1
|
She L, Cheng X, Jiang P, Shen S, Dai F, Run Y, Zhu M, Tavakoli M, Yang X, Wang X, Xiao J, Chen C, Kang Z, Huang J, Zhang W. Modified carbon dot-mediated transient transformation for genomic and epigenomic studies in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1139-1152. [PMID: 39968951 PMCID: PMC11933859 DOI: 10.1111/pbi.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 02/20/2025]
Abstract
Genotype restriction poses a significant bottleneck to stable transformation in the vast majority of plant species, thereby severely impeding advancement in plant bioengineering, particularly for crops. Nanoparticles (NPs) can serve as effective carriers for the transient delivery of nucleic acids, facilitating gene overexpression or silencing in plants in a genotype-independent manner. However, the applications of NP-mediated transient systems in comprehensive genomic studies remained underexplored in plants, especially in crops that face challenges in genetic transformation. Consequently, there is an urgent need for efficient NP-mediated delivery systems capable of generating whole plants or seedlings with uniformly transformed nucleic acids. We have developed a straightforward and efficient modified carbon dot (MCD)-mediated transient transformation system for delivering DNA plasmids into the seeds of wheat, which is also applicable to other plant species. This system facilitates the generation of whole seedlings that contain the transferred DNA plasmids. Furthermore, our study demonstrates that this system serves as an excellent platform for conducting functional genomic studies in wheat, including the validation of gene functions, protein interactions and regulation, omics studies, and genome editing. This advancement significantly enhances functional genomic research for any plants or crops that face challenges in stable transformation. Thus, our study provides for the first time evidence of new applications for MCDs in functional genomics and epigenomic studies, and bioengineering potentially leading to the improvement of desirable agronomic traits in crops.
Collapse
Affiliation(s)
- Linwei She
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Peng Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Simin Shen
- School of Biology & Basic Medical ScienceSoochow UniversitySuzhouJiangsuChina
| | - Fangxiu Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Yonghang Run
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Mengting Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Mahmoud Tavakoli
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Xueming Yang
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xiu‐e Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Jin Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Caiyan Chen
- Institute of Subtropical AgricultureChinese Academy of SciencesChangshaHunanChina
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsuChina
| | - Jian Huang
- School of Biology & Basic Medical ScienceSoochow UniversitySuzhouJiangsuChina
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
2
|
Zhu M, Lu X, Wang D, Ma J, Wang Y, Wang R, Wang H, Cheng W, Zhu Y. A narrative review of epigenetic marker in H3K27ac and its emerging potential as a therapeutic target in cancer. Epigenomics 2025; 17:263-279. [PMID: 39981972 PMCID: PMC11853624 DOI: 10.1080/17501911.2025.2460900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Histone acetylation, particularly H3 K27 acetylation (H3K27ac), is a critical post-translational modification that regulates chromatin structure and gene expression, which plays a significant role in various cancers, including breast, colon, lung, hepatocellular, and prostate cancer. However, the mechanisms of H3K27ac in tumorigenesis are not yet comprehensive, especially its epigenetic mechanisms. This review endeavors to discuss findings on the involvement of H3K27ac in carcinogenesis within the past 5 years through a literature search using academic databases such as Web of Science. Firstly, we provide an overview of the diverse landscape of histone modifications, emphasizing the distinctive characteristics and critical significance of H3K27ac. Secondly, we summarize and compare advanced high-throughput sequencing technologies that have been utilized in the construction of the H3K27ac epigenetic map. Thirdly, we elucidate the role of H3K27ac in mediating gene transcription. Fourthly, we venture into the potential molecular mechanism of H3K27ac in cancer development. Finally, we engage in discussing future therapeutic approaches in oncology, with a spotlight on strategies that harness the potential of H3K27 modifications. In conclusion, this review comprehensively summarizes the characteristics of H3K27ac and underscores its pivotal role in cancer, providing valuable insights into its potential as a therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Meizi Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xuejin Lu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Danhong Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Jinhu Ma
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Rui Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Hongye Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Wenhui Cheng
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yaling Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Jiao AL, Sendinc E, Zee BM, Wallner F, Shi Y. An E2 ubiquitin-conjugating enzyme links diubiquitinated H2B to H3K27M oncohistone function. Proc Natl Acad Sci U S A 2024; 121:e2416614121. [PMID: 39560642 PMCID: PMC11621828 DOI: 10.1073/pnas.2416614121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
The H3K27M oncogenic histone (oncohistone) mutation drives ~80% of incurable childhood brain tumors known as diffuse midline gliomas (DMGs). The major molecular feature of H3K27M mutant DMGs is a global loss of H3K27 trimethylation (H3K27me3), a phenotype conserved in Caenorhabditis elegans (C. elegans). Here, we perform unbiased genome-wide suppressor screens in C. elegans expressing H3K27M and isolate 20 suppressors, all of which at least partially restore H3K27me3. 19/20 suppressor mutations map to the same histone H3.3 gene in which the K27M mutation was originally introduced. Most of these create single amino acid substitutions between residues R26-Y54, which do not disrupt oncohistone expression. Rather, they are predicted to impair interactions with the Polycomb Repressive Complex 2 (PRC2) and are functionally conserved in human cells. Further, we mapped a single extragenic H3K27M suppressor to ubc-20, an E2 ubiquitin-conjugating enzyme, whose loss rescued H3K27me3 to nearly 50% wild-type levels despite continued oncohistone expression and chromatin incorporation. We demonstrate that ubc-20 is the major enzyme responsible for generating diubiquitinated histone H2B. Our study provides in vivo support for existing models of PRC2 inhibition via direct oncohistone contact and suggests that the effects of H3K27M may be modulated by H2B ubiquitination.
Collapse
Affiliation(s)
- Alan L. Jiao
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Erdem Sendinc
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Barry M. Zee
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Felice Wallner
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| |
Collapse
|
4
|
Warren S, Xiong S, Robles-Magallanes D, Baizabal JM. A vector system encoding histone H3 mutants facilitates manipulations of the neuronal epigenome. Sci Rep 2024; 14:24415. [PMID: 39420029 PMCID: PMC11487264 DOI: 10.1038/s41598-024-74270-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The differentiation of developmental cell lineages is associated with genome-wide modifications in histone H3 methylation. However, the causal role of histone H3 methylation in transcriptional regulation and cell differentiation has been difficult to test in mammals. The experimental overexpression of histone H3 mutants carrying lysine-to-methionine (K-to-M) substitutions has emerged as an alternative tool for inhibiting the endogenous levels of histone H3 methylation at specific lysine residues. Here, we leverage the use of histone K-to-M mutants by creating Enhanced Episomal Vectors that enable the simultaneous depletion of multiple levels of histone H3 lysine 4 (H3K4) or lysine 9 (H3K9) methylation in projection neurons of the mouse cerebral cortex. Our approach also facilitates the simultaneous depletion of H3K9 and H3K27 trimethylation (H3K9me3 and H3K27me3, respectively) in cortical neurons. In addition, we report a tamoxifen-inducible Cre-FLEX system that allows the activation of mutant histones at specific developmental time points or in the adult cortex, leading to the depletion of specific histone marks. The tools presented here can be implemented in other experimental systems, such as human in vitro models, to test the combinatorial role of histone methylations in developmental fate decisions and the maintenance of cell identity.
Collapse
Affiliation(s)
- Sophie Warren
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Sen Xiong
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | | |
Collapse
|
5
|
Tamburri S, Rustichelli S, Amato S, Pasini D. Navigating the complexity of Polycomb repression: Enzymatic cores and regulatory modules. Mol Cell 2024; 84:3381-3405. [PMID: 39178860 DOI: 10.1016/j.molcel.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Polycomb proteins are a fundamental repressive system that plays crucial developmental roles by orchestrating cell-type-specific transcription programs that govern cell identity. Direct alterations of Polycomb activity are indeed implicated in human pathologies, including developmental disorders and cancer. General Polycomb repression is coordinated by three distinct activities that regulate the deposition of two histone post-translational modifications: tri-methylation of histone H3 lysine 27 (H3K27me3) and histone H2A at lysine 119 (H2AK119ub1). These activities exist in large and heterogeneous multiprotein ensembles consisting of common enzymatic cores regulated by heterogeneous non-catalytic modules composed of a large number of accessory proteins with diverse biochemical properties. Here, we have analyzed the current molecular knowledge, focusing on the functional interaction between the core enzymatic activities and their regulation mediated by distinct accessory modules. This provides a comprehensive analysis of the molecular details that control the establishment and maintenance of Polycomb repression, examining their underlying coordination and highlighting missing information and emerging new features of Polycomb-mediated transcriptional control.
Collapse
Affiliation(s)
- Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
6
|
Lin L, Huang Y, McIntyre J, Chang CH, Colmenares S, Lee YCG. Prevalent Fast Evolution of Genes Involved in Heterochromatin Functions. Mol Biol Evol 2024; 41:msae181. [PMID: 39189646 PMCID: PMC11408610 DOI: 10.1093/molbev/msae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Heterochromatin is a gene-poor and repeat-rich genomic compartment universally found in eukaryotes. Despite its low transcriptional activity, heterochromatin plays important roles in maintaining genome stability, organizing chromosomes, and suppressing transposable elements. Given the importance of these functions, it is expected that genes involved in heterochromatin regulation would be highly conserved. Yet, a handful of these genes were found to evolve rapidly. To investigate whether these previous findings are anecdotal or general to genes modulating heterochromatin, we compile an exhaustive list of 106 candidate genes involved in heterochromatin functions and investigate their evolution over short and long evolutionary time scales in Drosophila. Our analyses find that these genes exhibit significantly more frequent evolutionary changes, both in the forms of amino acid substitutions and gene copy number change, when compared to genes involved in Polycomb-based repressive chromatin. While positive selection drives amino acid changes within both structured domains with diverse functions and intrinsically disordered regions, purifying selection may have maintained the proportions of intrinsically disordered regions of these proteins. Together with the observed negative associations between the evolutionary rate of these genes and the genomic abundance of transposable elements, we propose an evolutionary model where the fast evolution of genes involved in heterochromatin functions is an inevitable outcome of the unique functional roles of heterochromatin, while the rapid evolution of transposable elements may be an effect rather than cause. Our study provides an important global view of the evolution of genes involved in this critical cellular domain and provides insights into the factors driving the distinctive evolution of heterochromatin.
