1
|
Sheng K, Li G, Liu M, Gan L, Huang S, Li J. Hierarchical assembly of Pt single atoms and WC nanocrystals on porous carbon Boosting hydrogen evolution reactions. J Colloid Interface Sci 2025; 692:137512. [PMID: 40220638 DOI: 10.1016/j.jcis.2025.137512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Optimizing the accessibility and chemical microenvironment of Pt single atoms (SAs) is essential for enhancing the efficiency of hydrogen evolution reaction (HER). Herein, we present a hierarchical catalyst (Pt3/WC/HS) featuring highly accessible Pt SAs moderately coordinated with WC nanoparticles and uniformly anchored on monodisperse porous carbon nanospheres. With a Pt content of 2.8 wt%, Pt3/WC/HS achieves an ultralow overpotential of 8 mV at 10 mA cm-2, outperforming commercial 20 wt% Pt/C. Additionally, the catalyst exhibits outstanding HER activity in proton exchange membrane water electrolyzers (PEMWE), simulated seawater, and neutral media. Notably, in a coal-assisted hydrogen production system that decouples oxygen evolution reaction (OER) from HER, Pt3/WC/HS achieves 400 mA cm-2 at an applied potential of just 0.5 V. Spectroscopic characterizations and density functional theory (DFT) reveal that WC stabilizes the Pt SAs while retaining an active electronic configuration in the Pt 5 [Formula: see text] orbital, shifting *H adsorption from thermodynamically unfavorable to spontaneous. Moreover, the interconnected porous framework of Pt3/WC/HS ensures high Pt site accessibility at the three-phase interface. This work demonstrates a versatile and high-performance HER catalyst suitable for diverse hydrogen evolution systems and offers a rational design strategy for single-atom catalysts.
Collapse
Affiliation(s)
- Kuang Sheng
- School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Guang Li
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Min Liu
- College of New Energy, Ningbo University of Technology, Ningbo, Zhejiang 315336, China
| | - Lei Gan
- School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Shiqi Huang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jie Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
2
|
Jin H, Zhang Y, Cao Z, Liu J, Ye S. Atomically Dispersed Sn on Core-Shell MoS 2 Nanoreactors as Mott-Schottky Phase Junctions for Efficient Electrocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502977. [PMID: 40326891 DOI: 10.1002/adma.202502977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/15/2025] [Indexed: 05/07/2025]
Abstract
The electrocatalytic hydrogen evolution reaction (HER) plays a pivotal role in electrochemical energy conversion and storage. However, traditional HER catalysts still face significant challenges, including limited activity, poor acid resistance, and high costs. To address these issues, a hollow core-shell structured 2H@1T-MoS2-Sn1 nanoreactor is designed for acidic HER, where Sn single atoms are anchored on the shell of 2H@1T-MoS2 Mott-Schottky phase junction. The 2H@1T-MoS2-Sn1 catalyst demonstrates exceptional HER performance, achieving an ultralow overpotential of 9 mV at 10 mA cm-2 and a Tafel slope of 16.3 mV dec-1 in acidic media-the best performance reported to date among MoS2-based electrocatalysts. The enhanced performance is attributed to the internal electric field at the Mott-Schottky phase junction, which facilitates efficient electron transfer. Additionally, the Sn single atoms modulate the electronic structure of Mo atoms within the Sn-S2-Mo motif, inducing a significant shift in the d-band center and thereby optimizing the dehydrogenation process. This work presents a novel electrocatalyst design strategy that simultaneously engineers interfacial charge transfer and surface catalysis, offering a promising approach for advancing energy conversion technologies.
Collapse
Affiliation(s)
- Hao Jin
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Zhang
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, China
| | - Zhuwei Cao
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, China
| | - Jian Liu
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China
- DICP-Surrey Joint Centre for Future Materials, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Sheng Ye
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
3
|
Miao J, Chen C, Cao L, Al Nuaimi R, Li Z, Huang KW, Lai Z. Harnessing Lithium-Mediated Green Ammonia Synthesis with Water Electrolysis Boosted by Membrane Electrolyzer with Polyoxometalate Proton Shuttles. Angew Chem Int Ed Engl 2025:e202503465. [PMID: 40289915 DOI: 10.1002/anie.202503465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/13/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Integrating water electrolysis (WE) with lithium-mediated nitrogen reduction (Li-NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron-coupled proton buffers (ECPBs) to seamlessly link WE with Li-NRR in a three-compartment flow reactor comprising an aqueous anode, an organic cathode, and a gas feed chamber. POMs serve as proton shuttles while suppressing the competing hydrogen evolution reaction (HER), facilitating efficient ammonia synthesis. The addition of polymethyl methacrylate (PMMA) enhances catholyte hydrophobicity, mitigating water contamination. By optimizing ECPB concentration, a dynamic balance is achieved between lithium nitride intermediates (LiNxHy) formation and consumption, yielding ammonia at 573.7 ± 5.2 µg h⁻¹ cm⁻2 with a Faradaic efficiency of 54.2%. This design advances flow reactor technology by uniquely utilizing water oxidation as a direct proton source, bypassing conventional hydrogen oxidation methods. The use of POMs as proton shuttles establishes a new benchmark for green ammonia production, reinforcing its potential in sustainable chemistry.
Collapse
Affiliation(s)
- Jun Miao
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cailing Chen
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Li Cao
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Reham Al Nuaimi
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhen Li
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kuo-Wei Huang
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhiping Lai
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Cui LP, Zhang S, Zhao Y, Ge XY, Yang L, Li K, Feng LB, Li RG, Chen JJ. Tunable multi-electron redox polyoxometalates for decoupled water splitting driven by sunlight. Nat Commun 2025; 16:3674. [PMID: 40246818 PMCID: PMC12006416 DOI: 10.1038/s41467-025-58622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/30/2025] [Indexed: 04/19/2025] Open
Abstract
It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H2 and O2 evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P2W17V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P2W15V3}) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O2 evolution using BiVO4 photocatalyst and stable H2 production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem.
Collapse
Affiliation(s)
- Li-Ping Cui
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Shu Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yue Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Xin-Yue Ge
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Le Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ke Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Liu-Bin Feng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ren-Gui Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China.
| | - Jia-Jia Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
5
|
Mbang Eze O, Ertekin Z, Symes MD. Decoupled Water Electrolysis at High Current Densities Using a Solution-Phase Redox Mediator. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2025; 39:7129-7136. [PMID: 40236631 PMCID: PMC11995369 DOI: 10.1021/acs.energyfuels.5c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025]
Abstract
The electrolysis of water using renewably generated power to give "green" hydrogen is a key enabler of the putative hydrogen economy. Conventional electrolysis systems are effective for hydrogen production when steady power inputs are available, but tend to handle intermittent or low-power inputs much less well, in particular because it becomes very difficult to ensure separation of the hydrogen and oxygen products under intermittent or low-power regimes. Decoupled electrolysis offers one potential solution to the problem of interfacing electrolyzers with intermittent and low-power inputs: by allowing the hydrogen and oxygen products of electrolysis to be produced in separate devices to each other, systems in which gas mixtures are inherently much less likely to form can be designed. However, in general, decoupled electrolysis systems operate at rather low current densities (up to a few hundred mA/cm2), which detracts somewhat from their suitability for applications. Herein, we constructed a flow system device for decoupled hydrogen production using a solution of the polyoxometalate silicotungstic acid as a liquid-phase decoupling agent. This mediator has been explored as a mediator for decoupled hydrogen evolution before, but in this work, we significantly expanded the range of current densities over which decoupling is demonstrated, from 50 mA/cm2 up to 1.35 A/cm2, the latter of which exceeds the current densities at which commercial alkaline electrolyzers operate and which begins to approach those achievable with proton exchange membrane electrolyzers. Essentially complete decoupling of the hydrogen and oxygen generation processes is achieved across this full range of current densities, suggesting that rapid oxygen production with coupled redox mediator reduction is possible without compromising on decoupling efficiency.
Collapse
Affiliation(s)
- Obeten Mbang Eze
- School of
Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Department
of Chemistry, University of Cross River
State, Calabar, Cross River State 540281, Nigeria
| | - Zeliha Ertekin
- School of
Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Mark D. Symes
- School of
Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
6
|
Liu W, Wang A, Zhang J, Yu S, Wang M, Tian S, Tang H, Zhao Z, Ren X, Guo Y, Ma D. Pt/α-MoC Catalyst Boosting pH-Universal Hydrogen Evolution Reaction at High Current Densities. ACS NANO 2025; 19:10038-10047. [PMID: 40030004 DOI: 10.1021/acsnano.4c16678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Constructing subnanometric electrocatalysts is an efficient method to synergistically accelerate H2O dissociation and H+ reduction for pH-universal hydrogen evolution reaction (HER) for industrial water electrolysis to produce green hydrogen. Here, we construct a subnanometric Pt/α-MoC catalyst, where the α-MoC component can dissociate water effectively, with the rapid proton release kinetics of Pt species on Pt/α-MoC to obtain a good HER performance at high current densities in all-pH electrolytes. Quasi-in situ X-ray photoelectron spectroscopy analyses and density functional theory calculations confirm the highly efficient water dissociation capability of α-MoC and the thermodynamically favorable desorption process of hydrolytically dissociated protons on Pt sites at the high current density. Consequently, Pt/α-MoC requires only a low overpotential of 125 mV to achieve a current density of 1000 mA cm-2. Moreover, a Pt/α-MoC-based proton exchange membrane water electrolysis device exhibits a low cell voltage (1.65 V) and promising stability over 300 h with no performance degradation at an industrial-level current density of 1 A cm-2. Notably, even at a current of 100 A, the cell voltage remains low at 2.15 V, demonstrating Pt/α-MoC's promising potential as a scalable alternative for industrial hydrogen production. These findings elucidate the synergistic mechanism of α-MoC and atomically dispersed Pt in promoting efficient HER, offering valuable guidance for the design of electrocatalysts in high current density hydrogen.
Collapse
Affiliation(s)
- Wei Liu
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Anyang Wang
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
| | - Jihan Zhang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shixiang Yu
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maolin Wang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuheng Tian
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haoyi Tang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziwen Zhao
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiao Ren
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Gao X, Wang P, Sun X, Jaroniec M, Zheng Y, Qiao SZ. Membrane-Free Water Electrolysis for Hydrogen Generation with Low Cost. Angew Chem Int Ed Engl 2025; 64:e202417987. [PMID: 39477795 DOI: 10.1002/anie.202417987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 11/17/2024]
Abstract
Conventional water electrolysis relies on expensive membrane-electrode assemblies and sluggish oxygen evolution reaction (OER) at the anode, which makes the cost of green hydrogen (H2) generation much higher than that of grey H2. Here, we develop an innovative and efficient membrane-free water electrolysis system to overcome these two obstacles simultaneously. This system utilizes the thermodynamically more favorable urea oxidation reaction (UOR) to generate clean N2 over a new class of Cu-based catalyst (CuXO) for replacing OER, fundamentally eliminating the explosion risk of H2 and O2 mixing while removing the need for membranes. Notably, this membrane-free electrolysis system exhibits the highest H2 Faradaic efficiency among reported membrane-free electrolysis work. In situ spectroscopic studies reveal that the new N2Hy intermediate-mediated UOR mechanism on the CuXO catalyst ensures its unique N2 selectivity and OER inertness. More importantly, an industrial-type membrane-free water electrolyser (MFE) based on this system successfully reduces electricity consumption to only 3.78 kWh Nm-3, significantly lower than the 5.17 kWh Nm-3 of commercial alkaline water electrolyzers (AWE). Comprehensive techno-economic analysis (TEA) suggests that the membrane-free design and reduced electricity input of the MFE plants reduce the green H2 production cost to US$1.81 kg-1, which is lower than those of grey H2 while meeting the technical target (US$2.00-2.50 kg-1) set by European Commission and United States Department of Energy.
