1
|
Ren X, Zhao L, Hao Y, Huang X, Lv G, Zhou X. Copper-instigated modulatory cell mortality mechanisms and progress in kidney diseases. Ren Fail 2025; 47:2431142. [PMID: 39805816 PMCID: PMC11734396 DOI: 10.1080/0886022x.2024.2431142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/23/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
Copper is a vital cofactor in various enzymes, plays a pivotal role in maintaining cell homeostasis. When copper metabolism is disordered and mitochondrial dysfunction is impaired, programmed cell death such as apoptosis, paraptosis, pyroptosis, ferroptosis, cuproptosis, autophagy and necroptosis can be induced. In this review, we focus on the metabolic mechanisms of copper. In addition, we discuss the mechanism by which copper induces various programmed cell deaths. Finally, this review examines copper's involvement in prevalent kidney diseases such as acute kidney injury and chronic kidney disease. The findings indicate that the use of copper chelators or plant extracts can mitigate kidney damage by reducing copper accumulation, offering novel insights into the pathogenesis and treatment strategies for kidney diseases.
Collapse
Affiliation(s)
- Xiya Ren
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiu Huang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guangna Lv
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Wu Z, Huang N, Li C, Lin M, Chen Z, Li W, Zhou H. β-Sitosterol suppresses NLRP3 Inflammasome activation and Pyroptosis in myocardial ischemia/reperfusion injury via inhibition of PPARγ2. Int Immunopharmacol 2025; 154:114543. [PMID: 40157084 DOI: 10.1016/j.intimp.2025.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND β-Sitosterol, a plant-derived sterol, has demonstrated potential therapeutic effects in cardiovascular diseases, particularly myocardial ischemia-reperfusion injury (MIRI). Our study investigates its underlying mechanism through regulation of pyroptosis. METHODS To understand the role of β-sitosterol in protecting cardiomyocytes, MIRI rats were treated with β-sitosterol. Rats' cardiac functions were monitored, and hearts were harvested for histology and Western Blot analysis. Immunofluorescence, immunoblot, enzyme-linked immunosorbent assay, as well as overexpression and knockdown techniques were utilized in this study to investigate the molecular mechanisms underlying the cardioprotective effects of β-sitosterol. RESULTS Our results showed that β-Sitosterol significantly reduced H/R-induced pyroptosis in cardiomyocytes by decreasing cleaved caspase-1, gasdermin D (GSDMD), interleukin-1β (IL-1β), and interleukin-18 (IL-18). Immunofluorescence staining confirmed suppression of NLRP3 inflammasome activation. Notably, β-Sitosterol inhibited pyroptosis induced by ATP and ATP/LPS through the regulation of PPARγ2. Moreover, PPARγ2 upregulation promoted ATP and ATP/LPS-induced pyroptosis through the NLRP3/caspase-1/GSDMD pathway. In vivo, β-sitosterol alleviates myocardial ischemia-reperfusion injury-induced cardiac dysfunction and myocardial fibrosis in rats. CONCLUSIONS These findings provide new evidence supporting β-sitosterol as a potential therapeutic agent for cardiovascular diseases involving ischemic injury. Its protective effects may be mediated through targeting PPARγ2 and modulating NLRP3-dependent pyroptosis.
Collapse
Affiliation(s)
- Zheyi Wu
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Niwen Huang
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Li
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Muzhi Lin
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhangrong Chen
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Clinical Medical College, Guizhou Medical University, Guiyang, China.
| | - Haiyan Zhou
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
3
|
Szczerba M, Ganesh A, Gil-Marqués ML, Briken V, Goldberg MB. NLRP11 is required for canonical NLRP3 and non-canonical inflammasome activation during human macrophage infection with mycobacteria. mBio 2025:e0081825. [PMID: 40272180 DOI: 10.1128/mbio.00818-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
The NLRP11 protein is only expressed in primates and participates in the activation of the canonical NLRP3 and non-canonical NLRP3 inflammasome activation after infection with gram-negative bacteria. Here, we generated a series of defined NLRP11 deletion mutants to further analyze the role of NLRP11 in NLRP3 inflammasome activation. Like the complete NLRP11 deletion mutant (NLRP11-/-), the NLRP11 mutant lacking the NAIP, C2TA, HET-E, and TP1 (NACHT) and leucine-rich repeat (LRR) domains (NLRP11∆N_LRR) showed reduced activation of the canonical NLRP3 inflammasome, whereas a pyrin domain mutant (NLRP11∆PYD) had no effect on NLRP3 activation. The NLRP11-/- and NLRP11∆N_LRR mutants, but not the NLRP11∆PYD mutant, also displayed reduced activation of caspase-4 during infection with the intracytosolic, gram-negative pathogen Shigella flexneri. We found that the human-adapted, acid-fast pathogen Mycobacterium tuberculosis and the opportunistic pathogen Mycobacterium kansasii both activate the non-canonical NLRP11 inflammasome in a caspase-4/caspase-5-dependent pathway. In conclusion, we show that NLRP11 functions in the non-canonical caspase-4/caspase-5 inflammasome activation pathway and the canonical NLRP3 inflammasome pathway and that NLRP11 is required for full recognition of mycobacteria by each of these pathways. Our work extends the spectrum of bacterial pathogen recognition by the non-canonical NLRP11-caspase4/caspase-5 pathway beyond gram-negative bacteria.IMPORTANCEThe activation of inflammasome complexes plays a crucial role in intracellular pathogen detection. NLRP11 and caspase-4 are essential for recognizing lipopolysaccharide (LPS), a molecule found in gram-negative bacteria such as the human pathogens Shigella spp., which activate both canonical NLRP3 and non-canonical inflammasome pathways. Through a series of deletion mutants, we demonstrate that the NACHT and LRR domains of NLRP11, but not its pyrin domain, are critical for detection of S. flexneri. Notably, our research reveals that the acid-fast bacterium M. tuberculosis is also detected by NLRP11 and caspase-4, despite not producing LPS. These findings significantly expand the range of pathogens recognized by NLRP11 and caspase-4 to now include acid-fast bacteria that do not contain LPS and underscore the versatility of these innate immune components in pathogen detection.
Collapse
Affiliation(s)
- Mateusz Szczerba
- Division of Infectious Diseases, Department of Medicine, Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Akshaya Ganesh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - María Luisa Gil-Marqués
- Division of Infectious Diseases, Department of Medicine, Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Marcia B Goldberg
- Division of Infectious Diseases, Department of Medicine, Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Yang K, Li G, Li Q, Wang W, Zhao X, Shao N, Qiu H, Liu J, Xu L, Zhao J. Distribution of gut microbiota across intestinal segments and their impact on human physiological and pathological processes. Cell Biosci 2025; 15:47. [PMID: 40241220 PMCID: PMC12001467 DOI: 10.1186/s13578-025-01385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, advancements in metagenomics, metabolomics, and single-cell sequencing have enhanced our understanding of the intricate relationships between gut microbiota and their hosts. Gut microbiota colonize humans from birth, with their initial composition significantly influenced by the mode of delivery and feeding method. During the transition from infancy to early childhood, exposure to a diverse diet and the maturation of the immune system lead to the gradual stabilization of gut microbiota's composition and distribution. Numerous studies have demonstrated that gut microbiota can influence a wide range of physiological functions and pathological processes by interacting with various tissues and organs through the gut-organ axis. Different intestinal segments exhibit unique physical and chemical conditions, which leads to the formation of vertical gradients along the intestinal tract: aerobes and facultative aerobes mainly live in the small intestine and anaerobic bacteria mainly live in the large intestine, and horizontal gradients: mucosa-associated microbiota and lumen-associated microbiota. In this review, we systematically summarize the distribution characteristics of gut microbiota across six intestinal segments: duodenum, jejunum, ileum, cecum, colon, and rectum. We also draw a conclusion that gut microbiota distributed in different intestinal segments affect the progression of different diseases. We hope to elucidate the role of microbiota at specific anatomic sites within the gut in precisely regulating the processes of particular diseases, thereby providing a solid foundation for developing novel diagnostic and therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Ke Yang
- The First Clinical Institute, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Guangqin Li
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qihong Li
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wei Wang
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xu Zhao
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Guizhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Nan Shao
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Hui Qiu
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jing Liu
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lin Xu
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Juanjuan Zhao
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
5
|
Xiao Z, Xie J, Zhao X, Chen X, Lu Y, Xu Y, Wu M, An L, Li Q. Role of Pyroptosis in inflammatory bowel disease. Int Immunopharmacol 2025; 155:114619. [PMID: 40209313 DOI: 10.1016/j.intimp.2025.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Inflammatory bowel disease (IBD) is a serious chronic condition marked by persistent and recurrent intestinal ulcers. Although the exact cause of IBD remains unclear, it is generally accepted that a complex interaction among dietary factors, gut microbiota, and immune responses in genetically predisposed individuals contributes to its development. Pyroptosis, an inflammatory form of programmed cell death activated by inflammasomes, is marked by the rupture of cell membranes and the subsequent release of inflammatory mediators. Emerging evidence indicates that pyroptosis plays a crucial role in the pathogenesis of IBD. Moderate pyroptosis activation can enhance intestinal immune defenses, while excessive inflammasome activation can trigger an inflammatory cascade, resulting in increased damage to intestinal tissues. This article reviews the molecular mechanisms underlying pyroptosis and highlights its role in the onset and progression of IBD. Furthermore, We explore recent advancements in IBD treatment, focusing on small molecule compounds that specifically target and inhibit pyroptosis.
Collapse
Affiliation(s)
- Zhiyi Xiao
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Jiling Xie
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Xun Zhao
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Xiangjun Chen
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Yihong Lu
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Yuanzhao Xu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Manqing Wu
- Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Lingyue An
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| | - Qing Li
- Department of Gastroenterology and Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
6
|
Miao R, Wang X, Zhang J, Kang Q, Liu Q, Luo X, Hou J, Gao B. Manipulation of cancer cell pyroptosis for therapeutic approaches: challenges and opportunities. Biomark Res 2025; 13:58. [PMID: 40200299 PMCID: PMC11980353 DOI: 10.1186/s40364-025-00771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
Remarkable advances have been achieved following discoveries that gasdermins are the executioners of pyroptosis. The pyroptotic process consists a subcellular permeabilization phase and a cell lysis phase, the latter of which is irreversible. Besides immune cells, pyroptosis has also been observed in cancer cells, which exhibit distinct mechanisms compared to canonical immune cell pyroptosis. Although chronic cancer cell pyroptosis fuels tumor growth, intense pyroptotic cell death in tumor cells enhances anticancer immunity by promoting killer lymphocytes infiltration. Triggering pyroptosis in cancer cells is emerging as a promising strategy for cancer treatment. In this review, we introduce the process of cancer cell pyroptosis and its role in antitumor immunity, discuss the translation of these insights into therapies, and highlight current challenges and opportunities in the investigation of cancer cell pyroptosis.
Collapse
Affiliation(s)
- Rui Miao
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Jingyv Zhang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Qinyv Kang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Qing Liu
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Xianglin Luo
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Junwei Hou
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China.
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China.
| | - Baorong Gao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Nan Lu, Chengdu, 610041, China.
