1
|
Gao V, Chlebowicz J, Gaskin K, Briano JA, Komer LE, Pineda A, Jhalani S, Ahmad S, Uwaifo E, Black LS, Haller JE, Przedborski S, Lane DA, Zhang S, Sharma M, Burré J. Synaptic vesicle-omics in mice captures signatures of aging and synucleinopathy. Nat Commun 2025; 16:4079. [PMID: 40312501 PMCID: PMC12046008 DOI: 10.1038/s41467-025-59441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 04/23/2025] [Indexed: 05/03/2025] Open
Abstract
Neurotransmitter release occurs through exocytosis of synaptic vesicles. α-Synuclein's function and dysfunction in Parkinson's disease and other synucleinopathies is thought to be tightly linked to synaptic vesicle binding. Age is the biggest risk factor for synucleinopathy, and ~15% of synaptic vesicle proteins have been linked to central nervous system diseases. Yet, age- and disease-induced changes in synaptic vesicles remain unexplored. Via systematic analysis of synaptic vesicles at the ultrastructural, protein, and lipid levels, we reveal specific changes in synaptic vesicle populations, proteins, and lipids over age in wild-type mice and in α-synuclein knockout mice with and without expression of human α-synuclein. Strikingly, we find several previously undescribed synaptic changes in mice lacking α-synuclein, suggesting that loss of α-synuclein function contributes to synaptic dysfunction. These findings not only provide insights into synaptic vesicle biology and disease mechanisms in synucleinopathy, but also serve as a baseline for further mechanistic exploration of age- and disease-related alterations in synaptic vesicles.
Collapse
Affiliation(s)
- Virginia Gao
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Julita Chlebowicz
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Karlton Gaskin
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Juan A Briano
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Lauren E Komer
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - André Pineda
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Shrey Jhalani
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Saad Ahmad
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Eseosa Uwaifo
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Luca S Black
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jillian E Haller
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Serge Przedborski
- Departments of Neurology, Pathology & Cell Biology and Neuroscience, Columbia University, New York, NY, 10032, USA
| | - Diane A Lane
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Manu Sharma
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jacqueline Burré
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
2
|
Preobraschenski J, Kreutzberger AJB, Ganzella M, Münster-Wandowski A, Kreutzberger MAB, Oolsthorn LHM, Seibert S, Kiessling V, Riedel D, Witkowska A, Ahnert-Hilger G, Tamm LK, Jahn R. Synaptophysin accelerates synaptic vesicle fusion by expanding the membrane upon neurotransmitter loading. SCIENCE ADVANCES 2025; 11:eads4661. [PMID: 40267188 PMCID: PMC12017324 DOI: 10.1126/sciadv.ads4661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/18/2025] [Indexed: 04/25/2025]
Abstract
Synaptic transmission is mediated by the exocytotic release of neurotransmitters stored in synaptic vesicles (SVs). SVs filled with neurotransmitters preferentially undergo exocytosis, but it is unclear how this is achieved. Here, we show that during transmitter loading, SVs substantially increase in size, which is reversible and requires synaptophysin, an abundant membrane protein with an unclear function. SVs are larger when synaptophysin is knocked out, and conversely, liposomes are smaller when reconstituted with synaptophysin. Moreover, transmitter loading of SVs accelerates fusion in vitro, which is abolished when synaptophysin is lacking despite near normal transmitter uptake. We conclude that synaptophysin functions as a curvature-promoting entity in the SV membrane, allowing for major lateral expansion of the SV membrane during neurotransmitter filling, thus increasing their propensity for exocytosis.
Collapse
Affiliation(s)
- Julia Preobraschenski
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Institute for Auditory Neuroscience, University Medical Center, Göttingen 37075, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Goettingen, Göttingen 37075, Germany
| | - Alex J. B. Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22903, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville 22903, VA, USA
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | | | - Mark A. B. Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville 22903, VA 22903, USA
| | - Linda H. M. Oolsthorn
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sascha Seibert
- Institute für Integrative Neuroanatomy, Charité – Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22903, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville 22903, VA, USA
| | - Dietmar Riedel
- Facility for Transmission Electron Microscopy, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Agata Witkowska
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Gudrun Ahnert-Hilger
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Institute für Integrative Neuroanatomy, Charité – Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22903, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville 22903, VA, USA
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| |
Collapse
|
3
|
Rao S, Madhu LN, Babu RS, Shankar G, Kotian S, Nagarajan A, Upadhya R, Narvekar E, Cai JJ, Shetty AK. Extracellular vesicles from hiPSC-derived NSCs protect human neurons against Aβ-42 oligomers induced neurodegeneration, mitochondrial dysfunction and tau phosphorylation. Stem Cell Res Ther 2025; 16:191. [PMID: 40251643 PMCID: PMC12008877 DOI: 10.1186/s13287-025-04324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by the accumulation of amyloid beta-42 (Aβ-42) in the brain, causing various adverse effects. Thus, therapies that reduce Aβ-42 toxicity in AD are of great interest. One promising approach is to use extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSC-EVs) because they carry multiple therapeutic miRNAs and proteins capable of protecting neurons against Aβ-42-induced toxicity. Therefore, this in vitro study investigated the proficiency of hiPSC-NSC-EVs to protect human neurons from Aβ-42 oligomers (Aβ-42o) induced neurodegeneration. METHODS We isolated hiPSC-NSC-EVs using chromatographic methods and characterized their size, ultrastructure, expression of EV-specific markers and proficiency in getting incorporated into mature human neurons. Next, mature human neurons differentiated from two different hiPSC lines were exposed to 1 µM Aβ-42o alone or with varying concentrations of hiPSC-NSC-EVs. The protective effects of hiPSC-NSC-EVs against Aβ-42o-induced neurodegeneration, oxidative stress, mitochondrial dysfunction, impaired autophagy, and tau phosphorylation were ascertained using multiple measures and one-way ANOVA with Newman-Keuls multiple comparisons post hoc tests. RESULTS A significant neurodegeneration was observed when human neurons were exposed to Aβ-42o alone. Neurodegeneration was associated with (1) elevated levels of reactive oxygen species (ROS), mitochondrial superoxide, malondialdehyde (MDA) and protein carbonyls (PCs), (2) increased expression of proapoptotic Bax and Bad genes and proteins, and genes encoding mitochondrial complex proteins, (3) diminished mitochondrial membrane potential and mitochondria, (4) reduced expression of the antiapoptotic gene and protein Bcl-2, and autophagy-related proteins, and (5) increased phosphorylation of tau. However, the addition of an optimal dose of hiPSC-NSC-EVs (6 × 109 EVs) to human neuronal cultures exposed to Aβ-42o significantly reduced the extent of neurodegeneration, along with diminished levels of ROS, superoxide, MDA and PCs, normalized expressions of Bax, Bad, and Bcl-2, and autophagy-related proteins, higher mitochondrial membrane potential and mitochondria, enhanced expression of genes linked to mitochondrial complex proteins, and reduced tau phosphorylation. CONCLUSIONS An optimal dose of hiPSC-NSC-EVs could significantly decrease the degeneration of human neurons induced by Aβ-42o. The results support further research into the effectiveness of hiPSC-NSC-EVs in AD, particularly their proficiency in preserving neurons and slowing disease progression.
Collapse
Affiliation(s)
- Shama Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Roshni Sara Babu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Goutham Shankar
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Sanya Kotian
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Advaidhaa Nagarajan
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Esha Narvekar
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, Texas A&M College of Veterinary Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA.
| |
Collapse
|
4
|
Mei Y, Gosztyla ML, Tan X, Dozier LE, Wilkinson B, McKetney J, Lee J, Chen M, Tsai D, Kopalle H, Gritsenko MA, Hartel N, Graham NA, Flores I, Gilmore-Hall SK, Xu S, Marquez CA, Liu SN, Fong D, Chen J, Licon K, Hong D, Wright SN, Kreisberg JF, Nott A, Smith RD, Qian WJ, Swaney DL, Iakoucheva LM, Krogan NJ, Patrick GN, Zhou Y, Feng G, Coba MP, Yeo GW, Ideker T. Integrated multi-omic characterizations of the synapse reveal RNA processing factors and ubiquitin ligases associated with neurodevelopmental disorders. Cell Syst 2025; 16:101204. [PMID: 40054464 DOI: 10.1016/j.cels.2025.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025]
Abstract
The molecular composition of the excitatory synapse is incompletely defined due to its dynamic nature across developmental stages and neuronal populations. To address this gap, we apply proteomic mass spectrometry to characterize the synapse in multiple biological models, including the fetal human brain and human induced pluripotent stem cell (hiPSC)-derived neurons. To prioritize the identified proteins, we develop an orthogonal multi-omic screen of genomic, transcriptomic, interactomic, and structural data. This data-driven framework identifies proteins with key molecular features intrinsic to the synapse, including characteristic patterns of biophysical interactions and cross-tissue expression. The multi-omic analysis captures synaptic proteins across developmental stages and experimental systems, including 493 synaptic candidates supported by proteomics. We further investigate three such proteins that are associated with neurodevelopmental disorders-Cullin 3 (CUL3), DEAD-box helicase 3 X-linked (DDX3X), and Y-box binding protein-1 (YBX1)-by mapping their networks of physically interacting synapse proteins or transcripts. Our study demonstrates the potential of an integrated multi-omic approach to more comprehensively resolve the synaptic architecture.
Collapse
Affiliation(s)
- Yuan Mei
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA
| | - Maya L Gosztyla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Xinzhu Tan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada
| | - Lara E Dozier
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brent Wilkinson
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Justin McKetney
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - John Lee
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Chen
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dorothy Tsai
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hema Kopalle
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Nicolas Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Ilse Flores
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephen K Gilmore-Hall
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuhao Xu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Charlotte A Marquez
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophie N Liu
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dylan Fong
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jing Chen
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kate Licon
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Derek Hong
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sarah N Wright
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason F Kreisberg
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexi Nott
- Department of Brain Sciences, Imperial College London, White City Campus, London W12 7RH, UK; UK Dementia Research Institute, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Danielle L Swaney
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nevan J Krogan
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - Gentry N Patrick
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA.
| | - Trey Ideker
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Gopi S, Brandani GB, Tan C, Jung J, Gu C, Mizutani A, Ochiai H, Sugita Y, Takada S. In silico nanoscope to study the interplay of genome organization and transcription regulation. Nucleic Acids Res 2025; 53:gkaf189. [PMID: 40114377 PMCID: PMC11925733 DOI: 10.1093/nar/gkaf189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/10/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
In eukaryotic genomes, regulated access and communication between cis-regulatory elements (CREs) are necessary for enhancer-mediated transcription of genes. The molecular framework of the chromatin organization underlying such communication remains poorly understood. To better understand it, we develop a multiscale modeling pipeline to build near-atomistic models of the 200 kb Nanog gene locus in mouse embryonic stem cells comprising nucleosomes, transcription factors, co-activators, and RNA polymerase II-mediator complexes. By integrating diverse experimental data, including protein localization, genomic interaction frequencies, cryo-electron microscopy, and single-molecule fluorescence studies, our model offers novel insights into chromatin organization and its role in enhancer-promoter communication. The models equilibrated by high-performance molecular dynamics simulations span a scale of ∼350 nm, revealing an experimentally consistent local and global organization of chromatin and transcriptional machinery. Our models elucidate that the sequence-regulated chromatin accessibility facilitates the recruitment of transcription regulatory proteins exclusively at CREs, guided by the contrasting nucleosome organization compared to other regions. By constructing an experimentally consistent near-atomic model of chromatin in the cellular environment, our approach provides a robust framework for future studies on nuclear compartmentalization, chromatin organization, and transcription regulation.