Collapse
Affiliation(s)
- Xintong Gao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xiaogang Sun
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials, Liquid Crystal Institute, Kent State University, Kent, OH, 44242, United States of America
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
8
|
Li J, Ma Y, Mu X, Wang X, Li Y, Ma H, Guo Z. Recent Advances and Perspectives on Coupled Water Electrolysis for Energy-Saving Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411964. [PMID: 39777433 PMCID: PMC11831450 DOI: 10.1002/advs.202411964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Overall water splitting (OWS) to produce hydrogen has attracted large attention in recent years due to its ecological-friendliness and sustainability. However, the efficiency of OWS has been forced by the sluggish kinetics of the four-electron oxygen evolution reaction (OER). The replacement of OER by alternative electrooxidation of small molecules with more thermodynamically favorable potentials may fundamentally break the limitation and achieve hydrogen production with low energy consumption, which may also be accompanied by the production of more value-added chemicals than oxygen or by electrochemical degradation of pollutants. This review critically assesses the latest discoveries in the coupled electrooxidation of various small molecules with OWS, including alcohols, aldehydes, amides, urea, hydrazine, etc. Emphasis is placed on the corresponding electrocatalyst design and related reaction mechanisms (e.g., dual hydrogenation and N-N bond breaking of hydrazine and C═N bond regulation in urea splitting to inhibit hazardous NCO- and NO- productions, etc.), along with emerging alternative electrooxidation reactions (electrooxidation of tetrazoles, furazans, iodide, quinolines, ascorbic acid, sterol, trimethylamine, etc.). Some new decoupled electrolysis and self-powered systems are also discussed in detail. Finally, the potential challenges and prospects of coupled water electrolysis systems are highlighted to aid future research directions.
Collapse
Affiliation(s)
- Jiachen Li
- Department of ChemistryThe University of Hong KongHong Kong999077China
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Yuqiang Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | | | | | - Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical MaterialsSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
- Zhijian LaboratoryXi'an710025China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong999077China
| |
Collapse
|
9
|
Chang J, Wang S, Hülsey MJ, Zhang S, Nee Lou S, Ma X, Yan N. Electrothermal Conversion of Methane to Methanol at Room Temperature with Phosphotungstic Acid. Angew Chem Int Ed Engl 2025; 64:e202417251. [PMID: 39460653 DOI: 10.1002/anie.202417251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Traditional methods for the aerobic oxidation of methane to methanol frequently require the use of noble metal catalysts or flammable H2-O2 mixtures. While electrochemical methods enhance safety and may avoid the use of noble metals, these processes suffer from low yields due to limited current density and/or low selectivity. Here, we design an electrothermal process to conduct aerobic oxidation of methane to methanol at room temperature using phosphotungstic acid (PTA) as a redox mediator. When electrochemically reduced, PTA activates methane with O2 to produce methanol selectively. The optimum productivity reaches 29.45μ m o l g P T A - 1 h - 1 ${\mu mol\ {g}_{PTA}^{-1}{h}^{-1}}$ with approximately 20.3 % overall electron yield. Under continuous operation, we achieved 19.90μ m o l g P T A - 1 h - 1 ${\mu mol\ {g}_{PTA}^{-1}{h}^{-1}}$ catalytic activity, over 74.3 % methanol selectivity, and 10 hours durability. This approach leverages reduced PTA to initiate thermal catalysis in solution phase, addressing slow methane oxidation kinetics and preventing overoxidations on electrode surfaces. The current density towards methanol production increased over 40 times compared with direct electrochemical processes. The in situ generated hydroxyl radical, from the reaction of reduced PTA and oxygen, plays an important role in the methane conversion. This study demonstrates reduced polyoxotungstate as a viable platform to integrate thermo- and electrochemical methane oxidation at ambient conditions.
Collapse
Affiliation(s)
- Jinquan Chang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Sikai Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Max J Hülsey
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering School of Chemical Engineering and Technology Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin University, Tianjin, 300192, China
| | - Shi Nee Lou
- School of Chemical Engineering and Technology Tianjin University, Tianjin, 300072, China
| | - Xinbin Ma
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering School of Chemical Engineering and Technology Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin University, Tianjin, 300192, China
| | - Ning Yan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
10
|
Wu L, Huang W, Li D, Jia H, Zhao B, Zhu J, Zhou H, Luo W. Unveiling the Structure and Dissociation of Interfacial Water on RuO 2 for Efficient Acidic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2025; 64:e202413334. [PMID: 39377206 DOI: 10.1002/anie.202413334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Understanding the structure and dynamic process of interfacial water molecules at the catalyst-electrolyte interface on acidic oxygen evolution reaction (OER) kinetics is highly desirable for the development of proton exchange membrane water electrolyzers. Herein, we construct a series of p-block metal elements (Ga, In, Sn) doped RuO2 catalysts with manipulated electronic structure and Ru-O covalency to investigate the effect of electrochemical interfacial engineering on the improvement of acidic OER activity. Associated with operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy measurements and theoretical analysis, we uncover the free-H2O enriched local environment and dynamic evolution from 4-coordinated hydrogen-bonded water and 2-coordinated hydrogen-bonded water to free-H2O on the surface of Ga-RuO2, are responsible for the optimized connectivity of hydrogen bonding network in the electrical double layer by promoting solvent reorganization. In addition, the structurally ordered interfacial water molecules facilitate high-efficiency proton-coupled electron transfer across the interface, leading to reduced energy barrier of the follow-up dissociation process and enhanced acidic OER performance. This work highlights the key role of structure and dynamic process of interfacial water for acidic OER, and demonstrates the electrochemical interfacial engineering as an efficient strategy to design high-performance electrocatalysts.
Collapse
Affiliation(s)
- Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Wenxia Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Dongyang Li
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Bingbing Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Juan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Haiqing Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
11
|
Jiang T, Zhang Z, Wei S, Tan S, Liu H, Chen W. Rechargeable Hydrogen Gas Batteries: Fundamentals, Principles, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412108. [PMID: 39511903 DOI: 10.1002/adma.202412108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/28/2024] [Indexed: 11/15/2024]
Abstract
The growing demand for renewable energy sources has accelerated a boom in research on new battery chemistries. Despite decades of development for various battery types, including lithium-ion batteries, their suitability for grid-scale energy storage applications remains imperfect. In recent years, rechargeable hydrogen gas batteries (HGBs), utilizing hydrogen catalytic electrode as anode, have attracted extensive academic and industrial attention. HGBs, facilitated by appropriate catalysts, demonstrate notable attributes such as high power density, high capacity, excellent low-temperature performance, and ultralong cycle life. This review presents a comprehensive overview of four key aspects pertaining to HGBs: fundamentals, principles, materials, and applications. First, detailed insights are provided into hydrogen electrodes, encompassing electrochemical principles, hydrogen catalytic mechanisms, advancements in hydrogen catalytic materials, and structural considerations in hydrogen electrode design. Second, an examination and future prospects of cathode material compatibility, encompassing both current and potential materials, are summarized. Third, other components and engineering considerations of HGBs are elaborated, including cell stack design and pressure vessel design. Finally, a techno-economic analysis and outlook offers an overview of the current status and future prospects of HGBs, indicating their orientation for further research and application advancements.
Collapse
Affiliation(s)
- Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ziwei Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuyang Wei
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shunxin Tan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongxu Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
12
|
Yu J, Musgrave CB, Chen Q, Yang Y, Tian C, Hu X, Su G, Shin H, Ni W, Chen X, Ou P, Liu Y, Schweitzer NM, Meira DM, Dravid VP, Goddard WA, Xie K, Sargent EH. Ruthenium-Substituted Polyoxoanion Serves as Redox Shuttle and Intermediate Stabilizer in Selective Electrooxidation of Ethylene to Ethylene Glycol. J Am Chem Soc 2024; 146:32660-32669. [PMID: 39537145 DOI: 10.1021/jacs.4c11891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The high carbon intensity of present-day ethylene glycol (EG) production motivates interest in electrifying ethylene oxidation. Noting poor kinetics in prior reports of the organic electrooxidation of small hydrocarbons, we explored the design of mediators that activate and simultaneously stabilize light alkenes. A ruthenium-substituted polyoxometalate (Ru-POM, {Si[Ru(H2O)W11O39]}5-) achieves 82% faradaic efficiency in EG production at 100 mA/cm2 under ambient conditions. Via the union of in situ spectroscopic techniques, electrochemical studies, and density functional theory calculations, we find evidence of a two-step oxidation mechanism: Ru-POM first undergoes electrochemical oxidation to the high valent state, activating ethylene via partial oxidation and forming an intermediate complex; this intermediate complex then migrates to the anode where it undergoes further oxidation to produce EG. The Ru-POM-mediated electrocatalytic system reduces the projected energy consumption required in EG production, requiring 9 GJ per ton of EG (and accompanied by 0.04 ton H2 coproduction), compared to 20-30 GJ/ton in typical prior processes.
Collapse
Affiliation(s)
- Jiaqi Yu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Charles Bruce Musgrave
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Qiucheng Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Cong Tian
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaobing Hu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Guangcan Su
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Heejong Shin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Weiyan Ni
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xinqi Chen
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Pengfei Ou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuan Liu
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil M Schweitzer
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Debora Motta Meira
- CLS@APS, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Canadian Light Source, 44 Innovation Blvd., Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Ke Xie
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Huang Y, Zhou W, Xie L, Meng X, Li J, Gao J, Zhao G, Qin Y. Self-sacrificing and self-supporting biomass carbon anode-assisted water electrolysis for low-cost hydrogen production. Proc Natl Acad Sci U S A 2024; 121:e2316352121. [PMID: 39541345 PMCID: PMC11588069 DOI: 10.1073/pnas.2316352121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Electrooxidation of renewable and CO2-neutral biomass for low-cost hydrogen production is a promising and green technology. Various biomass platform molecules (BPMs) oxidation assisted hydrogen production technologies have obtained noticeable progress. However, BPMs anodic oxidation is highly dependent on electrocatalysts, and the oxidation mechanism is ambiguous. Meanwhile, the complexity and insolubility of natural biomass severely constrain the efficient utilization of biomass resources. Here, we develop a self-sacrificing and self-supporting carbon anode (SSCA) using waste corncobs. The combined results from multiple characterizations reveal that the structure-property-activity relationship of SSCA in carbon oxidation reaction (COR). Theoretical calculations demonstrate that carbon atoms with a high spin density play a pivotal role in reducing the adsorption energy of the reactive oxygen intermediate (*OH) during the transition from OH- to *OH, thereby promoting COR. Additionally, the HER||COR system allows driving a current density of 400 [Formula: see text] at 1.24 V at 80 °C, with a hydrogen production electric consumption of 2.96 kWh Nm-3 (H2). The strategy provides a ground-breaking perspective on the large-scale utilization of biomass and low-energy water electrolysis for hydrogen production.
