, prelamin A and ZMPSTE24 encodes the prelamin A processing enzyme, the zinc metalloprotease ZMPSTE24. Progeroid syndromes resulting from mutations in these genes include the clinically related disorders Hutchinson-Gilford progeria syndrome (HGPS), mandibuloacral dysplasia-type B, and restrictive dermopathy. These diseases have features that overlap with one another and with some aspects of physiological aging, including bone defects resembling osteoporosis and atherosclerosis (the latter primarily in HGPS). The progeroid syndromes have ignited keen interest in the relationship between defective prelamin A processing and its accumulation in normal physiological aging. In this review, we examine the hypothesis that diminished processing of prelamin A by ZMPSTE24 is a driver of physiological aging. We review features a new mouse (LmnaL648R/L648R) that produces solely unprocessed prelamin A and provides an ideal model for examining the effects of its accumulation during aging. We also discuss existing data on the accumulation of prelamin A or its variants in human physiological aging, which call out for further validation and more rigorous experimental approaches to determine if prelamin A contributes to normal aging.
Collapse
Affiliation(s)
- Howard J. Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Tipper DJ, Harley CA. Spf1 and Ste24: quality controllers of transmembrane protein topology in the eukaryotic cell. Front Cell Dev Biol 2023; 11:1220441. [PMID: 37635876 PMCID: PMC10456885 DOI: 10.3389/fcell.2023.1220441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
DNA replication, transcription, and translation in eukaryotic cells occur with decreasing but still high fidelity. In contrast, for the estimated 33% of the human proteome that is inserted as transmembrane (TM) proteins, insertion with a non-functional inverted topology is frequent. Correct topology is essential for function and trafficking to appropriate cellular compartments and is controlled principally by responses to charged residues within 15 residues of the inserted TM domain (TMD); the flank with the higher positive charge remains in the cytosol (inside), following the positive inside rule (PIR). Yeast (Saccharomyces cerevisiae) mutants that increase insertion contrary to the PIR were selected. Mutants with strong phenotypes were found only in SPF1 and STE24 (human cell orthologs are ATP13A1 and ZMPSte24) with, at the time, no known relevant functions. Spf1/Atp13A1 is now known to dislocate to the cytosol TM proteins inserted contrary to the PIR, allowing energy-conserving reinsertion. We hypothesize that Spf1 and Ste24 both recognize the short, positively charged ER luminal peptides of TM proteins inserted contrary to the PIR, accepting these peptides into their large membrane-spanning, water-filled cavities through interaction with their many interior surface negative charges. While entry was demonstrated for Spf1, no published evidence directly demonstrates substrate entry to the Ste24 cavity, internal access to its zinc metalloprotease (ZMP) site, or active withdrawal of fragments, which may be essential for function. Spf1 and Ste24 comprise a PIR quality control system that is conserved in all eukaryotes and presumably evolved in prokaryotic progenitors as they gained differentiated membrane functions. About 75% of the PIR is imposed by this quality control system, which joins the UPR, ERAD, and autophagy (ER-phagy) in coordinated, overlapping quality control of ER protein function.
Collapse
Affiliation(s)
- Donald J. Tipper
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Carol A. Harley
- i3S-Instituto de Investigação e Inovação em Saude, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Ji C. Molecular Factors and Pathways of Hepatotoxicity Associated with HIV/SARS-CoV-2 Protease Inhibitors. Int J Mol Sci 2023; 24:ijms24097938. [PMID: 37175645 PMCID: PMC10178330 DOI: 10.3390/ijms24097938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Antiviral protease inhibitors are peptidomimetic molecules that block the active catalytic center of viral proteases and, thereby, prevent the cleavage of viral polyprotein precursors into maturation. They continue to be a key class of antiviral drugs that can be used either as boosters for other classes of antivirals or as major components of current regimens in therapies for the treatment of infections with human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, sustained/lifelong treatment with the drugs or drugs combined with other substance(s) often leads to severe hepatic side effects such as lipid abnormalities, insulin resistance, and hepatotoxicity. The underlying pathogenic mechanisms are not fully known and are under continuous investigation. This review focuses on the general as well as specific molecular mechanisms of the protease inhibitor-induced hepatotoxicity involving transporter proteins, apolipoprotein B, cytochrome P450 isozymes, insulin-receptor substrate 1, Akt/PKB signaling, lipogenic factors, UDP-glucuronosyltransferase, pregnane X receptor, hepatocyte nuclear factor 4α, reactive oxygen species, inflammatory cytokines, off-target proteases, and small GTPase Rab proteins related to ER-Golgi trafficking, organelle stress, and liver injury. Potential pharmaceutical/therapeutic solutions to antiviral drug-induced hepatic side effects are also discussed.
Collapse
Affiliation(s)
- Cheng Ji
- Research Center for Liver Disease, GI/Liver Division, Department of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
5
|
Oda K, Wlodawer A. Overview of the Properties of Glutamic Peptidases That Are Present in Plant and Bacterial Pathogens and Play a Role in Celiac Disease and Cancer. Biochemistry 2023; 62:672-694. [PMID: 36705990 DOI: 10.1021/acs.biochem.2c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Seven peptidase (proteinase) families─aspartic, cysteine, metallo, serine, glutamic, threonine, and asparagine─are in the peptidase database MEROPS, version 12.4 (https://www.ebi.ac.uk/merops/). The glutamic peptidase family is assigned two clans, GA and GB, and comprises six subfamilies. This perspective summarizes the unique features of their representatives. (1) G1, scytalidoglutamic peptidase, has a β-sandwich structure containing catalytic residues glutamic acid (E) and glutamine (Q), thus the name eqolisin. Most family members are pepstatin-insensitive and act as plant pathogens. (2) G2, preneck appendage protein, originates in phages, is a transmembrane protein, and its catalytic residues consist of glutamic and aspartic acids. (3) G3, strawberry mottle virus glutamic peptidase, originates in viruses and has a β-sandwich structure with catalytic residues E and Q. Neprosin has propyl endopeptidase activity, is associated with celiac disease, has a β-sandwich structure, and contains catalytic residues E-E and Q-tryptophan. (4) G4, Tiki peptidase, of the erythromycin esterase family, is a transmembrane protein, and its catalytic residues are E-histidine pairs. (5) G5, RCE1 peptidase, is associated with cancer, is a transmembrane protein, and its catalytic residues are E-histidine and asparagine-histidine. Microcystinase, a bacterial toxin, is a transmembrane protein with catalytic residues E-histidine and asparagine-histidine. (6) G6, Ras/Rap1-specific peptidase, is a bacterial pathogen, a transmembrane protein, and its catalytic residues are E-histidine pairs. This family's common features are that their catalytic residues consist of a glutamic acid and another (variable) amino acid and that they exhibit a diversity of biological functions─plant and bacterial pathogens and involvement in celiac disease and cancer─that suggests they are viable drug targets.
Collapse
Affiliation(s)
- Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto 606-8585, Japan
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
6
|
Alexander JAN, Worrall LJ, Hu J, Vuckovic M, Satishkumar N, Poon R, Sobhanifar S, Rosell FI, Jenkins J, Chiang D, Mosimann WA, Chambers HF, Paetzel M, Chatterjee SS, Strynadka NCJ. Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus. Nature 2023; 613:375-382. [PMID: 36599987 PMCID: PMC9834060 DOI: 10.1038/s41586-022-05583-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023]
Abstract
Broad-spectrum β-lactam antibiotic resistance in Staphylococcus aureus is a global healthcare burden1,2. In clinical strains, resistance is largely controlled by BlaR13, a receptor that senses β-lactams through the acylation of its sensor domain, inducing transmembrane signalling and activation of the cytoplasmic-facing metalloprotease domain4. The metalloprotease domain has a role in BlaI derepression, inducing blaZ (β-lactamase PC1) and mecA (β-lactam-resistant cell-wall transpeptidase PBP2a) expression3-7. Here, overcoming hurdles in isolation, we show that BlaR1 cleaves BlaI directly, as necessary for inactivation, with no requirement for additional components as suggested previously8. Cryo-electron microscopy structures of BlaR1-the wild type and an autocleavage-deficient F284A mutant, with or without β-lactam-reveal a domain-swapped dimer that we suggest is critical to the stabilization of the signalling loops within. BlaR1 undergoes spontaneous autocleavage in cis between Ser283 and Phe284 and we describe the catalytic mechanism and specificity underlying the self and BlaI cleavage. The structures suggest that allosteric signalling emanates from β-lactam-induced exclusion of the prominent extracellular loop bound competitively in the sensor-domain active site, driving subsequent dynamic motions, including a shift in the sensor towards the membrane and accompanying changes in the zinc metalloprotease domain. We propose that this enhances the expulsion of autocleaved products from the active site, shifting the equilibrium to a state that is permissive of efficient BlaI cleavage. Collectively, this study provides a structure of a two-component signalling receptor that mediates action-in this case, antibiotic resistance-through the direct cleavage of a repressor.
Collapse
Affiliation(s)
- J Andrew N Alexander
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam J Worrall
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
- HRMEM Facility, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jinhong Hu
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nidhi Satishkumar
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Raymond Poon
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Solmaz Sobhanifar
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Federico I Rosell
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua Jenkins
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Chiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wesley A Mosimann
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Henry F Chambers
- Division of Infectious Diseases, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Som S Chatterjee
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada.