Collapse
Affiliation(s)
- Soundhararajan Gopi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Cheng Tan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
| | - Jaewoon Jung
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Chenyang Gu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Azuki Mizutani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Ochiai
- Division of Gene Expression Dynamics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-0054, Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Usher S, Toulmé E, Florea R, Yatskevich S, Jao CC, Dijkhof LRH, Colding JM, Joshi P, Zilberleyb I, Trimbuch T, Brokowski B, Hauser AS, Leitner A, Rosenmund C, Kschonsak M, Pless SA. The sodium leak channel NALCN is regulated by neuronal SNARE complex proteins. SCIENCE ADVANCES 2025; 11:eads6004. [PMID: 40085699 DOI: 10.1126/sciadv.ads6004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
NALCN (sodium leak channel, nonselective) is vital for regulating electrical activity in neurons and other excitable cells, and mutations in the channel or its auxiliary proteins lead to severe neurodevelopmental disorders. Here, we show that the neuronal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex proteins syntaxin and SNAP25 (synaptosome-associated protein 25), which enable synaptic transmission in the nervous system, inhibit the activity of the NALCN channel complex in both heterologous systems and primary neurons. The existence of this interaction suggests that the neurotransmitter release machinery can regulate electrical signaling directly and therefore modulate the threshold for its own activity. We further find that reduction of NALCN currents is sufficient to promote cell survival in syntaxin-depleted cells. This suggests that disinhibited NALCN may cause the puzzling phenomenon of rapid neuronal cell death in the absence of syntaxin. This interaction could offer opportunities for future drug development against genetic diseases linked to both NALCN- and SNARE protein-containing complexes.
Collapse
Affiliation(s)
- Samuel Usher
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Estelle Toulmé
- Institut für Neurophysiologie, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Roberta Florea
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, Zürich 8093, Switzerland
| | - Stanislau Yatskevich
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christine C Jao
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Luuk R H Dijkhof
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Janne M Colding
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Prajakta Joshi
- Department of Biomolecular Resources, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Inna Zilberleyb
- Department of Biomolecular Resources, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Thorsten Trimbuch
- Institut für Neurophysiologie, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Bettina Brokowski
- Institut für Neurophysiologie, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, Zürich 8093, Switzerland
| | - Christian Rosenmund
- Institut für Neurophysiologie, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Marc Kschonsak
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
7
|
Kentro JA, Singh G, Pham TM, Currie J, Khullar S, Medeiros AT, Tsiarli M, Larschan E, O’Connor-Giles KM. Conserved transcription factors coordinate synaptic gene expression through repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.30.621128. [PMID: 39553973 PMCID: PMC11565943 DOI: 10.1101/2024.10.30.621128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Chemical synapses are the primary sites of communication in the nervous system. Synapse formation is a complex process involving hundreds of proteins that must be expressed in two cells at the same time. We find that synaptic genes are broadly and specifically coordinated at the level of transcription across developing nervous systems. How this spatiotemporal coordination is achieved remains an open question. Through genomic and functional studies in Drosophila, we demonstrate corresponding coordination of chromatin accessibility and identify chromatin regulators DEAF1 and CLAMP as broad repressors of synaptic gene expression outside windows of peak synaptogenesis. Disruption of either factor temporally dysregulates synaptic gene expression across neuronal subtypes, leading to excess synapse formation. We further find that DEAF1, which is linked to syndromic intellectual disability, is both necessary and sufficient to constrain synapse formation. Our findings reveal the critical importance of broad temporally coordinated repression of synaptic gene expression in regulating neuronal connectivity and identify two key repressors.
Collapse
Affiliation(s)
- James A. Kentro
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Gunjan Singh
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Tuan M. Pham
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Justin Currie
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Maria Tsiarli
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
8
|
Espay AJ, Lees AJ, Cardoso F, Frucht SJ, Erskine D, Sandoval IM, Bernal-Conde LD, Sturchio A, Imarisio A, Hoffmann C, Montemagno KT, Milovanovic D, Halliday GM, Manfredsson FP. The α-synuclein seed amplification assay: Interpreting a test of Parkinson's pathology. Parkinsonism Relat Disord 2025; 131:107256. [PMID: 39794217 DOI: 10.1016/j.parkreldis.2024.107256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
The α-synuclein seed amplification assay (αSyn-SAA) sensitively detects Lewy pathology, the amyloid state of α-synuclein, in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD). The αSyn-SAA harnesses the physics of seeding, whereby a superconcentrated solution of recombinant α-synuclein lowers the thermodynamic threshold (nucleation barrier) for aggregated α-synuclein to act as a nucleation catalyst ("seed") to trigger the precipitation (nucleation) of monomeric α-synuclein into pathology. This laboratory setup increases the signal for identifying a catalyst if one is present in the tissue examined. The result is binary: positive, meaning precipitation occurred, and a catalyst is present, or negative, meaning no precipitation, therefore no catalyst. Since protein precipitation via seeding can only occur at a concentration many-fold higher than the human brain, laboratory-elicited seeding does not mean human brain seeding. We suggest that a positive αSyn-SAA reveals the presence of pathological α-synuclein but not the underlying etiology for the precipitation of monomeric α-synuclein into its pathological form. Thus, a positive αSyn-SAA supports a clinical diagnosis of PD but cannot inform disease pathogenesis, ascertain severity, predict the rate of progression, define biology or biological subtypes, or monitor treatment response.
Collapse
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA.
| | - Andrew J Lees
- The National Hospital, Queen Square and Reta Lila Weston Institute for Neurological Studies University College London, London, UK
| | - Francisco Cardoso
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, The Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Steven J Frucht
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, USA
| | - Daniel Erskine
- Translational and Clinical Research Institute, Newcastle University, UK
| | - Ivette M Sandoval
- Department of Translational Neuroscience and the Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Luis Daniel Bernal-Conde
- Department of Translational Neuroscience and the Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA; Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Imarisio
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy; Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Kora T Montemagno
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Glenda M Halliday
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, 2050, Australia
| | - Fredric P Manfredsson
- Department of Translational Neuroscience and the Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
9
|
van Oostrum M, Schuman EM. Understanding the molecular diversity of synapses. Nat Rev Neurosci 2025; 26:65-81. [PMID: 39638892 DOI: 10.1038/s41583-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Synapses are composed of thousands of proteins, providing the potential for extensive molecular diversity to shape synapse type-specific functional specializations. In this Review, we explore the landscape of synaptic diversity and describe the mechanisms that expand the molecular complexity of synapses, from the genotype to the regulation of gene expression to the production of specific proteoforms and the formation of localized protein complexes. We emphasize the importance of examining every molecular layer and adopting a systems perspective to understand how these interconnected mechanisms shape the diverse functional and structural properties of synapses. We explore current frameworks for classifying synapses and methodologies for investigating different synapse types at varying scales, from synapse-type-specific proteomics to advanced imaging techniques with single-synapse resolution. We highlight the potential of synapse-type-specific approaches for integrating molecular data with cellular functions, circuit organization and organismal phenotypes to enable a more holistic exploration of neuronal phenomena across different scales.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Berns MMM, Yildiz M, Winkelmann S, Walter AM. Independently engaging protein tethers of different length enhance synaptic vesicle trafficking to the plasma membrane. J Physiol 2025. [PMID: 39808523 DOI: 10.1113/jp286651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Synaptic vesicle (SV) trafficking toward the plasma membrane (PM) and subsequent SV maturation are essential for neurotransmitter release. These processes, including SV docking and priming, are co-ordinated by various proteins, such as SNAREs, Munc13 and synaptotagmin (Syt), which connect (tether) the SV to the PM. Here, we investigated how tethers of varying lengths mediate SV docking using a simplified mathematical model. The heights of the three tether types, as estimated from the structures of the SNARE complex, Munc13 and Syt, defined the SV-PM distance ranges for tether formation. Geometric considerations linked SV-PM distances to the probability and rate of tether formation. We assumed that SV tethering constrains SV motility and that multiple tethers are associated by independent interactions. The model predicted that forming multiple tethers favours shorter SV-PM distances. Although tethers acted independently in the model, their geometrical properties often caused their sequential assembly, from longer ones (Munc13/Syt), which accelerated SV movement towards the PM, to shorter ones (SNAREs), which stabilized PM-proximal SVs. Modifying tether lengths or numbers affected SV trafficking. The independent implementation of tethering proteins enabled their selective removal to mimic gene knockout (KO) situations. This showed that simulated SV-PM distance distributions qualitatively aligned with published electron microscopy studies upon removal of SNARE and Syt tethers, whereas Munc13 KO data were best approximated when assuming additional disruption of SNARE tethers. Thus, although salient features of SV docking can be accounted for by independent tethering alone, our results suggest that functional tether interactions not yet featured in our model are crucial for biological function. KEY POINTS: A mathematical model describing the role of synaptic protein tethers to localize transmitter-containing vesicles is developed based on geometrical considerations and structural information of synaptotagmin, Munc13 and SNARE proteins. Vesicle movement, along with tether association and dissociation, are modelled as stochastic processes, with tethers functioning independently of each other. Multiple tethers cooperate to recruit vesicles to the plasma membrane and keep them there: Munc13 and Syt as the longer tethers accelerate the movement towards the membrane, whereas short SNARE tethers stabilize them there. Model predictions for situations in which individual tethers are removed agree with the results from experimental studies upon gene knockout. Changing tether length or copy numbers affects vesicle trafficking and steady-state distributions.
Collapse
Affiliation(s)
- Manon M M Berns
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Alexander M Walter
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Kragelj J, Ghosh R, Xiao Y, Dumarieh R, Lagasca D, Krishna S, Frederick KK. Spatially resolved DNP-assisted NMR illuminates the conformational ensemble of α-synuclein in intact viable cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.24.563877. [PMID: 37961511 PMCID: PMC10634803 DOI: 10.1101/2023.10.24.563877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The protein α-syn adopts a wide variety of conformations including an intrinsically disordered monomeric form and an α-helical rich membrane-associated form that is thought to play an important role in cellular membrane processes. However, despite the high affinity of α-syn for membranes, evidence that the α-helical form is adopted inside cells has been indirect. DNP-assisted solid state NMR on frozen cellular samples can report on protein conformations inside cells. Moreover, by controlling the distribution of the DNP polarization agent throughout the cellular biomass, such experiments can provide quantitative information upon the entire structural ensemble or provide information about spatially resolved sub-populations. Using DNP-assisted magic angle spinning (MAS) NMR we establish that purified α-syn in the membrane-associated and intrinsically disordered forms have distinguishable spectra. We then introduced isotopically labeled monomeric α-syn into cells. When the DNP polarization agent is dispersed homogenously throughout the cell, we found that a minority of the α-syn inside cells adopted a highly α-helical rich conformation. When the DNP polarization agent is peripherally localized, we found that the α-helical rich conformation predominates. Thus, we provide direct evidence that α-helix rich conformations of α-syn are adopted near the cellular periphery inside cells under physiological conditions. Moreover, we demonstrate how selectively altering the spatial distribution of the DNP polarization agent can be a powerful tool to observe spatially distinct structural ensembles. This approach paves the way for more nuanced investigations into the conformations that proteins adopt in different areas of the cell.
Collapse
Affiliation(s)
- Jaka Kragelj
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Rupam Ghosh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Dominique Lagasca
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Sakshi Krishna
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Kendra K. Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
- Center for Alzheimer’s and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
12
|
Paget-Blanc V, Pronot M, Pfeffer ME, Angelo MF, Herzog E. Purification of Afference-Specific Synaptosome Populations Using Fluorescence-Activated Synaptosome Sorting. Methods Mol Biol 2025; 2910:87-104. [PMID: 40220095 DOI: 10.1007/978-1-0716-4446-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
The central nervous system contains a complex intermingled network of neuronal, glial, and vascular cells, and for several decades, neurobiologists have used subcellular fractionation methods to analyze the molecular structure and functional features of the different cell populations. Biochemists have optimized fractionation protocols that enrich specific compartments such as synapses (called "synaptosomes") and synaptic vesicles to reduce this complexity. However, these approaches suffered from a lack of specificity and purity, which is why we previously extended the conventional synaptosome preparation to purify fluorescent synaptosomes from VGLUT1venus knock-in mice on a cell sorter. We adapted our previous protocol to sort from single neuronal projections and small target regions of the brain as we did in the present example by labeling dopaminergic projections to the striatum. We proved that our newest method allows a steep enrichment in fluorescent dopaminergic synaptosomes containing presynaptic varicosities and associated postsynaptic elements and a substantial depletion in glial contaminants. Here we propose a detailed procedure for implementing projection-specific fluorescence-activated synaptosome sorting.