Collapse
Affiliation(s)
- Yuming Huang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Liang Xie
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Junfeng Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Guangbo Zhao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Yukun Qin
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| |
Collapse
|
14
|
Izu H, Kondo M, Okamura M, Tomoda M, Lee SK, Akai T, Praneeth VKK, Kanaike M, Kawata S, Masaoka S. Precise Manipulation of Electron Transfers in Clustered Five Redox Sites. Angew Chem Int Ed Engl 2024; 63:e202408514. [PMID: 38954391 DOI: 10.1002/anie.202408514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Electron transfers in multinuclear metal complexes are the origin of their unique functionalities both in natural and artificial systems. However, electron transfers in multinuclear metal complexes are generally complicated, and predicting and controlling these electron transfers is extremely difficult. Herein, we report the precise manipulation of the electron transfers in multinuclear metal complexes. The development of a rational synthetic strategy afforded a series of pentanuclear metal complexes which composed of metal ions and 3,5-bis(2-pyridyl)pyrazole (Hbpp) as a platform to probe the phenomena. Electrochemical and spectroscopic investigations clarified overall picture of the electron transfers in the pentanuclear complexes. In addition, unique electron transfer behaviors, in which the reduction of a metal center occurs during the oxidation of the overall complex, were identified. We also elucidated the two dominant factors that determine the manner of the electron transfers. Our results provide comprehensive guidelines for interpreting the complicated electron transfers in multinuclear metal complexes.
Collapse
Grants
- 17H06444, 19H00903, 20K21209, 23H04903, and 24H00464 Japan Society for the Promotion of Science
- 17K19185, 17H05391, 19H04602, 19H05777, 20H02754, 24H02212 Japan Society for the Promotion of Science
- 17H05390 and 16K05735 Japan Society for the Promotion of Science
- 23K13763 Japan Society for the Promotion of Science
- JPMJCR12YH Japan Science and Technology Agency
- JPMJPR20A4 Precursory Research for Embryonic Science and Technology
- JPMJCR20B6 Core Research for Evolutional Science and Technology
- Tokuyama Science Foundation
- Iketani Science and Technology Foundation
- Izumi Science and Technology Foundation
- Mazda Foundation
- 171011 Central Research Institute, Fukuoka University
Collapse
Affiliation(s)
- Hitoshi Izu
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies) Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita, Osaka, 565-0871, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, NE-6, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-4 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Masaya Okamura
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Misa Tomoda
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies) Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Sze Koon Lee
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Takuya Akai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Vijayendran K K Praneeth
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Center of Examination, Somaiya Vidyavihar University, Mumbai, Maharashtra, 400077, India
| | - Mari Kanaike
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Satoshi Kawata
- Department of Chemistry, Faculty of Science, Fukuoka University Nanakuma, Jonan-ku 8-19-1, Fukuoka, 814-0180, Japan
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Xu M, Wang J, Sun SG, Chen Z. Decoupling Electrolytic Water Splitting by an Oxygen-Mediating Process. JACS AU 2024; 4:3964-3975. [PMID: 39483242 PMCID: PMC11522909 DOI: 10.1021/jacsau.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 11/03/2024]
Abstract
Decoupled water electrolysis systems, incorporating a reversible redox mediator that allows for the construction of membrane-free electrolyzers, have emerged as a promising approach to produce high-purity hydrogen with remarkable flexibility. The key factor crucial for practical applications lies in the development of mediator electrodes that possess suitable redox potential, high redox capacity, excellent cycling reversibility and stability. Herein, we introduce a novel concept of oxygen-mediating redox mediators (ORMs) employing Bi2O3 as an example material, which are capable of sequestering oxygen during the hydrogen evolution reaction and subsequently releasing it to generate oxygen gas under alkaline conditions. Thanks to its remarkable reversible redox activity and specific capacity, the Bi2O3 electrode boasts an impressive reversible specific capacity of 300.8 mA h g-1 and delivers outstanding cycling performance for >1000 cycles at a current density of 2.0 A g-1. Furthermore, the implementation of such a decoupled alkaline water electrolysis system can be integrated with a Bi2O3-Zn battery, enabling both power-to-fuel (hydrogen production) and chemical-to-power (rechargeable Bi2O3-Zn battery) conversion. With many oxygen-carrier materials readily available and the potential integration with rechargeable alkaline batteries, this study provides an alternative competitive route for membrane-free decoupled water splitting through the oxygen-mediating mechanism with combined energy transformation and storage.
Collapse
Affiliation(s)
- Mingze Xu
- School
of Chemical Science and Engineering, Tongji
University, 1239 Siping Road, Shanghai 200092, China
| | - Jianying Wang
- School
of Chemical Science and Engineering, Tongji
University, 1239 Siping Road, Shanghai 200092, China
| | - Shi-Gang Sun
- State
Key Lab of Physical Chemistry of Solid Surface, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zuofeng Chen
- School
of Chemical Science and Engineering, Tongji
University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
16
|
Liu T, Lan C, Tang M, Li M, Xu Y, Yang H, Deng Q, Jiang W, Zhao Z, Wu Y, Xie H. Redox-mediated decoupled seawater direct splitting for H 2 production. Nat Commun 2024; 15:8874. [PMID: 39402055 PMCID: PMC11473778 DOI: 10.1038/s41467-024-53335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/10/2024] [Indexed: 10/17/2024] Open
Abstract
Seawater direct electrolysis (SDE) using renewable energy provides a sustainable pathway to harness abundant oceanic hydrogen resources. However, the side-reaction of the chlorine electro-oxidation reaction (ClOR) severely decreased direct electrolysis efficiency of seawater and gradually corrodes the anode. In this study, a redox-mediated strategy is introduced to suppress the ClOR, and a decoupled seawater direct electrolysis (DSDE) system incorporating a separate O2 evolution reactor is established. Ferricyanide/ferrocyanide ([Fe(CN)6]3-/4-) serves as an electron-mediator between the cell and the reactor, thereby enabling a more dynamically favorable half-reaction to supplant the traditional oxygen evolution reaction (OER). This alteration involves a straightforward, single-electron-transfer anodic reaction without gas precipitation and effectively eliminates the generation of chlorine-containing byproducts. By operating at low voltages (~1.37 V at 10 mA cm-2 and ~1.57 V at 100 mA cm-2) and maintaining stability even in a Cl--saturated seawater electrolyte, this system has the potential of undergoing decoupled seawater electrolysis with zero chlorine emissions. Further improvements in the high-performance redox-mediators and catalysts can provide enhanced cost-effectiveness and sustainability of the DSDE system.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, 610065, China.
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China.
- Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
| | - Cheng Lan
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, 610065, China.
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China.
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
| | - Min Tang
- Sichuan University-Pittsburgh Institute, Chengdu, 610065, China
| | - Mengxin Li
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
- Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Yitao Xu
- Sichuan University-Pittsburgh Institute, Chengdu, 610065, China
| | - Hangrui Yang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qingyue Deng
- Sichuan University-Pittsburgh Institute, Chengdu, 610065, China
| | - Wenchuan Jiang
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Zhiyu Zhao
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Yifan Wu
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, 610065, China.
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China.
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
| | - Heping Xie
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, 610065, China.
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China.
- Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
- College of Water Resource & Hydropower, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
17
|
Li Z, Chen IC, Cao L, Liu X, Huang KW, Lai Z. Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design. Science 2024; 385:1438-1444. [PMID: 39325903 DOI: 10.1126/science.adg8487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/09/2024] [Accepted: 07/18/2024] [Indexed: 09/28/2024]
Abstract
The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient lithium extraction from harsh brines. In this work, we describe a decoupled membrane-free electrochemical cell that cycles lithium ions between iron-phosphate electrodes and features cathode (brine) and anode (fresh water) compartments that are isolated from each other yet electrochemically connected through a pair of silver/silver-halide redox electrodes. This design is compatible with harsh brines having magnesium/lithium molar ratios of up to 3258 and lithium concentrations down to 0.15 millimolar, enabling the production of battery-grade (>99.95% pure) lithium carbonate. Energy savings of up to ~21.5% were realized by efficiently harvesting the osmotic energy of the brines. A pilot-scale cell with an electrode surface area of 33.75 square meters was used to realize lithium extraction from Dead Sea brine with a recovery rate of 84.0%.
Collapse
Affiliation(s)
- Zhen Li
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - I-Chun Chen
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Li Cao
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xiaowei Liu
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Kuo-Wei Huang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Chauhan I, Vijay PM, Ranjan R, Patra KK, Gopinath CS. Electrocatalytic and Selective Oxidation of Glycerol to Formate on 2D 3d-Metal Phosphate Nanosheets and Carbon-Negative Hydrogen Generation. ACS MATERIALS AU 2024; 4:500-511. [PMID: 39280810 PMCID: PMC11393936 DOI: 10.1021/acsmaterialsau.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 09/18/2024]
Abstract
In the landscape of green hydrogen production, alkaline water electrolysis is a well-established, yet not-so-cost-effective, technique due to the high overpotential requirement for the oxygen evolution reaction (OER). A low-voltage approach is proposed to overcome not only the OER challenge by favorably oxidizing abundant feedstock molecules with an earth-abundant catalyst but also to reduce the energy input required for hydrogen production. This alternative process not only generates carbon-negative green H2 but also yields concurrent value-added products (VAPs), thereby maximizing economic advantages and transforming waste into valuable resources. The essence of this study lies in a novel electrocatalyst material. In the present study, unique and two-dimensional (2D) ultrathin nanosheet phosphates featuring first-row transition metals are synthesized by a one-step solvothermal method, and evaluated for the electrocatalytic glycerol oxidation reaction (GLYOR) in an alkaline medium and simultaneous H2 production. Co3(PO4)2 (CoP), Cu3(PO4)2 (CuP), and Ni3(PO4)2 (NiP) exhibit 2D sheet morphologies, while FePO4 (FeP) displays an entirely different snowflake-like morphology. The 2D nanosheet morphology provides a large surface area and a high density of active sites. As a GLYOR catalyst, CoP ultrathin (∼5 nm) nanosheets exhibit remarkably low onset potential at 1.12 V (vs RHE), outperforming that of NiP, FeP, and CuP around 1.25 V (vs RHE). CoP displays 82% selective formate production, indicating a superior capacity for C-C cleavage and concurrent oxidation; this property could be utilized to valorize larger molecules. CoP also exhibits highly sustainable electrochemical stability for a continuous 200 h GLYOR operation, yielding 6.5 L of H2 production with a 4 cm2 electrode and 98 ± 0.5% Faradaic efficiency. The present study advances our understanding of efficient GLYOR catalysts and underscores the potential of sustainable and economically viable green hydrogen production methodologies.
