1
|
Nakamura K. Immunotoxicological disruption of pregnancy as a new research area in immunotoxicology. J Immunotoxicol 2025; 22:2475772. [PMID: 40119670 DOI: 10.1080/1547691x.2025.2475772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025] Open
Abstract
Immune mechanisms associated with normal pregnancy have only been being substantively investigated since the early 1990s. In parallel with the progress in that area of research, in the past few years it has become increasingly clear that several xenobiotics - including a variety of environmental chemicals, pharmaceuticals, and metals are considered to be both generally immunotoxic and specifically able to affect pregnancy. Among these, there is intense interest regarding potential effects from synthetic cannabinoids, immune checkpoint inhibitors, nanometals, and microplastics, with immunotoxic events that impact on pregnancy being shown for these agents. For instance, phytocannabinoids have been shown to interfere with reproduction in mice through effects on the endocannabinoid system. Because of effects of immune enhancement, as a requirement for regulatory submission, co-inhibitory immune checkpoint molecule inhibitors were also evaluated for effects on pregnancy. Similarly, because of increasing use and concerns about incidental environmental exposures, nanometals, and micro-plastics have also been examined for effects. Several studies in humans or mice showed that exposures to each during gestation increased the risk/rate of fetal loss, in part, by disruption of the placenta-associated immune system. Furthermore, signaling by endogenous danger molecules and/or impairment of physiological intercellular mediators may have contributed to the pregnancy loss. As there are clearly a variety of immunotoxic effects that can impact on a pregnancy, this review attempts to briefly introduce immune mechanisms associated with pregnancy as well as reasons for its loss, and proposes that 'immunotoxicological disruption of pregnancy' be accepted as a new research area in immunotoxicology.
Collapse
Affiliation(s)
- Kazuichi Nakamura
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Friuli M, Eramo B, Sepe C, Kiani M, Casolini P, Zuena AR. The endocannabinoid and paracannabinoid systems in natural reward processes: possible pharmacological targets? Physiol Behav 2025; 296:114929. [PMID: 40274041 DOI: 10.1016/j.physbeh.2025.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Natural rewards such as food, mating, and social interaction are essential for survival and species preservation, and their regulation involves a complex interplay of motivational, cognitive, and emotional processes. Over the past two decades, increasing attention has been directed toward the endocannabinoid system and its paracannabinoid counterpart as key modulators of these behaviors. This review aims to provide an integrated overview of the roles played by the endocannabinoid and paracannabinoid systems in regulating natural reward-driven behaviors, focusing on feeding, reproductive behavior, and social interaction. We highlight how the endocannabinoid system - mainly through CB1 receptor signaling - modulates central and peripheral circuits involved in energy homeostasis, reward processing, and emotional regulation. In parallel, we explore the role of paracannabinoids, such as oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and stearoylethanolamide (SEA), which act primarily via non-cannabinoid receptors and contribute to the regulation of appetite, sexual motivation, and social behavior. Special attention is given to the relevance of these systems in the pathophysiology of obesity, eating disorders, sexual dysfunctions, and social impairments, as well as their potential as pharmacological targets. Overall, the evidence discussed supports a broader conceptualization of endocannabinoid and paracannabinoid signaling as pivotal regulators of natural rewards and opens new avenues for the development of targeted interventions for motivational and reward-related disorders.
Collapse
Affiliation(s)
- Marzia Friuli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.
| | - Barbara Eramo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Christian Sepe
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Mitra Kiani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA
| | - Paola Casolini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Belem-Filho IJA, Godoy ACV, Busnardo C, Frias AT, Zangrossi H, Del Bianco Borges B, Herval ACF, Correa FMA, Crestani CC, Alves FHF. Role of endocannabinoid neurotransmission in the insular cortex on cardiovascular, autonomic and behavioral responses evoked by acute restraint stress in rats. Neuropharmacology 2025; 271:110404. [PMID: 40049238 DOI: 10.1016/j.neuropharm.2025.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
This study aimed to investigate the role of endocannabinoid mechanisms present within the insular cortex (IC) on cardiovascular, autonomic and anxiogenic-like responses evoked by an acute session of restraint in rats. For this, bilateral guide cannulas directed to the IC were implanted in male Wistar rats for intrabrain microinjection of the selective CB1 receptor antagonist AM251, the selective TRPV1 receptor antagonist capsazepine, the fatty acid amide hydrolase (FAAH) inhibitor URB597 or the monoacylglycerol lipase (MAGL) inhibitor JZL184. The effects of pharmacological treatments were evaluated on restraint-evoked increases in blood pressure and heart rate, sympathetically-mediated cutaneous vasoconstriction and in delayed anxiogenic-like effect assessed 24h after stress exposure in the elevated plus maze (EPM) and open field (OF). We observed that acute restraint stress decreased the exploration of both EPM open arms and OF center region in animals treated with vehicle into the IC, thus indicating an anxiogenic-like effect. Inhibition of MAGL within the IC evoked by local treatment with JZL184 avoided the restraint-evoked anxiogenic effect. IC treatment with JZL184 also attenuated the tachycardia during restraint. The other pharmacological treatments did not modify the cardiovascular, autonomic and behavioral responses evoked by restraint. Taken together, these findings suggest that endocannabinoid neurotransmission in the IC, potentially acting through the endocannabinoid 2-arachidonoylglycerol, plays an inhibitory role in both tachycardia and anxiogenic-like effect evoked by stressful events.
Collapse
Affiliation(s)
- Ivaldo J A Belem-Filho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana C V Godoy
- Department of Health Sciences, Faculty of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Cristiane Busnardo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Alana T Frias
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Helio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruno Del Bianco Borges
- Department of Health Sciences, Faculty of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Ana C F Herval
- Institute of Science, Technology and Innovation- Federal University of Lavras, Antônio Carlos Pinheiro de Alcântara, 855 - Jardim Califórnia Garden, São Sebastião Do Paraíso, Minas Gerais, Brazil
| | - Fernando M A Correa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos C Crestani
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Fernando H F Alves
- Institute of Science, Technology and Innovation- Federal University of Lavras, Antônio Carlos Pinheiro de Alcântara, 855 - Jardim Califórnia Garden, São Sebastião Do Paraíso, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Doumar H, Mostafi HE, Elhessni A, Ebn Touhami M, Mesfioui A. Exploring the diversity of cannabis cannabinoid and non-cannabinoid compounds and their roles in Alzheimer's disease: A review. IBRO Neurosci Rep 2025; 18:96-119. [PMID: 39866750 PMCID: PMC11763173 DOI: 10.1016/j.ibneur.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Cannabis sativa is recognized for its chemical diversity and therapeutic potential, particularly in addressing neurodegenerative diseases such as Alzheimer's disease (AD). Given the complexity of AD, where single-target therapies often prove inadequate, a multi-target approach utilizing cannabis-derived compounds may offer promising alternatives. This review first highlights the chemical diversity of cannabis by categorizing its compounds into cannabinoids and non-cannabinoids. It then examines studies investigating the effects of these compounds on AD-related pathological features. By synthesizing existing knowledge, identifying research gaps, and facilitating comparative analysis, this review aims to advance future research and understanding. It underscores cannabis's potential as a multi-target therapeutic strategy for AD, contributing valuable insights to ongoing scientific discussions.
