1
|
Heuser B, Bergermann A, Stevenson MG, Ranjan D, He Z, Lütgert J, Schumacher S, Bethkenhagen M, Descamps A, Galtier E, Gleason AE, Khaghani D, Glenn GD, Cunningham EF, Glenzer SH, Hartley NJ, Hernandez JA, Humphries OS, Katagiri K, Lee HJ, McBride EE, Miyanishi K, Nagler B, Ofori-Okai B, Ozaki N, Pandolfi S, Qu C, May PT, Redmer R, Schoenwaelder C, Sueda K, Yabuuchi T, Yabashi M, Lukic B, Rack A, Zinta LMV, Vinci T, Benuzzi-Mounaix A, Ravasio A, Kraus D. Release dynamics of nanodiamonds created by laser-driven shock-compression of polyethylene terephthalate. Sci Rep 2024; 14:12239. [PMID: 38806565 PMCID: PMC11133328 DOI: 10.1038/s41598-024-62367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Laser-driven dynamic compression experiments of plastic materials have found surprisingly fast formation of nanodiamonds (ND) via X-ray probing. This mechanism is relevant for planetary models, but could also open efficient synthesis routes for tailored NDs. We investigate the release mechanics of compressed NDs by molecular dynamics simulation of the isotropic expansion of finite size diamond from different P-T states. Analysing the structural integrity along different release paths via molecular dynamic simulations, we found substantial disintegration rates upon shock release, increasing with the on-Hugnoiot shock temperature. We also find that recrystallization can occur after the expansion and hence during the release, depending on subsequent cooling mechanisms. Our study suggests higher ND recovery rates from off-Hugoniot states, e.g., via double-shocks, due to faster cooling. Laser-driven shock compression experiments of polyethylene terephthalate (PET) samples with in situ X-ray probing at the simulated conditions found diamond signal that persists up to 11 ns after breakout. In the diffraction pattern, we observed peak shifts, which we attribute to thermal expansion of the NDs and thus a total release of pressure, which indicates the stability of the released NDs.
Collapse
Affiliation(s)
- Ben Heuser
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, 01328, Germany.
| | - Armin Bergermann
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - Michael G Stevenson
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - Divyanshu Ranjan
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, 01328, Germany
| | - Zhiyu He
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
- China Academy of Engineering Physics, Shanghai Institute of Laser Plasma, Shanghai, 201800, China
| | - Julian Lütgert
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - Samuel Schumacher
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - Mandy Bethkenhagen
- LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université, Palaiseau, 91128, France
| | - Adrien Descamps
- School of Mathematics and Physics, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | - Eric Galtier
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Dimitri Khaghani
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Griffin D Glenn
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Stanford University, Stanford, CA, 94305, USA
| | | | | | | | - Jean-Alexis Hernandez
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043, Grenoble, France
- The Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, 0371, Norway
| | - Oliver S Humphries
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, 01328, Germany
- European XFEL, Schenefeld, 22869, Germany
| | - Kento Katagiri
- Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hae Ja Lee
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Emma E McBride
- School of Mathematics and Physics, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | | | - Bob Nagler
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Norimasa Ozaki
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Photon Pioneers Center, Osaka University, Suita, Osaka, 565-0087, Japan
| | - Silvia Pandolfi
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Muséum National d'Histoire Naturelle, UMR CNRS 7590, 75005, Paris, France
| | - Chongbing Qu
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - Philipp Thomas May
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - Ronald Redmer
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | | | | | - Toshinori Yabuuchi
- RIKEN SPring-8 Center, Hyogo, 679-5148, Japan
- Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, Hyogo, 679-5148, Japan
- Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, 679-5198, Japan
| | - Bratislav Lukic
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043, Grenoble, France
| | - Alexander Rack
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043, Grenoble, France
| | - Lisa M V Zinta
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - Tommaso Vinci
- LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université, Palaiseau, 91128, France
| | - Alessandra Benuzzi-Mounaix
- LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université, Palaiseau, 91128, France
| | - Alessandra Ravasio
- LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université, Palaiseau, 91128, France
| | - Dominik Kraus
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, 01328, Germany
| |
Collapse
|
2
|
Hwang J, Ihm Y, Nam D, Shin J, Park E, Lee SY, Lee H, Heo SP, Kim S, Ahn JY, Shim JH, Kim M, Eom I, Noh DY, Song C. Inverted nucleation for photoinduced nonequilibrium melting. SCIENCE ADVANCES 2024; 10:eadl6409. [PMID: 38701215 DOI: 10.1126/sciadv.adl6409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Ultrafast photoinduced melting provides an essential platform for studying nonequilibrium phase transitions by linking the kinetics of electron dynamics to ionic motions. Knowledge of dynamic balance in their energetics is essential to understanding how the ionic reaction is influenced by femtosecond photoexcited electrons with notable time lag depending on reaction mechanisms. Here, by directly imaging fluctuating density distributions and evaluating the ionic pressure and Gibbs free energy from two-temperature molecular dynamics that verified experimental results, we uncovered that transient ionic pressure, triggered by photoexcited electrons, controls the overall melting kinetics. In particular, ultrafast nonequilibrium melting can be described by the reverse nucleation process with voids as nucleation seeds. The strongly driven solid-to-liquid transition of metallic gold is successfully explained by void nucleation facilitated by photoexcited electron-initiated ionic pressure, establishing a solid knowledge base for understanding ultrafast nonequilibrium kinetics.
Collapse
Affiliation(s)
- Junha Hwang
- Department of Physics, POSTECH, Pohang 37673, Korea
- Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH Korea Research Initiative, Pohang 37673, Korea
- Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Yungok Ihm
- Photon Science Center, POSTECH, Pohang 37673, Korea
- Department of Chemistry, POSTECH, Pohang 37673, Korea
| | - Daewoong Nam
- Photon Science Center, POSTECH, Pohang 37673, Korea
- Pohang Accelerator Laboratory, Pohang 37673, Korea
| | - Jaeyong Shin
- Department of Physics, POSTECH, Pohang 37673, Korea
- Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH Korea Research Initiative, Pohang 37673, Korea
- Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Eunyoung Park
- Department of Physics, POSTECH, Pohang 37673, Korea
- Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH Korea Research Initiative, Pohang 37673, Korea
- Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Sung Yun Lee
- Department of Physics, POSTECH, Pohang 37673, Korea
- Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH Korea Research Initiative, Pohang 37673, Korea
- Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Heemin Lee
- Department of Physics, POSTECH, Pohang 37673, Korea
- Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH Korea Research Initiative, Pohang 37673, Korea
- Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Seung-Phil Heo
- Department of Physics, POSTECH, Pohang 37673, Korea
- Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH Korea Research Initiative, Pohang 37673, Korea
- Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, Pohang 37673, Korea
| | - Je Young Ahn
- Department of Chemistry, POSTECH, Pohang 37673, Korea
| | - Ji Hoon Shim
- Photon Science Center, POSTECH, Pohang 37673, Korea
- Department of Chemistry, POSTECH, Pohang 37673, Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, Pohang 37673, Korea
| | - Intae Eom
- Photon Science Center, POSTECH, Pohang 37673, Korea
- Pohang Accelerator Laboratory, Pohang 37673, Korea
| | - Do Young Noh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Institute for Basic Science, Daejeon 34126, Korea
| | - Changyong Song
- Department of Physics, POSTECH, Pohang 37673, Korea
- Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH Korea Research Initiative, Pohang 37673, Korea
- Photon Science Center, POSTECH, Pohang 37673, Korea
| |
Collapse
|
3
|
Lee Y, Oang KY, Kim D, Ihee H. A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:031301. [PMID: 38706888 PMCID: PMC11065455 DOI: 10.1063/4.0000249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The structure of molecules, particularly the dynamic changes in structure, plays an essential role in understanding physical and chemical phenomena. Time-resolved (TR) scattering techniques serve as crucial experimental tools for studying structural dynamics, offering direct sensitivity to molecular structures through scattering signals. Over the past decade, the advent of x-ray free-electron lasers (XFELs) and mega-electron-volt ultrafast electron diffraction (MeV-UED) facilities has ushered TR scattering experiments into a new era, garnering significant attention. In this review, we delve into the basic principles of TR scattering experiments, especially focusing on those that employ x-rays and electrons. We highlight the variations in experimental conditions when employing x-rays vs electrons and discuss their complementarity. Additionally, cutting-edge XFELs and MeV-UED facilities for TR x-ray and electron scattering experiments and the experiments performed at those facilities are reviewed. As new facilities are constructed and existing ones undergo upgrades, the landscape for TR x-ray and electron scattering experiments is poised for further expansion. Through this review, we aim to facilitate the effective utilization of these emerging opportunities, assisting researchers in delving deeper into the intricate dynamics of molecular structures.