Collapse
Affiliation(s)
- Inderjeet Chauhan
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Pothoppurathu M Vijay
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Ravi Ranjan
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Kshirodra Kumar Patra
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Chinnakonda S Gopinath
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
19
|
Wu S, Stanley PM, Deger SN, Hussain MZ, Jentys A, Warnan J. Photochargeable Mn-Based Metal-Organic Framework and Decoupled Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202406385. [PMID: 39074974 DOI: 10.1002/anie.202406385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 07/31/2024]
Abstract
Designing multifunctional materials that mimic the light-dark decoupling of natural photosynthesis is a key challenge in the field of energy conversion. Herein, we introduce MnBr-253, a precious metal-free metal-organic framework (MOF) built on Al nodes, bipyridine linkers and MnBr(CO)3(bipyridine) complexes. Upon irradiation, MnBr-253 colloids demonstrate an electron photocharging capacity of ~42 C ⋅ g-1 MOF, with state-of-the-art photocharging rate (1.28 C ⋅ s-1 ⋅ g-1 MOF) and incident photon-to-electron conversion efficiency of ~9.4 % at 450 nm. Spectroscopic and computational studies support effective electron accumulation at the Mn complex while high porosity and Mn loading account for the notable electron storage performance. The charged MnBr-253 powders were successfully applied for hydrogen evolution under dark conditions thus emulating the light-decoupled reactivity of photosynthesis.
Collapse
Affiliation(s)
- Shufan Wu
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Philip M Stanley
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Simon N Deger
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Mian Zahid Hussain
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Andreas Jentys
- Chair of Industrial Chemistry and Heterogenous Catalysis, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Julien Warnan
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| |
Collapse
|
20
|
Segado-Centellas M, Falaise C, Leclerc N, Mpacko Priso G, Haouas M, Cadot E, Bo C. Nanoconfinement of polyoxometalates in cyclodextrin: computational inspections of the binding affinity and experimental demonstrations of reactivity modulation. Chem Sci 2024:d4sc01949k. [PMID: 39282647 PMCID: PMC11391412 DOI: 10.1039/d4sc01949k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Chaotropic polyoxometalates (POMs) form robust host-guest complexes with γ-cyclodextrin (γ-CD), offering promising applications in catalysis, electrochemical energy storage, and nanotechnology. In this article, we provide the first computational insights on the supramolecular binding mechanisms using density-functional theory and classical molecular dynamics simulations. Focusing on the encapsulation of archetypal Keggin-type POMs (PW12O40 3-, SiW12O40 4- and BW12O40 5-), our findings reveal that the lowest-charged POM, namely PW12O40 3- spontaneously confines within the wider rim of γ-CD, but BW12O40 5- does not exhibit this behaviour. This striking affinity for the hydrophobic pocket of γ-CD originates from the structural characteristics of water molecules surrounding PW12O40 3-. Moreover, through validation using 31P NMR spectroscopy, we demonstrate that this nanoconfinement regulates drastically the POM reactivity, including its capability to undergo electron transfer and intermolecular metalate Mo/W exchanges. Finally, we exploit this nanoconfinement strategy to isolate the elusive mixed addenda POM PW11MoO40 3-.
Collapse
Affiliation(s)
- Mireia Segado-Centellas
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Gabrielle Mpacko Priso
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
21
|
Shu W, Sun Q, Guo M. A novel design of urea-assisted hydrogen production in electrochemical-chemical decoupled self-circulating systems. RSC Adv 2024; 14:26659-26666. [PMID: 39175676 PMCID: PMC11340426 DOI: 10.1039/d4ra04644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
In traditional water electrolysis processes, the oxidation and reduction reactions of water are coupled in both time and space, which presents significant challenges. Here, we propose an optimized design for an electrochemical-chemical self-circulating decoupled system. This system uses the continuous Ni2+/Ni3+ redox process on nickel hydroxide electrode sheets to stepwise couple the urea oxidation-assisted hydrogen production system, separating the hydrogen evolution reaction (HER) and urea oxidation reaction (UOR) into two distinct steps: electrochemical and chemical reactions. In the first electrochemical step, water is reduced at the cathode to produce hydrogen, while the single-electron electrochemical oxidation of Ni(OH)2 at the anode generates NiOOH. Then, in the second chemical reaction step, NiOOH spontaneously oxidizes urea, causing its decomposition and simultaneously reducing back to the Ni(OH)2 state. We concurrently investigated the effects of temperature and OH-concentration on the spontaneous oxidation of urea. At 80 °C and with a 1 M KOH concentration containing 50 mg of urea solution, the NiOOH electrode successfully catalyzed the spontaneous decomposition of urea, achieving conversion rate of 100% and faradaic efficiency of 98%.
Collapse
Affiliation(s)
- Weihang Shu
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Qi Sun
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Mingrui Guo
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University Qingdao 266071 Shandong P. R. China
| |
Collapse
|
22
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
23
|
Xu H, Zhang J, Eikerling M, Huang J. Pure Water Splitting Driven by Overlapping Electric Double Layers. J Am Chem Soc 2024; 146:19720-19727. [PMID: 38985952 PMCID: PMC11273347 DOI: 10.1021/jacs.4c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
In pursuit of a sustainable future powered by renewable energy, hydrogen production through water splitting should achieve high energy efficiency with economical materials. Here, we present a nanofluidic electrolyzer that leverages overlapping cathode and anode electric double layers (EDLs) to drive the splitting of pure water. Convective flow is introduced between the nanogap electrodes to suppress the crossover of generated gases. The strong electric field within the overlapping EDLs enhances ion migration and facilitates the dissociation of water molecules. Acidic and basic environments, which are created in situ at the cathode and anode, respectively, enable the use of nonprecious metal catalysts. All these merits allow the reactor to exhibit a current density of 2.8 A·cm-2 at 1.7 V with a nickel anode. This paves the way toward a new type of water electrolyzer that needs no membrane, no supporting electrolyte, and no precious metal catalysts.
Collapse
Affiliation(s)
- Haosen Xu
- School
of Vehicle and Mobility, State Key Laboratory of Intelligent Green
Vehicle and Mobility, Tsinghua University, 100084 Beijing, China
- IEK-13,
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Jianbo Zhang
- School
of Vehicle and Mobility, State Key Laboratory of Intelligent Green
Vehicle and Mobility, Tsinghua University, 100084 Beijing, China
| | - Michael Eikerling
- IEK-13,
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Chair
of Theory and Computation of Energy Materials, Faculty of Georesources
and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Jun Huang
- IEK-13,
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Theory
of Electrocatalytic Interfaces, Faculty of Georesources and Materials
Engineering, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
24
|
Gao T, An Q, Tang X, Yue Q, Zhang Y, Li B, Li P, Jin Z. Recent progress in energy-saving electrocatalytic hydrogen production via regulating the anodic oxidation reaction. Phys Chem Chem Phys 2024; 26:19606-19624. [PMID: 39011574 DOI: 10.1039/d4cp01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Hydrogen energy with its advantages of high calorific value, renewable nature, and zero carbon emissions is considered an ideal candidate for clean energy in the future. The electrochemical decomposition of water, powered by renewable and clean energy sources, presents a sustainable and environmentally friendly approach to hydrogen production. However, the traditional electrochemical overall water-splitting reaction (OWSR) is limited by the anodic oxygen evolution reaction (OER) with sluggish kinetics. Although important advances have been made in efficient OER catalysts, the theoretical thermodynamic difficulty predetermines the inevitable large potential (1.23 V vs. RHE for the OER) and high energy consumption for the conventional water electrolysis to obtain H2. Besides, the generation of reactive oxygen species at high oxidation potentials can lead to equipment degradation and increase maintenance costs. Therefore, to address these challenges, thermodynamically favorable anodic oxidation reactions with lower oxidation potentials than the OER are used to couple with the cathodic hydrogen evolution reaction (HER) to construct new coupling hydrogen production systems. Meanwhile, a series of robust catalysts applied in these new coupled systems are exploited to improve the energy conversion efficiency of hydrogen production. Besides, the electrochemical neutralization energy (ENE) of the asymmetric electrolytes with a pH gradient can further promote the decrease in application voltage and energy consumption for hydrogen production. In this review, we aim to provide an overview of the advancements in electrochemical hydrogen production strategies with low energy consumption, including (1) the traditional electrochemical overall water splitting reaction (OWSR, HER-OER); (2) the small molecule sacrificial agent oxidation reaction (SAOR) and (3) the electrochemical oxidation synthesis reaction (EOSR) coupling with the HER (HER-SAOR, HER-EOSR), respectively; (4) regulating the pH gradient of the cathodic and anodic electrolytes. The operating principle, advantages, and the latest progress of these hydrogen production systems are analyzed in detail. In particular, the recent progress in the catalytic materials applied to these coupled systems and the corresponding catalytic mechanism are further discussed. Furthermore, we also provide a perspective on the potential challenges and future directions to foster advancements in electrocatalytic green sustainable hydrogen production.
Collapse
Affiliation(s)
- Taotao Gao
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qi An
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Xiangmin Tang
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qu Yue
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Yang Zhang
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Bing Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, P. R. China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
| |
Collapse
|
25
|
Liang J, Li J, Dong H, Li Z, He X, Wang Y, Yao Y, Ren Y, Sun S, Luo Y, Zheng D, Li J, Liu Q, Luo F, Wu T, Chen G, Sun X, Tang B. Aqueous alternating electrolysis prolongs electrode lifespans under harsh operation conditions. Nat Commun 2024; 15:6208. [PMID: 39043681 PMCID: PMC11266351 DOI: 10.1038/s41467-024-50519-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
It is vital to explore effective ways for prolonging electrode lifespans under harsh electrolysis conditions, such as high current densities, acid environment, and impure water source. Here we report alternating electrolysis approaches that realize promptly and regularly repair/maintenance and concurrent bubble evolution. Electrode lifespans are improved by co-action of Fe group elemental ions and alkali metal cations, especially a unique Co2+-Na+ combo. A commercial Ni foam sustains ampere-level current densities alternatingly during continuous electrolysis for 93.8 h in an acidic solution, whereas such a Ni foam is completely dissolved in ~2 h for conventional electrolysis conditions. The work not only explores an alternating electrolysis-based system, alkali metal cation-based catalytic systems, and alkali metal cation-based electrodeposition techniques, and beyond, but demonstrates the possibility of prolonged electrolysis by repeated deposition-dissolution processes. With enough adjustable experimental variables, the upper improvement limit in the electrode lifespan would be high.
Collapse
Affiliation(s)
- Jie Liang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Zixiaozi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, China
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tongwei Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, China.
| | - Xuping Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China.