- Department of Obstetrics and Gynaecology, West China Second University Hospital, No. 20, Section 3, Renmin Nan Lu, Chengdu, 610041, China.
| |
Collapse
|
7
|
Wen X, Zuo Z, Yang L, Qi X, Wei Z, Xu S, Li J, Luo X, Hu G, Liao Z. Bortezomib-loaded hybrid liposome inducing pyroptosis for targeted therapy against colorectal cancer. Drug Deliv Transl Res 2025:10.1007/s13346-025-01845-5. [PMID: 40205156 DOI: 10.1007/s13346-025-01845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Colorectal cancer (CRC) is a highly invasive malignant tumor. At present, the combination of surgery with chemotherapy constitutes the predominant strategy in the treatment of CRC. The serious side effects of chemotherapy profoundly impair patients' quality of life. It is of great importance to develop novel approach to reduce side effects and increase anti-tumor efficacy in CRC treatment. Bortezomib (Btz), a reversible proteasome inhibitor, possessing both chemotherapeutic and immunotherapeutic effects by inducing cell pyroptotic. However, the application of Btz is impeded by their lack of tumor-targeting capability and lipid solubility. To address these restrictions and develop an ideal drug carrier, we performed a biohybrid approach by fusing liposomes with artificial extracellular vesicles engineered from cancer cells to generate hybrid liposomes (HV@Btz) for the targeted delivery of Btz. In contrast to liposomes, HV@Btz possessed higher cellular uptake efficiency and strong cytotoxicity against CT26 cells by inducing cell pyroptotic. Additionally, HV@Btz had superior tumor-targeting ability and prolonged circulation time. HV@Btz significantly suppressed tumor growth and triggered robust anti-tumor immune response with minimum systemic toxicity in both subcutaneous and orthotopic CRC-bearing mice. This study demonstrated that HV@Btz could serve as a scalable approach by inducing cell pyroptotic for the management of colorectal cancer.
Collapse
Affiliation(s)
- Xiaoyong Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhongkun Zuo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Leping Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaoyan Qi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zuxing Wei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shu Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jian Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiong Luo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gunchu Hu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhiqiang Liao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
8
|
Miao Z, Zhang X, Xu Y, Liu Y, Yang Q. Unveiling the nexus: pyroptosis and its crucial implications in liver diseases. Mol Cell Biochem 2025; 480:2159-2176. [PMID: 39477911 DOI: 10.1007/s11010-024-05147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/22/2024] [Indexed: 04/02/2025]
Abstract
Pyroptosis, a distinctive form of programmed cell death orchestrated by gasdermin proteins, manifests as cellular rupture, accompanied by the release of inflammatory factors. While pyroptosis is integral to anti-infection immunity, its aberrant activation has been implicated in tumorigenesis. The liver, as the body's largest metabolic organ, is rich in various enzymes and governs metabolism. It is also the primary site for protein synthesis. Recent years have witnessed the emergence of pyroptosis as a significant player in the pathogenesis of specific liver diseases, exerting a pivotal role in both physiological and pathological processes. A comprehensive exploration of pyroptosis can unveil its contributions to the development and regression of conditions such as hepatitis, cirrhosis, and hepatocellular carcinoma, offering innovative perspectives for clinical prevention and treatment. This review consolidates current knowledge on key molecules involved in cellular pyroptosis and delineates their roles in liver diseases. Furthermore, we discuss the potential of leveraging pyroptosis as a novel or existing anti-cancer strategy.
Collapse
Affiliation(s)
- Zeyu Miao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xiaorong Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yang Xu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yan Liu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
9
|
Egan MS, O'Rourke EA, Mageswaran SK, Zuo B, Martynyuk I, Demissie T, Hunter EN, Bass AR, Chang YW, Brodsky IE, Shin S. Inflammasomes primarily restrict cytosolic Salmonella replication within human macrophages. eLife 2025; 12:RP90107. [PMID: 40162563 PMCID: PMC11957546 DOI: 10.7554/elife.90107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that utilizes its type III secretion systems (T3SSs) to inject virulence factors into host cells and colonize the host. In turn, a subset of cytosolic immune receptors respond to T3SS ligands by forming multimeric signaling complexes called inflammasomes, which activate caspases that induce interleukin-1 (IL-1) family cytokine release and an inflammatory form of cell death called pyroptosis. Human macrophages mount a multifaceted inflammasome response to Salmonella infection that ultimately restricts intracellular bacterial replication. However, how inflammasomes restrict Salmonella replication remains unknown. We find that caspase-1 is essential for mediating inflammasome responses to Salmonella and restricting bacterial replication within human macrophages, with caspase-4 contributing as well. We also demonstrate that the downstream pore-forming protein gasdermin D (GSDMD) and Ninjurin-1 (NINJ1), a mediator of terminal cell lysis, play a role in controlling Salmonella replication in human macrophages. Notably, in the absence of inflammasome responses, we observed hyperreplication of Salmonella within the cytosol of infected cells as well as increased bacterial replication within vacuoles, suggesting that inflammasomes control Salmonella replication primarily within the cytosol and also within vacuoles. These findings reveal that inflammatory caspases and pyroptotic factors mediate inflammasome responses that restrict the subcellular localization of intracellular Salmonella replication within human macrophages.
Collapse
Affiliation(s)
- Marisa S Egan
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Emily A O'Rourke
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute of Structural Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Biao Zuo
- Institute of Structural Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Electron Microscopy Resource Laboratory, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Inna Martynyuk
- Institute of Structural Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Electron Microscopy Resource Laboratory, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Tabitha Demissie
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Emma N Hunter
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Antonia R Bass
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute of Structural Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
10
|
Wei C, Jiang W, Luo M, Shao F. BBB breakdown caused by plasma membrane pore formation. Trends Cell Biol 2025:S0962-8924(25)00064-9. [PMID: 40140333 DOI: 10.1016/j.tcb.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025]
Abstract
The blood-brain barrier, recently reintroduced as the blood-brain border (BBB), is a dynamic interface between the central nervous system (CNS) and the bloodstream. Disruption of the BBB exposes the CNS to peripheral pathogens and harmful substances, causing or worsening various CNS diseases. While traditional views attribute BBB failure to tight junction disruption or increased transcytosis, recent studies highlight the critical role of gasdermin D (GSDMD) pore formation in brain endothelial cells (bECs) during BBB disruption by lipopolysaccharide (LPS) or bacterial infections. This mechanism may also be involved in neurological complications like the 'brain fog' seen in long COVID. Pore formation in bECs may represent a prevalent mechanism causing BBB leakage. Investigating membrane-permeabilizing pores or channels and their effects on BBB integrity is a growing area of research. Further exploration of molecular processes that maintain, disrupt, and restore bEC membrane integrity will advance our understanding of brain vasculature and aid in developing new therapies for BBB-related diseases.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China.
| | - Wei Jiang
- National Institute of Biological Sciences, Beijing, PR China
| | - Minmin Luo
- Chinese Institute for Brain Research, Beijing, PR China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China.
| |
Collapse
|
11
|
Bai Y, Pan Y, Liu X. Mechanistic insights into gasdermin-mediated pyroptosis. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00837-0. [PMID: 40128620 DOI: 10.1038/s41580-025-00837-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/26/2025]
Abstract
Pyroptosis, a novel mode of inflammatory cell death, is executed by membrane pore-forming gasdermin (GSDM) family members in response to extracellular or intracellular injury cues and is characterized by a ballooning cell morphology, plasma membrane rupture and the release of inflammatory mediators such as interleukin-1β (IL-1β), IL-18 and high mobility group protein B1 (HMGB1). It is a key effector mechanism for host immune defence and surveillance against invading pathogens and aberrant cancerous cells, and contributes to the onset and pathogenesis of inflammatory and autoimmune diseases. Manipulating the pore-forming activity of GSDMs and pyroptosis could lead to novel therapeutic strategies. In this Review, we discuss the current knowledge regarding how GSDM-mediated pyroptosis is initiated, executed and regulated, its roles in physiological and pathological processes, and the crosstalk between different modes of programmed cell death. We also highlight the development of drugs that target pyroptotic pathways for disease treatment.
Collapse
Affiliation(s)
- Yang Bai
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Youdong Pan
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xing Liu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Academy of Natural Sciences (SANS), Shanghai, China.
| |
Collapse
|
12
|
Xiao J, Wang L, Zhang B, Hou A. Cell death in acute lung injury: caspase-regulated apoptosis, pyroptosis, necroptosis, and PANoptosis. Front Pharmacol 2025; 16:1559659. [PMID: 40191423 PMCID: PMC11968751 DOI: 10.3389/fphar.2025.1559659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
There has been abundant research on the variety of programmed cell death pathways. Apoptosis, pyroptosis, and necroptosis under the action of the caspase family are essential for the innate immune response. Caspases are classified into inflammatory caspase-1/4/5/11, apoptotic caspase-3/6/7, and caspase-2/8/9/10. Although necroptosis is not caspase-dependent to transmit cell death signals, it can cross-link with pyroptosis and apoptosis signals under the regulation of caspase-8. An increasing number of studies have reiterated the involvement of the caspase family in acute lung injuries caused by bacterial and viral infections, blood transfusion, and ventilation, which is influenced by noxious stimuli that activate or inhibit caspase engagement pathways, leading to subsequent lung injury. This article reviews the role of caspases implicated in diverse programmed cell death mechanisms in acute lung injury and the status of research on relevant inhibitors against essential target proteins of the described cell death mechanisms. The findings of this review may help in delineating novel therapeutic targets for acute lung injury.
Collapse
Affiliation(s)
| | | | | | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Mamun MAA, Rakib A, Mandal M, Singh UP. Impact of a High-Fat Diet on the Gut Microbiome: A Comprehensive Study of Microbial and Metabolite Shifts During Obesity. Cells 2025; 14:463. [PMID: 40136712 PMCID: PMC11940932 DOI: 10.3390/cells14060463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Over the last few decades, the prevalence of metabolic diseases such as obesity, diabetes, non-alcoholic fatty liver disease, hypertension, and hyperuricemia has surged, primarily due to high-fat diet (HFD). The pathologies of these metabolic diseases show disease-specific alterations in the composition and function of their gut microbiome. How HFD alters the microbiome and its metabolite to mediate adipose tissue (AT) inflammation and obesity is not well known. Thus, this study aimed to identify the changes in the gut microbiome and metabolomic signatures induced by an HFD to alter obesity. To explore the changes in the gut microbiota and metabolites, 16S rRNA gene amplicon sequencing and metabolomic analyses were performed after HFD and normal diet (ND) feeding. We noticed that, at taxonomic levels, the number of operational taxonomic units (OTUs), along with the Chao and Shannon indexes, significantly shifted in HFD-fed mice compared to those fed a ND. Similarly, at the phylum level, an increase in Firmicutes and a decrease in Bacteroidetes were noticed in HFD-fed mice. At the genus level, an increase in Lactobacillus and Ruminococcus was observed, while Allobaculum, Clostridium, and Akkermansia were markedly reduced in the HFD group. Many bacteria from the Ruminococcus genus impair bile acid metabolism and restrict weight loss. Firmicutes are efficient in breaking down complex carbohydrates into short-chain fatty acids (SCFAs) and other metabolites, whereas Bacteroidetes are involved in a more balanced or efficient energy extraction. Thus, an increase in Firmicutes over Bacteroidetes enhances the absorption of more calories from food, which may contribute to obesity. Taken together, the altered gut microbiota and metabolites trigger AT inflammation, which contributes to metabolic dysregulation and disease progression. Thus, this study highlights the potential of the gut microbiome in the development of therapeutic strategies for obesity and related metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; (M.A.A.M.); (A.R.); (M.M.)
| |
Collapse
|
14
|
Gu F, Huang D, Li R, Peng L, Huan T, Ye K, Bian Z, Yin W. Roles of Pyroptosis in the Progression of Pulpitis and Apical Periodontitis. J Inflamm Res 2025; 18:3361-3375. [PMID: 40084091 PMCID: PMC11905803 DOI: 10.2147/jir.s507198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Pyroptosis is a type of programmed cell death that induces proinflammatory cytokine release and is closely related to inflammatory diseases. Pulpitis and apical periodontitis are common inflammatory diseases that lead to alveolar bone destruction and tooth loss. Recent studies have revealed that pyroptosis is crucial in the progression of pulpitis and apical periodontitis, which involves various cell types and leads to different results. Odontoblasts are located at the periphery of dental pulp tissue and are susceptible to various irritants, the lysates from odontoblasts act as alerts and induce immune reactions in the inner pulp after pyroptosis. The expression levels of inflammasomes in dental pulp cells (DPCs) change with the progression of pulpitis, which may serve as a diagnostic marker of pulpitis. Periodontal ligament fibroblasts (PDLFs) undergo pyroptosis when stimulated by bacterial infection or cyclic stretch and are associated with both infection-induced and trauma-induced apical periodontitis. Immune cells can undergo pyroptosis directly after infection or are influenced by the pyroptotic secretome of other cells, which changes their composition. In this review, we briefly introduce the location and function of different cell types involved in the progression of pulpitis and apical periodontitis, summarize the roles of pyroptosis in different cells, and discuss the effects of drugs targeting pyroptosis in the treatment of pulpitis and apical periodontitis.