Collapse
Affiliation(s)
| | - Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, South Korea
| | | | | |
Collapse
|
4
|
Guo S, Tan J, Zhang H, Wang J, Ji T, Zhang L, Hu X, Chen J, Xie J, Zou K, Meng Y, Bei X, Wu LA, Chen Q, Wang H, Tu X, Jia X, Zhao QY, Kang L, Wu P. High-timing-precision detection of single X-ray photons by superconducting nanowires. Natl Sci Rev 2024; 11:nwad102. [PMID: 38116087 PMCID: PMC10727846 DOI: 10.1093/nsr/nwad102] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 12/21/2023] Open
Abstract
Precisely acquiring the timing information of individual X-ray photons is important in both fundamental research and practical applications. The timing precision of commonly used X-ray single-photon detectors remains in the range of one hundred picoseconds to microseconds. In this work, we report on high-timing-precision detection of single X-ray photons through the fast transition to the normal state from the superconductive state of superconducting nanowires. We successfully demonstrate a free-running X-ray single-photon detector with a timing resolution of 20.1 ps made of 100-nm-thick niobium nitride film with an active area of 50 μm by 50 μm. By using a repeated differential timing measurement on two adjacent X-ray single-photon detectors, we demonstrate a precision of 0.87 ps in the arrival-time difference of X-ray photon measurements. Therefore, our work significantly enhances the timing precision in X-ray photon counting, opening a new niche for ultrafast X-ray photonics and many associated applications.
Collapse
Affiliation(s)
- Shuya Guo
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
| | - Jingrou Tan
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
| | - Hengbin Zhang
- Qian Xuesen Laboratory of Space Technology, Beijing 100094, China
| | - Jinguang Wang
- Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianhao Ji
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
| | - Labao Zhang
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
- Hefei National Laboratory, Hefei 230088, China
| | - Xiaolong Hu
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology, Ministry of Education, Tianjin 300072, China
| | - Jian Chen
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
| | - Jun Xie
- Qian Xuesen Laboratory of Space Technology, Beijing 100094, China
| | - Kai Zou
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology, Ministry of Education, Tianjin 300072, China
| | - Yun Meng
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology, Ministry of Education, Tianjin 300072, China
| | - Xiaomin Bei
- Qian Xuesen Laboratory of Space Technology, Beijing 100094, China
| | - Ling-An Wu
- Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Chen
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
| | - Hao Wang
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
| | - Xuecou Tu
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
| | - Xiaoqing Jia
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
- Hefei National Laboratory, Hefei 230088, China
| | - Qing-Yuan Zhao
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
| | - Lin Kang
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
- Hefei National Laboratory, Hefei 230088, China
| | - Peiheng Wu
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
5
|
Robinson IK, Griffiths JP, Koch R, Assefa TA, Suzana AF, Cao Y, Kim S, Kim D, Lee H, Kim S, Lee JH, Park SY, Eom I, Park J, Nam D, Kim S, Chun SH, Hyun H, Kim KS, Lu M, Song C, Kim H, Billinge SJL, Bozin ES. Emergence of liquid following laser melting of gold thin films. IUCRJ 2023; 10:656-661. [PMID: 37903100 PMCID: PMC10619456 DOI: 10.1107/s2052252523009363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023]
Abstract
X-ray structural science is undergoing a revolution driven by the emergence of X-ray Free-electron Laser (XFEL) facilities. The structures of crystalline solids can now be studied on the picosecond time scale relevant to phonons, atomic vibrations which travel at acoustic velocities. In the work presented here, X-ray diffuse scattering is employed to characterize the time dependence of the liquid phase emerging from femtosecond laser-induced melting of polycrystalline gold thin films using an XFEL. In a previous analysis of Bragg peak profiles, we showed the supersonic disappearance of the solid phase and presented a model of pumped hot electrons carrying energy from the gold surface to scatter at internal grain boundaries. This generates melt fronts propagating relatively slowly into the crystal grains. By conversion of diffuse scattering to a partial X-ray pair distribution function, we demonstrate that it has the characteristic shape obtained by Fourier transformation of the measured F(Q). The diffuse signal fraction increases with a characteristic rise-time of 13 ps, roughly independent of the incident pump fluence and consequent final liquid fraction. This suggests the role of further melt-front nucleation processes beyond grain boundaries.
Collapse
Affiliation(s)
- Ian K. Robinson
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11793, USA
- London Centre for Nanotechnology, University College London, London WC1E 6BT, United Kingdom
| | - Jack P. Griffiths
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11793, USA
| | - Robert Koch
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11793, USA
| | - Tadesse A. Assefa
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11793, USA
| | - Ana F. Suzana
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11793, USA
| | - Yue Cao
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sungwon Kim
- Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Dongjin Kim
- Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Heemin Lee
- Department of Physics and POSTECH Photon Science Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sunam Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sang-Youn Park
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - JaeHyun Park
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Daewoong Nam
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sae Hwan Chun
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyojung Hyun
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Kyung-Sook Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Ming Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11793, USA
| | - Changyong Song
- Department of Physics and POSTECH Photon Science Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyunjung Kim
- Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Simon J. L. Billinge
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11793, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Emil S. Bozin
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11793, USA
| |
Collapse
|
6
|
Sano T, Matsuda T, Hirose A, Ohata M, Terai T, Kakeshita T, Inubushi Y, Sato T, Miyanishi K, Yabashi M, Togashi T, Tono K, Sakata O, Tange Y, Arakawa K, Ito Y, Okuchi T, Sato T, Sekine T, Mashimo T, Nakanii N, Seto Y, Shigeta M, Shobu T, Sano Y, Hosokai T, Matsuoka T, Yabuuchi T, Tanaka KA, Ozaki N, Kodama R. X-ray free electron laser observation of ultrafast lattice behaviour under femtosecond laser-driven shock compression in iron. Sci Rep 2023; 13:13796. [PMID: 37652921 PMCID: PMC10471609 DOI: 10.1038/s41598-023-40283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Over the past century, understanding the nature of shock compression of condensed matter has been a major topic. About 20 years ago, a femtosecond laser emerged as a new shock-driver. Unlike conventional shock waves, a femtosecond laser-driven shock wave creates unique microstructures in materials. Therefore, the properties of this shock wave may be different from those of conventional shock waves. However, the lattice behaviour under femtosecond laser-driven shock compression has never been elucidated. Here we report the ultrafast lattice behaviour in iron shocked by direct irradiation of a femtosecond laser pulse, diagnosed using X-ray free electron laser diffraction. We found that the initial compression state caused by the femtosecond laser-driven shock wave is the same as that caused by conventional shock waves. We also found, for the first time experimentally, the temporal deviation of peaks of stress and strain waves predicted theoretically. Furthermore, the existence of a plastic wave peak between the stress and strain wave peaks is a new finding that has not been predicted even theoretically. Our findings will open up new avenues for designing novel materials that combine strength and toughness in a trade-off relationship.
Collapse
Affiliation(s)
- Tomokazu Sano
- Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan.
| | - Tomoki Matsuda
- Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Akio Hirose
- Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Mitsuru Ohata
- Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Tomoyuki Terai
- Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Tomoyuki Kakeshita
- Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Fukui University of Technology, Fukui, 910-8505, Japan
| | - Yuichi Inubushi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
- RIKEN, SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Takahiro Sato
- RIKEN, SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
- SLAC National Accelerator Laboratory, Stanford, CA, 94309, USA
| | - Kohei Miyanishi
- RIKEN, SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
- RIKEN, SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
- RIKEN, SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
- RIKEN, SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Osami Sakata
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Yoshinori Tange
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Kazuto Arakawa
- Next Generation TATARA Co-Creation Centre, Shimane University, Matsue, Shimane, 690-8504, Japan
| | - Yusuke Ito
- Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Takuo Okuchi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, 590-0458, Japan
| | - Tomoko Sato
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima, Hiroshima, 739-8511, Japan
| | - Toshimori Sekine
- Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Tsutomu Mashimo
- Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Nobuhiko Nakanii
- Kansai Institute for Photon Science (KPSI), National Institutes for Quantum Science and Technology (QST), Kizugawa, Kyoto, 619-0215, Japan
| | - Yusuke Seto
- Graduate School of Science, Osaka Metropolitan University, Osaka, 558-8585, Japan
| | - Masaya Shigeta
- Graduate School of Engineering, Tohoku University, Miyagi, 980-8579, Japan
| | - Takahisa Shobu
- Sector of Nuclear Science Research, Japan Atomic Energy Agency, Sayo, Hyogo, 679-5148, Japan
| | - Yuji Sano
- SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
- Toshiba Energy Systems & Solutions Corporation, Kawasaki, Kanagawa, 212-0013, Japan
| | | | - Takeshi Matsuoka
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshinori Yabuuchi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
- RIKEN, SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Kazuo A Tanaka
- Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Norimasa Ozaki
- Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ryosuke Kodama
- Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
7
|
Mo M, Tang M, Chen Z, Peterson JR, Shen X, Baldwin JK, Frost M, Kozina M, Reid A, Wang Y, E J, Descamps A, Ofori-Okai BK, Li R, Luo SN, Wang X, Glenzer S. Ultrafast visualization of incipient plasticity in dynamically compressed matter. Nat Commun 2022; 13:1055. [PMID: 35217665 PMCID: PMC8881594 DOI: 10.1038/s41467-022-28684-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Plasticity is ubiquitous and plays a critical role in material deformation and damage; it inherently involves the atomistic length scale and picosecond time scale. A fundamental understanding of the elastic-plastic deformation transition, in particular, incipient plasticity, has been a grand challenge in high-pressure and high-strain-rate environments, impeded largely by experimental limitations on spatial and temporal resolution. Here, we report femtosecond MeV electron diffraction measurements visualizing the three-dimensional (3D) response of single-crystal aluminum to the ultrafast laser-induced compression. We capture lattice transitioning from a purely elastic to a plastically relaxed state within 5 ps, after reaching an elastic limit of ~25 GPa. Our results allow the direct determination of dislocation nucleation and transport that constitute the underlying defect kinetics of incipient plasticity. Large-scale molecular dynamics simulations show good agreement with the experiment and provide an atomic-level description of the dislocation-mediated plasticity. Understanding incipient plasticity has been experimentally limited by spatial and temporal resolution. Here the authors report ultra-fast, in situ electron diffraction measurement of dislocation defect dynamics in the early stage of plastic deformation in Al under laser-driven compression.