- Laoshan Laboratory, Qingdao, Shandong, China.
| |
Collapse
|
26
|
Iesalnieks M, Vanags M, Alsiņa LL, Eglītis R, Grīnberga L, Sherrell PC, Šutka A. Efficient Decoupled Electrolytic Water Splitting in Acid through Pseudocapacitive TiO 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401261. [PMID: 38742588 PMCID: PMC11267372 DOI: 10.1002/advs.202401261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Water electrolysis remains a key component in the societal transition to green energy. Membrane electrolyzers are the state-of-the-art technology for water electrolysis, relying on 80 °C operation in highly alkaline electrolytes, which is undesirable for many of the myriad end-use cases for electrolytic water splitting. Herein, an alternative water electrolysis process, decoupled electrolysis, is described which performed in mild acidic conditions with excellent efficiencies. Decoupled electrolysis sequentially performs the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER), at the same catalyst. Here, H+ ions generated from the OER are stored through pseudocapacitive (redox) charge storage, and released to drive the HER. Here, decoupled electrolysis is demonstrated using cheap, abundant, TiO2 for the first time. To achieve decoupled acid electrolysis, ultra-small anatase TiO2 particles (4.5 nm diameter) are prepared. These ultra-small TiO2 particles supported on a carbon felt electrode show a highly electrochemical surface area with a capacitance of 375 F g-1. When these electrodes are tested for decoupled water splitting an overall energy efficiency of 52.4% is observed, with excellent stability over 3000 cycles of testing. This technology can provide a viable alternative to membrane electrolyzers-eliminating the need for highly alkaline electrolytes and elevated temperatures.
Collapse
Affiliation(s)
- Mairis Iesalnieks
- Institute of Materials and Surface EngineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityP. Valdena Street 3/7RigaLV‐1048Latvia
| | - Mārtiņš Vanags
- Institute of Materials and Surface EngineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityP. Valdena Street 3/7RigaLV‐1048Latvia
| | - Linda Laima Alsiņa
- Institute of Materials and Surface EngineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityP. Valdena Street 3/7RigaLV‐1048Latvia
| | - Raivis Eglītis
- Institute of Materials and Surface EngineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityP. Valdena Street 3/7RigaLV‐1048Latvia
| | - Līga Grīnberga
- Institute of Solid State PhysicsUniversity of LatviaRigaLV‐1063Latvia
| | - Peter C. Sherrell
- Applied Chemistry & Environmental ScienceSchool of ScienceRMIT University124 La Trobe StMelbourne3000Australia
| | - Andris Šutka
- Institute of Materials and Surface EngineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityP. Valdena Street 3/7RigaLV‐1048Latvia
| |
Collapse
|
27
|
Cai M, Shi H, Zhang Y, Qu J, Wang H, Guo Y, Du K, Li W, Deng B, Wang D, Yin H. Rechargeable Zn-H 2O hydrolysis battery for hydrogen storage and production. Angew Chem Int Ed Engl 2024; 63:e202404025. [PMID: 38659286 DOI: 10.1002/anie.202404025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Reactive metals hydrolysis offers significant advantages for hydrogen storage and production. However, the regeneration of common reactive metals (e.g., Mg, Al, etc.) is energy-intensive and produces unwanted byproducts such as CO2 and Cl2. Herein, we employ Zn as a reactive mediator that can be easily regenerated by electrolysis of ZnO in an alkaline solution with a Faradaic efficiency of >99.9 %. H2 is produced in the same electrolyte by constructing a Zn-H2O hydrolysis battery consisting of a Zn anode and a Raney-Ni cathode to unlock the Zn-H2O reaction. The entire two-step water splitting reaction with a net energy efficiency of 70.4 % at 80 °C and 50 mA cm-2. Additionally, the Zn-H2O system can be charged using renewable energy to produce H2 on demand and runs for 600 cycles only sacrificing 3.76 % energy efficiency. DFT calculations reveal that the desorption of H* on Raney-Ni (-0.30 eV) is closer to zero compared with that on Zn (-0.87 eV), indicating a faster desorption of H* at low overpotential. Further, a 24 Ah electrolyzer is demonstrated to produce H2 with a net energy efficiency of 65.5 %, which holds promise for its real application.
Collapse
Affiliation(s)
- Muya Cai
- School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, 430072, P. R. China
- International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, Wuhan University, Wuhan, 430072, P. R. China
| | - Hao Shi
- School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, 430072, P. R. China
- International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, Wuhan University, Wuhan, 430072, P. R. China
| | - Yu Zhang
- School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, 430072, P. R. China
- International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiakang Qu
- School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, 430072, P. R. China
- International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, Wuhan University, Wuhan, 430072, P. R. China
| | - Hongya Wang
- School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, 430072, P. R. China
- International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanyang Guo
- School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, 430072, P. R. China
- International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, Wuhan University, Wuhan, 430072, P. R. China
| | - Kaifa Du
- School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, 430072, P. R. China
- International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Li
- School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, 430072, P. R. China
- International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, Wuhan University, Wuhan, 430072, P. R. China
| | - Bowen Deng
- School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, 430072, P. R. China
- International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, Wuhan University, Wuhan, 430072, P. R. China
| | - Dihua Wang
- School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, 430072, P. R. China
- International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, Wuhan University, Wuhan, 430072, P. R. China
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Provincial Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan, 430072, P. R. China
| | - Huayi Yin
- School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, 430072, P. R. China
- International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, Wuhan University, Wuhan, 430072, P. R. China
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Provincial Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan, 430072, P. R. China
| |
Collapse
|
28
|
Wang Z, Wang QN, Ma W, Liu T, Zhang W, Zhou P, Li M, Liu X, Chang Q, Zheng H, Chang B, Li C. Hydrogen Sulfide Splitting into Hydrogen and Sulfur through Off-Field Electrocatalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10515-10523. [PMID: 38622088 DOI: 10.1021/acs.est.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Hydrogen sulfide (H2S), a toxic gas abundant in natural gas fields and refineries, is currently being removed mainly via the Claus process. However, the emission of sulfur-containing pollutants is hard to be prevented and the hydrogen element is combined to water. Herein, we report an electron-mediated off-field electrocatalysis approach (OFEC) for complete splitting of H2S into H2 and S under ambient conditions. Fe(III)/Fe(II) and V(II)/V(III) redox mediators are used to fulfill the cycles for H2S oxidation and H2 production, respectively. Fe(III) effectively removes H2S with almost 100% conversion during its oxidation process. The H+ ions are reduced by V(II) on a nonprecious metal catalyst, tungsten carbide. The mediators are regenerated in an electrolyzer at a cell voltage of 1.05 V, close to the theoretical potential difference (1.02 V) between Fe(III)/Fe(II) and V(II)/V(III). In a laboratory bench-scale plant, the energy consumption for the production of H2 from H2S is estimated to be 2.8 kWh Nm-3 H2 using Fe(III)/Fe(II) and V(II)/V(III) mediators and further reduced to about 0.5 kWh Nm-3 H2 when employing well-designed heteropolyacid/quinone mediators. OFEC presents a cost-effective approach for the simultaneous production of H2 and elemental sulfur from H2S, along with the complete removal of H2S from industrial processes. It also provides a practical platform for electrochemical reactions involving solid precipitation and organic synthesis.
Collapse
Affiliation(s)
- Zijin Wang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing-Nan Wang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiguang Ma
- Marine Engineering College, Clean Energy Center for Ship, Dalian Maritime University, Dalian 116026, China
| | - Tiefeng Liu
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei Zhang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Panwang Zhou
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyi Liu
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qingbo Chang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haibing Zheng
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ben Chang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Wang J, Li X, Zhang T, Chai X, Xu M, Feng M, Cai C, Chen Z, Qian X, Zhao Y. Photovoltaic-driven Ni(ii)/Ni(iii) redox mediator for the valorization of PET plastic waste with hydrogen production. Chem Sci 2024; 15:7596-7602. [PMID: 38784748 PMCID: PMC11110143 DOI: 10.1039/d4sc01613k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Electrocatalytic valorization of PET plastic waste provides an appealing route by converting intermittent renewable energy into valuable chemicals and high-energy fuels. Normally, anodic PET hydrolysate oxidation and cathodic water reduction reactions occur simultaneously in the same time and space, which increases the challenges for product separation and operational conditions. Although these problems can be addressed by utilizing membranes or diaphragms, the parasitic cell resistance and high overall cost severely restrict their future application. Herein, we introduce a Ni(ii)/Ni(iii) redox mediator to decouple these reactions into two independent processes: an electrochemical process for water reduction to produce hydrogen fuel assisted by the oxidation of the Ni(OH)2 electrode into the NiOOH counterpart, followed subsequently by a spontaneous chemical process for the valorization of PET hydrolysate to produce formic acid with a high faradaic efficiency of ∼96% by the oxidized NiOOH electrode. This decoupling strategy enables the electrochemical valorization of PET plastic waste in a membrane-free system to produce high-value formic acid and high-purity hydrogen production. This study provides an appealing route to facilitate the transformation process of PET plastic waste into high-value products with high efficiency, low cost and high purity.
Collapse
Affiliation(s)
- Jianying Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
- School of Chemical Science and Engineering, Tongji University 1239 Siping Rd. Shanghai 200092 China
| | - Xin Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Ting Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xinyu Chai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Mingze Xu
- School of Chemical Science and Engineering, Tongji University 1239 Siping Rd. Shanghai 200092 China
| | - Menglei Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Chengcheng Cai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zuofeng Chen
- School of Chemical Science and Engineering, Tongji University 1239 Siping Rd. Shanghai 200092 China
| | - Xufang Qian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
- State Key Lab of Metal Matrix Composite, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
30
|
Feidenhans’l A, Regmi YN, Wei C, Xia D, Kibsgaard J, King LA. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem Rev 2024; 124:5617-5667. [PMID: 38661498 PMCID: PMC11082907 DOI: 10.1021/acs.chemrev.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing). In particular, we discuss the transition from laboratory-scale hydrogen evolution reaction (HER) catalyst measurements to those in single cells, which is a critical aspect crucial for scaling up from laboratory to industrial settings but often overlooked. Furthermore, we review the numerous catalyst design strategies deployed across the precious metal free HER literature. Subsequently, we showcase some of the most commonly investigated families of precious metal free HER catalysts; molybdenum disulfide-based, transition metal phosphides, and transition metal carbides for acidic electrolyte; nickel molybdenum and transition metal phosphides for alkaline. This includes a comprehensive analysis comparing the HER activity between several families of materials highlighting the recent stagnation with regards to enhancing the intrinsic activity of precious metal free hydrogen evolution reaction catalysts. Finally, we summarize future directions and provide recommendations for the field in this area of electrocatalysis.
