1
|
Chen Z, Manian A, Widmer-Cooper A, Russo SP, Mulvaney P. Semiconductor Quantum Dots in the Cluster Regime. Chem Rev 2025; 125:4359-4396. [PMID: 40324100 DOI: 10.1021/acs.chemrev.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The exciton Bohr radius is a defining feature in conventional quantum dot physics. Three distinct confinement regimes are usually recognized: the weak, intermediate, and strong confinement regimes. Which of these is relevant depends on the relative size of the quantum dot in terms of the exciton Bohr radius. However, this classification is primarily based on the linear optical properties of the nanocrystal. During the transition from the molecule to the bulk crystal, structural, mechanical, thermal, and chemical properties change as well. In this review, we discuss the cluster regime, where the exciton experiences extreme confinement. In the cluster regime, not only do linear optical properties deviate significantly from the effective mass approximation, but other material properties also begin to deviate from their bulk values. These deviations are only observable in the size regime, where the intrinsic length scales are much smaller than the exciton Bohr radius. Crucially, computational methods allow chemists to explore this region far more quantitatively than in the past.
Collapse
Affiliation(s)
- Zifei Chen
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Anjay Manian
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000, Australia
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Salvy P Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000, Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
2
|
Maeda N, Jiao H, Kłosowska‐Chomiczewska IE, Artichowicz W, Preiss U, Szumała P, Macierzanka A, Jungnickel C. Nanoparticle Skin Penetration: Depths and Routes Modeled In-Silico. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412541. [PMID: 40150997 PMCID: PMC12087856 DOI: 10.1002/smll.202412541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Nanoparticles (NPs) are increasingly explored for targeted skin penetration, particularly for pharmaceutical and cosmetic applications. However, the complex system between NP properties, skin structure, and experimental conditions poses significant challenges in predicting their penetration depth and pathways. To what depth do NPs penetrate the skin, and which pathways do they follow? These are the questions which we tried to answer in this paper. A n in-silico human skin model based on 20 years of literature on NPs skin penetration is developed. The model incorporates 19 independent parameters, including a wide range of NP properties, skin across species, and test conditions. Using random forest analysis coupled with Kennard-Stone sorting, the model achieves a high predictive accuracy of 95%. The study identifies hair follicle diameter as the most critical factor influencing NP penetration across skin layers, surpassing other skin properties, NP properties, or experimental variables. Pig and rabbit skin are the most suitable models for simulating human skin in NP penetration studies. Additionally, the in-silico model reveals that NPs in emulsions and oil-based media predominantly follow the intercellular and transappendageal route. In contrast, those embedded in aqueous media favor the intracellular route. These findings offer insights for optimizing NP-based drug delivery systems.
Collapse
Affiliation(s)
- Natsumi Maeda
- Institute of Biogeochemistry and Pollutant DynamicsSwiss Federal Institute of TechnologyETH ZürichUniversitätstrasse 16Zürich8092Switzerland
| | - Haixin Jiao
- Biofuels InstituteSchool of the Environment and Safety EngineeringJiangsu UniversityZhenjiang212013P. R. China
| | | | - Wojciech Artichowicz
- Department of Hydraulic EngineeringFaculty of Civil and Environmental EngineeringGdańsk University of TechnologyNarutowicza 11/12Gdańsk80–233Poland
| | - Ulrich Preiss
- SustainabilityOmya GmbHSiegburger Str. 229c50679KölnGermany
| | - Patrycja Szumała
- Department of Biotechnology and MicrobiologyFaculty of ChemistryGdańsk University of TechnologyNarutowicza 11/12Gdańsk80–233Poland
| | - Adam Macierzanka
- Department of Biotechnology and MicrobiologyFaculty of ChemistryGdańsk University of TechnologyNarutowicza 11/12Gdańsk80–233Poland
| | - Christian Jungnickel
- Department of Biotechnology and MicrobiologyFaculty of ChemistryGdańsk University of TechnologyNarutowicza 11/12Gdańsk80–233Poland
| |
Collapse
|
3
|
Di Mino C, Headen TF, Basma NS, Buckley DJ, Cullen PL, Wilding MC, Shaffer MSP, Skipper NT, Clancy AJ, Howard CA. Intermediate-range solvent templating and counterion behaviour at charged carbon nanotube surfaces. NATURE NANOTECHNOLOGY 2025; 20:639-645. [PMID: 39984638 PMCID: PMC12095044 DOI: 10.1038/s41565-025-01865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/13/2025] [Indexed: 02/23/2025]
Abstract
The ordering of ions and solvent molecules around nanostructures is of profound fundamental importance, from understanding biological processes to the manipulation of nanomaterials to optimizing electrochemical devices. Classical models commonly used to describe these systems treat the solvent simplistically, an approach that endures, in part, due to the extreme difficulty of attaining experimental measurements that challenge this approximation. Here we perform total neutron scattering experiments on model systems-concentrated amide solutions of negatively charged carbon nanotubes and sodium counterions-and measure remarkably complex intermediate-range molecular solvent ordering. The charged surface orders the solvents up to ∼40 Å, even beyond its dense concentric solvation shells. Notably, the molecular orientation of solvent in direct contact with the nanotube surface itself is distinct, lying near-parallel and not interacting with desolvated sodium counterions. In contrast, beyond this layer the ordering of solvent is perpendicular to the surface. Our results underscore the critical importance of multibody interactions in solvated nanoscale systems and charged surfaces, highlighting competing ion/surface solvation effects.
Collapse
Affiliation(s)
- Camilla Di Mino
- Department of Physics and Astronomy, University College London, London, UK
- Department of Materials, University of Oxford, Oxford, UK
| | - Thomas F Headen
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, UK.
| | - Nadir S Basma
- Department of Physics and Astronomy, University College London, London, UK
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London, UK
| | - David J Buckley
- Department of Physics and Astronomy, University College London, London, UK
| | - Patrick L Cullen
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | | | - Milo S P Shaffer
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London, UK
- Department of Materials Science, Imperial College London, London, UK
| | - Neal T Skipper
- Department of Physics and Astronomy, University College London, London, UK.
| | - Adam J Clancy
- Department of Chemistry, University College London, London, UK.
| | | |
Collapse
|
4
|
Rajpal VR, Nongthongbam B, Bhatia M, Singh A, Raina SN, Minkina T, Rajput VD, Zahra N, Husen A. The nano-paradox: addressing nanotoxicity for sustainable agriculture, circular economy and SDGs. J Nanobiotechnology 2025; 23:314. [PMID: 40275357 PMCID: PMC12023416 DOI: 10.1186/s12951-025-03371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Engineered nanomaterials (ENMs) have aroused extensive interest in agricultural, industrial, and medical applications. The integration of ENMs into the agricultural systems aligns with the principles of United Nations' sustainable development goals (SDGs), circular economy (CE) and bio-economy (BE) principles. This approach offers excellent opportunities to enhance productivity and address global climate change challenges. The revelation of the adverse effects of nanomaterials (NMs) on various organisms and ecosystems, however, has fueled the debate on 'Nano-paradox' leading to emergence of a new research domain 'Nanotoxicology'. ENMs have shown different interactions with biological and environmental systems as compared to their bulk counterparts. They bioaccumulate in organisms, soils, and other environmental matrices, move through food chains and reach higher trophic levels including humans ultimately resulting in oxidative stress and cellular damage. Understanding nano-bio interactions, the mechanism of gene- and cytotoxicity, and associated potential hazards, is therefore, essential to mitigate their toxicological outputs. This review comprehensively examines the cyto- and genotoxicity mechanisms of ENMs in biological systems, covering aspects such as their entry, uptake, cellular responses, dynamic interactions in biological environments their long-term effects and environmental risk assessment (ERA). It also discusses toxicological assessment methods, regulatory policies, strategies for toxicity management/mitigation and future research directions in nanotechnology, all within the context of SDGs, CE, promoting resource efficiency and sustainability. Navigating the nano-paradox involves balancing the benefits of nanomaterials with concerns about nanotoxicity. Prioritizing thorough research on above facets can ensure sustainability and safety, enabling responsible harnessing of nanotechnology's transformative potential in various applications including mitigating global climate change and enhancing agricultural productivity.
Collapse
Affiliation(s)
| | | | - Manika Bhatia
- TERI School of Advanced Studies, Vasant Kunj Institutional Area, New Delhi, Delhi, 110070, India
| | - Apekshita Singh
- Department of Biotechnology, Amity University of Biotechnology, Noida, Uttar Pradesh, India
| | - Soom Nath Raina
- Department of Biotechnology, Amity University of Biotechnology, Noida, Uttar Pradesh, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Noreen Zahra
- Department of Botany, Government College Women University, Faisalabad, 38000, Pakistan
- Postgraduate Office, Amin Campus, The University of Faisalabad, Faisalabad, 38000, Pakistan
| | - Azamal Husen
- Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia.
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
5
|
Xuan P, Gong J, Fu T, Zhou Y, Qin J, Chen H, Wang T, Xue G, Peng X, Qian Y, Osella S, Zbořil R, Hofkens J, Müllen K, Lai F, Liu T. Helical Soft Robots with Magnetic and Photocatalytic Components for Water Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412516. [PMID: 39955758 DOI: 10.1002/smll.202412516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Soft robots have demonstrated exceptional potential in various applications, particularly in biomedicine, which is attributed to their motional agility and machinability. However, their potential applications in water remediation have not been fully explored. The main challenge is to achieve both precise motion and efficient pollutant degradation. Herein, a modular design is reported for fabricating soft robots. These robots are designed with spatially separated components. One is superparamagnetic iron oxide nanoparticles for magnetic actuation and the other is photocatalysts for targeted pollutant degradation (i.e., methyl orange, congo red, rhodamine B, tetracycline, and soybean oil). The helical structure enables diverse programmable motional modes, including high-speed propulsion up to 3.54 mm s-1. At the same time, the photocatalytic module enables efficient degradation of multiple pollutants with excellent reusability. The modular design combines structural stability with multifunctionality and opens new opportunities for soft robots in environmental remediation.
Collapse
Affiliation(s)
- Pengyang Xuan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jiaming Gong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tongfang Fu
- Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, 52074, Aachen, Germany
| | - Yazhou Zhou
- Nanotechnology Centre, Centre for Energy and Environmental Technologies (CEET), VSB─Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jingjing Qin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Haoxiang Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tianlu Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Guohao Xue
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiaoyuan Peng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yun Qian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies (CEET), VSB─Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Johan Hofkens
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Klaus Müllen
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Feili Lai
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
6
|
McGlothin CN, Whisnant KG, Turali Emre ES, Owuor D, Lu J, Xiao X, Vecchio D, Van Epps S, Bogdan P, Kotov N. Autocatalytic Nucleation and Self-Assembly of Inorganic Nanoparticles into Complex Biosimilar Networks. Angew Chem Int Ed Engl 2025; 64:e202413444. [PMID: 39663992 PMCID: PMC11848952 DOI: 10.1002/anie.202413444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Self-replication of bioorganic molecules and oil microdroplets have been explored as models in prebiotic chemistry. An analogous process for inorganic nanomaterials would involve the autocatalytic nucleation of metal, semiconductor, or ceramic nanoparticles-an area that remains largely uncharted. Demonstrating such systems would be both fundamentally intriguing and practically relevant, especially if the resulting particles self-assemble into complex structures beyond the capabilities of molecules or droplets. Here, we show that autocatalytic nucleation occurs with silver nanoparticles, which subsequently self-assemble into chains through spatially restricted attachment. In dispersions containing "hedgehog" particles, these reactions produce complex colloids with hierarchical spike organization. On solid surfaces, autocatalytic nucleation of nanoparticles yields conformal networks with hierarchical organization, including nanoparticle "colonies." We analyzed the complexity of both types of solid-stabilized particle assemblies via graph theory (GT). The complexity index of idealized spiky colloids is comparable to that of complex algal skeletons. The GT analysis of the percolating nanoparticle networks revealed their similarities to the bacterial, but not fungal, biofilms. We conclude that coupling autocatalytic nucleation with self-assembly enables the generation of complex, biosimilar particles and films. This work establishes mathematical and structural parallels between biotic and abiotic matter, integrating self-organization, autocatalytic nucleation, and theoretical description of complex systems. Utilization of quantitative descriptors of connectivity patterns opens possibility to GT-based biomimetic engineering of conductive coatings and other complex nanostructures.