Collapse
Affiliation(s)
- Hanane Doumar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Hicham El Mostafi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker Elhessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohamed Ebn Touhami
- Laboratory of Materials Engineering and Environment: Modeling and Application, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
5
|
Shen SY, Wu C, Yang ZQ, Wang KX, Shao ZH, Yan W. Advances in cannabinoid receptors pharmacology: from receptor structural insights to ligand discovery. Acta Pharmacol Sin 2025; 46:1495-1510. [PMID: 39910211 PMCID: PMC12098862 DOI: 10.1038/s41401-024-01472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025]
Abstract
The medicinal and recreational uses of Cannabis sativa have been recognized for thousands of years. Today, cannabis-derived medicines are used to treat a variety of conditions, including chronic pain, epilepsy, multiple sclerosis, and chemotherapy-induced nausea. However, cannabis use disorder (CUD) has become the third most prevalent substance use disorder globally. Cannabinoid receptors are the primary targets that mediate the effects of cannabis and its analogs. Despite their importance, the mechanisms of modulation and the full therapeutic potential of cannabinoid receptors remain unclear, hindering the development of the next generation of cannabinoid-based drugs. This review summarizes the discovery and medicinal potential of phytocannabinoids and explores the distribution, signaling pathways, and functional roles of cannabinoid receptors. It also discusses classical cannabinoid drugs, as well as agonists, antagonists, and inverse agonists, which serve as key therapeutic agents. Recent advancements in the development of allosteric drugs are highlighted, with a focus on positive and negative allosteric modulators (PAMs and NAMs) that target CB1 and CB2 receptors. The identification of multiple allosteric sites on the CB1 receptor and the structural basis for allosteric modulation are emphasized, along with the structure-based discovery of ago-BAMs for CB1. This review concludes by examining the future potential of allosteric modulators in cannabinoid drug development, noting that ongoing progress in cannabinoid-derived drugs continues to open new avenues for therapeutic use and paves the way for future research into their full medicinal potential.
Collapse
Affiliation(s)
- Si-Yuan Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Qian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke-Xin Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen-Hua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, Frontier Medical Center, Chengdu, 610212, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Zheng X, Ehrlich B, Finlay D, Glass M. No Evidence for Endocannabinoid-Induced G Protein Subtype Selectivity at Human and Rodent Cannabinoid CB 1 Receptors. Cannabis Cannabinoid Res 2025; 10:425-435. [PMID: 39373143 DOI: 10.1089/can.2024.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Introduction: The endocannabinoid system (ECS) is a widespread neurotransmitter system. A key characteristic of the ECS is that there are multiple endogenous ligands (endocannabinoids). Of these, the most extensively studied are arachidonoyl ethanolamide (AEA) and 2-arachidonoyl-glycerol (2-AG), both act as agonists at the cannabinoid CB1 receptor. In humans, three CB1 variants have been identified: hCB1, considered the most abundant G protein-coupled receptor in the brain, alongside the less abundant and studied variants, hCB1a and hCB1b. CB1 exhibits a preference for coupling with inhibitory Gi/o proteins, although its interactions with specific members of the Gi/o family remain poorly characterized. This study aimed to compare the AEA and 2-AG-induced activation of various G protein subtypes at CB1. Furthermore, we compared the response of human CB1 (hCB1, hCB1a, hCB1b) and explored species differences by examining rodent receptors (mCB1, rCB1). Materials and Methods: Activation of individual G protein subtypes in HEK293 cells transiently expressing CB1 was measured with G protein dissociation assay utilizing TRUPATH biosensors. The performance of the TRUPATH biosensors was evaluated using Z-factor analysis. Pathway potencies and efficacies were analyzed using the operational analysis of bias to determine G protein subtype selectivity for AEA and 2-AG. Results: Initial screening of TRUPATH biosensors performance revealed variable sensitivities within our system. Based on the biosensor performance, the G protein subtypes pursued for further characterization were Gi1, Gi3, GoA, GoB, GZ, G12, and G13. Across all pathways, AEA demonstrated partial agonism, whereas 2-AG exhibited full or high-efficacy agonism. Notably, we provide direct evidence that the hCB1 receptor couples to G12 and G13 proteins. Our findings do not indicate any evidence of G protein subtype selectivity. Similar observations were made across the human receptor variants (hCB1, hCB1a, hCB1b), as well as at mCB1 and rCB1. Discussion: There was no evidence suggesting G protein subtype selectivity for AEA and 2-AG at CB1, and this finding remained consistent across human receptor variants and different species.
Collapse
Affiliation(s)
- Xiaoxi Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Beth Ehrlich
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Mayo LM, Gauffin E, Petrie GN, Tansey R, Mazurka R, Haggarty CJ, Jones MR, Engelbrektsson H, Aminoff V, Hühne-Landgraf A, Schmidt ME, Pemberton DJ, Fredlund C, Östman L, Karlsson H, Löfberg A, Pietrzak M, Andersson G, Capusan AJ, Hill MN, Heilig M. The efficacy of elevating anandamide via inhibition of fatty acid amide hydrolase (FAAH) combined with internet-delivered cognitive behavioral therapy in the treatment of post-traumatic stress disorder: a randomized, placebo-controlled clinical trial. Neuropsychopharmacology 2025:10.1038/s41386-025-02128-w. [PMID: 40382500 DOI: 10.1038/s41386-025-02128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Abstract
Post-traumatic stress disorder (PTSD) is a severe mental health disorder with limited treatment options. Gold standard treatment includes cognitive behavioral therapies (CBT) that incorporate exposure to traumatic memories to facilitate extinction. CBT can be effective in PTSD, but effects are incomplete and symptoms are prone to spontaneous return. Pharmacologically facilitating fear extinction could potentiate the effects of exposure-based therapy. Here, we explored whether targeting the endocannabinoid (eCB) system, a neuromodulatory system critically involved in fear extinction, would promote the efficacy of exposure-based CBT. Specifically, we tested the effects of elevating the eCB ligand anandamide (AEA) via inhibition of its main degradative enzyme, fatty acid amide hydrolase (FAAH). In this double-blind, placebo-controlled study, patients with PTSD (N = 100; 85 women) were randomized to the FAAH inhibitor (FAAHi) JNJ-42165279 (25 mg b.i.d.) or placebo for 12 weeks. In weeks 5-12, all participants completed an internet-delivered CBT that included exposure-based modules. The primary outcome was clinician-assessed PTSD symptom severity (CAPS-5). Secondary outcomes included self-reported symptoms of PTSD, depression, anxiety, and sleep quality. Blood samples were taken to measure levels of drug and eCBs. Overall, PTSD symptoms improved over time. While FAAHi increased AEA levels, there was no effect of FAAHi on PTSD symptoms or any secondary measure. FAAHi combined with internet-delivered CBT did not improve PTSD symptoms to a greater extent than internet-delivered CBT alone. Thus, FAAH inhibition does not appear to be a suitable adjunct treatment for enhancing CBT in PTSD. This study was registered as Eudra-CT 2020-001965-36.