Collapse
Affiliation(s)
| | - Yagya N. Regmi
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Chao Wei
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Dong Xia
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Jakob Kibsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Laurie A. King
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| |
Collapse
|
31
|
Ze H, Yang ZL, Li ML, Zhang XG, A YL, Zheng QN, Wang YH, Tian JH, Zhang YJ, Li JF. In Situ Probing the Structure Change and Interaction of Interfacial Water and Hydroxyl Intermediates on Ni(OH) 2 Surface over Water Splitting. J Am Chem Soc 2024; 146:12538-12546. [PMID: 38656110 DOI: 10.1021/jacs.4c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
There is growing acknowledgment that the properties of the electrochemical interfaces play an increasingly pivotal role in improving the performance of the hydrogen evolution reaction (HER). Here, we present, for the first time, direct dynamic spectral evidence illustrating the impact of the interaction between interfacial water molecules and adsorbed hydroxyl species (OHad) on the HER properties of Ni(OH)2 using Au/core-Ni(OH)2/shell nanoparticle-enhanced Raman spectroscopy. Notably, our findings highlight that the interaction between OHad and interfacial water molecules promotes the formation of weakly hydrogen-bonded water, fostering an environment conducive to improving the HER performance. Furthermore, the participation of OHad in the reaction is substantiated by the observed deprotonation step of Au@2 nm Ni(OH)2 during the HER process. This phenomenon is corroborated by the phase transition of Ni(OH)2 to NiO, as verified through Raman and X-ray photoelectron spectroscopy. The significant redshift in the OH-stretching frequency of water molecules during the phase transition confirms that surface OHad disrupts the hydrogen-bond network of interfacial water molecules. Through manipulation of the shell thickness of Au@Ni(OH)2, we additionally validate the interaction between OHad and interfacial water molecules. In summary, our insights emphasize the potential of electrochemical interfacial engineering as a potent approach to enhance electrocatalytic performance.
Collapse
Affiliation(s)
- Huajie Ze
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Material, Xiamen University, Xiamen 361005, China
| | - Zhi-Lan Yang
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Material, Xiamen University, Xiamen 361005, China
| | - Mu-Lin Li
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Material, Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan, Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yao-Lin A
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Material, Xiamen University, Xiamen 361005, China
| | - Qing-Na Zheng
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Material, Xiamen University, Xiamen 361005, China
| | - Yao-Hui Wang
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Material, Xiamen University, Xiamen 361005, China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yue-Jiao Zhang
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Material, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Material, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
32
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
33
|
Guo X, Liu X, Zhou J. Two Electrocatalytic Selenoarsenates with Manganese Complex Cations as Counterions. Inorg Chem 2024; 63:6537-6545. [PMID: 38515370 DOI: 10.1021/acs.inorgchem.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The discovery of new organic hybrid chalcogenidometalates is of great importance for structural chemistry and functional material. Here, new types of organic hybrid selenoarsenates [Mn(dien)2]2[AsII4Se6] (1, dien = diethylenetriamine) and [Mn(dien)2]2[Mn(AsIIISe3)2] (2) have been solvothermally synthesized by the reaction of K3AsO3, Se, and MnCl2·xH2O (x = 0, 2) in dien solution at 120 °C. 1 presents a hitherto unknown [AsII4Se6]4- anion with low-valent As2+ ion, which comprises a centrosymmetric six-membered [AsII4Se2] ring in chair-like conformation, while 2 contains a new type of heterometallic selenoarsenate(III) [Mn(AsIIISe3)2]4- constructed by the connection of one tetrahedral [MnSe4] and two rare noncondensed [AsIIISe3]3- anions. 1 and 2 were first combined with nickel nanoparticle (Ni) and the nickel foam (NF) for fabricating the 1/Ni/NF and 2/Ni/NF electrodes, which exhibited excellent oxygen evolution reaction electrocatalytic property with a low overpotential of 248 mV for 1 and 219 mV for 2 at 10 mA cm-2 in alkaline media.
Collapse
Affiliation(s)
- Xin Guo
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Xing Liu
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Jian Zhou
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
34
|
Zhu Z, Zhao X, Xia BY, You B. Efficient Noble-Metal-Free Integration Electrolysis for Solar H 2 and Supercapacitor Electrode Coproduction in Acidic Water. CHEMSUSCHEM 2024; 17:e202301213. [PMID: 38095357 DOI: 10.1002/cssc.202301213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Solar driven proton exchange membrane water electrolysis (PEMWE) is of great promise for stable and high-purity H2 production, but often limited by the serious partial loading issue due to the intermittent nature of solar energy, the kinetically sluggish oxygen evolution reaction (OER) and the usage of noble metal-based anodes (e. g., Pt, Ir, and Ru). Herein, we report an efficient integrated water electrolysis by replacing OER with favorable pyrrole electrooxidation polymerization for H2 generation in acidic solutions, wherein nonprecious Co2P and carbon cloth (CC) served as cathode and anode, respectively. A voltage of only 1.0 V was needed to afford 10 mA cm-2, 590 mV smaller than that in traditional PEMWE based on noble Pt/C@RuO2 benchmark couple. Moreover, simple carbonization of the resulting polypyrrole/CC at anode yielded a supercapacitor electrode with a high specific capacitance of 290 F g-1 at 1 A g-1 and robust stability, which then functioned as energy reservoir to alleviate the partial loading issue for coproduction of solar H2 and supercapacitor electrode.
Collapse
Affiliation(s)
- Zhiwei Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Xin Zhao
- Hubei Engineering Research Center of Radio Frequency Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| |
Collapse
|
35
|
Liu Q, Xu W, Huang H, Shou H, Low J, Dai Y, Gong W, Li Y, Duan D, Zhang W, Jiang Y, Zhang G, Cao D, Wei K, Long R, Chen S, Song L, Xiong Y. Spectroscopic visualization of reversible hydrogen spillover between palladium and metal-organic frameworks toward catalytic semihydrogenation. Nat Commun 2024; 15:2562. [PMID: 38519485 PMCID: PMC10959988 DOI: 10.1038/s41467-024-46923-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Hydrogen spillover widely occurs in a variety of hydrogen-involved chemical and physical processes. Recently, metal-organic frameworks have been extensively explored for their integration with noble metals toward various hydrogen-related applications, however, the hydrogen spillover in metal/MOF composite structures remains largely elusive given the challenges of collecting direct evidence due to system complexity. Here we show an elaborate strategy of modular signal amplification to decouple the behavior of hydrogen spillover in each functional regime, enabling spectroscopic visualization for interfacial dynamic processes. Remarkably, we successfully depict a full picture for dynamic replenishment of surface hydrogen atoms under interfacial hydrogen spillover by quick-scanning extended X-ray absorption fine structure, in situ surface-enhanced Raman spectroscopy and ab initio molecular dynamics calculation. With interfacial hydrogen spillover, Pd/ZIF-8 catalyst shows unique alkyne semihydrogenation activity and selectivity for alkynes molecules. The methodology demonstrated in this study also provides a basis for further exploration of interfacial species migration.
Collapse
Affiliation(s)
- Qiaoxi Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Wenjie Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hao Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongwei Shou
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jingxiang Low
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yitao Dai
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wanbing Gong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Youyou Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Delong Duan
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yawen Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guikai Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Dengfeng Cao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Kecheng Wei
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Shuangming Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li Song
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China.
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
36
|
Toledo-Carrillo EA, García-Rodríguez M, Sánchez-Moren LM, Dutta J. Decoupled supercapacitive electrolyzer for membrane-free water splitting. SCIENCE ADVANCES 2024; 10:eadi3180. [PMID: 38446878 PMCID: PMC10917338 DOI: 10.1126/sciadv.adi3180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
Green hydrogen production via water splitting is vital for decarbonization of hard-to-abate industries. Its integration with renewable energy sources remains to be a challenge, due to the susceptibility to hazardous gas mixture during electrolysis. Here, we report a hybrid membrane-free cell based on earth-abundant materials for decoupled hydrogen production in either acidic or alkaline medium. The design combines the electrocatalytic reactions of an electrolyzer with a capacitive storage mechanism, leading to spatial/temporal separation of hydrogen and oxygen gases. An energy efficiency of 69% lower heating value (48 kWh/kg) at 10 mA/cm2 (5 cm-by-5 cm cell) was achieved using cobalt-iron phosphide bifunctional catalyst with 99% faradaic efficiency at 100 mA/cm2. Stable operation over 20 hours in alkaline medium shows no apparent electrode degradation. Moreover, the cell voltage breakdown reveals that substantial improvements can be achieved by tunning the activity of the bifunctional catalyst and improving the electrodes conductivity. The cell design offers increased flexibility and robustness for hydrogen production.
Collapse
Affiliation(s)
- Esteban A. Toledo-Carrillo
- Functional NanoMaterials Group, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden
| | - Mario García-Rodríguez
- Departamento de Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Lorena M. Sánchez-Moren
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Joydeep Dutta
- Functional NanoMaterials Group, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden
| |
Collapse
|
37
|
Slobodkin I, Davydova E, Sananis M, Breytus A, Rothschild A. Electrochemical and chemical cycle for high-efficiency decoupled water splitting in a near-neutral electrolyte. NATURE MATERIALS 2024; 23:398-405. [PMID: 38195864 PMCID: PMC10917665 DOI: 10.1038/s41563-023-01767-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Green hydrogen produced by water splitting using renewable electricity is essential to achieve net-zero carbon emissions. Present water electrolysis technologies are uncompetitive with low-cost grey hydrogen produced from fossil fuels, limiting their scale-up potential. Disruptive processes that decouple the hydrogen and oxygen evolution reactions and produce them in separate cells or different stages emerge as a prospective route to reduce system cost by enabling operation without expensive membranes and sealing components. Some of these processes divide the hydrogen or oxygen evolution reactions into electrochemical and chemical sub-reactions, enabling them to achieve high efficiency. However, high efficiency has been demonstrated only in a batch process with thermal swings that present operational challenges. This work introduces a breakthrough process that produces hydrogen and oxygen in separate cells and supports continuous operation in a membraneless system. We demonstrate high faradaic and electrolytic efficiency and high rate operation in a near-neutral electrolyte of NaBr in water, whereby bromide is electro-oxidized to bromate concurrent with hydrogen evolution in one cell, and bromate is chemically reduced to bromide in a catalytic reaction that evolves oxygen in another cell. This process may lead the way to high-efficiency membraneless water electrolysis that overcomes the limitations of century-old membrane electrolysis.
Collapse
Affiliation(s)
- Ilya Slobodkin
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Elena Davydova
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Matan Sananis
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Anna Breytus
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Avner Rothschild
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
- The Nancy and Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa, Israel.
- The Stewart and Lynda Resnick Sustainability Center for Catalysis (RSCC), Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
38
|
Liu H, Yin Y, Cao X, Cheng H, Xie Y, Wu C. A Redox Flow Battery-Integrated Rechargeable H 2/O 2 Fuel Cell. J Am Chem Soc 2024; 146:5274-5282. [PMID: 38363827 DOI: 10.1021/jacs.3c11571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The practical application of the H2/O2 proton-exchange membrane fuel cell (PEMFC) is being greatly limited by the use of high-cost Pt as electrode catalysts. Furthermore, the H2/O2 PEMFC is nonrechargeable and thus precludes kinetics energy recovery when equipped on electric vehicles and peak power regulation when combined to power grids. Here, we demonstrate a rechargeable H2/O2 PEMFC through embedding a redox flow battery into a conventional H2/O2 PEMFC. This flow battery employs H2/O2 reactive redox pairs such as NO3-/NO-Br2/Br- and H4SiW12O40/H5SiW12O40 whose redox potentials are as close as possible to those of O2/H2O and H2/H2O, respectively, so that the chemical potential losses during their reactions with O2 at the cathode and H2 at the anode were minimized. More importantly, the electrochemical reversibility allows the H2/O2 reacted redox pairs to be easily regenerated through fuel cell discharging on catalyst-free carbon electrodes at a low overpotential and brings in the fuel cell both chemical and electrical rechargeability, thereby realizing integrated functions of electricity generation- storage as well as efficient operation (achieving an open-circuit potential of 0.96 V and a peak power density of 0.57 W/cm2, which are comparable to a conventional H2/air PEMFC) with catalyst-free carbon electrodes.
