1
|
Dürr BR, Bertolini E, Takagi S, Pascual J, Abuin L, Lucarelli G, Benton R, Auer TO. Olfactory projection neuron rewiring in the brain of an ecological specialist. Cell Rep 2025; 44:115615. [PMID: 40287940 DOI: 10.1016/j.celrep.2025.115615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/24/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Animal behaviors can differ greatly between closely related species. These behavioral changes are frequently linked to sensory system modifications, but central brain cell-type alterations might also be involved. Here, we develop advanced genetic tools to compare homologous central neurons in Drosophila sechellia, an ecological specialist, with the generalist Drosophila melanogaster. Through systematic morphological analysis of olfactory projection neurons (PNs), we reveal that the global anatomy of these second-order neurons is conserved. However, high-resolution, quantitative comparisons identify a striking case of convergent rewiring of PNs in two olfactory pathways critical for D. sechellia's host location. Calcium imaging and labeling of pre-synaptic sites in these evolved D. sechellia PNs indicate that species-specific connections with third-order partners are formed. This work demonstrates that peripheral sensory evolution is accompanied by selective wiring changes in the central brain to facilitate ecological specialization and paves the way to compare other cell types throughout the nervous system.
Collapse
Affiliation(s)
- Benedikt R Dürr
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Enrico Bertolini
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Suguru Takagi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Justine Pascual
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Giovanna Lucarelli
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
2
|
Torres-Oliva M, Buchberger E, Buffry AD, Kittelmann M, Guerrero G, Sumner-Rooney L, Gaspar P, Bullinger GC, Jimenez JF, Casares F, Arif S, Posnien N, Nunes MDS, McGregor AP, Almudi I. Heterochrony in orthodenticle expression is associated with ommatidial size variation between Drosophila species. BMC Biol 2025; 23:34. [PMID: 39901145 PMCID: PMC11792340 DOI: 10.1186/s12915-025-02136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND The compound eyes of insects exhibit extensive variation in ommatidia number and size, which affects how they see and underlies adaptations in their vision to different environments and lifestyles. However, very little is known about the genetic and developmental bases of differences in eye size. We previously showed that the larger eyes of Drosophila mauritiana compared to D. simulans are generally caused by differences in ommatidia size rather than number. Furthermore, we identified an X-linked chromosomal region in D. mauritiana that results in larger eyes when introgressed into D. simulans. RESULTS Here, we used a combination of fine-scale mapping and gene expression analysis to further investigate positional candidate genes on the X chromosome. We found earlier expression of orthodenticle (otd) during ommatidial maturation in D. mauritiana than in D. simulans, and we show that this gene is required for the correct organisation and size of ommatidia in D. melanogaster. We discovered that the activity of an otd eye enhancer is consistent with the difference in the expression of this gene between species, with the D. mauritiana enhancer sequence driving earlier expression than that of D. simulans. When otd expression is driven prematurely during D. melanogaster eye development, the ommatidia grow larger, supporting a possible role for the timing of otd expression in regulating ommatidial size. We also identified potential direct targets of Otd that are differentially expressed between D. mauritiana and D. simulans during ommatidial maturation. CONCLUSIONS Taken together, our results suggest that differential timing of otd expression may contribute to natural variation in ommatidia size between D. mauritiana and D. simulans, which provides new insights into the mechanisms underlying the regulation and evolution of compound eye size in insects.
Collapse
Affiliation(s)
- Montserrat Torres-Oliva
- Department of Developmental Biology, University Göttingen, Justus-Von-Liebig-Weg 11, 37077, Göttingen, Germany
- Present address: Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Elisa Buchberger
- Department of Developmental Biology, University Göttingen, Justus-Von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Alexandra D Buffry
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Genoveva Guerrero
- Andalusian Centre for Developmental Biology (CABD), CSIC/Universidad Pablo de Olavide/JA. Ctra. de Utrera Km 1, 41013, Seville, Spain
| | - Lauren Sumner-Rooney
- Museum Für Naturkunde, Leibniz-Institut Für Evolutions- Und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany
| | - Pedro Gaspar
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Georg C Bullinger
- Department of Developmental Biology, University Göttingen, Justus-Von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Javier Figueras Jimenez
- Centre for Functional Genomics & Department of Biological Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Fernando Casares
- Andalusian Centre for Developmental Biology (CABD), CSIC/Universidad Pablo de Olavide/JA. Ctra. de Utrera Km 1, 41013, Seville, Spain
| | - Saad Arif
- Centre for Functional Genomics & Department of Biological Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | - Nico Posnien
- Department of Developmental Biology, University Göttingen, Justus-Von-Liebig-Weg 11, 37077, Göttingen, Germany.
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | | | - Isabel Almudi
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain.
- Institut de Recerca de La Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, Barcelona, 08028, Spain.
| |
Collapse
|
3
|
Garg D, Mayekar HV, Paikra S, Mishra M, Rajpurohit S. Wing spot in a tropical and a temperate drosophilid: C = C enrichment and conserved thermal response. BMC Ecol Evol 2025; 25:13. [PMID: 39849363 PMCID: PMC11755964 DOI: 10.1186/s12862-024-02333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/27/2024] [Indexed: 01/25/2025] Open
Abstract
Wings are primarily used in flight but also play a role in mating behaviour in many insects. Drosophila species exhibit a variety of pigmentation patterns on their wings. In some sexually dimorphic Drosophilids, a pigmented spot pattern is found at the top-right edge of the male wings. Our understanding of wing spot thermal plasticity in sexually dimorphic species is limited with wing spots being primarily associated with sexual selection. Here, we investigated the wing pigmentation response of two species with wing spots: D. biarmipes and D. suzukii species to thermal variation. We exposed freshly hatched larvae of both the species to three different growth temperatures and checked for wing pigmentation in adult males. Our results indicate wing pigmentation is a plastic trait in the species studied and that wing pigmentation is negatively correlated with higher temperature. In both species, wings were darker at lower temperature compared to higher temperature. Further, D. suzukii exhibits darker wing pigmentation compared to D. biarmipes. Variation in wing pigmentation in both D. suzukii and D. biarmipes could reflect habitat level differences; indicating a strong G*E interaction. Raman spectral analysis indicated a shift in chemical profiles of pigmented vs. non-pigmented areas of the wing. The wing spot was found enriched with carbon-carbon double-bond compared to the non-pigmented wing area. We report that C = C formation in spotted area is thermally controlled and conserved in two members of the suzukii subgroup i.e. D. biarmipes and D. suzukii. Our study indicated a conserved mechanism of the spot formation in two Drosophila species coming from contrasting distribution ranges.
Collapse
Affiliation(s)
- Divita Garg
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Road, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Harshad Vijay Mayekar
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Road, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Sanjeev Paikra
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Monalisa Mishra
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Subhash Rajpurohit
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Road, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
4
|
Paulo DF, Nguyen TNM, Ward CM, Corpuz RL, Kauwe AN, Rendon P, Ruano REY, Cardoso AAS, Gouvi G, Fung E, Crisp P, Okada A, Choo A, Stauffer C, Bourtzis K, Sim SB, Baxter SW, Geib SM. Functional genomics implicates ebony in the black pupae phenotype of tephritid fruit flies. Commun Biol 2025; 8:60. [PMID: 39814836 PMCID: PMC11736145 DOI: 10.1038/s42003-025-07489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
The remarkable diversity of insect pigmentation offers a captivating avenue for studying evolution and genetics. In tephritids, understanding the molecular basis of mutant traits is also crucial for applied entomology, enabling the creation of genetic sexing strains through genome editing, thus facilitating sex-sorting before sterile insect releases. Here, we present evidence from classical and modern genetics showing that the black pupae (bp) phenotype in the GUA10 strain of Anastrepha ludens is caused by a large deletion at the ebony locus, removing the gene's entire coding region. Targeted knockout of ebony induced analogous bp phenotypes across six major tephritid agricultural pests, demonstrating that disruption of Ebony alone is sufficient to produce the mutant trait in distantly related species. This functional characterization further allowed a deeper exploration of Ebony's role in pigmentation and development across life stages in diverse species. Our findings offer key insights for molecular engineering of sexing strains based on the bp marker and for future evolutionary developmental biology studies in tephritids.
Collapse
Affiliation(s)
- Daniel F Paulo
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, Honolulu, USA
- U.S. Department of Agriculture, Agriculture Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, USA
| | - Thu N M Nguyen
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Chris M Ward
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Renee L Corpuz
- U.S. Department of Agriculture, Agriculture Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, USA
| | - Angela N Kauwe
- U.S. Department of Agriculture, Agriculture Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, USA
| | - Pedro Rendon
- International Atomic Energy Agency, Technical Cooperation, Division for Latin America and the Caribbean, MOSCAMED Program, Guatemala City, Guatemala
| | | | - Amanda A S Cardoso
- Insect Pest Control Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Seibersdorf, Austria
| | - Georgia Gouvi
- Insect Pest Control Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Seibersdorf, Austria
| | - Elisabeth Fung
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
- South Australian Research and Development Institute, Urrbrae, Australia
| | - Peter Crisp
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
- South Australian Research and Development Institute, Urrbrae, Australia
| | - Anzu Okada
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Amanda Choo
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Christian Stauffer
- Department of Ecosystem Management, Climate and Biodiversity, Boku University, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Seibersdorf, Austria
| | - Sheina B Sim
- U.S. Department of Agriculture, Agriculture Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, USA
| | - Simon W Baxter
- School of BioSciences, The University of Melbourne, Melbourne, Australia.
| | - Scott M Geib
- U.S. Department of Agriculture, Agriculture Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, USA.
| |
Collapse
|
5
|
Museridze M, Ceolin S, Mühling B, Ramanathan S, Barmina O, Sekhar PS, Gompel N. Entangled and non-modular enhancer sequences producing independent spatial activities. SCIENCE ADVANCES 2024; 10:eadr9856. [PMID: 39565856 PMCID: PMC11578167 DOI: 10.1126/sciadv.adr9856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
The modularity of transcriptional enhancers is central to our understanding of morphological evolution, allowing specific changes to a gene expression pattern component, without affecting others. Enhancer modularity refers to physically separated stretches of regulatory sequence producing discrete spatiotemporal transcriptional activity. This concept stems from assays that test the sufficiency of a DNA segment to drive spatial reporter expression resembling that of the corresponding gene. Focusing on spatial patterns, it overlooks quantitative aspects of gene expression, underestimating the regulatory sequence actually required to reach full endogenous expression levels. Here, we show that five regulatory activities of the gene yellow in Drosophila, classically described as modular, result from extensively overlapping sequences, with broadly distributed regulatory information. Nevertheless, the independent regulatory activities of these entangled enhancers appear to be nucleated by specific segments that we called enhancer cores. Our work calls for a reappraisal of enhancer definition and properties, as well as of the consequences on regulatory evolution.