Collapse
Affiliation(s)
- Connor N. McGlothin
- Center of Complex Particle Systems (COMPASS)University of MichiganAnn ArborUSA
- Biointerfaces InstituteUniversity of MichiganAnn Arbor, 48109USA
- Department of Chemical Engineering, University of MichiganAnn Arbor, MI 48109USA
| | - Kody G. Whisnant
- Center of Complex Particle Systems (COMPASS)University of MichiganAnn ArborUSA
- Biointerfaces InstituteUniversity of MichiganAnn Arbor, 48109USA
- Department of Chemical Engineering, University of MichiganAnn Arbor, MI 48109USA
| | - Emine Sumeyra Turali Emre
- Center of Complex Particle Systems (COMPASS)University of MichiganAnn ArborUSA
- Biointerfaces InstituteUniversity of MichiganAnn Arbor, 48109USA
- Department of Chemical Engineering, University of MichiganAnn Arbor, MI 48109USA
| | - Dickson Owuor
- Center of Complex Particle Systems (COMPASS)University of MichiganAnn ArborUSA
- Biointerfaces InstituteUniversity of MichiganAnn Arbor, 48109USA
- Department of Chemical Engineering, University of MichiganAnn Arbor, MI 48109USA
- Strathmore University, Madaraka EstateNairobiKenya
| | - Jun Lu
- Center of Complex Particle Systems (COMPASS)University of MichiganAnn ArborUSA
- Biointerfaces InstituteUniversity of MichiganAnn Arbor, 48109USA
- Department of Chemical Engineering, University of MichiganAnn Arbor, MI 48109USA
| | - Xiongye Xiao
- Center of Complex Particle Systems (COMPASS)University of MichiganAnn ArborUSA
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern CaliforniaLos Angeles, CA 90007USA
| | - Drew Vecchio
- Center of Complex Particle Systems (COMPASS)University of MichiganAnn ArborUSA
- Biointerfaces InstituteUniversity of MichiganAnn Arbor, 48109USA
| | - Scott Van Epps
- Biointerfaces InstituteUniversity of MichiganAnn Arbor, 48109USA
- Department of Emergency Medicine, University of MichiganAnn Arbor, 48109, MIUSA
| | - Paul Bogdan
- Center of Complex Particle Systems (COMPASS)University of MichiganAnn ArborUSA
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern CaliforniaLos Angeles, CA 90007USA
| | - Nicholas Kotov
- Center of Complex Particle Systems (COMPASS)University of MichiganAnn ArborUSA
- Biointerfaces InstituteUniversity of MichiganAnn Arbor, 48109USA
- Department of Chemical Engineering, University of MichiganAnn Arbor, MI 48109USA
- Department of Materials Science and Engineering, University of MichiganAnn Arbor, 48109USA
| |
Collapse
|
7
|
Kuznetsova V, Kadar A, Gaenko A, Er E, Ma T, Whisnant KG, Ma J, Ni B, Mehta N, Kim JY, Gun’ko YK, Kotov NA. Graph-Property Relationships for Complex Chiral Nanodendrimers. ACS NANO 2025; 19:6095-6106. [PMID: 39903700 PMCID: PMC11841040 DOI: 10.1021/acsnano.4c12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
Organic, polymeric, and inorganic nanomaterials with radially diverging dendritic segments are known for their optical, physical, chemical, and biological properties inaccessible for traditional spheroidal particles. However, a methodology to quantitatively link their complex architecture to measurable properties is difficult due to the characteristically large degree of disorder, which is essential for observed property sets. Here, we address this conceptual problem using dendrimer-shaped gold particles with distinct stochastic branching and intense chiroptical activity using graph theory (GT). Unlike typical molecular or nanostructured dendrites, gold nanodendrimers are two-dimensional, with branches radially spreading within one plane. They are also chiral, with mirror asymmetry propagating through multiple scales. We demonstrate that their complex architecture is quantitatively described by image-informed GT models accounting for both regular and disordered structural components of the nanodendrimers. Furthermore, descriptors integrating topological and geometrical characteristics of particle graphs provide physics-based analytical relations to the nontrivial dependence of optical asymmetry g-factor on the particle structure. The simplicity of the GT models capable of capturing the complexity of the particle organization and related light-matter interactions enables the rapid design of scalable nanostructures with multiple functions.
Collapse
Affiliation(s)
- Vera Kuznetsova
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- School
of Chemistry, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Alain Kadar
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center
of Complex Particle Systems (COMPASS), University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anita Gaenko
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center
of Complex Particle Systems (COMPASS), University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Engin Er
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center
of Complex Particle Systems (COMPASS), University
of Michigan, Ann Arbor, Michigan 48109, United States
- Biotechnology
Institute, Ankara University, Ankara 06135, Turkey
| | - Tao Ma
- Department
of Materials Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kody G. Whisnant
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center
of Complex Particle Systems (COMPASS), University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica Ma
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center
of Complex Particle Systems (COMPASS), University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bing Ni
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center
of Complex Particle Systems (COMPASS), University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Natasha Mehta
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center
of Complex Particle Systems (COMPASS), University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ji-Young Kim
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yurii K. Gun’ko
- School
of Chemistry, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center
of Complex Particle Systems (COMPASS), University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Materials Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Wu Y, Liu X, Radulescu A, Porcar L, Krause-Heuer A, Jiang H, Yang H, Ke Y, Darwish T, Luo Z. Small-angle neutron scattering differentiates molecular-level structural models of nanoparticle interfaces. NANOSCALE 2025; 17:3798-3808. [PMID: 39781673 DOI: 10.1039/d4nr04365k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The highly anisotropic and nonadditive nature of nanoparticle surfaces restricts their characterization by limited types of techniques that can reach atomic or molecular resolution. While small-angle neutron scattering (SANS) is a unique tool for analyzing complex systems, it has been traditionally considered a low-resolution method due to its limited scattering vector range and wide wavelength spread. In this article, we present a novel perspective on SANS by showcasing its exceptional capability to provide molecular-level insights into nanoparticle interfaces. We report a series of experiments on multicomponent nanoparticles, where we demonstrate the ability of SANS to differentiate between competing structural models with molecular- and Å-scale differences. The results provide accurate quantification of organic ligand chain lengths, nanoparticles' heterogeneity, and detailed structures of surrounding counter-ion layers in solution. Furthermore, we show that SANS can probe subtle variations in self-assembled monolayer structures in different thermodynamic states. Our findings challenge the conventional view of SANS as a low-resolution technique for nanoparticle characterization and demonstrate its unique potential for providing molecular-level insights into complex nanoparticle surface structures.
Collapse
Affiliation(s)
- Yujie Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xindi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Aurel Radulescu
- Jülich Center for Neutron Science, JCNS at Heinz Maier-Leibnitz Zentrum, Forschungs-zentrum Jülich GmbH, Garching 85747, Germany
| | - Lionel Porcar
- Institut Laue-Langevin, BP 156, F38042 Grenoble CEDEX 9, France
| | - Anwen Krause-Heuer
- The National Deuteration Facility, Australian Nuclear Science and Technology Organisation, NSW 2232, Australia
| | - Hanqiu Jiang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Hua Yang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Tamim Darwish
- Jülich Center for Neutron Science, JCNS at Heinz Maier-Leibnitz Zentrum, Forschungs-zentrum Jülich GmbH, Garching 85747, Germany
| | - Zhi Luo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
9
|
Pan SQ, Luo P, Huang Q, Xue J, Tian XD, Xu B, Wu J, Chen J, Xie J, Yang N, Zhang XG, Tian ZQ, Liu GK. Spontaneous Catalytic Reaction of a Surfactant in the Interfacial Microenvironment of Colloidal Gold Nanoparticles. J Am Chem Soc 2025; 147:2206-2215. [PMID: 39764761 DOI: 10.1021/jacs.4c16796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The performance of nanomaterials is significantly determined by the interfacial microenvironment, in which a surfactant plays an essential role as the adsorbent, but its involvement in the interfacial reaction is often overlooked. Here, it was discovered that citrate and ascorbic acid, the two primarily used surfactants for colloidal gold nanoparticles (Au NPs), can spontaneously undergo catalytic reaction with trace-level nitrogenous residue under ambient environment to form oxime, which is subsequently cleaved to generate CN- or a compound containing the -CN group. Such a catalytic reaction shows wide universality in both reactants, including various carbonaceous and nitrogenous sources, and metal catalysts, including Au, Ag, Fe, Cu, Ni, Pt, and Pd NPs. Furthermore, with the removal of this reaction, adsorbed CO with diverse adsorption configurations was observed via surface-enhanced Raman spectroscopy under ambient conditions without an applied potential. Our work highlights the non-negligible significance of surfactants in interfacial microenvironments and provides crucial insights into the fundamental understanding of interfacial chemical reactions.
Collapse
Affiliation(s)
- Si-Qi Pan
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ping Luo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiuting Huang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jinjuan Xue
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiang-Dong Tian
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Na Yang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhong-Qun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
10
|
Dong E, Huo Q, Zhang J, Han H, Cai T, Liu D. Advancements in nanoscale delivery systems: optimizing intermolecular interactions for superior drug encapsulation and precision release. Drug Deliv Transl Res 2025; 15:7-25. [PMID: 38573495 DOI: 10.1007/s13346-024-01579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Nanoscale preparations, such as nanoparticles, micelles, and liposomes, are increasingly recognized in pharmaceutical technology for their high capability in tailoring the pharmacokinetics of the encapsulated drug within the body. These preparations have great potential in extending drug half-life, reducing dosing frequency, mitigating drug side effects, and enhancing drug efficacy. Consequently, nanoscale preparations offer promising prospects for the treatment of metabolic disorders, malignant tumors, and various chronic diseases. Nevertheless, the complete clinical potential of nanoscale preparations remains untapped due to the challenges associated with low drug loading degrees and insufficient control over drug release. In this review, we comprehensively summarize the vital role of intermolecular interactions in enhancing encapsulation and controlling drug release within nanoscale delivery systems. Our analysis critically evaluates the characteristics of common intermolecular interactions and elucidates the techniques employed to assess them. Moreover, we highlight the significant potential of intermolecular interactions in clinical translation, particularly in the screening and optimization of preparation prescriptions. By attaining a deeper understanding of intermolecular interaction properties and mechanisms, we can adopt a more rational approach to designing drug carriers, leading to substantial advancements in the application and clinical transformation of nanoscale preparations. Moving forward, continued research in this field offers exciting prospects for unlocking the full clinical potential of nanoscale preparations and revolutionizing the field of drug delivery.