Collapse
Affiliation(s)
- Vincent Paget-Blanc
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Marie Pronot
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Marlene E Pfeffer
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Maria Florencia Angelo
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Etienne Herzog
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
13
|
Hogg JA, Cousin MA. Control of Synaptotagmin-1 Trafficking by SV2A-Mechanism and Consequences for Presynaptic Function and Dysfunction. J Neurochem 2025; 169:e16308. [PMID: 39853744 PMCID: PMC11758464 DOI: 10.1111/jnc.16308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
Synaptic vesicle protein 2A (SV2A) is an abundant synaptic vesicle cargo with an as yet unconfirmed role in presynaptic function. It is also heavily implicated in epilepsy, firstly being the target of the leading anti-seizure medication levetiracetam and secondly with loss of function mutations culminating in human disease. A range of potential presynaptic functions have been proposed for SV2A; however its interaction with the calcium sensor for synchronous neurotransmitter release, synaptotagmin-1 (Syt1), has received particular attention over the past decade. In this review we will assess the evidence that the primary role of SV2A is to control the expression and localisation of Syt1 at the presynapse. This will integrate biochemical, cell biological and physiological studies where the interaction, trafficking and functional output of Syt1 is altered by SV2A. The potential for SV2A-dependent epilepsy to be a result of dysfunctional Syt1 expression and localisation is also discussed. Finally, a series of key open questions will be posed that require resolution before a definitive role for SV2A in Syt1 function in health and disease can be confirmed.
Collapse
Affiliation(s)
- James A. Hogg
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George SquareUniversity of EdinburghEdinburghScotlandUK
- Muir Maxwell Epilepsy CentreHugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
| | - Michael A. Cousin
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George SquareUniversity of EdinburghEdinburghScotlandUK
- Muir Maxwell Epilepsy CentreHugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
| |
Collapse
|
14
|
Wang C, Zhao C, Xiao H, Qiang J, Liu Z, Gu J, Zhang S, Li D, Zhang Y, Burré J, Diao J, Liu C. N-acetylation of α-synuclein enhances synaptic vesicle clustering mediated by α-synuclein and lysophosphatidylcholine. eLife 2024; 13:RP97228. [PMID: 39729359 DOI: 10.7554/elife.97228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Previously, we reported that α-synuclein (α-syn) clusters synaptic vesicles (SV) Diao et al., 2013, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering Lai et al., 2023. Meanwhile, post-translational modifications (PTMs) of α-syn such as acetylation and phosphorylation play important yet distinct roles in regulating α-syn conformation, membrane binding, and amyloid aggregation. However, how PTMs regulate α-syn function in presynaptic terminals remains unclear. Here, based on our previous findings, we further demonstrate that N-terminal acetylation, which occurs under physiological conditions and is irreversible in mammalian cells, significantly enhances the functional activity of α-syn in clustering SVs. Mechanistic studies reveal that this enhancement is caused by the N-acetylation-promoted insertion of α-syn's N-terminus and increased intermolecular interactions on the LPC-containing membrane. N-acetylation in our work is shown to fine-tune the interaction between α-syn and LPC, mediating α-syn's role in synaptic vesicle clustering.
Collapse
Affiliation(s)
- Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Chunyu Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hu Xiao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jacqueline Burré
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medicine, New York, United States
| | - Jiajia Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Kravčenko U, Ruwolt M, Kroll J, Yushkevich A, Zenkner M, Ruta J, Lotfy R, Wanker EE, Rosenmund C, Liu F, Kudryashev M. Molecular architecture of synaptic vesicles. Proc Natl Acad Sci U S A 2024; 121:e2407375121. [PMID: 39602275 PMCID: PMC11626200 DOI: 10.1073/pnas.2407375121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Synaptic vesicles (SVs) store and transport neurotransmitters to the presynaptic active zone for release by exocytosis. After release, SV proteins and excess membrane are recycled via endocytosis, and new SVs can be formed in a clathrin-dependent manner. This process maintains complex molecular composition of SVs through multiple recycling rounds. Previous studies explored the molecular composition of SVs through proteomic analysis and fluorescent microscopy, proposing a model for an average SV (1). However, the structural heterogeneity and molecular architecture of individual SVs are not well described. Here, we used cryoelectron tomography to visualize molecular details of SVs isolated from mouse brains and inside cultured neurons. We describe several classes of small proteins on the SV surface and long proteinaceous densities inside SVs. We identified V-ATPases, determined a structure using subtomogram averaging, and showed them forming a complex with the membrane-embedded protein synaptophysin (Syp). Our bioluminescence assay revealed pairwise interactions between vesicle-associated membrane protein 2 and Syp and V-ATPase Voe1 domains. Interestingly, V-ATPases were randomly distributed on the surface of SVs irrespective of vesicle size. A subpopulation of isolated vesicles and vesicles inside neurons contained a partially assembled clathrin coat with an icosahedral symmetry. We observed V-ATPases under clathrin cages in several isolated clathrin-coated vesicles (CCVs). Additionally, from isolated SV preparations and within hippocampal neurons we identified clathrin baskets without vesicles. We determined their and CCVs preferential location in proximity to the cell membrane. Our analysis advances the understanding of individual SVs' diversity and their molecular architecture.
Collapse
Affiliation(s)
- Uljana Kravčenko
- In situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin13125, Germany
- Department of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Max Ruwolt
- Leibniz Research Institute for Molecular Pharmacology, Berlin, Germany
| | - Jana Kroll
- Structural Biology of Membrane-Associated Processes, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Artsemi Yushkevich
- In situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin13125, Germany
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Martina Zenkner
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Julia Ruta
- In situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin13125, Germany
- Leibniz Research Institute for Molecular Pharmacology, Berlin, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Rowaa Lotfy
- In situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin13125, Germany
- Institute of Pharmacy, Free University of Berlin, Berlin, Germany
| | - Erich E. Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fan Liu
- Leibniz Research Institute for Molecular Pharmacology, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mikhail Kudryashev
- In situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin13125, Germany
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Neuhaus C, Alfken J, Frost J, Matthews L, Hoffmann C, Ganzella M, Milovanovic D, Salditt T. Morphology and intervesicle distances in condensates of synaptic vesicles and synapsin. Biophys J 2024; 123:4123-4134. [PMID: 39520054 PMCID: PMC11628805 DOI: 10.1016/j.bpj.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Synaptic vesicle clusters or pools are functionally important constituents of chemical synapses. In the so-called reserve and the active pools, neurotransmitter-loaded synaptic vesicles (SVs) are stored and conditioned for fusion with the synaptic membrane and subsequent neurotransmitter release during synaptic activity. Vesicle clusters can be considered as so-called membraneless compartments, which form by liquid-liquid phase separation. Synapsin as one of the most abundant synaptic proteins has been identified as a major driver of pool formation. It has been shown to induce liquid-liquid phase separation and form condensates on its own in solution, but also has been shown to integrate vesicles into condensates in vitro. In this process, the intrinsically disordered region of synapsin is believed to play a critical role. Here, we first investigate the solution structure of synapsin and SVs separately by small-angle x-ray scattering. In the limit of low momentum transfer q, the scattering curve for synapsin gives clear indication for supramolecular aggregation (condensation). We then study mixtures of SVs and synapsin-forming condensates, aiming at the morphology and intervesicle distances, i.e., the structure of the condensates in solution. To obtain the structure factor S(q) quantifying intervesicle correlation, we divide the scattering curve of condensates by that of pure SV suspensions. Analysis of S(q) in combination with numerical simulations of cluster aggregation indicates a noncompact fractal-like vesicular fluid with rather short intervesicle distances at the contact sites.
Collapse
Affiliation(s)
| | | | - Jakob Frost
- Institut für Röntgenphysik, Göttingen, Germany
| | - Lauren Matthews
- The European Synchrotron Radiation Facility, Grenoble, France
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Göttingen, Germany.
| |
Collapse
|
17
|
Li F, Coleman J, Redondo-Morata L, Kalyana Sundaram RV, Stroeva E, Rothman JE, Pincet F. Quantitative single-molecule analysis of assembly and Ca 2+-dependent disassembly of synaptotagmin oligomers on lipid bilayers. Commun Biol 2024; 7:1608. [PMID: 39627539 PMCID: PMC11615320 DOI: 10.1038/s42003-024-07317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Synaptotagmin-1 (Syt-1) self-assembles into ring-like oligomers, and genetic and biochemical evidence suggest that oligomerization is needed to clamp synaptic vesicles and stabilize them for Ca2+-evoked release. However, oligomerization has not yet been demonstrated on lipid bilayers or studied in quantitative biophysical terms. Here we utilize single-molecule imaging methods to monitor the assembly and disassembly of oligomeric clusters of Syt-1 on lipid bilayers in real-time. Syt-1 assembled into two distinct classes of oligomers, small (5 ± 2 subunits) and large (15 ± 2 subunits). Each class assembled at a constant kon that was always proportional to its ultimate size, but both classes disassembled at the same unit rate (koff) independent of its size. Both large and small oligomers explosively disassembled when Ca2+ was added. The F349A mutation in the Syt-1 nearly eliminates the large class of oligomers but does not reduce the small class. Altogether, the physical-chemical properties of Syt-1 oligomers meet or exceed the physiologic requirements to function as such a clamp.
Collapse
Affiliation(s)
- Feng Li
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
- Nanobiology Institute, Yale West Campus Yale University, West Haven, CT, 06516, USA
| | - Jeff Coleman
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
- Nanobiology Institute, Yale West Campus Yale University, West Haven, CT, 06516, USA
| | - Lorena Redondo-Morata
- Aix-Marseille University, INSERM, DyNaMo, Turing centre for living systems, Marseille, France
| | - R Venkat Kalyana Sundaram
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
- Nanobiology Institute, Yale West Campus Yale University, West Haven, CT, 06516, USA
| | - Ekaterina Stroeva
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
- Nanobiology Institute, Yale West Campus Yale University, West Haven, CT, 06516, USA
| | - James E Rothman
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Nanobiology Institute, Yale West Campus Yale University, West Haven, CT, 06516, USA.
| | - Frédéric Pincet
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Nanobiology Institute, Yale West Campus Yale University, West Haven, CT, 06516, USA.
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005, Paris, France.
| |
Collapse
|
18
|
Jensen NM, Fu Y, Betzer C, Li H, Elfarrash S, Shaib AH, Krah D, Vitic Z, Reimer L, Gram H, Buchman V, Denham M, Rizzoli SO, Halliday GM, Jensen PH. MJF-14 proximity ligation assay detects early non-inclusion alpha-synuclein pathology with enhanced specificity and sensitivity. NPJ Parkinsons Dis 2024; 10:227. [PMID: 39613827 DOI: 10.1038/s41531-024-00841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024] Open
Abstract
α-Synuclein proximity ligation assay (PLA) has proved a sensitive technique for detection of non-Lewy body α-synuclein aggregate pathology. Here, we describe the MJF-14 PLA, a new PLA towards aggregated α-synuclein with unprecedented specificity, using the aggregate-selective α-synuclein antibody MJFR-14-6-4-2 (hereafter MJF-14). Signal in the assay correlates with α-synuclein aggregation in cell culture and human neurons, induced by α-synuclein overexpression or pre-formed fibrils. Co-labelling of MJF-14 PLA and pS129-α-synuclein immunofluorescence in post-mortem cases of dementia with Lewy bodies shows that while the MJF-14 PLA reveals extensive non-inclusion pathology, it is not sensitive towards pS129-α-synuclein-positive Lewy bodies. In Parkinson's disease brain, direct comparison of PLA and immunohistochemistry with the MJF-14 antibody shows widespread α-synuclein pathology preceding the formation of conventional Lewy pathology. In conclusion, we introduce an improved α-synuclein aggregate PLA to uncover abundant non-inclusion pathology, which deserves future validation with brain bank resources and in different synucleinopathies.