Collapse
Affiliation(s)
- Fan Gu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
- Department of Cariology and Endodontics I, Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Delan Huang
- Department of Stomatology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Ruiqi Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Linlin Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Tingting Huan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Kaili Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Zhuan Bian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
- Department of Cariology and Endodontics I, Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Wei Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
- Department of Cariology and Endodontics I, Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| |
Collapse
|
15
|
Szczerba M, Ganesh A, Gil-Marqués ML, Briken V, Goldberg MB. NLRP11 is required for canonical NLRP3 and non-canonical inflammasome activation during human macrophage infection with mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.11.627830. [PMID: 40093077 PMCID: PMC11908186 DOI: 10.1101/2024.12.11.627830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The NLRP11 protein is only expressed in primates and participates in the activation of the canonical NLRP3 and non-canonical NLRP3 inflammasome activation after infection with gram-negative bacteria. Here, we generated a series of defined NLRP11 deletion mutants to further analyze the role of NLRP11 in NLRP3 inflammasome activation. Like the complete NLRP11 deletion mutant (NLRP11 -/- ), the NLRP11 mutant lacking the NACHT and LRR domains (NLRP11 ΔN_LRR ) showed reduced activation of the canonical NLRP3 inflammasome, whereas a pyrin domain mutant (NLRP11 ΔPYD ) had no effect on NLRP3 activation. The NLRP11 -/- and NLRP11 ΔN_LRR mutants but not the NLRP11 ΔPYD mutant also displayed reduced activation of caspase-4 during infection with the intracytosolic, gram-negative pathogen Shigella flexneri. We found that the human adapted, acid-fast pathogen Mycobacterium tuberculosis and the opportunistic pathogen M. kansasii both activate the non-canonical NLRP11 inflammasome in a caspase-4/5-dependent pathway. In conclusion, we show that NLRP11 functions in the non-canonical caspase-4/5 inflammasome activation pathway and the canonical NRLP3 inflammasome pathway, and that NLRP11 is required for full recognition of mycobacteria by each of these pathways. Our work extends the spectrum of bacterial pathogen recognition by the non-canonical NLRP11-caspase4/5 pathway beyond gram-negative bacteria.
Collapse
Affiliation(s)
- Mateusz Szczerba
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Akshaya Ganesh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - María Luisa Gil-Marqués
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Marcia B. Goldberg
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
16
|
Xu T, Han J, Wang N, Huan Z, Yao H, Ge X. The protective role of kakkalide in sepsis-induced intestinal barrier dysfunction via inhibition of NF-κB pathway activation. J Clin Biochem Nutr 2025; 76:139-147. [PMID: 40151402 PMCID: PMC11936737 DOI: 10.3164/jcbn.24-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 03/29/2025] Open
Abstract
Sepsis, a systemic inflammatory response often triggered by infection, can lead to multi-organ failure, with the intestine being one of the most vulnerable organs. The nuclear factor kappa-B (NF-κB) pathway plays a crucial role in immune responses, inflammation, and cell survival, making it central to sepsis-induced intestinal damage. Kakkalide (KA), a bioactive compound known for its anti-inflammatory, cardiovascular, neuroprotective, and anti-diabetic properties, has potential therapeutic effects. However, its impact on sepsis-induced intestinal injury remains unclear. In this study, murine sepsis models were used both in vivo and in vitro to evaluate the protective effects of KA on intestinal histopathology, apoptosis, and inflammation. Results showed that KA significantly reduced intestinal damage and apoptosis, as evidenced by hematoxylin-eosin and TUNEL staining. KA also improved intestinal barrier integrity, as indicated by reduced diamine oxidase activity, d-lactic acid content, and fluorescein isothiocyanate intensity, along with increased expression of zonula occludens-1. Furthermore, KA alleviates inflammation by reducing the levels of tumor necrosis factor-α, interleukin-1β, prostaglandin E2, inducible nitric oxide synthase, and cyclooxygenase-2. Immunofluorescence and Western blot analysis revealed that KA inhibited the sepsis-induced phosphorylation of inhibitor-kappaBα and RelA (P65) and prevented P65's translocation to the nucleus. These findings were confirmed in lipopolysaccharide-induced Caco-2 cells, suggesting that KA protected the intestinal barrier during sepsis by suppressing the NF-κB pathway.
Collapse
Affiliation(s)
- Tongrong Xu
- Department of Critical Care Medicine, Changzhou No.2 People’s Hospital, Gehu Middle Road 68, Changzhou, Jiangsu, People’s Republic of China
| | - Jiahui Han
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| | - Nan Wang
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| | - Zhirong Huan
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| | - Hao Yao
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| | - Xin Ge
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
- Orthopedic Institution of Wuxi City, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| |
Collapse
|
17
|
Khawas S, Sharma N. Cell death crosstalk in respiratory diseases: unveiling the relationship between pyroptosis and ferroptosis in asthma and COPD. Mol Cell Biochem 2025; 480:1305-1326. [PMID: 39112808 DOI: 10.1007/s11010-024-05062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/29/2024] [Indexed: 02/21/2025]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous obstructive diseases characterized by airflow limitations and are recognized as significant contributors to fatality all over the globe. Asthma accounts for about 4, 55,000 deaths, and COPD is the 3rd leading contributor of mortality worldwide. The pathogenesis of these two obstructive disorders is complex and involves numerous mechanistic pathways, including inflammation-mediated and non-inflammation-mediated pathways. Among all the pathological categorizations, programmed cell deaths (PCDs) play a dominating role in the progression of these obstructive diseases. The two major PCDs that are involved in structural and functional remodeling in the progression of asthma and COPD are Pyroptosis and Ferroptosis. Pyroptosis is a PCD mechanism mediated by the activation of the Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome, leading to the maturation and release of Interleukin-1β and Interleukin-18, whereas ferroptosis is a lipid peroxidation-associated cell death. In this review, the major molecular pathways contributing to these multifaceted cell deaths have been discussed, and crosstalk among them regarding the pathogenesis of asthma and COPD has been highlighted. Further, the possible therapeutic approaches that can be utilized to mitigate both cell deaths at once have also been illustrated.
Collapse
Affiliation(s)
- Sayak Khawas
- Department of Pharmaceutical Science & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Science & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
18
|
Qian Y, Liu Q, Cheng X, Wang C, Kong C, Li M, Ren C, Jiang D, Wang S, Xia P. A VgrG2b fragment cleaved by caspase-11/4 promotes Pseudomonas aeruginosa infection through suppressing the NLRP3 inflammasome. eLife 2025; 13:RP99939. [PMID: 39998486 PMCID: PMC11856931 DOI: 10.7554/elife.99939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
The T6SS of Pseudomonas aeruginosa plays an essential role in the establishment of chronic infections. Inflammasome-mediated inflammatory cytokines are crucial for host defense against bacterial infections. We found that P. aeruginosa infection activates the non-canonical inflammasome in macrophages, yet it inhibits the downstream activation of the NLRP3 inflammasome. The VgrG2b of P. aeruginosa is recognized and cleaved by caspase-11, generating a free C-terminal fragment. The VgrG2b C-terminus can bind to NLRP3, inhibiting the activation of the NLRP3 inflammasome by rejecting NEK7 binding to NLRP3. Administration of a specific peptide that inhibits caspase-11 cleavage of VgrG2b significantly improves mouse survival during infection. Our discovery elucidates a mechanism by which P. aeruginosa inhibits host immune response, providing a new approach for the future clinical treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Yan Qian
- Department of Immunology, School of Basic Medical Sciences, Peking UniversityBeijingChina
- NHC Key Laboratory of Medical Immunology, Peking UniversityBeijingChina
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical SciencesBeijingChina
| | - Qiannv Liu
- Department of Immunology, School of Basic Medical Sciences, Peking UniversityBeijingChina
- NHC Key Laboratory of Medical Immunology, Peking UniversityBeijingChina
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical SciencesBeijingChina
| | - Xiangyun Cheng
- Department of Sports Medicine, Peking University Third HospitalBeijingChina
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine of Peking UniversityBeijingChina
| | - Chunlei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking UniversityBeijingChina
- NHC Key Laboratory of Medical Immunology, Peking UniversityBeijingChina
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical SciencesBeijingChina
| | - Chun Kong
- Department of Immunology, School of Basic Medical Sciences, Peking UniversityBeijingChina
- NHC Key Laboratory of Medical Immunology, Peking UniversityBeijingChina
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical SciencesBeijingChina
| | - Mengqian Li
- Department of Immunology, School of Basic Medical Sciences, Peking UniversityBeijingChina
- NHC Key Laboratory of Medical Immunology, Peking UniversityBeijingChina
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical SciencesBeijingChina
| | - Chao Ren
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical UniversityBeijingChina
| | - Dong Jiang
- Department of Sports Medicine, Peking University Third HospitalBeijingChina
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine of Peking UniversityBeijingChina
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, Peking UniversityBeijingChina
- NHC Key Laboratory of Medical Immunology, Peking UniversityBeijingChina
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
19
|
Deng RM, Huang G, Wang T, Zhou J. Regulated programmed cell death in sepsis associated acute lung injury: From pathogenesis to therapy. Int Immunopharmacol 2025; 148:114111. [PMID: 39832461 DOI: 10.1016/j.intimp.2025.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/28/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Sepsis associated acute lung injury (SALI) is a common complication in patients with severe sepsis and a disease with high morbidity and mortality in ICU patients. The main mechanism of SALI is pulmonary hypoperfusion due to hypotension and shock caused by sepsis, which leads to ischemic necrosis of alveolar endothelial cells and eventually lung failure. At present, SALI therapy mainly includes antibiotic therapy, fluid resuscitation, transfusion products and vasoactive drugs, but these strategies are not satisfactory. Therefore, focusing on the role of different cell death patterns in SALI may help in the search for effective treatments. Understanding the molecular mechanisms of SALI and identifying pathways that inhibit lung cell death are critical to developing effective drug therapies to prevent the progression of SALI. Cell death is controlled by programmed cell death (PCD) pathways, including apoptosis, necroptosis, ferroptosis, pyroptosis and autophagy. There is growing evidence that PCD plays an important role in the pathogenesis of SALI, and inhibitors of various types of PCD represent a promising therapeutic strategy. Therefore, understanding the role and mechanism of PCD in SALI is conducive to our understanding of its pathological mechanism, and is of great significance for the treatment of SALI. In this article, we discuss recent advances in the role of PCD in SALI, show how different signaling pathways (such as NF-κB, PI3K/Akt, mTOR, and Nrf2) regulate PCD to regulate SALI development, and discuss the associations between various types of PCD. The aim is to explore the molecular mechanism behind SALI and to find new targets for SALI therapy.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Guiming Huang
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Tingting Wang
- Department of Anaesthesia, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, PR China
| | - Juan Zhou
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
20
|
Izumi Y, O'Dell KA, Mennerick S, Zorumski CF. Effects of acute pro-inflammatory stimulation and 25-hydroxycholesterol on hippocampal plasticity and learning involve NLRP3 inflammasome and cellular stress responses. Sci Rep 2025; 15:6149. [PMID: 39979396 PMCID: PMC11842721 DOI: 10.1038/s41598-025-90149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
Neuroinflammation is an increasingly important target for therapeutics in neuropsychiatry and contributes to cognitive dysfunction, disability and death across a range of illnesses. We previously found that acute effects of pro-inflammatory stimulation with lipopolysaccharide (LPS) on hippocampal long-term potentiation (LTP), a form of synaptic plasticity involved in learning and memory, requires synthesis of the oxysterol, 25-hydroxycholesterol (25HC) and exogenous 25HC mimics effects of LPS. However, downstream mechanisms engaged by LPS and 25HC remain uncertain. Here we use rat hippocampal slices and in vivo behavioral studies to provide evidence that acute modulation of synaptic plasticity by both LPS and 25HC requires activation of the NLRP3 inflammasome, caspase-1 and interleukin-1 receptor. Furthermore, both LPS and 25HC engage cellular stress responses including synthesis of 5α-reduced neurosteroids and effects on plasticity are prevented by modulators of these responses. In studies of acute learning using a one-trial inhibitory avoidance task, inhibition of learning by LPS and 25HC are prevented by pre-treatment with an inhibitor of NLRP3. The present studies provide strong support for the role of 25HC as a mediator of pro-inflammatory stimulation on hippocampal synaptic plasticity and for the importance of NLRP3 inflammasome and caspase-1 activation in the deleterious effects of acute inflammation.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kazuko A O'Dell
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
Turcotte EA, Kim K, Eislmayr KD, Goers L, Mitchell PS, Lesser CF, Vance RE. Shigella OspF blocks rapid p38-dependent priming of the NAIP-NLRC4 inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636075. [PMID: 39975412 PMCID: PMC11838452 DOI: 10.1101/2025.02.01.636075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The NAIP-NLRC4 inflammasome senses pathogenic bacteria by recognizing the cytosolic presence of bacterial proteins such as flagellin and type III secretion system (T3SS) subunits. In mice, the NAIP-NLRC4 inflammasome provides robust protection against bacterial pathogens that infect intestinal epithelial cells, including the gastrointestinal pathogen Shigella flexneri. By contrast, humans are highly susceptible to Shigella, despite the ability of human NAIP-NLRC4 to robustly detect Shigella T3SS proteins. Why the NAIP-NLRC4 inflammasome protects mice but not humans against Shigella infection remains unclear. We previously found that human THP-1 cells infected with Shigella lose responsiveness to NAIP-NLRC4 stimuli, while retaining sensitivity to other inflammasome agonists. Using mT3Sf, a "minimal Shigella" system, to express individual secreted Shigella effector proteins, we found that the OspF effector specifically suppresses NAIP-NLRC4-dependent cell death during infection. OspF was previously characterized as a phosphothreonine lyase that inactivates p38 and ERK MAP kinases. We found that p38 was critical for rapid priming of NAIP-NLRC4 activity, particularly in cells with low NAIP-NLRC4 expression. Overall, our results provide a mechanism by which Shigella evades inflammasome activation in humans, and describe a new mechanism for rapid priming of the NAIP-NLRC4 inflammasome.