- HRMEM Facility, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
Shilagardi K, Spear ED, Abraham R, Griffin DE, Michaelis S. The Integral Membrane Protein ZMPSTE24 Protects Cells from SARS-CoV-2 Spike-Mediated Pseudovirus Infection and Syncytia Formation. mBio 2022; 13:e0254322. [PMID: 36197088 PMCID: PMC9601121 DOI: 10.1128/mbio.02543-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact on global public health, emphasizing the importance of understanding innate immune mechanisms and cellular restriction factors that cells can harness to fight viral infections. The multimembrane-spanning zinc metalloprotease ZMPSTE24 is one such restriction factor. ZMPSTE24 has a well-characterized proteolytic role in the maturation of prelamin A, precursor of the nuclear scaffold protein lamin A. An apparently unrelated role for ZMPSTE24 in viral defense involves its interaction with the interferon-inducible membrane proteins (IFITMs), which block virus-host cell fusion by rigidifying cellular membranes and thereby prevent viral infection. ZMPSTE24, like the IFITMs, defends cells against a broad spectrum of enveloped viruses. However, its ability to protect against coronaviruses has never been examined. Here, we show that overexpression of ZMPSTE24 reduces the efficiency of cellular infection by SARS-CoV-2 Spike-pseudotyped lentivirus and that genetic knockout or small interfering RNA-mediated knockdown of endogenous ZMPSTE24 enhances infectivity. We further demonstrate a protective role for ZMPSTE24 in a Spike-ACE2-dependent cell-cell fusion assay. In both assays, a catalytic dead version of ZMPSTE24 is equally as protective as the wild-type protein, indicating that ZMPSTE24's proteolytic activity is not required for defense against SARS-CoV-2. Finally, we demonstrate by plaque assays that Zmpste24-/- mouse cells show enhanced infection by a genuine coronavirus, mouse hepatitis virus (MHV). This study extends the range of viral protection afforded by ZMPSTE24 to include coronaviruses and suggests that targeting ZMPSTE24's mechanism of viral defense could have therapeutic benefit. IMPORTANCE The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has underscored the importance of understanding intrinsic cellular components that can be harnessed as the cell's first line of defense to fight against viral infection. Our paper focuses on one such protein, the integral membrane protease ZMPSTE24, which interacts with interferon-inducible transmembrane proteins (IFITMs). IFITMs interfere with virus entry by inhibiting fusion between viral and host cell membranes, and ZMPSTE24 appears to contribute to this inhibitory activity. ZMPSTE24 has been shown to defend cells against several, but not all, enveloped viruses. In this study, we extend ZMPSTE24's reach to include coronaviruses, by showing that ZMPSTE24 protects cells from SARS-CoV-2 pseudovirus infection, Spike protein-mediated cell-cell fusion, and infection by the mouse coronavirus MHV. This work lays the groundwork for further studies to decipher the mechanistic role of ZMPSTE24 in blocking the entry of SARS-CoV-2 and other viruses into cells.
Collapse
Affiliation(s)
- Khurts Shilagardi
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Eric D. Spear
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Rachy Abraham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Susan Michaelis
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Schoina C, Rodenburg SYA, Meijer HJG, Seidl MF, Lacambra LT, Bouwmeester K, Govers F. Mining oomycete proteomes for metalloproteases leads to identification of candidate virulence factors in Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2021; 22:551-563. [PMID: 33657266 PMCID: PMC8035641 DOI: 10.1111/mpp.13043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Pathogens deploy a wide range of pathogenicity factors, including a plethora of proteases, to modify host tissue or manipulate host defences. Metalloproteases (MPs) have been implicated in virulence in several animal and plant pathogens. Here we investigated the repertoire of MPs in 46 stramenopile species including 37 oomycetes, 5 diatoms, and 4 brown algae. Screening their complete proteomes using hidden Markov models (HMMs) trained for MP detection resulted in over 4,000 MPs, with most species having between 65 and 100 putative MPs. Classification in clans and families according to the MEROPS database showed a highly diverse MP repertoire in each species. Analyses of domain composition, orthologous groups, distribution, and abundance within the stramenopile lineage revealed a few oomycete-specific MPs and MPs potentially related to lifestyle. In-depth analyses of MPs in the plant pathogen Phytophthora infestans revealed 91 MPs, divided over 21 protein families, including 25 MPs with a predicted signal peptide or signal anchor. Expression profiling showed different patterns of MP gene expression during pre-infection and infection stages. When expressed in leaves of Nicotiana benthamiana, 12 MPs changed the sizes of lesions caused by inoculation with P. infestans; with 9 MPs the lesions were larger, suggesting a positive effect on the virulence of P. infestans, while 3 MPs had a negative effect, resulting in smaller lesions. To the best of our knowledge, this is the first systematic inventory of MPs in oomycetes and the first study pinpointing MPs as potential pathogenicity factors in Phytophthora.
Collapse
Affiliation(s)
- Charikleia Schoina
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Present address:
Enza Zaden Research and Development B. V.EnkhuizenNetherlands
| | - Sander Y. A. Rodenburg
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Bioinformatics GroupWageningen University and ResearchWageningenNetherlands
- Present address:
The Hyve B. V.UtrechtNetherlands
| | - Harold J. G. Meijer
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Wageningen Plant ResearchWageningen University and ResearchWageningenNetherlands
| | - Michael F. Seidl
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Present address:
Theoretical Biology & Bioinformatics groupDepartment of BiologyUtrecht UniversityUtrechtNetherlands
| | - Lysette T. Lacambra
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Present address:
East‐West Seed Knowledge TransferNonthaburiThailand
| | - Klaas Bouwmeester
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Biosystematics GroupWageningen University and ResearchWageningenNetherlands
| | - Francine Govers
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
| |
Collapse
|
9
|
Characterization of the Features of Water Inside the SecY Translocon. J Membr Biol 2021; 254:133-139. [PMID: 33811496 DOI: 10.1007/s00232-021-00178-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Despite extended experimental and computational studies, the mechanism regulating membrane protein folding and stability in cell membranes is not fully understood. In this review, I will provide a personal and partial account of the scientific efforts undertaken by Dr. Stephen White to shed light on this topic. After briefly describing the role of water and the hydrophobic effect on cellular processes, I will discuss the physical chemistry of water confined inside the SecY translocon pore. I conclude with a review of recent literature that attempts to answer fundamental questions on the pathway and energetics of translocon-guided membrane protein insertion.
Collapse
|
10
|
Alavi MV. OMA1-An integral membrane protease? BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2021; 1869:140558. [PMID: 33130089 PMCID: PMC7770061 DOI: 10.1016/j.bbapap.2020.140558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/11/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022]
Abstract
OMA1 is a mitochondrial protease. Among its substrates are DELE1, a signaling peptide, which can elicit the integrated stress response, as well as the membrane-shaping dynamin-related GTPase OPA1, which can drive mitochondrial outer membrane permeabilization. OMA1 is dormant under physiological conditions but rapidly activated upon mitochondrial stress, such as loss of membrane potential or excessive reactive oxygen species. Accordingly, OMA1 was found to be activated in a number of disease conditions, including cancer and neurodegeneration. OMA1 has a predicted transmembrane domain and is believed to be tethered to the mitochondrial inner membrane. Yet, its structure has not been resolved and its context-dependent regulation remains obscure. Here, I review the literature with focus on OMA1's biochemistry. I provide a good homology model of OMA1's active site with a root-mean-square deviation of 0.9 Å and a DALI Z-score of 19.8. And I build a case for OMA1 actually being an integral membrane protease based on OMA1's role in the generation of small signaling peptides, its functional overlap with PARL, and OMA1's homology with ZMPSTE24. The refined understanding of this important enzyme can help with the design of tool compounds and development of chemical probes in the future.
Collapse
Affiliation(s)
- Marcel V Alavi
- 712 North Inc., QB3 Incubator at UC Berkeley, 130 Stanley Hall, #3220, Berkeley CA-94720, USA.
| |
Collapse
|
11
|
Dong Z, Yang S, Lee BH. Bioinformatic mapping of a more precise Aspergillus niger degradome. Sci Rep 2021; 11:693. [PMID: 33436802 PMCID: PMC7804941 DOI: 10.1038/s41598-020-80028-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Aspergillus niger has the ability to produce a large variety of proteases, which are of particular importance for protein digestion, intracellular protein turnover, cell signaling, flavour development, extracellular matrix remodeling and microbial defense. However, the A. niger degradome (the full repertoire of peptidases encoded by the A. niger genome) available is not accurate and comprehensive. Herein, we have utilized annotations of A. niger proteases in AspGD, JGI, and version 12.2 MEROPS database to compile an index of at least 232 putative proteases that are distributed into the 71 families/subfamilies and 26 clans of the 6 known catalytic classes, which represents ~ 1.64% of the 14,165 putative A. niger protein content. The composition of the A. niger degradome comprises ~ 7.3% aspartic, ~ 2.2% glutamic, ~ 6.0% threonine, ~ 17.7% cysteine, ~ 31.0% serine, and ~ 35.8% metallopeptidases. One hundred and two proteases have been reassigned into the above six classes, while the active sites and/or metal-binding residues of 110 proteases were recharacterized. The probable physiological functions and active site architectures of these peptidases were also investigated. This work provides a more precise overview of the complete degradome of A. niger, which will no doubt constitute a valuable resource and starting point for further experimental studies on the biochemical characterization and physiological roles of these proteases.
Collapse
Affiliation(s)
- Zixing Dong
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid-Line of South-To-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China.
| | - Shuangshuang Yang
- College of Physical Education, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Byong H Lee
- Department of Microbiology/Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Wood KM, Spear ED, Mossberg OW, Odinammadu KO, Xu W, Michaelis S. Defining substrate requirements for cleavage of farnesylated prelamin A by the integral membrane zinc metalloprotease ZMPSTE24. PLoS One 2020; 15:e0239269. [PMID: 33315887 PMCID: PMC7735620 DOI: 10.1371/journal.pone.0239269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
The integral membrane zinc metalloprotease ZMPSTE24 plays a key role in the proteolytic processing of farnesylated prelamin A, the precursor of the nuclear scaffold protein lamin A. Failure of this processing step results in the accumulation of permanently farnesylated forms of prelamin A which cause the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS), as well as related progeroid disorders, and may also play a role in physiological aging. ZMPSTE24 is an intriguing and unusual protease because its active site is located inside of a closed intramembrane chamber formed by seven transmembrane spans with side portals in the chamber permitting substrate entry. The specific features of prelamin A that make it the sole known substrate for ZMPSTE24 in mammalian cells are not well-defined. At the outset of this work it was known that farnesylation is essential for prelamin A cleavage in vivo and that the C-terminal region of prelamin A (41 amino acids) is sufficient for recognition and processing. Here we investigated additional features of prelamin A that are required for cleavage by ZMPSTE24 using a well-established humanized yeast system. We analyzed the 14-residue C-terminal region of prelamin A that lies between the ZMPSTE24 cleavage site and the farnesylated cysteine, as well 23-residue region N-terminal to the cleavage site, by generating a series of alanine substitutions, alanine additions, and deletions in prelamin A. Surprisingly, we found that there is considerable flexibility in specific requirements for the length and composition of these regions. We discuss how this flexibility can be reconciled with ZMPSTE24's selectivity for prelamin A.