Collapse
Affiliation(s)
- Nanna Møller Jensen
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - YuHong Fu
- Brain and Mind Centre & Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Cristine Betzer
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Hongyun Li
- Brain and Mind Centre & Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Sara Elfarrash
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ali H Shaib
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Donatus Krah
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Zagorka Vitic
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Lasse Reimer
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Hjalte Gram
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Mark Denham
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Glenda M Halliday
- Brain and Mind Centre & Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- Neuroscience Research Australia & Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Poul Henning Jensen
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
19
|
Trist BG, Wright CJ, Rangel A, Cottle L, Prasad A, Jensen NM, Gram H, Dzamko N, Jensen PH, Kirik D. Novel tools to quantify total, phospho-Ser129 and aggregated alpha-synuclein in the mouse brain. NPJ Parkinsons Dis 2024; 10:217. [PMID: 39516469 PMCID: PMC11549080 DOI: 10.1038/s41531-024-00830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Assays for quantifying aggregated and phosphorylated (S129) human α-synuclein protein are widely used to evaluate pathological burden in patients suffering from synucleinopathy disorders. Many of these assays, however, do not cross-react with mouse α-synuclein or exhibit poor sensitivity for this target, which is problematic considering the preponderance of mouse models at the forefront of pre-clinical α-synuclein research. In this project, we addressed this unmet need by reformulating two existing AlphaLISA® SureFire® Ultra™ total and pS129 α-synuclein assay kits to yield robust and ultrasensitive (LLoQ ≤ 0.5 pg/mL) quantification of mouse and human wild-type and pS129 α-synuclein protein. We then employed these assays, together with the BioLegend α-synuclein aggregate ELISA, to assess α-synuclein S129 phosphorylation and aggregation in different mouse brain tissue preparations. Overall, we highlight the compatibility of these new immunoassays with rodent models and demonstrate their potential to advance knowledge surrounding α-synuclein phosphorylation and aggregation in synucleinopathies.
Collapse
Affiliation(s)
- Benjamin Guy Trist
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
| | - Courtney Jade Wright
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Brain Repair and Imaging in Neural Systems (BRAINS), Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alejandra Rangel
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Melanoma Institute Australia, Sydney, NSW, Australia
| | - Louise Cottle
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Asheeta Prasad
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Nanna Møller Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Hjalte Gram
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Nicolas Dzamko
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Poul Henning Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Deniz Kirik
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Brain Repair and Imaging in Neural Systems (BRAINS), Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Li F, Bahr JN, Bierth FAL, Reshetniak S, Tetzlaff C, Fornasiero EF, Wichmann C, Rizzoli SO. Morphological correlates of synaptic protein turnover in the mouse brain. Life Sci Alliance 2024; 7:e202402793. [PMID: 39134363 PMCID: PMC11325198 DOI: 10.26508/lsa.202402793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Synaptic proteins need to be replaced regularly, to maintain function and to prevent damage. It is unclear whether this process, known as protein turnover, relates to synaptic morphology. To test this, we relied on nanoscale secondary ion mass spectrometry, to detect newly synthesized synaptic components in the brains of young adult (6 mo old) and aged mice (24 mo old), and on transmission electron microscopy, to reveal synapse morphology. Several parameters correlated to turnover, including pre- and postsynaptic size, the number of synaptic vesicles and the presence of a postsynaptic nascent zone. In aged mice, the turnover of all brain compartments was reduced by ∼20%. The turnover rates of the pre- and postsynapses correlated well in aged mice, suggesting that they are subject to common regulatory mechanisms. This correlation was poorer in young adult mice, in line with their higher synaptic dynamics. We conclude that synapse turnover is reflected by synaptic morphology.
Collapse
Affiliation(s)
- Fengxia Li
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Julius N Bahr
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany
| | - Felicitas A-L Bierth
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Molecular Medicine Bachelor Programme, University Medical Center Göttingen, Göttingen, Germany
| | - Sofiia Reshetniak
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Tetzlaff
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Carolin Wichmann
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Li X, Yu L, Liu X, Shi T, Zhang Y, Xiao Y, Wang C, Song L, Li N, Liu X, Chen Y, Petersen RB, Cheng X, Xue W, Yu YV, Xu L, Zheng L, Chen H, Huang K. β-synuclein regulates the phase transitions and amyloid conversion of α-synuclein. Nat Commun 2024; 15:8748. [PMID: 39384788 PMCID: PMC11464764 DOI: 10.1038/s41467-024-53086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB) are neurodegenerative disorders characterized by the accumulation of α-synuclein aggregates. α-synuclein forms droplets via liquid-liquid phase separation (LLPS), followed by liquid-solid phase separation (LSPS) to form amyloids, how this process is physiologically-regulated remains unclear. β-synuclein colocalizes with α-synuclein in presynaptic terminals. Here, we report that β-synuclein partitions into α-synuclein condensates promotes the LLPS, and slows down LSPS of α-synuclein, while disease-associated β-synuclein mutations lose these capacities. Exogenous β-synuclein improves the movement defects and prolongs the lifespan of an α-synuclein-expressing NL5901 Caenorhabditis elegans strain, while disease-associated β-synuclein mutants aggravate the symptoms. Decapeptides targeted at the α-/β-synuclein interaction sites are rationally designed, which suppress the LSPS of α-synuclein, rescue the movement defects, and prolong the lifespan of C. elegans NL5901. Together, we unveil a Yin-Yang balance between α- and β-synuclein underlying the normal and disease states of PD and DLB with therapeutical potentials.
Collapse
Affiliation(s)
- Xi Li
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Linwei Yu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Xikai Liu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tianyi Shi
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yushuo Xiao
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Wang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Liangliang Song
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Xinran Liu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Chen
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weikang Xue
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanxun V Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Li Xu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Chen
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
| | - Kun Huang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
- Tongji-Rong Cheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
22
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Huettemann P, Mahadevan P, Lempart J, Tse E, Dehury B, Edwards BFP, Southworth DR, Sahoo BR, Jakob U. Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils. PLoS Biol 2024; 22:e3002650. [PMID: 39480879 PMCID: PMC11527176 DOI: 10.1371/journal.pbio.3002650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Aberrant aggregation of α-Synuclein is the pathological hallmark of a set of neurodegenerative diseases termed synucleinopathies. Recent advances in cryo-electron microscopy have led to the structural determination of the first synucleinopathy-derived α-Synuclein fibrils, which contain a non-proteinaceous, "mystery density" at the core of the protofilaments, hypothesized to be highly negatively charged. Guided by previous studies that demonstrated that polyphosphate (polyP), a universally conserved polyanion, significantly accelerates α-Synuclein fibril formation, we conducted blind docking and molecular dynamics simulation experiments to model the polyP binding site in α-Synuclein fibrils. Here, we demonstrate that our models uniformly place polyP into the lysine-rich pocket, which coordinates the mystery density in patient-derived fibrils. Subsequent in vitro studies and experiments in cells revealed that substitution of the 2 critical lysine residues K43 and K45 with alanine residues leads to a loss of all previously reported effects of polyP binding on α-Synuclein, including stimulation of fibril formation, change in filament conformation and stability as well as alleviation of cytotoxicity. In summary, our study demonstrates that polyP fits the unknown electron density present in in vivo α-Synuclein fibrils and suggests that polyP exerts its functions by neutralizing charge repulsion between neighboring lysine residues.
Collapse
Affiliation(s)
- Philipp Huettemann
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pavithra Mahadevan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Justine Lempart
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eric Tse
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Brian F. P. Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, Michigan, United States of America
| | - Daniel R. Southworth
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
| | - Bikash R. Sahoo
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
24
|
Small C, Harper C, Jiang A, Kontaxi C, Pronot M, Yak N, Malapaka A, Davenport EC, Wallis TP, Gormal RS, Joensuu M, Martínez-Mármol R, Cousin MA, Meunier FA. SV2A controls the surface nanoclustering and endocytic recruitment of Syt1 during synaptic vesicle recycling. J Neurochem 2024; 168:3188-3208. [PMID: 39091022 DOI: 10.1111/jnc.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024]
Abstract
Following exocytosis, the recapture of plasma membrane-stranded vesicular proteins into recycling synaptic vesicles (SVs) is essential for sustaining neurotransmission. Surface clustering of vesicular proteins has been proposed to act as a 'pre-assembly' mechanism for endocytosis that ensures high-fidelity retrieval of SV cargo. Here, we used single-molecule imaging to examine the nanoclustering of synaptotagmin-1 (Syt1) and synaptic vesicle protein 2A (SV2A) in hippocampal neurons. Syt1 forms surface nanoclusters through the interaction of its C2B domain with SV2A, which are sensitive to mutations in this domain (Syt1K326A/K328A) and SV2A knockdown. SV2A co-clustering with Syt1 is reduced by blocking SV2A's cognate interaction with Syt1 (SV2AT84A). Surprisingly, impairing SV2A-Syt1 nanoclustering enhanced the plasma membrane recruitment of key endocytic protein dynamin-1, causing accelerated Syt1 endocytosis, altered intracellular sorting and decreased trafficking of Syt1 to Rab5-positive endocytic compartments. Therefore, SV2A and Syt1 are segregated from the endocytic machinery in surface nanoclusters, limiting dynamin recruitment and negatively regulating Syt1 entry into recycling SVs.
Collapse
Affiliation(s)
- Christopher Small
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Callista Harper
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Christiana Kontaxi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Marie Pronot
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Nyakuoy Yak
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Anusha Malapaka
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, the University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Sagredo GT, Tanglay O, Shahdadpuri S, Fu Y, Halliday GM. ⍺-Synuclein levels in Parkinson's disease - Cell types and forms that contribute to pathogenesis. Exp Neurol 2024; 379:114887. [PMID: 39009177 DOI: 10.1016/j.expneurol.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Parkinson's disease (PD) has two main pathological hallmarks, the loss of nigral dopamine neurons and the proteinaceous aggregations of ⍺-synuclein (⍺Syn) in neuronal Lewy pathology. These two co-existing features suggest a causative association between ⍺Syn aggregation and the underpinning mechanism of neuronal degeneration in PD. Both increased levels and post-translational modifications of ⍺Syn can contribute to the formation of pathological aggregations of ⍺Syn in neurons. Recent studies have shown that the protein is also expressed by multiple types of non-neuronal cells in the brain and peripheral tissues, suggesting additional roles of the protein and potential diversity in non-neuronal pathogenic triggers. It is important to determine (1) the threshold levels triggering ⍺Syn to convert from a biological to a pathologic form in different brain cells in PD; (2) the dominant form of pathologic ⍺Syn and the associated post-translational modification of the protein in each cell type involved in PD; and (3) the cell type associated biological processes impacted by pathologic ⍺Syn in PD. This review integrates these aspects and speculates on potential pathological mechanisms and their impact on neuronal and non-neuronal ⍺Syn in the brains of patients with PD.