Collapse
Affiliation(s)
- Leila Lin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Jennifer McIntyre
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Serafin Colmenares
- Department of Cell and Molecular Biology, University of California, Berkeley, CA, USA
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|
7
|
Jiao Y, Lv Y, Liu M, Liu Y, Han M, Xiong X, Zhou H, Zhong J, Kang X, Su W. The modification role and tumor association with a methyltransferase: KMT2C. Front Immunol 2024; 15:1444923. [PMID: 39165358 PMCID: PMC11333232 DOI: 10.3389/fimmu.2024.1444923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Histone methylation can affect chromosome structure and binding to other proteins, depending on the type of amino acid being modified and the number of methyl groups added, this modification may promote transcription of genes (H3K4me2, H3K4me3, and H3K79me3) or reduce transcription of genes (H3K9me2, H3K9me3, H3K27me2, H3K27me3, and H4K20me3). In addition, advances in tumor immunotherapy have shown that histone methylation as a type of protein post-translational modification is also involved in the proliferation, activation and metabolic reprogramming of immune cells in the tumor microenvironment. These post-translational modifications of proteins play a crucial role in regulating immune escape from tumors and immunotherapy. Lysine methyltransferases are important components of the post-translational histone methylation modification pathway. Lysine methyltransferase 2C (KMT2C), also known as MLL3, is a member of the lysine methyltransferase family, which mediates the methylation modification of histone 3 lysine 4 (H3K4), participates in the methylation of many histone proteins, and regulates a number of signaling pathways such as EMT, p53, Myc, DNA damage repair and other pathways. Studies of KMT2C have found that it is aberrantly expressed in many diseases, mainly tumors and hematological disorders. It can also inhibit the onset and progression of these diseases. Therefore, KMT2C may serve as a promising target for tumor immunotherapy for certain diseases. Here, we provide an overview of the structure of KMT2C, disease mechanisms, and diseases associated with KMT2C, and discuss related challenges.
Collapse
Affiliation(s)
- Yunjuan Jiao
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Yuanhao Lv
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Mingjie Liu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yun Liu
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Miaomiao Han
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Xiwen Xiong
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongyan Zhou
- Xinxiang Key Laboratory of Precision Diagnosis and Treatment for Colorectal Cancer, Xinxiang First People’s Hospital, Xinxiang, China
| | - Jiateng Zhong
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaohong Kang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
8
|
Lin L, Huang Y, McIntyre J, Chang CH, Colmenares S, Lee YCG. Prevalent fast evolution of genes involved in heterochromatin functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583199. [PMID: 38496614 PMCID: PMC10942301 DOI: 10.1101/2024.03.03.583199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Heterochromatin is a gene-poor and repeat-rich genomic compartment universally found in eukaryotes. Despite its low transcriptional activity, heterochromatin plays important roles in maintaining genome stability, organizing chromosomes, and suppressing transposable elements (TEs). Given the importance of these functions, it is expected that the genes involved in heterochromatin regulation would be highly conserved. Yet, a handful of these genes were found to evolve rapidly. To investigate whether these previous findings are anecdotal or general to genes modulating heterochromatin, we compile an exhaustive list of 106 candidate genes involved in heterochromatin functions and investigate their evolution over short and long evolutionary time scales in Drosophila. Our analyses find that these genes exhibit significantly more frequent evolutionary changes, both in the forms of amino acid substitutions and gene copy number change, when compared to genes involved in Polycomb-based repressive chromatin. While positive selection drives amino acid changes within both structured domains with diverse functions and intrinsically disordered regions (IDRs), purifying selection may have maintained the proportions of IDRs of these proteins. Together with the observed negative associations between evolutionary rates of these genes and genomic TE abundance, we propose an evolutionary model where the fast evolution of genes involved in heterochromatin functions is an inevitable outcome of the unique functional roles of heterochromatin, while the rapid evolution of TEs may be an effect rather than cause. Our study provides an important global view of the evolution of genes involved in this critical cellular domain and provides insights into the factors driving the distinctive evolution of heterochromatin.
Collapse
|
9
|
Nonnenbroich LF, Bouchal SM, Millesi E, Rechberger JS, Khatua S, Daniels DJ. H3K27-Altered Diffuse Midline Glioma of the Brainstem: From Molecular Mechanisms to Targeted Interventions. Cells 2024; 13:1122. [PMID: 38994974 PMCID: PMC11240752 DOI: 10.3390/cells13131122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Pediatric high-grade gliomas are a devastating subset of brain tumors, characterized by their aggressive pathophysiology and limited treatment options. Among them, H3 K27-altered diffuse midline gliomas (DMG) of the brainstem stand out due to their distinct molecular features and dismal prognosis. Recent advances in molecular profiling techniques have unveiled the critical role of H3 K27 alterations, particularly a lysine-to-methionine mutation on position 27 (K27M) of the histone H3 tail, in the pathogenesis of DMG. These mutations result in epigenetic dysregulation, which leads to altered chromatin structure and gene expression patterns in DMG tumor cells, ultimately contributing to the aggressive phenotype of DMG. The exploration of targeted therapeutic avenues for DMG has gained momentum in recent years. Therapies, including epigenetic modifiers, kinase inhibitors, and immunotherapies, are under active investigation; these approaches aim to disrupt aberrant signaling cascades and overcome the various mechanisms of therapeutic resistance in DMG. Challenges, including blood-brain barrier penetration and DMG tumor heterogeneity, require innovative approaches to improve drug delivery and personalized treatment strategies. This review aims to provide a comprehensive overview of the evolving understanding of DMG, focusing on the intricate molecular mechanisms driving tumorigenesis/tumor progression and the current landscape of emerging targeted interventions.
Collapse
Affiliation(s)
- Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (L.F.N.); (J.S.R.)
- Hopp Children’s Cancer Center, Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Samantha M. Bouchal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (L.F.N.); (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Elena Millesi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Research Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (L.F.N.); (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (L.F.N.); (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Watanabe J, Clutter MR, Gullette MJ, Sasaki T, Uchida E, Kaur S, Mo Y, Abe K, Ishi Y, Takata N, Natsumeda M, Gadd S, Zhang Z, Becher OJ, Hashizume R. BET bromodomain inhibition potentiates radiosensitivity in models of H3K27-altered diffuse midline glioma. J Clin Invest 2024; 134:e174794. [PMID: 38771655 PMCID: PMC11213469 DOI: 10.1172/jci174794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Diffuse midline glioma (DMG) H3K27-altered is one of the most malignant childhood cancers. Radiation therapy remains the only effective treatment yet provides a 5-year survival rate of only 1%. Several clinical trials have attempted to enhance radiation antitumor activity using radiosensitizing agents, although none have been successful. Given this, there is a critical need for identifying effective therapeutics to enhance radiation sensitivity for the treatment of DMG. Using high-throughput radiosensitivity screening, we identified bromo- and extraterminal domain (BET) protein inhibitors as potent radiosensitizers in DMG cells. Genetic and pharmacologic inhibition of BET bromodomain activity reduced DMG cell proliferation and enhanced radiation-induced DNA damage by inhibiting DNA repair pathways. RNA-Seq and the CUT&RUN (cleavage under targets and release using nuclease) analysis showed that BET bromodomain inhibitors regulated the expression of DNA repair genes mediated by H3K27 acetylation at enhancers. BET bromodomain inhibitors enhanced DMG radiation response in patient-derived xenografts as well as genetically engineered mouse models. Together, our results highlight BET bromodomain inhibitors as potential radiosensitizer and provide a rationale for developing combination therapy with radiation for the treatment of DMG.
Collapse
Affiliation(s)
- Jun Watanabe
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Neurological Surgery, Brain Research Institute, Niigata University, Niigata, Japan
| | | | | | - Takahiro Sasaki
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurological Surgery, Wakayama Medical University, Wakayama, Japan
| | - Eita Uchida
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Savneet Kaur
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yan Mo
- Institute for Cancer Genetics
- Department of Pediatrics, and
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, USA
| | - Kouki Abe
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Yukitomo Ishi
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Nozomu Takata
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, and
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Manabu Natsumeda
- Department of Neurological Surgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Samantha Gadd
- Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics
- Department of Pediatrics, and
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, USA
| | - Oren J. Becher
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rintaro Hashizume
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Hematology and Oncology, Children’s of Alabama, Birmingham, Alabama, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Saratsis AM, Knowles T, Petrovic A, Nazarian J. H3K27M mutant glioma: Disease definition and biological underpinnings. Neuro Oncol 2024; 26:S92-S100. [PMID: 37818718 PMCID: PMC11066930 DOI: 10.1093/neuonc/noad164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 10/12/2023] Open
Abstract
High-grade glioma (HGG) is the most common cause of cancer death in children and the most common primary central nervous system tumor in adults. While pediatric HGG was once thought to be biologically similar to the adult form of disease, research has shown these malignancies to be significantly molecularly distinct, necessitating distinct approaches to their clinical management. However, emerging data have shown shared molecular events in pediatric and adult HGG including the histone H3K27M mutation. This somatic missense mutation occurs in genes encoding one of two isoforms of the Histone H3 protein, H3F3A (H3.3), or HIST1H3B (H3.1), and is detected in up to 80% of pediatric diffuse midline gliomas and in up to 60% of adult diffuse gliomas. Importantly, the H3K27M mutation is associated with poorer overall survival and response to therapy compared to patients with H3 wild-type tumors. Here, we review the clinical features and biological underpinnings of pediatric and adult H3K27M mutant glioma, offering a groundwork for understanding current research and clinical approaches for the care of patients suffering with this challenging disease.
Collapse
Affiliation(s)
| | | | - Antonela Petrovic
- DMG Research Center, Department of Oncology, University Children’s Hospital, University of Zürich, Zürich, Switzerland
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children’s National Health System, Washington, District of Columbia, USA
- Brain Tumor Institute, Children’s National Health System, Washington, District of Columbia, USA
- DMG Research Center, Department of Pediatrics, University Children’s Hospital, University of Zurich, Zürich, Switzerland
| |
Collapse
|
12
|
Serdyukova K, Swearingen AR, Coradin M, Nevo M, Tran H, Bajric E, Brumbaugh J. Leveraging dominant-negative histone H3 K-to-M mutations to study chromatin during differentiation and development. Development 2023; 150:dev202169. [PMID: 37846748 PMCID: PMC10617616 DOI: 10.1242/dev.202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Histone modifications are associated with regulation of gene expression that controls a vast array of biological processes. Often, these associations are drawn by correlating the genomic location of a particular histone modification with gene expression or phenotype; however, establishing a causal relationship between histone marks and biological processes remains challenging. Consequently, there is a strong need for experimental approaches to directly manipulate histone modifications. A class of mutations on the N-terminal tail of histone H3, lysine-to-methionine (K-to-M) mutations, was identified as dominant-negative inhibitors of histone methylation at their respective and specific residues. The dominant-negative nature of K-to-M mutants makes them a valuable tool for studying the function of specific methylation marks on histone H3. Here, we review recent applications of K-to-M mutations to understand the role of histone methylation during development and homeostasis. We highlight important advantages and limitations that require consideration when using K-to-M mutants, particularly in a developmental context.