Collapse
Affiliation(s)
- Mianzhen Mo
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
| | - Minxue Tang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Zhijiang Chen
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - J Ryan Peterson
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.,Physics Department, Stanford University, Stanford, CA, 94305, USA
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - John Kevin Baldwin
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Mungo Frost
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Mike Kozina
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Alexander Reid
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Yongqiang Wang
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Juncheng E
- European XFEL GmbH, 22869, Schenefeld, Germany
| | - Adrien Descamps
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.,Aeronautics and Astronautics Department, Stanford University, Stanford, CA, 94305, USA
| | | | - Renkai Li
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sheng-Nian Luo
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
| | | |
Collapse
|
8
|
Qu Z, Borzenets V, Zhou G, Ma Y, Wu J. New mounting mechanism for cryogenically cooled thin crystal x-ray optics in high brightness high repetition rate free-electron laser applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:083904. [PMID: 34470424 DOI: 10.1063/5.0052764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
We present a new mounting design for thin crystal optics with cryogenic cooling compatibility. We design a crystal geometry with two symmetric strain-relief cuts to mitigate the distortion from mounting. We propose to sputter gold onto the crystal and the holder to ensure excellent thermal contact and sufficient mechanical bonding. The system is analyzed and verified by finite element analysis to have an acceptable level of strain due to mounting. The thermal performance of this mounting scheme is validated in an example cryogenic cooling system and the results indicate a tolerance of power density up to ∼1 kW/mm2.
Collapse
Affiliation(s)
- Zhengxian Qu
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Valery Borzenets
- Stanford Synchrotron Radiation Lightsource, SLAC National Acceleration Laboratory, Menlo Park, California 94025, USA
| | - Guanqun Zhou
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Yanbao Ma
- Department of Mechanical Engineering, University of California Merced, Merced, California 95343, USA
| | - Juhao Wu
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
9
|
Mishra A, Kunka C, Echeverria MJ, Dingreville R, Dongare AM. Fingerprinting shock-induced deformations via diffraction. Sci Rep 2021; 11:9872. [PMID: 33972567 PMCID: PMC8111029 DOI: 10.1038/s41598-021-88908-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
During the various stages of shock loading, many transient modes of deformation can activate and deactivate to affect the final state of a material. In order to fundamentally understand and optimize a shock response, researchers seek the ability to probe these modes in real-time and measure the microstructural evolutions with nanoscale resolution. Neither post-mortem analysis on recovered samples nor continuum-based methods during shock testing meet both requirements. High-speed diffraction offers a solution, but the interpretation of diffractograms suffers numerous debates and uncertainties. By atomistically simulating the shock, X-ray diffraction, and electron diffraction of three representative BCC and FCC metallic systems, we systematically isolated the characteristic fingerprints of salient deformation modes, such as dislocation slip (stacking faults), deformation twinning, and phase transformation as observed in experimental diffractograms. This study demonstrates how to use simulated diffractograms to connect the contributions from concurrent deformation modes to the evolutions of both 1D line profiles and 2D patterns for diffractograms from single crystals. Harnessing these fingerprints alongside information on local pressures and plasticity contributions facilitate the interpretation of shock experiments with cutting-edge resolution in both space and time.
Collapse
Affiliation(s)
- Avanish Mishra
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA.,Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Cody Kunka
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Marco J Echeverria
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Rémi Dingreville
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87123, USA.
| | - Avinash M Dongare
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
10
|
Yao S, Yu J, Cui Y, Pei X, Yu Y, Wu Q. Revisiting the Power Law Characteristics of the Plastic Shock Front under Shock Loading. PHYSICAL REVIEW LETTERS 2021; 126:085503. [PMID: 33709763 DOI: 10.1103/physrevlett.126.085503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Under uniaxial shock compression, the steepness of the plastic shock front usually exhibits power law characteristics with the Hugoniot pressure, also known as the "Swegle-Grady law." In this Letter, we show that the Swegle-Grady law can be described better by a third power law rather than the classical fourth power law at the strain rate between 10^{5}-10^{7} s^{-1}. A simple dislocation-based continuum model is developed, which reproduced the third power law and revealed very good agreement with recent experiments of multiple types of metals quantitatively. New insights into this unusual macroscopic phenomenon are presented through quantifying the connection between the macroscopic mechanical response and the collective dynamics of dislocation assembles. It is found that the Swegle-Grady law results from the particular stress dependence of the plasticity behaviors, and that the difference between the third power scaling and the classical fourth power scaling results from different shock dissipative actions.
Collapse
Affiliation(s)
- Songlin Yao
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Jidong Yu
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Yinan Cui
- Applied Mechanics Laboratory, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyang Pei
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Yuying Yu
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Qiang Wu
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| |
Collapse
|
11
|
Zhou G, Qu Z, Ma Y, Corbett WJ, Jiao Y, Li H, Qin W, Raubenheimer TO, Tsai CY, Wang J, Yang C, Wu J. Two-stage reflective self-seeding scheme for high-repetition-rate X-ray free-electron lasers. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:44-51. [PMID: 33399551 DOI: 10.1107/s1600577520014824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
X-ray free-electron lasers (XFELs) open a new era of X-ray based research by generating extremely intense X-ray flashes. To further improve the spectrum brightness, a self-seeding FEL scheme has been developed and demonstrated experimentally. As the next step, new-generation FELs with high repetition rates are being designed, built and commissioned around the world. A high repetition rate would significantly speed up the scientific research; however, alongside this improvement comes new challenges surrounding thermal management of the self-seeding monochromator. In this paper, a new configuration for self-seeding FELs is proposed, operated under a high repetition rate which can strongly suppress the thermal effects on the monochromator and provides a narrow-bandwidth FEL pulse. Three-dimension time-dependent simulations have been performed to demonstrate this idea. With this proposed configuration, high-repetition-rate XFEL facilities are able to generate narrow-bandwidth X-ray pulses without obvious thermal concern on the monochromators.
Collapse
Affiliation(s)
- Guanqun Zhou
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
| | - Zhengxian Qu
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
| | - Yanbao Ma
- Department of Mechanical Engineering, University of California Merced, Merced, CA 95343, USA
| | - William J Corbett
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
| | - Yi Jiao
- Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Haoyuan Li
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
| | - Weilun Qin
- Department of Physics, Lund University, PO Box 118, Lund 22100, Sweden
| | - Tor O Raubenheimer
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
| | - Cheng Ying Tsai
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jiuqing Wang
- Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chuan Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China
| | - Juhao Wu
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
| |
Collapse
|
12
|
Coakley J, Higginbotham A, McGonegle D, Ilavsky J, Swinburne TD, Wark JS, Rahman KM, Vorontsov VA, Dye D, Lane TJ, Boutet S, Koglin J, Robinson J, Milathianaki D. Femtosecond quantification of void evolution during rapid material failure. SCIENCE ADVANCES 2020; 6:eabb4434. [PMID: 33328222 PMCID: PMC7744076 DOI: 10.1126/sciadv.abb4434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Understanding high-velocity impact, and the subsequent high strain rate material deformation and potential catastrophic failure, is of critical importance across a range of scientific and engineering disciplines that include astrophysics, materials science, and aerospace engineering. The deformation and failure mechanisms are not thoroughly understood, given the challenges of experimentally quantifying material evolution at extremely short time scales. Here, copper foils are rapidly strained via picosecond laser ablation and probed in situ with femtosecond x-ray free electron (XFEL) pulses. Small-angle x-ray scattering (SAXS) monitors the void distribution evolution, while wide-angle scattering (WAXS) simultaneously determines the strain evolution. The ability to quantifiably characterize the nanoscale during high strain rate failure with ultrafast SAXS, complementing WAXS, represents a broadening in the range of science that can be performed with XFEL. It is shown that ultimate failure occurs via void nucleation, growth, and coalescence, and the data agree well with molecular dynamics simulations.
Collapse
Affiliation(s)
- James Coakley
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146, USA.
| | - Andrew Higginbotham
- York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK
| | - David McGonegle
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Jan Ilavsky
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Thomas D Swinburne
- Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France
| | - Justin S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Khandaker M Rahman
- Department of Materials, Imperial College, South Kensington, London SW7 2AZ, UK
| | | | - David Dye
- Department of Materials, Imperial College, South Kensington, London SW7 2AZ, UK
| | - Thomas J Lane
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Jason Koglin
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Joseph Robinson
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | |
Collapse
|
13
|
Qu Z, Ma Y, Zhou G, Wu J. Analytical model for monochromator performance characterizations under thermal load. OPTICS EXPRESS 2020; 28:30075-30084. [PMID: 33114892 DOI: 10.1364/oe.394958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Non-uniform thermal load causes performance degradation of crystal X-ray optics. With the development of high-brightness X-ray free-electron lasers, the thermal load on X-ray optics becomes even more severe. To mitigate the thermal load, a quantitative understanding of thermal effects on the optical performance is necessary. We derived an analytical model for monochromator performance under a non-uniform thermal load. This analytical model quantitatively describes the distortion of the rocking curve and attributes different contributions to different factors of thermal load. It provides not only monochromator design insights and considerations, but also a quick estimation of the rocking curve distortion due to thermal load for practical situations such as pump-probe experiments.