Collapse
Affiliation(s)
- Leah M Mayo
- Department of Psychiatry, Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Emelie Gauffin
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| | - Gavin N Petrie
- Department of Psychiatry, Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ryann Tansey
- Department of Psychiatry, Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Raegan Mazurka
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Connor J Haggarty
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Madeleine R Jones
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hilda Engelbrektsson
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Victoria Aminoff
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| | - Anisja Hühne-Landgraf
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | | | | | - Cecilia Fredlund
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
- Barnafrid, Swedish National Center on Violence Against Children, Linköping University, Linköping, Sweden
| | - Lars Östman
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| | - Hanna Karlsson
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| | - Andreas Löfberg
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| | - Michal Pietrzak
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| | - Gerhard Andersson
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden
| | - Andrea Johansson Capusan
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| | - Matthew N Hill
- Department of Psychiatry, Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden.
| |
Collapse
|
8
|
Franchini L, Porter JJ, Lueck JD, Orlandi C. G zESTY as an optimized cell-based assay for initial steps in GPCR deorphanization. Nat Commun 2025; 16:4521. [PMID: 40374633 PMCID: PMC12081699 DOI: 10.1038/s41467-025-59850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 05/06/2025] [Indexed: 05/17/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are key pharmacological targets, yet many remain underutilized due to unknown activation mechanisms and ligands. Orphan GPCRs, lacking identified natural ligands, are a high priority for research, as identifying their ligands will aid in understanding their functions and potential as drug targets. Most GPCRs, including orphans, couple to Gi/o/z family members, however current assays to detect their activation are limited, hindering ligand identification efforts. We introduce GzESTY, a sensitive, cell-based assay developed in an easily deliverable format designed to study the pharmacology of Gi/o/z-coupled GPCRs and assist in deorphanization. We optimized assay conditions and developed an all-in-one vector employing cloning methods to ensure the correct expression ratio of GzESTY components. GzESTY successfully assessed activation of a library of ligand-activated GPCRs, detecting both full and partial agonism, and responses from endogenous GPCRs. Notably, with GzESTY we established the presence of endogenous ligands for GPR176 and GPR37 in brain extracts, validating its use in deorphanization efforts. This assay enhances the ability to find ligands for orphan GPCRs, expanding the toolkit for GPCR pharmacologists.
Collapse
Grants
- R01DC022104 U.S. Department of Health & Human Services | NIH | National Institute on Deafness and Other Communication Disorders (NIDCD)
- R01HL153988 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL153988 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute on Deafness and Other Communication Disorders (NIDCD)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- This work was supported by start-up funding from the Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry to C.O.; Ernest J. Del Monte Institute for Neuroscience Pilot Program, University of Rochester, to C.O.; University Research Award, University of Rochester to C.O; NIDCD/NIH grant R01DC022104 to C.O.; R01HL153988 to J.D.L.; this work was aided by the GCE4All Biomedical Technology Optimization and Dissemination Center supported by National Institute of General Medical Science grant RM1-GM144227; The Foundation Blanceflor Boncompagni Ludovisi-née Bildt fellowship to L.F.
Collapse
Affiliation(s)
- Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Joseph J Porter
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - John D Lueck
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Dvorakova M, Bosquez-Berger T, Billingsley J, Murataeva N, Woodward T, Leishman E, Zimmowitch A, Gibson A, Wager-Miller J, Cai R, Cai S, Ware T, Hsu KL, Li Y, Bradshaw H, Mackie K, Straiker A. Acetaminophen inhibits diacylglycerol lipase synthesis of 2-arachidonoyl glycerol: Implications for nociception. Cell Rep Med 2025:102139. [PMID: 40381619 DOI: 10.1016/j.xcrm.2025.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 01/27/2025] [Accepted: 04/24/2025] [Indexed: 05/20/2025]
Abstract
Acetaminophen (paracetamol) is a common analgesic, but its mechanism of action remains unknown. Despite causing around 500 deaths annually in the US, safer alternatives have not been developed. Because endocannabinoids may have a role in acetaminophen action, we examine interactions between the two. We report that acetaminophen inhibits the activity of diacylglycerol lipase α (DAGLα), but not DAGLβ, decreasing the production of the endocannabinoid 2-arachidonoyl glycerol. This gives rise to the counterintuitive hypothesis that decreasing endocannabinoid production by DAGLα inhibition may be antinociceptive in certain settings. Supporting this hypothesis, we find that diacylglycerol lipase (DAGL) inhibition by RHC80267 is antinociceptive in wild-type but not CB1 knockout mice in the hot-plate test. We propose (1) that activation of DAGLα may exacerbate some forms of nociception and (2) a mechanism for the antinociceptive actions of acetaminophen, whereby acetaminophen inhibits a DAGLα/CB1-based circuit that plays a permissive role in at least one form of nociception.
Collapse
Affiliation(s)
- Michaela Dvorakova
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Taryn Bosquez-Berger
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Jenna Billingsley
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Natalia Murataeva
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Taylor Woodward
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Anaëlle Zimmowitch
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Anne Gibson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Jim Wager-Miller
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Shangxuan Cai
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Tim Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Beijing 100871, China
| | - Heather Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Alex Straiker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
10
|
Swenson K. Beyond the hype: a comprehensive exploration of CBD's biological impacts and mechanisms of action. J Cannabis Res 2025; 7:24. [PMID: 40350443 PMCID: PMC12067965 DOI: 10.1186/s42238-025-00274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/16/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Cannabidiol (CBD) is the primary non-psychoactive component of cannabis. Consumption of CBD is increasing rapidly as it is federally legal and widely available in the United States, Europe, Mexico, Canada, and Asia. CBD is gaining traction in medical and biochemical research, though a comprehensive classification of CBD receptor interactions is yet to be elucidated. METHODS A comprehensive literature search across PubMed, Web of Science, and Google Scholar identified studies reporting cannabidiol (CBD) interactions with receptors, enzymes, and biological processes. Eligible articles included cell culture, animal model, biochemical, and clinical studies. Findings were thematically synthesized by body system, emphasizing mechanisms and implications for health and disease. RESULTS Herein, I compile the literature to date of known interactions between CBD and various receptors, enzymes, and processes. I discuss the impact of CBD exposure on multiple processes, including endocannabinoid receptors, ion channels, cytochrome 450 enzymes, inflammatory pathways, and sex hormone regulation. I explain the potential effects of CBD on psychiatric disorders, seizure activity, nausea and vomiting, pain sensation, thermal regulation, neuronal signaling, neurodegenerative diseases, reproductive aging, drug metabolism, inflammation, sex hormone regulation, and energy homeostasis. CONCLUSIONS Understanding how CBD functions and how it can interact with other recreational or pharmaceutical medications is necessary for proper clinical management of patients who consume CBD.