Collapse
Affiliation(s)
- Ksenia Serdyukova
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alison R. Swearingen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mariel Coradin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mika Nevo
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huong Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emir Bajric
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Espinoza Pereira KN, Shan J, Licht JD, Bennett RL. Histone mutations in cancer. Biochem Soc Trans 2023; 51:1749-1763. [PMID: 37721138 PMCID: PMC10657182 DOI: 10.1042/bst20210567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Genes encoding histone proteins are recurrently mutated in tumor samples, and these mutations may impact nucleosome stability, histone post-translational modification, or chromatin dynamics. The prevalence of histone mutations across diverse cancer types suggest that normal chromatin structure is a barrier to tumorigenesis. Oncohistone mutations disrupt chromatin structure and gene regulatory mechanisms, resulting in aberrant gene expression and the development of cancer phenotypes. Examples of oncohistones include the histone H3 K27M mutation found in pediatric brain cancers that blocks post-translational modification of the H3 N-terminal tail and the histone H2B E76K mutation found in some solid tumors that disrupts nucleosome stability. Oncohistones may comprise a limited fraction of the total histone pool yet cause global effects on chromatin structure and drive cancer phenotypes. Here, we survey histone mutations in cancer and review their function and role in tumorigenesis.
Collapse
Affiliation(s)
| | - Jixiu Shan
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| | - Jonathan D. Licht
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| | - Richard L. Bennett
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| |
Collapse
|
14
|
Tsukahara T, Kethireddy S, Bonefas K, Chen A, Sutton BLM, Dou Y, Iwase S, Sutton MA. Division of labor among H3K4 Methyltransferases Defines Distinct Facets of Homeostatic Plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558734. [PMID: 37790395 PMCID: PMC10542164 DOI: 10.1101/2023.09.20.558734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Heterozygous mutations in any of the six H3K4 methyltransferases (KMT2s) result in monogenic neurodevelopmental disorders, indicating nonredundant yet poorly understood roles of this enzyme family in neurodevelopment. Recent evidence suggests that histone methyltransferase activity may not be central to KMT2 functions; however, the enzymatic activity is evolutionarily conserved, implicating the presence of selective pressure to maintain the catalytic activity. Here, we show that H3K4 methylation is dynamically regulated during prolonged alteration of neuronal activity. The perturbation of H3K4me by the H3.3K4M mutant blocks synaptic scaling, a form of homeostatic plasticity that buffers the impact of prolonged reductions or increases in network activity. Unexpectedly, we found that the six individual enzymes are all necessary for synaptic scaling and that the roles of KMT2 enzymes segregate into evolutionary-defined subfamilies: KMT2A and KMT2B (fly-Trx homologs) for synaptic downscaling, KMT2C and KMT2D (Trr homologs) for upscaling, and KMT2F and KMT2G (dSet homologs) for both directions. Selective blocking of KMT2A enzymatic activity by a small molecule and targeted disruption of the enzymatic domain both blocked the synaptic downscaling and interfered with the activity-dependent transcriptional program. Furthermore, our study revealed specific phases of synaptic downscaling, i.e., induction and maintenance, in which KMT2A and KMT2B play distinct roles. These results suggest that mammalian brains have co-opted intricate H3K4me installation to achieve stability of the expanding neuronal circuits.
Collapse
Affiliation(s)
- Takao Tsukahara
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Saini Kethireddy
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan
| | - Katherine Bonefas
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Alex Chen
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Brendan LM Sutton
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Yali Dou
- Department of Medicine and Department of Biochemistry and Molecular Medicine, Keck School of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shigeki Iwase
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Michael A. Sutton
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
15
|
Hoetker MS, Yagi M, Di Stefano B, Langerman J, Cristea S, Wong LP, Huebner AJ, Charlton J, Deng W, Haggerty C, Sadreyev RI, Meissner A, Michor F, Plath K, Hochedlinger K. H3K36 methylation maintains cell identity by regulating opposing lineage programmes. Nat Cell Biol 2023; 25:1121-1134. [PMID: 37460697 PMCID: PMC10896483 DOI: 10.1038/s41556-023-01191-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/19/2023] [Indexed: 08/12/2023]
Abstract
The epigenetic mechanisms that maintain differentiated cell states remain incompletely understood. Here we employed histone mutants to uncover a crucial role for H3K36 methylation in the maintenance of cell identities across diverse developmental contexts. Focusing on the experimental induction of pluripotency, we show that H3K36M-mediated depletion of H3K36 methylation endows fibroblasts with a plastic state poised to acquire pluripotency in nearly all cells. At a cellular level, H3K36M facilitates epithelial plasticity by rendering fibroblasts insensitive to TGFβ signals. At a molecular level, H3K36M enables the decommissioning of mesenchymal enhancers and the parallel activation of epithelial/stem cell enhancers. This enhancer rewiring is Tet dependent and redirects Sox2 from promiscuous somatic to pluripotency targets. Our findings reveal a previously unappreciated dual role for H3K36 methylation in the maintenance of cell identity by integrating a crucial developmental pathway into sustained expression of cell-type-specific programmes, and by opposing the expression of alternative lineage programmes through enhancer methylation.
Collapse
Affiliation(s)
- Michael S Hoetker
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Masaki Yagi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Justin Langerman
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron J Huebner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jocelyn Charlton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Weixian Deng
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Chuck Haggerty
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Alexander Meissner
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Franziska Michor
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- The Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA
- The Ludwig Center at Harvard, Boston, MA, USA
| | - Kathrin Plath
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
16
|
Rechberger JS, Bouchal SM, Power EA, Nonnenbroich LF, Nesvick CL, Daniels DJ. Bench-to-bedside investigations of H3 K27-altered diffuse midline glioma: drug targets and potential pharmacotherapies. Expert Opin Ther Targets 2023; 27:1071-1086. [PMID: 37897190 PMCID: PMC11079776 DOI: 10.1080/14728222.2023.2277232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION H3 K27-altered diffuse midline glioma (DMG) is the most common malignant brainstem tumor in the pediatric population. Despite enormous preclinical and clinical efforts, the prognosis remains dismal, with fewer than 10% of patients surviving for two years after diagnosis. Fractionated radiation remains the only standard treatment options for DMG. Developing novel treatments and therapeutic delivery methods is critical to improving outcomes in this devastating disease. AREAS COVERED This review addresses recent advances in molecularly targeted pharmacotherapy and immunotherapy in DMG. The clinical presentation, diagnostic workup, unique pathological challenges, and current clinical trials are highlighted throughout. EXPERT OPINION Promising pharmacotherapies targeting various components of DMG pathology and the application of immunotherapies have the potential to improve patient outcomes. However, novel approaches are needed to truly revolutionize treatment for this tumor. First, combinational therapy should be employed, as DMG can develop resistance to single-agent approaches and many therapies are susceptible to rapid clearance from the brain. Second, drug-tumor residence time, i.e. the time for which a therapeutic is present at efficacious concentrations within the tumor, must be maximized to facilitate a durable treatment response. Engineering extended drug delivery methods with minimal off-tumor toxicity should be a focus of future studies.
Collapse
Affiliation(s)
- Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Samantha M. Bouchal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Erica A. Power
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Cody L. Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| |
Collapse
|
17
|
Iino S, Oya S, Kakutani T, Kohno H, Kubo T. Identification of ecdysone receptor target genes in the worker honey bee brains during foraging behavior. Sci Rep 2023; 13:10491. [PMID: 37380789 DOI: 10.1038/s41598-023-37001-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Ecdysone signaling plays central roles in morphogenesis and female ovarian development in holometabolous insects. In the European honey bee (Apis mellifera L.), however, ecdysone receptor (EcR) is expressed in the brains of adult workers, which have already undergone metamorphosis and are sterile with shrunken ovaries, during foraging behavior. Aiming at unveiling the significance of EcR signaling in the worker brain, we performed chromatin-immunoprecipitation sequencing of EcR to search for its target genes using the brains of nurse bees and foragers. The majority of the EcR targets were common between the nurse bee and forager brains and some of them were known ecdysone signaling-related genes. RNA-sequencing analysis revealed that some EcR target genes were upregulated in forager brains during foraging behavior and some were implicated in the repression of metabolic processes. Single-cell RNA-sequencing analysis revealed that EcR and its target genes were expressed mostly in neurons and partly in glial cells in the optic lobes of the forager brain. These findings suggest that in addition to its role during development, EcR transcriptionally represses metabolic processes during foraging behavior in the adult worker honey bee brain.
Collapse
Affiliation(s)
- Shiori Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
18
|
Fal K, Berr A, Le Masson M, Faigenboim A, Pano E, Ishkhneli N, Moyal NL, Villette C, Tomkova D, Chabouté ME, Williams LE, Carles CC. Lysine 27 of histone H3.3 is a fine modulator of developmental gene expression and stands as an epigenetic checkpoint for lignin biosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:1085-1100. [PMID: 36779574 DOI: 10.1111/nph.18666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Chromatin is a dynamic platform within which gene expression is controlled by epigenetic modifications, notably targeting amino acid residues of histone H3. Among them is lysine 27 of H3 (H3K27), the trimethylation of which by the Polycomb Repressive Complex 2 (PRC2) is instrumental in regulating spatiotemporal patterns of key developmental genes. H3K27 is also subjected to acetylation and is found at sites of active transcription. Most information on the function of histone residues and their associated modifications in plants was obtained from studies of loss-of-function mutants for the complexes that modify them. To decrypt the genuine function of H3K27, we expressed a non-modifiable variant of H3 at residue K27 (H3.3K27A ) in Arabidopsis, and developed a multi-scale approach combining in-depth phenotypical and cytological analyses, with transcriptomics and metabolomics. We uncovered that the H3.3K27A variant causes severe developmental defects, part of them are reminiscent of PRC2 mutants, part of them are new. They include early flowering, increased callus formation and short stems with thicker xylem cell layer. This latest phenotype correlates with mis-regulation of phenylpropanoid biosynthesis. Overall, our results reveal novel roles of H3K27 in plant cell fates and metabolic pathways, and highlight an epigenetic control point for elongation and lignin composition of the stem.