Collapse
Affiliation(s)
- Kaitlin M. Wood
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Eric D. Spear
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Otto W. Mossberg
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kamsi O. Odinammadu
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Wenxin Xu
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
13
|
Babatz TD, Spear ED, Xu W, Sun OL, Nie L, Carpenter EP, Michaelis S. Site specificity determinants for prelamin A cleavage by the zinc metalloprotease ZMPSTE24. J Biol Chem 2020; 296:100165. [PMID: 33293369 PMCID: PMC7948416 DOI: 10.1074/jbc.ra120.015792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 01/11/2023] Open
Abstract
The integral membrane zinc metalloprotease ZMPSTE24 is important for human health and longevity. ZMPSTE24 performs a key proteolytic step in maturation of prelamin A, the farnesylated precursor of the nuclear scaffold protein lamin A. Mutations in the genes encoding either prelamin A or ZMPSTE24 that prevent cleavage cause the premature aging disease Hutchinson–Gilford progeria syndrome (HGPS) and related progeroid disorders. ZMPSTE24 has a novel structure, with seven transmembrane spans that form a large water-filled membrane chamber whose catalytic site faces the chamber interior. Prelamin A is the only known mammalian substrate for ZMPSTE24; however, the basis of this specificity remains unclear. To define the sequence requirements for ZMPSTE24 cleavage, we mutagenized the eight residues flanking the prelamin A scissile bond (TRSY↓LLGN) to all other 19 amino acids, creating a library of 152 variants. We also replaced these eight residues with sequences derived from putative ZMPSTE24 cleavage sites from amphibian, bird, and fish prelamin A. Cleavage of prelamin A variants was assessed using an in vivo yeast assay that provides a sensitive measure of ZMPSTE24 processing efficiency. We found that residues on the C-terminal side of the cleavage site are most sensitive to changes. Consistent with other zinc metalloproteases, including thermolysin, ZMPSTE24 preferred hydrophobic residues at the P1’ position (Leu647), but in addition, showed a similar, albeit muted, pattern at P2’. Our findings begin to define a consensus sequence for ZMPSTE24 that helps to clarify how this physiologically important protease functions and may ultimately lead to identifying additional substrates.
Collapse
Affiliation(s)
- Timothy D Babatz
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore Maryland, USA
| | - Eric D Spear
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore Maryland, USA
| | - Wenxin Xu
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore Maryland, USA
| | - Olivia L Sun
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore Maryland, USA
| | - Laiyin Nie
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Elisabeth P Carpenter
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore Maryland, USA.
| |
Collapse
|
14
|
Reversible autoinhibitory regulation of Escherichia coli metallopeptidase BepA for selective β-barrel protein degradation. Proc Natl Acad Sci U S A 2020; 117:27989-27996. [PMID: 33093205 DOI: 10.1073/pnas.2010301117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Escherichia coli periplasmic zinc-metallopeptidase BepA normally functions by promoting maturation of LptD, a β-barrel outer-membrane protein involved in biogenesis of lipopolysaccharides, but degrades it when its membrane assembly is hampered. These processes should be properly regulated to ensure normal biogenesis of LptD. The underlying mechanism of regulation, however, remains to be elucidated. A recently solved BepA structure has revealed unique features: In particular, the active site is buried in the protease domain and conceivably inaccessible for substrate degradation. Additionally, the His-246 residue in the loop region containing helix α9 (α9/H246 loop), which has potential flexibility and covers the active site, coordinates the zinc ion as the fourth ligand to exclude a catalytic water molecule, thereby suggesting that the crystal structure of BepA represents a latent form. To examine the roles of the α9/H246 loop in the regulation of BepA activity, we constructed BepA mutants with a His-246 mutation or a deletion of the α9/H246 loop and analyzed their activities in vivo and in vitro. These mutants exhibited an elevated protease activity and, unlike the wild-type BepA, degraded LptD that is in the normal assembly pathway. In contrast, tethering of the α9/H246 loop repressed the LptD degradation, which suggests that the flexibility of this loop is important to the exhibition of protease activity. Based on these results, we propose that the α9/H246 loop undergoes a reversible structural change that enables His-246-mediated switching (histidine switch) of its protease activity, which is important for regulated degradation of stalled/misassembled LptD.
Collapse
|
15
|
Wang R, Zhao P, Ge X, Tian P. Overview of Alternaria alternata Membrane Proteins. Indian J Microbiol 2020; 60:269-282. [PMID: 32647391 DOI: 10.1007/s12088-020-00873-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/11/2020] [Indexed: 11/29/2022] Open
Abstract
Alternaria species are mainly saprophytic fungi, but some pathotypes of Alternaria alternata infect economically important plants including cereal crops, vegetables and fruits. Specially, A. alternata generates toxins which contaminate food and feed. To date, management of A. alternata relies primarily on fungicides. However, the control efficacy in most cases is below expectation due to ubiquity of A. alternata and resistance to fungicides. To mitigate resistance and develop long-lasting fungicides, uncovering multiple rather than single target is a prerequisite. Membrane proteins are potential targets of fungicides owing to wide participation in myriad biochemical events especially material transport, signal transduction and pathogenicity. However, so far, little is known about the distribution and molecular structure of A. alternata membrane proteins (AAMPs). Herein we summarize AAMPs by data mining and subsequent structure prediction. We also outline the state-of-the-art research advances of AAMPs especially those closely related to pathogenicity. Overall, this review aims to portray a picture of AAMPs and provide valuable insights for future development of highly efficient fungicides towards A. alternata or beyond.
Collapse
Affiliation(s)
- Ruyi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023 People's Republic of China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| |
Collapse
|
16
|
Liu X, Zhao J, Zhang Y, Ubarretxena-Belandia I, Forth S, Lieberman RL, Wang C. Substrate-Enzyme Interactions in Intramembrane Proteolysis: γ-Secretase as the Prototype. Front Mol Neurosci 2020; 13:65. [PMID: 32508589 PMCID: PMC7248309 DOI: 10.3389/fnmol.2020.00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/03/2020] [Indexed: 11/15/2022] Open
Abstract
Intramembrane-cleaving proteases (I-CLiPs) catalyze the hydrolysis of peptide bonds within the transmembrane regions of membrane protein substrates, releasing bioactive fragments that play roles in many physiological and pathological processes. Based on their catalytic mechanism and nucleophile, I-CLiPs are classified into metallo, serine, aspartyl, and glutamyl proteases. Presenilin is the most prominent among I-CLiPs, as the catalytic subunit of γ-secretase (GS) complex responsible for cleaving the amyloid precursor protein (APP) and Notch, as well as many other membrane substrates. Recent cryo-electron microscopy (cryo-EM) structures of GS provide new details on how presenilin recognizes and cleaves APP and Notch. First, presenilin transmembrane helix (TM) 2 and 6 are dynamic. Second, upon binding to GS, the substrate TM helix is unwound from the C-terminus, resulting in an intermolecular β-sheet between the substrate and presenilin. The transition of the substrate C-terminus from α-helix to β-sheet is proposed to expose the scissile peptide bond in an extended conformation, leaving it susceptible to protease cleavage. Despite the astounding new insights in recent years, many crucial questions remain unanswered regarding the inner workings of γ-secretase, however. Key unanswered questions include how the enzyme recognizes and recruits substrates, how substrates are translocated from an initial docking site to the active site, how active site aspartates recruit and coordinate catalytic water, and the nature of the mechanisms of processive trimming of the substrate and product release. Answering these questions will have important implications for drug discovery aimed at selectively reducing the amyloid load in Alzheimer's disease (AD) with minimal side effects.
Collapse
Affiliation(s)
- Xinyue Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, United States
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Scott Forth
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
17
|
Khalatbari A, Mishra P, Han H, He Y, MacVeigh-Aloni M, Ji C. Ritonavir and Lopinavir Suppress RCE1 and CAAX Rab Proteins Sensitizing the Liver to Organelle Stress and Injury. Hepatol Commun 2020; 4:932-944. [PMID: 32490327 PMCID: PMC7262282 DOI: 10.1002/hep4.1515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/02/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023] Open
Abstract
Organelle stress and Liver injuries often occur in human immunodeficiency virus (HIV) infected patients under anti-HIV therapies, yet few molecular off-targets of anti-HIV drugs have been identified in the liver. Here, we found through total RNA sequencing that the transcription of a host protease Ras converting CAAX endopeptidase 1 (RCE1) was altered in HepG2 cells treated with anti-HIV protease inhibitors, ritonavir and lopinavir. Levels of RCE1 protein were inhibited in HepG2 and primary mouse hepatocytes and in the liver of mice treated with the anti-HIV drugs, which were accompanied with inhibition of two potential substrates of RCE1, small GTP binding protein Rab13 and Rab18, which are with a common CAAX motif and known to regulate the ER-Golgi traffic or lipogenesis. Neither Rce1 transcription nor RCE1 protein level was inhibited by Brefeldin A, which is known to interfere with the ER-Golgi traffic causing Golgi stress. Knocking down Rce1 with RNA interference increased ritonavir and lopinavir-induced cell death as well as expression of Golgi stress response markers, TFE3, HSP47 and GCP60, in both primary mouse hepatocytes and mouse liver, and deteriorated alcohol-induced alanine aminotransferase (ALT) and fatty liver injury in mice. In addition, overexpressing Rab13 or Rab18 in primary human hepatocytes reduced partially the anti-HIV drugs and alcohol-induced Golgi fragmentation, Golgi stress response, and cell death injury. Conclusion: We identified a mechanism linking a host protease and its substrates, small guanosine triphosphate-binding proteins, to the anti-HIV drug-induced Golgi dysfunction, organelle stress response, and fatty liver injury.
Collapse
Affiliation(s)
- Atousa Khalatbari
- Department of Medicine Keck School of Medicine of USC University of Southern California Los Angeles CA
| | - Pratibha Mishra
- Department of Medicine Keck School of Medicine of USC University of Southern California Los Angeles CA
| | - Hui Han
- Department of Medicine Keck School of Medicine of USC University of Southern California Los Angeles CA
| | - Yuxin He
- Department of Medicine Keck School of Medicine of USC University of Southern California Los Angeles CA
| | - Michelle MacVeigh-Aloni
- Department of Medicine Keck School of Medicine of USC University of Southern California Los Angeles CA
| | - Cheng Ji
- Department of Medicine Keck School of Medicine of USC University of Southern California Los Angeles CA
| |
Collapse
|
18
|
Goblirsch BR, Wiener MC. Ste24: An Integral Membrane Protein Zinc Metalloprotease with Provocative Structure and Emergent Biology. J Mol Biol 2020; 432:5079-5090. [PMID: 32199981 PMCID: PMC7172729 DOI: 10.1016/j.jmb.2020.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 01/30/2023]
Abstract
Ste24, an integral membrane protein zinc metalloprotease, is found in every kingdom of eukaryotes. It was discovered approximately 20 years ago by yeast genetic screens identifying it as a factor responsible for processing the yeast mating a-factor pheromone. In animals, Ste24 processes prelamin A, a component of the nuclear lamina; mutations in the human ortholog of Ste24 diminish its activity, giving rise to genetic diseases of accelerated aging (progerias). Additionally, lipodystrophy, acquired from the standard highly active antiretroviral therapy used to treat AIDS patients, likely results from off-target interactions of HIV (aspartyl) protease inhibitor drugs with Ste24. Ste24 possesses a novel “α-barrel” structure, consisting of a ring of seven transmembrane α-helices enclosing a large (> 12,000 Å3) interior volume that contains the active-site and substrate-binding region; this “membrane-interior reaction chamber” is unprecedented in integral membrane protein structures. Additionally, the surface of the membrane-interior reaction chamber possesses a strikingly large negative electrostatic surface potential, adding additional “functional mystery.” Recent publications implicate Ste24 as a key factor in several endoplasmic reticulum processes, including the unfolded protein response, a cellular stress response of the endoplasmic reticulum, and removal of misfolded proteins from the translocon. Ste24, with its provocative structure, enigmatic mechanism, and recently emergent new biological roles including “translocon unclogger” and (non-enyzmatic) broad-spectrum viral restriction factor, presents far differently than before 2016, when it was viewed as a “CAAX protease” responsible for cleavage of prenylated (farnesylated or geranylgeranylated) substrates. The emphasis of this review is on Ste24 of the “Post-CAAX-Protease Era.” Ste24 is a eukaryotic integral membrane protein of novel structure. Ste24 is a gluzincin ZMP whose structure/function relationships are poorly explored. ZMP core, ZMP accessory, and “ɑ-barrel modules form the Ste24 tripartite architecture. Emergent biology of Ste24 includes roles as a translocon unclogger and a viral restriction factor.