Collapse
Affiliation(s)
- Elizabeth A Turcotte
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, Berkeley, United States
| | - Kyungsub Kim
- Department of Microbiology, Harvard Medical School, Boston, United States
| | - Kevin D Eislmayr
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, Berkeley, United States
| | - Lisa Goers
- Department of Microbiology, Harvard Medical School, Boston, United States
| | - Patrick S Mitchell
- Department of Microbiology, University of Washington, Seattle, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Cammie F Lesser
- Department of Microbiology, Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| | - Russell E Vance
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, Berkeley, United States
- Center for Emerging and Neglected Disease, University of California, Berkeley, United States
- Cancer Research Laboratory, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| |
Collapse
|
22
|
Li Z, Xi Z, Fan C, Xi X, Zhou Y, Zhao M, Xu L. Nanomaterials evoke pyroptosis boosting cancer immunotherapy. Acta Pharm Sin B 2025; 15:852-875. [PMID: 40177577 PMCID: PMC11959974 DOI: 10.1016/j.apsb.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/15/2024] [Indexed: 04/05/2025] Open
Abstract
Cancer immunotherapy is currently a very promising therapeutic strategy for treating tumors. However, its effectiveness is restricted by insufficient antigenicity and an immunosuppressive tumor microenvironment (ITME). Pyroptosis, a unique form of programmed cell death (PCD), causes cells to swell and rupture, releasing pro-inflammatory factors that can enhance immunogenicity and remodel the ITME. Nanomaterials, with their distinct advantages and different techniques, are increasingly popular, and nanomaterial-based delivery systems demonstrate significant potential to potentiate, enable, and augment pyroptosis. This review summarizes and discusses the emerging field of nanomaterials-induced pyroptosis, focusing on the mechanisms of nanomaterials-induced pyroptosis pathways and strategies to activate or enhance specific pyroptosis. Additionally, we provide perspectives on the development of this field, aiming to accelerate its further clinical transition.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziyue Xi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chuanyong Fan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinran Xi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yao Zhou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
23
|
Shi Y, Magarian Blander J. Patterns of bacterial viability governing noncanonical inflammasome activation. Curr Opin Immunol 2025; 92:102512. [PMID: 39675154 DOI: 10.1016/j.coi.2024.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Noncanonical inflammasomes are instrumental in defense against Gram-negative bacteria, activated primarily by bacterial lipopolysaccharide. This review examines commonalities and distinctions in noncanonical inflammasome activation either by virulence factor activity indicating cellular invasion or by detection of bacterial mRNA signaling the undesired presence of live bacteria in sterile tissue. These inflammasome triggers, alongside other examples discussed, reflect properties exclusive to live bacteria. The emerging picture underscores noncanonical inflammasome activation hinging on detection of indicators of bacterial viability such as the presence of certain molecules or activity of specific processes. The complex interpretation of combinatorial signals is essential for inflammasome activation according to the specific facet of infection confronting the host. Decoding these signals and their convergence on inflammasome activation will inform interventions and therapies for infectious diseases.
Collapse
Affiliation(s)
- Yuhua Shi
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Programs, Weill Cornell and Sloan Kettering Institute Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
24
|
Jiang YJ, Cheng YH, Zhu HQ, Wu YL, Nan JX, Lian LH. Palmatine, an isoquinoline alkaloid from Phellodendron amurense Rupr., ameliorated gouty inflammation by inhibiting pyroptosis via NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119231. [PMID: 39701220 DOI: 10.1016/j.jep.2024.119231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/11/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Palmatine (Pal), derived from Daemonorops margaritae (Hance) Becc and Phellodendron amurense Rupr. is a natural isoquinoline alkaloid widely used in clearing heat and drying dampness, purging the pathogenic fire and removing symptoms, detoxifying toxins and healing sores. AIM OF THE STUDY Gout is a common metabolic inflammatory disease caused by the deposition of MSU crystals (MSU) in joints and non-articulation structures. Given the multiple toxic side effects of clinical anti-gout medications, there is a need to find a safe and effective alternative. We investigated the therapeutic effects of Pal on MSU crystal-induced acute gouty inflammation, targeting the NLRP3 inflammasome mediated pyroptosis. MATERIALS AND METHODS In vitro, mouse peritoneal macrophages (MPM) and rat articular chondrocytes were stimulated with LPS plus MSU in the presence or absence of Palmatine. In vivo, arthritis models include the acute gouty arthritis model by injecting MSU crystals in the paws of mice and the air pouch acute gout model by injecting MSU crystals into the mouse subcutaneous tissue of the back. Expression of NLRP3 inflammasome activation and NETosis formation was determined by Western blot, ELISA kit, immunohistochemistry, and immunofluorescence. In addition, the anti-cartilage damage of Palmatine on MSU-induced arthritis mice were also evaluated. RESULTS Pal dose-dependently decreased levels of NLRP3 inflammasome activation related proteins NLRP3, ASC, caspase-1, IL-1β, HMGB1 and Cathepsin B. The NETosis protein levels of caspase-11, histone3, PR3 and PAD4 were remarkably reduced by Pal. Pal effectively blocked the activation of NLRP3 inflammasome, attenuated the caspase-11 mediated noncanonical NLRP3 inflammasome activation and intervened the formation of NETs, thereby inhibiting the pyroptosis. In vivo, Pal attenuated MSU-induced inflammation in gouty arthritis and protect the articular cartilage through inhibiting the pyroptosis of proteins NLRP3, ASC, caspase-1, IL-1β, HMGB1 and Cathepsin B, reducing levels of NETosis relevant proteins caspase-11, histone3, PR3 and PAD4 and up-regulating expression of protein MMP-3. CONCLUSION Palmatine ameliorated gouty inflammation by inhibiting pyroptosis via NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yin-Jing Jiang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Yong-Hong Cheng
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Hao-Qing Zhu
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China.
| |
Collapse
|
25
|
Chan FHM, Yeap HW, Liu Z, Rosli SN, Low KE, Bonne I, Wu Y, Chong SZ, Chen KW. Plasticity of cell death pathways ensures GSDMD activation during Yersinia pseudotuberculosis infection. Cell Rep 2025; 44:115216. [PMID: 39823227 DOI: 10.1016/j.celrep.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/30/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
Macrophages express pattern recognition and cytokine receptors that mediate proinflammatory signal transduction pathways to combat microbial infection. To retaliate against such responses, pathogenic microorganisms have evolved multiple strategies to impede innate immune signaling. Recent studies demonstrated that YopJ suppression of TAK1 signaling during Yersinia pseudotuberculosis infection promotes the assembly of a RIPK1-dependent death-inducing complex that enables caspase-8 to directly cleave and activate gasdermin D (GSDMD). However, whether and how macrophages respond to Yersinia infection in the absence of YopJ or caspase-8 activity remains unclear. Here, we demonstrate that loss of YopJ or its catalytic activity triggers non-canonical inflammasome activation in macrophages and that caspase-11 is required to restrict the bacterial burden in vivo. Under conditions of low caspase-8 activity, wild-type Y. pseudotuberculosis invades macrophages and accesses the cytosol, leading to non-canonical inflammasome activation. Thus, our study highlights the plasticity of death pathways to ensure GSDMD activation during Yersinia infection.
Collapse
Affiliation(s)
- Felicia Hui Min Chan
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Hui Wen Yeap
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Zonghan Liu
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Safwah Nasuha Rosli
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Kay En Low
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Isabelle Bonne
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Yixuan Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Shu Zhen Chong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Kaiwen W Chen
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
| |
Collapse
|
26
|
Karasawa T, Takahashi M. Inflammasome Activation and Neutrophil Extracellular Traps in Atherosclerosis. J Atheroscler Thromb 2025:RV22033. [PMID: 39828369 DOI: 10.5551/jat.rv22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
The deposition of cholesterol containing cholesterol crystals and the infiltration of immune cells are features of atherosclerosis. Although the role of cholesterol crystals in the progression of atherosclerosis have long remained unclear, recent studies have clarified the involvement of cholesterol crystals in inflammatory responses. Cholesterol crystals activate the NLRP3 inflammasome, a molecular complex involved in the innate immune system. Activation of NLRP3 inflammasomes in macrophages cause pyroptosis, which is accompanied by the release of inflammatory cytokines such as IL-1β and IL-1α. Furthermore, NLRP3 inflammasome activation drives neutrophil infiltration into atherosclerotic plaques. Cholesterol crystals trigger NETosis against infiltrated neutrophils, a form of cell death characterized by the formation of neutrophil extracellular traps (NETs), which, in turn, prime macrophages to enhance inflammasome-mediated inflammatory responses. Colchicine, an anti-inflammatory drug effective in cardiovascular disease, is expected to inhibit cholesterol crystal-induced NLRP3 inflammasome activation and neutrophil infiltration. In this review, we illustrate the reinforcing cycle of inflammation that is amplified by inflammasome activation and NETosis.