Collapse
Affiliation(s)
- Kateryna Fal
- Plant and Cell Physiology Lab, IRIG-DBSCI-LPCV, CEA, Grenoble Alpes University - CNRS - INRAE - CEA, 17 rue des Martyrs, bât. C2, 38054, Grenoble Cedex 9, France
| | - Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Marie Le Masson
- Plant and Cell Physiology Lab, IRIG-DBSCI-LPCV, CEA, Grenoble Alpes University - CNRS - INRAE - CEA, 17 rue des Martyrs, bât. C2, 38054, Grenoble Cedex 9, France
| | - Adi Faigenboim
- Institute of Plant Sciences, ARO Volcani Center, PO Box 15159, Rishon LeZion, 7528809, Israel
| | - Emeline Pano
- Plant and Cell Physiology Lab, IRIG-DBSCI-LPCV, CEA, Grenoble Alpes University - CNRS - INRAE - CEA, 17 rue des Martyrs, bât. C2, 38054, Grenoble Cedex 9, France
| | - Nickolay Ishkhneli
- Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture - Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Netta-Lee Moyal
- Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture - Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Denisa Tomkova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Leor Eshed Williams
- Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture - Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Cristel C Carles
- Plant and Cell Physiology Lab, IRIG-DBSCI-LPCV, CEA, Grenoble Alpes University - CNRS - INRAE - CEA, 17 rue des Martyrs, bât. C2, 38054, Grenoble Cedex 9, France
| |
Collapse
|
19
|
Morgan MA, Shilatifard A. Epigenetic moonlighting: Catalytic-independent functions of histone modifiers in regulating transcription. SCIENCE ADVANCES 2023; 9:eadg6593. [PMID: 37083523 PMCID: PMC10121172 DOI: 10.1126/sciadv.adg6593] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The past three decades have yielded a wealth of information regarding the chromatin regulatory mechanisms that control transcription. The "histone code" hypothesis-which posits that distinct combinations of posttranslational histone modifications are "read" by downstream effector proteins to regulate gene expression-has guided chromatin research to uncover fundamental mechanisms relevant to many aspects of biology. However, recent molecular and genetic studies revealed that the function of many histone-modifying enzymes extends independently and beyond their catalytic activities. In this review, we highlight original and recent advances in the understanding of noncatalytic functions of histone modifiers. Many of the histone modifications deposited by these enzymes-previously considered to be required for transcriptional activation-have been demonstrated to be dispensable for gene expression in living organisms. This perspective aims to prompt further examination of these enigmatic chromatin modifications by inspiring studies to define the noncatalytic "epigenetic moonlighting" functions of chromatin-modifying enzymes.
Collapse
|
20
|
Zhang Q, Yang L, Liu YH, Wilkinson JE, Krainer AR. Antisense oligonucleotide therapy for H3.3K27M diffuse midline glioma. Sci Transl Med 2023; 15:eadd8280. [PMID: 37043556 PMCID: PMC10263181 DOI: 10.1126/scitranslmed.add8280] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
Diffuse midline gliomas (DMGs) are pediatric high-grade brain tumors in the thalamus, midbrain, or pons; the latter subgroup are termed diffuse intrinsic pontine gliomas (DIPG). The brain stem location of these tumors limits the clinical management of DIPG, resulting in poor outcomes for patients. A heterozygous, somatic point mutation in one of two genes coding for the noncanonical histone H3.3 is present in most DIPG tumors. This dominant mutation in the H3-3A gene results in replacement of lysine 27 with methionine (K27M) and causes a global reduction of trimethylation on K27 of all wild-type histone H3 proteins, which is thought to be a driving event in gliomagenesis. In this study, we designed and systematically screened 2'-O-methoxyethyl phosphorothioate antisense oligonucleotides (ASOs) that direct RNase H-mediated knockdown of H3-3A mRNA. We identified a lead ASO that effectively reduced H3-3A mRNA and H3.3K27M protein and restored global H3K27 trimethylation in patient-derived neurospheres. We then tested the lead ASO in two mouse models of DIPG: an immunocompetent mouse model using transduced mutant human H3-3A cDNA and an orthotopic xenograft with patient-derived cells. In both models, ASO treatment restored K27 trimethylation of histone H3 proteins and reduced tumor growth, promoted neural stem cell differentiation into astrocytes, neurons, and oligodendrocytes, and increased survival. These results demonstrate the involvement of the H3.3K27M oncohistone in tumor maintenance, confirm the reversibility of the aberrant epigenetic changes it promotes, and provide preclinical proof of concept for DMG antisense therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724
- Stony Brook University, Graduate Program in Molecular and Cell Biology, Stony Brook, NY, 11794
| | - Lucia Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724
- Stony Brook University, Graduate Program in Genetics, Stony Brook, NY, 11794
- Medical Scientist Training Program, Stony Brook University School of Medicine, Stony Brook, NY, 11794
| | - Ying Hsiu Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724
| | - John E. Wilkinson
- University of Michigan, Department of Pathology, Ann Arbor, Michigan, 48109
| | | |
Collapse
|
21
|
Casier K, Autaa J, Gueguen N, Delmarre V, Marie PP, Ronsseray S, Carré C, Brasset E, Teysset L, Boivin A. The histone demethylase Kdm3 prevents auto-immune piRNAs production in Drosophila. SCIENCE ADVANCES 2023; 9:eade3872. [PMID: 37027460 PMCID: PMC10081847 DOI: 10.1126/sciadv.ade3872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Genome integrity of the animal germline is protected from transposable element activity by PIWI-interacting RNAs (piRNAs). While piRNA biogenesis is intensively explored, little is known about the genetical determination of piRNA clusters, the genomic sources of piRNAs. Using a bimodal epigenetic state piRNA cluster (BX2), we identified the histone demethylase Kdm3 as being able to prevent a cryptic piRNA production. In the absence of Kdm3, dozens of coding gene-containing regions become genuine germline dual-strand piRNA clusters. Eggs laid by Kdm3 mutant females show developmental defects phenocopying loss of function of genes embedded into the additional piRNA clusters, suggesting an inheritance of functional ovarian "auto-immune" piRNAs. Antagonizing piRNA cluster determination through chromatin modifications appears crucial to prevent auto-immune genic piRNAs production.
Collapse
Affiliation(s)
- Karine Casier
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Julie Autaa
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Nathalie Gueguen
- iGReD, CNRS, INSERM, Faculté de Médecine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Valérie Delmarre
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Pauline P. Marie
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Stéphane Ronsseray
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Clément Carré
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Emilie Brasset
- iGReD, CNRS, INSERM, Faculté de Médecine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Laure Teysset
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Antoine Boivin
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| |
Collapse
|
22
|
Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. Int J Mol Sci 2023; 24:ijms24065665. [PMID: 36982740 PMCID: PMC10055343 DOI: 10.3390/ijms24065665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
BET proteins are a family of multifunctional epigenetic readers, mainly involved in transcriptional regulation through chromatin modelling. Transcriptome handling ability of BET proteins suggests a key role in the modulation of cell plasticity, both in fate decision and in lineage commitment during embryonic development and in pathogenic conditions, including cancerogenesis. Glioblastoma is the most aggressive form of glioma, characterized by a very poor prognosis despite the application of a multimodal therapy. Recently, new insights are emerging about the glioblastoma cellular origin, leading to the hypothesis that several putative mechanisms occur during gliomagenesis. Interestingly, epigenome dysregulation associated with loss of cellular identity and functions are emerging as crucial features of glioblastoma pathogenesis. Therefore, the emerging roles of BET protein in glioblastoma onco-biology and the compelling demand for more effective therapeutic strategies suggest that BET family members could be promising targets for translational breakthroughs in glioblastoma treatment. Primarily, “Reprogramming Therapy”, which is aimed at reverting the malignant phenotype, is now considered a promising strategy for GBM therapy.
Collapse
|
23
|
Corcoran ET, Jacob Y. Direct assessment of histone function using histone replacement. Trends Biochem Sci 2023; 48:53-70. [PMID: 35853806 PMCID: PMC9789166 DOI: 10.1016/j.tibs.2022.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 02/09/2023]
Abstract
Histones serve many purposes in eukaryotic cells in the regulation of diverse genomic processes, including transcription, replication, DNA repair, and chromatin organization. As such, experimental systems to assess histone function are fundamental resources toward elucidating the regulation of activities occurring on chromatin. One set of important tools for investigating histone function are histone replacement systems, in which endogenous histone expression can be partially or completely replaced with a mutant histone. Histone replacement systems allow systematic screens of histone regulatory functions and the direct assessment of functions for histone residues. In this review, we describe existing histone replacement systems in model organisms, the benefits and limitations of these systems, and opportunities for future research with histone replacement strategies.
Collapse
Affiliation(s)
- Emma Tung Corcoran
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CT 06511, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CT 06511, USA.
| |
Collapse
|
24
|
Levinsky AJ, McEdwards G, Sethna N, Currie MA. Targets of histone H3 lysine 9 methyltransferases. Front Cell Dev Biol 2022; 10:1026406. [PMID: 36568972 PMCID: PMC9768651 DOI: 10.3389/fcell.2022.1026406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
Histone H3 lysine 9 di- and trimethylation are well-established marks of constitutively silenced heterochromatin domains found at repetitive DNA elements including pericentromeres, telomeres, and transposons. Loss of heterochromatin at these sites causes genomic instability in the form of aberrant DNA repair, chromosome segregation defects, replication stress, and transposition. H3K9 di- and trimethylation also regulate cell type-specific gene expression during development and form a barrier to cellular reprogramming. However, the role of H3K9 methyltransferases extends beyond histone methylation. There is a growing list of non-histone targets of H3K9 methyltransferases including transcription factors, steroid hormone receptors, histone modifying enzymes, and other chromatin regulatory proteins. Additionally, two classes of H3K9 methyltransferases modulate their own function through automethylation. Here we summarize the structure and function of mammalian H3K9 methyltransferases, their roles in genome regulation and constitutive heterochromatin, as well as the current repertoire of non-histone methylation targets including cases of automethylation.
Collapse
Affiliation(s)
- Aidan J. Levinsky
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Gregor McEdwards
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nasha Sethna
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mark A. Currie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada,*Correspondence: Mark A. Currie,
| |
Collapse
|
25
|
Edwardes LV, Caswell SJ, Giurrandino M, Zhai X, Gohlke A, Kostomiris DH, Pollard HK, Pflug A, Hamm GR, Jervis KV, Clarkson PN, Syson K. Dissecting the Kinetic Mechanism of Human Lysine Methyltransferase 2D and Its Interactions with the WRAD2 Complex. Biochemistry 2022; 61:1974-1987. [PMID: 36070615 PMCID: PMC9494746 DOI: 10.1021/acs.biochem.2c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human lysine methyltransferase 2D (hKMT2D) is an epigenetic writer catalyzing the methylation of histone 3 lysine 4. hKMT2D by itself has little catalytic activity and reaches full activation as part of the WRAD2 complex, additionally comprising binding partners WDR5, RbBP5, Ash2L, and DPY30. Here, a detailed mechanistic study of the hKMT2D SET domain and its WRAD2 interactions is described. We characterized the WRAD2 subcomplexes containing full-length components and the hKMT2D SET domain. By performing steady-state analysis as a function of WRAD2 concentration, we identified the inner stoichiometry and determined the binding affinities for complex formation. Ash2L and RbBP5 were identified as the binding partners critical for the full catalytic activity of the SET domain. Contrary to a previous report, product and dead-end inhibitor studies identified hKMT2D as a rapid equilibrium random Bi-Bi mechanism with EAP and EBQ dead-end complexes. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) analysis showed that hKMT2D uses a distributive mechanism and gives further insights into how the WRAD2 components affect mono-, di-, and trimethylation. We also conclude that the Win motif of hKMT2D is not essential in complex formation, unlike other hKMT2 proteins.