Collapse
Affiliation(s)
- Enpeng Dong
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Qingqing Huo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hanghang Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China.
| | - Dongfei Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
11
|
Al Harraq A, Patel R, Lee JG, Owoyele O, Chun J, Bharti B. Non-Reciprocity, Metastability, and Dynamic Reconfiguration in Co-Assembly of Active and Passive Particles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409489. [PMID: 39630594 PMCID: PMC11775524 DOI: 10.1002/advs.202409489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/31/2024] [Indexed: 12/07/2024]
Abstract
Living organisms often exhibit non-reciprocal interactions where the forces acting on the objects are not equal in magnitude or opposite in direction. The combination of reciprocal and non-reciprocal interactions between synthetic building blocks remains largely unexplored. Here, out-of-equilibrium assemblies of non-motile isotropic passive and metal-patched motile active particles are formed by overlapping bulk interactions with directed self-propulsion. An external alternating current (AC) electric field generates concurrent dipolar and induced-charge electrophoretic forces between the particles which are evaluated using microscopy. The interaction force measurements allow to determine the degree of reciprocity in interactions, which is tunable by designing the active particle and its trajectory. While linearly-propelled active particles evade assembly with passive particles, helically propelled active particles form active-passive clusters with dynamic reconfiguration and long-lived metastability. Large clusters display programmable fluctuations and reconfigurability by controlling the fraction of active particles. The study establishes principles of integrating reciprocal and non-reciprocal interactions in guided colloidal assembly of reconfigurable metastable structures.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
- Center for the Physics of Biological FunctionPrinceton UniversityPrincetonNJ08544USA
| | - Ruchi Patel
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
| | - Jin Gyun Lee
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderCO80303USA
| | - Ope Owoyele
- Department of Mechanical and Industrial EngineeringLouisiana State UniversityBaton RougeLA70803USA
| | - Jaehun Chun
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
| |
Collapse
|
12
|
Wang Y, Zhang X, Xie D, Chen C, Huang Z, Li ZA. Chiral Engineered Biomaterials: New Frontiers in Cellular Fate Regulation for Regenerative Medicine. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202419610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 01/03/2025]
Abstract
AbstractChirality, the property of objects that are nonsuperimposable on their mirror images, plays a crucial role in biological processes and cellular behaviors. Chiral engineered biomaterials have emerged as a promising approach to regulating cellular fate in regenerative medicine. However, few reviews provide a comprehensive examination of recent advancements in chiral biomaterials and their applications in cellular fate regulation. Herein, various fabrication techniques available for chiral biomaterials, including the use of chiral molecules, surface patterning, and self‐assembly are discussed. The mechanisms through which chiral biomaterials influence cellular responses, such as modulation of adhesion receptors, intracellular signaling, and gene expression, are explored. Notably, chiral biomaterials have demonstrated their ability to guide stem cell differentiation and augment tissue‐specific functions. The potential applications of chiral biomaterials in musculoskeletal disorders, neurodegenerative diseases, cardiovascular diseases, and wound healing are highlighted. Challenges and future perspectives, including standardization of fabrication methods and translation to clinical settings, are addressed. In conclusion, chiral engineered biomaterials offer exciting prospects for precisely controlling cellular fate, advancing regenerative medicine, and enabling personalized therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Xin Zhang
- Institute of Sports Medicine Beijing Key Laboratory of Sports Injuries Peking University Third Hospital Beijing 100191 China
| | - Denghui Xie
- Department of Orthopaedic Surgery Center for Orthopaedic Surgery The Third Affiliated Hospital of Southern Medical University Guangzhou 510630 China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases Guangzhou 510630 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety New Cornerstone Science Laboratory National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhifeng Huang
- Department of Chemistry The Chinese University of Hong Kong Shatin Hong Kong SAR China
- School of Biomedical Sciences The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Zhong Alan Li
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- School of Biomedical Sciences The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Shun Hing Institute of Advanced Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Shenzhen Research Institute The Chinese University of Hong Kong No.10, 2nd Yuexing Road, Nanshan Shenzhen Guangdong Province 518057 China
| |
Collapse
|
13
|
Isfeldt G, Lundell F, Wohlert J. Interaction of complex particles: A framework for the rapid and accurate approximation of pair potentials using neural networks. Phys Rev E 2024; 110:055305. [PMID: 39690678 DOI: 10.1103/physreve.110.055305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/16/2024] [Indexed: 12/19/2024]
Abstract
Motivated by the limitations of conventional coarse-grained molecular dynamics for simulation of large systems of nanoparticles and the challenges in efficiently representing general pair potentials for rigid bodies, we present a method for approximating general rigid body pair potentials based on a specialized type of deep neural network that maintains essential properties, such as conservation of energy and invariance to the chosen origins of the particles. The network uses a specialized geometric abstraction layer to convert the relative coordinates of the rigid bodies to input more suitable to a conventional artificial neural network, which is trained together with the specialized layer. This results in geometric representations of the particles optimized for the specific potential. The network can be trained directly on scalar values to fit a model without explicit gradient and then used to efficiently evaluate the force and torque on the particles resulting from the potential. The concept is demonstrated with an atomistic interaction model for carbon nanotubes and the resulting model is compared with a common type of coarse-grained model optimized for the same potential, with even very small networks comparing favourably and larger networks achieving up to two orders of magnitude lower cost. The sensitivity to noise in the training data is investigated and the model is found to strongly reject noise up to 12.5% given a dataset of 10^{7} samples. The performance of a proof-of-concept implementation is demonstrated on a variety of hardware, showing the models viability for large-scale simulations. Furthermore, generalization to soft bodies and potentials for polydisperse systems are discussed.
Collapse
|
14
|
Shirvalilou S, Khoei S, Afzalipour R, Ghaznavi H, Shirvaliloo M, Derakhti Z, Sheervalilou R. Targeting the undruggable in glioblastoma using nano-based intracellular drug delivery. Med Oncol 2024; 41:303. [PMID: 39470962 DOI: 10.1007/s12032-024-02546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
Glioblastoma (GBM) is a highly prevalent and aggressive brain tumor in adults with limited treatment response, leading to a 5-year survival rate of less than 5%. Standard therapies, including surgery, radiation, and chemotherapy, often fall short due to the tumor's location, hypoxic conditions, and the challenge of complete removal. Moreover, brain metastases from cancers such as breast and melanoma carry similarly poor prognoses. Recent advancements in nanomedicine offer promising solutions for targeted GBM therapies, with nanoparticles (NPs) capable of delivering chemotherapy drugs or radiation sensitizers across the blood-brain barrier (BBB) to specific tumor sites. Leveraging the enhanced permeability and retention effect, NPs can preferentially accumulate in tumor tissues, where compromised BBB regions enhance delivery efficiency. By modifying NP characteristics such as size, shape, and surface charge, researchers have improved circulation times and cellular uptake, enhancing therapeutic efficacy. Recent studies show that combining photothermal therapy with magnetic hyperthermia using AuNPs and magnetic NPs induces ROS-dependent apoptosis and immunogenic cell death providing dual-targeted, immune-activating approaches. This review discusses the latest NP-based drug delivery strategies, including gene therapy, receptor-mediated transport, and multi-modal approaches like photothermal-magnetic hyperthermia combinations, all aimed at optimizing therapeutic outcomes for GBM.
Collapse
Affiliation(s)
- Sakine Shirvalilou
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samideh Khoei
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Afzalipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London, N3 1QB, UK
| | - Zahra Derakhti
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
15
|
Zhang J, Wu K, Gao X, Zhang M, Zhou X, Bertram F, Shen C, Zhou Y. Achiral and chiral ligands synergistically harness chiral self-assembly of inorganics. SCIENCE ADVANCES 2024; 10:eado5948. [PMID: 39423258 PMCID: PMC11488542 DOI: 10.1126/sciadv.ado5948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Chiral structures and functions are essential natural components in biominerals and biological crystals. Chiral molecules direct inorganics through chiral growth of facets or screw dislocation of crystal clusters. As chirality promoters, they initiate an asymmetric hierarchical self-assembly in a quasi-thermodynamic steady state. However, achieving chiral assembly requires a delicate balance between intricate interactions. This complexity causes the roles of achiral-chiral and inorganic components in crystallization to remain ambiguous. Here, we elucidate a definitive mechanism using an achiral-chiral ligand strategy to assemble inorganics into hierarchical, self-organized superstructures. Achiral ligands cluster inorganic building blocks, while chiral ligands impart chiral rotation. Achiral and chiral ligands can flexibly modulate the chirality of superstructures by fully using their competition in coordination chemistry. This dual-ligand strategy offers a versatile framework for engineering chiroptical nanomaterials tailored to optical devices and metamaterials with optical activities across a broad wavelength range, with applications in imaging, detection, catalysis, and sensing.
Collapse
Affiliation(s)
- Jun Zhang
- Zhejiang Engineering Research Center for Tissue Repair Materials & Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Deutsches Elektronen-Synchrotron DESY, Germany
| | - Kai Wu
- Zhejiang Engineering Research Center for Tissue Repair Materials & Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Gao
- Zhejiang Engineering Research Center for Tissue Repair Materials & Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Min Zhang
- Zhejiang Engineering Research Center for Tissue Repair Materials & Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Xin Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials & Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Chen Shen
- Deutsches Elektronen-Synchrotron DESY, Germany
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials & Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
16
|
Thomas SA, Alharthi NS, Petersen RJ, Aldrees A, Tani S, Anderson KJ, Granlie J, Pringle TA, Payne SA, Choi Y, Kilin DS, Hobbie EK. Colloidal 2D Layered SiC Quantum Dots from a Liquid Precursor: Surface Passivation, Bright Photoluminescence, and Planar Self-Assembly. ACS NANO 2024; 18:26848-26857. [PMID: 39288450 DOI: 10.1021/acsnano.4c08052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
We report the bottom-up synthesis of colloidal two-dimensional (2D) layered silicon carbide (SiC) quantum dots with a cubic structure, lateral size of 5-10 nm, ⟨110⟩ exfoliation to few atomic layers, and surface passivation with 1-dodecene. Samples shielded from oxygen and plasma-annealed for purity exhibit narrow blue photoluminescence (PL) with quantum yields (QYs) over 60% in exceptional cases, while unshielded nanocrystals (NCs) exhibit broad blue/green/white PL with 10-15% QY. The latter scenario is attributed to excess surface carbon and oxygen accrued during synthesis and processing, with size separation through ultracentrifugation revealing size-dependent impurity emission. In contrast, the shape of the bright narrow blue PL shows little variation with NC size, while in both scenarios, the maximum QY occurs near four atomic layers. When dried under heat, the disk-like NC suspensions are observed to aggregate into microscale domains, with further self-assembly into planar superlattice domains with common crystalline orientation. The results are compared with photophysical simulations and bring clarity to the broad emission commonly reported for top-down approaches, while inspiring bottom-up schemes directed at improved material quality.