Collapse
Affiliation(s)
- Mariam Museridze
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
- University of Bonn, Bonn Institute for Organismic Biology, Bonn, Germany
| | - Stefano Ceolin
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
| | - Bettina Mühling
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
| | - Srishti Ramanathan
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
| | - Olga Barmina
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - Pallavi Santhi Sekhar
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
| | - Nicolas Gompel
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
- University of Bonn, Bonn Institute for Organismic Biology, Bonn, Germany
| |
Collapse
|
6
|
McDonald JMC, Reed RD. Beyond modular enhancers: new questions in cis-regulatory evolution. Trends Ecol Evol 2024; 39:1035-1046. [PMID: 39266441 DOI: 10.1016/j.tree.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 09/14/2024]
Abstract
Our understanding of how cis-regulatory elements work has advanced rapidly, outpacing our evolutionary models. In this review, we consider the implications of new mechanistic findings for evolutionary developmental biology. We focus on three different debates: whether evolutionary innovation occurs more often via the modification of old cis-regulatory elements or the emergence of new ones; the extent to which individual elements are specific and autonomous or multifunctional and interdependent; and how the robustness of cis-regulatory architectures influences the rate of trait evolution. These discussions lead us to propose new questions for the evo-devo of cis-regulation.
Collapse
Affiliation(s)
- Jeanne M C McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Takagi S, Sancer G, Abuin L, Stupski SD, Roman Arguello J, Prieto-Godino LL, Stern DL, Cruchet S, Álvarez-Ocaña R, Wienecke CFR, van Breugel F, Jeanne JM, Auer TO, Benton R. Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking. Nat Commun 2024; 15:7041. [PMID: 39147786 PMCID: PMC11327376 DOI: 10.1038/s41467-024-50808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous olfactory pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN number increases contribute to stronger, more persistent, noni-odour tracking behaviour. These expansions result in increased synaptic connections of sensory neurons with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odour-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron population expansions to explain ecologically-relevant, species-specific behaviour.
Collapse
Affiliation(s)
- Suguru Takagi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Gizem Sancer
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - S David Stupski
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - J Roman Arguello
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Lucia L Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- The Francis Crick Institute, London, UK
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Carl F R Wienecke
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Cambridge, MA, USA
| | - Floris van Breugel
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - James M Jeanne
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Imler JL, Cai H, Meignin C, Martins N. Evolutionary immunology to explore original antiviral strategies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230068. [PMID: 38497262 PMCID: PMC10945398 DOI: 10.1098/rstb.2023.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 03/19/2024] Open
Abstract
Over the past 25 years, the field of evolutionary developmental biology (evo-devo) has used genomics and genetics to gain insight on the developmental mechanisms underlying the evolution of morphological diversity of animals. Evo-devo exploits the key insight that conserved toolkits of development (e.g. Hox genes) are used in animals to produce genetic novelties that provide adaptation to a new environment. Like development, immunity is forged by interactions with the environment, namely the microbial world. Yet, when it comes to the study of immune defence mechanisms in invertebrates, interest primarily focuses on evolutionarily conserved molecules also present in humans. Here, focusing on antiviral immunity, we argue that immune genes not conserved in humans represent an unexplored resource for the discovery of new antiviral strategies. We review recent findings on the cGAS-STING pathway and explain how cyclic dinucleotides produced by cGAS-like receptors may be used to investigate the portfolio of antiviral genes in a broad range of species. This will set the stage for evo-immuno approaches, exploiting the investment in antiviral defences made by metazoans over hundreds of millions of years of evolution. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Hua Cai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Carine Meignin
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
| | - Nelson Martins
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
| |
Collapse
|
9
|
Wu S, Tong X, Peng C, Luo J, Zhang C, Lu K, Li C, Ding X, Duan X, Lu Y, Hu H, Tan D, Dai F. The BTB-ZF gene Bm-mamo regulates pigmentation in silkworm caterpillars. eLife 2024; 12:RP90795. [PMID: 38587455 PMCID: PMC11001300 DOI: 10.7554/elife.90795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
The color pattern of insects is one of the most diverse adaptive evolutionary phenotypes. However, the molecular regulation of this color pattern is not fully understood. In this study, we found that the transcription factor Bm-mamo is responsible for black dilute (bd) allele mutations in the silkworm. Bm-mamo belongs to the BTB zinc finger family and is orthologous to mamo in Drosophila melanogaster. This gene has a conserved function in gamete production in Drosophila and silkworms and has evolved a pleiotropic function in the regulation of color patterns in caterpillars. Using RNAi and clustered regularly interspaced short palindromic repeats (CRISPR) technology, we showed that Bm-mamo is a repressor of dark melanin patterns in the larval epidermis. Using in vitro binding assays and gene expression profiling in wild-type and mutant larvae, we also showed that Bm-mamo likely regulates the expression of related pigment synthesis and cuticular protein genes in a coordinated manner to mediate its role in color pattern formation. This mechanism is consistent with the dual role of this transcription factor in regulating both the structure and shape of the cuticle and the pigments that are embedded within it. This study provides new insight into the regulation of color patterns as well as into the construction of more complex epidermal features in some insects.
Collapse
Affiliation(s)
- Songyuan Wu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Chenxing Peng
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Jiangwen Luo
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Chenghao Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Kunpeng Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Chunlin Li
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Xin Ding
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Xiaohui Duan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Yaru Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Hai Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Duan Tan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| |
Collapse
|
10
|
Takagi S, Sancer G, Abuin L, Stupski SD, Arguello JR, Prieto-Godino LL, Stern DL, Cruchet S, Alvarez-Ocana R, Wienecke CFR, van Breugel F, Jeanne JM, Auer TO, Benton R. Sensory neuron population expansion enhances odor tracking without sensitizing projection neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.556782. [PMID: 37745467 PMCID: PMC10515935 DOI: 10.1101/2023.09.15.556782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous neural pathways of Drosophila melanogaster and its close relative Drosophila sechellia , an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN population increases contribute to stronger, more persistent, noni-odor tracking behavior. These sensory neuron expansions result in increased synaptic connections with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odor-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron expansions to explain ecologically-relevant, species-specific behavior.
Collapse
|
11
|
Bachem K, Li X, Ceolin S, Mühling B, Hörl D, Harz H, Leonhardt H, Arnoult L, Weber S, Matarlo B, Prud’homme B, Gompel N. Regulatory evolution tuning pigmentation intensity quantitatively in Drosophila. SCIENCE ADVANCES 2024; 10:eadl2616. [PMID: 38266088 PMCID: PMC10807792 DOI: 10.1126/sciadv.adl2616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Quantitative variation in attributes such as color, texture, or stiffness dominates morphological diversification. It results from combinations of alleles at many Mendelian loci. Here, we identify an additional source of quantitative variation among species, continuous evolution in a gene regulatory region. Specifically, we examined the modulation of wing pigmentation in a group of fly species and showed that inter-species variation correlated with the quantitative expression of the pigmentation gene yellow. This variation results from an enhancer of yellow determining darkness through species-specific activity. We mapped the divergent activities between two sister species and found the changes to be broadly distributed along the enhancer. Our results demonstrate that enhancers can act as dials fueling quantitative morphological diversification by modulating trait properties.
Collapse
Affiliation(s)
- Katharina Bachem
- Department of Evolutionary Ecology, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Xinyi Li
- Department of Evolutionary Ecology, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Stefano Ceolin
- Department of Evolutionary Ecology, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Bettina Mühling
- Department of Evolutionary Ecology, Ludwig-Maximilians Universität München, München 82152, Germany
| | - David Hörl
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Hartmann Harz
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Heinrich Leonhardt
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Laurent Arnoult
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, Marseille 13288, France
| | - Sabrina Weber
- Department of Evolutionary Ecology, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Blair Matarlo
- Department of Evolutionary Ecology, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Benjamin Prud’homme
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, Marseille 13288, France
| | - Nicolas Gompel
- Department of Evolutionary Ecology, Ludwig-Maximilians Universität München, München 82152, Germany
- Bonn Institute for Organismic Biology, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
12
|
Murugesan SN, Monteiro A. Evolution of modular and pleiotropic enhancers. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:105-115. [PMID: 35334158 DOI: 10.1002/jez.b.23131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/14/2022] [Accepted: 02/28/2022] [Indexed: 11/05/2022]
Abstract
Cis-regulatory elements (CREs), or enhancers, are segments of noncoding DNA that regulate the spatial and temporal expression of nearby genes. Sometimes, genes are expressed in more than one tissue, and this can be driven by two main types of CREs: tissue-specific "modular" CREs, where different CREs drive expression of the gene in the different tissues, or by "pleiotropic" CREs, where the same CRE drives expression in the different tissues. In this perspective, we will discuss some of the ways (i) modular and pleiotropic CREs might originate; (ii) propose that modular CREs might derive from pleiotropic CREs via a process of duplication, degeneration, and complementation (the CRE-DDC model); and (iii) propose that hotspot loci of evolution are associated with the origin of modular CREs belonging to any gene in a regulatory network.