Collapse
Affiliation(s)
- Karli Swenson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13123 East 16 Ave B265, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Taha S, Aljishi M, Sultan A, Sridharan K, Taurin S, Greish K, Bakhiet M. Enhanced Cytotoxicity and Receptor Modulation by SMA-WIN 55,212-2 Micelles in Glioblastoma Cells. Int J Mol Sci 2025; 26:4544. [PMID: 40429688 DOI: 10.3390/ijms26104544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Glioblastoma (GBM), a devastating brain malignancy, resists conventional therapies due to molecular heterogeneity and the blood-brain barrier's significant restriction on drug delivery. Cannabinoids like WIN 55,212-2 show promise but are limited by poor solubility and systemic toxicity. To address these challenges, we evaluated styrene-maleic acid (SMA) micellar encapsulation of WIN 55,212-2 (SMA-WIN) against free WIN in epithelial (LN18) and mesenchymal (A172) GBM cell lines, targeting cytotoxicity and receptor modulation (CB1, CB2, TRPV1, PPAR-γ). SMA-WIN exhibited significantly enhanced cytotoxicity, achieving IC50 values of 12.48 µM (LN18) and 16.72 µM (A172) compared to 20.97 µM and 30.9 µM for free WIN, suggesting improved cellular uptake via micellar delivery. In LN18 cells, both formulations upregulated CB1 and CB2, promoting apoptosis. Notably, SMA-WIN uniquely increased PPAR-γ expression by 2.3-fold in A172 cells, revealing a mesenchymal-specific mechanism absent in free WIN, which primarily modulated CB1/CB2. These findings position SMA-WIN as a promising candidate for precision GBM therapy, particularly for resistant mesenchymal subtypes, paving the way for in vivo validation to confirm blood-brain barrier penetration and clinical translation.
Collapse
Affiliation(s)
- Safa Taha
- Department of Molecular Medicine, College of Medicine and Health Sciences, Arabian Gulf University, Manama P.O. Box 26671, Bahrain
| | - Muna Aljishi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Arabian Gulf University, Manama P.O. Box 26671, Bahrain
| | - Ameera Sultan
- Department of Molecular Medicine, College of Medicine and Health Sciences, Arabian Gulf University, Manama P.O. Box 26671, Bahrain
| | - Kannan Sridharan
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, Arabian Gulf University, Manama P.O. Box 26671, Bahrain
| | - Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Health Sciences, Arabian Gulf University, Manama P.O. Box 26671, Bahrain
| | - Khaled Greish
- Department of Molecular Medicine, College of Medicine and Health Sciences, Arabian Gulf University, Manama P.O. Box 26671, Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine, College of Medicine and Health Sciences, Arabian Gulf University, Manama P.O. Box 26671, Bahrain
| |
Collapse
|
12
|
Szmek J, Englmaierová M, Skřivan M, Pěchoučková E. Skeletal disorders in laying hens: a systematic review with a focus on non-cage housing systems and hemp-based dietary interventions for bone health. Br Poult Sci 2025:1-30. [PMID: 40331968 DOI: 10.1080/00071668.2025.2489059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/17/2025] [Indexed: 05/08/2025]
Abstract
1. The poultry sector is possibly the fastest growing and most flexible of all livestock sectors. At present, the main changes to the table egg production system include the gradual abandonment and closure of all cage-housing systems for laying hens, driven by animal welfare concerns and stricter legislation in many countries. In the future, keeping hens in enriched cage systems may be restricted or phased out in response to evolving animal welfare guidelines and public demand. To meet the welfare and behavioural requirements of the hens, it is desirable to choose housing on litter or housing in aviaries as a substitute for housing in enriched cages.2. The objective of this systematic review was to examine non-cage housing systems and hemp-based dietary interventions in relation to skeletal health in laying hens. This review focussed on the risks associated with alternative housing systems, particularly the increased incidence of bone fractures and the potential of nutritional strategies to mitigate skeletal disorders, including osteoporosis.3. The proportion of hens housed in non-cage alternative housing systems is currently increasing sharply but carries certain risks. One of the most significant concerns is skeletal integrity, as hens in aviaries experience a higher rate of keel bone fractures due to collisions, falls and deviations thought to be related to internal pressure. Numerous studies have shown that the incidence of keel bone damage (i.e. fractures and deviations) was greater in aviaries compared to enriched cage systems.4. Optimal skeletal health can be supported through proper nutrition, which plays a crucial role in bone metabolism. Key nutritional elements, including calcium, vitamins D, E and K, polyunsaturated fatty acids and hemp-based products, have been shown to be beneficial in preventing skeletal disorders and associated fractures due to their specific roles in maintaining bone structure and strength.
Collapse
Affiliation(s)
- J Szmek
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague - Suchdol, Czech Republic
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Prague - Uhříněves, Czech Republic
| | - M Englmaierová
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Prague - Uhříněves, Czech Republic
| | - M Skřivan
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Prague - Uhříněves, Czech Republic
| | - E Pěchoučková
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague - Suchdol, Czech Republic
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Prague - Uhříněves, Czech Republic
| |
Collapse
|
13
|
Amir Hamzah K, Turner N, Nichols D, Ney LJ. Advances in targeted liquid chromatography-tandem mass spectrometry methods for endocannabinoid and N-acylethanolamine quantification in biological matrices: A systematic review. MASS SPECTROMETRY REVIEWS 2025; 44:513-538. [PMID: 38958096 PMCID: PMC11976382 DOI: 10.1002/mas.21897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024]
Abstract
Liquid chromatography paired with tandem mass spectrometry (LC-MS/MS) is the gold standard in measurement of endocannabinoid concentrations in biomatrices. We conducted a systematic review of literature to identify advances in targeted LC-MS/MS methods in the period 2017-2024. We found that LC-MS/MS methods for endocannabinoid quantification are relatively consistent both across time and across biomatrices. Recent advances have primarily been in three areas: (1) sample preparation techniques, specific to the chosen biomatrix; (2) the range of biomatrices tested, recently favoring blood matrices; and (3) the breadth of endocannabinoid and endocannabinoid-like analytes incorporated into assays. This review provides a summary of the recent literature and a guide for researchers looking to establish the best methods for quantifying endocannabinoids in a range of biomatrices.