Collapse
|
14
|
Descamps A, Ofori-Okai BK, Appel K, Cerantola V, Comley A, Eggert JH, Fletcher LB, Gericke DO, Göde S, Humphries O, Karnbach O, Lazicki A, Loetzsch R, McGonegle D, Palmer CAJ, Plueckthun C, Preston TR, Redmer R, Senesky DG, Strohm C, Uschmann I, White TG, Wollenweber L, Monaco G, Wark JS, Hastings JB, Zastrau U, Gregori G, Glenzer SH, McBride EE. An approach for the measurement of the bulk temperature of single crystal diamond using an X-ray free electron laser. Sci Rep 2020; 10:14564. [PMID: 32884061 PMCID: PMC7471281 DOI: 10.1038/s41598-020-71350-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022] Open
Abstract
We present a method to determine the bulk temperature of a single crystal diamond sample at an X-Ray free electron laser using inelastic X-ray scattering. The experiment was performed at the high energy density instrument at the European XFEL GmbH, Germany. The technique, based on inelastic X-ray scattering and the principle of detailed balance, was demonstrated to give accurate temperature measurements, within [Formula: see text] for both room temperature diamond and heated diamond to 500 K. Here, the temperature was increased in a controlled way using a resistive heater to test theoretical predictions of the scaling of the signal with temperature. The method was tested by validating the energy of the phonon modes with previous measurements made at room temperature using inelastic X-ray scattering and neutron scattering techniques. This technique could be used to determine the bulk temperature in transient systems with a temporal resolution of 50 fs and for which accurate measurements of thermodynamic properties are vital to build accurate equation of state and transport models.
Collapse
Affiliation(s)
- A Descamps
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
- Aeronautics and Astronautics Department, Stanford University, Stanford, CA, 94305, USA.
| | - B K Ofori-Okai
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - K Appel
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - V Cerantola
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - A Comley
- Atomic Weapons Establishment, Aldermaston, Reading, RG7 4PR, UK
| | - J H Eggert
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - L B Fletcher
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - D O Gericke
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - S Göde
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - O Humphries
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - O Karnbach
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - A Lazicki
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - R Loetzsch
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743, Jena, Germany
| | - D McGonegle
- Atomic Weapons Establishment, Aldermaston, Reading, RG7 4PR, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - C A J Palmer
- School of Mathematics and Physics, Queen's University, University Road BT7 1NN, Belfast, UK
| | - C Plueckthun
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - T R Preston
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - R Redmer
- Institut für Physik, Universität Rostock, A.-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - D G Senesky
- Aeronautics and Astronautics Department, Stanford University, Stanford, CA, 94305, USA
| | - C Strohm
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - I Uschmann
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743, Jena, Germany
| | - T G White
- University of Nevada, Reno, NV, 89557, USA
| | - L Wollenweber
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - G Monaco
- Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123, Povo, TN, Italy
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - J B Hastings
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - U Zastrau
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - G Gregori
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - S H Glenzer
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - E E McBride
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| |
Collapse
|
15
|
Tang MX, Huang JW, E JC, Zhang YY, Luo SN. Full strain tensor measurements with X-ray diffraction and strain field mapping: a simulation study. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:646-652. [PMID: 32381764 PMCID: PMC7285688 DOI: 10.1107/s1600577520003926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Strain tensor measurements are important for understanding elastic and plastic deformation, but full bulk strain tensor measurement techniques are still lacking, in particular for dynamic loading. Here, such a methodology is reported, combining imaging-based strain field mapping and simultaneous X-ray diffraction for four typical loading modes: one-dimensional strain/stress compression/tension. Strain field mapping resolves two in-plane principal strains, and X-ray diffraction analysis yields volumetric strain, and thus the out-of-plane principal strain. This methodology is validated against direct molecular dynamics simulations on nanocrystalline tantalum. This methodology can be implemented with simultaneous X-ray diffraction and digital image correlation in synchrotron radiation or free-electron laser experiments.
Collapse
Affiliation(s)
- M. X. Tang
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People’s Republic of China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and Institute of Material Dynamics, Southwest Jiaotong University, Chengdu, Sichuan 610031, People’s Republic of China
| | - J. W. Huang
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People’s Republic of China
| | - J. C. E
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - Y. Y. Zhang
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People’s Republic of China
| | - S. N. Luo
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People’s Republic of China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and Institute of Material Dynamics, Southwest Jiaotong University, Chengdu, Sichuan 610031, People’s Republic of China
| |
Collapse
|
16
|
Zhou G, Jiao Y, Raubenheimer TO, Wang J, Holman AJ, Tsai CY, Wu JY, Wu W, Yang C, Yoon M, Wu J. Coherence time characterization method for hard X-ray free-electron lasers. OPTICS EXPRESS 2020; 28:10928-10938. [PMID: 32403614 DOI: 10.1364/oe.28.010928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/10/2019] [Indexed: 06/11/2023]
Abstract
Coherence time is one of the fundamental characteristics of light sources. Methods based on autocorrelation have been widely applied from optical domain to soft X-rays to characterize the radiation coherence time. However, for the hard X-ray regime, due to the lack of proper mirrors, it is extremely difficult to implement such autocorrelation scheme. In this paper, a novel approach for characterizing the coherence time of a hard X-ray free-electron laser (FEL) is proposed and validated numerically. A phase shifter is adopted to control the correlation between X-ray and microbunched electrons. The coherence time of the FEL pulse can be extracted from the cross-correlation. Semi-analytical analysis and three-dimensional time-dependent numerical simulations are presented to elaborate the details. A coherence time of 218.2 attoseconds for 6.92 keV X-ray FEL pulses is obtained in our simulation based on the configuration of Linac Coherent Light Source. This approach provides critical temporal coherence diagnostics for X-ray FELs, and is decoupled from machine parameters, applicable for any photon energy, radiation brightness, repetition rate and FEL pulse duration.
Collapse
|
17
|
Zhou G, Decker FJ, Ding Y, Jiao Y, Lutman AA, Maxwell TJ, Raubenheimer TO, Wang J, Holman AJ, Tsai CY, Wu JY, Wu W, Yang C, Yoon M, Wu J. Attosecond Coherence Time Characterization in Hard X-Ray Free-Electron Laser. Sci Rep 2020; 10:5961. [PMID: 32249769 PMCID: PMC7136262 DOI: 10.1038/s41598-020-60328-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/14/2019] [Indexed: 11/30/2022] Open
Abstract
One of the key challenges in scientific researches based on free-electron lasers (FELs) is the characterization of the coherence time of the ultra-fast hard x-ray pulse, which fundamentally influences the interaction process between x-rays and materials. Conventional optical methods, based on autocorrelation, are very difficult to realize due to the lack of mirrors. Here, we experimentally demonstrate a novel method which yields a coherence time of 174.7 attoseconds for the 6.92 keV FEL pulses at the Linac Coherent Light Source. In our experiment, a phase shifter is adopted to control the cross-correlation between x-ray and microbunched electrons. This approach provides critical diagnostics for the temporal coherence of x-ray FELs and is universal for general machine parameters; applicable for wide range of photon energy, radiation brightness, repetition rate and FEL pulse duration.
Collapse
Affiliation(s)
- Guanqun Zhou
- Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, 94309, USA.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Franz-Josef Decker
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, 94309, USA
| | - Yuantao Ding
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, 94309, USA
| | - Yi Jiao
- Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Alberto A Lutman
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, 94309, USA
| | - Timothy J Maxwell
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, 94309, USA
| | - Tor O Raubenheimer
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, 94309, USA
| | - Jiuqing Wang
- Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aaron J Holman
- Department of Physics and The Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Cheng-Ying Tsai
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, 94309, USA.,Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jerome Y Wu
- Jane Lathrop Stanford Middle School, 480 E Meadow Dr, Palo Alto, CA, 94306, USA
| | - Weiwei Wu
- JSerra Catholic High School, 26351 Junipero Serra Road, San Juan Capistrano, CA, 92675, USA
| | - Chuan Yang
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, 94309, USA.,National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Moohyun Yoon
- Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Juhao Wu
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, 94309, USA.
| |
Collapse
|
18
|
Chen JL, Chang CH, Tsai JW. Gli2 Rescues Delays in Brain Development Induced by Kif3a Dysfunction. Cereb Cortex 2020; 29:751-764. [PMID: 29342244 DOI: 10.1093/cercor/bhx356] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/23/2017] [Indexed: 01/01/2023] Open
Abstract
The primary cilium in neural stem cells plays distinct roles in different stages during cortical development. Ciliary dysfunctions in human (i.e., ciliopathy) cause developmental defects in multiple organs, including brain developmental delays, which lead to intellectual disabilities and cognitive deficits. However, effective treatment to this devastating developmental disorder is still lacking. Here, we first investigated the effects of ciliopathy on neural stem cells by knocking down Kif3a, a kinesin II motor required for ciliogenesis, in the neurogenic stage of cortical development by in utero electroporation of mouse embryos. Brains electroporated with Kif3a shRNA showed defects in neuronal migration and differentiation, delays in neural stem cell cycle progression, and failures in interkinetic nuclear migration. Interestingly, introduction of Gli1 and Gli2 both can restore the cell cycle progression by elevating cyclin D1 in neural stem cells. Remarkably, enforced Gli2 expression, but not Gli1, partially restored the ability of Kif3a-knockdown neurons to differentiate and move from the germinal ventricular zone to the cortical plate. Moreover, Cyclin D1 knockdown abolished Gli2's rescue effect. These findings suggest Gli2 may rescue neural stem cell proliferation, differentiation and migration through Cyclin D1 pathway and may serve as a potential therapeutic target for human ciliopathy syndromes through modulating the progression of neural stem cell cycle.