Collapse
Affiliation(s)
- Salim A Thomas
- Materials & Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Naif S Alharthi
- Materials & Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Reed J Petersen
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Ahmed Aldrees
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Sakurako Tani
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kenneth J Anderson
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Joseph Granlie
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Todd A Pringle
- Materials & Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Scott A Payne
- Materials & Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Yongki Choi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dmitri S Kilin
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Erik K Hobbie
- Materials & Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Coatings & Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
17
|
de Roode KE, Hashemi K, Verdurmen WPR, Brock R. Tumor-On-A-Chip Models for Predicting In Vivo Nanoparticle Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402311. [PMID: 38700060 DOI: 10.1002/smll.202402311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 05/05/2024]
Abstract
Nanosized drug formulations are broadly explored for the improvement of cancer therapy. Prediction of in vivo nanoparticle (NP) behavior, however, is challenging, given the complexity of the tumor and its microenvironment. Microfluidic tumor-on-a-chip models are gaining popularity for the in vitro testing of nanoparticle targeting under conditions that simulate the 3D tumor (microenvironment). In this review, following a description of the tumor microenvironment (TME), the state of the art regarding tumor-on-a-chip models for investigating nanoparticle delivery to solid tumors is summarized. The models are classified based on the degree of compartmentalization (single/multi-compartment) and cell composition (tumor only/tumor microenvironment). The physiological relevance of the models is critically evaluated. Overall, microfluidic tumor-on-a-chip models greatly improve the simulation of the TME in comparison to 2D tissue cultures and static 3D spheroid models and contribute to the understanding of nanoparticle behavior. Interestingly, two interrelated aspects have received little attention so far which are the presence and potential impact of a protein corona as well as nanoparticle uptake through phagocytosing cells. A better understanding of their relevance for the predictive capacity of tumor-on-a-chip systems and development of best practices will be a next step for the further refinement of advanced in vitro tumor models.
Collapse
Affiliation(s)
- Kim E de Roode
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Khadijeh Hashemi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, 329, Bahrain
| |
Collapse
|
18
|
Song X, Yi B, Chen Q, Zhou Y, Cho H, Hong Y, Chung S, You L, Li S, Hong J. Machine Learning-Powered Ultrahigh Controllable and Wearable Magnetoelectric Piezotronic Touching Device. ACS NANO 2024; 18:16648-16657. [PMID: 38888126 DOI: 10.1021/acsnano.4c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Recent advancements in nanomaterials have enabled the application of nanotechnology to the development of cutting-edge sensing and actuating devices. For instance, nanostructures' collective and predictable responses to various stimuli can be monitored to determine the physical environment of the nanomaterial, such as temperature or applied pressure. To achieve optimal sensing and actuation capabilities, the nanostructures should be controllable. However, current applications are limited by inherent challenges in controlling nanostructures that counteract many sensing mechanisms that are reliant on their area or spacing. This work presents a technique utilizing the piezo-magnetoelectric properties of nanoparticles to enable strain sensing and actuation in a flexible and wearable patch. The alignment of nanoparticles has been achieved using demagnetization fields with computational simulations confirming device characteristics under various types of deformation followed by experimental demonstrations. The device exhibits favorable piezoelectric performance, hydrophobicity, and body motion-sensing capabilities, as well as machine learning-powered touch-sensing/actuating features.
Collapse
Affiliation(s)
- Xingjuan Song
- School of Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Bao Yi
- School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qijun Chen
- CEE & EECS, UC Berkeley, Berkeley, California 94720, United States
| | - Yifei Zhou
- Department of Mechanical Engineering, UC-Riverside, Riverside, California 92507, United States
| | - Hyeon Cho
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Yongtaek Hong
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Seungjun Chung
- School of Electrical Engineering, Korea University, Seoul 02841, Korea
| | - Long You
- School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaofan Li
- CEE & EECS, UC Berkeley, Berkeley, California 94720, United States
| | - Jeongmin Hong
- School of Sciences, Hubei University of Technology, Wuhan 430068, China
- CEE & EECS, UC Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Argun BR, Fu Y, Statt A. Molecular dynamics simulations of anisotropic particles accelerated by neural-net predicted interactions. J Chem Phys 2024; 160:244901. [PMID: 38912678 DOI: 10.1063/5.0206636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Rigid bodies, made of smaller composite beads, are commonly used to simulate anisotropic particles with molecular dynamics or Monte Carlo methods. To accurately represent the particle shape and to obtain smooth and realistic effective pair interactions between two rigid bodies, each body may need to contain hundreds of spherical beads. Given an interacting pair of particles, traditional molecular dynamics methods calculate all the inter-body distances between the beads of the rigid bodies within a certain distance. For a system containing many anisotropic particles, these distance calculations are computationally costly and limit the attainable system size and simulation time. However, the effective interaction between two rigid particles should only depend on the distance between their center of masses and their relative orientation. Therefore, a function capable of directly mapping the center of mass distance and orientation to the interaction energy between the two rigid bodies would completely bypass inter-bead distance calculations. It is challenging to derive such a general function analytically for almost any non-spherical rigid body. In this study, we have trained neural nets, powerful tools to fit nonlinear functions to complex datasets, to achieve this task. The pair configuration (center of mass distance and relative orientation) is taken as an input, and the energy, forces, and torques between two rigid particles are predicted directly. We show that molecular dynamics simulations of cubes and cylinders performed with forces and torques obtained from the gradients of the energy neural-nets quantitatively match traditional simulations that use composite rigid bodies. Both structural quantities and dynamic measures are in agreement, while achieving up to 23 times speedup over traditional molecular dynamics, depending on hardware and system size. The method presented here can, in principle, be applied to any irregular concave or convex shape with any pair interaction, provided that sufficient training data can be obtained.
Collapse
Affiliation(s)
- B Ruşen Argun
- Mechanical Engineering, Grainger College of Engineering, University of Illinois, Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Yu Fu
- Physics, Grainger College of Engineering, University of Illinois, Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Antonia Statt
- Materials Science and Engineering, Grainger College of Engineering, University of Illinois, Urbana-Champaign, Champaign, Illinois 61801, USA
| |
Collapse
|
20
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
21
|
Li H, Deng J, Jia Q, Zhu L, Huang LZ. Enhanced Fe(OH) 2-driven reductive Dechlorination via shortened Fe-O bonds and colloidal medium. WATER RESEARCH 2024; 256:121589. [PMID: 38608620 DOI: 10.1016/j.watres.2024.121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Fe2+ is usually adsorbed to the surface of iron-bearing clay, and iron (hydr)oxide in groundwater. However, the reductive activity of Fe(OH)2, a prevalent intermediate during the transformation of Fe2+, remains unclear. In this study, high-purity Fe(OH)2 was synthesized and tested for its activity in the degradation of carbon tetrachloride (CT). XRD data confirm that the synthesized material is a pure Fe(OH)2 crystal, exhibiting sharp peaks of (001) and (100) facets. Zeta potential analysis confirms that the off-white Fe(OH)2 is a colloidal suspension with a positive charge of ∼+35-50 mV. FTIR spectra reveal the formation of a coordination compound Fe2+ with OH-/OD-, derived from NaOH/OD. SEM and HRTEM results demonstrate that the Fe(OH)2 crystal has a regular octahedral structure with a size of ∼30-70 nm and average lattice spacings of 2.58 Å. Mössbauer spectrum verifies that the Fe2+ in Fe(OH)2/Fe(OD)2 is hexacoordinated with six Fe-O bonds. XAFS data demonstrate that the Fe-O bonds become shorter as the OH-:Fe(II) ratios increase. DFT results indicate that the (100) crystal face of Fe(OH)2 more readily transfers electrons to CT. In addition to being adsorbed to iron compounds, structural Fe2+ compounds such as Fe(OH)2 could also accelerate the electron transfer from Fe2+ to CT through shortened Fe-O bonds. The rate constant of CT reduction by Fe(OH)2 is as high as 0.794 min-1 when the OH-:Fe(II) ratio is 2.5 in water. This study aims to enhance our understanding of the structure-reactivity relationship of Fe2+ compounds in groundwater, particularly in relation to electron transfer mechanisms.
Collapse
Affiliation(s)
- Huafeng Li
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, China
| | - Jia Deng
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, China
| | - Qianqian Jia
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, China
| | - Liandong Zhu
- School of Resources and Environmental Science, Wuhan University, Wuhan, PR China
| | - Li-Zhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, China.
| |
Collapse
|
22
|
Mapile AN, LeRoy MA, Fabrizio K, Scatena LF, Brozek CK. The Surface of Colloidal Metal-Organic Framework Nanoparticles Revealed by Vibrational Sum Frequency Scattering Spectroscopy. ACS NANO 2024; 18:13406-13414. [PMID: 38722052 DOI: 10.1021/acsnano.4c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Solvation shells strongly influence the interfacial chemistry of colloidal systems, from the activity of proteins to the colloidal stability and catalysis of nanoparticles. Despite their fundamental and practical importance, solvation shells have remained largely undetected by spectroscopy. Furthermore, their ability to assemble at complex but realistic interfaces with heterogeneous and rough surfaces remains an open question. Here, we apply vibrational sum frequency scattering spectroscopy (VSFSS), an interface-specific technique, to colloidal nanocrystals with porous metal-organic frameworks (MOFs) as a case study. Due to the porous nature of the solvent-particle boundary, MOF particles challenge conventional models of colloidal and interfacial chemistry. Their multiweek colloidal stability in the absence of conventional surface ligands suggests that stability may arise in part from solvation forces. Spectra of colloidally stable Zn(2-methylimidazolate)2 (ZIF-8) in polar solvents indicate the presence of ordered solvation shells, solvent-metal binding, and spontaneous ordering of organic bridging linkers within the MOF. These findings help explain the unexpected colloidal stability of MOF colloids, while providing a roadmap for applying VSFSS to wide-ranging colloidal nanocrystals in general.
Collapse
Affiliation(s)
- Ashley N Mapile
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael A LeRoy
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Kevin Fabrizio
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Lawrence F Scatena
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
23
|
Wang Y, Zhou Y, Yang Q, Basak R, Xie Y, Le D, Fuqua AD, Shipley W, Yam Z, Frano A, Arya G, Tao AR. Self-assembly of nanocrystal checkerboard patterns via non-specific interactions. Nat Commun 2024; 15:3913. [PMID: 38724558 PMCID: PMC11081958 DOI: 10.1038/s41467-024-47572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Checkerboard lattices-where the resulting structure is open, porous, and highly symmetric-are difficult to create by self-assembly. Synthetic systems that adopt such structures typically rely on shape complementarity and site-specific chemical interactions that are only available to biomolecular systems (e.g., protein, DNA). Here we show the assembly of checkerboard lattices from colloidal nanocrystals that harness the effects of multiple, coupled physical forces at disparate length scales (interfacial, interparticle, and intermolecular) and that do not rely on chemical binding. Colloidal Ag nanocubes were bi-functionalized with mixtures of hydrophilic and hydrophobic surface ligands and subsequently assembled at an air-water interface. Using feedback between molecular dynamics simulations and interfacial assembly experiments, we achieve a periodic checkerboard mesostructure that represents a tiny fraction of the phase space associated with the polymer-grafted nanocrystals used in these experiments. In a broader context, this work expands our knowledge of non-specific nanocrystal interactions and presents a computation-guided strategy for designing self-assembling materials.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Yilong Zhou
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Quanpeng Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Rourav Basak
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Yu Xie
- Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Dong Le
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Alexander D Fuqua
- Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Wade Shipley
- Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Zachary Yam
- Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Alex Frano
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| | - Andrea R Tao
- Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, USA.