Collapse
Affiliation(s)
- Khalisa Amir Hamzah
- School of Psychology and Counselling, Department of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| | - Natalie Turner
- The Centre for Children's Health ResearchQueensland University of TechnologyKelvin GroveQueenslandAustralia
| | - David Nichols
- Central Science Laboratory, Science and EngineeringUniversity of TasmaniaHobartTasmaniaAustralia
| | - Luke J. Ney
- School of Psychology and Counselling, Department of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| |
Collapse
|
14
|
Salum KCR, Miranda GBA, Dias AL, Carneiro JRI, Bozza PT, da Fonseca ACP, Silva T. The endocannabinoid system in cancer biology: a mini-review of mechanisms and therapeutic potential. Oncol Rev 2025; 19:1573797. [PMID: 40370489 PMCID: PMC12075236 DOI: 10.3389/or.2025.1573797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
The Endocannabinoid System (ECS) plays a critical role in maintaining physiological homeostasis, influencing a range of processes such as neuroprotection, inflammation, energy metabolism, and immune responses. Comprising cannabinoid receptors (CB1 and CB2), endogenous ligands (endocannabinoids), and the enzymes responsible for their synthesis and degradation, the ECS has attracted increasing attention in cancer research. Cannabinoid receptor activation has been associated with the regulation of cancer-related processes, including cell proliferation, apoptosis, and angiogenesis, suggesting that the ECS may have a role in tumor progression and cancer treatment. Preclinical studies have shown that cannabinoids, through their interaction with CB1 and CB2 receptors, can inhibit tumor cell growth, induce programmed cell death, and suppress the formation of new blood vessels in various cancer models. Despite these encouraging findings, the clinical translation of ECS-targeted therapies remains in its early stages. The complexity of tumor heterogeneity, the variability in patient responses, and the challenges associated with the pharmacokinetics of cannabinoids are significant obstacles to the broader application of these findings in clinical settings. This review provides an overview of the current understanding of the ECS's involvement in cancer biology, focusing on key mechanisms by which it may influence carcinogenesis. Additionally, we discuss the therapeutic potential of targeting the ECS in cancer treatment, while highlighting the limitations and uncertainties that need to be addressed through ongoing research.
Collapse
Affiliation(s)
- Kaio Cezar Rodrigues Salum
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gabriel Brendo Alves Miranda
- Postgraduate Program in Translational Biomedicine - UNIGRANRIO/AFYA, Duque de Caxias, Brazil
- Genetics Laboratory - UNIGRANRIO/AFYA, Duque de Caxias, Brazil
| | - Alessandra Lima Dias
- Postgraduate Program in Translational Biomedicine - UNIGRANRIO/AFYA, Duque de Caxias, Brazil
- Genetics Laboratory - UNIGRANRIO/AFYA, Duque de Caxias, Brazil
| | - João Regis Ivar Carneiro
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Carolina Proença da Fonseca
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Postgraduate Program in Translational Biomedicine - UNIGRANRIO/AFYA, Duque de Caxias, Brazil
- Genetics Laboratory - UNIGRANRIO/AFYA, Duque de Caxias, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Tamara Silva
- Postgraduate Program in Translational Biomedicine - UNIGRANRIO/AFYA, Duque de Caxias, Brazil
- Genetics Laboratory - UNIGRANRIO/AFYA, Duque de Caxias, Brazil
| |
Collapse
|
15
|
Bhattacharyya A, Vasconcelos D, Spicarova D, Palecek J. 20:4-NAPE induced changes of mechanical sensitivity and DRG neurons excitability are concentration dependent and mediated via NAPE-PLD. Sci Rep 2025; 15:14131. [PMID: 40269193 PMCID: PMC12019079 DOI: 10.1038/s41598-025-98567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Alterations in the excitability of dorsal root ganglion (DRG) neurons are critical in the pathogenesis of acute and chronic pain. Neurotransmitter release from the terminals of DRG neurons is regulated by cannabinoid receptor 1 (CB1) and transient receptor potential vanilloid 1 (TRPV1), both activated by anandamide (AEA). In our experiments, the AEA precursor N-arachidonoylphosphatidylethanolamine (20:4-NAPE) was used to study the modulation of nociceptive DRG neurons excitability using K+-evoked Ca2+ transients. Intrathecal administration was used to evaluate in vivo effects. Application of 20:4-NAPE at lower concentrations (10 nM - 1 µM) decreased the excitability of DRG neurons, whereas the higher (10 µM) increased it. Both effects of 20:4-NAPE were blocked by the N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor LEI-401. Similarly, lower concentrations of externally applied AEA (1 nM - 10 nM) inhibited DRG neurons, whereas higher concentration (100 nM) did not change it. High AEA concentration (10 µM) evoked Ca2+ transients dependent on TRPV1 activation in separate experiments. Inhibition of the CB1 receptor by PF514273 (400 nM) prevented the 20:4-NAPE- and AEA-induced inhibition, whereas TRPV1 inhibition by SB366791 (1 µM) prevented the increased DRG neuron excitability. In behavioral tests, lower 20:4-NAPE concentration caused hyposensitivity, while higher evoked mechanical allodynia. Intrathecal LEI-401 prevented both in vivo effects of 20:4-NAPE. These results highlight anti- and pro-nociceptive effects of 20:4-NAPE mediated by CB1 and TRPV1 in concentration-dependent manner. Our study underscores the complexity of endocannabinoid signaling in pain transmission modulation and highlights 20:4-NAPE as a potential therapeutic target, offering new insights for developing analgesic strategies.
Collapse
Affiliation(s)
- Anirban Bhattacharyya
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Vasconcelos
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Diana Spicarova
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Palecek
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
16
|
Illanes-González J, Flores-Muñoz C, Vitureira N, Ardiles ÁO. Pannexin 1 channels: A bridge between synaptic plasticity and learning and memory processes. Neurosci Biobehav Rev 2025; 174:106173. [PMID: 40274202 DOI: 10.1016/j.neubiorev.2025.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
The Pannexin 1 channel is a membrane protein widely expressed in various vertebrate cell types, including microglia, astrocytes, and neurons within the central nervous system. Growing research has demonstrated the significant involvement of Panx1 in synaptic physiology, such as its contribution to long-term synaptic plasticity, with a particular focus on the hippocampus, an essential structure for learning and memory. Investigations studying the role of Panx1 in synaptic plasticity have utilized knockout animal models and channel inhibition techniques, revealing that the absence or blockade of Panx1 channels in this region promotes synaptic potentiation, dendritic arborization, and spine formation. Despite substantial progress, the precise mechanism by which Panx1 regulates synaptic plasticity remains to be determined. Nevertheless, evidence suggests that Panx1 may exert its influence by releasing signaling molecules, such as adenosine triphosphate (ATP), or through the clearance of endocannabinoids (eCBs). This review aims to comprehensively explore the current literature on the role of Panx1 in synapses. By examining relevant articles, we seek to enhance our understanding of Panx1's contribution to synaptic fundamental processes and the potential implications for cognitive function.