Collapse
Affiliation(s)
- Jia-Long Chen
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hsiang Chang
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Taiwan International Graduate Program (TIGP) in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center (BRC), Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
19
|
Takagi S, Ichiyanagi K, Kyono A, Nozawa S, Kawai N, Fukaya R, Funamori N, Adachi SI. Development of shock-dynamics study with synchrotron-based time-resolved X-ray diffraction using an Nd:glass laser system. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:371-377. [PMID: 32153275 DOI: 10.1107/s1600577519016084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The combination of high-power laser and synchrotron X-ray pulses allows us to observe material responses under shock compression and release states at the crystal structure on a nanosecond time scale. A higher-power Nd:glass laser system for laser shock experiments was installed as a shock driving source at the NW14A beamline of PF-AR, KEK, Japan. It had a maximum pulse energy of 16 J, a pulse duration of 12 ns and a flat-top intensity profile on the target position. The shock-induced deformation dynamics of polycrystalline aluminium was investigated using synchrotron-based time-resolved X-ray diffraction (XRD) under laser-induced shock. The shock pressure reached up to about 17 GPa with a strain rate of at least 4.6 × 107 s-1 and remained there for nanoseconds. The plastic deformation caused by the shock-wave loading led to crystallite fragmentation. The preferred orientation of the polycrystalline aluminium remained essentially unchanged during the shock compression and release processes in this strain rate. The newly established time-resolved XRD experimental system can provide useful information for understanding the complex dynamic compression and release behaviors.
Collapse
Affiliation(s)
- Sota Takagi
- Division of Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kouhei Ichiyanagi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Atsushi Kyono
- Division of Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobuaki Kawai
- Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Ryo Fukaya
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobumasa Funamori
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
20
|
Assefa TA, Cao Y, Banerjee S, Kim S, Kim D, Lee H, Kim S, Lee JH, Park SY, Eom I, Park J, Nam D, Kim S, Chun SH, Hyun H, Kim KS, Juhas P, Bozin ES, Lu M, Song C, Kim H, Billinge SJL, Robinson IK. Ultrafast x-ray diffraction study of melt-front dynamics in polycrystalline thin films. SCIENCE ADVANCES 2020; 6:eaax2445. [PMID: 32010766 PMCID: PMC6968939 DOI: 10.1126/sciadv.aax2445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/14/2019] [Indexed: 05/24/2023]
Abstract
Melting is a fundamental process of matter that is still not fully understood at the microscopic level. Here, we use time-resolved x-ray diffraction to examine the ultrafast melting of polycrystalline gold thin films using an optical laser pump followed by a delayed hard x-ray probe pulse. We observe the formation of an intermediate new diffraction peak, which we attribute to material trapped between the solid and melted states, that forms 50 ps after laser excitation and persists beyond 500 ps. The peak width grows rapidly for 50 ps and then narrows distinctly at longer time scales. We attribute this to a melting band originating from the grain boundaries and propagating into the grains. Our observation of this intermediate state has implications for the use of ultrafast lasers for ablation during pulsed laser deposition.
Collapse
Affiliation(s)
- Tadesse A. Assefa
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11793, USA
| | - Yue Cao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11793, USA
| | - Soham Banerjee
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11793, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Sungwon Kim
- Department of Physics, Sogang University, Seoul 04107, Korea
| | - Dongjin Kim
- Department of Physics, Sogang University, Seoul 04107, Korea
| | - Heemin Lee
- Department of Physics and POSTECH Photon Science Center, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sunam Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Korea
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Korea
| | - Sang-Youn Park
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Korea
| | - Jaeku Park
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Korea
| | - Daewoog Nam
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Korea
| | - Sae Hwan Chun
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Korea
| | - Hyojung Hyun
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Korea
| | - Kyung sook Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Korea
| | - Pavol Juhas
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11793, USA
| | - Emil S. Bozin
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11793, USA
| | - Ming Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11793, USA
| | - Changyong Song
- Department of Physics and POSTECH Photon Science Center, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Hyunjung Kim
- Department of Physics, Sogang University, Seoul 04107, Korea
| | - Simon J. L. Billinge
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11793, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Ian K. Robinson
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11793, USA
- London Centre for Nanotechnology, University College London, London WC1E 6BT, UK
| |
Collapse
|
21
|
Ichiyanagi K, Takagi S, Kawai N, Fukaya R, Nozawa S, Nakamura KG, Liss KD, Kimura M, Adachi SI. Microstructural deformation process of shock-compressed polycrystalline aluminum. Sci Rep 2019; 9:7604. [PMID: 31110218 PMCID: PMC6527857 DOI: 10.1038/s41598-019-43876-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/27/2019] [Indexed: 11/23/2022] Open
Abstract
Plastic deformation of polycrystalline materials under shock wave loading is a critical characteristic in material science and engineering. However, owing to the nanosecond time scale of the shock-induced deformation process, we currently have a poor mechanistic understanding of the structural changes from atomic scale to mesoscale. Here, we observed the dynamic grain refinement of polycrystalline aluminum foil under laser-driven shock wave loading using time-resolved X-ray diffraction. Diffraction spots on the Debye-Scherrer ring from micrometer-sized aluminum grains appeared and disappeared irregularly, and were shifted and broadened as a result of laser-induced shock wave loading. Behind the front of shock wave, large grains in aluminum foil were deformed, and subsequently exhibited grain rotation and a reduction in size. The width distribution of the diffraction spots broadened because of shock-induced grain refinement and microstrain in each grain. We performed quantitative analysis of the inhomogeneous lattice strain and grain size in the shocked polycrysalline aluminum using the Williamson-Hall method and determined the dislocation density under shock wave loading.
Collapse
Affiliation(s)
- Kouhei Ichiyanagi
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan. .,Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.
| | - Sota Takagi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,Division of Earth Evolution Science, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Nobuaki Kawai
- Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Ryo Fukaya
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Shunsuke Nozawa
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kazutaka G Nakamura
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, R3-10, 4259 Nagatsuta, Yokohama, Kanagawa, 226-8503, Japan
| | - Klaus-Dieter Liss
- Materials Science and Engineering Program, Guangdong Technion- Israel Institute of Technology, 241 Daxue Road, Jinping District, Shantou, Guangdong, 515063, China.,Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Masao Kimura
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| |
Collapse
|
22
|
Brown SB, Gleason AE, Galtier E, Higginbotham A, Arnold B, Fry A, Granados E, Hashim A, Schroer CG, Schropp A, Seiboth F, Tavella F, Xing Z, Mao W, Lee HJ, Nagler B. Direct imaging of ultrafast lattice dynamics. SCIENCE ADVANCES 2019; 5:eaau8044. [PMID: 30873430 PMCID: PMC6408150 DOI: 10.1126/sciadv.aau8044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Under rapid high-temperature, high-pressure loading, lattices exhibit complex elastic-inelastic responses. The dynamics of these responses are challenging to measure experimentally because of high sample density and extremely small relevant spatial and temporal scales. Here, we use an x-ray free-electron laser providing simultaneous in situ direct imaging and x-ray diffraction to spatially resolve lattice dynamics of silicon under high-strain rate conditions. We present the first imaging of a new intermediate elastic feature modulating compression along the axis of applied stress, and we identify the structure, compression, and density behind each observed wave. The ultrafast probe x-rays enabled time-resolved characterization of the intermediate elastic feature, which is leveraged to constrain kinetic inhibition of the phase transformation between 2 and 4 ns. These results not only address long-standing questions about the response of silicon under extreme environments but also demonstrate the potential for ultrafast direct measurements to illuminate new lattice dynamics.
Collapse
Affiliation(s)
- S. Brennan Brown
- Department of Mechanical Engineering, Stanford University, Building 530, 440 Escondido Mall, Stanford, CA 94305, USA
| | - A. E. Gleason
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - E. Galtier
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - A. Higginbotham
- York Plasma Institute, Department of Physics, University of York, Heslington, YO10 5DD, UK
| | - B. Arnold
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - A. Fry
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - E. Granados
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - A. Hashim
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - C. G. Schroer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - A. Schropp
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - F. Seiboth
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - F. Tavella
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Z. Xing
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - W. Mao
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
- Department of Geological Sciences, Stanford University, 367 Panama St., Stanford, CA 94305-2220, USA
| | - H. J. Lee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - B. Nagler
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| |
Collapse
|
23
|
Anu Ruba A, Johny LM, Nirmala Jothi N, Sagayaraj P. Solvothermal Synthesis, Characterization and Photocatalytic activity of ZnO Nanoparticle. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2019.02.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Sliwa M, McGonegle D, Wehrenberg C, Bolme CA, Heighway PG, Higginbotham A, Lazicki A, Lee HJ, Nagler B, Park HS, Rudd RE, Suggit MJ, Swift D, Tavella F, Zepeda-Ruiz L, Remington BA, Wark JS. Femtosecond X-Ray Diffraction Studies of the Reversal of the Microstructural Effects of Plastic Deformation during Shock Release of Tantalum. PHYSICAL REVIEW LETTERS 2018; 120:265502. [PMID: 30004719 DOI: 10.1103/physrevlett.120.265502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 06/08/2023]
Abstract
We have used femtosecond x-ray diffraction to study laser-shocked fiber-textured polycrystalline tantalum targets as the 37-253 GPa shock waves break out from the free surface. We extract the time and depth-dependent strain profiles within the Ta target as the rarefaction wave travels back into the bulk of the sample. In agreement with molecular dynamics simulations, the lattice rotation and the twins that are formed under shock compression are observed to be almost fully eliminated by the rarefaction process.