Collapse
Affiliation(s)
- Lucy V Edwardes
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Sarah J Caswell
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Mariacarmela Giurrandino
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Xiang Zhai
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Boston, Massachusetts 02210, United States
| | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Demetrios H Kostomiris
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Boston, Massachusetts 02210, United States
| | - Hannah K Pollard
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Alexander Pflug
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory R Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Kate V Jervis
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Paul N Clarkson
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Karl Syson
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| |
Collapse
|
26
|
Lewis NA, Klein RH, Kelly C, Yee J, Knoepfler PS. Histone H3.3 K27M chromatin functions implicate a network of neurodevelopmental factors including ASCL1 and NEUROD1 in DIPG. Epigenetics Chromatin 2022; 15:18. [PMID: 35590427 PMCID: PMC9121554 DOI: 10.1186/s13072-022-00447-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background The histone variant H3.3 K27M mutation is a defining characteristic of diffuse intrinsic pontine glioma (DIPG)/diffuse midline glioma (DMG). This histone mutation is responsible for major alterations to histone H3 post-translational modification (PTMs) and subsequent aberrant gene expression. However, much less is known about the effect this mutation has on chromatin structure and function, including open versus closed chromatin regions as well as their transcriptomic consequences. Results Recently, we developed isogenic CRISPR-edited DIPG cell lines that are wild-type for histone H3.3 that can be compared to their matched K27M lines. Here we show via ATAC-seq analysis that H3.3K27M glioma cells have unique accessible chromatin at regions corresponding to neurogenesis, NOTCH, and neuronal development pathways and associated genes that are overexpressed in H3.3K27M compared to our isogenic wild-type cell line. As to mechanisms, accessible enhancers and super-enhancers corresponding to increased gene expression in H3.3K27M cells were also mapped to genes involved in neurogenesis and NOTCH signaling, suggesting that these pathways are key to DIPG tumor maintenance. Motif analysis implicates specific transcription factors as central to the neuro-oncogenic K27M signaling pathway, in particular, ASCL1 and NEUROD1. Conclusions Altogether our findings indicate that H3.3K27M causes chromatin to take on a more accessible configuration at key regulatory regions for NOTCH and neurogenesis genes resulting in increased oncogenic gene expression, which is at least partially reversible upon editing K27M back to wild-type. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00447-6.
Collapse
Affiliation(s)
- Nichole A Lewis
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Rachel Herndon Klein
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Cailin Kelly
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Jennifer Yee
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA. .,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA. .,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA.
| |
Collapse
|
27
|
Gaultier C, Foppolo S, Maurange C. Regulation of developmental hierarchy in Drosophila neural stem cell tumors by COMPASS and Polycomb complexes. SCIENCE ADVANCES 2022; 8:eabi4529. [PMID: 35544555 PMCID: PMC9094666 DOI: 10.1126/sciadv.abi4529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
COMPASS and Polycomb complexes are antagonistic chromatin complexes that are frequently inactivated in cancers, but how these events affect the cellular hierarchy, composition, and growth of tumors is unclear. These characteristics can be systematically investigated in Drosophila neuroblast tumors in which cooption of temporal patterning induces a developmental hierarchy that confers cancer stem cell (CSC) properties to a subset of neuroblasts retaining an early larval temporal identity. Here, using single-cell transcriptomics, we reveal that the trithorax/MLL1/2-COMPASS-like complex guides the developmental trajectory at the top of the tumor hierarchy. Consequently, trithorax knockdown drives larval-to-embryonic temporal reversion and the marked expansion of CSCs that remain locked in a spectrum of early temporal states. Unexpectedly, this phenotype is amplified by concomitant inactivation of Polycomb repressive complex 2 genes, unleashing tumor growth. This study illustrates how inactivation of specific COMPASS and Polycomb complexes cooperates to impair tumor hierarchies, inducing CSC plasticity, heterogeneity, and expansion.
Collapse
Affiliation(s)
| | - Sophie Foppolo
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living systems, Equipe Labellisée Ligue Contre le Cancer, Campus de Luminy Case 907, 13288 Cedex 09 Marseille, France
| | | |
Collapse
|
28
|
Da-Veiga MA, Rogister B, Lombard A, Neirinckx V, Piette C. Glioma Stem Cells in Pediatric High-Grade Gliomas: From Current Knowledge to Future Perspectives. Cancers (Basel) 2022; 14:cancers14092296. [PMID: 35565425 PMCID: PMC9099564 DOI: 10.3390/cancers14092296] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Pediatric high-grade glioma (pHGG) has a dismal prognosis in which the younger the patient, the more restricted the treatments are, in regard to the incurred risks. Current therapies destroy many tumor cells but fail to target the highly malignant glioma stem cells (GSCs) that adapt quickly to give rise to recurring, treatment-resistant cancers. Despite a lack of consensus around an efficient detection, GSCs are well described in adult brain tumors but remain poorly investigated in pediatric cases, mostly due to their rarity. An improved knowledge about GSC roles in pediatric tumors would provide a key leverage towards the elimination of this sub-population, based on targeted treatments. The aim of this review is to sum up the state of art about GSCs in pHGG. Abstract In children, high-grade gliomas (HGG) and diffuse midline gliomas (DMG) account for a high proportion of death due to cancer. Glioma stem cells (GSCs) are tumor cells in a specific state defined by a tumor-initiating capacity following serial transplantation, self-renewal, and an ability to recapitulate tumor heterogeneity. Their presence was demonstrated several decades ago in adult glioblastoma (GBM), and more recently in pediatric HGG and DMG. In adults, we and others have previously suggested that GSCs nest into the subventricular zone (SVZ), a neurogenic niche, where, among others, they find shelter from therapy. Both bench and bedside evidence strongly indicate a role for the GSCs and the SVZ in GBM progression, fostering the development of innovative targeting treatments. Such new therapeutic approaches are of particular interest in infants, in whom standard therapies are often limited due to the risk of late effects. The aim of this review is to describe current knowledge about GSCs in pediatric HGG and DMG, i.e., their characterization, the models that apply to their development and maintenance, the specific signaling pathways that may underlie their activity, and their specific interactions with neurogenic niches. Finally, we will discuss the clinical relevance of these observations and the therapeutic advantages of targeting the SVZ and/or the GSCs in infants.
Collapse
Affiliation(s)
- Marc-Antoine Da-Veiga
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
- Department of Neurology, CHU of Liège, 4000 Liège, Belgium
| | - Arnaud Lombard
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
- Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
| | - Caroline Piette
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
- Department of Pediatrics, Division of Hematology-Oncology, CHU Liège, 4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
29
|
Abstract
Chromatin dysfunction has been implicated in a growing number of cancers especially in children and young adults. In addition to chromatin modifying and remodeling enzymes, mutations in histone genes are linked to human cancers. Since the first reports of hotspot missense mutations affecting key residues at histone H3 tail, studies have revealed how these so-called "oncohistones" dominantly (H3K27M and H3K36M) or locally (H3.3G34R/W) inhibit corresponding histone methyltransferases and misregulate epigenome and transcriptome to promote tumorigenesis. More recently, widespread mutations in all four core histones are identified in diverse cancer types. Furthermore, an "oncohistone-like" protein EZHIP has been implicated in driving childhood ependymomas through a mechanism highly reminiscent of H3K27M mutation. We will review recent progresses on understanding the biochemical, molecular and biological mechanisms underlying the canonical and novel histone mutations. Importantly, these mechanistic insights have identified therapeutic opportunities for oncohistone-driven tumors.
Collapse
Affiliation(s)
- Varun Sahu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA,Corresponding author: Chao Lu:
| |
Collapse
|
30
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
31
|
Epigenetic mechanisms in paediatric brain tumours: regulators lose control. Biochem Soc Trans 2022; 50:167-185. [PMID: 35076654 DOI: 10.1042/bst20201227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Epigenetic mechanisms are essential to regulate gene expression during normal development. However, they are often disrupted in pathological conditions including tumours, where they contribute to their formation and maintenance through altered gene expression. In recent years, next generation genomic techniques has allowed a remarkable advancement of our knowledge of the genetic and molecular landscape of paediatric brain tumours and have highlighted epigenetic deregulation as a common hallmark in their pathogenesis. This review describes the main epigenetic dysregulations found in paediatric brain tumours, including at DNA methylation and histone modifications level, in the activity of chromatin-modifying enzymes and in the expression of non-coding RNAs. How these altered processes influence tumour biology and how they can be leveraged to dissect the molecular heterogeneity of these tumours and contribute to their classification is also addressed. Finally, the availability and value of preclinical models as well as the current clinical trials exploring targeting key epigenetic mediators in paediatric brain tumours are discussed.
Collapse
|
32
|
DiNapoli SE, Martinez-McFaline R, Shen H, Doane AS, Perez AR, Verma A, Simon A, Nelson I, Balgobin CA, Bourque CT, Yao J, Raman R, Béguelin W, Zippin JH, Elemento O, Melnick AM, Houvras Y. Histone 3 Methyltransferases Alter Melanoma Initiation and Progression Through Discrete Mechanisms. Front Cell Dev Biol 2022; 10:814216. [PMID: 35223844 PMCID: PMC8866878 DOI: 10.3389/fcell.2022.814216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Perturbations to the epigenome are known drivers of tumorigenesis. In melanoma, alterations in histone methyltransferases that catalyze methylation at histone 3 lysine 9 and histone 3 lysine 27-two sites of critical post-translational modification-have been reported. To study the function of these methyltransferases in melanoma, we engineered melanocytes to express histone 3 lysine-to-methionine mutations at lysine 9 and lysine 27, which are known to inhibit the activity of histone methyltransferases, in a zebrafish melanoma model. Using this system, we found that loss of histone 3 lysine 9 methylation dramatically suppressed melanoma formation and that inhibition of histone 3 lysine 9 methyltransferases in human melanoma cells increased innate immune response signatures. In contrast, loss of histone 3 lysine 27 methylation significantly accelerated melanoma formation. We identified FOXD1 as a top target of PRC2 that is silenced in melanocytes and found that aberrant overexpression of FOXD1 accelerated melanoma onset. Collectively, these data demonstrate how histone 3 lysine-to-methionine mutations can be used to uncover critical roles for methyltransferases.