Collapse
Affiliation(s)
- Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University
| |
Collapse
|
27
|
Chen XY, Zhi LJ, Chen J, Li R, Long KL. Research hotspots and future trends in sepsis-associated acute kidney injury: a bibliometric and visualization analysis. Front Med (Lausanne) 2025; 11:1456535. [PMID: 39839617 PMCID: PMC11747655 DOI: 10.3389/fmed.2024.1456535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Sepsis-associated acute kidney injury (SA-AKI) commonly occurs in critically ill patients and is closely associated with adverse outcomes. A comprehensive analysis of the current research landscape in SA-AKI can help uncover trends and key issues in this field. This study aims to provide a scientific basis for research directions and critical issues through bibliometric analysis. Methods We searched all articles on SA-AKI indexed in the SCI-Expanded of WoSCC up to May 7, 2024, and conducted bibliometric and visual analyses using bibliometric software CiteSpace and VOSviewer. Results Over the past 20 years, there has been a steady increase in literature related to renal repair following AKI. China and the United States contribute over 60% of the publications, driving research in this field. The University of Pittsburgh is the most active academic institution, producing the highest number of publications. J. A. Kellum is both the most prolific and the most cited author in this area. "Shock" and "American Journal of Physiology-Renal Physiology" are the most popular journals, publishing the highest number of articles. Recent high-frequency keywords in this field include "septic AKI," "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage." The terms "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage" represent current research hotspots and potential targets in this area. Conclusion This is the first comprehensive bibliometric study to summarize the trends and advancements in SA-AKI research in recent years. These findings identify current research frontiers and hot topics, providing valuable insights for scholars studying SA-AKI.
Collapse
Affiliation(s)
- Xing-Yue Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Jia Zhi
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun-Lan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
Li L, Xu T, Qi X. Balanced regulation of ROS production and inflammasome activation in preventing early development of colorectal cancer. Immunol Rev 2025; 329:e13417. [PMID: 39523732 DOI: 10.1111/imr.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Reactive oxygen species (ROS) production and inflammasome activation are the key components of the innate immune response to microbial infection and sterile insults. ROS are at the intersection of inflammation and immunity during cancer development. Balanced regulation of ROS production and inflammasome activation serves as the central hub of innate immunity, determining whether a cell will survive or undergo cell death. However, the mechanisms underlying this balanced regulation remain unclear. Mitochondria and NADPH oxidases are the two major sources of ROS production. Recently, NCF4, a component of the NADPH oxidase complex that primarily contributes to ROS generation in phagocytes, was reported to balance ROS production and inflammasome activation in macrophages. The phosphorylation and puncta distribution of NCF4 shifts from the membrane-bound NADPH complex to the perinuclear region, promoting ASC speck formation and inflammasome activation, which triggers downstream IL-18-IFN-γ signaling to prevent the progression of colorectal cancer (CRC). Here, we review ROS signaling and inflammasome activation studies in colitis-associated CRC and propose that NCF4 acts as a ROS sensor that balances ROS production and inflammasome activation. In addition, NCF4 is a susceptibility gene for Crohn's disease (CD) and CRC. We discuss the evidence demonstrating NCF4's crucial role in facilitating cell-cell contact between immune cells and intestinal cells, and mediating the paracrine effects of inflammatory cytokines and ROS. This coordination of the signaling network helps create a robust immune microenvironment that effectively prevents epithelial cell mutagenesis and tumorigenesis during the early stage of colitis-associated CRC.
Collapse
Affiliation(s)
- Longjun Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Xu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaopeng Qi
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
29
|
Coll RC, Schroder K. Inflammasome components as new therapeutic targets in inflammatory disease. Nat Rev Immunol 2025; 25:22-41. [PMID: 39251813 DOI: 10.1038/s41577-024-01075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Inflammation drives pathology in many human diseases for which there are no disease-modifying drugs. Inflammasomes are signalling platforms that can induce pathological inflammation and tissue damage, having potential as an exciting new class of drug targets. Small-molecule inhibitors of the NLRP3 inflammasome that are now in clinical trials have demonstrated proof of concept that inflammasomes are druggable, and so drug development programmes are now focusing on other key inflammasome molecules. In this Review, we describe the potential of inflammasome components as candidate drug targets and the novel inflammasome inhibitors that are being developed. We discuss how the signalling biology of inflammasomes offers mechanistic insights for therapeutic targeting. We also discuss the major scientific and technical challenges associated with drugging these molecules during preclinical development and clinical trials.
Collapse
Affiliation(s)
- Rebecca C Coll
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
30
|
Abstract
Macrophages, neutrophils, and epithelial cells are pivotal components of the host's immune response against bacterial infections. These cells employ inflammasomes to detect various microbial stimuli during infection, triggering an inflammatory response aimed at eradicating the pathogens. Among these inflammatory responses, pyroptosis, a lytic form of cell death, plays a crucial role in eliminating replicating bacteria and recruiting immune cells to combat the invading pathogen. The immunological function of pyroptosis varies across macrophages, neutrophils, and epithelial cells, aligning with their specific roles within the innate immune system. This review centers on elucidating the role of pyroptosis in resisting gram-negative bacterial infections, with a particular focus on the mechanisms at play in macrophages, neutrophils, and intestinal epithelial cells. Additionally, we underscore the cell type-specific roles of pyroptosis in vivo in these contexts during defense.
Collapse
Affiliation(s)
- Changhoon Oh
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Todd J Spears
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Youssef Aachoui
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
31
|
Sandys O, Stokkers PCF, Te Velde AA. DAMP-ing IBD: Extinguish the Fire and Prevent Smoldering. Dig Dis Sci 2025; 70:49-73. [PMID: 38963463 PMCID: PMC11761125 DOI: 10.1007/s10620-024-08523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
In inflammatory bowel diseases (IBD), the most promising therapies targeting cytokines or immune cell trafficking demonstrate around 40% efficacy. As IBD is a multifactorial inflammation of the intestinal tract, a single-target approach is unlikely to solve this problem, necessitating an alternative strategy that addresses its variability. One approach often overlooked by the pharmaceutically driven therapeutic options is to address the impact of environmental factors. This is somewhat surprising considering that IBD is increasingly viewed as a condition heavily influenced by such factors, including diet, stress, and environmental pollution-often referred to as the "Western lifestyle". In IBD, intestinal responses result from a complex interplay among the genetic background of the patient, molecules, cells, and the local inflammatory microenvironment where danger- and microbe-associated molecular patterns (D/MAMPs) provide an adjuvant-rich environment. Through activating DAMP receptors, this array of pro-inflammatory factors can stimulate, for example, the NLRP3 inflammasome-a major amplifier of the inflammatory response in IBD, and various immune cells via non-specific bystander activation of myeloid cells (e.g., macrophages) and lymphocytes (e.g., tissue-resident memory T cells). Current single-target biological treatment approaches can dampen the immune response, but without reducing exposure to environmental factors of IBD, e.g., by changing diet (reducing ultra-processed foods), the adjuvant-rich landscape is never resolved and continues to drive intestinal mucosal dysregulation. Thus, such treatment approaches are not enough to put out the inflammatory fire. The resultant smoldering, low-grade inflammation diminishes physiological resilience of the intestinal (micro)environment, perpetuating the state of chronic disease. Therefore, our hypothesis posits that successful interventions for IBD must address the complexity of the disease by simultaneously targeting all modifiable aspects: innate immunity cytokines and microbiota, adaptive immunity cells and cytokines, and factors that relate to the (micro)environment. Thus the disease can be comprehensively treated across the nano-, meso-, and microscales, rather than with a focus on single targets. A broader perspective on IBD treatment that also includes options to adapt the DAMPing (micro)environment is warranted.
Collapse
Affiliation(s)
- Oliver Sandys
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter C F Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Li C, Ma Z, Wei X, Wang Y, Wu J, Li X, Sun X, Ding Z, Yang C, Zou Y. Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10577-9. [PMID: 39733202 DOI: 10.1007/s12265-024-10577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024]
Abstract
Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis. The levels of pyroptotic proteins were increased in I/R-treated macrophages and inflammatory cytokines expressed more in I/R-induced mouse, which could be attenuated by bufalin. Bufalin also reduced H/R-treated macrophage pyroptosis in vitro. Autophagic flux blockage and ROS accumulation were reduced by bufalin in impaired macrophages. Overexpression of p62 abrogated the anti-proptosis and anti-oxidative effects of bufalin. The levels of apoptosis related proteins were changed and TUNEL-positive ratio was raised in cardiomyocytes that received conditioned medium treatment with H/R-treated macrophages, while bufalin pretreatment could reduce apoptosis. These findings indicate that bufalin may attenuate myocardial I/R injury by suppressing macrophage pyroptosis via P62 pathway.
Collapse
Affiliation(s)
- Chang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhen Ma
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200032, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xuan Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiaolei Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China.
| | - Cheng Yang
- Department of Cardiac Surgery, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, 138 Yixueyuan Road, Shanghai, 200438, China.
| |
Collapse
|
33
|
Xu W, Hou H, Yang W, Tang W, Sun L. Immunologic role of macrophages in sepsis-induced acute liver injury. Int Immunopharmacol 2024; 143:113492. [PMID: 39471696 DOI: 10.1016/j.intimp.2024.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Sepsis-induced acute liver injury (SALI), a manifestation of sepsis multi-organ dysfunction syndrome, is associated with poor prognosis and high mortality. The diversity and plasticity of liver macrophage subpopulations explain their different functional responses in different liver diseases. Kupffer macrophages, liver capsular macrophages, and monocyte-derived macrophages are involved in pathogen recognition and clearance and in the regulation of inflammatory responses, exacerbating the progression of SALI through different pathways of pyroptosis, ferroptosis, and autophagy. Concurrently, they play an important role in maintaining hepatic homeostasis and in the injury and repair processes of SALI. Other macrophages are recruited to diseased tissues under pathological conditions and are polarized into various phenotypes (mainly M1 and M2 types) under the influence of signaling molecules, transcription factors, and metabolic reprogramming, thereby exerting different roles and functions. This review provides an overview of the immune role of macrophages in SALI and discusses the multiple roles of macrophages in liver injury and repair to provide a reference for future studies.
Collapse
Affiliation(s)
- Wanling Xu
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China
| | - Hailong Hou
- Emergency Department, Meihekou Central Hospital, 2668 Aimin Street, Tonghua 135000, Jilin, China
| | - Weiying Yang
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China
| | - Wenjing Tang
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China
| | - Lichao Sun
- Department of Emergency, Jilin University First Hospital, 71 Xinmin Street, Changchun 130021, Jilin, China.
| |
Collapse
|
34
|
Kim E, Choi DH, Yi YS. Quercetin Ameliorates Acute Lethal Sepsis in Mice by Inhibiting Caspase-11 Noncanonical Inflammasome in Macrophages. Molecules 2024; 29:5900. [PMID: 39769989 PMCID: PMC11678081 DOI: 10.3390/molecules29245900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Quercetin is a natural polyphenolic flavonoid widely found in plants, fruits, and vegetables, and has been reported to play pharmacological roles in numerous pathogenic conditions. The anti-inflammatory effects of quercetin in various inflammatory conditions and diseases have been well-documented. However, its regulatory role in noncanonical inflammasome activation has not yet been demonstrated. This study investigated the anti-inflammatory effects of quercetin in caspase-11 noncanonical inflammasome-activated inflammatory responses in macrophages and a mouse model of acute lethal sepsis. Quercetin protected J774A.1 macrophages from lipopolysaccharide (LPS)-induced cell death and caspase-11 noncanonical inflammasome-induced pyroptosis. It significantly decreased the production and mRNA expression of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-18, and IL-6, but not tumor necrosis factor (TNF)-α, and inflammatory molecules, such as nitric oxide (NO) and inducible NO synthase in caspase-11 noncanonical inflammasome-activated J774A.1 cells. Mechanistically, quercetin strongly suppressed the autoproteolysis and secretion of caspase-11 and the proteolysis of gasdermin D in caspase-11 noncanonical inflammasome-activated J774A.1 cells. However, quercetin did not inhibit the direct binding of caspase-11 to LPS. In vivo, the study revealed that quercetin increased the survival rate of mice with acute lethal sepsis and decreased serum levels of pro-inflammatory cytokines without causing significant toxicity. In conclusion, this study highlights quercetin-mediated anti-inflammatory action in inflammatory responses and acute lethal sepsis through a novel mechanism that targets the caspase-11 noncanonical inflammasome in macrophages, suggesting quercetin as a promising anti-inflammatory agent in natural medicine.