Collapse
Affiliation(s)
- Brandon R Goblirsch
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Michael C Wiener
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
19
|
Belluzo BS, Abriata LA, Giannini E, Mihovilcevic D, Dal Peraro M, Llarrull LI. An experiment-informed signal transduction model for the role of the Staphylococcus aureus MecR1 protein in β-lactam resistance. Sci Rep 2019; 9:19558. [PMID: 31862951 PMCID: PMC6925264 DOI: 10.1038/s41598-019-55923-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
The treatment of hospital- and community-associated infections by methicillin-resistant Staphylococcus aureus (MRSA) is a perpetual challenge. This Gram-positive bacterium is resistant specifically to β-lactam antibiotics, and generally to many other antibacterial agents. Its resistance mechanisms to β-lactam antibiotics are activated only when the bacterium encounters a β-lactam. This activation is regulated by the transmembrane sensor/signal transducer proteins BlaR1 and MecR1. Neither the transmembrane/metalloprotease domain, nor the complete MecR1 and BlaR1 proteins, are isolatable for mechanistic study. Here we propose a model for full-length MecR1 based on homology modeling, residue coevolution data, a new extensive experimental mapping of transmembrane topology, partial structures, molecular simulations, and available NMR data. Our model defines the metalloprotease domain as a hydrophilic transmembrane chamber effectively sealed by the apo-sensor domain. It proposes that the amphipathic helices inserted into the gluzincin domain constitute the route for transmission of the β-lactam-binding event in the extracellular sensor domain, to the intracellular and membrane-embedded zinc-containing active site. From here, we discuss possible routes for subsequent activation of proteolytic action. This study provides the first coherent model of the structure of MecR1, opening routes for future functional investigations on how β-lactam binding culminates in the proteolytic degradation of MecI.
Collapse
Affiliation(s)
- Bruno S Belluzo
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling - École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland
| | - Estefanía Giannini
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - Damila Mihovilcevic
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling - École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland
| | - Leticia I Llarrull
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina. .,Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000, Rosario, Argentina.
| |
Collapse
|
20
|
Beard HA, Barniol-Xicota M, Yang J, Verhelst SHL. Discovery of Cellular Roles of Intramembrane Proteases. ACS Chem Biol 2019; 14:2372-2388. [PMID: 31287658 DOI: 10.1021/acschembio.9b00404] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intramembrane proteases (IMPs) are localized within lipid bilayers of membranes-either the cell membrane or membranes of various organelles. Cleavage of substrates often results in release from the membrane, leading to a downstream biological effect. This mechanism allows different signaling events to happen through intramembrane proteolysis. Over the years, various mechanistically distinct families of IMPs have been discovered, but the research progress has generally been slower than for soluble proteases due to the challenges associated with membrane proteins. In this review we summarize how each mechanistic family of IMPs was discovered, which chemical tools are available for the study of IMPs, and which techniques have been developed for the discovery of IMP substrates. Finally, we discuss the various roles in cellular physiology of some of these IMPs.
Collapse
Affiliation(s)
- Hester A. Beard
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Marta Barniol-Xicota
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Jian Yang
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Steven H. L. Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
21
|
Goblirsch BR, Pryor EE, Wiener MC. The tripartite architecture of the eukaryotic integral membrane protein zinc metalloprotease Ste24. Proteins 2019; 88:604-615. [PMID: 31644822 PMCID: PMC7168092 DOI: 10.1002/prot.25841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Abstract
Ste24 enzymes, a family of eukaryotic integral membrane proteins, are zinc metalloproteases (ZMPs) originally characterized as “CAAX proteases” targeting prenylated substrates, including a‐factor mating pheromone in yeast and prelamin A in humans. Recently, Ste24 was shown to also cleave nonprenylated substrates. Reduced activity of the human ortholog, HsSte24, is linked to multiple disease states (laminopathies), including progerias and lipid disorders. Ste24 possesses a unique “α‐barrel” structure consisting of seven transmembrane (TM) α‐helices encircling a large intramembranous cavity (~14 000 Å3). The catalytic zinc, coordinated via a HExxH…E/H motif characteristic of gluzincin ZMPs, is positioned at one of the cavity's bases. The interrelationship between Ste24 as a gluzincin, a long‐studied class of soluble ZMPs, and as a novel cavity‐containing integral membrane protein protease has been minimally explored to date. Informed by homology to well‐characterized soluble, gluzincin ZMPs, we develop a model of Ste24 that provides a conceptual framework for this enzyme family, suitable for development and interpretation of structure/function studies. The model consists of an interfacial, zinc‐containing “ZMP Core” module surrounded by a “ZMP Accessory” module, both capped by a TM helical “α‐barrel” module of as yet unknown function. Multiple sequence alignment of 58 Ste24 orthologs revealed 38 absolutely conserved residues, apportioned unequally among the ZMP Core (18), ZMP Accessory (13), and α‐barrel (7) modules. This Tripartite Architecture representation of Ste24 provides a unified image of this enzyme family.
Collapse
Affiliation(s)
- Brandon R Goblirsch
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Edward E Pryor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Michael C Wiener
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
22
|
Kühnle N, Dederer V, Lemberg MK. Intramembrane proteolysis at a glance: from signalling to protein degradation. J Cell Sci 2019; 132:132/16/jcs217745. [DOI: 10.1242/jcs.217745] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
Over the last two decades, a group of unusual proteases, so-called intramembrane proteases, have become increasingly recognized for their unique ability to cleave peptide bonds within cellular membranes. They are found in all kingdoms of life and fulfil versatile functions ranging from protein maturation, to activation of signalling molecules, to protein degradation. In this Cell Science at a Glance article and the accompanying poster, we focus on intramembrane proteases in mammalian cells. By comparing intramembrane proteases in different cellular organelles, we set out to review their functions within the context of the roles of individual cellular compartments. Additionally, we exemplify their mode of action in relation to known substrates by distinguishing cleavage events that promote degradation of substrate from those that release active domains from the membrane bilayer.
Collapse
Affiliation(s)
- Nathalie Kühnle
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Verena Dederer
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Marius K. Lemberg
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Abstract
Membranes surrounding the biological cell and its internal compartments host proteins that catalyze chemical reactions essential for the functioning of the cell. Rather than being a passive structural matrix that holds membrane-embedded proteins in place, the membrane can largely shape the conformational energy landscape of membrane proteins and impact the energetics of their chemical reaction. Here, we highlight the challenges in understanding how lipids impact the conformational energy landscape of macromolecular membrane complexes whose functioning involves chemical reactions including proton transfer. We review here advances in our understanding of how chemical reactions occur at membrane interfaces gleaned with both theoretical and experimental advances using simple protein systems as guides. Our perspective is that of bridging experiments with theory to understand general physicochemical principles of membrane reactions, with a long term goal of furthering our understanding of the role of the lipids on the functioning of complex macromolecular assemblies at the membrane interface.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - M Joanne Lemieux
- University of Alberta , Department of Biochemistry, Membrane Protein Disease Research Group , Edmonton , Alberta T6G 2H7 , Canada
| |
Collapse
|
24
|
Yoshitani K, Hizukuri Y, Akiyama Y. An in vivo protease activity assay for investigating the functions of the Escherichia coli membrane protease HtpX. FEBS Lett 2019; 593:842-851. [PMID: 30903618 DOI: 10.1002/1873-3468.13368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 11/06/2022]
Abstract
Escherichia coli HtpX is an M48 family zinc metalloproteinase located in the cytoplasmic membrane. Previous studies suggested that it is involved in the quality control of membrane proteins. However, its in vivo proteolytic function has not been characterized in detail, mainly because the physiological substrates have not been identified and no model substrate that allows sensitive detection of the protease activity is available. We constructed a new model substrate of HtpX and established an in vivo semiquantitative and convenient protease activity assay system for HtpX. This system enables detection of differential protease activities of HtpX mutants carrying mutations in conserved regions. This system would also be useful for investigating the functions of HtpX and its homologs in other bacteria.
Collapse
Affiliation(s)
- Kohei Yoshitani
- Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Yohei Hizukuri
- Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| |
Collapse
|
25
|
Spear ED, Alford RF, Babatz TD, Wood KM, Mossberg OW, Odinammadu K, Shilagardi K, Gray JJ, Michaelis S. A humanized yeast system to analyze cleavage of prelamin A by ZMPSTE24. Methods 2019; 157:47-55. [PMID: 30625386 DOI: 10.1016/j.ymeth.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022] Open
Abstract
The nuclear lamins A, B, and C are intermediate filament proteins that form a nuclear scaffold adjacent to the inner nuclear membrane in higher eukaryotes, providing structural support for the nucleus. In the past two decades it has become evident that the final step in the biogenesis of the mature lamin A from its precursor prelamin A by the zinc metalloprotease ZMPSTE24 plays a critical role in human health. Defects in prelamin A processing by ZMPSTE24 result in premature aging disorders including Hutchinson Gilford Progeria Syndrome (HGPS) and related progeroid diseases. Additional evidence suggests that defects in prelamin A processing, due to diminished ZMPSTE24 expression or activity, may also drive normal physiological aging. Because of the important connection between prelamin A processing and human aging, there is increasing interest in how ZMPSTE24 specifically recognizes and cleaves its substrate prelamin A, encoded by LMNA. Here, we describe two humanized yeast systems we have recently developed to examine ZMPSTE24 processing of prelamin A. These systems differ from one another slightly. Version 1.0 is optimized to analyze ZMPSTE24 mutations, including disease alleles that may affect the function or stability of the protease. Using this system, we previously showed that some ZMPSTE24 disease alleles that affect stability can be rescued by the proteasome inhibitor bortezomib, which may have therapeutic implications. Version 2.0 is designed to analyze LMNA mutations at or near the ZMPSTE24 processing site to assess whether they permit or impede prelamin A processing. Together these systems offer powerful methodology to study ZMPSTE24 disease alleles and to dissect the specific residues and features of the lamin A tail that are required for recognition and cleavage by the ZMPSTE24 protease.