Collapse
Affiliation(s)
- Sara E. DiNapoli
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Raúl Martinez-McFaline
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Hao Shen
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Ashley S. Doane
- Caryl and Israel Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Alexendar R. Perez
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, United States
| | - Akanksha Verma
- Caryl and Israel Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Amanda Simon
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
| | - Isabel Nelson
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Courtney A. Balgobin
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Caitlin T. Bourque
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Jun Yao
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Renuka Raman
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Wendy Béguelin
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Jonathan H. Zippin
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
| | - Olivier Elemento
- Caryl and Israel Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Ari M. Melnick
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Yariv Houvras
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
33
|
Hawkins C, Lubanszky E. The diverse landscape of histone-mutant pediatric high-grade gliomas: A narrative review. GLIOMA 2022. [DOI: 10.4103/glioma.glioma_1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
Hogan AK, Sathyan KM, Willis AB, Khurana S, Srivastava S, Zasadzińska E, Lee AS, Bailey AO, Gaynes MN, Huang J, Bodner J, Rosencrance CD, Wong KA, Morgan MA, Eagen KP, Shilatifard A, Foltz DR. UBR7 acts as a histone chaperone for post-nucleosomal histone H3. EMBO J 2021; 40:e108307. [PMID: 34786730 PMCID: PMC8672181 DOI: 10.15252/embj.2021108307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/24/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Histone chaperones modulate the stability of histones beginning from histone synthesis, through incorporation into DNA, and during recycling during transcription and replication. Following histone removal from DNA, chaperones regulate histone storage and degradation. Here, we demonstrate that UBR7 is a histone H3.1 chaperone that modulates the supply of pre-existing post-nucleosomal histone complexes. We demonstrate that UBR7 binds to post-nucleosomal H3K4me3 and H3K9me3 histones via its UBR box and PHD. UBR7 binds to the non-nucleosomal histone chaperone NASP. In the absence of UBR7, the pool of NASP-bound post-nucleosomal histones accumulate and chromatin is depleted of H3K4me3-modified histones. We propose that the interaction of UBR7 with NASP and histones opposes the histone storage functions of NASP and that UBR7 promotes reincorporation of post-nucleosomal H3 complexes.
Collapse
Affiliation(s)
- Ann K Hogan
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Kizhakke M Sathyan
- R. D. Berlin Center for Cell Analysis and ModelingThe University of Connecticut School of MedicineFarmingtonCTUSA
| | - Alexander B Willis
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Sakshi Khurana
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Shashank Srivastava
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Ewelina Zasadzińska
- Drug Substance TechnologiesProcess Development, Amgen Inc.Thousand OaksCAUSA
| | - Alexander S Lee
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Matthew N Gaynes
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Jiehuan Huang
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Justin Bodner
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Celeste D Rosencrance
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Kelvin A Wong
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Marc A Morgan
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Kyle P Eagen
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| |
Collapse
|
35
|
Chaouch A, Berlandi J, Chen CCL, Frey F, Badini S, Harutyunyan AS, Chen X, Krug B, Hébert S, Jeibmann A, Lu C, Kleinman CL, Hasselblatt M, Lasko P, Shirinian M, Jabado N. Histone H3.3 K27M and K36M mutations de-repress transposable elements through perturbation of antagonistic chromatin marks. Mol Cell 2021; 81:4876-4890.e7. [PMID: 34739871 PMCID: PMC9990445 DOI: 10.1016/j.molcel.2021.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 12/27/2022]
Abstract
Histone H3.3 lysine-to-methionine substitutions K27M and K36M impair the deposition of opposing chromatin marks, H3K27me3/me2 and H3K36me3/me2. We show that these mutations induce hypotrophic and disorganized eyes in Drosophila eye primordia. Restriction of H3K27me3 spread in H3.3K27M and its redistribution in H3.3K36M result in transcriptional deregulation of PRC2-targeted eye development and of piRNA biogenesis genes, including krimp. Notably, both mutants promote redistribution of H3K36me2 away from repetitive regions into active genes, which associate with retrotransposon de-repression in eye discs. Aberrant expression of krimp represses LINE retrotransposons but does not contribute to the eye phenotype. Depletion of H3K36me2 methyltransferase ash1 in H3.3K27M, and of PRC2 component E(z) in H3.3K36M, restores the expression of eye developmental genes and normal eye growth, showing that redistribution of antagonistic marks contributes to K-to-M pathogenesis. Our results implicate a novel function for H3K36me2 and showcase convergent downstream effects of oncohistones that target opposing epigenetic marks.
Collapse
Affiliation(s)
- Amel Chaouch
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Johannes Berlandi
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Felice Frey
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Shireen Badini
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Xiao Chen
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Steven Hébert
- The Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Chao Lu
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC, Canada; The Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Paul Lasko
- Department of Biology, McGill University, Montreal, QC, Canada; Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Department of Paediatrics, McGill University and the Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
36
|
Seelbinder B, Ghosh S, Schneider SE, Scott AK, Berman AG, Goergen CJ, Margulies KB, Bedi K, Casas E, Swearingen AR, Brumbaugh J, Calve S, Neu CP. Nuclear deformation guides chromatin reorganization in cardiac development and disease. Nat Biomed Eng 2021; 5:1500-1516. [PMID: 34857921 PMCID: PMC9300284 DOI: 10.1038/s41551-021-00823-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/20/2021] [Indexed: 01/31/2023]
Abstract
In cardiovascular tissues, changes in the mechanical properties of the extracellular matrix are associated with cellular de-differentiation and with subsequent functional declines. However, the underlying mechanoreceptive mechanisms are largely unclear. Here, by generating high-resolution, full-field strain maps of cardiomyocyte nuclei during contraction in vitro, complemented with evidence from tissues from patients with cardiomyopathy and from mice with reduced cardiac performance, we show that cardiomyocytes establish a distinct nuclear organization during maturation, characterized by the reorganization of H3K9me3-marked chromatin towards the nuclear border. Specifically, we show that intranuclear tension is spatially correlated with H3K9me3-marked chromatin, that reductions in nuclear deformation (through environmental stiffening or through the disruption of complexes of the linker of nucleoskeleton and cytoskeleton) abrogate chromatin reorganization and lead to the dissociation of H3K9me3-marked chromatin from the nuclear periphery, and that the suppression of H3K9 methylation induces chromatin reorganization and reduces the expression of cardiac developmental genes. Overall, our findings indicate that, by integrating environmental mechanical cues, the nuclei of cardiomyocytes guide and stabilize the fate of cells through the reorganization of epigenetically marked chromatin.
Collapse
Affiliation(s)
- Benjamin Seelbinder
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO)
| | - Soham Ghosh
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO)
| | | | - Adrienne K. Scott
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO)
| | - Alycia G. Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette (IN)
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette (IN)
| | | | - Kenneth Bedi
- Cardiovascular Institute, University of Pennsylvania, Philadelphia (PA)
| | - Eduard Casas
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder (CO)
| | - Alison R. Swearingen
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder (CO)
| | - Justin Brumbaugh
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder (CO)
| | - Sarah Calve
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO),Weldon School of Biomedical Engineering, Purdue University, West Lafayette (IN)
| | - Corey P. Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO),Corresponding Author
| |
Collapse
|
37
|
Raby L, Völkel P, Hasanpour S, Cicero J, Toillon RA, Adriaenssens E, Van Seuningen I, Le Bourhis X, Angrand PO. Loss of Polycomb Repressive Complex 2 Function Alters Digestive Organ Homeostasis and Neuronal Differentiation in Zebrafish. Cells 2021; 10:cells10113142. [PMID: 34831364 PMCID: PMC8620594 DOI: 10.3390/cells10113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) mediates histone H3K27me3 methylation and the stable transcriptional repression of a number of gene expression programs involved in the control of cellular identity during development and differentiation. Here, we report on the generation and on the characterization of a zebrafish line harboring a null allele of eed, a gene coding for an essential component of the PRC2. Homozygous eed-deficient mutants present a normal body plan development but display strong defects at the level of the digestive organs, such as reduced size of the pancreas, hepatic steatosis, and a loss of the intestinal structures, to die finally at around 10-12 days post fertilization. In addition, we found that PRC2 loss of function impairs neuronal differentiation in very specific and discrete areas of the brain and increases larval activity in locomotor assays. Our work highlights that zebrafish is a suited model to study human pathologies associated with PRC2 loss of function and H3K27me3 decrease.
Collapse
Affiliation(s)
- Ludivine Raby
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
| | - Pamela Völkel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
| | - Shaghayegh Hasanpour
- Department of Fisheries and Animal Sciences, Faculty of Natural Resources, University of Tehran, Karaj 31587-77871, Iran;
| | - Julien Cicero
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
- Univ. Artois, UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), F-62300 Lens, France
| | - Robert-Alain Toillon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
| | - Eric Adriaenssens
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
| | - Xuefen Le Bourhis
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
| | - Pierre-Olivier Angrand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
- Correspondence: ; Tel.: +33-3-2033-6222
| |
Collapse
|
38
|
Wang Z, Chen J, Gao C, Xiao Q, Wang X, Tang S, Li Q, Zhong B, Song Z, Shu H, Li L, Wu M. Epigenetic Dysregulation Induces Translocation of Histone H3 into Cytoplasm. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100779. [PMID: 34363353 PMCID: PMC8498869 DOI: 10.1002/advs.202100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/10/2021] [Indexed: 06/13/2023]
Abstract
In eukaryote cells, core components of chromatin, such as histones and DNA, are packaged in nucleus. Leakage of nuclear materials into cytosol will induce pathological effects. However, the underlying mechanisms remain elusive. Here, cytoplasmic localization of nuclear materials induced by chromatin dysregulation (CLIC) in mammalian cells is reported. H3K9me3 inhibition by small chemicals, HP1α knockdown, or knockout of H3K9 methylase SETDB1, induces formation of cytoplasmic puncta containing histones H3.1, H4 and cytosolic DNA, which in turn activates inflammatory genes and autophagic degradation. Autophagy deficiency rescues H3 degradation, and enhances the activation of inflammatory genes. MRE11, a subunit of MRN complex, enters cytoplasm after heterochromatin dysregulation. Deficiency of MRE11 or NBS1, but not RAD50, inhibits CLIC puncta in cytosol. MRE11 depletion represses tumor growth enhanced by HP1α deficiency, suggesting a connection between CLIC and tumorigenesis. This study reveals a novel pathway that heterochromatin dysregulation induces translocation of nuclear materials into cytoplasm, which is important for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Ji Chen
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Chuan Gao
- College of Life SciencesWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Qiong Xiao
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Xi‐Wei Wang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Shan‐Bo Tang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Qing‐Lan Li
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Bo Zhong
- College of Life SciencesWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Zhi‐Yin Song
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Hong‐Bing Shu
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Lian‐Yun Li
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Min Wu
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| |
Collapse
|
39
|
Banan R, Akbarian A, Samii M, Samii A, Bertalanffy H, Lehmann U, Hartmann C, Brüning R. Diffuse midline gliomas, H3 K27M-mutant are associated with less peritumoral edema and contrast enhancement in comparison to glioblastomas, H3 K27M-wildtype of midline structures. PLoS One 2021; 16:e0249647. [PMID: 34347774 PMCID: PMC8336828 DOI: 10.1371/journal.pone.0249647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose The entity ‘diffuse midline glioma, H3 K27M-mutant (DMG)’ was introduced in the revised 4th edition of the 2016 WHO classification of brain tumors. However, there are only a few reports on magnetic resonance imaging (MRI) of these tumors. Thus, we conducted a retrospective survey focused on MRI features of DMG compared to midline glioblastomas H3 K27M-wildtype (mGBM-H3wt). Methods We identified 24 DMG cases and 19 mGBM-H3wt patients as controls. After being retrospectively evaluated for microscopic evidence of microvascular proliferations (MVP) and tumor necrosis by two experienced neuropathologists to identify the defining histological criteria of mGBM-H3wt, the samples were further analyzed by two experienced readers regarding imaging features such as shape, peritumoral edema and contrast enhancement. Results The DMG were found in the thalamus in 37.5% of cases (controls 63%), in the brainstem in 50% (vs. 32%) and spinal cord in 12.5% (vs. 5%). In MRI and considering MVP, DMG were found to be by far less likely to develop peritumoral edema (OR: 0.13; 95%-CL: 0.02–0.62) (p = 0.010). They, similarly, were associated with a significantly lower probability of developing strong contrast enhancement compared to mGBM-H3wt (OR: 0.10; 95%-CL: 0.02–0.47) (P = 0.003). Conclusion Despite having highly variable imaging features, DMG exhibited markedly less edema and lower contrast enhancement in MRI compared to mGBM-H3wt. Of these features, the enhancement level was associated with evidence of MVP.