Collapse
Affiliation(s)
| | | | - Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea; (E.K.); (D.-H.C.)
| |
Collapse
|
35
|
Wang H, Wang T, Yan S, Tang J, Zhang Y, Wang L, Xu H, Tu C. Crosstalk of pyroptosis and cytokine in the tumor microenvironment: from mechanisms to clinical implication. Mol Cancer 2024; 23:268. [PMID: 39614288 PMCID: PMC11607834 DOI: 10.1186/s12943-024-02183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
In the realm of cancer research, the tumor microenvironment (TME) plays a crucial role in tumor initiation and progression, shaped by complex interactions between cancer cells and surrounding non-cancerous cells. Cytokines, as essential immunomodulatory agents, are secreted by various cellular constituents within the TME, including immune cells, cancer-associated fibroblasts, and cancer cells themselves. These cytokines facilitate intricate communication networks that significantly influence tumor initiation, progression, metastasis, and immune suppression. Pyroptosis contributes to TME remodeling by promoting the release of pro-inflammatory cytokines and sustaining chronic inflammation, impacting processes such as immune escape and angiogenesis. However, challenges remain due to the complex interplay among cytokines, pyroptosis, and the TME, along with the dual effects of pyroptosis on cancer progression and therapy-related complications like cytokine release syndrome. Unraveling these complexities could facilitate strategies that balance inflammatory responses while minimizing tissue damage during therapy. This review delves into the complex crosstalk between cytokines, pyroptosis, and the TME, elucidating their contribution to tumor progression and metastasis. By synthesizing emerging therapeutic targets and innovative technologies concerning TME, this review aims to provide novel insights that could enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tao Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shuxiang Yan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410011, China.
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Shenzhen Research Institute of Central South University, Guangdong, 518063, China.
- Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
36
|
Li S, Chen W, Zhang Z, Yuan L, Hu Y, Chen M. Screening of prognostic core genes based on cell-cell interaction in the peripheral blood of patients with sepsis. Open Life Sci 2024; 19:20220999. [PMID: 39655195 PMCID: PMC11627055 DOI: 10.1515/biol-2022-0999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
Peripheral blood samples from 15 septic patients admitted within 24 h and 8 healthy volunteers were used to conduct RNA-seq. Quantitative PCR of THP1 cells was performed to investigate the expression levels of the selected key genes. A total of 1,128 differential genes were identified, 721 of which were upregulated and 407 were downregulated. These genes are mainly involved in neutrophil activation, T cell regulation, immune effector process regulation, cytokine receptor activity, and cytokine binding. The six target genes were ELANE, IL1R2, RAB13, RNASE3, FCGR1A, and TLR5. In the sepsis group, FCGR1A and TLR5 were positively associated with survival compared to ELANE, IL1R2, RAB13, and RNASE3, which were adversely associated with survival. Furthermore, a meta-analysis based on public databases revealed an increased expression of these six target genes in the peripheral blood of patients with sepsis. In addition, we discovered that monocytes primarily express these genes. Using qPCR, we confirmed that these six important genes were highly expressed in lipopolysaccharide-treated THP1 cells. In summary, these findings suggest that ELANE, IL1R2, RAB13, RNASE3, FCGR1A, and TLR5 may influence the prognosis of patients with sepsis and provide novel insights and potential avenues for the treatment of sepsis.
Collapse
Affiliation(s)
- Shaolan Li
- Emergency Department of the Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, 646100, China
| | - Wenhao Chen
- Emergency Department of the Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, 646100, China
| | - Zhihong Zhang
- Emergency Department of the Affiliated Traditional Chinese Medical Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, 646100, China
| | - Ling Yuan
- Emergency Department of Sichuan Luzhou People’s Hospital, Luzhou, Sichuan, 646100, China
| | - Yingchun Hu
- Emergency Department of the Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, 646100, China
| | - Muhu Chen
- Emergency Department of the Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, 646100, China
| |
Collapse
|
37
|
Jiang T, Ao X, Xiang X, Zhang J, Cai J, Fu J, Zhang W, Zheng Z, Chu J, Huang M, Zhang Z, Wang L. Mast cell activation by NGF drives the formation of trauma-induced heterotopic ossification. JCI Insight 2024; 10:e179759. [PMID: 39589893 PMCID: PMC11721298 DOI: 10.1172/jci.insight.179759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Soft tissue trauma can cause immune system disturbance and neuropathological invasion, resulting in heterotopic ossification (HO) due to aberrant chondrogenic differentiation of mesenchymal stem cells (MSCs). However, the molecular mechanisms behind the interaction between the immune and nervous systems in promoting HO pathogenesis are unclear. In this study, we found that mast cell-specific deletion attenuated localized tissue inflammation, with marked inhibition of HO endochondral osteogenesis. Likewise, blockage of nerve growth factor (NGF) receptor, known as tropomyosin receptor kinase A (TrkA), led to similar attenuations in tissue inflammation and HO. Moreover, while NGF/TrkA signaling did not directly affect MSCs chondrogenic differentiation, it modulated mast cell activation in traumatic soft tissue. Mechanistically, lipid A in LPS binding to TrkA enhanced NGF-induced TrkA phosphorylation, synergistically stimulating mast cells to release neurotrophin-3 (NT3), thereby promoting MSC chondrogenic differentiation in situ. Finally, analysis of single-cell datasets and human pathological specimens confirmed the important role of mast cell-mediated neuroinflammation in HO pathogenesis. In conclusion, NGF regulates mast cells in soft tissue trauma and drives HO progression via paracrine NT3. Targeted early inhibition of mast cells holds substantial promise for treating traumatic HO.
Collapse
Affiliation(s)
- Tao Jiang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang Ao
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Jieyi Cai
- Department of General Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaming Fu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wensheng Zhang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Zhenyu Zheng
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Jun Chu
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Minjun Huang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| |
Collapse
|
38
|
Du M, Wang W, Zhang S, Gu J, Zhang C, Zhang H. SENP1 Promotes Caspase-11 Inflammasome Activation and Aggravates Inflammatory Response in Murine Acute Lung Injury Induced by Lipopolysaccharide. FRONT BIOSCI-LANDMRK 2024; 29:397. [PMID: 39614435 DOI: 10.31083/j.fbl2911397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Infection is the leading cause of acute lung injury (ALI). Macrophages, which are pivotal innate immune cells, play a critical role in mediating inflammatory processes. Intracellular lipopolysaccharide (LPS) from invasive Gram-negative bacteria can activate the caspase-11 inflammasome, leading to the induction of pyroptosis in macrophages. This process subsequently triggers the release of inflammatory cytokines and damage-associated molecular patterns from pyroptotic macrophages, thereby exacerbating inflammatory progression in ALI. However, the precise regulatory mechanisms governing caspase-11 activation is still unclear. Sentrin-specific proteases (SENPs) have been identified as notable targets for their anti-inflammatory properties. Nevertheless, the specific role of SENPs in macrophage pyroptosis during the pathogenesis of ALI remains unknown. METHODS We used LPS as an endotoxin to induce ALI. We analyzed the expression and location of sentrin-specific protease 1 (SENP1), pulmonary impairment, macrophage infiltration, caspase-11 inflammasome expression and activation, caspase-11 SUMOylation, and inflammatory cytokine secretion. RESULTS Upregulated expression of SENP1 in lung tissue and macrophages was observed following LPS stimulation. SENP1 mediates de-SUMOylation and activation of caspase-11 inflammasome in macrophages. Moreover, pharmacological inhibition or genetic deficiency of SENP1 in macrophages significantly improved ALI-related histological damage by reducing the secretion of inflammatory cytokines and suppressing caspase-11-dependent pyroptosis. CONCLUSIONS Collectively, our findings highlight the involvement of SENP1 in caspase-11 activation and inflammatory progression in macrophages, thereby establishing a scientific foundation for the exploration of novel therapeutic strategies aimed at treating ALI.
Collapse
Affiliation(s)
- Mingjun Du
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Wenhan Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Shaoyuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Jianmin Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Chunbing Zhang
- Department of Geriatric, Renji Hospital, Shanghai Jiaotong University School of Medicine, 200032 Shanghai, China
| | - Hai Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 200000 Shanghai, China
| |
Collapse
|
39
|
Wurentuya, Han S, Mei S, Lai M, Sirigunqiqige, Luoricuo, Yang M, Feng Y, Zhong G, Zhu J, Li M. The effect of ethanol extracts of loulu flower on LPS-induced acute lung injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118515. [PMID: 38972530 DOI: 10.1016/j.jep.2024.118515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Mongolian medicine, Loulu flower (LLF), the dried inflorescence of Rhaponticum uniflorum (L.) DC. from the Compositae family, has been used to clear heat and relieve toxicity for millennia, particularly in the treatment of pneumonia. AIM OF THIS STUDY To reveal the effects of LLF on mice with lipopolysaccharide (LPS)-stimulated acute lung injury (ALI) and elucidate the underlying mechanisms. MATERIALS AND METHODS ALI was established in BALB/c mice via nasal drops administration of LPS (5 mg/kg). The mice were then orally administrated with various doses of LLF extracts and the positive drug dexamethasone (DEX, 5 mg/kg), once daily for seven consecutive days. Last day, after being stimulated with LPS for 6h, the mice were closed dislocation of cervical vertebra, the serum, bronchus alveolar lavage fluid (BALF) and lung tissue were put into the EP tube and stored at -80 °C for further analysis. The changes of histopathology were tested by hematoxylin and eosin stain (H&E), the levels of, IL-1β, IL-18, TNF-α and IL-4 in BALF and serum were measured by ELISA. The pathways related to the treatment of ALI were predicted by network pharmacology. The expression levels of TLR4/NF-κB and NLRP3 signaling pathway-associated proteins, COX-2 and ERK were tested by western blotting. The levels of P65 and NLRP3 in lung tissues were determined by immunofluorescence analysis. RESULTS LLF total extract and the extract parts could alleviate the inflammatory cell infiltration, thicken the alveolar walls in lung tissues, reduce the levels of IL-18, IL-1β in BALF, the TNF-α in both BALF and serum, meantime enhance the level of IL-4 in BALF and serum in mice with LPS-induced ALI. Our network pharmacology and comprehensive gene ontology analyses revealed the active constituents of LLF and the pathways, including TLR4/NF-κB, NLRP3 and MAPK signaling pathways, which play significant roles in ALI. Furthermore, both the total extract and its extraction portions suppressed the expressions of proteins related with the COX-2, p-ERK and TLR4/NF-κB signaling pathway (TLR4, p-IκB, p-p65), as well as the NLRP3 signaling pathway (NLRP3, cleaved caspase-1, caspase-1, IL-1β). CONCLUSION LLF could improve the pathological changes and reducing inflammatory reactions in mice induced by LPS. The mechanism may be related to the modulation of the TLR4/NLRP3 signaling pathways.