Collapse
Affiliation(s)
- Eric D Spear
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rebecca F Alford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Tim D Babatz
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kaitlin M Wood
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Otto W Mossberg
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kamsi Odinammadu
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Khurts Shilagardi
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
26
|
Hsu ET, Vervacke JS, Distefano MD, Hrycyna CA. A Quantitative FRET Assay for the Upstream Cleavage Activity of the Integral Membrane Proteases Human ZMPSTE24 and Yeast Ste24. Methods Mol Biol 2019; 2009:279-293. [PMID: 31152411 DOI: 10.1007/978-1-4939-9532-5_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The integral membrane protease ZMPSTE24 plays an important role in the lamin A maturation pathway. ZMPSTE24 is the only known enzyme to cleave the last 15 residues from the C-terminus of prelamin A, including a farnesylated and carboxyl methylated cysteine. Mutations in ZMPSTE24 lead to progeroid diseases with abnormal prelamin A accumulation in the nucleus. Ste24 is the yeast functional homolog of ZMPSTE24 and similarly cleaves the a-factor pheromone precursor during its posttranslational maturation. To complement established qualitative techniques used to detect the upstream enzymatic cleavage by ZMPSTE24 and Ste24, including gel-shift assays and mass spectrometry analyses, we developed an enzymatic in vitro FRET-based assay to quantitatively measure the upstream cleavage activities of these two enzymes. This assay uses either purified enzyme or enzyme in crude membrane preparations and a 33-amino acid a-factor analog peptide that is a substrate for both Ste24 and ZMPSTE24. This peptide contains a fluorophore (2-aminobenzoic acid-Abz) at its N-terminus and a quencher moiety (dinitrophenol-DNP) positioned four residues downstream from the cleavage site. Upon cleavage, a fluorescent signal is generated in real time at 420 nm that is proportional to cleavage of the peptide and these kinetic data are used to quantify activity. This assay should provide a useful tool for kinetic analysis and for studying the catalytic mechanism of both ZMPSTE24 and Ste24.
Collapse
Affiliation(s)
- Erh-Ting Hsu
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
27
|
Bradwell KR, Koparde VN, Matveyev AV, Serrano MG, Alves JMP, Parikh H, Huang B, Lee V, Espinosa-Alvarez O, Ortiz PA, Costa-Martins AG, Teixeira MMG, Buck GA. Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence. BMC Genomics 2018; 19:770. [PMID: 30355302 PMCID: PMC6201504 DOI: 10.1186/s12864-018-5112-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023] Open
Abstract
Background Trypanosoma conorhini and Trypanosoma rangeli, like Trypanosoma cruzi, are kinetoplastid protist parasites of mammals displaying divergent hosts, geographic ranges and lifestyles. Largely nonpathogenic T. rangeli and T. conorhini represent clades that are phylogenetically closely related to the T. cruzi and T. cruzi-like taxa and provide insights into the evolution of pathogenicity in those parasites. T. rangeli, like T. cruzi is endemic in many Latin American countries, whereas T. conorhini is tropicopolitan. T. rangeli and T. conorhini are exclusively extracellular, while T. cruzi has an intracellular stage in the mammalian host. Results Here we provide the first comprehensive sequence analysis of T. rangeli AM80 and T. conorhini 025E, and provide a comparison of their genomes to those of T. cruzi G and T. cruzi CL, respectively members of T. cruzi lineages TcI and TcVI. We report de novo assembled genome sequences of the low-virulent T. cruzi G, T. rangeli AM80, and T. conorhini 025E ranging from ~ 21–25 Mbp, with ~ 10,000 to 13,000 genes, and for the highly virulent and hybrid T. cruzi CL we present a ~ 65 Mbp in-house assembled haplotyped genome with ~ 12,500 genes per haplotype. Single copy orthologs of the two T. cruzi strains exhibited ~ 97% amino acid identity, and ~ 78% identity to proteins of T. rangeli or T. conorhini. Proteins of the latter two organisms exhibited ~ 84% identity. T. cruzi CL exhibited the highest heterozygosity. T. rangeli and T. conorhini displayed greater metabolic capabilities for utilization of complex carbohydrates, and contained fewer retrotransposons and multigene family copies, i.e. trans-sialidases, mucins, DGF-1, and MASP, compared to T. cruzi. Conclusions Our analyses of the T. rangeli and T. conorhini genomes closely reflected their phylogenetic proximity to the T. cruzi clade, and were largely consistent with their divergent life cycles. Our results provide a greater context for understanding the life cycles, host range expansion, immunity evasion, and pathogenesis of these trypanosomatids. Electronic supplementary material The online version of this article (10.1186/s12864-018-5112-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katie R Bradwell
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Present address: Institute for Genome Sciences, University of Maryland, Baltimore, MD, USA
| | - Vishal N Koparde
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrey V Matveyev
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Myrna G Serrano
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - João M P Alves
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | - Hardik Parikh
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Bernice Huang
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Vladimir Lee
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Paola A Ortiz
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | | | - Marta M G Teixeira
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | - Gregory A Buck
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA. .,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
28
|
Matralis AN, Xanthopoulos D, Huot G, Lopes-Paciencia S, Cole C, de Vries H, Ferbeyre G, Tsantrizos YS. Molecular tools that block maturation of the nuclear lamin A and decelerate cancer cell migration. Bioorg Med Chem 2018; 26:5547-5554. [PMID: 30309670 DOI: 10.1016/j.bmc.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
Abstract
Lamin A contributes to the structure of nuclei in all mammalian cells and plays an important role in cell division and migration. Mature lamin A is derived from a farnesylated precursor protein, known as prelamin A, which undergoes post-translational cleavage catalyzed by the zinc metalloprotease STE24 (ZPMSTE24). Accumulation of farnesylated prelamin A in the nuclear envelope compromises cell division, impairs mitosis and induces an increased expression of inflammatory gene products. ZMPSTE24 has been proposed as a potential therapeutic target in oncology. A library of peptidomimetic compounds were synthesized and screened for their ability to induce accumulation of prelamin A in cancer cells and block cell migration in pancreatic ductal adenocarcinoma cells. The results of this study suggest that inhibitors of lamin A maturation may interfere with cell migration, the biological process required for cancer metastasis.
Collapse
Affiliation(s)
- Alexios N Matralis
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Dimitrios Xanthopoulos
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Geneviève Huot
- Département de Biochimie et medicine moléculaire, CRCHUM, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Stéphane Lopes-Paciencia
- Département de Biochimie et medicine moléculaire, CRCHUM, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Charles Cole
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Hugo de Vries
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Gerardo Ferbeyre
- Département de Biochimie et medicine moléculaire, CRCHUM, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
29
|
Goblirsch BR, Arachea BT, Councell DJ, Wiener MC. Phosphoramidon inhibits the integral membrane protein zinc metalloprotease ZMPSTE24. Acta Crystallogr D Struct Biol 2018; 74:739-747. [PMID: 30082509 PMCID: PMC6079626 DOI: 10.1107/s2059798318003431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/27/2018] [Indexed: 11/10/2022] Open
Abstract
The integral membrane protein zinc metalloprotease ZMPSTE24 possesses a completely novel structure, comprising seven long kinked transmembrane helices that encircle a voluminous 14 000 Å3 cavity within the membrane. Functionally conserved soluble zinc metalloprotease residues are contained within this cavity. As part of an effort to understand the structural and functional relationships between ZMPSTE24 and soluble zinc metalloproteases, the inhibition of ZMPSTE24 by phosphoramidon [N-(α-rhamnopyranosyl-oxyhydroxyphosphinyl)-Leu-Trp], a transition-state analog and competitive inhibitor of multiple soluble zinc metalloproteases, especially gluzincins, has been characterized functionally and structurally. The functional results, the determination of preliminary IC50 values by the use of an intramolecular quenched-fluorescence fluorogenic peptide assay, indicate that phosphoramidon inhibits ZMPSTE24 in a manner consistent with competitive inhibition. The structural results, a 3.85 Å resolution X-ray crystal structure of a ZMPSTE24-phosphoramidon complex, indicate that the overall binding mode observed between phosphoramidon and soluble gluzincins is conserved. Based on the structural data, a significantly lower potency than that observed for soluble gluzincins such as thermolysin and neprilysin is predicted. These results strongly suggest a close relationship between soluble gluzincins and the integral membrane protein zinc metalloprotease ZMPSTE24.
Collapse
Affiliation(s)
- Brandon R. Goblirsch
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0886, USA
| | - Buenafe T. Arachea
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0886, USA
| | - Daniel J. Councell
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0886, USA
| | - Michael C. Wiener
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0886, USA
| |
Collapse
|
30
|
Yoo JI, O’Malley MA. Tuning Vector Stability and Integration Frequency Elevates Functional GPCR Production and Homogeneity in Saccharomyces cerevisiae. ACS Synth Biol 2018; 7:1763-1772. [PMID: 29871481 DOI: 10.1021/acssynbio.8b00036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane proteins play a valuable role in biotechnology, yet the difficulty of producing high yields of functional membrane protein limits their use in synthetic biology. The practical application of G protein-coupled receptors in whole cell biosensors, for example, is restricted to those that are functionally produced at the cell surface in the chosen host, limiting the range of detectable molecules. Here, we present a facile approach to significantly improve the yield and homogeneity of functional membrane proteins in Saccharomyces cerevisiae by altering only the choice of expression vector. Expression of a model GPCR, the human adenosine A2a receptor, from commonly used centromeric and episomal vectors leads to low yields and cellular heterogeneity due to plasmid loss in 20-90% of the cell population. In contrast, homogeneous production of GPCR is attained using a multisite integrating vector or a novel, modified high copy vector that does not require genomic integration or addition of any selection agents. Finally, we introduce a FACS-based screen, which enables rapid isolation of cells with 4- to 15-fold increases in gene dosage and up to a 9-fold increase in functional protein yield without loss of homogeneity compared to a strain isolated through conventional, low-throughput methods. These results can be extended to improve the cellular homogeneity and yield of other membrane proteins, expanding the repertoire of useful receptors for synthetic biology applications.