Collapse
Affiliation(s)
- Suriya N Murugesan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore.,Division of Science, Yale-NUS College, Singapore
| |
Collapse
|
13
|
Hughes JT, Williams ME, Rebeiz M, Williams TM. Widespread cis- and trans-regulatory evolution underlies the origin, diversification, and loss of a sexually dimorphic fruit fly pigmentation trait. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:143-161. [PMID: 34254440 DOI: 10.1002/jez.b.23068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Changes in gene expression are a prominent feature of morphological evolution. These changes occur to hierarchical gene regulatory networks (GRNs) of transcription factor genes that regulate the expression of trait-building differentiation genes. While changes in the expression of differentiation genes are essential to phenotypic evolution, they can be caused by mutations within cis-regulatory elements (CREs) that drive their expression (cis-evolution) or within genes for CRE-interacting transcription factors (trans-evolution). Locating these mutations remains a challenge, especially when experiments are limited to one species that possesses the ancestral or derived phenotype. We investigated CREs that control the expression of the differentiation genes tan and yellow, the expression of which evolved during the gain, modification, and loss of dimorphic pigmentation among Sophophora fruit flies. We show these CREs to be necessary components of a pigmentation GRN, as deletion from Drosophila melanogaster (derived dimorphic phenotype) resulted in lost expression and lost male-specific pigmentation. We evaluated the ability of orthologous CRE sequences to drive reporter gene expression in species with modified (Drosophila auraria), secondarily lost (Drosophila ananassae), and ancestrally absent (Drosophila willistoni) pigmentation. We show that the transgene host frequently determines CRE activity, implicating trans-evolution as a significant factor for this trait's diversity. We validated the gain of dimorphic Bab transcription factor expression as a trans-change contributing to the dimorphic trait. Our findings suggest an amenability to change for the landscape of trans-regulators and begs for an explanation as to why this is so common compared to the evolution of differentiation gene CREs.
Collapse
Affiliation(s)
- Jesse T Hughes
- Department of Biology, University of Dayton, Dayton, Ohio, USA
| | | | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas M Williams
- Department of Biology, University of Dayton, Dayton, Ohio, USA.,The Integrative Science and Engineering Center, University of Dayton, Dayton, Ohio, USA
| |
Collapse
|
14
|
Ling L, Mühling B, Jaenichen R, Gompel N. Increased chromatin accessibility promotes the evolution of a transcriptional silencer in Drosophila. SCIENCE ADVANCES 2023; 9:eade6529. [PMID: 36800429 PMCID: PMC9937571 DOI: 10.1126/sciadv.ade6529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The loss of discrete morphological traits, the most common evolutionary transition, is typically driven by changes in developmental gene expression. Mutations accumulating in regulatory elements of these genes can disrupt DNA binding sites for transcription factors patterning their spatial expression, or delete entire enhancers. Regulatory elements, however, may be silenced through changes in chromatin accessibility or the emergence of repressive elements. Here, we show that increased chromatin accessibility at the gene yellow, combined with the gain of a repressor site, underlies the loss of a wing spot pigmentation pattern in a Drosophila species. The gain of accessibility of this repressive element is regulated by E93, a transcription factor governing the progress of metamorphosis. This convoluted evolutionary scenario contrasts with the parsimonious mutational paths generally envisioned and often documented for morphological losses. It illustrates how evolutionary changes in chromatin accessibility may directly contribute to morphological diversification.
Collapse
|
15
|
The Genetic Mechanisms Underlying the Concerted Expression of the yellow and tan Genes in Complex Patterns on the Abdomen and Wings of Drosophila guttifera. Genes (Basel) 2023; 14:genes14020304. [PMID: 36833231 PMCID: PMC9957387 DOI: 10.3390/genes14020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
How complex morphological patterns form is an intriguing question in developmental biology. However, the mechanisms that generate complex patterns remain largely unknown. Here, we sought to identify the genetic mechanisms that regulate the tan (t) gene in a multi-spotted pigmentation pattern on the abdomen and wings of Drosophila guttifera. Previously, we showed that yellow (y) gene expression completely prefigures the abdominal and wing pigment patterns of this species. In the current study, we demonstrate that the t gene is co-expressed with the y gene in nearly identical patterns, both transcripts foreshadowing the adult abdominal and wing melanin spot patterns. We identified cis-regulatory modules (CRMs) of t, one of which drives reporter expression in six longitudinal rows of spots on the developing pupal abdomen, while the second CRM activates the reporter gene in a spotted wing pattern. Comparing the abdominal spot CRMs of y and t, we found a similar composition of putative transcription factor binding sites that are thought to regulate the complex expression patterns of both terminal pigmentation genes y and t. In contrast, the y and t wing spots appear to be regulated by distinct upstream factors. Our results suggest that the D. guttifera abdominal and wing melanin spot patterns have been established through the co-regulation of y and t, shedding light on how complex morphological traits may be regulated through the parallel coordination of downstream target genes.
Collapse
|
16
|
LaFountain AM, McMahon HE, Reid NM, Yuan YW. To stripe or not to stripe: the origin of a novel foliar pigmentation pattern in monkeyflowers (Mimulus). THE NEW PHYTOLOGIST 2023; 237:310-322. [PMID: 36101514 PMCID: PMC10601762 DOI: 10.1111/nph.18486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The origin of phenotypic novelty is one of the most challenging problems in evolutionary biology. Although genetic regulatory network rewiring or co-option has been widely recognised as a major contributor, in most cases how such genetic rewiring/co-option happens is completely unknown. We have studied a novel foliar pigmentation pattern that evolved recently in the monkeyflower species Mimulus verbenaceus. Through genome-wide association tests using wild-collected samples, experimental crosses of laboratory inbred lines, gene expression analyses, and functional assays, we identified an anthocyanin-activating R2R3-MYB gene, STRIPY, as the causal gene triggering the emergence of the discrete, mediolateral anthocyanin stripe in the M. verbenaceus leaf. Chemical mutagenesis revealed the existence of upstream activators and repressors that form a 'hidden' prepattern along the leaf proximodistal axis, potentiating the unique expression pattern of STRIPY. Population genomics analyses did not reveal signatures of positive selection, indicating that nonadaptive processes may be responsible for the establishment of this novel trait in the wild. This study demonstrates that the origin of phenotypic novelty requires at least two separate phases, potentiation and actualisation. The foliar stripe pattern of M. verbenaceus provides an excellent platform to probe the molecular details of both processes in future studies.
Collapse
Affiliation(s)
- Amy M. LaFountain
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, USA. 06269-3043
| | - Hayley E. McMahon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, USA. 06269-3043
| | - Noah M. Reid
- Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT, USA 06269-3197
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, USA. 06269-3043
- Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT, USA 06269-3197
| |
Collapse
|
17
|
Raja KKB, Shittu MO, Nouhan PME, Steenwinkel TE, Bachman EA, Kokate PP, McQueeney A, Mundell EA, Armentrout AA, Nugent A, Werner T. The regulation of a pigmentation gene in the formation of complex color patterns in Drosophila abdomens. PLoS One 2022; 17:e0279061. [PMID: 36534652 PMCID: PMC9762589 DOI: 10.1371/journal.pone.0279061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Changes in the control of developmental gene expression patterns have been implicated in the evolution of animal morphology. However, the genetic mechanisms underlying complex morphological traits remain largely unknown. Here we investigated the molecular mechanisms that induce the pigmentation gene yellow in a complex color pattern on the abdomen of Drosophila guttifera. We show that at least five developmental genes may collectively activate one cis-regulatory module of yellow in distinct spot rows and a dark shade to assemble the complete abdominal pigment pattern of Drosophila guttifera. One of these genes, wingless, may play a conserved role in the early phase of spot pattern development in several species of the quinaria group. Our findings shed light on the evolution of complex animal color patterns through modular changes of gene expression patterns.
Collapse
Affiliation(s)
- Komal K. B. Raja
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mujeeb O. Shittu
- Department of Biotechnical and Clinical Laboratory Science, Jacobs School of Medicine and Biomedical Science, University at Buffalo, The State University of New York (SUNY), New York, United States of America
| | - Peter M. E. Nouhan
- McCourt School of Public Policy, Georgetown University, Washington, D.C., United States of America
| | - Tessa E. Steenwinkel
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Evan A. Bachman
- Michigan State University, College of Human Medicine, East Lansing, Michigan, United States of America
| | - Prajakta P. Kokate
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Alexander McQueeney
- School of Medicine, Eberhard Karls University of Tübingen, Geschwister-Scholl-Platz, Tübingen, Germany
| | - Elizabeth A. Mundell
- School of Technology, Michigan Technological University, Houghton, Michigan, United States of America
| | - Alexandri A. Armentrout
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Amber Nugent
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
- * E-mail:
| |
Collapse
|
18
|
Luecke D, Rice G, Kopp A. Sex-specific evolution of a Drosophila sensory system via interacting cis- and trans-regulatory changes. Evol Dev 2022; 24:37-60. [PMID: 35239254 PMCID: PMC9179014 DOI: 10.1111/ede.12398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
Abstract
The evolution of gene expression via cis-regulatory changes is well established as a major driver of phenotypic evolution. However, relatively little is known about the influence of enhancer architecture and intergenic interactions on regulatory evolution. We address this question by examining chemosensory system evolution in Drosophila. Drosophila prolongata males show a massively increased number of chemosensory bristles compared to females and males of sibling species. This increase is driven by sex-specific transformation of ancestrally mechanosensory organs. Consistent with this phenotype, the Pox neuro transcription factor (Poxn), which specifies chemosensory bristle identity, shows expanded expression in D. prolongata males. Poxn expression is controlled by nonadditive interactions among widely dispersed enhancers. Although some D. prolongata Poxn enhancers show increased activity, the additive component of this increase is slight, suggesting that most changes in Poxn expression are due to epistatic interactions between Poxn enhancers and trans-regulatory factors. Indeed, the expansion of D. prolongata Poxn enhancer activity is only observed in cells that express doublesex (dsx), the gene that controls sexual differentiation in Drosophila and also shows increased expression in D. prolongata males due to cis-regulatory changes. Although expanded dsx expression may contribute to increased activity of D. prolongata Poxn enhancers, this interaction is not sufficient to explain the full expansion of Poxn expression, suggesting that cis-trans interactions between Poxn, dsx, and additional unknown genes are necessary to produce the derived D. prolongata phenotype. Overall, our results demonstrate the importance of epistatic gene interactions for evolution, particularly when pivotal genes have complex regulatory architecture.