Collapse
Affiliation(s)
- Hongfei Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
| | - Yifan Yin
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
| | - Xuemin Cao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
| | - Han Cheng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
39
|
Zhang H, Liang Q, Xie K. How to rationally design homogeneous catalysts for efficient CO 2 electroreduction? iScience 2024; 27:108973. [PMID: 38327791 PMCID: PMC10847752 DOI: 10.1016/j.isci.2024.108973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Electrified converting CO2 into valuable fuels and chemicals using a homogeneous electrochemical CO2 reduction (CO2ER) approach simplifies the operation, providing a potential option for decoupling energy harvesting and renewable chemical production. These merits benefit the scenarios where decentralization and intermittent power are key factors. This perspective aims to provide an overview of recent progress in homogeneous CO2ER. We introduce firstly the fundamentals chemistry of the homogeneous CO2ER, followed by a summary of the crucial factors and the important criteria broadly employed for evaluating the performance. We then highlight the recent advances in the most widely explored transition-metal coordinate complexes for the C1 and multicarbon (C2+) products from homogeneous CO2ER. Finally, we summarize the remaining challenges and opportunities for developing homogeneous electrocatalysts for efficient CO2ER. This perspective is expected to favor the rational design of efficient homogeneous electrocatalysts for selective CO2ER toward renewable fuels and feedstocks.
Collapse
Affiliation(s)
- Hui Zhang
- International Center for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Qinghua Liang
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P.R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P.R. China
| | - Ke Xie
- Department of Chemistry, Northwestern Universiy, Evanston, IL 60208, USA
| |
Collapse
|
40
|
Moklis MH, Shuo C, Boonyubol S, Cross JS. Electrochemical Valorization of Glycerol via Electrocatalytic Reduction into Biofuels: A Review. CHEMSUSCHEM 2024; 17:e202300990. [PMID: 37752085 DOI: 10.1002/cssc.202300990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical conversion of underutilized biomass-based glycerol into high-value-added products provides a green approach for biomass and waste valorization. Plus, this approach offers an alternative to biofuel manufacturing procedure, under mild operating conditions, compared to the traditional thermochemical routes. Nevertheless, glycerol has been widely valorized via electrooxidation, with lower-value products generated at the cathode, ignoring the electroreduction. Here, a review of the efficient glycerol reduction into various products via the electrocatalytic reduction (ECR) process was presented. This review has been built upon the background of glycerol underutilization and theoretical knowledge about the state-of-the-art ECR. The experimental understanding of the processing parameter influences towards electrochemical efficiency, catalytic activity, and product selectivity are comprehensively reviewed, based on the recent glycerol ECR studies. We conclude by outlining present issues and highlighting potential future research avenues for enhanced ECR application.
Collapse
Affiliation(s)
- Muhammad Harussani Moklis
- Energy Science and Engineering, Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, 2-12-1 I4-19, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Cheng Shuo
- Energy Science and Engineering, Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, 2-12-1 I4-19, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Sasipa Boonyubol
- Energy Science and Engineering, Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, 2-12-1 I4-19, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Jeffrey S Cross
- Energy Science and Engineering, Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, 2-12-1 I4-19, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
41
|
Ahmad W, Ahmad N, Wang K, Aftab S, Hou Y, Wan Z, Yan B, Pan Z, Gao H, Peung C, Junke Y, Liang C, Lu Z, Yan W, Ling M. Electron-Sponge Nature of Polyoxometalates for Next-Generation Electrocatalytic Water Splitting and Nonvolatile Neuromorphic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304120. [PMID: 38030565 PMCID: PMC10837383 DOI: 10.1002/advs.202304120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/23/2023] [Indexed: 12/01/2023]
Abstract
Designing next-generation molecular devices typically necessitates plentiful oxygen-bearing sites to facilitate multiple-electron transfers. However, the theoretical limits of existing materials for energy conversion and information storage devices make it inevitable to hunt for new competitors. Polyoxometalates (POMs), a unique class of metal-oxide clusters, have been investigated exponentially due to their structural diversity and tunable redox properties. POMs behave as electron-sponges owing to their intrinsic ability of reversible uptake-release of multiple electrons. In this review, numerous POM-frameworks together with desired features of a contender material and inherited properties of POMs are systematically discussed to demonstrate how and why the electron-sponge-like nature of POMs is beneficial to design next-generation water oxidation/reduction electrocatalysts, and neuromorphic nonvolatile resistance-switching random-access memory devices. The aim is to converge the attention of scientists who are working separately on electrocatalysts and memory devices, on a point that, although the application types are different, they all hunt for a material that could exhibit electron-sponge-like feature to realize boosted performances and thus, encouraging the scientists of two completely different fields to explore POMs as imperious contenders to design next-generation nanodevices. Finally, challenges and promising prospects in this research field are also highlighted.
Collapse
Affiliation(s)
- Waqar Ahmad
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Nisar Ahmad
- School of MicroelectronicsUniversity of Science and Technology of ChinaHefei230026China
| | - Kun Wang
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Sumaira Aftab
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Yunpeng Hou
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengwei Wan
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Bei‐Bei Yan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Zhao Pan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Huai‐Ling Gao
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Chen Peung
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
| | - Yang Junke
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
| | - Chengdu Liang
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Zhihui Lu
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Wenjun Yan
- School of AutomationHangzhou Dianzi UniversityHangzhou310018China
| | - Min Ling
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
42
|
Liu P, Zhang X, Fei J, Shi Y, Zhu J, Zhang D, Zhao L, Wang L, Lai J. Frank Partial Dislocations in Coplanar Ir/C Ultrathin Nanosheets Boost Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310591. [PMID: 38126915 DOI: 10.1002/adma.202310591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Developing highly active and stable acidic hydrogen evolution catalysts is of great significance and challenge for the long-term operation of commercial proton exchange membrane (PEM) electrolyzers. In this work, coplanar ultrathin nanosheets composed of rich-Frank partial dislocations (FPDs) are first synthesized. Ir nanoparticles and carbon (Dr-Ir/C NSs) use a nonequilibrium high-temperature thermal shock method (>1200 °C) and KBr template-assisted techniques. Dr-Ir/C NSs exhibit excellent hydrogen evolution reaction (HER) performance with a remarkably high mass activity of 6.64 A mg-1 at 50 mV, which is among the best Ir-based catalysts.In addition, Dr-Ir/C NSs are able to operate stably at 1.0 A cm-2 for 200 h as a cathode in a PEM electrolyser, and the original coplanar ultrathin nanosheets structure are maintained after the test, demonstrating excellent stability against stacking and agglomeration. Geometrical phase analysis and theoretical calculations show that the FPDs produce a 4% compressive strain in the Dr-Ir/C NSs, and the compressive strain weaken the adsorption of H* by Ir, thus increasing the intrinsic activity of the catalyst.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xin Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jiawei Fei
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yue Shi
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jiawei Zhu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dan Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Liang Zhao
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
43
|
Li J, Ma Y, Zhang C, Zhang C, Ma H, Guo Z, Liu N, Xu M, Ma H, Qiu J. Green electrosynthesis of 3,3'-diamino-4,4'-azofurazan energetic materials coupled with energy-efficient hydrogen production over Pt-based catalysts. Nat Commun 2023; 14:8146. [PMID: 38065975 PMCID: PMC10709341 DOI: 10.1038/s41467-023-43698-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/16/2023] [Indexed: 03/23/2025] Open
Abstract
The broad employment of clean hydrogen through water electrolysis is restricted by large voltage requirement and energy consumption because of the sluggish anodic oxygen evolution reaction. Here we demonstrate a novel alternative oxidation reaction of green electrosynthesis of valuable 3,3'-diamino-4,4'-azofurazan energetic materials and coupled with hydrogen production. Such a strategy could greatly decrease the hazard from the traditional synthetic condition of 3,3'-diamino-4,4'-azofurazan and achieve low-cell-voltage hydrogen production on WS2/Pt single-atom/nanoparticle catalyst. The assembled two-electrode electrolyzer could reach 10 and 100 mA cm-2 with ultralow cell voltages of 1.26 and 1.55 V and electricity consumption of only 3.01 and 3.70 kWh per m3 of H2 in contrast of the conventional water electrolysis (~5 kWh per m3). Density functional theory calculations combine with experimental design decipher the synergistic effect in WS2/Pt for promoting Volmer-Tafel kinetic rate during alkaline hydrogen evolution reaction, while the oxidative-coupling of starting materials driven by free radical could be the underlying mechanism during the synthesis of 3,3'-diamino-4,4'-azofurazan. This work provides a promising avenue for the concurrent electrosynthesis of energetic materials and low-energy-consumption hydrogen production.
Collapse
Affiliation(s)
- Jiachen Li
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Yuqiang Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Cong Zhang
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Chi Zhang
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Huijun Ma
- National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, 710127, China
| | - Zhaoqi Guo
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Ning Liu
- Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
44
|
Priso GM, Haouas M, Leclerc N, Falaise C, Cadot E. Clustering Six Electrons within "Dawson-Like" Polyoxometalate: An Open Route toward Its Post-functionalization. Angew Chem Int Ed Engl 2023; 62:e202312457. [PMID: 37831589 DOI: 10.1002/anie.202312457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Super-reduction of polyoxometalates (POMs) in solution is of fundamental interest for designing innovative energy storage systems. In this article, we show that the "Dawson-like" POM can undergo a disproportionation process during its massive electron uptake, leading to species containing three metal-metal bonds as evidenced by X-ray diffraction, multi-nuclear magnetic resonance spectroscopy (1 H and 183 W NMR), extended X-ray absorption fine structure (EXAFS), UV/Vis, and voltammetry techniques. This result indicates that electron storing within metal-metal bonds is not a unique property of Keggin-type POM as postulated since the 70s. Besides, we demonstrate that the presence of an electron-rich triad in the "Dawson-like" POM allows its post-functionalization with additional tungstate ions, generating a chiral molecule that is also the largest WIV -containing POMs known to date.