Collapse
Affiliation(s)
- Rouzbeh Banan
- Department of Neuropathology, University of Heidelberg, Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Arash Akbarian
- Department of Neuroradiology, INI-Hannover, Hannover, Germany
| | - Majid Samii
- Department of Neurosurgery, INI-Hannover, Hannover, Germany
| | - Amir Samii
- Department of Neurosurgery, INI-Hannover, Hannover, Germany
| | | | - Ulrich Lehmann
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Roland Brüning
- Radiology and Neuroradiology, Asklepios Klinik Barmbek, Hamburg, Germany
- * E-mail:
| |
Collapse
|
40
|
Rathert P. Structure, Activity and Function of the NSD3 Protein Lysine Methyltransferase. Life (Basel) 2021; 11:726. [PMID: 34440470 PMCID: PMC8398374 DOI: 10.3390/life11080726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
NSD3 is one of six H3K36-specific lysine methyltransferases in metazoans, and the methylation of H3K36 is associated with active transcription. NSD3 is a member of the nuclear receptor-binding SET domain (NSD) family of histone methyltransferases together with NSD1 and NSD2, which generate mono- and dimethylated lysine on histone H3. NSD3 is mutated and hyperactive in some human cancers, but the biochemical mechanisms underlying such dysregulation are barely understood. In this review, the current knowledge of NSD3 is systematically reviewed. Finally, the molecular and functional characteristics of NSD3 in different tumor types according to the current research are summarized.
Collapse
Affiliation(s)
- Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
41
|
Ahmad K, Henikoff S. The H3.3K27M oncohistone antagonizes reprogramming in Drosophila. PLoS Genet 2021; 17:e1009225. [PMID: 34280185 PMCID: PMC8320987 DOI: 10.1371/journal.pgen.1009225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/29/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Development proceeds by the activation of genes by transcription factors and the inactivation of others by chromatin-mediated gene silencing. In certain cases development can be reversed or redirected by mis-expression of master regulator transcription factors. This must involve the activation of previously silenced genes, and such developmental aberrations are thought to underlie a variety of cancers. Here, we express the wing-specific Vestigial master regulator to reprogram the developing eye, and test the role of silencing in reprogramming using an H3.3K27M oncohistone mutation that dominantly inhibits histone H3K27 trimethylation. We find that production of the oncohistone blocks eye-to-wing reprogramming. CUT&Tag chromatin profiling of mutant tissues shows that H3K27me3 of domains is generally reduced upon oncohistone production, suggesting that a previous developmental program must be silenced for effective transformation. Strikingly, Vg and H3.3K27M synergize to stimulate overgrowth of eye tissue, a phenotype that resembles that of mutations in Polycomb silencing components. Transcriptome profiling of elongating RNA Polymerase II implicates the mis-regulation of signaling factors in overgrowth. Our results demonstrate that growth dysregulation can result from the simple combination of crippled silencing and transcription factor mis-expression, an effect that may explain the origins of oncohistone-bearing cancers. The differentiation of cell fates in multicellular organisms requires that certain genes be activated, and genes for alternative cell fates are repressed by chromatin silencing. Specific histone mutations that cripple silencing have been found associated with brain cancers in human patients, and these cancers may originate from instability of cell fates. We tested this idea by expressing a wing specification factor in the Drosophila eye to reprogram cell fates and create winged eyes. To test if defects in chromatin silencing increased cell reprogramming, we simultaneously expressed a crippling mutant histone. Contrary to expectations, we found that wing-to-eye reprogramming no longer occurs and instead the eye overgrows, a phenotype reminiscent of the cancers where the histone mutation was first identified. We suggest that reprogramming requires chromatin silencing of the previous developmental program, and that blocking reprogramming can uncouple growth-promoting effects from developmental one of tissue specification transcription factors.
Collapse
Affiliation(s)
- Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| |
Collapse
|
42
|
Krug B, Harutyunyan AS, Deshmukh S, Jabado N. Polycomb repressive complex 2 in the driver's seat of childhood and young adult brain tumours. Trends Cell Biol 2021; 31:814-828. [PMID: 34092471 DOI: 10.1016/j.tcb.2021.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Deregulation of the epigenome underlies oncogenesis in numerous primary brain tumours in children and young adults. In this review, we describe how recurrent mutations in isocitrate dehydrogenases or histone 3 variants (oncohistones) in gliomas, expression of the oncohistone mimic enhancer of Zeste homologs inhibiting protein (EZHIP) in a subgroup of ependymoma, and epigenetic alterations in other embryonal tumours promote oncogenicity. We review the proposed mechanisms of cellular transformation, current tumorigenesis models and their link to development. We further stress the narrow developmental windows permissive to their oncogenic potential and how this may stem from converging effects deregulating polycomb repressive complex (PRC)2 function and targets. As altered chromatin states may be reversible, improved understanding of aberrant cancer epigenomes could orient the design of effective therapies.
Collapse
Affiliation(s)
- Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Shriya Deshmukh
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Pediatrics, McGill University, Montreal, QC, Canada; The Research Institute of the McGill University Health Center, Montreal, H4A 3J, Canada.
| |
Collapse
|
43
|
Spreading and epigenetic inheritance of heterochromatin require a critical density of histone H3 lysine 9 tri-methylation. Proc Natl Acad Sci U S A 2021; 118:2100699118. [PMID: 34035174 PMCID: PMC8179192 DOI: 10.1073/pnas.2100699118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In multicellular organisms, a single genome gives rise to a multitude of cell types by enforcing appropriate gene expression patterns. Epigenetic mechanisms involving modification of histones, including tri-methylation of histone H3 lysine 9 (H3K9me3), assemble and propagate repressive heterochromatin to prevent untimely gene expression. Dysregulation of epigenetic gene-silencing mechanisms is a hallmark of a variety of diseases including cancer. However, the requirements for epigenetic transmission of heterochromatin are not well understood. This study reveals the mechanism by which methylated histones provide an epigenetic template for heterochromatin propagation. We discover that a critical threshold of H3K9me3 is required for effective chromatin-association of the histone methyltransferase, which binds to and catalyzes additional H3K9me to propagate heterochromatin and enforce stable gene silencing. Heterochromatin assembly requires methylation of histone H3 lysine 9 (H3K9me) and serves as a paradigm for understanding the importance of histone modifications in epigenetic genome control. Heterochromatin is nucleated at specific genomic sites and spreads across extended chromosomal domains to promote gene silencing. Moreover, heterochromatic structures can be epigenetically inherited in a self-templating manner, which is critical for stable gene repression. The spreading and inheritance of heterochromatin are believed to be dependent on preexisting H3K9 tri-methylation (H3K9me3), which is recognized by the histone methyltransferase Clr4/Suv39h via its chromodomain, to promote further deposition of H3K9me. However, the process involving the coupling of the “read” and “write” capabilities of histone methyltransferases is poorly understood. From an unbiased genetic screen, we characterize a dominant-negative mutation in histone H3 (H3G13D) that impairs the propagation of endogenous and ectopic heterochromatin domains in the fission yeast genome. H3G13D blocks methylation of H3K9 by the Clr4/Suv39h methyltransferase and acts in a dosage-dependent manner to interfere with the spreading and maintenance of heterochromatin. Our analyses show that the incorporation of unmethylatable histone H3G13D into chromatin decreases H3K9me3 density and thereby compromises the read-write capability of Clr4/Suv39h. Consistently, enhancing the affinity of Clr4/Suv39h for methylated H3K9 is sufficient to overcome the defects in heterochromatin assembly caused by H3G13D. Our work directly implicates methylated histones in the transmission of epigenetic memory and shows that a critical density threshold of H3K9me3 is required to promote epigenetic inheritance of heterochromatin through the read-write mechanism.
Collapse
|
44
|
Not just a writer: PRC2 as a chromatin reader. Biochem Soc Trans 2021; 49:1159-1170. [PMID: 34060617 PMCID: PMC8286813 DOI: 10.1042/bst20200728] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
PRC2 deposits the H3K27me3 repressive mark, which facilitates transcription repression of developmental genes. The decision of whether a particular gene is silenced at a given point during development is heavily dependent on the chromatin context. More than just a simple epigenetic writer, PRC2 employs several distinct chromatin reading capabilities to sense the local chromatin environment and modulate the H3K27me3 writer activity in a context-dependent manner. Here we discuss the complex interplay of PRC2 with the hallmarks of active and repressive chromatin, how it affects H3K27me3 deposition and how it guides transcriptional activity.
Collapse
|
45
|
Shan CM, Kim JK, Wang J, Bao K, Sun Y, Chen H, Yue JX, Stirpe A, Zhang Z, Lu C, Schalch T, Liti G, Nagy PL, Tong L, Qiao F, Jia S. The histone H3K9M mutation synergizes with H3K14 ubiquitylation to selectively sequester histone H3K9 methyltransferase Clr4 at heterochromatin. Cell Rep 2021; 35:109137. [PMID: 34010645 PMCID: PMC8167812 DOI: 10.1016/j.celrep.2021.109137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/05/2021] [Accepted: 04/24/2021] [Indexed: 11/07/2022] Open
Abstract
Oncogenic histone lysine-to-methionine mutations block the methylation of their corresponding lysine residues on wild-type histones. One attractive model is that these mutations sequester histone methyltransferases, but genome-wide studies show that mutant histones and histone methyltransferases often do not colocalize. Using chromatin immunoprecipitation sequencing (ChIP-seq), here, we show that, in fission yeast, even though H3K9M-containing nucleosomes are broadly distributed across the genome, the histone H3K9 methyltransferase Clr4 is mainly sequestered at pericentric repeats. This selective sequestration of Clr4 depends not only on H3K9M but also on H3K14 ubiquitylation (H3K14ub), a modification deposited by a Clr4-associated E3 ubiquitin ligase complex. In vitro, H3K14ub synergizes with H3K9M to interact with Clr4 and potentiates the inhibitory effects of H3K9M on Clr4 enzymatic activity. Moreover, binding kinetics show that H3K14ub overcomes the Clr4 aversion to H3K9M and reduces its dissociation. The selective sequestration model reconciles previous discrepancies and demonstrates the importance of protein-interaction kinetics in regulating biological processes.