Collapse
Affiliation(s)
- Justin I. Yoo
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Michelle A. O’Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
31
|
Spear ED, Hsu ET, Nie L, Carpenter EP, Hrycyna CA, Michaelis S. ZMPSTE24 missense mutations that cause progeroid diseases decrease prelamin A cleavage activity and/or protein stability. Dis Model Mech 2018; 11:dmm.033670. [PMID: 29794150 PMCID: PMC6078402 DOI: 10.1242/dmm.033670] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
The human zinc metalloprotease ZMPSTE24 is an integral membrane protein crucial for the final step in the biogenesis of the nuclear scaffold protein lamin A, encoded by LMNA. After farnesylation and carboxyl methylation of its C-terminal CAAX motif, the lamin A precursor (prelamin A) undergoes proteolytic removal of its modified C-terminal 15 amino acids by ZMPSTE24. Mutations in LMNA or ZMPSTE24 that impede this prelamin A cleavage step cause the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS), and the related progeroid disorders mandibuloacral dysplasia type B (MAD-B) and restrictive dermopathy (RD). Here, we report the development of a ‘humanized yeast system’ to assay ZMPSTE24-dependent cleavage of prelamin A and examine the eight known disease-associated ZMPSTE24 missense mutations. All mutations show diminished prelamin A processing and fall into three classes, with defects in activity, protein stability or both. Notably, some ZMPSTE24 mutants can be rescued by deleting the E3 ubiquitin ligase Doa10, involved in endoplasmic reticulum (ER)-associated degradation of misfolded membrane proteins, or by treatment with the proteasome inhibitor bortezomib. This finding may have important therapeutic implications for some patients. We also show that ZMPSTE24-mediated prelamin A cleavage can be uncoupled from the recently discovered role of ZMPSTE24 in clearance of ER membrane translocon-clogged substrates. Together with the crystal structure of ZMPSTE24, this humanized yeast system can guide structure-function studies to uncover mechanisms of prelamin A cleavage, translocon unclogging, and membrane protein folding and stability. Summary: The zinc metalloprotease ZMPSTE24 performs the final step of prelamin A processing. Here, a yeast-based system shows differences in protein stability and activity for alleles of ZMPSTE24 that cause progeria disease.
Collapse
Affiliation(s)
- Eric D Spear
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Erh-Ting Hsu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Laiyin Nie
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Membrane properties that shape the evolution of membrane enzymes. Curr Opin Struct Biol 2018; 51:80-91. [PMID: 29597094 DOI: 10.1016/j.sbi.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Spectacular recent progress in structural biology has led to determination of the structures of many integral membrane enzymes that catalyze reactions in which at least one substrate also is membrane bound. A pattern of results seems to be emerging in which the active site chemistry of these enzymes is usually found to be analogous to what is observed for water soluble enzymes catalyzing the same reaction types. However, in light of the chemical, structural, and physical complexity of cellular membranes plus the presence of transmembrane gradients and potentials, these enzymes may be subject to membrane-specific regulatory mechanisms that are only now beginning to be uncovered. We review the membrane-specific environmental traits that shape the evolution of membrane-embedded biocatalysts.
Collapse
|
33
|
Niitsu A, Heal JW, Fauland K, Thomson AR, Woolfson DN. Membrane-spanning α-helical barrels as tractable protein-design targets. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630153 DOI: 10.1098/rstb.2016.0213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The rational (de novo) design of membrane-spanning proteins lags behind that for water-soluble globular proteins. This is due to gaps in our knowledge of membrane-protein structure, and experimental difficulties in studying such proteins compared to water-soluble counterparts. One limiting factor is the small number of experimentally determined three-dimensional structures for transmembrane proteins. By contrast, many tens of thousands of globular protein structures provide a rich source of 'scaffolds' for protein design, and the means to garner sequence-to-structure relationships to guide the design process. The α-helical coiled coil is a protein-structure element found in both globular and membrane proteins, where it cements a variety of helix-helix interactions and helical bundles. Our deep understanding of coiled coils has enabled a large number of successful de novo designs. For one class, the α-helical barrels-that is, symmetric bundles of five or more helices with central accessible channels-there are both water-soluble and membrane-spanning examples. Recent computational designs of water-soluble α-helical barrels with five to seven helices have advanced the design field considerably. Here we identify and classify analogous and more complicated membrane-spanning α-helical barrels from the Protein Data Bank. These provide tantalizing but tractable targets for protein engineering and de novo protein design.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Ai Niitsu
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Jack W Heal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Kerstin Fauland
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Andrew R Thomson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK .,School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.,BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
34
|
Abstract
Ras converting enzyme 1 (Rce1) is an integral membrane endoprotease localized to the endoplasmic reticulum that mediates the cleavage of the carboxyl-terminal three amino acids from CaaX proteins, whose members play important roles in cell signaling processes. Examples include the Ras family of small GTPases, the γ-subunit of heterotrimeric GTPases, nuclear lamins, and protein kinases and phosphatases. CaaX proteins, especially Ras, have been implicated in cancer, and understanding the post-translational modifications of CaaX proteins would provide insight into their biological function and regulation. Many proteolytic mechanisms have been proposed for Rce1, but sequence alignment, mutational studies, topology, and recent crystallographic data point to a novel mechanism involving a glutamate-activated water and an oxyanion hole. Studies using in vivo and in vitro reporters of Rce1 activity have revealed that the enzyme cleaves only prenylated substrates and the identity of the a2 amino residue in the Ca1a2X sequence is most critical for recognition, preferring Ile, Leu, or Val. Substrate mimetics can be somewhat effective inhibitors of Rce1 in vitro. Small-molecule inhibitor discovery is currently limited by the lack of structural information on a eukaryotic enzyme, but a set of 8-hydroxyquinoline derivatives has demonstrated an ability to mislocalize all three mammalian Ras isoforms, giving optimism that potent, selective inhibitors might be developed. Much remains to be discovered regarding cleavage specificity, the impact of chemical inhibition, and the potential of Rce1 as a therapeutic target, not only for cancer, but also for other diseases.
Collapse
Affiliation(s)
| | - Timothy M Dore
- a New York University Abu Dhabi , Abu Dhabi , United Arab Emirates.,b Department of Chemistry , University of Georgia , Athens , GA , USA
| | - Walter K Schmidt
- c Department of Biochemistry & Molecular Biology , University of Georgia , Athens , GA , USA
| |
Collapse
|
35
|
Majsec K, Bhuiyan NH, Sun Q, Kumari S, Kumar V, Ware D, van Wijk KJ. The Plastid and Mitochondrial Peptidase Network in Arabidopsis thaliana: A Foundation for Testing Genetic Interactions and Functions in Organellar Proteostasis. THE PLANT CELL 2017; 29:2687-2710. [PMID: 28947489 PMCID: PMC5728138 DOI: 10.1105/tpc.17.00481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 05/17/2023]
Abstract
Plant plastids and mitochondria have dynamic proteomes. Protein homeostasis in these organelles is maintained by a proteostasis network containing protein chaperones, peptidases, and their substrate recognition factors. However, many peptidases, as well as their functional connections and substrates, are poorly characterized. This review provides a systematic insight into the organellar peptidase network in Arabidopsis thaliana We present a compendium of known and putative Arabidopsis peptidases and inhibitors, and compare the distribution of plastid and mitochondrial peptidases to the total peptidase complement. This comparison shows striking biases, such as the (near) absence of cysteine and aspartic peptidases and peptidase inhibitors, whereas other peptidase families were exclusively organellar; reasons for such biases are discussed. A genome-wide mRNA-based coexpression data set was generated based on quality controlled and normalized public data, and used to infer additional plastid peptidases and to generate a coexpression network for 97 organellar peptidase baits (1742 genes, making 2544 edges). The graphical network includes 10 modules with specialized/enriched functions, such as mitochondrial protein maturation, thermotolerance, senescence, or enriched subcellular locations such as the thylakoid lumen or chloroplast envelope. The peptidase compendium, including the autophagy and proteosomal systems, and the annotation based on the MEROPS nomenclature of peptidase clans and families, is incorporated into the Plant Proteome Database.
Collapse
Affiliation(s)
- Kristina Majsec
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Nazmul H Bhuiyan
- School for Integrative Plant Sciences, Section Plant Biology, Cornell University, Ithaca, New York 14853
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Sunita Kumari
- Cold Spring Harbor laboratory, Cold Spring Harbor, New York 17724
| | - Vivek Kumar
- Cold Spring Harbor laboratory, Cold Spring Harbor, New York 17724
| | - Doreen Ware
- Cold Spring Harbor laboratory, Cold Spring Harbor, New York 17724
| | - Klaas J van Wijk
- School for Integrative Plant Sciences, Section Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
36
|
Zha S, Yin Y, Wang Y, Huang Y, Li Y, Wang Z. Cloning and functional analysis of farnesyl pyrophosphate synthase (FPPS) gene from Mylabris cichorii. Biotechnol Appl Biochem 2017; 64:667-676. [DOI: 10.1002/bab.1494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 12/30/2015] [Accepted: 02/28/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Shenfang Zha
- Chongqing Engineering Research Center for Fungal Insecticide; School of Life Science; Chongqing University; Chongqing People's Republic of China
| | - Youping Yin
- Chongqing Engineering Research Center for Fungal Insecticide; School of Life Science; Chongqing University; Chongqing People's Republic of China
| | - Yu Wang
- Chongqing Engineering Research Center for Fungal Insecticide; School of Life Science; Chongqing University; Chongqing People's Republic of China
| | - Yi Huang
- Chongqing Engineering Research Center for Fungal Insecticide; School of Life Science; Chongqing University; Chongqing People's Republic of China
| | - Yan Li
- Chongqing Engineering Research Center for Fungal Insecticide; School of Life Science; Chongqing University; Chongqing People's Republic of China
| | - Zhongkang Wang
- Chongqing Engineering Research Center for Fungal Insecticide; School of Life Science; Chongqing University; Chongqing People's Republic of China
| |
Collapse
|
37
|
Li S, Fu B, Wang L, Dorf ME. ZMPSTE24 Is Downstream Effector of Interferon-Induced Transmembrane Antiviral Activity. DNA Cell Biol 2017; 36:513-517. [PMID: 28594571 DOI: 10.1089/dna.2017.3791] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The zinc metalloprotease ZMPSTE24 is a constitutively and ubiquitously expressed host restriction factor that is responsible for limiting infection by a broad spectrum of enveloped viruses, including influenza A, vesicular stomatitis, zika, ebola, Sindbis, cowpox, and vaccinia viruses, but not murine leukemia or adenovirus. Antiviral function is independent of ZMPSTE24 enzymatic activity. Protein interaction and genetic complementation studies indicate that ZMPSTE24 is a component of a common antiviral pathway that is associated with interferon-induced transmembrane proteins. In vivo studies with zmpste24-deficient mice demonstrate the importance of ZMPSTE24 for antiviral defense.