Collapse
Affiliation(s)
- Giselle Tatiana Sagredo
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Onur Tanglay
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia
| | - Shrey Shahdadpuri
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia
| | - YuHong Fu
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
26
|
An D, Lindau M. Exploring the structural dynamics of the vesicle priming machinery. Biochem Soc Trans 2024; 52:1715-1725. [PMID: 39082978 PMCID: PMC11357900 DOI: 10.1042/bst20231333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Various cell types release neurotransmitters, hormones and many other compounds that are stored in secretory vesicles by exocytosis via the formation of a fusion pore traversing the vesicular membrane and the plasma membrane. This process of membrane fusion is mediated by the Soluble N-ethylmaleimide-Sensitive Factor Attachment Proteins REceptor (SNARE) protein complex, which in neurons and neuroendocrine cells is composed of the vesicular SNARE protein Synaptobrevin and the plasma membrane proteins Syntaxin and SNAP25 (Synaptosomal-Associated Protein of 25 kDa). Before a vesicle can undergo fusion and release of its contents, it must dock at the plasma membrane and undergo a process named 'priming', which makes it ready for release. The primed vesicles form the readily releasable pool, from which they can be rapidly released in response to stimulation. The stimulus is an increase in Ca2+ concentration near the fusion site, which is sensed primarily by the vesicular Ca2+ sensor Synaptotagmin. Vesicle priming involves at least the SNARE proteins as well as Synaptotagmin and the accessory proteins Munc18, Munc13, and Complexin but additional proteins may also participate in this process. This review discusses the current views of the interactions and the structural changes that occur among the proteins of the vesicle priming machinery.
Collapse
Affiliation(s)
- Dong An
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL 33136, U.S.A
| | - Manfred Lindau
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL 33136, U.S.A
| |
Collapse
|
27
|
McFadden MH, Emeritt MB, Xu H, Cui Y, Leterrier C, Zala D, Venance L, Lenkei Z. Actomyosin-mediated inhibition of synaptic vesicle release under CB 1R activation. Transl Psychiatry 2024; 14:335. [PMID: 39168993 PMCID: PMC11339458 DOI: 10.1038/s41398-024-03017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Long-term synaptic plasticity is critical for adaptive function of the brain, but presynaptic mechanisms of functional plasticity remain poorly understood. Here, we show that changes in synaptic efficacy induced by activation of the cannabinoid type-1 receptor (CB1R), one of the most widespread G-protein coupled receptors in the brain, requires contractility of the neuronal actomyosin cytoskeleton. Specifically, using a synaptophysin-pHluorin probe (sypH2), we show that inhibitors of non-muscle myosin II (NMII) ATPase as well as one of its upstream effectors Rho-associated kinase (ROCK) prevent the reduction of synaptic vesicle release induced by CB1R activation. Using 3D STORM super-resolution microscopy, we find that activation of CB1R induces a redistribution of synaptic vesicles within presynaptic boutons in an actomyosin dependent manner, leading to vesicle clustering within the bouton and depletion of synaptic vesicles from the active zone. We further show, using sypH2, that inhibitors of NMII and ROCK specifically restore the release of the readily releasable pool of synaptic vesicles from the inhibition induced by CB1R activation. Finally, using slice electrophysiology, we find that activation of both NMII and ROCK is necessary for the long-term, but not the short-term, form of CB1R induced synaptic plasticity at excitatory cortico-striatal synapses. We thus propose a novel mechanism underlying CB1R-induced plasticity, whereby CB1R activation leads to a contraction of the actomyosin cytoskeleton inducing a reorganization of the functional presynaptic vesicle pool, preventing vesicle release and inducing long-term depression.
Collapse
Affiliation(s)
- Maureen H McFadden
- Institut Pasteur, Université Paris Cité, Synapse and Circuit Dynamics Laboratory, CNRS UMR 3571, Paris, France
- Brain Plasticity Unit, ESPCI Paris, PSL Research University, CNRS, Paris, France
| | - Michel-Boris Emeritt
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Paris, France
| | - Hao Xu
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Yihui Cui
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | | | - Diana Zala
- Brain Plasticity Unit, ESPCI Paris, PSL Research University, CNRS, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Paris, France
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Zsolt Lenkei
- Brain Plasticity Unit, ESPCI Paris, PSL Research University, CNRS, Paris, France.
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Paris, France.
| |
Collapse
|
28
|
Wang C, Zhao C, Hu X, Qiang J, Liu Z, Gu J, Zhang S, Li D, Zhang Y, Burré J, Diao J, Liu C. N-acetylation of α-synuclein enhances synaptic vesicle clustering mediated by α-synuclein and lysophosphatidylcholine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583437. [PMID: 38496494 PMCID: PMC10942363 DOI: 10.1101/2024.03.04.583437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Post-translational modifications (PTMs) of α-synuclein (α-syn) such as acetylation and phosphorylation play important yet distinct roles in regulating α-syn conformation, membrane binding, and amyloid aggregation. However, how PTMs regulate α-syn function in presynaptic terminals remains unclear. Previously, we reported that α-syn clusters synaptic vesicles (SV)1, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering2. Here, based on our previous findings, we further demonstrate that N-terminal acetylation, which occurs under physiological conditions and is irreversible in mammalian cells, significantly enhances the functional activity of α-syn in clustering SVs. Mechanistic studies reveal that this enhancement is caused by the N-acetylation-promoted insertion of α-syn's N-terminus and increased intermolecular interactions on the LPC-containing membrane. Our work demonstrates that N-acetylation fine-tunes α-syn-LPC interaction for mediating α-syn's function in SV clustering.
Collapse
Affiliation(s)
- Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyu Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Hu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jacqueline Burré
- Brain and Mind Research Institute & Appel Institute for Alzheimer’s Disease Research, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
29
|
Dunot J, Moreno S, Gandin C, Pousinha PA, Amici M, Dupuis J, Anisimova M, Winschel A, Uriot M, Petshow SJ, Mensch M, Bethus I, Giudici C, Hampel H, Wefers B, Wurst W, Naumann R, Ashby MC, Laube B, Zito K, Mellor JR, Groc L, Willem M, Marie H. APP fragment controls both ionotropic and non-ionotropic signaling of NMDA receptors. Neuron 2024; 112:2708-2720.e9. [PMID: 38878768 PMCID: PMC11343662 DOI: 10.1016/j.neuron.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
NMDA receptors (NMDARs) are ionotropic receptors crucial for brain information processing. Yet, evidence also supports an ion-flux-independent signaling mode mediating synaptic long-term depression (LTD) and spine shrinkage. Here, we identify AETA (Aη), an amyloid-β precursor protein (APP) cleavage product, as an NMDAR modulator with the unique dual regulatory capacity to impact both signaling modes. AETA inhibits ionotropic NMDAR activity by competing with the co-agonist and induces an intracellular conformational modification of GluN1 subunits. This favors non-ionotropic NMDAR signaling leading to enhanced LTD and favors spine shrinkage. Endogenously, AETA production is increased by in vivo chemogenetically induced neuronal activity. Genetic deletion of AETA production alters NMDAR transmission and prevents LTD, phenotypes rescued by acute exogenous AETA application. This genetic deletion also impairs contextual fear memory. Our findings demonstrate AETA-dependent NMDAR activation (ADNA), characterizing AETA as a unique type of endogenous NMDAR modulator that exerts bidirectional control over NMDAR signaling and associated information processing.
Collapse
Affiliation(s)
- Jade Dunot
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sebastien Moreno
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Carine Gandin
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Paula A Pousinha
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Mascia Amici
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Julien Dupuis
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, 33076 Bordeaux Cedex, France
| | - Margarita Anisimova
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Alex Winschel
- Department of Biology, Neurophysiology und Neurosensory Systems, TU Darmstadt, 64287 Darmstadt, Germany
| | - Magalie Uriot
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, 33076 Bordeaux Cedex, France
| | - Samuel J Petshow
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Maria Mensch
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Ingrid Bethus
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Camilla Giudici
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Heike Hampel
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Michael C Ashby
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Bodo Laube
- Department of Biology, Neurophysiology und Neurosensory Systems, TU Darmstadt, 64287 Darmstadt, Germany
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Laurent Groc
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, 33076 Bordeaux Cedex, France
| | - Michael Willem
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Hélène Marie
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France.
| |
Collapse
|
30
|
Pribicevic S, Graham AC, Cafiso DS, Pérez-Lara Á, Jahn R. Intermediate steps in the formation of neuronal SNARE complexes. J Biol Chem 2024; 300:107591. [PMID: 39032647 PMCID: PMC11381810 DOI: 10.1016/j.jbc.2024.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/06/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Neuronal exocytosis requires the assembly of three SNARE proteins, syntaxin and SNAP25 on the plasma membrane and synaptobrevin on the vesicle membrane. However, the precise steps in this process and the points at which assembly and fusion are controlled by regulatory proteins are unclear. In the present work, we examine the kinetics and intermediate states during SNARE assembly in vitro using a combination of time resolved fluorescence and EPR spectroscopy. We show that syntaxin rapidly forms a dimer prior to forming the kinetically stable 2:1 syntaxin:SNAP25 complex and that the 2:1 complex is not diminished by the presence of excess SNAP25. Moreover, the 2:1 complex is temperature-dependent with a reduced concentration at 37 °C. The two segments of SNAP25 behave differently. The N-terminal SN1 segment of SNAP25 exhibits a pronounced increase in backbone ordering from the N- to the C-terminus that is not seen in the C-terminal SNAP25 segment SN2. Both the SN1 and SN2 segments of SNAP25 will assemble with syntaxin; however, while the association of the SN1 segment with syntaxin produces a stable 2:2 (SN1:syntaxin) complex, the complex formed between SN2 and syntaxin is largely disordered. Synaptobrevin fails to bind syntaxin alone but will associate with syntaxin in the presence of either the SN1 or SN2 segments; however, the synaptobrevin:syntaxin:SN2 complex remains disordered. Taken together, these data suggest that synaptobrevin and syntaxin do not assemble in the absence of SNAP25 and that the SN2 segment of SNAP25 is the last to enter the SNARE complex.
Collapse
Affiliation(s)
- Sonja Pribicevic
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Abigail C Graham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA.
| | - Ángel Pérez-Lara
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
31
|
Imoto Y, Xue J, Luo L, Raychaudhuri S, Itoh K, Ma Y, Craft GE, Kwan AH, Ogunmowo TH, Ho A, Mackay JP, Ha T, Watanabe S, Robinson PJ. Dynamin 1xA interacts with Endophilin A1 via its spliced long C-terminus for ultrafast endocytosis. EMBO J 2024; 43:3327-3357. [PMID: 38907032 PMCID: PMC11329700 DOI: 10.1038/s44318-024-00145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
Dynamin 1 mediates fission of endocytic synaptic vesicles in the brain and has two major splice variants, Dyn1xA and Dyn1xB, which are nearly identical apart from the extended C-terminal region of Dyn1xA. Despite a similar set of binding partners, only Dyn1xA is enriched at endocytic zones and accelerates vesicle fission during ultrafast endocytosis. Here, we report that Dyn1xA achieves this localization by preferentially binding to Endophilin A1 through a newly defined binding site within its long C-terminal tail extension. Endophilin A1 binds this site at higher affinity than the previously reported site, and the affinity is determined by amino acids within the Dyn1xA tail but outside the binding site. This interaction is regulated by the phosphorylation state of two serine residues specific to the Dyn1xA variant. Dyn1xA and Endophilin A1 colocalize in patches near the active zone, and mutations disrupting Endophilin A binding to the long tail cause Dyn1xA mislocalization and stalled endocytic pits on the plasma membrane during ultrafast endocytosis. Together, these data suggest that the specificity for ultrafast endocytosis is defined by the phosphorylation-regulated interaction of Endophilin A1 with the C-terminal extension of Dyn1xA.