Collapse
Affiliation(s)
- Chun-Min Shan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jin-Kwang Kim
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Jiyong Wang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Kehan Bao
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yadong Sun
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Huijie Chen
- Department of Pathology, Columbia University, New York, NY 10068, USA
| | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice 06107, France
| | - Alessandro Stirpe
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Thomas Schalch
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice 06107, France
| | - Peter L Nagy
- Department of Pathology, Columbia University, New York, NY 10068, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Feng Qiao
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
46
|
Vitanza NA, Biery MC, Myers C, Ferguson E, Zheng Y, Girard EJ, Przystal JM, Park G, Noll A, Pakiam F, Winter CA, Morris SM, Sarthy J, Cole BL, Leary SES, Crane C, Lieberman NAP, Mueller S, Nazarian J, Gottardo R, Brusniak MY, Mhyre AJ, Olson JM. Optimal therapeutic targeting by HDAC inhibition in biopsy-derived treatment-naïve diffuse midline glioma models. Neuro Oncol 2021; 23:376-386. [PMID: 33130903 DOI: 10.1093/neuonc/noaa249] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diffuse midline gliomas (DMGs), including diffuse intrinsic pontine gliomas (DIPGs), have a dismal prognosis, with less than 2% surviving 5 years postdiagnosis. The majority of DIPGs and all DMGs harbor mutations altering the epigenetic regulatory histone tail (H3 K27M). Investigations addressing DMG epigenetics have identified a few promising drugs, including the HDAC inhibitor (HDACi) panobinostat. Here, we use clinically relevant DMG models to identify and validate other effective HDACi and their biomarkers of response. METHODS HDAC inhibitors were tested across biopsy-derived treatment-naïve in vitro and in vivo DMG models with biologically relevant radiation resistance. RNA sequencing was performed to define and compare drug efficacy and to map predictive biomarkers of response. RESULTS Quisinostat and romidepsin showed efficacy with low nanomolar half-maximal inhibitory concentration (IC50) values (~50 and ~5 nM, respectively). Comparative transcriptome analyses across quisinostat, romidepsin, and panobinostat showed a greater degree of shared biological effects between quisinostat and panobinostat, and less overlap with romidepsin. However, some transcriptional changes were consistent across all 3 drugs at similar biologically effective doses, such as overexpression of troponin T1 slow skeletal type (TNNT1) and downregulation of collagen type 20 alpha 1 chain (COL20A1), identifying these as potential vulnerabilities or on-target biomarkers in DMG. Quisinostat and romidepsin significantly (P < 0.0001) inhibited in vivo tumor growth. CONCLUSIONS Our data highlight the utility of treatment-naïve biopsy-derived models; establishes quisinostat and romidepsin as effective in vivo; illuminates potential mechanisms and/or biomarkers of DMG cell lethality due to HDAC inhibition; and emphasizes the need for brain tumor-penetrant versions of potentially efficacious agents.
Collapse
Affiliation(s)
- Nicholas A Vitanza
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Matt C Biery
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Carrie Myers
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eric Ferguson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ye Zheng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Emily J Girard
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Giulia Park
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alyssa Noll
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
| | - Fiona Pakiam
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Conrad A Winter
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Shelli M Morris
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jay Sarthy
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Bonnie L Cole
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sarah E S Leary
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Courtney Crane
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nicole A P Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sabine Mueller
- University Children's Hospital Zurich, Zurich, Switzerland.,University of California San Francisco, San Francisco, California, USA
| | - Javad Nazarian
- University Children's Hospital Zurich, Zurich, Switzerland.,Department of Genetic Medicine Research, Children's National Medical Center, Washington DC, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Statistics, University of Washington, Seattle, Washington, USA
| | - Mi-Youn Brusniak
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew J Mhyre
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - James M Olson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| |
Collapse
|
47
|
Zenk F, Zhan Y, Kos P, Löser E, Atinbayeva N, Schächtle M, Tiana G, Giorgetti L, Iovino N. HP1 drives de novo 3D genome reorganization in early Drosophila embryos. Nature 2021; 593:289-293. [PMID: 33854237 PMCID: PMC8116211 DOI: 10.1038/s41586-021-03460-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/16/2021] [Indexed: 12/03/2022]
Abstract
Fundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP–seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo. The heterochromatin protein HP1 has an essential role in establishing several features of the 3D nuclear organization of the genome during early embryonic development in Drosophila.
Collapse
Affiliation(s)
- Fides Zenk
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.,Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Pavel Kos
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Eva Löser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.,Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Melanie Schächtle
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Guido Tiana
- Università degli Studi di Milano and INFN, Milan, Italy
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
48
|
Schachner LF, Jooß K, Morgan MA, Piunti A, Meiners MJ, Kafader JO, Lee AS, Iwanaszko M, Cheek MA, Burg JM, Howard SA, Keogh MC, Shilatifard A, Kelleher NL. Decoding the protein composition of whole nucleosomes with Nuc-MS. Nat Methods 2021; 18:303-308. [PMID: 33589837 PMCID: PMC7954958 DOI: 10.1038/s41592-020-01052-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Current proteomic approaches disassemble and digest nucleosome particles, blurring readouts of the 'histone code'. To preserve nucleosome-level information, we developed Nuc-MS, which displays the landscape of histone variants and their post-translational modifications (PTMs) in a single mass spectrum. Combined with immunoprecipitation, Nuc-MS quantified nucleosome co-occupancy of histone H3.3 with variant H2A.Z (sixfold over bulk) and the co-occurrence of oncogenic H3.3K27M with euchromatic marks (for example, a >15-fold enrichment of dimethylated H3K79me2). Nuc-MS is highly concordant with chromatin immunoprecipitation-sequencing (ChIP-seq) and offers a new readout of nucleosome-level biology.
Collapse
Affiliation(s)
- Luis F Schachner
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Kevin Jooß
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- The Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Marc A Morgan
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea Piunti
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Jared O Kafader
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- The Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Alexander S Lee
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- The Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marcus A Cheek
- EpiCypher, Inc., Research Triangle Park, Durham, NC, USA
| | | | - Sarah A Howard
- EpiCypher, Inc., Research Triangle Park, Durham, NC, USA
| | | | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- The Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
49
|
Katagi H, Takata N, Aoi Y, Zhang Y, Rendleman EJ, Blyth GT, Eckerdt FD, Tomita Y, Sasaki T, Saratsis AM, Kondo A, Goldman S, Becher OJ, Smith E, Zou L, Shilatifard A, Hashizume R. Therapeutic targeting of transcriptional elongation in diffuse intrinsic pontine glioma. Neuro Oncol 2021; 23:1348-1359. [PMID: 33471107 PMCID: PMC8328031 DOI: 10.1093/neuonc/noab009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diffuse intrinsic pontine glioma (DIPG) is associated with transcriptional dysregulation driven by H3K27 mutation. The super elongation complex (SEC) is required for transcriptional elongation through release of RNA polymerase II (Pol II). Inhibition of transcription elongation by SEC disruption can be an effective therapeutic strategy of H3K27M-mutant DIPG. Here, we tested the effect of pharmacological disruption of the SEC in H3K27M-mutant DIPG to advance understanding of the molecular mechanism and as a new therapeutic strategy for DIPG. METHODS Short hairpin RNAs (shRNAs) were used to suppress the expression of AF4/FMR2 4 (AFF4), a central SEC component, in H3K27M-mutant DIPG cells. A peptidomimetic lead compound KL-1 was used to disrupt a functional component of SEC. Cell viability assay, colony formation assay, and apoptosis assay were utilized to analyze the effects of KL-1 treatment. RNA- and ChIP-sequencing were used to determine the effects of KL-1 on gene expression and chromatin occupancy. We treated mice bearing H3K27M-mutant DIPG patient-derived xenografts (PDXs) with KL-1. Intracranial tumor growth was monitored by bioluminescence image and therapeutic response was evaluated by animal survival. RESULTS Depletion of AFF4 significantly reduced the cell growth of H3K27M-mutant DIPG. KL-1 increased genome-wide Pol II occupancy and suppressed transcription involving multiple cellular processes that promote cell proliferation and differentiation of DIPG. KL-1 treatment suppressed DIPG cell growth, increased apoptosis, and prolonged animal survival with H3K27M-mutant DIPG PDXs. CONCLUSIONS SEC disruption by KL-1 increased therapeutic benefit in vitro and in vivo, supporting a potential therapeutic activity of KL-1 in H3K27M-mutant DIPG.
Collapse
Affiliation(s)
- Hiroaki Katagi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Department of Neurological Surgery, Juntendo University, Tokyo, Japan
| | - Nozomu Takata
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute (FCVRRI), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yuki Aoi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yongzhan Zhang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Emily J Rendleman
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Gavin T Blyth
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Frank D Eckerdt
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Yusuke Tomita
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Takahiro Sasaki
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amanda M Saratsis
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois,Department of Surgery, Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Akihide Kondo
- Department of Neurological Surgery, Juntendo University, Tokyo, Japan
| | - Stewart Goldman
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Oren J Becher
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Edwin Smith
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Lihua Zou
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Rintaro Hashizume
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois,Corresponding Author: Rintaro Hashizume, MD, PhD, Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Simpson Querrey 4-514, Chicago, IL 60611, USA (, )
| |
Collapse
|
50
|
Epigenetic-Targeted Treatments for H3K27M-Mutant Midline Gliomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:73-84. [PMID: 33155139 DOI: 10.1007/978-981-15-8104-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a lethal midline brainstem tumor that most commonly occurs in children and is genetically defined by substitution of methionine for lysine at site 27 of histone 3 (H3K27M) in the majority of cases. This mutation has since been shown to exert an influence on the posttranslational epigenetic landscape of this disease, with the loss of trimethylation at lysine 27 (H3K27me3) the most common alteration. Based on these findings, a number of drugs targeting these epigenetic changes have been proposed, specifically that alter histone trimethylation, acetylation, or phosphorylation. Various mechanisms have been explored, including inhibition of H327 demethylase and methyltransferase to target trimethylation, inhibition of histone deacetylase (HDAC) and bromodomain and extraterminal (BET) to target acetylation, and inhibition of phosphatase-related enzymes to target phosphorylation. This chapter reviews the current rationales and progress made to date in epigenetically targeting DIPG via these mechanisms.
Collapse
|