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Küçüköz B, Kotov OV, Canales A, Polyakov AY, Agrawal AV, Antosiewicz TJ, Shegai TO. Quantum trapping and rotational self-alignment in triangular Casimir microcavities. SCIENCE ADVANCES 2024; 10:eadn1825. [PMID: 38657070 PMCID: PMC11042733 DOI: 10.1126/sciadv.adn1825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Casimir torque, a rotational motion driven by zero-point energy minimization, is a problem that attracts notable research interest. Recently, it has been realized using liquid crystal phases and natural anisotropic substrates. However, for natural materials, substantial torque occurs only at van der Waals distances of ~10 nm. Here, we use Casimir self-assembly with triangular gold nanostructures for rotational self-alignment at truly Casimir distances (100 to 200 nm separation). The interplay of repulsive electrostatic and attractive Casimir potentials forms a stable quantum trap, giving rise to a tunable Fabry-Pérot microcavity. This cavity self-aligns both laterally and rotationally to maximize area overlap between templated and floating flakes. The rotational self-alignment is sensitive to the equilibrium distance between the two triangles and their area, offering possibilities for active control via electrostatic screening manipulation. Our self-assembled Casimir microcavities present a versatile and tunable platform for nanophotonic, polaritonic, and optomechanical applications.
Collapse
Affiliation(s)
- Betül Küçüköz
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Oleg V. Kotov
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Adriana Canales
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | | | - Abhay V. Agrawal
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Tomasz J. Antosiewicz
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Timur O. Shegai
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
25
|
Yadav HOS. Three-body interaction of gold nanoparticles: the role of solvent density and ligand shell orientation. Phys Chem Chem Phys 2024; 26:11558-11569. [PMID: 38533797 DOI: 10.1039/d3cp06334h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Molecular dynamics simulations are used to study the effective interactions of alkanethiol passivated gold nanoparticles in supercritical ethane at two- and three-particle levels with different solvent densities. Effective interaction is calculated as the potential of mean force (PMF) between two nanoparticles, and the three-body effect is estimated as the difference in PMFs calculated at the two- and three-particle levels. The variation in the three-body effect is examined as a function of solvent density. It is found that effective interaction, which is completely repulsive at very high solvent concentrations, progressively turns attractive as solvent density declines. On the other hand, the three-body effect turns out to be repulsive and increases exponentially with decreasing solvent density. Further, the structure of the ligand shell is analyzed as a function of nanoparticle separation, and its relationship with the three-body effect is investigated. It is observed that the three-body effect arises when the ligand shell begins to deform due to van der Waals repulsion between ligand shells. The study provides a deep insight into good understanding of the solvent evaporation-assisted nanoparticle self-assembly and can aid in experiments.
Collapse
Affiliation(s)
- Hari O S Yadav
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
26
|
Shammeri A, Abu-Huwaij R, Hamed R. Development and characterization of magnetic hydrogels loaded with greenly synthesized iron-oxide nanoparticles conjugated with cisplatin. Pharm Dev Technol 2024; 29:383-392. [PMID: 38619087 DOI: 10.1080/10837450.2024.2341244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
A novel approach was devised to address the challenges in delivering cisplatin (CIS) for lung cancer treatment. This involved the development of a non-invasive hydrogel delivery system, aiming to minimize side effects associated with its administration. Using carbopol 971 (CP) and chitosan (CH) at varying ratios, the hydrogels were prepared and loaded with eco-friendly iron oxide nanoparticles (IONPs) conjugated to CIS. The physical properties, yield, drug loading, and cytotoxicity against lung cancer cell lines (A549) were assessed, along with hydrogel rheological properties and in vitro drug diffusion. Hydrogel A1 that composed of 1:1 of CP:CH hydrogel loaded with 100 mg IONPs and 250 µg CIS demonstrated distinctive properties that indicate its suitability for potential delivery. The loaded greenly synthesized IONPs@CIS exhibited a particle size of 23.0 nm, polydispersity index of 0.47, yield of 71.6%, with 88.28% drug loading. They displayed significant cytotoxicity (61.7%) against lung cancer cell lines (A549), surpassing free CIS cytotoxicity (28.1%). Moreover, they demonstrated shear-thinning behaviour, viscoelastic properties, and Fickian drug release profile over 24 h (flux 2.34 µg/cm2/h, and permeability 0.31 cm/h).
Collapse
Affiliation(s)
- Ali Shammeri
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Al-Salt, Jordan
| | | | - Rania Hamed
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| |
Collapse
|
27
|
Liu-Fu W, Xiao H, Chen J, Cai L, Yang J, Xue B, Lan L, Lai Y, Yin JF, Yin P. Unique Viscoelasticity and Hierarchical Relaxation Dynamics of Molecular Granular Materials. NANO LETTERS 2024; 24:3307-3314. [PMID: 38456631 DOI: 10.1021/acs.nanolett.3c03636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Resulting from the dense packing of subnanometer molecular clusters, molecular granular materials (MGMs) are shown to maintain high elasticity far above their apparent glass transition temperature (Tg*). However, our microscopic understanding of their structure-property relationship is still poor. Herein, 1 nm polyhedral oligomeric silsesquioxanes (POSSs) are appended to a backbone chain in a brush configuration with different flexible linker chains. Assemblies of these brush polymers exhibit hierarchical relaxation dynamics with the glass transition arising from the cooperative dynamics of packed POSSs. The interaction among the assemblies can be strengthened by increasing the rigidity of linkers with the MGM relaxation modes changing from colloid- to polymer chain-like behavior, rendering their tunable viscoelasticity. This finally contributes to the decoupling of mechanical and thermal properties by showing elasticity dominant mechanical properties at a temperature 150 K above the Tg*.
Collapse
Affiliation(s)
- Wei Liu-Fu
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Haiyan Xiao
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Linkun Cai
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Junsheng Yang
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Linjie Lan
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jia-Fu Yin
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
28
|
Singletary T, Drazer G, Marschilok AC, Takeuchi ES, Takeuchi KJ, Colosqui CE. Kinetic trapping of nanoparticles by solvent-induced interactions. NANOSCALE 2024; 16:5374-5382. [PMID: 38375739 DOI: 10.1039/d3nr06469g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Theoretical analysis based on mean field theory indicates that solvent-induced interactions (i.e. structural forces due to the rearrangement of wetting solvent molecules) not considered in DLVO theory can induce the kinetic trapping of nanoparticles at finite nanoscale separations from a well-wetted surface, under a range of ubiquitous physicochemical conditions for inorganic nanoparticles of common materials (e.g., metal oxides) in water or simple molecular solvents. This work proposes a simple analytical model that is applicable to arbitrary materials and simple solvents to determine the conditions for direct particle-surface contact or kinetic trapping at finite separations, by using experimentally measurable properties (e.g., Hamaker constants, interfacial free energies, and nanoparticle size) as input parameters. Analytical predictions of the proposed model are verified by molecular dynamics simulations and numerical solution of the Smoluchowski diffusion equation.
Collapse
Affiliation(s)
- Troy Singletary
- Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA.
| | - German Drazer
- Mechanical and Aerospace Engineering Department, Rutgers University, NJ 08854, USA
| | - Amy C Marschilok
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| | - Esther S Takeuchi
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| | - Kenneth J Takeuchi
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| | - Carlos E Colosqui
- Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA.
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| |
Collapse
|
29
|
Tanner CPN, Utterback JK, Portner J, Coropceanu I, Das A, Tassone CJ, Teitelbaum SW, Limmer DT, Talapin DV, Ginsberg NS. In Situ X-ray Scattering Reveals Coarsening Rates of Superlattices Self-Assembled from Electrostatically Stabilized Metal Nanocrystals Depend Nonmonotonically on Driving Force. ACS NANO 2024. [PMID: 38318795 PMCID: PMC10883038 DOI: 10.1021/acsnano.3c12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Self-assembly of colloidal nanocrystals (NCs) into superlattices (SLs) is an appealing strategy to design hierarchically organized materials with promising functionalities. Mechanistic studies are still needed to uncover the design principles for SL self-assembly, but such studies have been difficult to perform due to the fast time and short length scales of NC systems. To address this challenge, we developed an apparatus to directly measure the evolving phases in situ and in real time of an electrostatically stabilized Au NC solution before, during, and after it is quenched to form SLs using small-angle X-ray scattering. By developing a quantitative model, we fit the time-dependent scattering patterns to obtain the phase diagram of the system and the kinetics of the colloidal and SL phases as a function of varying quench conditions. The extracted phase diagram is consistent with particles whose interactions are short in range relative to their diameter. We find the degree of SL order is primarily determined by fast (subsecond) initial nucleation and growth kinetics, while coarsening at later times depends nonmonotonically on the driving force for self-assembly. We validate these results by direct comparison with simulations and use them to suggest dynamic design principles to optimize the crystallinity within a finite time window. The combination of this measurement methodology, quantitative analysis, and simulation should be generalizable to elucidate and better control the microscopic self-assembly pathways of a wide range of bottom-up assembled systems and architectures.
Collapse
Affiliation(s)
- Christian P N Tanner
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - James K Utterback
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Joshua Portner
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Igor Coropceanu
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Avishek Das
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J Tassone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Samuel W Teitelbaum
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60517, United States
| | - Naomi S Ginsberg
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences and Chemical Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- STROBE, NSF Science & Technology Center, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Wohlert J, Chen P, Berglund LA, Lo Re G. Acetylation of Nanocellulose: Miscibility and Reinforcement Mechanisms in Polymer Nanocomposites. ACS NANO 2024; 18:1882-1891. [PMID: 38048271 PMCID: PMC10811682 DOI: 10.1021/acsnano.3c04872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
The improvement of properties in nanocomposites obtained by topochemical surface modification, e.g., acetylation, of the nanoparticles is often ascribed to improved compatibility between the nanoparticle and the matrix. It is not always clear however what is intended: specific interactions at the interface leading to increased adhesion or the miscibility between the nanoparticle and the polymer. In this work, it is demonstrated that acetylation of cellulose nanocrystals greatly improves mechanical properties of their nanocomposites with polycaprolactone. In addition, molecular dynamics simulations with a combination of potential of mean force calculations and computational alchemy are employed to analyze the surface energies between the two components. The work of adhesion between the two phases decreases with acetylation. It is discussed how acetylation can still contribute to the miscibility, which leads to a stricter use of the concept of compatibility. The integrated experimental-modeling toolbox used has wide applicability for assessing changes in the miscibility of polymer nanocomposites.