Collapse
Affiliation(s)
- Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jing Xue
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Locked Bag 23, Wentworthville, 2145, NSW, Australia
| | - Lin Luo
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ye Ma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - George E Craft
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Locked Bag 23, Wentworthville, 2145, NSW, Australia
| | - Ann H Kwan
- School of Life and Environmental Sciences and Sydney Nano Institute, University of Sydney, Camperdown, NSW, Australia
| | - Tyler H Ogunmowo
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Annie Ho
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Taekjip Ha
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Locked Bag 23, Wentworthville, 2145, NSW, Australia.
| |
Collapse
|
32
|
Agarwal A, Chandran A, Raza F, Ungureanu IM, Hilcenko C, Stott K, Bright NA, Morone N, Warren AJ, Lautenschläger J. VAMP2 regulates phase separation of α-synuclein. Nat Cell Biol 2024; 26:1296-1308. [PMID: 38951707 PMCID: PMC11322000 DOI: 10.1038/s41556-024-01451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
α-Synuclein (αSYN), a pivotal synaptic protein implicated in synucleinopathies such as Parkinson's disease and Lewy body dementia, undergoes protein phase separation. We reveal that vesicle-associated membrane protein 2 (VAMP2) orchestrates αSYN phase separation both in vitro and in cells. Electrostatic interactions, specifically mediated by VAMP2 via its juxtamembrane domain and the αSYN C-terminal region, drive phase separation. Condensate formation is specific for R-SNARE VAMP2 and dependent on αSYN lipid membrane binding. Our results delineate a regulatory mechanism for αSYN phase separation in cells. Furthermore, we show that αSYN condensates sequester vesicles and attract complexin-1 and -2, thus supporting a role in synaptic physiology and pathophysiology.
Collapse
Affiliation(s)
- Aishwarya Agarwal
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Aswathy Chandran
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Farheen Raza
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Protein and Cellular Sciences, GSK, Stevenage, UK
| | - Irina-Maria Ungureanu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Christine Hilcenko
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicholas A Bright
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Alan J Warren
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Janin Lautenschläger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
33
|
Rao S, Madhu LN, Babu RS, Nagarajan A, Upadhya R, Narvekar E, Shetty AK. Extracellular Vesicles from hiPSC-derived NSCs Protect Human Neurons against Aβ-42 Oligomers Induced Neurodegeneration, Mitochondrial Dysfunction and Tau Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603159. [PMID: 39071270 PMCID: PMC11275725 DOI: 10.1101/2024.07.11.603159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background One of the hallmarks of Alzheimer's disease (AD) is the buildup of amyloid beta-42 (Aβ-42) in the brain, which leads to various adverse effects. Therefore, therapeutic interventions proficient in reducing Aβ-42-induced toxicity in AD are of great interest. One promising approach is to use extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSC-EVs) because they carry multiple therapeutic miRNAs and proteins capable of protecting neurons against Aβ-42-induced pathological changes. Therefore, this in vitro study investigated the proficiency of hiPSC-NSC-EVs to protect human neurons derived from two distinct hiPSC lines from Aβ-42o-induced neurodegeneration. Methods We isolated hiPSC-NSC-EVs using chromatographic methods and characterized their size, ultrastructure, expression of EV-specific markers and proficiency in getting incorporated into mature human neurons. Next, mature human neurons differentiated from two different hiPSC lines were exposed to 1 µM Aβ-42 oligomers (Aβ-42o) alone or with varying concentrations of hiPSC-NSC-EVs. The protective effects of hiPSC-NSC-EVs against Aβ-42o-induced neurodegeneration, increased oxidative stress, mitochondrial dysfunction, impaired autophagy, and tau phosphorylation were ascertained using multiple measures and one-way ANOVA with Newman-Keuls multiple comparisons post hoc tests. Results Significant neurodegeneration was observed when human neurons were exposed to Aβ-42o alone. Notably, neurodegeneration was associated with elevated levels of oxidative stress markers malondialdehyde (MDA) and protein carbonyls (PCs), increased expression of proapoptotic Bax and Bad genes and proteins, reduced expression of the antiapoptotic gene and protein Bcl-2, increased expression of genes encoding mitochondrial complex proteins, decreased expression of autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3B, and increased phosphorylation of tau. However, the addition of an optimal dose of hiPSC-NSC-EVs (6 x 10 9 EVs) to human neuronal cultures exposed to Aβ-42o significantly reduced the extent of neurodegeneration, along with diminished levels of MDA and PCs, normalized expressions of Bax, Bad, and Bcl-2, and genes linked to mitochondrial complex proteins, and reduced tau phosphorylation. Conclusions The findings demonstrate that an optimal dose of hiPSC-NSC-EVs could significantly decrease the degeneration of human neurons induced by Aβ-42o. The results also support further research into the effectiveness of hiPSC-NSC-EVs in AD, particularly their proficiency in preserving neurons and slowing disease progression.
Collapse
|
34
|
Cárdenas-García SP, Ijaz S, Pereda AE. The components of an electrical synapse as revealed by expansion microscopy of a single synaptic contact. eLife 2024; 13:e91931. [PMID: 38994821 PMCID: PMC11333041 DOI: 10.7554/elife.91931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Most nervous systems combine both transmitter-mediated and direct cell-cell communication, known as 'chemical' and 'electrical' synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a 'gap junction' (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact unequivocally defines the anatomical limits of a synapse. Expansion microscopy of these single contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact's surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area functions as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of adherens junctions. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.
Collapse
Affiliation(s)
- Sandra P Cárdenas-García
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Sundas Ijaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
35
|
Kern NR, Lee J, Choi YK, Im W. CHARMM-GUI Multicomponent Assembler for modeling and simulation of complex multicomponent systems. Nat Commun 2024; 15:5459. [PMID: 38937468 PMCID: PMC11211406 DOI: 10.1038/s41467-024-49700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Atomic-scale molecular modeling and simulation are powerful tools for computational biology. However, constructing models with large, densely packed molecules, non-water solvents, or with combinations of multiple biomembranes, polymers, and nanomaterials remains challenging and requires significant time and expertise. Furthermore, existing tools do not support such assemblies under the periodic boundary conditions (PBC) necessary for molecular simulation. Here, we describe Multicomponent Assembler in CHARMM-GUI that automates complex molecular assembly and simulation input preparation under the PBC. In this work, we demonstrate its versatility by preparing 6 challenging systems with varying density of large components: (1) solvated proteins, (2) solvated proteins with a pre-equilibrated membrane, (3) solvated proteins with a sheet-like nanomaterial, (4) solvated proteins with a sheet-like polymer, (5) a mixed membrane-nanomaterial system, and (6) a sheet-like polymer with gaseous solvent. Multicomponent Assembler is expected to be a unique cyberinfrastructure to study complex interactions between small molecules, biomacromolecules, polymers, and nanomaterials.
Collapse
Affiliation(s)
- Nathan R Kern
- Department of Computer Science & Engineering, Lehigh University, Bethlehem, PA, USA
| | - Jumin Lee
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Yeol Kyo Choi
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Wonpil Im
- Department of Computer Science & Engineering, Lehigh University, Bethlehem, PA, USA.
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
36
|
Masato A, Bubacco L. The αSynuclein half-life conundrum. Neurobiol Dis 2024; 196:106524. [PMID: 38705490 DOI: 10.1016/j.nbd.2024.106524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024] Open
Abstract
αSynuclein (αSyn) misfolding and aggregation frequently precedes neuronal loss associated with Parkinson's Disease (PD) and other Synucleinopathies. The progressive buildup of pathological αSyn species results from alterations on αSyn gene and protein sequence, increased local concentrations, variations in αSyn interactome and protein network. Therefore, under physiological conditions, it is mandatory to regulate αSyn proteostasis as an equilibrium among synthesis, trafficking, degradation and extracellular release. In this frame, a crucial parameter is protein half-life. It provides indications of the turnover of a specific protein and depends on mRNA synthesis and translation regulation, subcellular localization, function and clearance by the designated degradative pathways. For αSyn, the molecular mechanisms regulating its proteostasis in neurons have been extensively investigated in various cellular models, either using biochemical or imaging approaches. Nevertheless, a converging estimate of αSyn half-life has not emerged yet. Here, we discuss the challenges in studying αSyn proteostasis under physiological and pathological conditions, the advantages and disadvantages of the experimental strategies proposed so far, and the relevance of determining αSyn half-life from a translational perspective.
Collapse
Affiliation(s)
- Anna Masato
- UK Dementia Research Institute at University College London, London, United Kingdom.
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy; Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy.
| |
Collapse
|
37
|
Fletcher-Jones A, Spackman E, Craig TJ, Nakamura Y, Wilkinson KA, Henley JM. SGIP1 binding to the α-helical H9 domain of cannabinoid receptor 1 promotes axonal surface expression. J Cell Sci 2024; 137:jcs261551. [PMID: 38864427 PMCID: PMC11213518 DOI: 10.1242/jcs.261551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
Endocannabinoid signalling mediated by cannabinoid receptor 1 (CB1R, also known as CNR1) is critical for homeostatic neuromodulation of both excitatory and inhibitory synapses. This requires highly polarised axonal surface expression of CB1R, but how this is achieved remains unclear. We previously reported that the α-helical H9 domain in the intracellular C terminus of CB1R contributes to axonal surface expression by an unknown mechanism. Here, we show in rat primary neuronal cultures that the H9 domain binds to the endocytic adaptor protein SGIP1 to promote CB1R expression in the axonal membrane. Overexpression of SGIP1 increases CB1R axonal surface localisation but has no effect on CB1R lacking the H9 domain (CB1RΔH9). Conversely, SGIP1 knockdown reduces axonal surface expression of CB1R but does not affect CB1RΔH9. Furthermore, SGIP1 knockdown diminishes CB1R-mediated inhibition of presynaptic Ca2+ influx in response to neuronal activity. Taken together, these data advance mechanistic understanding of endocannabinoid signalling by demonstrating that SGIP1 interaction with the H9 domain underpins axonal CB1R surface expression to regulate presynaptic responsiveness.
Collapse
Affiliation(s)
- Alexandra Fletcher-Jones
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Ellen Spackman
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Tim J. Craig
- School of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Kevin A. Wilkinson
- School of Physiology, Pharmacology and Neuroscience, Centre for Synaptic Plasticity, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Jeremy M. Henley
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| |
Collapse
|
38
|
Dashkova AS, Kovalev VI, Chaplygina AV, Zhdanova DY, Bobkova NV. Unique Properties of Synaptosomes and Prospects for Their Use for the Treatment of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1031-1044. [PMID: 38981699 DOI: 10.1134/s0006297924060051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 07/11/2024]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative condition affecting millions worldwide. Prevalence of AD correlates with increased life expectancy and aging population in the developed countries. Considering that AD is a multifactorial disease involving various pathological processes such as synaptic dysfunction, neuroinflammation, oxidative stress, and improper protein folding, a comprehensive approach targeting multiple pathways may prove effective in slowing the disease progression. Cellular therapy and its further development in the form of cell vesicle and particularly mitochondrial transplantation represent promising approaches for treating neurodegeneration. The use of synaptosomes, due to uniqueness of their contents, could mark a new stage in the development of comprehensive therapies for neurodegenerative diseases, particularly AD. Synaptosomes contain unique memory mitochondria, which differ not only in size but also in functionality compared to the mitochondria in the neuronal soma. These synaptosomal mitochondria actively participate in cellular communication and signal transmission within synapses. Synaptosomes also contain other elements such as their own protein synthesis machinery, synaptic vesicles with neurotransmitters, synaptic adhesion molecules, and microRNAs - all crucial for synaptic transmission and, consequently, cognitive processes. Complex molecular ensemble ensures maintenance of the synaptic autonomy of mitochondria. Additionally, synaptosomes, with their affinity for neurons, can serve as an optimal platform for targeted drug delivery to nerve cells. This review discusses unique composition of synaptosomes, their capabilities and advantages, as well as limitations of their suggested use as therapeutic agents for treating neurodegenerative pathologies, particularly AD.