Collapse
Affiliation(s)
- David Luecke
- Department of Evolution and Ecology, University of California – Davis,Current Address: Department of Integrative Biology, Michigan State University
| | - Gavin Rice
- Department of Evolution and Ecology, University of California – Davis,Current Address: Department of Biological Sciences, University of Pittsburgh
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California – Davis
| |
Collapse
|
19
|
Common Themes and Future Challenges in Understanding Gene Regulatory Network Evolution. Cells 2022; 11:cells11030510. [PMID: 35159319 PMCID: PMC8834487 DOI: 10.3390/cells11030510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022] Open
Abstract
A major driving force behind the evolution of species-specific traits and novel structures is alterations in gene regulatory networks (GRNs). Comprehending evolution therefore requires an understanding of the nature of changes in GRN structure and the responsible mechanisms. Here, we review two insect pigmentation GRNs in order to examine common themes in GRN evolution and to reveal some of the challenges associated with investigating changes in GRNs across different evolutionary distances at the molecular level. The pigmentation GRN in Drosophila melanogaster and other drosophilids is a well-defined network for which studies from closely related species illuminate the different ways co-option of regulators can occur. The pigmentation GRN for butterflies of the Heliconius species group is less fully detailed but it is emerging as a useful model for exploring important questions about redundancy and modularity in cis-regulatory systems. Both GRNs serve to highlight the ways in which redeployment of trans-acting factors can lead to GRN rewiring and network co-option. To gain insight into GRN evolution, we discuss the importance of defining GRN architecture at multiple levels both within and between species and of utilizing a range of complementary approaches.
Collapse
|
20
|
Massey JH, Li J, Stern DL, Wittkopp PJ. Distinct genetic architectures underlie divergent thorax, leg, and wing pigmentation between Drosophila elegans and D. gunungcola. Heredity (Edinb) 2021; 127:467-474. [PMID: 34537820 PMCID: PMC8551284 DOI: 10.1038/s41437-021-00467-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pigmentation divergence between Drosophila species has emerged as a model trait for studying the genetic basis of phenotypic evolution, with genetic changes contributing to pigmentation differences often mapping to genes in the pigment synthesis pathway and their regulators. These studies of Drosophila pigmentation have tended to focus on pigmentation changes in one body part for a particular pair of species, but changes in pigmentation are often observed in multiple body parts between the same pair of species. The similarities and differences of genetic changes responsible for divergent pigmentation in different body parts of the same species thus remain largely unknown. Here we compare the genetic basis of pigmentation divergence between Drosophila elegans and D. gunungcola in the wing, legs, and thorax. Prior work has shown that regions of the genome containing the pigmentation genes yellow and ebony influence the size of divergent male-specific wing spots between these two species. We find that these same two regions of the genome underlie differences in leg and thorax pigmentation; however, divergent alleles in these regions show differences in allelic dominance and epistasis among the three body parts. These complex patterns of inheritance can be explained by a model of evolution involving tissue-specific changes in the expression of Yellow and Ebony between D. elegans and D. gunungcola.
Collapse
Affiliation(s)
- Jonathan H Massey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jun Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Pu J, Wang Z, Cong H, Chin JSR, Justen J, Finet C, Yew JY, Chung H. Repression precedes independent evolutionary gains of a highly specific gene expression pattern. Cell Rep 2021; 37:109896. [PMID: 34706247 PMCID: PMC8578697 DOI: 10.1016/j.celrep.2021.109896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/24/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Highly specific expression patterns can be caused by the overlapping activities of activator and repressor sequences in enhancers. However, few studies illuminate how these sequences evolve in the origin of new enhancers. Here, we show that expression of the bond gene in the semicircular wall epithelium (swe) of the Drosophila melanogaster male ejaculatory bulb (EB) is controlled by an enhancer consisting of an activator region that requires Abdominal-B driving expression in the entire EB and a repressor region that restricts this expression to the EB swe. Although this expression pattern is independently gained in the distantly related Scaptodrosophila lebanonensis and does not require Abdominal-B, we show that functionally similar repressor sequences are present in Scaptodrosophila and also in species that do not express bond in the EB. We suggest that during enhancer evolution, repressor sequences can precede the evolution of activator sequences and may lead to similar but independently evolved expression patterns. Pu et al. show that the independent gain of a highly specific expression pattern across distantly related species may be because of the preexistence of repressor sequences that precedes the diversification of these species. This may reflect a general mechanism underlying the evolution of highly specific enhancers.
Collapse
Affiliation(s)
- Jian Pu
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.
| | - Zinan Wang
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - Haosu Cong
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Jacqueline S R Chin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A(∗)STAR), Brenner Centre for Molecular Medicine, Singapore 117609, Singapore
| | - Jessa Justen
- Laboratory of Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Cédric Finet
- Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Henry Chung
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
22
|
Highly Efficient Temperature Inducible CRISPR-Cas9 Gene Targeting in Drosophila suzukii. Int J Mol Sci 2021; 22:ijms22136724. [PMID: 34201604 PMCID: PMC8268499 DOI: 10.3390/ijms22136724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
The spotted-wing Drosophila (Drosophila suzukii Matsumura) is native to eastern Asia, but has become a global threat to fruit production. In recent years, CRISPR/Cas9 targeting was established in this species allowing for functional genomic and genetic control studies. Here, we report the generation and characterization of Cas9-expressing strains of D. suzukii. Five independent transgenic lines were generated using a piggyBac construct containing the EGFP fluorescent marker gene and the Cas9 gene under the control of the D. melanogaster heat shock protein 70 promoter and 3’UTR. Heat-shock (HS) treated embryos were analyzed by reverse transcriptase PCR, revealing strong heat inducibility of the transgenic Cas9 expression. By injecting gRNA targeting EGFP into one selected line, 50.0% of G0 flies showed mosaic loss-of-fluorescence phenotype, and 45.5% of G0 flies produced G1 mutants without HS. Such somatic and germline mutagenesis rates were increased to 95.4% and 85.7%, respectively, by applying a HS. Parental flies receiving HS resulted in high inheritance of the mutation (92%) in their progeny. Additionally, targeting the endogenous gene yellow led to the lack of pigmentation and male lethality. We discuss the potential use of these efficient and temperature-dependent Cas9-expressing strains for the genetic studies in D. suzukii.
Collapse
|
23
|
Popadić A, Tsitlakidou D. Regional patterning and regulation of melanin pigmentation in insects. Curr Opin Genet Dev 2021; 69:163-170. [PMID: 34087530 DOI: 10.1016/j.gde.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Insects display an immense diversity in melanin pigmentation, which is generated by the interplay between the regulatory genes (that provide general patterning information) and effector genes (that provide coloration of the pattern). However, recent studies encompassing several different orders (Hemiptera, Blattodea, Coleoptera, and Lepidoptera) have shown that knockdowns of melanin producing genes alone can generate distinct region-specific patterns. This review surveys the most recent studies to further document the regional patterning of effector genes, and highlights the new advances and their implications for future research.
Collapse
Affiliation(s)
- Aleksandar Popadić
- Biological Sciences Department, Wayne State University, Detroit, MI 48202, USA.
| | - Despina Tsitlakidou
- Biological Sciences Department, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
24
|
Štefánik M, Habel JC, Schmitt T, Eberle J. Geographical disjunction and environmental conditions drive intraspecific differentiation in the chalk-hill blue butterfly. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Drivers of evolution are often related to geographical isolation and/or diverging environmental conditions. Spatial variation in neutral genetic markers mostly reflects past geographical isolation, i.e. long-lasting allopatry, whereas morphology is often driven by local environmental conditions, resulting in more rapid evolution. In Europe, most thermophilic species persisted during the past glacial periods in geographically disjunct refugia, representing long-lasting isolates, frequently with diverging environmental conditions. This situation has driven the evolution of intraspecific signatures in species. Here, we analysed wing shape and wing pigmentation of the chalk-hill blue butterfly, Polyommatus coridon, across its entire distribution range restricted to the western Palaearctic. In addition, we compiled abiotic environmental parameters for each sampling site. Wing colour patterns differentiated a western and an eastern lineage. These lineages might represent two main Pleistocene refugia and differentiation centres, one located on the Italian Peninsula and the other in the Balkan region. The two lineages showed evidence of hybridization across Central Europe, from the Alps and across Germany. The intraspecific differentiation was strongest in the width of the brown band on the outer margin of the wings. The morphological structures obtained are in line with genetic signatures found in previous studies, but the latter are more fine-grained. Current environmental conditions, such as mean temperatures, were only marginally correlated with colour patterns. Our study underlines that Pleistocene range shifts, often resulting in allopatric isolation, shape intraspecific phenotypic structures within species; that pigmentation responds in a more sensitive manner to spatial disjunction than wing shape; and that morphometric and genetic structures in P. coridon provide concordant patterns and thus support identical biogeographical conclusions.