Collapse
Affiliation(s)
- M Sliwa
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - D McGonegle
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - C Wehrenberg
- Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94550, USA
| | - C A Bolme
- Los Alamos National Laboratory, Bikini Atoll Road, SM-30, Los Alamos, New Mexico 87545, USA
| | - P G Heighway
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - A Higginbotham
- York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - A Lazicki
- Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94550, USA
| | - H J Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - B Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - H S Park
- Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94550, USA
| | - R E Rudd
- Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94550, USA
| | - M J Suggit
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - D Swift
- Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94550, USA
| | - F Tavella
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - L Zepeda-Ruiz
- Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94550, USA
| | - B A Remington
- Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94550, USA
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
25
|
Guetg MW, Lutman AA, Ding Y, Maxwell TJ, Huang Z. Dispersion-Based Fresh-Slice Scheme for Free-Electron Lasers. PHYSICAL REVIEW LETTERS 2018; 120:264802. [PMID: 30004747 DOI: 10.1103/physrevlett.120.264802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 05/23/2023]
Abstract
The fresh-slice technique improved the performance of several self-amplified spontaneous emission free-electron laser schemes by granting selective control on the temporal lasing slice without spoiling the other electron bunch slices. So far, the implementation has required a special insertion device to create the beam yaw, called a dechirper. We demonstrate a novel scheme to enable fresh-slice operation based on electron energy chirp and orbit dispersion that can be implemented at any free-electron laser facility without additional hardware.
Collapse
Affiliation(s)
- Marc W Guetg
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alberto A Lutman
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Yuantao Ding
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Timothy J Maxwell
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Zhirong Huang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
26
|
Inoue I, Osaka T, Tamasaku K, Ohashi H, Yamazaki H, Goto S, Yabashi M. An X-ray harmonic separator for next-generation synchrotron X-ray sources and X-ray free-electron lasers. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:346-353. [PMID: 29488912 PMCID: PMC5829678 DOI: 10.1107/s160057751800108x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
An X-ray prism for the extraction of a specific harmonic of undulator radiation is proposed. By using the prism in a grazing incidence geometry, the beam axes of fundamental and harmonics of undulator radiation are separated with large angles over 10 µrad, which enables the selection of a specific harmonic with the help of apertures, while keeping a high photon flux. The concept of the harmonic separation was experimentally confirmed using X-ray beams from the X-ray free-electron laser SACLA.
Collapse
Affiliation(s)
- Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kenji Tamasaku
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Haruhiko Ohashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Hiroshi Yamazaki
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Shunji Goto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
27
|
Kalita P, Specht P, Root S, Sinclair N, Schuman A, White M, Cornelius AL, Smith J, Sinogeikin S. Direct Observations of a Dynamically Driven Phase Transition with in situ X-Ray Diffraction in a Simple Ionic Crystal. PHYSICAL REVIEW LETTERS 2017; 119:255701. [PMID: 29303337 DOI: 10.1103/physrevlett.119.255701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Indexed: 06/07/2023]
Abstract
We report real-time observations of a phase transition in the ionic solid CaF_{2}, a model AB_{2} structure in high-pressure physics. Synchrotron x-ray diffraction coupled with dynamic loading to 27.7 GPa, and separately with static compression, follows, in situ, the fluorite to cotunnite structural phase transition, both on nanosecond and on minute time scales. Using Rietveld refinement techniques, we examine the kinetics and hysteresis of the transition. Our results give insight into the kinetic time scale of the fluorite-cotunnite phase transition under shock compression, which is relevant to a number of isomorphic compounds.
Collapse
Affiliation(s)
- Patricia Kalita
- Sandia National Laboratories, Albuquerque, New Mexico 87125, USA
| | - Paul Specht
- Sandia National Laboratories, Albuquerque, New Mexico 87125, USA
| | - Seth Root
- Sandia National Laboratories, Albuquerque, New Mexico 87125, USA
| | - Nicholas Sinclair
- Dynamic Compression Sector, Institute for Shock Physics, Washington State University, Argonne, Illinois 60439, USA
| | - Adam Schuman
- Dynamic Compression Sector, Institute for Shock Physics, Washington State University, Argonne, Illinois 60439, USA
| | - Melanie White
- High Pressure Science and Engineering Center, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
| | - Andrew L Cornelius
- High Pressure Science and Engineering Center, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
| | - Jesse Smith
- High-Pressure Collaborative Access Team, Carnegie Institution of Washington, Argonne, Illinois 60439, USA
| | - Stanislav Sinogeikin
- High-Pressure Collaborative Access Team, Carnegie Institution of Washington, Argonne, Illinois 60439, USA
| |
Collapse
|
28
|
Seddon EA, Clarke JA, Dunning DJ, Masciovecchio C, Milne CJ, Parmigiani F, Rugg D, Spence JCH, Thompson NR, Ueda K, Vinko SM, Wark JS, Wurth W. Short-wavelength free-electron laser sources and science: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:115901. [PMID: 29059048 DOI: 10.1088/1361-6633/aa7cca] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.
Collapse
Affiliation(s)
- E A Seddon
- ASTeC, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom. The School of Physics and Astronomy and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom. The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wehrenberg CE, McGonegle D, Bolme C, Higginbotham A, Lazicki A, Lee HJ, Nagler B, Park HS, Remington BA, Rudd RE, Sliwa M, Suggit M, Swift D, Tavella F, Zepeda-Ruiz L, Wark JS. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. Nature 2017; 550:496-499. [DOI: 10.1038/nature24061] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/31/2017] [Indexed: 11/09/2022]
|
30
|
Brown SB, Hashim A, Gleason A, Galtier E, Nam I, Xing Z, Fry A, MacKinnon A, Nagler B, Granados E, Lee HJ. Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:105113. [PMID: 29092479 DOI: 10.1063/1.4997756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We measure the shock drive capabilities of a 30 J, nanosecond, 527 nm laser system at the matter in extreme conditions hutch of the Linac Coherent Light Source. Using a velocity interferometer system for any reflector, we ascertain the maximum instantaneous ablation pressure and characterize its dependence on a drive laser spot size, spatial profile, and temporal profile. We also examine the effects of these parameters on shock spatial and temporal uniformity. Our analysis shows the drive laser capable of generating instantaneous ablation pressures exceeding 160 GPa while maintaining a 1D shock profile. We find that slope pulses provide higher instantaneous ablation pressures than plateau pulses. Our results show instantaneous ablation pressures comparable to those measured at the Omega Laser Facility in Rochester, NY under similar optical drive parameters. Finally, we analyze how optical laser ablation pressures are compare with known scaling relations, accounting for variable laser wavelengths.
Collapse
Affiliation(s)
| | - Akel Hashim
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Arianna Gleason
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Eric Galtier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Inhyuk Nam
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Zhou Xing
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Alan Fry
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Andy MacKinnon
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Bob Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Eduardo Granados
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Hae Ja Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
31
|
Albertazzi B, Ozaki N, Zhakhovsky V, Faenov A, Habara H, Harmand M, Hartley N, Ilnitsky D, Inogamov N, Inubushi Y, Ishikawa T, Katayama T, Koyama T, Koenig M, Krygier A, Matsuoka T, Matsuyama S, McBride E, Migdal KP, Morard G, Ohashi H, Okuchi T, Pikuz T, Purevjav N, Sakata O, Sano Y, Sato T, Sekine T, Seto Y, Takahashi K, Tanaka K, Tange Y, Togashi T, Tono K, Umeda Y, Vinci T, Yabashi M, Yabuuchi T, Yamauchi K, Yumoto H, Kodama R. Dynamic fracture of tantalum under extreme tensile stress. SCIENCE ADVANCES 2017; 3:e1602705. [PMID: 28630909 PMCID: PMC5457031 DOI: 10.1126/sciadv.1602705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/10/2017] [Indexed: 05/25/2023]
Abstract
The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power optical laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of [Formula: see text] ~2 × 108 to 3.5 × 108 s-1. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions.