Collapse
Affiliation(s)
- Shitao Li
- 1 Department of Physiological Sciences, Oklahoma State University , Stillwater, Oklahoma
| | - Bishi Fu
- 2 Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts.,3 College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Lingyan Wang
- 1 Department of Physiological Sciences, Oklahoma State University , Stillwater, Oklahoma
| | - Martin E Dorf
- 2 Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
38
|
Lee J, Ghosh S, Saier MH. Comparative genomic analyses of transport proteins encoded within the red algae Chondrus crispus, Galdieria sulphuraria, and Cyanidioschyzon merolae 11. JOURNAL OF PHYCOLOGY 2017; 53:503-521. [PMID: 28328149 PMCID: PMC5591647 DOI: 10.1111/jpy.12534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/21/2016] [Indexed: 05/15/2023]
Abstract
Galdieria sulphuraria and Cyanidioschyzon merolae are thermo-acidophilic unicellular red algal cousins capable of living in volcanic environments, although the former can additionally thrive in the presence of toxic heavy metals. Bioinformatic analyses of transport systems were carried out on their genomes, as well as that of the mesophilic multicellular red alga Chondrus crispus (Irish moss). We identified transport proteins related to the metabolic capabilities, physiological properties, and environmental adaptations of these organisms. Of note is the vast array of transporters encoded in G. sulphuraria capable of importing a variety of carbon sources, particularly sugars and amino acids, while C. merolae and C. crispus have relatively few such proteins. Chondrus crispus may prefer short chain acids to sugars and amino acids. In addition, the number of encoded proteins pertaining to heavy metal ion transport is highest in G. sulphuraria and lowest in C. crispus. All three organisms preferentially utilize secondary carriers over primary active transporters, suggesting that their primary source of energy derives from electron flow rather than substrate-level phosphorylation. Surprisingly, the percentage of inorganic ion transporters encoded in C. merolae more closely resembles that of C. crispus than G. sulphuraria, but only C. crispus appears to signal via voltage-gated cation channels and possess a Na+ /K+ -ATPase and a Na+ exporting pyrophosphatase. The results presented in this report further our understanding of the metabolic potential and toxic compound resistances of these three organisms.
Collapse
Affiliation(s)
| | | | - Milton H. Saier
- Corresponding Author: Tel +1 858 534 4084 Fax: +1 858 534 7108 (M.H. Saier)
| |
Collapse
|
39
|
Fu B, Wang L, Li S, Dorf ME. ZMPSTE24 defends against influenza and other pathogenic viruses. J Exp Med 2017; 214:919-929. [PMID: 28246125 PMCID: PMC5379977 DOI: 10.1084/jem.20161270] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/10/2016] [Accepted: 01/25/2017] [Indexed: 12/24/2022] Open
Abstract
Fu et al. show that ZMPSTE24 is a broad-spectrum antiviral protein that inhibits entry of selected fusogenic viruses by functioning as an effector in the IFITM pathway. ZMPSTE24 protease activity is dispensable for viral restriction. In mice, ZMPSTE24 deficiency increases susceptibility to influenza infection. Zinc metallopeptidase STE24 (ZMPSTE24) is a transmembrane metalloprotease whose catalytic activity is critical for processing lamin A on the inner nuclear membrane and clearing clogged translocons on the endoplasmic reticulum. We now report ZMPSTE24 is a virus-specific effector that restricts enveloped RNA and DNA viruses, including influenza A, Zika, Ebola, Sindbis, vesicular stomatitis, cowpox, and vaccinia, but not murine leukemia or adenovirus. ZMPSTE24-mediated antiviral action is independent of protease activity. Coimmunoprecipitation studies indicate ZMPSTE24 can complex with proteins of the interferon-induced transmembrane protein (IFITM) family. IFITM proteins impede viral entry, and ZMPSTE24 expression is necessary for IFITM antiviral activity. In vivo studies demonstrate ZMPSTE24-deficient mice display higher viral burdens, enhanced cytokine production, and increased mortality after influenza infection. Collectively, these findings identify ZMPSTE24 as an intrinsic broad-spectrum antiviral protein and provide insights into antiviral defense mechanisms.
Collapse
Affiliation(s)
- Bishi Fu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Lingyan Wang
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Shitao Li
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Martin E Dorf
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
40
|
Straume D, Stamsås GA, Salehian Z, Håvarstein LS. Overexpression of the fratricide immunity protein ComM leads to growth inhibition and morphological abnormalities in Streptococcus pneumoniae. MICROBIOLOGY-SGM 2017; 163:9-21. [PMID: 27902435 DOI: 10.1099/mic.0.000402] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The important human pathogen Streptococcus pneumoniae is a naturally transformable species. When developing the competent state, it expresses proteins involved in DNA uptake, DNA processing and homologous recombination. In addition to the proteins required for the transformation process, competent pneumococci express proteins involved in a predatory DNA acquisition mechanism termed fratricide. This is a mechanism by which the competent pneumococci secrete a muralytic fratricin termed CbpD, which lyses susceptible sister cells or closely related streptococcal species. The released DNA can then be taken up by the competent pneumococci and integrated into their genomes. To avoid committing suicide, competent pneumococci produce an integral membrane protein, ComM, which protects them against CbpD by an unknown mechanism. In the present study, we show that overexpression of ComM results in growth inhibition and development of severe morphological abnormalities, such as cell elongation, misplacement of the septum and inhibition of septal cross-wall synthesis. The toxic effect of ComM is tolerated during competence because it is not allowed to accumulate in the competent cells. We provide evidence that an intra-membrane protease called RseP is involved in the process of controlling the ComM levels, since △rseP mutants produce higher amounts of ComM compared to wild-type cells. The data presented here indicate that ComM mediates immunity against CbpD by a mechanism that is detrimental to the pneumococcus if exaggerated.
Collapse
Affiliation(s)
- Daniel Straume
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Gro Anita Stamsås
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Zhian Salehian
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Leiv Sigve Håvarstein
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| |
Collapse
|
41
|
Arachea BT, Wiener MC. Acquisition of accurate data from intramolecular quenched fluorescence protease assays. Anal Biochem 2017; 522:30-36. [PMID: 28119065 DOI: 10.1016/j.ab.2017.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
The Intramolecular Quenched Fluorescence (IQF) protease assay utilizes peptide substrates containing donor-quencher pairs that flank the scissile bond. Following protease cleavage, the dequenched donor emission of the product is subsequently measured. Inspection of the IQF literature indicates that rigorous treatment of systematic errors in observed fluorescence arising from inner-filter absorbance (IF) and non-specific intermolecular quenching (NSQ) is incompletely performed. As substrate and product concentrations vary during the time-course of enzyme activity, iterative solution of the kinetic rate equations is, generally, required to obtain the proper time-dependent correction to the initial velocity fluorescence data. Here, we demonstrate that, if the IQF assay is performed under conditions where IF and NSQ are approximately constant during the measurement of initial velocity for a given initial substrate concentration, then a simple correction as a function of initial substrate concentration can be derived and utilized to obtain accurate initial velocity data for analysis.
Collapse
Affiliation(s)
- Buenafe T Arachea
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Michael C Wiener
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
42
|
A New Method to Determine the Transmembrane Conformation of Substrates in Intramembrane Proteolysis by Deep-UV Resonance Raman Spectroscopy. Methods Enzymol 2016; 584:207-228. [PMID: 28065264 DOI: 10.1016/bs.mie.2016.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present a new method based on deep-UV resonance Raman spectroscopy to determine the backbone conformation of intramembrane protease substrates. The classical amide vibrational modes reporting on the conformation of just the transmembrane region of the substrate can be resolved from solvent exchangeable regions outside the detergent micelle by partial deuteration of the solvent. In the presence of isotopically triple-labeled intramembrane protease, these amide modes can be accurately measured to monitor the transmembrane conformation of the substrate during intramembrane proteolysis.
Collapse
|
43
|
Mehmood S, Marcoux J, Gault J, Quigley A, Michaelis S, Young SG, Carpenter EP, Robinson CV. Mass spectrometry captures off-target drug binding and provides mechanistic insights into the human metalloprotease ZMPSTE24. Nat Chem 2016; 8:1152-1158. [PMID: 27874871 PMCID: PMC5123592 DOI: 10.1038/nchem.2591] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
Off-target binding of hydrophobic drugs can lead to unwanted side effects, either through specific or non-specific binding to unintended membrane protein targets. However, distinguishing the binding of drugs to membrane proteins from that of detergents, lipids and cofactors is challenging. Here, we use high-resolution mass spectrometry to study the effects of HIV protease inhibitors on the human zinc metalloprotease ZMPSTE24. This intramembrane protease plays a major role in converting prelamin A to mature lamin A. We monitored the proteolysis of farnesylated prelamin A peptide by ZMPSTE24 and unexpectedly found retention of the C-terminal peptide product with the enzyme. We also resolved binding of zinc, lipids and HIV protease inhibitors and showed that drug binding blocked prelamin A peptide cleavage and conferred stability to ZMPSTE24. Our results not only have relevance for the progeria-like side effects of certain HIV protease inhibitor drugs, but also highlight new approaches for documenting off-target drug binding.
Collapse
Affiliation(s)
- Shahid Mehmood
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Julien Marcoux
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Andrew Quigley
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Stephen G Young
- Departments of Medicine and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Elisabeth P Carpenter
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
44
|
Bhuiyan NH, Friso G, Rowland E, Majsec K, van Wijk KJ. The Plastoglobule-Localized Metallopeptidase PGM48 Is a Positive Regulator of Senescence in Arabidopsis thaliana. THE PLANT CELL 2016; 28:3020-3037. [PMID: 27895226 PMCID: PMC5240743 DOI: 10.1105/tpc.16.00745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/08/2016] [Accepted: 11/19/2016] [Indexed: 05/18/2023]
Abstract
Plastoglobuli (PG) are thylakoid-associated monolayer lipid particles with a specific proteome of ∼30 PG core proteins and isoprenoid and neutral lipids. During senescence, PGs increase in size, reflecting their role in dismantling thylakoid membranes. Here, we show that the only PG-localized peptidase PGM48 positively regulates leaf senescence. We discovered that PGM48 is a member of the M48 peptidase family with PGM48 homologs, forming a clade (M48D) only found in photosynthetic organisms. Unlike the M48A, B, and C clades, members of M48D have no transmembrane domains, consistent with their unique subcellular location in the PG. In vitro assays showed Zn-dependent proteolytic activity and substrate cleavage upstream of hydrophobic residues. Overexpression of PGM48 accelerated natural leaf senescence, whereas suppression delayed senescence. Quantitative proteomics of PG from senescing rosettes of PGM48 overexpression lines showed a dramatically reduced level of CAROTENOID CLEAVAGE ENZYME4 (CCD4) and significantly increased levels of the senescence-induced ABC1 KINASE7 (ABC1K7) and PHYTYL ESTER SYNTHASE1 (PES1). Yeast two-hybrid experiments identified PG core proteins ABC1K3, PES1, and CCD4 as PGM48 interactors, whereas several other PG-localized proteins and chlorophyll degradation enzymes did not interact. We discuss mechanisms through which PGM48 could possibly accelerate the senescence process.