Collapse
Affiliation(s)
- Alla S Dashkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vladimir I Kovalev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Alina V Chaplygina
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Daria Yu Zhdanova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Natalia V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
39
|
Barti B, Dudok B, Kenesei K, Zöldi M, Miczán V, Balla GY, Zala D, Tasso M, Sagheddu C, Kisfali M, Tóth B, Ledri M, Vizi ES, Melis M, Barna L, Lenkei Z, Soltész I, Katona I. Presynaptic nanoscale components of retrograde synaptic signaling. SCIENCE ADVANCES 2024; 10:eado0077. [PMID: 38809980 PMCID: PMC11135421 DOI: 10.1126/sciadv.ado0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
While our understanding of the nanoscale architecture of anterograde synaptic transmission is rapidly expanding, the qualitative and quantitative molecular principles underlying distinct mechanisms of retrograde synaptic communication remain elusive. We show that a particular form of tonic cannabinoid signaling is essential for setting target cell-dependent synaptic variability. It does not require the activity of the two major endocannabinoid-producing enzymes. Instead, by developing a workflow for physiological, anatomical, and molecular measurements at the same unitary synapse, we demonstrate that the nanoscale stoichiometric ratio of type 1 cannabinoid receptors (CB1Rs) to the release machinery is sufficient to predict synapse-specific release probability. Accordingly, selective decrease of extrasynaptic CB1Rs does not affect synaptic transmission, whereas in vivo exposure to the phytocannabinoid Δ9-tetrahydrocannabinol disrupts the intrasynaptic nanoscale stoichiometry and reduces synaptic variability. These findings imply that synapses leverage the nanoscale stoichiometry of presynaptic receptor coupling to the release machinery to establish synaptic strength in a target cell-dependent manner.
Collapse
Affiliation(s)
- Benjámin Barti
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Barna Dudok
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Departments of Neurology and Neuroscience, Baylor College of Medicine, 1 Baylor Plz, Houston, TX 77030, USA
- Department of Neurosurgery, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Kata Kenesei
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Miklós Zöldi
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Vivien Miczán
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Center, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Gyula Y. Balla
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Diana Zala
- Université Paris Cité, INSERM, Institute of Psychiatry and Neurosciences of Paris, F-75014 Paris, France
| | - Mariana Tasso
- Institute of Nanosystems, School of Bio and Nanotechnologies, National University of San Martín - CONICET, 25 de Mayo Ave., 1021 San Martín, Argentina
| | - Claudia Sagheddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Máté Kisfali
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- BiTrial Ltd., Tállya st 23, H-1121 Budapest, Hungary
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért square 4, H-1111 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Marco Ledri
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Sölvegatan 17, BMC A11, 221 84 Lund, Sweden
| | - E. Sylvester Vizi
- Molecular Pharmacology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - László Barna
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
| | - Zsolt Lenkei
- Université Paris Cité, INSERM, Institute of Psychiatry and Neurosciences of Paris, F-75014 Paris, France
| | - Iván Soltész
- Department of Neurosurgery, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - István Katona
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| |
Collapse
|
40
|
Leitz J, Wang C, Esquivies L, Pfuetzner RA, Peters JJ, Couoh-Cardel S, Wang AL, Brunger AT. Beyond the MUN domain, Munc13 controls priming and depriming of synaptic vesicles. Cell Rep 2024; 43:114026. [PMID: 38809756 PMCID: PMC11286359 DOI: 10.1016/j.celrep.2024.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 05/31/2024] Open
Abstract
Synaptic vesicle docking and priming are dynamic processes. At the molecular level, SNAREs (soluble NSF attachment protein receptors), synaptotagmins, and other factors are critical for Ca2+-triggered vesicle exocytosis, while disassembly factors, including NSF (N-ethylmaleimide-sensitive factor) and α-SNAP (soluble NSF attachment protein), disassemble and recycle SNAREs and antagonize fusion under some conditions. Here, we introduce a hybrid fusion assay that uses synaptic vesicles isolated from mouse brains and synthetic plasma membrane mimics. We included Munc18, Munc13, complexin, NSF, α-SNAP, and an ATP-regeneration system and maintained them continuously-as in the neuron-to investigate how these opposing processes yield fusogenic synaptic vesicles. In this setting, synaptic vesicle association is reversible, and the ATP-regeneration system produces the most synchronous Ca2+-triggered fusion, suggesting that disassembly factors perform quality control at the early stages of synaptic vesicle association to establish a highly fusogenic state. We uncovered a functional role for Munc13 ancillary to the MUN domain that alleviates an α-SNAP-dependent inhibition of Ca2+-triggered fusion.
Collapse
Affiliation(s)
- Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - John Jacob Peters
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Sergio Couoh-Cardel
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Austin L Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
41
|
Casiano Rivera CV, Wallace JN, Fisher GE, Morgan JR. Acute introduction of phosphoserine-129 α-synuclein induces severe swelling of mitochondria at lamprey synapses. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001206. [PMID: 38854632 PMCID: PMC11157340 DOI: 10.17912/micropub.biology.001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Abnormal synaptic aggregation of α-synuclein is linked to cognitive deficits in Parkinson's disease (PD). While the impacts of excess α-synuclein on synaptic function are well established, comparatively less is known about the effects on local mitochondria. Here, we examined morphological features of synaptic mitochondria treated with wild type (WT) or phosphoserine 129 (pS129) α-synuclein, a variant with prominent synaptic accumulation in PD. Acute introduction of pS129 α-synuclein to lamprey synapses caused an activity-dependent swelling and bursting of mitochondria, which did not occur with WT α-synuclein. These pS129-induced effects on mitochondria likely contribute to the synaptic deficits observed in PD.
Collapse
Affiliation(s)
- Caroline V. Casiano Rivera
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
| | - Jaqulin N. Wallace
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
| | - Gia E. Fisher
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
- Biological Sciences Division, The University of Chicago
| | - Jennifer R. Morgan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
| |
Collapse
|
42
|
Berlin E, Lork AA, Bornecrantz M, Ernst C, Phan NTN. Lipid organization and turnover in the plasma membrane of human differentiating neural progenitor cells revealed by time-of-flight secondary ion mass spectrometry imaging. Talanta 2024; 272:125762. [PMID: 38394748 DOI: 10.1016/j.talanta.2024.125762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
Membrane lipids have been known to influence multiple signalling and cellular processes. Dysregulation of lipids at the neuronal membrane is connected to a significant alteration of the brain function and morphology, leading to brain diseases and neurodegeneration. Understanding the lipid composition and turnover of neuronal membrane will provide a significant insight into the molecular events underlying the regulatory effects of these biomolecules in a neuronal system. In this study, we aimed to characterize the composition and turnover of the plasma membrane lipids in human neural progenitor cells (NPCs) at an early differentiation stage into midbrain neurons using ToF-SIMS imaging. Lipid composition of the native plasma membrane was explored, followed by an examination of the lipid turnover using different isotopically labelled lipid precursors, including 13C-choline, 13C-lauric acid, 15N-linoleic, and 13C-stearic. Our results showed that differentiating NPCs contain a high abundance of ceramides, glycerophosphoserines, neutral glycosphingolipids, diradylglycerols, and glycerophosphocholines at the plasma membrane. In addition, different precursors were found to incorporate into different membrane lipids which are specific for the short- or long-carbon chains, and the unsaturation or saturation stage of the precursors. The lipid structure of neuronal membrane reflects the differentiation status of NPCs, and it can be altered significantly using a particular lipid precursor. Our study illustrates a potential of ToF-SIMS imaging to study native plasma membrane lipids and elucidate complex cellular processes by providing molecular -rich information at a single cell level.
Collapse
Affiliation(s)
- Emmanuel Berlin
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Alicia A Lork
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Martin Bornecrantz
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Carl Ernst
- McGill University, Montreal Neurological Institute, Montreal, H3A 2B4, Canada
| | - Nhu T N Phan
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
43
|
Hepburn I, Lallouette J, Chen W, Gallimore AR, Nagasawa-Soeda SY, De Schutter E. Vesicle and reaction-diffusion hybrid modeling with STEPS. Commun Biol 2024; 7:573. [PMID: 38750123 PMCID: PMC11096338 DOI: 10.1038/s42003-024-06276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Vesicles carry out many essential functions within cells through the processes of endocytosis, exocytosis, and passive and active transport. This includes transporting and delivering molecules between different parts of the cell, and storing and releasing neurotransmitters in neurons. To date, computational simulation of these key biological players has been rather limited and has not advanced at the same pace as other aspects of cell modeling, restricting the realism of computational models. We describe a general vesicle modeling tool that has been designed for wide application to a variety of cell models, implemented within our software STochastic Engine for Pathway Simulation (STEPS), a stochastic reaction-diffusion simulator that supports realistic reconstructions of cell tissue in tetrahedral meshes. The implementation is validated in an extensive test suite, parallel performance is demonstrated in a realistic synaptic bouton model, and example models are visualized in a Blender extension module.
Collapse
Affiliation(s)
- Iain Hepburn
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Jules Lallouette
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Weiliang Chen
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Andrew R Gallimore
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Sarah Y Nagasawa-Soeda
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan.
| |
Collapse
|
44
|
Jackson J, Hoffmann C, Scifo E, Wang H, Wischhof L, Piazzesi A, Mondal M, Shields H, Zhou X, Mondin M, Ryan EB, Döring H, Prehn JHM, Rottner K, Giannone G, Nicotera P, Ehninger D, Milovanovic D, Bano D. Actin-nucleation promoting factor N-WASP influences alpha-synuclein condensates and pathology. Cell Death Dis 2024; 15:304. [PMID: 38693139 PMCID: PMC11063037 DOI: 10.1038/s41419-024-06686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Abnormal intraneuronal accumulation of soluble and insoluble α-synuclein (α-Syn) is one of the main pathological hallmarks of synucleinopathies, such as Parkinson's disease (PD). It has been well documented that the reversible liquid-liquid phase separation of α-Syn can modulate synaptic vesicle condensates at the presynaptic terminals. However, α-Syn can also form liquid-like droplets that may convert into amyloid-enriched hydrogels or fibrillar polymorphs under stressful conditions. To advance our understanding on the mechanisms underlying α-Syn phase transition, we employed a series of unbiased proteomic analyses and found that actin and actin regulators are part of the α-Syn interactome. We focused on Neural Wiskott-Aldrich syndrome protein (N-WASP) because of its association with a rare early-onset familial form of PD. In cultured cells, we demonstrate that N-WASP undergoes phase separation and can be recruited to synapsin 1 liquid-like droplets, whereas it is excluded from α-Syn/synapsin 1 condensates. Consistently, we provide evidence that wsp-1/WASL loss of function alters the number and dynamics of α-Syn inclusions in the nematode Caenorhabditis elegans. Together, our findings indicate that N-WASP expression may create permissive conditions that promote α-Syn condensates and their potentially deleterious conversion into toxic species.
Collapse
Affiliation(s)
- Joshua Jackson
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christian Hoffmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Enzo Scifo
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Han Wang
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Hanna Shields
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Xuesi Zhou
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Magali Mondin
- University Bordeaux, CNRS, INSERM, BIC, UAR 3420, F-33000, Bordeaux, France
| | - Eanna B Ryan
- RCSI Centre for Systems Medicine and Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences; SFI FutureNeuro Research Centre, Dublin 2, Ireland
| | - Hermann Döring
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig; Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen H M Prehn
- RCSI Centre for Systems Medicine and Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences; SFI FutureNeuro Research Centre, Dublin 2, Ireland
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig; Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Gregory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | | | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Dragomir Milovanovic
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
45
|
Qiu H, Wu X, Ma X, Li S, Cai Q, Ganzella M, Ge L, Zhang H, Zhang M. Short-distance vesicle transport via phase separation. Cell 2024; 187:2175-2193.e21. [PMID: 38552623 DOI: 10.1016/j.cell.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/17/2024] [Accepted: 03/02/2024] [Indexed: 04/28/2024]
Abstract
In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.