Collapse
Affiliation(s)
- Martin Štefánik
- Evolutionary Zoology, Department of Biosciences, University of Salzburg, Salzburg, Austria
- Department of Environmental Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jan Christian Habel
- Evolutionary Zoology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Thomas Schmitt
- Senckenberg German Entomological Institute, Müncheberg, Germany
- Department of Zoology, Institute of Biology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jonas Eberle
- Evolutionary Zoology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
25
|
Galouzis CC, Prud'homme B. Transvection regulates the sex-biased expression of a fly X-linked gene. Science 2021; 371:396-400. [PMID: 33479152 DOI: 10.1126/science.abc2745] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022]
Abstract
Sexual dimorphism in animals results from sex-biased gene expression patterns. These patterns are controlled by genetic sex determination hierarchies that establish the sex of an individual. Here we show that the male-biased wing expression pattern of the Drosophila biarmipes gene yellow, located on the X chromosome, is independent of the fly sex determination hierarchy. Instead, we find that a regulatory interaction between yellow alleles on homologous chromosomes (a process known as transvection) silences the activity of a yellow enhancer functioning in the wing. Therefore, this enhancer can be active in males (XY) but not in females (XX). This transvection-dependent enhancer silencing requires the yellow intron and the chromatin architecture protein Mod(mdg4). Our results suggest that transvection can contribute more generally to the sex-biased expression of X-linked genes.
Collapse
Affiliation(s)
- Charalampos Chrysovalantis Galouzis
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille (IBDM), Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Benjamin Prud'homme
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille (IBDM), Campus de Luminy Case 907, 13288 Marseille Cedex 9, France.
| |
Collapse
|
26
|
Molecular and evolutionary processes generating variation in gene expression. Nat Rev Genet 2020; 22:203-215. [PMID: 33268840 DOI: 10.1038/s41576-020-00304-w] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Heritable variation in gene expression is common within and between species. This variation arises from mutations that alter the form or function of molecular gene regulatory networks that are then filtered by natural selection. High-throughput methods for introducing mutations and characterizing their cis- and trans-regulatory effects on gene expression (particularly, transcription) are revealing how different molecular mechanisms generate regulatory variation, and studies comparing these mutational effects with variation seen in the wild are teasing apart the role of neutral and non-neutral evolutionary processes. This integration of molecular and evolutionary biology allows us to understand how the variation in gene expression we see today came to be and to predict how it is most likely to evolve in the future.
Collapse
|
27
|
Le Poul Y, Xin Y, Ling L, Mühling B, Jaenichen R, Hörl D, Bunk R, Harz H, Leonhardt H, Wang Y, Osipova E, Museridze M, Dharmadhikari D, Murphy E, Rohs R, Preibisch S, Prud'homme B, Gompel N. Regulatory encoding of quantitative variation in spatial activity of a Drosophila enhancer. SCIENCE ADVANCES 2020; 6:eabe2955. [PMID: 33268361 PMCID: PMC7821883 DOI: 10.1126/sciadv.abe2955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Developmental enhancers control the expression of genes prefiguring morphological patterns. The activity of an enhancer varies among cells of a tissue, but collectively, expression levels in individual cells constitute a spatial pattern of gene expression. How the spatial and quantitative regulatory information is encoded in an enhancer sequence is elusive. To link spatial pattern and activity levels of an enhancer, we used systematic mutations of the yellow spot enhancer, active in developing Drosophila wings, and tested their effect in a reporter assay. Moreover, we developed an analytic framework based on the comprehensive quantification of spatial reporter activity. We show that the quantitative enhancer activity results from densely packed regulatory information along the sequence, and that a complex interplay between activators and multiple tiers of repressors carves the spatial pattern. Our results shed light on how an enhancer reads and integrates trans-regulatory landscape information to encode a spatial quantitative pattern.
Collapse
Affiliation(s)
- Yann Le Poul
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Yaqun Xin
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Liucong Ling
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Bettina Mühling
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Rita Jaenichen
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - David Hörl
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Raven Bunk
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Hartmann Harz
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Yingfei Wang
- Quantitative and Computational Biology, Departments of Biological Sciences, Chemistry, Physics and Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Elena Osipova
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Mariam Museridze
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Deepak Dharmadhikari
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Eamonn Murphy
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Remo Rohs
- Quantitative and Computational Biology, Departments of Biological Sciences, Chemistry, Physics and Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephan Preibisch
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Benjamin Prud'homme
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France.
| | - Nicolas Gompel
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
28
|
Lewis JJ, Van Belleghem SM. Mechanisms of Change: A Population-Based Perspective on the Roles of Modularity and Pleiotropy in Diversification. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
29
|
Abstract
Form diversity is fueled by changes in the expression of genes that build organisms. New expression often results from the emergence of new DNA switches, known as transcriptional enhancers. Many enhancers are thought to appear through the recycling of older enhancers, a process called evolutionary co-option. Enhancer co-option is difficult to assess, and the molecular mechanisms explaining its prevalence are elusive. Using state-of-the-art quantification and analyses, we reveal that the sequences of an ancestral and a derived enhancer overlap extensively. They contain specific binding sites for regulators imparting spatial activities. We found that the two enhancers also share a site facilitating access to chromatin in a region where they overlap. The diversity of forms in multicellular organisms originates largely from the spatial redeployment of developmental genes [S. B. Carroll, Cell 134, 25–36 (2008)]. Several scenarios can explain the emergence of cis-regulatory elements that govern novel aspects of a gene expression pattern [M. Rebeiz, M. Tsiantis, Curr. Opin. Genet. Dev. 45, 115–123 (2017)]. One scenario, enhancer co-option, holds that a DNA sequence producing an ancestral regulatory activity also becomes the template for a new regulatory activity, sharing regulatory information. While enhancer co-option might fuel morphological diversification, it has rarely been documented [W. J. Glassford et al., Dev. Cell 34, 520–531 (2015)]. Moreover, if two regulatory activities are borne from the same sequence, their modularity, considered a defining feature of enhancers [J. Banerji, L. Olson, W. Schaffner, Cell 33, 729–740 (1983)], might be affected by pleiotropy. Sequence overlap may thereby play a determinant role in enhancer function and evolution. Here, we investigated this problem with two regulatory activities of the Drosophila gene yellow, the novel spot enhancer and the ancestral wing blade enhancer. We used precise and comprehensive quantification of each activity in Drosophila wings to systematically map their sequences along the locus. We show that the spot enhancer has co-opted the sequences of the wing blade enhancer. We also identified a pleiotropic site necessary for DNA accessibility of a shared regulatory region. While the evolutionary steps leading to the derived activity are still unknown, such pleiotropy suggests that enhancer accessibility could be one of the molecular mechanisms seeding evolutionary co-option.
Collapse
|
30
|
Kuwalekar M, Deshmukh R, Padvi A, Kunte K. Molecular Evolution and Developmental Expression of Melanin Pathway Genes in Lepidoptera. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
31
|
Massey JH, Rice GR, Firdaus AS, Chen CY, Yeh SD, Stern DL, Wittkopp PJ. Co-evolving wing spots and mating displays are genetically separable traits in Drosophila. Evolution 2020; 74:1098-1111. [PMID: 32363590 DOI: 10.1111/evo.13990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/28/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
The evolution of sexual traits often involves correlated changes in morphology and behavior. For example, in Drosophila, divergent mating displays are often accompanied by divergent pigment patterns. To better understand how such traits co-evolve, we investigated the genetic basis of correlated divergence in wing pigmentation and mating display between the sibling species Drosophila elegans and Drosophila gunungcola. Drosophila elegans males have an area of black pigment on their wings known as a wing spot and appear to display this spot to females by extending their wings laterally during courtship. By contrast, D. gunungcola lost both of these traits. Using Multiplexed Shotgun Genotyping (MSG), we identified a ∼440 kb region on the X chromosome that behaves like a genetic switch controlling the presence or absence of male-specific wing spots. This region includes the candidate gene optomotor-blind (omb), which plays a critical role in patterning the Drosophila wing. The genetic basis of divergent wing display is more complex, with at least two loci on the X chromosome and two loci on autosomes contributing to its evolution. Introgressing the X-linked region affecting wing spot development from D. gunungcola into D. elegans reduced pigmentation in the wing spots but did not affect the wing display, indicating that these are genetically separable traits. Consistent with this observation, broader sampling of wild D. gunungcola populations confirmed that the wing spot and wing display are evolving independently: some D. gunungcola males performed wing displays similar to D. elegans despite lacking wing spots. These data suggest that correlated selection pressures rather than physical linkage or pleiotropy are responsible for the coevolution of these morphological and behavioral traits. They also suggest that the change in morphology evolved prior to the change in behavior.
Collapse
Affiliation(s)
- Jonathan H Massey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Gavin R Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Anggun S Firdaus
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - Chi-Yang Chen
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - Shu-Dan Yeh
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
32
|
Temporal flexibility of gene regulatory network underlies a novel wing pattern in flies. Proc Natl Acad Sci U S A 2020; 117:11589-11596. [PMID: 32393634 PMCID: PMC7261121 DOI: 10.1073/pnas.2002092117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Developmental genes can be coopted to generate evolutionary novelties by changing their spatial regulation. However, developmental genes seldom act independently, but rather work in a gene regulatory network (GRN). How is it possible to recruit a single gene from a whole GRN? What are the properties that allow parallel cooptions of the same genes during evolution? Here, we show that a novel engrailed gene expression underlies a novel wing color pattern in flies. We show that cooption is facilitated 1) because of GRN flexibility over development and 2) because every single gene of the GRN has its own functional time window. We suggest these two temporal properties could explain why the same gene can be independently recruited several times during evolution. Organisms have evolved endless morphological, physiological, and behavioral novel traits during the course of evolution. Novel traits were proposed to evolve mainly by orchestration of preexisting genes. Over the past two decades, biologists have shown that cooption of gene regulatory networks (GRNs) indeed underlies numerous evolutionary novelties. However, very little is known about the actual GRN properties that allow such redeployment. Here we have investigated the generation and evolution of the complex wing pattern of the fly Samoaia leonensis. We show that the transcription factor Engrailed is recruited independently from the other players of the anterior–posterior specification network to generate a new wing pattern. We argue that partial cooption is made possible because 1) the anterior–posterior specification GRN is flexible over time in the developing wing and 2) this flexibility results from the fact that every single gene of the GRN possesses its own functional time window. We propose that the temporal flexibility of a GRN is a general prerequisite for its possible cooption during the course of evolution.