Collapse
Affiliation(s)
- Wurentuya
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Shan Han
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shengtao Mei
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Mulin Lai
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | | | - Luoricuo
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Miaohong Yang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yulin Feng
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Guoyue Zhong
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Jixiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Min Li
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
40
|
Wei W, Lattau SSJ, Xin W, Pan Y, Tatenhorst L, Zhang L, Graf I, Kuang Y, Zheng X, Hao Z, Popa‐Wagner A, Gerner ST, Huber S, Nietert M, Klose C, Kilic E, Hermann DM, Bähr M, Huttner HB, Liu H, Fitzner D, Doeppner TR. Dynamic Brain Lipid Profiles Modulate Microglial Lipid Droplet Accumulation and Inflammation Under Ischemic Conditions in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306863. [PMID: 39252446 PMCID: PMC11538718 DOI: 10.1002/advs.202306863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/04/2024] [Indexed: 09/11/2024]
Abstract
Microglia are critically involved in post-stroke inflammation affecting neurological outcomes. Lipid droplet (LD) accumulation in microglia results in a dysfunctional and pro-inflammatory state in the aged brain and worsens the outcome of neuroinflammatory and neurodegenerative diseases. However, the role of LD-rich microglia (LDRM) under stroke conditions is unknown. Using in vitro and in vivo stroke models, herein accumulation patterns of microglial LD and their corresponding microglial inflammatory signaling cascades are studied. Interactions between temporal and spatial dynamics of lipid profiles and microglial phenotypes in different post-stroke brain regions are found. Hence, microglia display enhanced levels of LD accumulation and elevated perilipin 2 (PLIN2) expression patterns when exposed to hypoxia or stroke. Such LDRM exhibit high levels of TNF-α, IL-6, and IL-1β as well as a pro-inflammatory phenotype and differentially expressed lipid metabolism-related genes. These post-ischemic alterations result in distinct lipid profiles with spatial and temporal dynamics, especially with regard to cholesteryl ester and triacylglycerol levels, further exacerbating post-ischemic inflammation. The present study sheds new light on the dynamic changes of brain lipid profiles and aggregation patterns of LD in microglia exposed to ischemia, demonstrating a mutual mechanism between microglial phenotype and function, which contributes to progression of brain injury.
Collapse
Affiliation(s)
- Wei Wei
- Department of NeurologyUniversity Medicine Göttingen (UMG)University of Göttingen37075GöttingenGermany
- Department of NeurologyThe Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of ChengduChengduSichuan610031China
| | | | - Wenqiang Xin
- Department of NeurologyUniversity Medicine Göttingen (UMG)University of Göttingen37075GöttingenGermany
| | - Yongli Pan
- Department of NeurologyUniversity Medicine Göttingen (UMG)University of Göttingen37075GöttingenGermany
| | - Lars Tatenhorst
- Department of NeurologyUniversity Medicine Göttingen (UMG)University of Göttingen37075GöttingenGermany
| | - Lin Zhang
- Department of NeurologyUniversity Medicine Göttingen (UMG)University of Göttingen37075GöttingenGermany
| | - Irina Graf
- Department of NeurologyUniversity Medicine Göttingen (UMG)University of Göttingen37075GöttingenGermany
| | - Yaoyun Kuang
- Department of NeurologyUniversity Medicine Göttingen (UMG)University of Göttingen37075GöttingenGermany
| | - Xuan Zheng
- Department of NeurologyUniversity Medicine Göttingen (UMG)University of Göttingen37075GöttingenGermany
| | - Zhongnan Hao
- Department of NeurologyUniversity Medicine Göttingen (UMG)University of Göttingen37075GöttingenGermany
| | - Aurel Popa‐Wagner
- Department of NeurologyUniversity Hospital EssenUniversity of Duisburg‐Essen45147EssenGermany
| | - Stefan T. Gerner
- Department of NeurologyUniversity of Giessen Medical School35392GiessenGermany
| | - Sabine Huber
- Department of NeurologyUniversity of Giessen Medical School35392GiessenGermany
| | - Manuel Nietert
- Department of Medical BioinformaticsUMGUniversity of Göttingen37075GöttingenGermany
| | | | - Ertugrul Kilic
- Department of PhysiologyFaculty of MedicineIstanbul Medeniyet UniversityIstanbul34720Turkey
| | - Dirk M. Hermann
- Department of NeurologyUniversity Hospital EssenUniversity of Duisburg‐Essen45147EssenGermany
| | - Mathias Bähr
- Department of NeurologyUniversity Medicine Göttingen (UMG)University of Göttingen37075GöttingenGermany
| | - Hagen B. Huttner
- Department of NeurologyUniversity of Giessen Medical School35392GiessenGermany
| | - Hua Liu
- Department of NeurologyThe Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of ChengduChengduSichuan610031China
| | - Dirk Fitzner
- Department of NeurologyUniversity Medicine Göttingen (UMG)University of Göttingen37075GöttingenGermany
| | - Thorsten R. Doeppner
- Department of NeurologyUniversity Medicine Göttingen (UMG)University of Göttingen37075GöttingenGermany
- Department of NeurologyUniversity of Giessen Medical School35392GiessenGermany
- Department of Anatomy and Cell BiologyMedical University of VarnaVarna9002Bulgaria
- Center for MindBrain and Behavior (CMBB)University of Marburg and Justus Liebig University Giessen35037GiessenGermany
- Research Institute for Health Sciences and Technologies (SABITA)Medipol UniversityIstanbul34810Turkey
| |
Collapse
|
41
|
Li W, Liu Q, Qian Y, Wang C, Kong C, Sun L, Sun L, Liu H, Zhang Y, Jiang D, Jiang C, Wang S, Xia P. Adipose triglyceride lipase suppresses noncanonical inflammasome by hydrolyzing LPS. Nat Chem Biol 2024; 20:1434-1442. [PMID: 38413746 DOI: 10.1038/s41589-024-01569-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/04/2024] [Indexed: 02/29/2024]
Abstract
Intracellular recognition of lipopolysaccharide (LPS) by mouse caspase-11 or human caspase-4 is a vital event for the activation of the noncanonical inflammasome. Whether negative regulators are involved in intracellular LPS sensing is still elusive. Here we show that adipose triglyceride lipase (ATGL) is a negative regulator of the noncanonical inflammasome. Through screening for genes participating in the noncanonical inflammasome, ATGL is identified as a negative player for intracellular LPS signaling. ATGL binds LPS and catalyzes the removal of the acylated side chains that contain ester bonds. LPS with under-acylated side chains no longer activates the inflammatory caspases. Cells with ATGL deficiency exhibit enhanced immune responses when encountering intracellular LPS, including an elevated secretion of interleukin-1β, decreased cell viability and increased cell cytotoxicity. Moreover, ATGL-deficient mice show exacerbated responses to endotoxin challenges. Our results uncover that ATGL degrades cytosolic LPS to suppress noncanonical inflammasome activation.
Collapse
Affiliation(s)
- Weitao Li
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiannv Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Qian
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunlei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Chun Kong
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Liangliang Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jiang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine of Peking University, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
42
|
Liu Q, Li W, Qian Y, Wang C, Kong C, Li M, Sun L, Sun L, Pang Y, Jiang C, Wang S, Xia P. The TET3 inflammasome senses unique long HSV-1 proteins for virus particle budding from the nucleus. Cell Mol Immunol 2024; 21:1322-1334. [PMID: 39379602 PMCID: PMC11527991 DOI: 10.1038/s41423-024-01221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Inflammasomes play important roles in resisting infections caused by various pathogens. HSV-1 is a highly contagious virus among humans. The process by which HSV-1 particles bud from the nucleus is unique to herpes viruses, but the specific mechanism is still unclear. Here, we screened genes involved in HSV-1 replication. We found that TET3 plays an essential role in HSV-1 infection. TET3 recognizes the UL proteins of HSV-1 and, upon activation, can directly bind to caspase-1 to activate an ASC-independent inflammasome in the nucleus. The subsequent cleavage of GSDMD in the nucleus is crucial for the budding of HSV-1 particles from the nucleus. Inhibiting the perforation ability of GSDMD on the nuclear membrane can significantly reduce the maturation and spread of HSV-1. Our results may provide a new approach for the treatment of HSV-1 in the future.
Collapse
Affiliation(s)
- Qiannv Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Weitao Li
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Yan Qian
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Chunlei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Chun Kong
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Mengqian Li
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Liangliang Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Lang Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Yanli Pang
- State Key Laboratory of Female Fertility Preservation, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Changtao Jiang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| |
Collapse
|
43
|
He F, He Z, Wang C. A novel role of AIM2 inflammasome-mediated pyroptosis in radiofrequency ablation of hepatocellular carcinoma. Ann Hepatol 2024; 29:101532. [PMID: 39048057 DOI: 10.1016/j.aohep.2024.101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION AND OBJECTIVES The absence of melanoma 2 (AIM2) protein triggers the activation of the inflammasome cascade. It is unclear whether AIM2 plays a role in hepatocellular carcinoma (HCC) and radiofrequency ablation (RFA), which uses radiofrequency waves to treat tumors. In this study, we investigated if RFA could induce pyroptosis, also called cell inflammatory necrosis, in HCC through AIM2-inflammasome signaling in vivo and in vitro. MATERIALS AND METHODS BALB/c nude mice were used to generate HepG2 or SMMC-7721 cell-derived tumor xenografts. HCC cells with knockdown or overexpression of AIM2 were created using short hairpin RNA (shRNA) and expression vector transfection, respectively, for functional and mechanistic studies. Downstream effects were examined using flow cytometry, qRT-PCR, ELISAs, and other molecular assays. RESULTS RFA significantly suppressed tumor growth in HCC cell xenografts. Flow cytometry analysis revealed that RFA could induce pyroptosis. Furthermore, AIM2, NLRP3, caspase-1, γ-H2AX, and DNA-PKc had significantly greater expression levels in liver tissues from mice treated with RFA compared with those of the controls. Additionally, interleukin (IL)-1β and IL-18 expression levels were significantly higher in the HCC cell-derived xenograft mice treated with RFA compared with those without RFA. Notably, a significantly greater effect was achieved in the RFA complete ablation group versus the partial ablation group. Knockdown or overexpression of AIM2 in HCC cells demonstrated that AIM2 exerted a role in RFA-induced pyroptosis. CONCLUSIONS RFA can suppress HCC tumor growth by inducing pyroptosis via AIM2. Therefore, therapeutically intervening with AIM2-mediated inflammasome signaling may help improve RFA treatment outcomes for HCC patients.
Collapse
Affiliation(s)
- Feifan He
- The Fourth Clinical Medical College, Nanjing Medical University, No. 138 Hanzhong Road, Nanjing, Jiangsu Province, China.
| | - Zhongming He
- Interventional Radiology Department, Third Affiliated Hospital of Suzhou University, No. 185 Juqian Road, Changhzou, Jiangsu Province, China
| | - Caoye Wang
- Interventional Radiology Department, Third Affiliated Hospital of Suzhou University, No. 185 Juqian Road, Changhzou, Jiangsu Province, China.
| |
Collapse
|
44
|
Egan MS, O’Rourke EA, Mageswaran SK, Zuo B, Martynyuk I, Demissie T, Hunter EN, Bass AR, Chang YW, Brodsky IE, Shin S. Inflammasomes primarily restrict cytosolic Salmonella replication within human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.17.549348. [PMID: 37503120 PMCID: PMC10370064 DOI: 10.1101/2023.07.17.549348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that utilizes its type III secretion systems (T3SSs) to inject virulence factors into host cells and colonize the host. In turn, a subset of cytosolic immune receptors respond to T3SS ligands by forming multimeric signaling complexes called inflammasomes, which activate caspases that induce interleukin-1 (IL-1) family cytokine release and an inflammatory form of cell death called pyroptosis. Human macrophages mount a multifaceted inflammasome response to Salmonella infection that ultimately restricts intracellular bacterial replication. However, how inflammasomes restrict Salmonella replication remains unknown. We find that caspase-1 is essential for mediating inflammasome responses to Salmonella and restricting bacterial replication within human macrophages, with caspase-4 contributing as well. We also demonstrate that the downstream pore-forming protein gasdermin D (GSDMD) and Ninjurin-1 (NINJ1), a mediator of terminal cell lysis, play a role in controlling Salmonella replication in human macrophages. Notably, in the absence of inflammasome responses, we observed hyperreplication of Salmonella within the cytosol of infected cells as well as increased bacterial replication within vacuoles, suggesting that inflammasomes control Salmonella replication primarily within the cytosol and also within vacuoles. These findings reveal that inflammatory caspases and pyroptotic factors mediate inflammasome responses that restrict the subcellular localization of intracellular Salmonella replication within human macrophages.