Collapse
Affiliation(s)
- Bruno Albertazzi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- LULI, École Polytechnique, CNRS, Commissariat à l’Energie Atomique et aux Energies Alternatives, Pierre and Marie Curie University (UPMC), 91128 Palaiseau, France
| | - Norimasa Ozaki
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Vasily Zhakhovsky
- Dukhov Research Institute of Automatics, ROSATOM, Moscow 127055, Russia
- L.D. Landau Institute for Theoretical Physics, Russian Academy of Science, Chernogolovka 142432, Russia
| | - Anatoly Faenov
- Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideaki Habara
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Marion Harmand
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie, Sorbonne Universités - UPMC, UMR CNRS 7590, Muséum National d’Histoire Naturelle, IRD UMR 206, F-75005 Paris, France
| | - Nicholas Hartley
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Denis Ilnitsky
- Dukhov Research Institute of Automatics, ROSATOM, Moscow 127055, Russia
- L.D. Landau Institute for Theoretical Physics, Russian Academy of Science, Chernogolovka 142432, Russia
| | - Nail Inogamov
- Dukhov Research Institute of Automatics, ROSATOM, Moscow 127055, Russia
- L.D. Landau Institute for Theoretical Physics, Russian Academy of Science, Chernogolovka 142432, Russia
| | - Yuichi Inubushi
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
- RIKEN Center, Sayo, Hyogo 679-5148, Japan
| | | | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
- RIKEN Center, Sayo, Hyogo 679-5148, Japan
| | - Takahisa Koyama
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - Michel Koenig
- LULI, École Polytechnique, CNRS, Commissariat à l’Energie Atomique et aux Energies Alternatives, Pierre and Marie Curie University (UPMC), 91128 Palaiseau, France
- Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Andrew Krygier
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie, Sorbonne Universités - UPMC, UMR CNRS 7590, Muséum National d’Histoire Naturelle, IRD UMR 206, F-75005 Paris, France
| | - Takeshi Matsuoka
- Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satoshi Matsuyama
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Emma McBride
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany
| | | | - Guillaume Morard
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie, Sorbonne Universités - UPMC, UMR CNRS 7590, Muséum National d’Histoire Naturelle, IRD UMR 206, F-75005 Paris, France
| | - Haruhiko Ohashi
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - Takuo Okuchi
- Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan
| | - Tatiana Pikuz
- Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Narangoo Purevjav
- Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan
| | - Osami Sakata
- Synchrotron X-ray Station at Spring-8, National Institute for Materials Science (NIMS), Sayo, Hyogo 679-5148, Japan
| | - Yasuhisa Sano
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoko Sato
- Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Toshimori Sekine
- Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
- Center for High Pressure Science and Technology Advanced Research, Pudong, Shanghai 201203, China
| | - Yusuke Seto
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kenjiro Takahashi
- Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuo Tanaka
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshinori Tange
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
- Geodynamics Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
- RIKEN Center, Sayo, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
- RIKEN Center, Sayo, Hyogo 679-5148, Japan
| | - Yuhei Umeda
- Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Tommaso Vinci
- LULI, École Polytechnique, CNRS, Commissariat à l’Energie Atomique et aux Energies Alternatives, Pierre and Marie Curie University (UPMC), 91128 Palaiseau, France
| | | | - Toshinori Yabuuchi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- RIKEN Center, Sayo, Hyogo 679-5148, Japan
| | - Kazuto Yamauchi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirokatsu Yumoto
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - Ryosuke Kodama
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Abstract
How does a crystal melt? How long does it take for melt nuclei to grow? The melting mechanisms have been addressed by several theoretical and experimental works, covering a subnanosecond time window with sample sizes of tens of nanometers and thus suitable to determine the onset of the process but unable to unveil the following dynamics. On the other hand, macroscopic observations of phase transitions, with millisecond or longer time resolution, account for processes occurring at surfaces and time limited by thermal contact with the environment. Here, we fill the gap between these two extremes, investigating the melting of ice in the entire mesoscopic regime. A bulk ice I h or ice VI sample is homogeneously heated by a picosecond infrared pulse, which delivers all of the energy necessary for complete melting. The evolution of melt/ice interfaces thereafter is monitored by Mie scattering with nanosecond resolution, for all of the time needed for the sample to reequilibrate. The growth of the liquid domains, over distances of micrometers, takes hundreds of nanoseconds, a time orders of magnitude larger than expected from simple H-bond dynamics.
Collapse
|
33
|
Ruiz-Lopez M, Faenov A, Pikuz T, Ozaki N, Mitrofanov A, Albertazzi B, Hartley N, Matsuoka T, Ochante Y, Tange Y, Yabuuchi T, Habara T, Tanaka KA, Inubushi Y, Yabashi M, Nishikino M, Kawachi T, Pikuz S, Ishikawa T, Kodama R, Bleiner D. Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:196-204. [PMID: 28009559 DOI: 10.1107/s1600577516016568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.
Collapse
Affiliation(s)
- M Ruiz-Lopez
- Empa, Materials Science and Technology, Dübendorf, Switzerland
| | - A Faenov
- Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan
| | - T Pikuz
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
| | - N Ozaki
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - A Mitrofanov
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
| | - B Albertazzi
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - N Hartley
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - T Matsuoka
- Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan
| | - Y Ochante
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Y Tange
- JASRI/SPring-8, Sayo, Hyogo, Japan
| | - T Yabuuchi
- RIKEN Harima Institute, Sayo, Hyogo, Japan
| | - T Habara
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - K A Tanaka
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | | | | | - M Nishikino
- Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto, Japan
| | - T Kawachi
- Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto, Japan
| | - S Pikuz
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
| | | | - R Kodama
- Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan
| | - D Bleiner
- Empa, Materials Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
34
|
Kroll T, Kern J, Kubin M, Ratner D, Gul S, Fuller FD, Löchel H, Krzywinski J, Lutman A, Ding Y, Dakovski GL, Moeller S, Turner JJ, Alonso-Mori R, Nordlund DL, Rehanek J, Weniger C, Firsov A, Brzhezinskaya M, Chatterjee R, Lassalle-Kaiser B, Sierra RG, Laksmono H, Hill E, Borovik A, Erko A, Föhlisch A, Mitzner R, Yachandra VK, Yano J, Wernet P, Bergmann U. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser. OPTICS EXPRESS 2016; 24:22469-22480. [PMID: 27828320 PMCID: PMC5234502 DOI: 10.1364/oe.24.022469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/18/2016] [Accepted: 08/26/2016] [Indexed: 05/29/2023]
Abstract
X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.
Collapse
Affiliation(s)
- Thomas Kroll
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jan Kern
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Markus Kubin
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Daniel Ratner
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Franklin D. Fuller
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Heike Löchel
- Institute for Nanometer Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany
| | - Jacek Krzywinski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alberto Lutman
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Yuantao Ding
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Georgi L. Dakovski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Stefan Moeller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Joshua J. Turner
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dennis L. Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jens Rehanek
- Institute for Nanometer Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany
- Paul-Scherrer-Institut, 5232 Villigen-PSI, Switzerland
| | - Christian Weniger
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Alexander Firsov
- Institute for Nanometer Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany
| | - Maria Brzhezinskaya
- Institute for Nanometer Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Benedikt Lassalle-Kaiser
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 GIF-SUR-YVETTE Cedex, France
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Hartawan Laksmono
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ethan Hill
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, USA
| | - Andrew Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, USA
| | - Alexei Erko
- Institute for Nanometer Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany
| | - Alexander Föhlisch
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
- Institut für Physik und Astronomie, Universität Potsdam Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| | - Rolf Mitzner
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Philippe Wernet
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Uwe Bergmann
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
35
|
Maddox BR, Akin MC, Teruya A, Hunt D, Hahn D, Cradick J, Morgan DV. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:083901. [PMID: 27587130 DOI: 10.1063/1.4960812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from the sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10(7) molybdenum Kα photons.
Collapse
Affiliation(s)
- B R Maddox
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M C Akin
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A Teruya
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D Hunt
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D Hahn
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J Cradick
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D V Morgan
- National Security Technologies LLC, Los Alamos, New Mexico 87544, USA
| |
Collapse
|
36
|
Hahn EN, Zhao S, Bringa EM, Meyers MA. Supersonic Dislocation Bursts in Silicon. Sci Rep 2016; 6:26977. [PMID: 27264746 PMCID: PMC4893603 DOI: 10.1038/srep26977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/09/2016] [Indexed: 11/28/2022] Open
Abstract
Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm−2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.
Collapse
Affiliation(s)
- E N Hahn
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - S Zhao
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - E M Bringa
- Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina.,CONICET, Mendoza 5500, Argentina
| | - M A Meyers
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
37
|
Probing local and electronic structure in Warm Dense Matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe. Sci Rep 2016; 6:26402. [PMID: 27246145 PMCID: PMC4887872 DOI: 10.1038/srep26402] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/28/2016] [Indexed: 12/02/2022] Open
Abstract
Understanding Warm Dense Matter (WDM), the state of planetary interiors, is a new frontier in scientific research. There exists very little experimental data probing WDM states at the atomic level to test current models and those performed up to now are limited in quality. Here, we report a proof-of-principle experiment that makes microscopic investigations of materials under dynamic compression easily accessible to users and with data quality close to that achievable at ambient. Using a single 100 ps synchrotron x-ray pulse, we have measured, by K-edge absorption spectroscopy, ns-lived equilibrium states of WDM Fe. Structural and electronic changes in Fe are clearly observed for the first time at such extreme conditions. The amplitude of the EXAFS oscillations persists up to 500 GPa and 17000 K, suggesting an enduring local order. Moreover, a discrepancy exists with respect to theoretical calculations in the value of the energy shift of the absorption onset and so this comparison should help to refine the approximations used in models.