Collapse
|
33
|
Fukutomi Y, Kondo S, Toyoda A, Shigenobu S, Koshikawa S. Transcriptome analysis reveals wingless regulates neural development and signaling genes in the region of wing pigmentation of a polka-dotted fruit fly. FEBS J 2020; 288:99-110. [PMID: 32307851 DOI: 10.1111/febs.15338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/14/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
Abstract
How evolutionary novelties have arisen is one of the central questions in evolutionary biology. Preexisting gene regulatory networks or signaling pathways have been shown to be co-opted for building novel traits in several organisms. However, the structure of entire gene regulatory networks and evolutionary events of gene co-option for emergence of a novel trait are poorly understood. In this study, to explore the genetic and molecular bases of the novel wing pigmentation pattern of a polka-dotted fruit fly (Drosophila guttifera), we performed de novo genome sequencing and transcriptome analyses. As a result, we comprehensively identified the genes associated with the pigmentation pattern. Furthermore, we revealed that 151 of these associated genes were positively or negatively regulated by wingless, a master regulator of wing pigmentation. Genes for neural development, Wnt signaling, Dpp signaling, and effectors (such as enzymes) for melanin pigmentation were included among these 151 genes. None of the known regulatory genes that regulate pigmentation pattern formation in other fruit fly species were included. Our results suggest that the novel pigmentation pattern of a polka-dotted fruit fly might have emerged through multistep co-options of multiple gene regulatory networks, signaling pathways, and effector genes, rather than recruitment of one large gene circuit.
Collapse
Affiliation(s)
- Yuichi Fukutomi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Shigeyuki Koshikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan.,Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
34
|
Koshikawa S. Evolution of wing pigmentation in Drosophila: Diversity, physiological regulation, and cis-regulatory evolution. Dev Growth Differ 2020; 62:269-278. [PMID: 32171022 PMCID: PMC7384037 DOI: 10.1111/dgd.12661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
Fruit flies (Drosophila and its close relatives, or “drosophilids”) are a group that includes an important model organism, Drosophila melanogaster, and also very diverse species distributed worldwide. Many of these species have black or brown pigmentation patterns on their wings, and have been used as material for evo‐devo research. Pigmentation patterns are thought to have evolved rapidly compared with body plans or body shapes; hence they are advantageous model systems for studying evolutionary gains of traits and parallel evolution. Various groups of drosophilids, including genus Idiomyia (Hawaiian Drosophila), have a variety of pigmentations, ranging from simple black pigmentations around crossveins to a single antero‐distal spot and a more complex mottled pattern. Pigmentation patterns are sometimes obviously used for sexual displays; however, in some cases they may have other functions. The process of wing formation in Drosophila, the general mechanism of pigmentation formation, and the transport of substances necessary for pigmentation, including melanin precursors, through wing veins are summarized here. Lastly, the evolution of the expression of genes regulating pigmentation patterns, the role of cis‐regulatory regions, and the conditions required for the evolutionary emergence of pigmentation patterns are discussed. Future prospects for research on the evolution of wing pigmentation pattern formation in drosophilids are presented, particularly from the point of view of how they compare with other studies of the evolution of new traits.
Collapse
Affiliation(s)
- Shigeyuki Koshikawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan.,Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
35
|
Varón‐González C, Fraimout A, Debat V. Drosophila suzukii wing spot size is robust to developmental temperature. Ecol Evol 2020; 10:3178-3188. [PMID: 32273979 PMCID: PMC7141071 DOI: 10.1002/ece3.5902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Phenotypic plasticity is an important mechanism allowing adaptation to new environments and as such it has been suggested to facilitate biological invasions. Under this assumption, invasive populations are predicted to exhibit stronger plastic responses than native populations. Drosophila suzukii is an invasive species whose males harbor a spot on the wing tip. In this study, by manipulating developmental temperature, we compare the phenotypic plasticity of wing spot size of two invasive populations with that of a native population. We then compare the results with data obtained from wild-caught flies from different natural populations. While both wing size and spot size are plastic to temperature, no difference in plasticity was detected between native and invasive populations, rejecting the hypothesis of a role of the wing-spot plasticity in the invasion success. In contrast, we observed a remarkable stability in the spot-to-wing ratio across temperatures, as well as among geographic populations. This stability suggests either that the spot relative size is under stabilizing selection, or that its variation might be constrained by a tight developmental correlation between spot size and wing size. Our data show that this correlation was lost at high temperature, leading to an increased variation in the relative spot size, particularly marked in the two invasive populations. This suggests: (a) that D. suzukii's development is impaired by hot temperatures, in agreement with the cold-adapted status of this species; (b) that the spot size can be decoupled from wing size, rejecting the hypothesis of an absolute constraint and suggesting that the wing color pattern might be under stabilizing (sexual) selection; and (c) that such sexual selection might be relaxed in the invasive populations. Finally, a subtle but consistent directional asymmetry in spot size was detected in favor of the right side in all populations and temperatures, possibly indicative of a lateralized sexual behavior.
Collapse
Affiliation(s)
- Ceferino Varón‐González
- Institut de Systématique, Evolution, Biodiversité (ISYEB)Muséum National d'Histoire NaturelleCNRSSorbonne UniversitéEPHEUniversité des AntillesParisFrance
| | - Antoine Fraimout
- Institut de Systématique, Evolution, Biodiversité (ISYEB)Muséum National d'Histoire NaturelleCNRSSorbonne UniversitéEPHEUniversité des AntillesParisFrance
- Present address:
Ecological Genetics Research UnitOrganismal and Evolutionary Biology Research ProgrammeFaculty of Biology and Environmental SciencesBiocenter 3University of HelsinkiHelsinkiFinland
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB)Muséum National d'Histoire NaturelleCNRSSorbonne UniversitéEPHEUniversité des AntillesParisFrance
| |
Collapse
|
36
|
Hughes JT, Williams ME, Johnson R, Grover S, Rebeiz M, Williams TM. Gene Regulatory Network Homoplasy Underlies Recurrent Sexually Dimorphic Fruit Fly Pigmentation. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Ding B, Patterson EL, Holalu SV, Li J, Johnson GA, Stanley LE, Greenlee AB, Peng F, Bradshaw HD, Blinov ML, Blackman BK, Yuan YW. Two MYB Proteins in a Self-Organizing Activator-Inhibitor System Produce Spotted Pigmentation Patterns. Curr Biol 2020; 30:802-814.e8. [PMID: 32155414 PMCID: PMC7156294 DOI: 10.1016/j.cub.2019.12.067] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/24/2019] [Accepted: 12/20/2019] [Indexed: 11/19/2022]
Abstract
Many organisms exhibit visually striking spotted or striped pigmentation patterns. Developmental models predict that such spatial patterns can form when a local autocatalytic feedback loop and a long-range inhibitory feedback loop interact. At its simplest, this self-organizing network only requires one self-activating activator that also activates a repressor, which inhibits the activator and diffuses to neighboring cells. However, the molecular activators and inhibitors fully fitting this versatile model remain elusive in pigmentation systems. Here, we characterize an R2R3-MYB activator and an R3-MYB repressor in monkeyflowers (Mimulus). Through experimental perturbation and mathematical modeling, we demonstrate that the properties of these two proteins correspond to an activator-inhibitor pair in a two-component, reaction-diffusion system, explaining the formation of dispersed anthocyanin spots in monkeyflower petals. Notably, disrupting this pattern impacts pollinator visitation. Thus, subtle changes in simple activator-inhibitor systems are likely essential contributors to the evolution of the remarkable diversity of pigmentation patterns in flowers.
Collapse
Affiliation(s)
- Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Erin L Patterson
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall #3102, Berkeley, CA 94720, USA; Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904, USA
| | - Srinidhi V Holalu
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall #3102, Berkeley, CA 94720, USA; Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904, USA
| | - Jingjian Li
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA; College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Grace A Johnson
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall #3102, Berkeley, CA 94720, USA
| | - Lauren E Stanley
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Anna B Greenlee
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904, USA
| | - Foen Peng
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - H D Bradshaw
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Michael L Blinov
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall #3102, Berkeley, CA 94720, USA; Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904, USA.
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
38
|
Auer TO, Khallaf MA, Silbering AF, Zappia G, Ellis K, Álvarez-Ocaña R, Arguello JR, Hansson BS, Jefferis GSXE, Caron SJC, Knaden M, Benton R. Olfactory receptor and circuit evolution promote host specialization. Nature 2020. [PMID: 32132713 DOI: 10.1038/s41586-020–2073-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolution of animal behaviour is poorly understood1,2. Despite numerous correlations between interspecific divergence in behaviour and nervous system structure and function, demonstrations of the genetic basis of these behavioural differences remain rare3-5. Here we develop a neurogenetic model, Drosophila sechellia, a species that displays marked differences in behaviour compared to its close cousin Drosophila melanogaster6,7, which are linked to its extreme specialization on noni fruit (Morinda citrifolia)8-16. Using calcium imaging, we identify olfactory pathways in D. sechellia that detect volatiles emitted by the noni host. Our mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni, and our cross-species allele-transfer experiments demonstrate that the tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterize their evolutionary origin and behavioural importance. We perform circuit tracing in the D. sechellia brain, and find that receptor adaptations are accompanied by increased sensory pooling onto interneurons as well as species-specific central projection patterns. This work reveals an accumulation of molecular, physiological and anatomical traits that are linked to behavioural divergence between species, and defines a model for investigating speciation and the evolution of the nervous system.