Collapse
Affiliation(s)
- Javiera Illanes-González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile
| | - Nathalia Vitureira
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile; Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
17
|
Malhotra S, Donneger F, Farrell JS, Dudok B, Losonczy A, Soltesz I. Integrating endocannabinoid signaling, CCK interneurons, and hippocampal circuit dynamics in behaving animals. Neuron 2025:S0896-6273(25)00188-6. [PMID: 40267911 DOI: 10.1016/j.neuron.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/25/2025]
Abstract
The brain's endocannabinoid signaling system modulates a diverse range of physiological phenomena and is also involved in various psychiatric and neurological disorders. The basic components of the molecular machinery underlying endocannabinoid-mediated synaptic signaling have been known for decades. However, limitations associated with the short-lived nature of endocannabinoid lipid signals had made it challenging to determine the spatiotemporal specificity and dynamics of endocannabinoid signaling in vivo. Here, we discuss how novel technologies have recently enabled unprecedented insights into endocannabinoid signaling taking place at specific synapses in behaving animals. In this review, we primarily focus on cannabinoid-sensitive inhibition in the hippocampus in relation to place cell properties to illustrate the potential of these novel methodologies. In addition, we highlight implications of these approaches and insights for the unraveling of cannabinoid regulation of synapses in vivo in other brain circuits in both health and disease.
Collapse
Affiliation(s)
- Shreya Malhotra
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| | - Florian Donneger
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jordan S Farrell
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Center, Harvard Medical School, Boston, MA, USA
| | - Barna Dudok
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA; Kavli Institute for Brain Sciences, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
18
|
Arnold W, Jain S, Sinha V, Das A. The Hunt for the Putative Epoxyeicosatrienoic Acid Receptor. ACS Chem Biol 2025; 20:762-777. [PMID: 40127470 PMCID: PMC12012780 DOI: 10.1021/acschembio.5c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025]
Abstract
Epoxyeicosatrienoic acids, or EETs, are signaling molecules formed by the metabolism of arachidonic acid by cytochrome P450 enzymes. They are well-known for their anti-inflammatory effects, their ability to lower blood pressure, and benefits to cardiovascular outcomes. Despite the wealth of data demonstrating their physiological benefits, the putative high-affinity receptor that mediates these effects is yet to be identified. The recent report that the sphingosine-1-phosphate receptor 1 (S1PR1) is a high-affinity receptor for a related epoxy lipid prompted us to ask, "Why has the putative EET receptor not been discovered yet? What information about the discoveries of lipid epoxide receptors can help us identify the putative EET receptor?" In this review, we summarize the evidence supporting that the putative EET receptor exists. We then review the data showing EETs binding to other, low-affinity receptors and the discovery of receptors for similar lipid metabolites that can serve as a model for identifying the putative EET receptor. We hope this review will revitalize the search for this important receptor, which can facilitate the development of anti-inflammatory and cardiovascular therapeutics.
Collapse
Affiliation(s)
- William
R. Arnold
- Stanford
Cryo-EM Center, Stanford University School
of Medicine, Palo Alto, California 94305, United States
| | - Sona Jain
- Departamento
de Morfologia, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Vidya Sinha
- The
Center for Advanced Studies in Science, Math and Technology at Wheeler
High School, Marietta, Georgia 30068, United States
| | - Aditi Das
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology (GaTech), Atlanta, Georgia 30332, United States
| |
Collapse
|
19
|
Yuan C, Tsang A, Berumen M, Rodriguez A, Yun F, Mesic A, Olivares A, Dubon L, Nguyen A, Pavana L, Mercado M, Gorostiza G, Morisseau C, Hammock BD, Kandasamy R, Pecic S. Structure-activity relationship studies and pharmacological evaluation of 4-phenylthiazoles as dual soluble epoxide hydrolase/fatty acid amide hydrolase inhibitors. Bioorg Med Chem 2025; 121:118112. [PMID: 39983408 PMCID: PMC11910963 DOI: 10.1016/j.bmc.2025.118112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025]
Abstract
Forty-two 4-phenylthiazole analogs, organized in two libraries 4a-u and 6a-u, were prepared and biologically evaluated in human fatty acid amide hydrolase (FAAH), and human, rat and mouse soluble epoxide hydrolase (sEH) inhibition assays. This structure-activity relationship (SAR) study explores the impact of electronic and steric changes on the molecule's potency and binding affinity to better understand the structural features important for dual sEH/FAAH inhibition which will guide the development of novel treatments for pain and inflammation. Our SAR revealed that electron-donating groups on the aromatic ring of the 4-phenylthiazole moiety are particularly well tolerated by both enzymes when placed at the ortho, meta and para positions; however, the overall 3D shape of the molecule is very important for the potent FAAH inhibition, suggesting more restricted size of the FAAH binding pocket compared to sEH binding pocket. Two selected dual inhibitors, 4p and 4s, were tested in the rat liver microsomes stability assays and evaluated in vivo in the formalin test. Systemic administration of 4p and 4s via intraperitoneal injection decreased nociceptive behavior (i.e., licking of the injected paw) in male rats, and this effect was dose-dependent for both compounds. Two doses, 1 and 3 mg/kg of 4p, decreased nociceptive behavior to a similar extent to that of 30 mg/kg ketoprofen, a traditional nonsteroidal anti-inflammatory drug. However, only 3 mg/kg of 4s decreased nociceptive behavior compared to vehicle-treated animals, and this effect was comparable to ketoprofen-treated animals. Taken together, these findings reveal the antinociceptive potential of 4-phenylthiazole-based dual FAAH and sEH inhibitors and suggest pharmacodynamic differences within this class of inhibitors despite similar potencies in vitro.
Collapse
Affiliation(s)
- Cassandra Yuan
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Amanda Tsang
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Manuel Berumen
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Adriana Rodriguez
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Faye Yun
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Anesa Mesic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Annie Olivares
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Lissette Dubon
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Allen Nguyen
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Lucy Pavana
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States
| | - Madison Mercado
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States
| | - Gabrielle Gorostiza
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Ram Kandasamy
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States.