Collapse
|
38
|
Inelastic response of silicon to shock compression. Sci Rep 2016; 6:24211. [PMID: 27071341 PMCID: PMC4829838 DOI: 10.1038/srep24211] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/01/2016] [Indexed: 11/28/2022] Open
Abstract
The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported ‘anomalous’ elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. This model is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature.
Collapse
|
39
|
Abstract
Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. The simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.
Collapse
|
40
|
Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat Commun 2015; 6:8191. [PMID: 26337754 PMCID: PMC4569796 DOI: 10.1038/ncomms9191] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/27/2015] [Indexed: 11/09/2022] Open
Abstract
Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. These are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD. Pressure- and temperature-induced phase transitions have long been studied, but little is known about the processes by which the atoms rearrange. Here, the authors present in situ measurements on shock compressed fused silica, revealing an amorphous to crystalline high pressure stishovite phase transition.
Collapse
|
41
|
White WE, Robert A, Dunne M. The Linac Coherent Light Source. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:472-6. [PMID: 25931055 PMCID: PMC4416663 DOI: 10.1107/s1600577515005196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/13/2015] [Indexed: 05/29/2023]
Abstract
The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.
Collapse
Affiliation(s)
- William E. White
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Aymeric Robert
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mike Dunne
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
42
|
Nagler B, Arnold B, Bouchard G, Boyce RF, Boyce RM, Callen A, Campell M, Curiel R, Galtier E, Garofoli J, Granados E, Hastings J, Hays G, Heimann P, Lee RW, Milathianaki D, Plummer L, Schropp A, Wallace A, Welch M, White W, Xing Z, Yin J, Young J, Zastrau U, Lee HJ. The Matter in Extreme Conditions instrument at the Linac Coherent Light Source. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:520-5. [PMID: 25931063 PMCID: PMC4416670 DOI: 10.1107/s1600577515004865] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/10/2015] [Indexed: 05/10/2023]
Abstract
The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.
Collapse
Affiliation(s)
- Bob Nagler
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Brice Arnold
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Gary Bouchard
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Richard F. Boyce
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Richard M. Boyce
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Alice Callen
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Marc Campell
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ruben Curiel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Eric Galtier
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Justin Garofoli
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Eduardo Granados
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jerry Hastings
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Greg Hays
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Philip Heimann
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Richard W. Lee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Despina Milathianaki
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Lori Plummer
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Andreas Schropp
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Alex Wallace
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Marc Welch
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - William White
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Zhou Xing
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jing Yin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - James Young
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ulf Zastrau
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Hae Ja Lee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
43
|
Patel S, Suggit MJ, Stubley PG, Hawreliak JA, Ciricosta O, Comley AJ, Collins GW, Eggert JH, Foster JM, Wark JS, Higginbotham A. Single Hit Energy-resolved Laue Diffraction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:053908. [PMID: 26026537 DOI: 10.1063/1.4921774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation.
Collapse
Affiliation(s)
- Shamim Patel
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Matthew J Suggit
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Paul G Stubley
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - James A Hawreliak
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Orlando Ciricosta
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Andrew J Comley
- Atomic Weapons Establishment, Aldermaston, Reading RG7 4PR, United Kingdom
| | - Gilbert W Collins
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Jon H Eggert
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - John M Foster
- Atomic Weapons Establishment, Aldermaston, Reading RG7 4PR, United Kingdom
| | - Justin S Wark
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Andrew Higginbotham
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
44
|
Liang M, Williams GJ, Messerschmidt M, Seibert MM, Montanez PA, Hayes M, Milathianaki D, Aquila A, Hunter MS, Koglin JE, Schafer DW, Guillet S, Busse A, Bergan R, Olson W, Fox K, Stewart N, Curtis R, Miahnahri AA, Boutet S. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:514-9. [PMID: 25931062 PMCID: PMC4416669 DOI: 10.1107/s160057751500449x] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/04/2015] [Indexed: 05/19/2023]
Abstract
The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump-probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.
Collapse
Affiliation(s)
- Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Garth J. Williams
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Marc Messerschmidt
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - M. Marvin Seibert
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Paul A. Montanez
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Matt Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Despina Milathianaki
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Andrew Aquila
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jason E. Koglin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Donald W. Schafer
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Serge Guillet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Armin Busse
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Robert Bergan
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - William Olson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Kay Fox
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Nathaniel Stewart
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Robin Curtis
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Alireza Alan Miahnahri
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
45
|
Feng Y, Alonso-Mori R, Barends TRM, Blank VD, Botha S, Chollet M, Damiani DS, Doak RB, Glownia JM, Koglin JM, Lemke HT, Messerschmidt M, Nass K, Nelson S, Schlichting I, Shoeman RL, Shvyd’ko YV, Sikorski M, Song S, Stoupin S, Terentyev S, Williams GJ, Zhu D, Robert A, Boutet S. Demonstration of simultaneous experiments using thin crystal multiplexing at the Linac Coherent Light Source. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:626-33. [PMID: 25931078 PMCID: PMC4416679 DOI: 10.1107/s1600577515003999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/26/2015] [Indexed: 05/06/2023]
Abstract
Multiplexing of the Linac Coherent Light Source beam was demonstrated for hard X-rays by spectral division using a near-perfect diamond thin-crystal monochromator operating in the Bragg geometry. The wavefront and coherence properties of both the reflected and transmitted beams were well preserved, thus allowing simultaneous measurements at two separate instruments. In this report, the structure determination of a prototypical protein was performed using serial femtosecond crystallography simultaneously with a femtosecond time-resolved XANES studies of photoexcited spin transition dynamics in an iron spin-crossover system. The results of both experiments using the multiplexed beams are similar to those obtained separately, using a dedicated beam, with no significant differences in quality.
Collapse
Affiliation(s)
- Y. Feng
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - R. Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | | | - V. D. Blank
- Technological Institute for Superhard and Novel Carbon Materials, Troitsk, Russia
| | - S. Botha
- Max-Planck Institute for Medical Research, Heidelberg, Germany
| | - M. Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - D. S. Damiani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - R. B. Doak
- Max-Planck Institute for Medical Research, Heidelberg, Germany
| | - J. M. Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - J. M. Koglin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - H. T. Lemke
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - M. Messerschmidt
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - K. Nass
- Max-Planck Institute for Medical Research, Heidelberg, Germany
| | - S. Nelson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - I. Schlichting
- Max-Planck Institute for Medical Research, Heidelberg, Germany
| | - R. L. Shoeman
- Max-Planck Institute for Medical Research, Heidelberg, Germany
| | - Yu. V. Shvyd’ko
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - M. Sikorski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - S. Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - S. Stoupin
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - S. Terentyev
- Technological Institute for Superhard and Novel Carbon Materials, Troitsk, Russia
| | - G. J. Williams
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - D. Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - A. Robert
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - S. Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
46
|
Visualization of nanocrystal breathing modes at extreme strains. Nat Commun 2015; 6:6577. [DOI: 10.1038/ncomms7577] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/09/2015] [Indexed: 11/08/2022] Open
|
47
|
Gauthier M, Fletcher LB, Ravasio A, Galtier E, Gamboa EJ, Granados E, Hastings JB, Heimann P, Lee HJ, Nagler B, Schropp A, Gleason A, Döppner T, LePape S, Ma T, Pak A, MacDonald MJ, Ali S, Barbrel B, Falcone R, Kraus D, Chen Z, Mo M, Wei M, Glenzer SH. New experimental platform to study high density laser-compressed matter. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:11E616. [PMID: 25430362 DOI: 10.1063/1.4896175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have developed a new experimental platform at the Linac Coherent Light Source (LCLS) which combines simultaneous angularly and spectrally resolved x-ray scattering measurements. This technique offers a new insights on the structural and thermodynamic properties of warm dense matter. The < 50 fs temporal duration of the x-ray pulse provides near instantaneous snapshots of the dynamics of the compression. We present a proof of principle experiment for this platform to characterize a shock-compressed plastic foil. We observe the disappearance of the plastic semi-crystal structure and the formation of a compressed liquid ion-ion correlation peak. The plasma parameters of shock-compressed plastic can be measured as well, but requires an averaging over a few tens of shots.
Collapse
Affiliation(s)
- M Gauthier
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - L B Fletcher
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Ravasio
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - E Galtier
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - E J Gamboa
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - E Granados
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J B Hastings
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - P Heimann
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - H J Lee
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - B Nagler
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Schropp
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Gleason
- Department of Geological and Environmental Sciences, Stanford University, Menlo Park, California 94025, USA
| | - T Döppner
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551, USA
| | - S LePape
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551, USA
| | - T Ma
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551, USA
| | - A Pak
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551, USA
| | - M J MacDonald
- Atmospheric, Oceanic, and Space Science Department, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - S Ali
- Physics Department, University of California Berkeley, Berkeley, California 94709, USA
| | - B Barbrel
- Physics Department, University of California Berkeley, Berkeley, California 94709, USA
| | - R Falcone
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - D Kraus
- Physics Department, University of California Berkeley, Berkeley, California 94709, USA
| | - Z Chen
- Physics Department, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - M Mo
- Physics Department, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - M Wei
- Inertial fusion technology Department, General Atomics, San Diego, California 85608, USA
| | - S H Glenzer
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
48
|
Seeing in a flash. Nature 2014. [DOI: 10.1038/nature13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
|
50
|
Heterogeneities, The Mesoscale and Multifunctional Materials Codesign: Insights and Challenges. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-642-55375-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|