Collapse
Affiliation(s)
- Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Mohammed A Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ana F Silbering
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giovanna Zappia
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kaitlyn Ellis
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - J Roman Arguello
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Sophie J C Caron
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
39
|
Auer TO, Khallaf MA, Silbering AF, Zappia G, Ellis K, Álvarez-Ocaña R, Arguello JR, Hansson BS, Jefferis GSXE, Caron SJC, Knaden M, Benton R. Olfactory receptor and circuit evolution promote host specialization. Nature 2020; 579:402-408. [PMID: 32132713 PMCID: PMC7100913 DOI: 10.1038/s41586-020-2073-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 01/31/2020] [Indexed: 11/09/2022]
Abstract
The evolution of animal behaviour is poorly understood1,2. Despite numerous correlations of behavioural and nervous system divergence, demonstration of the genetic basis of interspecific behavioural differences remains rare3–5. Here, we develop a novel neurogenetic model, Drosophila sechellia, a close cousin of D. melanogaster6,7 that displays profound behavioural changes linked to its extreme specialisation on noni fruit8–16. Using calcium imaging, we identify D. sechellia olfactory pathways detecting host volatiles. Mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni. Cross-species allele transfer demonstrates that tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterise their evolutionary origin and behavioural significance. Through circuit tracing in the D. sechellia brain, we find that receptor adaptations are accompanied by increased sensory pooling onto interneurons and novel central projection patterns. This work reveals the accumulation of molecular, physiological and anatomical traits linked to behavioural divergence, and defines a powerful model for investigating nervous system evolution and speciation.
Collapse
Affiliation(s)
- Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Mohammed A Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ana F Silbering
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giovanna Zappia
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kaitlyn Ellis
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - J Roman Arguello
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Sophie J C Caron
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
40
|
Jackman WR, Gibert Y. Retinoic Acid Signaling and the Zebrafish Dentition During Development and Evolution. Subcell Biochem 2020; 95:175-196. [PMID: 32297300 DOI: 10.1007/978-3-030-42282-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Explaining how the extensive diversity in form of vertebrate teeth arose in evolution and the mechanisms by which teeth are made during embryogenesis are intertwined questions that can merit from a better understanding of the roles of retinoic acid (RA) in tooth development. Pioneering studies in rodents showed that dietary vitamin A (VA), and eventually RA (one of the major active metabolites of VA), are required for proper tooth formation and that dentin-forming odontoblast cells seem to be especially sensitive to changes in RA levels. Later, rodent studies further indicated that RA signaling interactions with other cell-signaling pathways are an important part of RA's actions in odontogenesis. Recent investigations employing zebrafish and other teleost fish continued this work in an evolutionary context, and specifically demonstrated that RA is required for the initiation of tooth development. RA is also sufficient in certain circumstances to induce de novo tooth formation. Both effects appear to involve cranial-neural crest cells, again suggesting that RA signaling has a particular influence on odontoblast development. These teleost studies have also highlighted both evolutionary conservation and change in how RA is employed during odontogenesis in different vertebrate lineages, and thus raises the possibility that developmental changes to RA signaling has led to some of the diversity of form seen across vertebrate dentitions. Future progress in this area will come at least in part from expanding the species examined to get a better picture of how often RA signaling has changed in evolution and how this relates to the evolution of dental form.
Collapse
Affiliation(s)
| | - Yann Gibert
- University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
41
|
Lamrabet O, Plumbridge J, Martin M, Lenski RE, Schneider D, Hindré T. Plasticity of Promoter-Core Sequences Allows Bacteria to Compensate for the Loss of a Key Global Regulatory Gene. Mol Biol Evol 2019; 36:1121-1133. [PMID: 30825312 DOI: 10.1093/molbev/msz042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transcription regulatory networks (TRNs) are of central importance for both short-term phenotypic adaptation in response to environmental fluctuations and long-term evolutionary adaptation, with global regulatory genes often being targets of natural selection in laboratory experiments. Here, we combined evolution experiments, whole-genome resequencing, and molecular genetics to investigate the driving forces, genetic constraints, and molecular mechanisms that dictate how bacteria can cope with a drastic perturbation of their TRNs. The crp gene, encoding a major global regulator in Escherichia coli, was deleted in four different genetic backgrounds, all derived from the Long-Term Evolution Experiment (LTEE) but with different TRN architectures. We confirmed that crp deletion had a more deleterious effect on growth rate in the LTEE-adapted genotypes; and we showed that the ptsG gene, which encodes the major glucose-PTS transporter, gained CRP (cyclic AMP receptor protein) dependence over time in the LTEE. We then further evolved the four crp-deleted genotypes in glucose minimal medium, and we found that they all quickly recovered from their growth defects by increasing glucose uptake. We showed that this recovery was specific to the selective environment and consistently relied on mutations in the cis-regulatory region of ptsG, regardless of the initial genotype. These mutations affected the interplay of transcription factors acting at the promoters, changed the intrinsic properties of the existing promoters, or produced new transcription initiation sites. Therefore, the plasticity of even a single promoter region can compensate by three different mechanisms for the loss of a key regulatory hub in the E. coli TRN.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Jacqueline Plumbridge
- CNRS UMR8261, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-chimique, Paris, France
| | - Mikaël Martin
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI
| | | | - Thomas Hindré
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| |
Collapse
|
42
|
Hanly JJ, Wallbank RWR, McMillan WO, Jiggins CD. Conservation and flexibility in the gene regulatory landscape of heliconiine butterfly wings. EvoDevo 2019; 10:15. [PMID: 31341608 PMCID: PMC6631869 DOI: 10.1186/s13227-019-0127-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Many traits evolve by cis-regulatory modification, by which changes to noncoding sequences affect the binding affinity for available transcription factors and thus modify the expression profile of genes. Multiple examples of cis-regulatory evolution have been described at pattern switch genes responsible for butterfly wing pattern polymorphism, including in the diverse neotropical genus Heliconius, but the identities of the factors that can regulate these switch genes have not been identified. RESULTS We investigated the spatial transcriptomic landscape across the wings of three closely related butterfly species, two of which have a convergently evolved co-mimetic pattern and the other having a divergent pattern. We identified candidate factors for regulating the expression of wing patterning genes, including transcription factors with a conserved expression profile in all three species, and others, including both transcription factors and Wnt pathway genes, with markedly different profiles in each of the three species. We verified the conserved expression profile of the transcription factor homothorax by immunofluorescence and showed that its expression profile strongly correlates with that of the selector gene optix in butterflies with the Amazonian forewing pattern element 'dennis.' CONCLUSION Here we show that, in addition to factors with conserved expression profiles like homothorax, there are also a variety of transcription factors and signaling pathway components that appear to vary in their expression profiles between closely related butterfly species, highlighting the importance of genome-wide regulatory evolution between species.
Collapse
Affiliation(s)
- Joseph J. Hanly
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
- Biological Sciences, The George Washington University, Washington, DC 20052 USA
| | - Richard W. R. Wallbank
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | | | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| |
Collapse
|
43
|
Al Sayad S, Yassin A. Quantifying the extent of morphological homoplasy: A phylogenetic analysis of 490 characters in Drosophila. Evol Lett 2019; 3:286-298. [PMID: 31171984 PMCID: PMC6546384 DOI: 10.1002/evl3.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022] Open
Abstract
Homoplasy is a fundamental phenomenon in evolutionary biology but an appraisal of its extent at the morphological level is still lacking. Here, we analyzed the evolution of 490 morphological characters conceptualized among 56 drosophilid species. We found that two thirds of morphological changes were homoplastic and that the level of homoplasy depended on the stage of development and the type of the organ, with the adult terminalia being the least homoplastic. In spite of its predominance at the character change level, homoplasy accounts for only ∼13% of between species similarities in pairwise comparisons. These results provide empirical insights on the limits of morphological changes and the frequency of recurrent evolution.
Collapse
Affiliation(s)
- Sinan Al Sayad
- Institut Systématique Evolution Biodiversité (ISYEB)Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE57 rue Cuvier, CP 50,75005ParisFrance
| | - Amir Yassin
- Institut Systématique Evolution Biodiversité (ISYEB)Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE57 rue Cuvier, CP 50,75005ParisFrance
| |
Collapse
|
44
|
Connahs H, Tlili S, van Creij J, Loo TYJ, Banerjee TD, Saunders TE, Monteiro A. Activation of butterfly eyespots by Distal-less is consistent with a reaction-diffusion process. Development 2019; 146:dev169367. [PMID: 30992277 PMCID: PMC6526720 DOI: 10.1242/dev.169367] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 04/05/2019] [Indexed: 01/08/2023]
Abstract
Eyespots on the wings of nymphalid butterflies represent colorful examples of pattern formation, yet the developmental origins and mechanisms underlying eyespot center differentiation are still poorly understood. Using CRISPR-Cas9 we re-examine the function of Distal-less (Dll) as an activator or repressor of eyespots, a topic that remains controversial. We show that the phenotypic outcome of CRISPR mutations depends upon which specific exon is targeted. In Bicyclus anynana, exon 2 mutations are associated with both missing and ectopic eyespots, and also exon skipping. Exon 3 mutations, which do not lead to exon skipping, produce only null phenotypes, including missing eyespots, lighter wing coloration and loss of scales. Reaction-diffusion modeling of Dll function, using Wnt and Dpp as candidate morphogens, accurately replicates these complex crispant phenotypes. These results provide new insight into the function of Dll as a potential activator of eyespot development, scale growth and melanization, and suggest that the tuning of Dll expression levels can generate a diversity of eyespot phenotypes, including their appearance on the wing.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Heidi Connahs
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Sham Tlili
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Jelle van Creij
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Tricia Y J Loo
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Timothy E Saunders
- Department of Biological Sciences, National University of Singapore, Singapore 117558
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Institute of Molecular and Cell Biology, A*Star, Proteos, Singapore 138673
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore 117558
- Yale-NUS College, Singapore 138527
| |
Collapse
|
45
|
Redundant and Cryptic Enhancer Activities of the Drosophila yellow Gene. Genetics 2019; 212:343-360. [PMID: 30842209 DOI: 10.1534/genetics.119.301985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 11/18/2022] Open
Abstract
Cis-regulatory sequences known as enhancers play a key role in regulating gene expression. Evolutionary changes in these DNA sequences contribute to phenotypic evolution. The Drosophila yellow gene, which is required for pigmentation, has emerged as a model system for understanding how cis-regulatory sequences evolve, providing some of the most detailed insights available into how activities of orthologous enhancers have diverged between species. Here, we examine the evolution of yellow cis-regulatory sequences on a broader scale, by comparing the distribution and function of yellow enhancer activities throughout the 5' intergenic and intronic sequences of Drosophila melanogaster, D. pseudoobscura, and D. willistoni We find that cis-regulatory sequences driving expression in a particular tissue are not as modular as previously described, but rather have many redundant and cryptic enhancer activities distributed throughout the regions surveyed. Interestingly, cryptic enhancer activities of sequences from one species often drove patterns of expression observed in other species, suggesting that the frequent evolutionary changes in yellow expression observed among Drosophila species may be facilitated by gaining and losing repression of preexisting cis-regulatory sequences.