Collapse
Affiliation(s)
- Jakob Wohlert
- Wallenberg
Wood Science Center, Department of Fiber and Polymer Technology, School
of Chemical Science and Engineering, KTH
Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Pan Chen
- Beijing
Engineering Research Center of Cellulose and its Derivatives, School
of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
| | - Lars A. Berglund
- Wallenberg
Wood Science Center, Department of Fiber and Polymer Technology, School
of Chemical Science and Engineering, KTH
Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Giada Lo Re
- Wallenberg
Wood Science Center, Department of Fiber and Polymer Technology, School
of Chemical Science and Engineering, KTH
Royal Institute of Technology, SE-10044 Stockholm, Sweden
- Department
of Industrial and Materials Science, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
31
|
Zhou G, Li P, Xiao Y, Chen S, Weng S, Dong R, Lin D, Wu DY, Yang L. Observing π-Au Interaction between Aromatic Molecules and Single Au Nanodimers with a Subnanometer Gap by SERS. Anal Chem 2024; 96:197-203. [PMID: 38016046 DOI: 10.1021/acs.analchem.3c03600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Interface interaction between aromatic molecules and noble metals plays a prominent role in fundamental science and technological applications. However, probing π-metal interactions under ambient conditions remains challenging, as it requires characterization techniques to have high sensitivity and molecular specificity without any restrictions on the sample. Herein, the interactions between polycyclic aromatic hydrocarbon (PAH) molecules and Au nanodimers with a subnanometer gap are investigated by surface-enhanced Raman spectroscopy (SERS). A cleaner and stronger plasmonic field of subnanometer gap Au nanodimer structures was constructed through solvent extraction. High sensitivity and strong π-Au interaction between PAHs and Au nanodimers are observed. Additionally, the density functional theory calculation confirmed the interactions of PAHs physically absorbed on the Au surface; the binding energy and differential charge further theoretically indicated the correlation between the sensitivity and the number of PAH rings, which is consistent with SERS experimental results. This work provides a new method to understand the interactions between aromatic molecules and noble metal surfaces in an ambient environment, also paving the way for designing the interfaces in the fields of catalysis, sensors, and molecular electronics.
Collapse
Affiliation(s)
- Guoliang Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, Anhui China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui China
| | - Yuanhui Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Siyu Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, Anhui China
| | - Shirui Weng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Dongyue Lin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, Anhui China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui China
| |
Collapse
|
32
|
Zhang Y, Zhu P, Sun H, Sun X, Ye Y, Jiang F. Superelastic Cellulose Sub-Micron Fibers/Carbon Black Aerogel for Highly Sensitive Pressure Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2310038. [PMID: 37963847 DOI: 10.1002/smll.202310038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Indexed: 11/16/2023]
Abstract
Superelastic aerogels with rapid response and recovery times, as well as exceptional shape recovery performance even from large deformation, are in high demand for wearable sensor applications. In this study, a novel conductive and superelastic cellulose-based aerogel is successfully developed. The aerogel incorporates networks of cellulose sub-micron fibers and carbon black (SMF/CB) nanoparticles, achieved through a combination of dual ice templating assembly and electrostatic assembly methods. The incorporation of assembled cellulose sub-micron fibers imparts remarkable superelasticity to the aerogel, enabling it to retain 94.6% of its original height even after undergoing 10 000 compression/recovery cycles. Furthermore, the electrostatically assembled CB nanoparticles contribute to exceptional electrical conductivity in the cellulose-based aerogel. This combination of electrical conductivity and superelasticity results in an impressive response time of 7.7 ms and a recovery time of 12.8 ms for the SMF/CB aerogel, surpassing many of the aerogel sensors reported in previous studies. As a proof of concept, the SMF/CB aerogel is utilized to construct a pressure sensor and a sensing array, which exhibit exceptional responsiveness to both minor and substantial human motions, indicating its significant potential for applications in human health monitoring and human-machine interaction.
Collapse
Affiliation(s)
- Yifan Zhang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Penghui Zhu
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Hao Sun
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Yuhang Ye
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
33
|
Paul P, Chacko L, Dua TK, Chakraborty P, Paul U, Phulchand V, Jha NK, Jha SK, Kandimalla R, Dewanjee S. Nanomedicines for the management of diabetic nephropathy: present progress and prospects. Front Endocrinol (Lausanne) 2023; 14:1236686. [PMID: 38027185 PMCID: PMC10656621 DOI: 10.3389/fendo.2023.1236686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular consequence of diabetes mellitus (DM), posing an encumbrance to public health worldwide. Control over the onset and progress of DN depend heavily on early detection and effective treatment. DN is a major contributor to end-stage renal disease, and a complete cure is yet to be achieved with currently available options. Though some therapeutic molecules have exhibited promise in treating DN complications, their poor solubility profile, low bioavailability, poor permeation, high therapeutic dose and associated toxicity, and low patient compliance apprehend their clinical usefulness. Recent research has indicated nano-systems as potential theranostic platforms displaying futuristic promise in the diagnosis and treatment of DN. Early and accurate diagnosis, site-specific delivery and retention by virtue of ligand conjugation, and improved pharmacokinetic profile are amongst the major advantages of nano-platforms, defining their superiority. Thus, the emergence of nanoparticles has offered fresh approaches to the possible diagnostic and therapeutic strategies regarding DN. The present review corroborates an updated overview of different types of nanocarriers regarding potential approaches for the diagnosis and therapy of DN.
Collapse
Affiliation(s)
- Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, Rockville, MD, United States
| | - Tarun K. Dua
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Udita Paul
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Vishwakarma Vishal Phulchand
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Niraj K. Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saurabh K. Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
- Department of Applied Biology, Indian Institute of Technology, Council of Scientific & Industrial Research (CSIR), Hyderabad, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
34
|
Wilding MC, Benmore C, Headen TF, Di Mino C, Miller TS, Suter TM, Corà F, Clancy AJ, Sella A, McMillan P, Howard CA. The local ordering of polar solvents around crystalline carbon nitride nanosheets in solution. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220337. [PMID: 37691462 PMCID: PMC10493548 DOI: 10.1098/rsta.2022.0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023]
Abstract
The crystalline graphitic carbon nitride, poly-triazine imide (PTI) is highly unusual among layered materials since it is spontaneously soluble in aprotic, polar solvents including dimethylformamide (DMF). The PTI material consists of layers of carbon nitride intercalated with LiBr. When dissolved, the resulting solutions consist of dissolved, luminescent single to multilayer nanosheets of around 60-125 nm in diameter and Li+ and Br- ions originating from the intercalating salt. To understand this unique solubility, the structure of these solutions has been investigated by high-energy X-ray and neutron diffraction. Although the diffraction patterns are dominated by inter-solvent correlations there are clear differences between the X-ray diffraction data of the PTI solution and the solvent in the 4-6 Å-1 range, with real space differences persisting to at least 10 Å. Structural modelling using both neutron and X-ray datasets as a constraint reveal the formation of distinct, dense solvation shells surrounding the nanoparticles with a layer of Br-close to the PTI-solvent interface. This solvent ordering provides a configuration that is energetically favourable underpinning thermodynamically driven PTI dissolution. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.
Collapse
Affiliation(s)
- Martin C. Wilding
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, UK
| | - Chris Benmore
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Thomas F. Headen
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, UK
| | - Camilla Di Mino
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Thomas S. Miller
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Theo M. Suter
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Furio Corà
- Department of Chemistry, University College London, London WC1E 6BT, UK
| | - Adam J. Clancy
- Department of Chemistry, University College London, London WC1E 6BT, UK
| | - Andrea Sella
- Department of Chemistry, University College London, London WC1E 6BT, UK
| | - Paul McMillan
- Department of Chemistry, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
35
|
Pathak SS, Kedarnath G, Panchakarla LS. Mechanistic Study of Amphiphilic-Assisted Self-Assembled Cadmium Sulfide Quantum Dots into 3D Superstructures. J Phys Chem Lett 2023; 14:8114-8120. [PMID: 37668342 DOI: 10.1021/acs.jpclett.3c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Self-assembling of nanoparticles into complex superstructures is very challenging, which usually depends on postorganizing techniques or pre-existing templates such as polypeptide chains or DNA or external stimulus. Such self-assembled processes typically lead to close-packed structures. Here, it has been demonstrated that under carefully template-free reaction conditions CdS quantum dots (QDs) could be synthesized and simultaneously self-assembled into complex superstructures without compromising individual QD properties. The superstructures of CdS QDs attained by the chemical-based method demonstrate Stokes-shifted photoluminescence (PL) from trap states. Remarkably, the PL decay of superstructures exhibits a single-exponential feature. This behavior is unusual for the synthesized superstructures, indicating that the trap states are restricted to a narrow range. The growth mechanism of these superstructures is explained through the formation of liquid crystal phases (LCPs) with the help of a small-angle X-ray scattering (SAXS) analysis.
Collapse
Affiliation(s)
- Sushil Swaroop Pathak
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Gotluru Kedarnath
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Leela S Panchakarla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
36
|
Pan Z, Fu QQ, Wang MH, Gao HL, Dong L, Zhou P, Cheng DD, Chen Y, Zou DH, He JC, Feng X, Yu SH. Designing nanohesives for rapid, universal, and robust hydrogel adhesion. Nat Commun 2023; 14:5378. [PMID: 37666848 PMCID: PMC10477317 DOI: 10.1038/s41467-023-40753-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
Nanoparticles-based glues have recently been shown with substantial potential for hydrogel adhesion. Nevertheless, the transformative advance in hydrogel-based application places great challenges on the rapidity, robustness, and universality of achieving hydrogel adhesion, which are rarely accommodated by existing nanoparticles-based glues. Herein, we design a type of nanohesives based on the modulation of hydrogel mechanics and the surface chemical activation of nanoparticles. The nanohesives can form robust hydrogel adhesion in seconds, to the surface of arbitrary engineering solids and biological tissues without any surface pre-treatments. A representative application of hydrogel machine demonstrates the tough and compliant adhesion between dynamic tissues and sensors via nanohesives, guaranteeing accurate and stable blood flow monitoring in vivo. Combined with their biocompatibility and inherent antimicrobial properties, the nanohesives provide a promising strategy in the field of hydrogel based engineering.
Collapse
Affiliation(s)
- Zhao Pan
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Qi-Qi Fu
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
| | - Mo-Han Wang
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Liang Dong
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Pu Zhou
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Dong-Dong Cheng
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Ying Chen
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
| | - Duo-Hong Zou
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Jia-Cai He
- Department of Oral Implant, Stomatology Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230026, China
| | - Xue Feng
- AML, Department of Engineering Mechanics, Centre for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China.