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States.
| |
Collapse
|
20
|
Uyama T, Sasaki S, Okada-Iwabu M, Murakami M. Recent Progress in N-Acylethanolamine Research: Biological Functions and Metabolism Regulated by Two Distinct N-Acyltransferases: cPLA 2ε and PLAAT Enzymes. Int J Mol Sci 2025; 26:3359. [PMID: 40244184 PMCID: PMC11989323 DOI: 10.3390/ijms26073359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
N-Acylethanolamines (NAEs) are a class of lipid mediators that consist of long-chain fatty acids condensed with ethanolamine and exert various biological activities depending on their fatty acyl groups. NAEs are biosynthesized from membrane phospholipids by two-step reactions or alternative multi-step reactions. In the first reaction, N-acyltransferases transfer an acyl chain from the sn-1 position of phospholipids to the amino group (N position) of phosphatidylethanolamine (PE), generating N-acyl-PE (NAPE), a precursor of NAE. So far, two types of N-acyltransferases have been identified with different levels of Ca2+-dependency: cytosolic phospholipase A2 ε (cPLA2ε) as a Ca2+-dependent N-acyltransferase and phospholipase A and acyltransferase (PLAAT) enzymes as Ca2+-independent N-acyltransferases. Recent in vivo studies using knockout mice with cPLA2ε and PLAAT enzymes, combined with lipidomic approaches, have clarified their roles in the skin and brain and in other physiological events. In this review, we summarize the current understanding of the functions and properties of these enzymes.
Collapse
Affiliation(s)
- Toru Uyama
- Department of Biochemistry, School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki 761-0793, Kagawa, Japan; (T.U.); (S.S.); (M.O.-I.)
| | - Sumire Sasaki
- Department of Biochemistry, School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki 761-0793, Kagawa, Japan; (T.U.); (S.S.); (M.O.-I.)
| | - Miki Okada-Iwabu
- Department of Biochemistry, School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki 761-0793, Kagawa, Japan; (T.U.); (S.S.); (M.O.-I.)
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
21
|
Flores-López M, Herrera-Imbroda J, Requena-Ocaña N, García-Marchena N, Araos P, Verheul-Campos J, Ruiz JJ, Pastor A, de la Torre R, Bordallo A, Pavón-Morón FJ, Rodríguez de Fonseca F, Serrano A. Exploratory study on plasma Acylglycerol and Acylethanolamide dysregulation in substance use and attention-deficit/hyperactivity disorder: Implications for novel biomarkers in dual diagnosis. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111350. [PMID: 40188983 DOI: 10.1016/j.pnpbp.2025.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Substance use disorder (SUD) is a major global public health challenge, frequently co-occurring with psychiatric conditions such as attention-deficit/hyperactivity disorder (ADHD). Endocannabinoid system (ECS) dysregulation has been implicated in both SUD and ADHD, but the interplay between these conditions remains poorly understood. This study investigates plasma concentrations of endocannabinoid-congeners in individuals with SUD, with and without comorbid ADHD, to identify potential biomarkers. This exploratory study included 469 participants divided into three groups: (1) healthy controls (n = 136), (2) patients with SUD without ADHD (n = 267), and (3) patients with SUD and comorbid ADHD (n = 66). Plasma concentrations of 12 endocannabinoid-related molecules, including acylglycerols (2-AG, 2-LG, 2-OG) and acylethanolamides (AEA, DEA, DHEA, DGLEA, LEA, OEA, PEA, POEA, and SEA), were quantified using high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). A multinomial Elastic Net regression model was applied to assess their biomarker potential. Patients with SUD exhibited significantly lower plasma concentrations of 2-AG and 2-LG compared to controls, while most acylethanolamides were elevated, except for POEA and SEA. ADHD comorbidity was associated with lower concentrations of 2-AG, 2-LG, AEA, DGLEA, DHEA, and SEA, while PEA was elevated. Machine learning analysis identified AEA, OEA, PEA, and SEA as key biomarkers, achieving an accuracy of 72.1 % and an ROC-AUC of 0.77. This study suggests distinct ECS alterations in SUD and comorbid ADHD, highlighting endocannabinoid-congeners as potential biomarkers. Future research should validate these findings in larger cohorts and explore ECS-targeted therapeutic interventions for dual-diagnosis populations.
Collapse
Affiliation(s)
- María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Jesús Herrera-Imbroda
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Nerea Requena-Ocaña
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Nuria García-Marchena
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Pedro Araos
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Julia Verheul-Campos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Juan Jesús Ruiz
- Centro Provincial de Drogodependencias de Málaga, Diputación Provincial de Málaga, 29010 Málaga, Spain
| | - Antoni Pastor
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael de la Torre
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Antonio Bordallo
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Francisco Javier Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Unidad Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), 29010 Malaga, Spain.
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| |
Collapse
|
22
|
Tan Y, Xia H, Song Q. Research mapping of cannabinoids and endocannabinoid system in cancer over the past three decades: insights from bibliometric analysis. Front Pharmacol 2025; 16:1540619. [PMID: 40242437 PMCID: PMC12000044 DOI: 10.3389/fphar.2025.1540619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Background The cannabinoids and endocannabinoid system are thought to play critical roles in multiple signaling pathways in organisms, and extensive evidence from preclinical studies indicated that cannabinoids and endocannabinoids displayed anticancer potential. This study aimed to summarize the research of cannabinoids and endocannabinoid system in cancer through bibliometric analysis. Methods Relevant literature in the field of cannabinoids and endocannabinoid system in cancer published during 1995-2024 were collected from the Web of Science Core Collection database. VOSviewer and SCImago Graphica were applied to perform bibliometric analysis of countries, institutions, authors, journals, documents, and keywords. Results A total of 3,052 publications were identified, and the global output exhibited a generally upward trend over the past 3 decades. The USA had the greatest number of publications and citations in this research field. Italian National Research Council led in terms of publication, while Complutense University of Madrid had the highest total citations. Vincenzo Di Marzo was the leading author in this field with the greatest number of publications and citations. The co-occurrence of keywords revealed that the research frontiers mainly included "cannabinoids", "endocannabinoid system", "cancer", "anandamide", "cannabidiol", "cannabinoid receptor", "apoptosis", and "proliferation". Conclusion Our results revealed that the research of cannabinoids and endocannabinoid system in cancer would receive continuous attention. The USA and Italy have made remarkable contributions to this field, supported by their influential institutions and prolific scholars. The research emphasis has evolved from basic functional characterization to mechanistic exploration of disease pathways and translational applications within multidisciplinary framework.