Collapse
|
46
|
Rajaratnam G, Supeinthiran A, Meier R, Su KFY. CRISPR/Cas9 deletions in a conserved exon of Distal-less generates gains and losses in a recently acquired morphological novelty in flies. iScience 2018; 10:222-233. [PMID: 30553946 PMCID: PMC6297884 DOI: 10.1016/j.isci.2018.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 01/23/2023] Open
Abstract
Distal-less has been repeatedly co-opted for the development of many novel traits. Here, we document its curious role in the development of a novel abdominal appendage (“sternite brushes”) in sepsid flies. CRISPR/Cas9 deletions in the homeodomain result in losses of sternite brushes, demonstrating that Distal-less is necessary for their development. However, deletions in the upstream coding exon (Exon 2) produce losses or gains of brushes. A dissection of Exon 2 reveals that the likely mechanism for gains involves a deletion in an exon-splicing enhancer site that leads to exon skipping. Such contradictory phenotypes are also observed in butterflies, suggesting that mutations in the conserved upstream regions have the potential to generate phenotypic variability in insects that diverged 300 million years ago. Our results demonstrate the importance of Distal-less for the development of a novel abdominal appendage in insects and highlight how site-specific mutations in the same exon can produce contradictory phenotypes. Distal-less is necessary for the development of a novel abdominal appendage CRISPR/Cas9 editing produced both losses and gains of novel abdominal appendages Gains of appendages result from mutations in exonic splicing enhancer (ESEs) sites ESE mutations likely led to exon skipping and an altered Distal-less protein
Collapse
Affiliation(s)
- Gowri Rajaratnam
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Lee Kong Chian Natural History Museum, Singapore, Singapore.
| | - Kathy F Y Su
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
47
|
Roy PR, Gleason JM. Assessing the use of wing ornamentation and visual display in female choice sexual selection. Behav Processes 2018; 158:89-96. [PMID: 30458226 DOI: 10.1016/j.beproc.2018.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 01/15/2023]
Abstract
Conspicuous sexual dimorphism is often ascribed to sexual selection. When the differences between the sexes are ornamental, this is thought to indicate a role for female choice. In spotted winged Drosophila species courtship, a male positioned in front of a female waves his wings, which have a patch of melanization on the exterior margin. In this study, we examine both female preference for wing spots and the role of vision in mating success in three species of the suzukii group: Drosophila biarmipes, D. suzukii, and D. subpulchrella. To assess female preference for wing spot, we removed the spot with a novel, non-invasive method, and competed spotless males with males with two spots. Phenotype did not affect mating success in any species. To eliminate the potential effect of competitive behavior on male mating success, we also ran a no-choice analysis. Mating frequency and timing was not different between phenotypes within these species. The effect of vision on mating success was assessed by comparing mating success of spotted males between light and dark conditions, both for frequency of mating, as well as timing of multiple courtship parameters. Species varied in the extent that lack of vision negatively affected mating success. Though vision is important for mating success, the spot itself may not be providing the signal that females use to make mating decisions.
Collapse
Affiliation(s)
- Paula R Roy
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, United States.
| | - Jennifer M Gleason
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, United States
| |
Collapse
|
48
|
Gautier M, Yamaguchi J, Foucaud J, Loiseau A, Ausset A, Facon B, Gschloessl B, Lagnel J, Loire E, Parrinello H, Severac D, Lopez-Roques C, Donnadieu C, Manno M, Berges H, Gharbi K, Lawson-Handley L, Zang LS, Vogel H, Estoup A, Prud'homme B. The Genomic Basis of Color Pattern Polymorphism in the Harlequin Ladybird. Curr Biol 2018; 28:3296-3302.e7. [PMID: 30146156 PMCID: PMC6203698 DOI: 10.1016/j.cub.2018.08.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/25/2018] [Accepted: 08/07/2018] [Indexed: 12/02/2022]
Abstract
Many animal species comprise discrete phenotypic forms. A common example in natural populations of insects is the occurrence of different color patterns, which has motivated a rich body of ecological and genetic research [1-6]. The occurrence of dark, i.e., melanic, forms displaying discrete color patterns is found across multiple taxa, but the underlying genomic basis remains poorly characterized. In numerous ladybird species (Coccinellidae), the spatial arrangement of black and red patches on adult elytra varies wildly within species, forming strikingly different complex color patterns [7, 8]. In the harlequin ladybird, Harmonia axyridis, more than 200 distinct color forms have been described, which classic genetic studies suggest result from allelic variation at a single, unknown, locus [9, 10]. Here, we combined whole-genome sequencing, population-based genome-wide association studies, gene expression, and functional analyses to establish that the transcription factor Pannier controls melanic pattern polymorphism in H. axyridis. We show that pannier is necessary for the formation of melanic elements on the elytra. Allelic variation in pannier leads to protein expression in distinct domains on the elytra and thus determines the distinct color patterns in H. axyridis. Recombination between pannier alleles may be reduced by a highly divergent sequence of ∼170 kb in the cis-regulatory regions of pannier, with a 50 kb inversion between color forms. This most likely helps maintain the distinct alleles found in natural populations. Thus, we propose that highly variable discrete color forms can arise in natural populations through cis-regulatory allelic variation of a single gene.
Collapse
Affiliation(s)
- Mathieu Gautier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Julien Foucaud
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Anne Loiseau
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Aurélien Ausset
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Benoit Facon
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Bernhard Gschloessl
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Jacques Lagnel
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Etienne Loire
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Hugues Parrinello
- MGX, Biocampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Dany Severac
- MGX, Biocampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | | | | | - Maxime Manno
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Helene Berges
- INRA, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Karim Gharbi
- Edinburgh Genomics, University of Edinburgh, Edinburgh, UK
| | - Lori Lawson-Handley
- Evolutionary and Environmental Genomics Group, School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | - Lian-Sheng Zang
- Institute of Biological Control, Jilin Agricultural University, Changchun, China
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Arnaud Estoup
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France.
| | | |
Collapse
|
49
|
Grover S, Williams ME, Kaiser R, Hughes JT, Gresham L, Rebeiz M, Williams TM. Augmentation of a wound response element accompanies the origin of a Hox-regulated Drosophila abdominal pigmentation trait. Dev Biol 2018; 441:159-175. [PMID: 29981311 PMCID: PMC6075670 DOI: 10.1016/j.ydbio.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 11/16/2022]
Abstract
A challenge for evolutionary research is to uncover how new morphological traits evolve the coordinated spatial and temporal expression patterns of genes that govern their formation during development. Detailed studies are often limited to characterizing how one or a few genes contributed to a trait's emergence, and thus our knowledge of how entire GRNs evolve their coordinated expression of each gene remains unresolved. The melanic color patterns decorating the male abdominal tergites of Drosophila (D.) melanogaster evolved in part by novel expression patterns for genes acting at the terminus of a pigment metabolic pathway, driven by cis-regulatory elements (CREs) with distinct mechanisms of Hox regulation. Here, we examined the expression and evolutionary histories of two important enzymes in this pathway, encoded by the pale and Ddc genes. We found that while both genes exhibit dynamic patterns of expression, a robust pattern of Ddc expression specifically evolved in the lineage of fruit flies with pronounced melanic abdomens. Derived Ddc expression requires the activity of a CRE previously shown to activate expression in response to epidermal wounding. We show that a binding site for the Grainy head transcription factor that promotes the ancestral wound healing function of this CRE is also required for abdominal activity. Together with previous findings in this system, our work shows how the GRN for a novel trait emerged by assembling unique yet similarly functioning CREs from heterogeneous starting points.
Collapse
Affiliation(s)
- Sumant Grover
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Melissa E Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Rebecca Kaiser
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Jesse T Hughes
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Lauren Gresham
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Thomas M Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA; The Integrative Science and Engineering Center, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
| |
Collapse
|
50
|
Hu Y, Schmitt-Engel C, Schwirz J, Stroehlein N, Richter T, Majumdar U, Bucher G. A morphological novelty evolved by co-option of a reduced gene regulatory network and gene recruitment in a beetle. Proc Biol Sci 2018; 285:rspb.2018.1373. [PMID: 30135167 DOI: 10.1098/rspb.2018.1373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022] Open
Abstract
The mechanisms underlying the evolution of morphological novelties have remained enigmatic but co-option of existing gene regulatory networks (GRNs), recruitment of genes and the evolution of orphan genes have all been suggested to contribute. Here, we study a morphological novelty of beetle pupae called gin-trap. By combining the classical candidate gene approach with unbiased screening in the beetle Tribolium castaneum, we find that 70% of the tested components of the wing network were required for gin-trap development. However, many downstream and even upstream components were not included in the co-opted network. Only one gene was recruited from another biological context, but it was essential for the anteroposterior symmetry of the gin-traps, which represents a gin-trap-unique morphological innovation. Our data highlight the importance of co-option and modification of GRNs. The recruitment of single genes may not be frequent in the evolution of morphological novelties, but may be essential for subsequent diversification of the novelties. Finally, after having screened about 28% of annotated genes in the Tribolium genome to identify the genes required for gin-trap development, we found none of them are orphan genes, suggesting that orphan genes may have played only a minor, if any, role in the evolution of gin-traps.
Collapse
Affiliation(s)
- Yonggang Hu
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Christian Schmitt-Engel
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Jonas Schwirz
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Nadi Stroehlein
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Richter
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Upalparna Majumdar
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|