Collapse
Affiliation(s)
- Hua Qiu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiandeng Wu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoli Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qixu Cai
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
46
|
Paulussen I, Beckert H, Musial TF, Gschossmann LJ, Wolf J, Schmitt M, Clasadonte J, Mairet-Coello G, Wolff C, Schoch S, Dietrich D. SV2B defines a subpopulation of synaptic vesicles. J Mol Cell Biol 2024; 15:mjad054. [PMID: 37682518 PMCID: PMC11184983 DOI: 10.1093/jmcb/mjad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023] Open
Abstract
Synaptic vesicles can undergo several modes of exocytosis, endocytosis, and trafficking within individual synapses, and their fates may be linked to different vesicular protein compositions. Here, we mapped the intrasynaptic distribution of the synaptic vesicle proteins SV2B and SV2A in glutamatergic synapses of the hippocampus using three-dimensional electron microscopy. SV2B was almost completely absent from docked vesicles and a distinct cluster of vesicles found near the active zone. In contrast, SV2A was found in all domains of the synapse and was slightly enriched near the active zone. SV2B and SV2A were found on the membrane in the peri-active zone, suggesting the recycling from both clusters of vesicles. SV2B knockout mice displayed an increased seizure induction threshold only in a model employing high-frequency stimulation. Our data show that glutamatergic synapses generate molecularly distinct populations of synaptic vesicles and are able to maintain them at steep spatial gradients. The almost complete absence of SV2B from vesicles at the active zone of wildtype mice may explain why SV2A has been found more important for vesicle release.
Collapse
Affiliation(s)
- Isabelle Paulussen
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | - Hannes Beckert
- Microscopy Core Facility, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Timothy F Musial
- Microscopy Core Facility, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Lena J Gschossmann
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | - Julia Wolf
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | | | | | | | | | - Susanne Schoch
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | - Dirk Dietrich
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
| |
Collapse
|
47
|
Binotti B, Ninov M, Cepeda AP, Ganzella M, Matti U, Riedel D, Urlaub H, Sambandan S, Jahn R. ATG9 resides on a unique population of small vesicles in presynaptic nerve terminals. Autophagy 2024; 20:883-901. [PMID: 37881948 PMCID: PMC11062364 DOI: 10.1080/15548627.2023.2274204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
In neurons, autophagosome biogenesis occurs mainly in distal axons, followed by maturation during retrograde transport. Autophagosomal growth depends on the supply of membrane lipids which requires small vesicles containing ATG9, a lipid scramblase essential for macroautophagy/autophagy. Here, we show that ATG9-containing vesicles are enriched in synapses and resemble synaptic vesicles in size and density. The proteome of ATG9-containing vesicles immuno-isolated from nerve terminals showed conspicuously low levels of trafficking proteins except of the AP2-complex and some enzymes involved in endosomal phosphatidylinositol metabolism. Super resolution microscopy of nerve terminals and isolated vesicles revealed that ATG9-containing vesicles represent a distinct vesicle population with limited overlap not only with synaptic vesicles but also other membranes of the secretory pathway, uncovering a surprising heterogeneity in their membrane composition. Our results are compatible with the view that ATG9-containing vesicles function as lipid shuttles that scavenge membrane lipids from various intracellular membranes to support autophagosome biogenesis.Abbreviations: AP: adaptor related protein complex: ATG2: autophagy related 2; ATG9: autophagy related 9; DNA PAINT: DNA-based point accumulation for imaging in nanoscale topography; DyMIN STED: dynamic minimum stimulated emission depletion; EL: endosome and lysosome; ER: endoplasmic reticulum; GA: Golgi apparatus; iBAQ: intensity based absolute quantification; LAMP: lysosomal-associated membrane protein; M6PR: mannose-6-phosphate receptor, cation dependent; Minflux: minimal photon fluxes; Mito: mitochondria; MS: mass spectrometry; PAS: phagophore assembly site; PM: plasma membrane; Px: peroxisome; RAB26: RAB26, member RAS oncogene family; RAB3A: RAB3A, member RAS oncogene family; RAB5A: RAB5A, member RAS oncogene family; SNARE: soluble N-ethylmaleimide-sensitive-factor attachment receptor; SVs: synaptic vesicles; SYP: synaptophysin; TGN: trans-Golgi network; TRAPP: transport protein particle; VTI1: vesicle transport through interaction with t-SNAREs.
Collapse
Affiliation(s)
- Beyenech Binotti
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Momchil Ninov
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Germany
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andreia P. Cepeda
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ulf Matti
- Abberior Instruments GmbH, Göttingen, Germany
| | - Dietmar Riedel
- Facility for Transmission Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Germany
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging : from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Sivakumar Sambandan
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Synaptic Metal Ion Dynamics and Signalin, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
48
|
Huang HZ, Ai WQ, Wei N, Zhu LS, Liu ZQ, Zhou CW, Deng MF, Zhang WT, Zhang JC, Yang CQ, Hu YZ, Han ZT, Zhang HH, Jia JJ, Wang J, Liu FF, Li K, Xu Q, Yuan M, Man H, Guo Z, Lu Y, Shu K, Zhu LQ, Liu D. Senktide blocks aberrant RTN3 interactome to retard memory decline and tau pathology in social isolated Alzheimer's disease mice. Protein Cell 2024; 15:261-284. [PMID: 38011644 PMCID: PMC10984625 DOI: 10.1093/procel/pwad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Sporadic or late-onset Alzheimer's disease (LOAD) accounts for more than 95% of Alzheimer's disease (AD) cases without any family history. Although genome-wide association studies have identified associated risk genes and loci for LOAD, numerous studies suggest that many adverse environmental factors, such as social isolation, are associated with an increased risk of dementia. However, the underlying mechanisms of social isolation in AD progression remain elusive. In the current study, we found that 7 days of social isolation could trigger pattern separation impairments and presynaptic abnormalities of the mossy fibre-CA3 circuit in AD mice. We also revealed that social isolation disrupted histone acetylation and resulted in the downregulation of 2 dentate gyrus (DG)-enriched miRNAs, which simultaneously target reticulon 3 (RTN3), an endoplasmic reticulum protein that aggregates in presynaptic regions to disturb the formation of functional mossy fibre boutons (MFBs) by recruiting multiple mitochondrial and vesicle-related proteins. Interestingly, the aggregation of RTN3 also recruits the PP2A B subunits to suppress PP2A activity and induce tau hyperphosphorylation, which, in turn, further elevates RTN3 and forms a vicious cycle. Finally, using an artificial intelligence-assisted molecular docking approach, we determined that senktide, a selective agonist of neurokinin3 receptors (NK3R), could reduce the binding of RTN3 with its partners. Moreover, application of senktide in vivo effectively restored DG circuit disorders in socially isolated AD mice. Taken together, our findings not only demonstrate the epigenetic regulatory mechanism underlying mossy fibre synaptic disorders orchestrated by social isolation and tau pathology but also reveal a novel potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- He-Zhou Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen-Qing Ai
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450002, China
| | - Ling-Shuang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao-Wen Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Man-Fei Deng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen-Tao Zhang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jia-Chen Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun-Qing Yang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya-Zhuo Hu
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing 100853, China
| | - Zhi-Tao Han
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing 100853, China
| | - Hong-Hong Zhang
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing 100853, China
| | - Jian-Jun Jia
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing 100853, China
| | - Jing Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang-Fang Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Xu
- Department of Neurology, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hengye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
49
|
Masilamoni GJ, Kelly H, Swain AJ, Pare JF, Villalba RM, Smith Y. Structural Plasticity of GABAergic Pallidothalamic Terminals in MPTP-Treated Parkinsonian Monkeys: A 3D Electron Microscopic Analysis. eNeuro 2024; 11:ENEURO.0241-23.2024. [PMID: 38514185 PMCID: PMC10957232 DOI: 10.1523/eneuro.0241-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The internal globus pallidus (GPi) is a major source of tonic GABAergic inhibition to the motor thalamus. In parkinsonism, the firing rate of GPi neurons is increased, and their pattern switches from a tonic to a burst mode, two pathophysiological changes associated with increased GABAergic pallidothalamic activity. In this study, we used high-resolution 3D electron microscopy to demonstrate that GPi terminals in the parvocellular ventral anterior nucleus (VApc) and the centromedian nucleus (CM), the two main GPi-recipient motor thalamic nuclei in monkeys, undergo significant morphometric changes in parkinsonian monkeys including (1) increased terminal volume in both nuclei; (2) increased surface area of synapses in both nuclei; (3) increased number of synapses/GPi terminals in the CM, but not VApc; and (4) increased total volume, but not number, of mitochondria/terminals in both nuclei. In contrast to GPi terminals, the ultrastructure of putative GABAergic nonpallidal terminals was not affected. Our results also revealed striking morphological differences in terminal volume, number/area of synapses, and volume/number of mitochondria between GPi terminals in VApc and CM of control monkeys. In conclusion, GABAergic pallidothalamic terminals are endowed with a high level of structural plasticity that may contribute to the development and maintenance of the abnormal increase in pallidal GABAergic outflow to the thalamus in the parkinsonian state. Furthermore, the evidence for ultrastructural differences between GPi terminals in VApc and CM suggests that morphologically distinct pallidothalamic terminals from single pallidal neurons may underlie specific physiological properties of pallidal inputs to VApc and CM in normal and diseased states.
Collapse
Affiliation(s)
- G J Masilamoni
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - H Kelly
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - A J Swain
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - J F Pare
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - R M Villalba
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - Y Smith
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
- Department of Neurology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
50
|
Iadarola MJ, Sapio MR, Loydpierson AJ, Mervis CB, Fehrenbacher JC, Vasko MR, Maric D, Eisenberg DP, Nash TA, Kippenhan JS, Garvey MH, Mannes AJ, Gregory MD, Berman KF. Syntaxin1A overexpression and pain insensitivity in individuals with 7q11.23 duplication syndrome. JCI Insight 2024; 9:e176147. [PMID: 38261410 DOI: 10.1172/jci.insight.176147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Genetic modifications leading to pain insensitivity phenotypes, while rare, provide invaluable insights into the molecular biology of pain and reveal targets for analgesic drugs. Pain insensitivity typically results from Mendelian loss-of-function mutations in genes expressed in nociceptive (pain-sensing) dorsal root ganglion (DRG) neurons that connect the body to the spinal cord. We document a pain insensitivity mechanism arising from gene overexpression in individuals with the rare 7q11.23 duplication syndrome (Dup7), who have 3 copies of the approximately 1.5-megabase Williams syndrome (WS) critical region. Based on parental accounts and pain ratings, people with Dup7, mainly children in this study, are pain insensitive following serious injury to skin, bones, teeth, or viscera. In contrast, diploid siblings (2 copies of the WS critical region) and individuals with WS (1 copy) show standard reactions to painful events. A converging series of human assessments and cross-species cell biological and transcriptomic studies identified 1 likely candidate in the WS critical region, STX1A, as underlying the pain insensitivity phenotype. STX1A codes for the synaptic vesicle fusion protein syntaxin1A. Excess syntaxin1A was demonstrated to compromise neuropeptide exocytosis from nociceptive DRG neurons. Taken together, these data indicate a mechanism for producing "genetic analgesia" in Dup7 and offer previously untargeted routes to pain control.
Collapse
Affiliation(s)
- Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Amelia J Loydpierson
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carolyn B Mervis
- Neurodevelopmental Sciences Laboratory, Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael R Vasko
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke (NINDS), and
| | - Daniel P Eisenberg
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Tiffany A Nash
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - J Shane Kippenhan
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Madeline H Garvey
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael D Gregory
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| |
Collapse
|