Collapse
Affiliation(s)
- Nazmul H Bhuiyan
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Elden Rowland
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Kristina Majsec
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
45
|
Clark KM, Jenkins JL, Fedoriw N, Dumont ME. Human CaaX protease ZMPSTE24 expressed in yeast: Structure and inhibition by HIV protease inhibitors. Protein Sci 2016; 26:242-257. [PMID: 27774687 DOI: 10.1002/pro.3074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022]
Abstract
The function and localization of proteins and peptides containing C-terminal "CaaX" (Cys-aliphatic-aliphatic-anything) sequence motifs are modulated by post-translational attachment of isoprenyl groups to the cysteine sulfhydryl, followed by proteolytic cleavage of the aaX amino acids. The zinc metalloprotease ZMPSTE24 is one of two enzymes known to catalyze this cleavage. The only identified target of mammalian ZMPSTE24 is prelamin A, the precursor to the nuclear scaffold protein lamin A. ZMPSTE24 also cleaves prelamin A at a second site 15 residues upstream from the CaaX site. Mutations in ZMPSTE24 result in premature-aging diseases and inhibition of ZMPSTE24 activity has been reported to be an off-target effect of HIV protease inhibitors. We report here the expression (in yeast), purification, and crystallization of human ZMPSTE24 allowing determination of the structure to 2.0 Å resolution. Compared to previous lower resolution structures, the enhanced resolution provides: (1) a detailed view of the active site of ZMPSTE24, including water coordinating the catalytic zinc; (2) enhanced visualization of fenestrations providing access from the exterior to the interior cavity of the protein; (3) a view of the C-terminus extending away from the main body of the protein; (4) localization of ordered lipid and detergent molecules at internal and external surfaces and also projecting through fenestrations; (5) identification of water molecules associated with the surface of the internal cavity. We also used a fluorogenic assay of the activity of purified ZMPSTE24 to demonstrate that HIV protease inhibitors directly inhibit the human enzyme in a manner indicative of a competitive mechanism.
Collapse
Affiliation(s)
- Kathleen M Clark
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14642
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, 14642
| | - Nadia Fedoriw
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14642
| | - Mark E Dumont
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14642.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, 14642
| |
Collapse
|
46
|
Abstract
Intramembrane proteases catalyze peptide bond hydrolysis in the lipid bilayer and play a key role in numerous cellular processes. These integral membrane enzymes consist of four classes: site-2 protease (S2P), rhomboid serine protease, Rce1-type glutamyl protease, and aspartyl protease exemplified by presenilin and signal peptide peptidase (SPP). Structural elucidation of these enzymes is important for mechanistic understanding of their functions, particularly their roles in cell signaling and debilitating diseases such as Parkinson's disease and Alzheimer's disease. In the past decade, rigorous effort has led to determination of the crystal structures of S2P from archaebacterium, rhomboid serine protease from E. coli (GlpG), and presenilin/SPP from archaebacterium (PSH). A novel method has been developed to express well-behaved human γ-secretase, which facilitated its structure determination by cryoelectron microscopy (cryo-EM). In this chapter, we will discuss the expression and purification of intramembrane proteases including human γ-secretase and describe the enzymatic activity assays for these intramembrane proteases.
Collapse
|
47
|
Coudray N, L Seyler S, Lasala R, Zhang Z, Clark KM, Dumont ME, Rohou A, Beckstein O, Stokes DL. Structure of the SLC4 transporter Bor1p in an inward-facing conformation. Protein Sci 2016; 26:130-145. [PMID: 27717063 DOI: 10.1002/pro.3061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/05/2023]
Abstract
Bor1p is a secondary transporter in yeast that is responsible for boron transport. Bor1p belongs to the SLC4 family which controls bicarbonate exchange and pH regulation in animals as well as borate uptake in plants. The SLC4 family is more distantly related to members of the Amino acid-Polyamine-organoCation (APC) superfamily, which includes well studied transporters such as LeuT, Mhp1, AdiC, vSGLT, UraA, SLC26Dg. Their mechanism generally involves relative movements of two domains: a core domain that binds substrate and a gate domain that in many cases mediates dimerization. To shed light on conformational changes governing transport by the SLC4 family, we grew helical membrane crystals of Bor1p from Saccharomyces mikatae and determined a structure at ∼6 Å resolution using cryo-electron microscopy. To evaluate the conformation of Bor1p in these crystals, a homology model was built based on the related anion exchanger from red blood cells (AE1). This homology model was fitted to the cryo-EM density map using the Molecular Dynamics (MD) Flexible Fitting method and then relaxed by all-atom MD simulation in explicit solvent and membrane. Mapping of water accessibility indicates that the resulting structure represents an inward-facing conformation. Comparisons of the resulting Bor1p model with the X-ray structure of AE1 in an outward-facing conformation, together with MD simulations of inward-facing and outward-facing Bor1p models, suggest rigid body movements of the core domain relative to the gate domain. These movements are consistent with the rocking-bundle transport mechanism described for other members of the APC superfamily.
Collapse
Affiliation(s)
- Nicolas Coudray
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| | - Sean L Seyler
- Department of Physics, Arizona State University, Tempe, Arizona, 85287
| | - Ralph Lasala
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| | - Zhening Zhang
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| | - Kathy M Clark
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14652
| | - Mark E Dumont
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14652.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, 14652
| | - Alexis Rohou
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, Arizona, 85287.,Center for Biological Physics, Arizona State University, Tempe, Arizona, 85287
| | - David L Stokes
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| |
Collapse
|
48
|
Deane CD, Burkhart BJ, Blair PM, Tietz JI, Lin A, Mitchell DA. In Vitro Biosynthesis and Substrate Tolerance of the Plantazolicin Family of Natural Products. ACS Chem Biol 2016; 11:2232-43. [PMID: 27248686 PMCID: PMC4992447 DOI: 10.1021/acschembio.6b00369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Plantazolicin (PZN) is a ribosomally synthesized and post-translationally modified peptide (RiPP) natural product that exhibits extraordinarily narrow-spectrum antibacterial activity toward the causative agent of anthrax, Bacillus anthracis. During PZN biosynthesis, a cyclodehydratase catalyzes cyclization of cysteine, serine, and threonine residues in the PZN precursor peptide (BamA) to azolines. Subsequently, a dehydrogenase oxidizes most of these azolines to thiazoles and (methyl)oxazoles. The final biosynthetic steps consist of leader peptide removal and dimethylation of the nascent N-terminus. Using a heterologously expressed and purified heterocycle synthetase, the BamA peptide was processed in vitro concordant with the pattern of post-translational modification found in the naturally occurring compound. Using a suite of BamA-derived peptides, including amino acid substitutions as well as contracted and expanded substrate variants, the substrate tolerance of the heterocycle synthetase was elucidated in vitro, and the residues crucial for leader peptide binding were identified. Despite increased promiscuity compared to what was previously observed during heterologous production in E. coli, the synthetase retained exquisite selectivity in cyclization of unnatural peptides only at positions which correspond to those cyclized in the natural product. A cleavage site was subsequently introduced to facilitate leader peptide removal, yielding mature PZN variants after enzymatic or chemical dimethylation. In addition, we report the isolation and characterization of two novel PZN-like natural products that were predicted from genome sequences but whose production had not yet been observed.
Collapse
Affiliation(s)
- Caitlin D. Deane
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Brandon J. Burkhart
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Patricia M. Blair
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan I. Tietz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alice Lin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
49
|
Ast T, Michaelis S, Schuldiner M. The Protease Ste24 Clears Clogged Translocons. Cell 2016; 164:103-114. [PMID: 26771486 DOI: 10.1016/j.cell.2015.11.053] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/23/2015] [Accepted: 11/17/2015] [Indexed: 01/12/2023]
Abstract
Translocation into the endoplasmic reticulum (ER) is the first step in the biogenesis of thousands of eukaryotic endomembrane proteins. Although functional ER translocation has been avidly studied, little is known about the quality control mechanisms that resolve faulty translocational states. One such faulty state is translocon clogging, in which the substrate fails to properly translocate and obstructs the translocon pore. To shed light on the machinery required to resolve clogging, we carried out a systematic screen in Saccharomyces cerevisiae that highlighted a role for the ER metalloprotease Ste24. We could demonstrate that Ste24 approaches the translocon upon clogging, and it interacts with and generates cleavage fragments of the clogged protein. Importantly, these functions are conserved in the human homolog, ZMPSTE24, although disease-associated mutant forms of ZMPSTE24 fail to clear the translocon. These results shed light on a new and critical task of Ste24, which safeguards the essential process of translocation.
Collapse
Affiliation(s)
- Tslil Ast
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
50
|
Coudray N, Lasala R, Zhang Z, Clark KM, Dumont ME, Stokes DL. Deducing the symmetry of helical assemblies: Applications to membrane proteins. J Struct Biol 2016; 195:167-178. [PMID: 27255388 DOI: 10.1016/j.jsb.2016.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
Helical reconstruction represents a convenient and powerful approach for structure determination of macromolecules that assemble into helical arrays. In the case of membrane proteins, formation of tubular crystals with helical symmetry represents an attractive alternative, especially when their small size precludes the use of single-particle analysis. An essential first step for helical reconstruction is to characterize the helical symmetry. This process is often daunting, due to the complexity of helical diffraction and to the low signal-to-noise ratio in images of individual assemblies. Furthermore, the large diameters of the tubular crystals produced by membrane proteins exacerbates the innate ambiguities that, if not resolved, will produce incorrect structures. In this report, we describe a set of tools that can be used to eliminate ambiguities and to validate the choice of symmetry. The first approach increases the signal-to-noise ratio along layer lines by incoherently summing data from multiple helical assemblies, thus producing several candidate indexing schemes. The second approach compares the layer lines from images with those from synthetic models built with the various candidate schemes. The third approach uses unit cell dimensions measured from collapsed tubes to distinguish between these candidate schemes. These approaches are illustrated with tubular crystals from a boron transporter from yeast, Bor1p, and a β-barrel channel from the outer membrane of E. coli, OmpF.
Collapse
Affiliation(s)
- Nicolas Coudray
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Ralph Lasala
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Zhening Zhang
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Kathy M Clark
- Department of Pediatrics and Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14652, United States
| | - Mark E Dumont
- Department of Pediatrics and Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14652, United States
| | - David L Stokes
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| |
Collapse
|