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
37
|
Dąbkowska M, Kosiorowska A, Machaliński B. The Impact of Serum Protein Adsorption on PEGylated NT3-BDNF Nanoparticles-Distribution, Protein Release, and Cytotoxicity in a Human Retinal Pigmented Epithelial Cell Model. Pharmaceutics 2023; 15:2236. [PMID: 37765206 PMCID: PMC10537189 DOI: 10.3390/pharmaceutics15092236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The adsorption of biomolecules on nanoparticles' surface ultimately depends on the intermolecular forces, which dictate the mutual interaction transforming their physical, chemical, and biological characteristics. Therefore, a better understanding of the adsorption of serum proteins and their impact on nanoparticle physicochemical properties is of utmost importance for developing nanoparticle-based therapies. We investigated the interactions between potentially therapeutic proteins, neurotrophin 3 (NT3), brain-derived neurotrophic factor (BDNF), and polyethylene glycol (PEG), in a cell-free system and a retinal pigmented epithelium cell line (ARPE-19). The variance in the physicochemical properties of PEGylated NT3-BDNF nanoparticles (NPs) in serum-abundant and serum-free systems was studied using transmission electron microscopy, atomic force microscopy, multi-angle dynamic, and electrophoretic light scattering. Next, we compared the cellular response of ARPE-19 cells after exposure to PEGylated NT3-BDNF NPs in either a serum-free or complex serum environment by investigating protein release and cell cytotoxicity using ultracentrifuge, fluorescence spectroscopy, and confocal microscopy. After serum exposure, the decrease in the aggregation of PEGylated NT3-BDNF NPs was accompanied by increased cell viability and BDNF/NT3 in vitro release. In contrast, in a serum-free environment, the appearance of positively charged NPs with hydrodynamic diameters up to 900 nm correlated with higher cytotoxicity and limited BDNF/NT3 release into the cell culture media. This work provides new insights into the role of protein corona when considering the PEGylated nano-bio interface with implications for cytotoxicity, NPs' distribution, and BDNF and NT3 release profiles in the in vitro setting.
Collapse
Affiliation(s)
- Maria Dąbkowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Rybacka 1, 70-204 Szczecin, Poland;
| | - Alicja Kosiorowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Rybacka 1, 70-204 Szczecin, Poland;
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland;
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland;
| |
Collapse
|
38
|
Wang Y, Chen J, Li R, Götz A, Drobek D, Przybilla T, Hübner S, Pelz P, Yang L, Apeleo Zubiri B, Spiecker E, Engel M, Ye X. Controlled Self-Assembly of Gold Nanotetrahedra into Quasicrystals and Complex Periodic Supracrystals. J Am Chem Soc 2023; 145:17902-17911. [PMID: 37534987 DOI: 10.1021/jacs.3c05299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The self-assembly of shape-anisotropic nanocrystals into large-scale structures is a versatile and scalable approach to creating multifunctional materials. The tetrahedral geometry is ubiquitous in natural and manmade materials, yet regular tetrahedra present a formidable challenge in understanding their self-assembly behavior as they do not tile space. Here, we report diverse supracrystals from gold nanotetrahedra including the quasicrystal (QC) and the dimer packing predicted more than a decade ago and hitherto unknown phases. We solve the complex three-dimensional (3D) structure of the QC by a combination of electron microscopy, tomography, and synchrotron X-ray scattering. Nanotetrahedron vertex sharpness, surface ligands, and assembly conditions work in concert to regulate supracrystal structure. We also discover that the surface curvature of supracrystals can induce structural changes of the QC tiling and eventually, for small supracrystals with high curvature, stabilize a hexagonal approximant. Our findings bridge the gap between computational design and experimental realization of soft matter assemblies and demonstrate the importance of accurate control over nanocrystal attributes and the assembly conditions to realize increasingly complex nanopolyhedron supracrystals.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jun Chen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexander Götz
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Dominik Drobek
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Thomas Przybilla
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Sabine Hübner
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Philipp Pelz
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
39
|
Waris, Hasnat A, Hasan S, Bano S, Sultana S, Ibhadon AO, Khan MZ. Development of nanozyme based sensors as diagnostic tools in clinic applications: a review. J Mater Chem B 2023; 11:6762-6781. [PMID: 37377089 DOI: 10.1039/d3tb00451a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Since 1970, many artificial enzymes that imitate the activity and structure of natural enzymes have been discovered. Nanozymes are a group of nanomaterials with enzyme-mimetic properties capable of catalyzing natural enzyme processes. Nanozymes have attracted great interest in biomedicine due to their excellent stability, rapid reactivity, and affordable cost. The enzyme-mimetic activities of nanozymes may be modulated by numerous parameters, including the oxidative state of metal ions, pH, hydrogen peroxide (H2O2) level, and glutathione (GSH) concentration, indicating the tremendous potential for biological applications. This article delivers a comprehensive overview of the advances in the knowledge of nanozymes and the creation of unique and multifunctional nanozymes, and their biological applications. In addition, a future perspective of employing the as-designed nanozymes in biomedical and diagnostic applications is provided, and we also discuss the barriers and constraints for their further therapeutic use.
Collapse
Affiliation(s)
- Waris
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, India
| | - Abul Hasnat
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, India
| | - Shumaila Hasan
- Department of Chemistry, Integral University, Lucknow-226026, India
| | - Sayfa Bano
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Saima Sultana
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Alex Omo Ibhadon
- School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Mohammad Zain Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
40
|
Li Z, Fan Q, Ye Z, Wu C, Wang Z, Yin Y. A magnetic assembly approach to chiral superstructures. Science 2023; 380:1384-1390. [PMID: 37384698 DOI: 10.1126/science.adg2657] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Colloidal assembly into chiral superstructures is usually accomplished with templating or lithographic patterning methods that are only applicable to materials with specific compositions and morphologies over narrow size ranges. Here, chiral superstructures can be rapidly formed by magnetically assembling materials of any chemical compositions at all scales, from molecules to nano- and microstructures. We show that a quadrupole field chirality is generated by permanent magnets caused by consistent field rotation in space. Applying the chiral field to magnetic nanoparticles produces long-range chiral superstructures controlled by field strength at the samples and orientation of the magnets. Transferring the chirality to any achiral molecules is enabled by incorporating guest molecules such as metals, polymers, oxides, semiconductors, dyes, and fluorophores into the magnetic nanostructures.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Zuyang Ye
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Chaolumen Wu
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Zhongxiang Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
41
|
Abstract
The nanoscale properties of nanomaterials, especially nanoparticles, including size, shape, and surface charge, have been extensively studied for their impact on nanomedicine. Given the inherent chiral nature of biological systems and their high enantiomeric selectivity, there is rising interest to manipulate the chirality of nanomaterials to enhance their biomolecular interactions and improve nanotherapeutics. Chiral nanostructures are currently more prevalently used in biosensing and diagnostic applications owing to their distinctive physical and optical properties, but they hold great promise for use in nanomedicine. In this Review, we first discuss stereospecific interactions between chiral nanomaterials and biomolecules before comparing the synthesis and characterization methods of chiral nanoparticles and nanoassemblies. Finally, we examine the applications of chiral nanotherapeutics in cancer, immunomodulation, and neurodegenerative diseases and propose plausible mechanisms in which chiral nanomaterials interact with cells for biological manipulation. This Review on chirality is a timely reminder of the arsenal of nanoscale modifications to boost research in nanotherapeutics.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
- Institute of Health Innovation and Technology, National University of Singapore, Singapore 117599
- Tissue Engineering Program, National University of Singapore, Singapore 117510
| |
Collapse
|
42
|
Turali-Emre ES, Emre AE, Vecchio DA, Kadiyala U, VanEpps JS, Kotov NA. Self-Organization of Iron Sulfide Nanoparticles into Complex Multicompartment Supraparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211244. [PMID: 36965166 PMCID: PMC10265277 DOI: 10.1002/adma.202211244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Indexed: 06/09/2023]
Abstract
Self-assembled compartments from nanoscale components are found in all life forms. Their characteristic dimensions are in 50-1000 nm scale, typically assembled from a variety of bioorganic "building blocks". Among the various functions that these mesoscale compartments carry out, protection of the content from the environment is central. Finding synthetic pathways to similarly complex and functional particles from technologically friendly inorganic nanoparticles (NPs) is needed for a multitude of biomedical, biochemical, and biotechnological processes. Here, it is shown that FeS2 NPs stabilized by l-cysteine self-assemble into multicompartment supraparticles (mSPs). The NPs initially produce ≈55 nm concave assemblies that reconfigure into ≈75 nm closed mSPs with ≈340 interconnected compartments with an average size of ≈5 nm. The intercompartmental partitions and mSP surface are formed primarily from FeS2 and Fe2 O3 NPs, respectively. The intermediate formation of cup-like particles enables encapsulation of biological cargo. This capability is demonstrated by loading mSPs with DNA and subsequent transfection of mammalian cells. Also it is found that the temperature stability of the DNA cargo is enhanced compared to the traditional delivery vehicles. These findings demonstrate that biomimetic compartmentalized particles can be used to successfully encapsulate and enhance temperature stability of the nucleic acid cargo for a variety of bioapplications.
Collapse
Affiliation(s)
- E. Sumeyra Turali-Emre
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Ahmet E. Emre
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Drew A. Vecchio
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Usha Kadiyala
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - J. Scott VanEpps
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Nicholas A. Kotov
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Materials Science and Engineering Department, University of Michigan Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| |
Collapse
|
43
|
Luo B, Wang Z, Curk T, Watson G, Liu C, Kim A, Ou Z, Luijten E, Chen Q. Unravelling crystal growth of nanoparticles. NATURE NANOTECHNOLOGY 2023; 18:589-595. [PMID: 36997752 DOI: 10.1038/s41565-023-01355-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Crystal growth from nanoscale constituents is a ubiquitous phenomenon in biology, geology and materials science. Numerous studies have focused on understanding the onset of nucleation and on producing high-quality crystals by empirically sampling constituents with different attributes and varying the growth conditions. However, the kinetics of post-nucleation growth processes, an important determinant of crystal morphology and properties, have remained underexplored due to experimental challenges associated with real-space imaging at the nanoscale. Here we report the imaging of the crystal growth of nanoparticles of different shapes using liquid-phase transmission electron microscopy, resolving both lateral and perpendicular growth of crystal layers by tracking individual nanoparticles. We observe that these nanoscale systems exhibit layer-by-layer growth, typical of atomic crystallization, as well as rough growth prevalent in colloidal systems. Surprisingly, the lateral and perpendicular growth modes can be independently controlled, resulting in two mixed crystallization modes that, until now, have received only scant attention. Combining analytical considerations with molecular dynamics and kinetic Monte Carlo simulations, we develop a comprehensive framework for our observations, which are fundamentally determined by the size and shape of the building blocks. These insights unify the understanding of crystal growth across four orders of magnitude in particle size and suggest novel pathways to crystal engineering.
Collapse
Affiliation(s)
- Binbin Luo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ziwei Wang
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, USA
| | - Tine Curk
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Garrett Watson
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Chang Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ahyoung Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Erik Luijten
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
44
|
Whittaker ML, Shoaib M, Lammers LN, Zhang Y, Tournassat C, Gilbert B. Smectite phase separation is driven by hydration-mediated interfacial charge. J Colloid Interface Sci 2023; 647:406-420. [PMID: 37269737 DOI: 10.1016/j.jcis.2023.05.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 06/05/2023]
Abstract
Smectite clay minerals have an outsize impact on the response of clay-rich media to common stimuli, such as hydration and ion exchange, motivating extensive effort to understand behaviors resulting from these processes such as swelling and exfoliation. Smectites are common and historic systems for investigating colloidal and interfacial phenomena, with two swelling regimes commonly identified across myriad clays: osmotic swelling at high water activity and crystalline swelling at low water activity. However, no current swelling model seamlessly spans the full ranges of water, salt and clay content encountered in natural or engineered settings. Here, we show that structures previously rationalized as either osmotic or crystalline coexist as a rich array of distinct colloidal phases that differ by water content, layer stacking thickness, and curvature. We present an analytical model for intermolecular potentials among water, salt and clay in both mono- and divalent electrolytes that predicts swelling pressures across high and low water activities. Our results indicate that all clay swelling is osmotic swelling, but that the osmotic pressure of charged mineral interfaces becomes attractive and dominates that of the electrolyte at high clay activities. Global energy minima are often not reached on experimental timescales due to many local energy minima that promote long-lived intermediate states with vast differences in clay, ion, and water mobilities, leading to hyperdiffusive layer dynamics driven by variable hydration-mediated interfacial charge. Teaser Distinct colloidal phases of swelling clays emerge via ion (de)hydration at mineral interfaces that drives hyperdiffusive layer dynamics as metastable smectites approach equilibrium.