Collapse
Affiliation(s)
- Gabrielle Mpacko Priso
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| |
Collapse
|
45
|
Liu Z, Chang P, Xi M, Ding J, Wang X, Wang J, Zhang W, Huang Y. Synthesis of Ni 3 B/Ni via Vacuum-Induced for Ultrahigh Stable and Efficient Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303855. [PMID: 37643376 DOI: 10.1002/smll.202303855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/01/2023] [Indexed: 08/31/2023]
Abstract
Designing efficient catalysts to promote the electrochemical oxidation of anodes is the core of the development of electrochemical synthesis technologies, such as HER and CO2 RR. Here, a novel vacuum induction strategy is used to synthesize nickel boride/nickel (Ni3 B/Ni) heterostructure catalyst for electrochemical oxidation of methanol into formic acid. The catalyst has extremely high reactivity (only 146.9 mV overpotential at 10 mA cm-2 , the maximum current density reaches 555.70 mA mg-1 and 443.87 mA cm-2 ), ultra-high selectivity (Faraday efficiency of methanol conversion to formic acid is close to 100%), and ultra-long life (over 50 h at 100 mA cm-2 ). In-suit electrochemical impedance spectroscopy proved that MeOH is oxidized first and inhibits the phase transition of the electrocatalyst to the high-valent electrooxidation products, which not only enables the high selectivity of MeOH oxidation but also ensures high stability of the catalyst. The mechanism studies by density functional theory calculations show that the potential determining step, the formation of *CH2 O, occurs most favorably in the Ni3 B/Ni heterostructure. These results provide references for the development of MeOH oxidation catalysts with high activity, high stability, high selectivity, and low cost.
Collapse
Affiliation(s)
- Zhenjie Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Address Urumqi, Xinjiang, 830017, P. R. China
| | - Pingping Chang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Address Urumqi, Xinjiang, 830017, P. R. China
| | - Murong Xi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Address Urumqi, Xinjiang, 830017, P. R. China
| | - Juan Ding
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Address Urumqi, Xinjiang, 830017, P. R. China
| | - Xingchao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Address Urumqi, Xinjiang, 830017, P. R. China
| | - Jiulin Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Address Urumqi, Xinjiang, 830017, P. R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF), and, Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yudai Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Address Urumqi, Xinjiang, 830017, P. R. China
| |
Collapse
|
46
|
Fan X, Li B, Zhu C, Yan F, Chen Y. Regulation of the electronic structure of a RuNi/MoC electrocatalyst for high-efficiency hydrogen evolution in alkaline seawater. NANOSCALE 2023; 15:16403-16412. [PMID: 37791522 DOI: 10.1039/d3nr03694d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Alkaline seawater electrolysis offers a way to generate hydrogen without carbon emissions. However, developing highly efficient catalysts that can sustain high performance and stability for the hydrogen evolution reaction (HER) in alkaline seawater is a formidable challenge. Here, a nanowire (NW) of a RuNi/MoC heterojunction embedded in N-doped carbon (RuNi/MoC@NC) was developed as a potent HER catalyst. The catalyst required only 21 mV at 10 mA cm-2 for HER in alkaline seawater, which surpasses 20% Pt/C. Moreover, using nickel foam (NF) as a catalyst carrier, an electrolyzer composed of RuNi/MoC@NC and nickel-iron layered double hydroxide (NiFe LDH) needed only 1.81 V at 500 mA cm-2 for full water splitting and showed long-term stability (over 500 h). Theoretical calculation revealed that the Ru and Ni sites in the catalyst had the optimal adsorption energy for hydrogen and water, respectively, which synergistically lowered the energy barrier for HER. This work offered an efficient method to design a highly effective HER catalyst for alkaline seawater splitting.
Collapse
Affiliation(s)
- Xiaocheng Fan
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
| | - Bei Li
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Chunling Zhu
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
| | - Feng Yan
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Yujin Chen
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
47
|
Guo X, Cao SM, Liu X, Huang C, Zhou J. Facile solvothermal preparation of an organic hybrid dysprosium selenidoantimonate for an efficient oxygen evolution reaction. Dalton Trans 2023; 52:14297-14302. [PMID: 37791600 DOI: 10.1039/d3dt02492j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
To overcome the issue of the sluggish kinetics in the oxygen evolution reaction (OER), the development of an efficient OER electrocatalyst with high intrinsic activity is very desirable for green hydrogen energy utilization from electrochemical water splitting. Herein, a facile and feasible solvothermal reaction of Sb, Se, DyCl3 and triethylenetetramine (teta) at 170 °C for 7 days achieved a new organic hybrid dysprosium selenidoantimonate [Dy(teta)2][SbSe4] (SbSe-1), which comprises discrete [SbSe4]3- and [Dy(teta)2]3+ ions. SbSe-1 was utilized in combination with acetylene black (AB), Ni nanoparticles and the porous Ni foam (NF) support to fabricate a Ni/SbSe-1@AB/NF electrode as an efficient anodic electrocatalyst, showing excellent OER electrocatalytic performance with a low overpotential of 269 mV at 10 mA cm-2. Although some antimony chalcogenides are used as electrocatalysts for the water splitting, organic hybrid lanthanide chalcogenidoantimonates applied as OER electrocatalysts have not emerged. Therefore, SbSe-1 offers the first example of an organic hybrid lanthanide chalcogenido-antimonate as an OER electrocatalyst.
Collapse
Affiliation(s)
- Xin Guo
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China.
| | - Shu-Mei Cao
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China.
| | - Xing Liu
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China.
| | - Chunmei Huang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China.
| | - Jian Zhou
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China.
| |
Collapse
|
48
|
Gidi L, Amalraj J, Tenreiro C, Ramírez G. Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF). RSC Adv 2023; 13:28307-28336. [PMID: 37753399 PMCID: PMC10519153 DOI: 10.1039/d3ra05623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The production of clean electrical energy and the correct use of waste materials are two topics that currently concern humanity. In order to face both problems, extensive work has been done on the electrolytic production of green H2 coupled with the electrooxidative upgrading of biomass platform molecules. 5-Hydroxymethylfurfural (HMF) is obtained from forest waste biomass and can be selectively oxidized to 2,5-furandicarboxylic acid (FDCA) by electrochemical pathways. FDCA is an attractive precursor to polyethylene furanoate (PEF), with the potential to replace petroleum-based polyethylene terephthalate (PET). An integrated electrochemical system can simultaneously produce H2 and FDCA at a lower energy cost than that required for electrolytic water splitting. Here, the benefits of the electrochemical production of H2 and FDCA over other production methods are presented, as well as the innovative applications of each reaction product and the advantages of carrying out both reactions in a coupled system. The recently reported progress is disclosed, through an exploration of electrocatalyst materials used in simultaneous production, including the use of nickel foams (NF) as modification substrates, noble and non-noble metals, metal non-oxides, metal oxides, spinel oxides and the introduction of oxygen vacancies. Based on the latest trends, the next challenges associated with its large-scale production are proposed for its implementation in the industrial world. This work can offer a guideline for the detailed understanding of the electrooxidation of HMF towards FDCA with the production of H2, as well as the design of advanced electrocatalysts for the sustainable use of renewable resources.
Collapse
Affiliation(s)
- Leyla Gidi
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - John Amalraj
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - Claudio Tenreiro
- Industrial Technologies Department, Faculty of Engineering, Universidad de Talca Curicó 3340000 Chile
| | - Galo Ramírez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Santiago 7820436 Chile
- Millenium Institute on Green Ammonia as Energy Vector (MIGA) Av. Vicuña Mackenna 4860, Macul Santiago 7820436 Chile
| |
Collapse
|
49
|
Long Y, Yang C, Wu Y, Deng B, Li Z, Hussain N, Wang K, Wang R, He X, Du P, Guo Z, Lang J, Huang K, Wu H. Cable-Car Electrocatalysis to Drive Fully Decoupled Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301872. [PMID: 37395639 PMCID: PMC10502859 DOI: 10.1002/advs.202301872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Indexed: 07/04/2023]
Abstract
The increasing demand for clean energy conversion and storage has increased interest in hydrogen production via electrolytic water splitting. However, the simultaneous production of hydrogen and oxygen in this process poses a challenge in extracting pure hydrogen without using ionic conducting membranes. Researchers have developed various innovative designs to overcome this issue, but continuous water splitting in separated tanks remains a desirable approach. This study presents a novel, continuous roll-to-roll process that enables fully decoupled hydrogen evaluation reaction (HER) and oxygen evolution reaction (OER) in two separate electrolyte tanks. The system utilizes specially designed "cable-car" electrodes (CCE) that cycle between the HER and OER tanks, resulting in continuous hydrogen production with a purity of over 99.9% and Coulombic efficiency of 98% for prolonged periods. This membrane-free water splitting system offers promising prospects for scaled-up industrial-scale green hydrogen production, as it reduces the cost and complexity of the system, and allows for the use of renewable energy sources to power the electrolysis process, thus reducing the carbon footprint of hydrogen production.
Collapse
Affiliation(s)
- Yuanzheng Long
- State Key Lab of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Cheng Yang
- State Key Lab of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
- Center of Advanced Mechanics and Materials Applied Mechanics Laboratory Department of Engineering MechanicsTsinghua UniversityBeijing100084China
| | - Yulong Wu
- State Key Lab of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Bohan Deng
- State Key Lab of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Ziwei Li
- State Key Lab of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Naveed Hussain
- State Key Lab of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Kuangyu Wang
- State Key Lab of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Ruyue Wang
- State Key Laboratory of Information Photonics and Optical Communications & School of ScienceBeijing University of Posts and TelecommunicationsBeijing100876China
| | - Xian He
- State Key Laboratory of Information Photonics and Optical Communications & School of ScienceBeijing University of Posts and TelecommunicationsBeijing100876China
| | - Peng Du
- State Key Laboratory of Information Photonics and Optical Communications & School of ScienceBeijing University of Posts and TelecommunicationsBeijing100876China
| | - Zeliang Guo
- State Key Lab of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Jialiang Lang
- State Key Lab of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Kai Huang
- State Key Laboratory of Information Photonics and Optical Communications & School of ScienceBeijing University of Posts and TelecommunicationsBeijing100876China
| | - Hui Wu
- State Key Lab of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
50
|
Liu H, Yu J, Chen Y, Lee J, Huang W, Li W. Cu-Based Bimetallic Catalysts for Electrocatalytic Oxidative Dehydrogenation of Furfural with Practical Rates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37477-37485. [PMID: 37495558 DOI: 10.1021/acsami.3c06783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Electrocatalytic oxidative dehydrogenation (EOD) of aldehydes enables ultra-low voltage, bipolar H2 production with co-generation of carboxylic acid. Herein, we reported a simple galvanic replacement method to prepare CuM (M = Pt, Pd, Au, and Ag) bimetallic catalysts to improve the EOD of furfural to reach industrially relevant current densities. The redox potential difference between Cu/Cu2+ and a noble metal M/My+ can incorporate the noble metal on the Cu surface and enlarge its surface area. Particularly, dispersing Pt in Cu (CuPt) achieved a record-high current density of 498 mA cm-2 for bipolar H2 production at a low cell voltage of 0.6 V and a Faradaic efficiency of >80% to H2. Future research is needed to deeply understand the synergistic effects of Cu-M toward EOD of furfural, and improve the Cu-M catalyst stability, thus offering great opportunities for future distributed manufacturing of green hydrogen and carbon chemicals with practical rates and low-carbon footprints.
Collapse
Affiliation(s)
- Hengzhou Liu
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Jiaqi Yu
- Department of Chemistry, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Yifu Chen
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Jungkuk Lee
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Wenzhen Li
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| |
Collapse
|