Collapse
Affiliation(s)
- Marisa S. Egan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emily A. O’Rourke
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Biao Zuo
- Electron Microscopy Resource Laboratory, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Inna Martynyuk
- Electron Microscopy Resource Laboratory, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tabitha Demissie
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emma N. Hunter
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Antonia R. Bass
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
45
|
Pizzuto M, Hurtado-Navarro L, Molina-Lopez C, Soubhye J, Gelbcke M, Rodriguez-Lopez S, Ruysschaert JM, Schroder K, Pelegrin P. Ornithine lipid is a partial TLR4 agonist and NLRP3 activator. Cell Rep 2024; 43:114788. [PMID: 39340778 DOI: 10.1016/j.celrep.2024.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Gram-negative bacterial lipopolysaccharides (LPSs) trigger inflammatory reactions through Toll-like receptor 4 (TLR4) and prime myeloid cells for inflammasome activation. In phosphate-limited environments, bacteria reduce LPS and other phospholipid production and synthesize phosphorus-free alternatives such as amino-acid-containing lipids like the ornithine lipid (OL). This adaptive strategy conserves phosphate for other essential cellular processes and enhances bacterial survival in host environments. While OL is implicated in bacterial pathogenicity, the mechanism is unclear. Using primary murine macrophages and human mononuclear cells, we elucidate that OL activates TLR4 and induces potassium efflux-dependent nucleotide-binding domain and leucine-rich repeat-containing pyrin protein 3 (NLRP3) activation. OL upregulates the expression of NLRP3 and pro-interleukin (IL)-1β and induces cytokine secretion in primed and unprimed cells. By contrast, in the presence of LPS, OL functions as a partial TLR4 antagonist and reduces LPS-induced cytokine secretion. We thus suggest that in phosphate-depleted environments, OL replaces LPS bacterial immunogenicity, while constitutively present OL may allow bacteria to escape immune surveillance.
Collapse
Affiliation(s)
- Malvina Pizzuto
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; Structure and Function of Biological Membranes Laboratory, Université Libre de Bruxelles, 1050 Brussels, Belgium; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia.
| | - Laura Hurtado-Navarro
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Cristina Molina-Lopez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Jalal Soubhye
- Department of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre De Bruxelles, 1050 Brussels, Belgium
| | - Michel Gelbcke
- Department of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre De Bruxelles, 1050 Brussels, Belgium
| | - Silvia Rodriguez-Lopez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Jean-Marie Ruysschaert
- Structure and Function of Biological Membranes Laboratory, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
46
|
Yin H, Zhao Z, Yan Y, Yuan Y, Qu W, Wang H, Zhu C, Li P, Li X. Seneca Valley virus circumvents Gasdermin A-mediated inflammation by targeting the pore-formation domain for cleavage. mBio 2024; 15:e0168024. [PMID: 39207099 PMCID: PMC11481571 DOI: 10.1128/mbio.01680-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
Members of the gasdermin (GSDM) family are critical for inducing programmable pyroptosis by forming pores on the cell membrane. GSDMB, GSDMC, GSDMD, and GSDME are activated by caspases or granzyme, leading to the release of their autoinhibitory domains. The protease SpeB from group A Streptococcus has been shown to cleave and activate GSDMA-mediated pyroptosis. Meanwhile, African Swine Fever Virus infection regulates pyroptosis by cleaving porcine GSDMA (pGSDMA) via active caspase-3 and caspase-4. However, it is not known whether virus-encoded proteases also target GSDMA. Here, we show that residues 1-252 of pGSDMA (pGSDMA1-252) is the pore-forming fragment that induces lytic cell death and pyroptosis. Interestingly, Seneca Valley Virus (SVV) infection induces the cleavage of both pGSDMA and human GSDMA and suppresses GSDMA-mediated cell death. Mechanistically, SVV protease 3C cleaves pGSDMA between Q187 and G188 to generate a shorter fragment, pGSDMA1-186, which fails to induce lytic cell death and lactate dehydrogenase release. Furthermore, pGSDMA1-186 does not localize to the plasma membrane and does not induce cell death, thereby promoting viral replication by suppressing host immune responses. These studies reveal a sophisticated evolutionary adaptation of SVV to bypass GSDMA-mediated pyroptosis, allowing it to overcome host inflammatory defenses. IMPORTANCE Gasdermin A (GSDMA) remains a protein shrouded in mystery, particularly regarding its regulation by virus-encoded proteases. Previous studies have identified human GSDMA (hGSDMA) as a sensor and substrate of the SpeB from group A Streptococcus, which initiates pyroptosis. However, it is not clear if viral proteases also cleave GSDMA. In this study, we show that a fragment of porcine GSDMA (pGSDMA) containing the first 252 residues constitutes the pore-forming domain responsible for inducing lytic cell death and pyroptosis. Interestingly, picornavirus Seneca Valley Virus (SVV) protease 3C cleaves both pGSDMA and hGSDMA, generating a shorter fragment that fails to associate with the plasma membrane and does not induce pyroptosis. This cleavage by SVV 3C suppresses GSDMA-mediated lactate dehydrogenase release, bactericidal activity, and lytic cell death. This study reveals how SVV subverts host inflammatory defense by disrupting GSDMA-induced pyroptosis, thereby advancing our understanding of antiviral immunity and opening avenues for treating GSDMA-associated autoimmune diseases.
Collapse
Affiliation(s)
- Hongyan Yin
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhenchao Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ya Yan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Yuan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weiyu Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiwei Wang
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Xin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Green DR. Cell death: Revisiting the roads to ruin. Dev Cell 2024; 59:2523-2531. [PMID: 39378838 PMCID: PMC11469552 DOI: 10.1016/j.devcel.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 10/10/2024]
Abstract
A paradigm shift in the study of cell death is currently occurring: whereas previously we had always considered that there were "points of no return" in any cell death pathway, we now realize that in many types of active, regulated cell death, this is not the case. We are also learning that cells that "almost die," but nevertheless survive, can transiently take on an altered state, with potential implications for understanding cancer therapies and relapse. In this perspective, we parse the many forms of cell death by analogy to suicide, sabotage, and murder, and consider how cells that might be "instructed" to engage a cell death pathway might nevertheless survive.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
48
|
Yang J, Ma Y, Yu J, Liu Y, Xia J, Kong X, Jin X, Li J, Lin S, Ruan Y, Yang F, Pi J. Advancing Roles and Therapeutic Potentials of Pyroptosis in Host Immune Defenses against Tuberculosis. Biomolecules 2024; 14:1255. [PMID: 39456188 PMCID: PMC11505957 DOI: 10.3390/biom14101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb) infection, remains a deadly global public health burden. The use of recommended drug combinations in clinic has seen an increasing prevalence of drug-resistant TB, adding to the impediments to global control of TB. Therefore, control of TB and drug-resistant TB has become one of the most pressing issues in global public health, which urges the exploration of potential therapeutic targets in TB and drug-resistant TB. Pyroptosis, a form of programmed cell death characterized by cell swelling and rupture, release of cellular contents and inflammatory responses, has been found to promote pathogen clearance and adopt crucial roles in the control of bacterial infections. It has been demonstrated that Mtb can cause host cell pyroptosis, and these host cells, which are infected by Mtb, can kill Mtb accompanied by pyroptosis, while, at the same time, pyroptosis can also release intracellular Mtb, which may potentially worsen the infection by exacerbating the inflammation. Here, we describe the main pathways of pyroptosis during Mtb infection and summarize the identified effectors of Mtb that regulate pyroptosis to achieve immune evasion. Moreover, we also discuss the potentials of pyroptosis to serve as an anti-TB therapeutic target, with the aim of providing new ideas for the development of TB treatments.
Collapse
Affiliation(s)
- Jiayi Yang
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Yuhe Ma
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiaqi Yu
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Yilin Liu
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China;
| | - Xinen Kong
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Xiaoying Jin
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiaxiang Li
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Siqi Lin
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Yongdui Ruan
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Fen Yang
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiang Pi
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| |
Collapse
|
49
|
Al Mamun A, Geng P, Wang S, Shao C. Role of Pyroptosis in Endometrial Cancer and Its Therapeutic Regulation. J Inflamm Res 2024; 17:7037-7056. [PMID: 39377044 PMCID: PMC11457779 DOI: 10.2147/jir.s486878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
Pyroptosis is an inflammatory cell death induced by inflammasomes that release several pro-inflammatory mediators such as interleukin-18 (IL-18) and interleukin-1β (IL-1β). Pyroptosis, a type of programmed cell death, has recently received increased interest both as a therapeutic and immunological mechanism. Numerous studies have provided substantial evidence supporting the involvement of inflammasomes and pyroptosis in a variety of pathological conditions including cancers, nerve damage, inflammatory diseases and metabolic conditions. Researchers have demonstrated that dysregulation of pyroptosis and inflammasomes contribute to the progression of endometriosis and gynecological malignancies. Current research also indicates that inflammasome and pyroptosis-dependent signaling pathways may further induce the progression of endometrial cancer (EC). More specifically, dysregulation of NLR family pyrin domain 3 (NLRP3) and caspase-1-dependent pyroptosis play a contributory role in the pathogenesis and development of EC. Therefore, pyroptosis-regulated protein gasdermin D (GSDMD) may be an independent prognostic biomarker for the detection of EC. This review presents the molecular mechanisms of pyroptosis-dependent signaling pathways and their contributory role and function in advancing EC. Moreover, this review offers new insights into potential future applications and innovative approaches in utilizing pyroptosis to develop effective anti-cancer therapies.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Peiwu Geng
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Chuxiao Shao
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| |
Collapse
|
50
|
Baek HS, Kim N, Park JW, Kwon TK, Kim S. The role of Pim-1 kinases in inflammatory signaling pathways. Inflamm Res 2024; 73:1671-1685. [PMID: 39079978 PMCID: PMC11457682 DOI: 10.1007/s00011-024-01924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/02/2024] Open
Abstract
OBJECTIVE AND DESIGN This observational study investigated the regulatory mechanism of Pim-1 in inflammatory signaling pathways. MATERIALS THP-1, RAW 264.7, BV2, and Jurkat human T cell lines were used. TREATMENT None. METHODS Lipopolysaccharide (LPS) was used to induce inflammation, followed by PIM1 knockdown. Western blot, immunoprecipitation, immunofluorescence, and RT-PCR assays were used to assess the effect of PIM1 knockdown on LPS-induced inflammation. RESULTS PIM1 knockdown in macrophage-like THP-1 cells suppressed LPS-induced upregulation of pro-inflammatory cytokines, inducible nitric oxide synthase, cyclooxygenase-2, phosphorylated Janus kinase, signal transducer and activator of transcription 3, extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and nuclear factor kappa B p65 (NF-κB p65). It also suppressed upregulation of inhibitor of NF-κB kinase α/β and enhanced the nuclear translocation of NF-κB p65. Moreover, it inhibited the upregulation of Nod-like receptor family pyrin domain-containing 3 (NLRP3) and cleavage of caspase-1 induced by co-treatment of LPS with adenosine triphosphate. Additionally, p-transforming growth factor-β-activated kinase 1 (TAK1) interacted with Pim-1. All three members of Pim kinases (Pim-1, Pim-2, and Pim-3) were required for LPS-mediated inflammation in macrophages; however, unlike Pim-1 and Pim-3, Pim-2 functioned as a negative regulator of T cell activity. CONCLUSIONS Pim-1 interacts with TAK1 in LPS-induced inflammatory responses and is involved in MAPK/NF-κB/NLRP3 signaling pathways. Additionally, considering the negative regulatory role of Pim-2 in T cells, further in-depth studies on their respective functions are needed.
Collapse
Affiliation(s)
- Hye Suk Baek
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam University, Gwangju, 61469, Republic of Korea
| | - Jong Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
- Institute of Medical Science, Keimyung University, Daegu, 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University Dongsan Medical Center, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
- Institute of Medical Science, Keimyung University, Daegu, 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University Dongsan Medical Center, Dalseo-gu, Daegu, 42601, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
- Institute of Medical Science, Keimyung University, Daegu, 42601, Republic of Korea.
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|