Collapse
Affiliation(s)
- Michael L Whittaker
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA.
| | - Mohammad Shoaib
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Laura N Lammers
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Christophe Tournassat
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Institut des Sciences de la Terre d'Orléans, Université d'Orléans-CNRS-BRGM, Orléans 45071, France
| | - Benjamin Gilbert
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
45
|
Naletova I, Tomasello B, Attanasio F, Pleshkan VV. Prospects for the Use of Metal-Based Nanoparticles as Adjuvants for Local Cancer Immunotherapy. Pharmaceutics 2023; 15:1346. [PMID: 37242588 PMCID: PMC10222518 DOI: 10.3390/pharmaceutics15051346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Immunotherapy is among the most effective approaches for treating cancer. One of the key aspects for successful immunotherapy is to achieve a strong and stable antitumor immune response. Modern immune checkpoint therapy demonstrates that cancer can be defeated. However, it also points out the weaknesses of immunotherapy, as not all tumors respond to therapy and the co-administration of different immunomodulators may be severely limited due to their systemic toxicity. Nevertheless, there is an established way through which to increase the immunogenicity of immunotherapy-by the use of adjuvants. These enhance the immune response without inducing such severe adverse effects. One of the most well-known and studied adjuvant strategies to improve immunotherapy efficacy is the use of metal-based compounds, in more modern implementation-metal-based nanoparticles (MNPs), which are exogenous agents that act as danger signals. Adding innate immune activation to the main action of an immunomodulator makes it capable of eliciting a robust anti-cancer immune response. The use of an adjuvant has the peculiarity of a local administration of the drug, which positively affects its safety. In this review, we will consider the use of MNPs as low-toxicity adjuvants for cancer immunotherapy, which could provide an abscopal effect when administered locally.
Collapse
Affiliation(s)
- Irina Naletova
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, V.le Andrea Doria 6, 95125 Catania, Italy
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy
| | - Victor V. Pleshkan
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
46
|
Hallstrom J, Cherniukh I, Zha X, Kovalenko MV, Travesset A. Ligand Effects in Assembly of Cubic and Spherical Nanocrystals: Applications to Packing of Perovskite Nanocubes. ACS NANO 2023; 17:7219-7228. [PMID: 37040619 DOI: 10.1021/acsnano.2c10079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We establish the formula representing cubic nanocrystals (NCs) as hard cubes taking into account the role of the ligands and describe how these results generalize to any other NC shapes. We derive the conditions under which the hard cube representation breaks down and provide explicit expressions for the effective size. We verify the results from the detailed potential of mean force calculations for two nanocubes in different orientations as well as with spherical nanocrystals. Our results explicitly demonstrate the relevance of certain ligand conformations, i.e., "vortices", and show that edges and corners provide natural sites for their emergence. We also provide both simulations and experimental results with single component cubic perovskite nanocrystals assembled into simple cubic superlattices, which further corroborate theoretical predictions. In this way, we extend the Orbifold Topological Model (OTM) accounting for the role of ligands beyond spherical nanocrystals and discuss its extension to arbitrary nanocrystal shapes. Our results provide detailed predictions for recent superlattices of perovskite nanocubes and spherical nanocrystals. Problems with existing united atom force fields are discussed.
Collapse
Affiliation(s)
- Jonas Hallstrom
- Department of Physics and Astronomy, Iowa State University and Ames National Laboratory, Ames, Iowa 50011, United States
| | - Ihor Cherniukh
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dubendorf, Switzerland
| | - Xun Zha
- Department of Physics and Astronomy, Iowa State University and Ames National Laboratory, Ames, Iowa 50011, United States
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dubendorf, Switzerland
| | - Alex Travesset
- Department of Physics and Astronomy, Iowa State University and Ames National Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
47
|
Raybin JG, Wai RB, Ginsberg NS. Nonadditive Interactions Unlock Small-Particle Mobility in Binary Colloidal Monolayers. ACS NANO 2023; 17:8303-8314. [PMID: 37093781 PMCID: PMC10173694 DOI: 10.1021/acsnano.2c12668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We examine the organization and dynamics of binary colloidal monolayers composed of micron-scale silica particles interspersed with smaller-diameter silica particles that serve as minority component impurities. These binary monolayers are prepared at the surface of ionic liquid droplets over a range of size ratios (σ = 0.16-0.66) and are studied with low-dose minimally perturbative scanning electron microscopy (SEM). The high resolution of SEM imaging provides direct tracking of all particle coordinates over time, enabling a complete description of the microscopic state. In these bidisperse size mixtures, particle interactions are nonadditive because interfacial pinning to the droplet surface causes the equators of differently sized particles to lie in separate planes. By varying the size ratio, we control the extent of nonadditivity in order to achieve phase behavior inaccessible to additive 2D systems. Across the range of size ratios, we tune the system from a mobile small-particle phase (σ < 0.24) to an interstitial solid (0.24 < σ < 0.33) and furthermore to a disordered glass (σ > 0.33). These distinct phase regimes are classified through measurements of hexagonal ordering of the large-particle host lattice and the lattice's capacity for small-particle transport. Altogether, we explain these structural and dynamic trends by considering the combined influence of interparticle interactions and the colloidal packing geometry. Our measurements are reproduced in molecular dynamics simulations of 2D nonadditive disks, suggesting an efficient method for describing confined systems with reduced dimensionality representations.
Collapse
Affiliation(s)
- Jonathan G Raybin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Rebecca B Wai
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Naomi S Ginsberg
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
- STROBE, NSF Science & Technology Center, Berkeley, California 94720, United States
| |
Collapse
|
48
|
Benselfelt T, Kummer N, Nordenström M, Fall AB, Nyström G, Wågberg L. The Colloidal Properties of Nanocellulose. CHEMSUSCHEM 2023; 16:e202201955. [PMID: 36650954 DOI: 10.1002/cssc.202201955] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Nanocelluloses are anisotropic nanoparticles of semicrystalline assemblies of glucan polymers. They have great potential as renewable building blocks in the materials platform of a more sustainable society. As a result, the research on nanocellulose has grown exponentially over the last decades. To fully utilize the properties of nanocelluloses, a fundamental understanding of their colloidal behavior is necessary. As elongated particles with dimensions in a critical nanosize range, their colloidal properties are complex, with several behaviors not covered by classical theories. In this comprehensive Review, we describe the most prominent colloidal behaviors of nanocellulose by combining experimental data and theoretical descriptions. We discuss the preparation and characterization of nanocellulose dispersions, how they form networks at low concentrations, how classical theories cannot describe their behavior, and how they interact with other colloids. We then show examples of how scientists can use this fundamental knowledge to control the assembly of nanocellulose into new materials with exceptional properties. We hope aspiring and established researchers will use this Review as a guide.
Collapse
Affiliation(s)
- Tobias Benselfelt
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092, Zürich, Switzerland
| | - Malin Nordenström
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | | | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092, Zürich, Switzerland
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| |
Collapse
|
49
|
Carone A, Emilsson S, Mariani P, Désert A, Parola S. Gold nanoparticle shape dependence of colloidal stability domains. NANOSCALE ADVANCES 2023; 5:2017-2026. [PMID: 36998666 PMCID: PMC10044300 DOI: 10.1039/d2na00809b] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Controlling the spatial arrangement of plasmonic nanoparticles is of particular interest to utilize inter-particle plasmonic coupling, which allows changing their optical properties. For bottom-up approaches, colloidal nanoparticles are interesting building blocks to generate more complex structures via controlled self-assembly using the destabilization of colloidal particles. For plasmonic noble metal nanoparticles, cationic surfactants, such as CTAB, are widely used in synthesis, both as shaping and stabilizing agents. In such a context, understanding and predicting the colloidal stability of a system solely composed of AuNPs and CTAB is fundamentally crucial. Here, we tried to rationalize the particle behavior by reporting the stability diagrams of colloidal gold nanostructures taking into account parameters such as the size, shape, and CTAB/AuNP concentration. We found that the overall stability was dependent on the shape of the nanoparticles, with the presence of sharp tips being the source of instability. For all morphologies evaluated here, a metastable area was systematically observed, in which the system aggregated in a controlled way while maintaining the colloidal stability. Combining different strategies with the help of transmission electron microscopy, the behavior of the system in the different zones of the diagrams was addressed. Finally, by controlling the experimental conditions with the previously obtained diagrams, we were able to obtain linear structures with a rather good control over the number of particles participating in the assembly while maintaining good colloidal stability.
Collapse
Affiliation(s)
- Antonio Carone
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie F69364 Lyon France
| | - Samuel Emilsson
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie F69364 Lyon France
| | - Pablo Mariani
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie F69364 Lyon France
| | - Anthony Désert
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie F69364 Lyon France
| | - Stephane Parola
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie F69364 Lyon France
| |
Collapse
|
50
|
Xu Z, Ou Z. Direct Imaging of the Kinetic Crystallization Pathway: Simulation and Liquid-Phase Transmission Electron Microscopy Observations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2026. [PMID: 36903141 PMCID: PMC10004038 DOI: 10.3390/ma16052026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The crystallization of materials from a suspension determines the structure and function of the final product, and numerous pieces of evidence have pointed out that the classical crystallization pathway may not capture the whole picture of the crystallization pathways. However, visualizing the initial nucleation and further growth of a crystal at the nanoscale has been challenging due to the difficulties of imaging individual atoms or nanoparticles during the crystallization process in solution. Recent progress in nanoscale microscopy had tackled this problem by monitoring the dynamic structural evolution of crystallization in a liquid environment. In this review, we summarized several crystallization pathways captured by the liquid-phase transmission electron microscopy technique and compared the observations with computer simulation. Apart from the classical nucleation pathway, we highlight three nonclassical pathways that are both observed in experiments and computer simulations: formation of an amorphous cluster below the critical nucleus size, nucleation of the crystalline phase from an amorphous intermediate, and transition between multiple crystalline structures before achieving the final product. Among these pathways, we also highlight the similarities and differences between the experimental results of the crystallization of single nanocrystals from atoms and the assembly of a colloidal superlattice from a large number of colloidal nanoparticles. By comparing the experimental results with computer simulations, we point out the importance of theory and simulation in developing a mechanistic approach to facilitate the understanding of the crystallization pathway in experimental systems. We also discuss the challenges and future perspectives for investigating the crystallization pathways at the nanoscale with the development of in situ nanoscale imaging techniques and potential applications to the understanding of biomineralization and protein self-assembly.
Collapse
Affiliation(s)
- Zhangying Xu
- Qian Weichang College, Shanghai University, Shanghai 200444, China
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|