Collapse
Affiliation(s)
- Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Hui Xia
- Department of Pharmacy, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Qi Song
- Department of Pharmacy, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Wymore EM, Wagner K, Gold C, Halmo LS. High Stakes: Exploring the Impact of Cannabis Use in Pregnancy and Lactation. Neoreviews 2025; 26:e247-e263. [PMID: 40164212 DOI: 10.1542/neo.26-4-006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/10/2024] [Indexed: 04/02/2025]
Abstract
Cannabis is the most commonly used federally illicit substance during pregnancy in the United States, with an estimated prevalence of 3% to 30%. The American College of Obstetricians and Gynecologists and the American Academy of Pediatrics discourage cannabis use during pregnancy and breastfeeding due to safety concerns for the fetus and infant. Despite these recommendations, nearly half of active cannabis users continue use in pregnancy. In this review, we summarize cannabis pharmacology and metabolism with a focus on delta-9-tetrahydrocannabinol, the psychoactive component of the cannabis plant, highlighting its significance in quantifying exposure and the impact on outcomes studies. We also provide a concise review of current evidence on the effects of perinatal cannabis use and pregnancy, infant, and childhood outcomes, acknowledging the limitations of this evidence. Additionally, we provide targeted counseling recommendations for harm reduction strategies and lactation considerations for birthing parents who use cannabis.
Collapse
Affiliation(s)
- Erica M Wymore
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Katharine Wagner
- Section of Pediatric Hospital Medicine, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Christine Gold
- Section of Pediatric Hospital Medicine, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laurie Seidel Halmo
- Section of Pediatric Hospital Medicine, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Poison & Drug Safety, Denver Health and Hospital Authority, Denver, Colorado
| |
Collapse
|
24
|
Uyama T, Sasaki S, Sikder MM, Okada-Iwabu M, Ueda N. The PLAAT family as phospholipid-related enzymes. Prog Lipid Res 2025; 98:101331. [PMID: 40074088 DOI: 10.1016/j.plipres.2025.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
The phospholipase A and acyltransferase (PLAAT) family is a group of structurally related proteins that are conserved among vertebrates. In humans, the family comprises five members (PLAAT1-5), which share common domain structures, and functions as phospholipase A1/A2 and acyltransferase enzymes. Regarding acyltransferase activities, PLAATs produce N-acyl-phosphatidylethanolamines, which serve as the precursor of bioactive N-acylethanolamines (NAEs). Recent evidence strongly suggests that PLAAT proteins play a crucial role in maintaining homeostasis in various organelles, such as the endoplasmic reticulum, lysosomes, mitochondria, and peroxisomes. In this process, PLAAT proteins bind to organelles and degrade them in an enzyme activity-dependent manner. Their physiological significance was revealed by the inability of PLAAT-deficient animals to degrade organelles during the maturation of the eye lens, resulting in the development of cataracts. Furthermore, the deficiency of PLAAT1, 3, and 5 in mice caused resistance to high-fat diet-induced fatty liver, the lean phenotype represented by a marked decrease in adipose tissue mass, and the exacerbation of testicular inflammation due to decreased levels of anti-inflammatory NAEs, respectively. In addition, human PLAAT3 was identified as a causative gene for lipodystrophy. We herein provide an overview of the molecular and biological properties of PLAAT proteins.
Collapse
Affiliation(s)
- Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| | - Sumire Sasaki
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Mohammad Mamun Sikder
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Miki Okada-Iwabu
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| |
Collapse
|
25
|
Ayakannu T, Taylor AH, Konje JC. Expression, Distribution and Function of the Transient Receptor Potential Vanilloid Type 1 (TRPV1) in Endometrial Cancer. Int J Mol Sci 2025; 26:3104. [PMID: 40243844 PMCID: PMC11988754 DOI: 10.3390/ijms26073104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 04/18/2025] Open
Abstract
The transient receptor potential vanilloid 1 receptor (TRPV1) is a calcium-sensitive membrane receptor activated by capsaicin and the endocannabinoid, anandamide (AEA). Once activated in vitro, endometrial cancer (EC) cell growth appears to be inhibited through increased apoptosis, but the mechanism remains unclear. Our aim was to investigate the expression and distribution of TRPV1 in normal and cancerous endometria and to determine the precise in vitro mechanism of decreased EC cellular growth. TRPV1 expression in patients with endometrial carcinoma (15 Type 1 EC, six Type 2 EC) and six normal patients (atrophic endometria) was assessed using quantitative RT-PCR and immunohistochemistry (IHC). Additionally, immunohistochemical staining for the proliferation marker Ki-67, the pro-apoptotic marker BAX and the anti-apoptotic marker Bcl-2 were explored. TRPV1 transcript (p = 0.0054) and immunoreactive protein (p < 0.0001) levels were significantly reduced in all EC tissues when compared to control (atrophic) endometria. The almost 50% reduction in TRPV1 transcript levels was mirrored by an almost complete loss of immunoreactive TRPV1 protein. The increased proliferation (Ki-67) of EC tissues correlated with the expression of mutated BAX and inversely correlated to Bcl-2, but only in Type 2 EC samples. In vitro, AEA caused a decrease in Ishikawa cell numbers, whilst capsaicin did not, suggesting the anti-proliferative effect of AEA in EC cells is not via the TRPV1 receptor. In conclusion, the loss of TRPV1 expression in vivo plays a role in the aetiopathogenesis of EC. Activation of cells by AEA also probably promotes EC cell loss through a pro-apoptotic mechanism not involving TRPV1.
Collapse
Affiliation(s)
- Thangesweran Ayakannu
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Obstetrics & Gynaecology Centre of Excellence, Sunway Medical Centre, Petaling Jaya 47500, Malaysia
- Division of Obstetrics & Gynaecology, Department of Clinical Medicine and Surgery, Sunway University, Petaling Jaya 47500, Malaysia
| | - Anthony H. Taylor
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Justin C. Konje
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
26
|
Barker HA, Bhimani S, Tirado D, Lemos LN, Roesch LF, Ferraro MJ. Cannabinoid receptor deficiencies drive immune response dynamics in Salmonella infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642352. [PMID: 40161677 PMCID: PMC11952457 DOI: 10.1101/2025.03.10.642352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
This study investigated the roles of cannabinoid receptors 1 and 2 (CB1R and CB2R) in regulating host responses to Salmonella Typhimurium in C57BL/6 mice. The absence of both receptors significantly impaired host resilience, as evidenced by increased weight loss, deteriorated body condition, and reduced survival following infection. Notably, CB1R deficiency resulted in more pronounced weight loss and heightened susceptibility to bacterial proliferation, as demonstrated by increased Salmonella dissemination to organs. In addition, both CB1R and CB2R knockout mice exhibited alterations in immune cell recruitment and cytokine production. CB1R-KO mice displayed increased T cell and macrophage populations, whereas CB2R-KO mice showed a reduction in NK cells, indicating receptor-specific effects on immune cell mobilization. Cytokine profiling of macrophages post-infection revealed that CB1R-KO mice had reduced IL-10 levels, along with increased IL-6 and TGF-β, suggesting a dysregulated polarization state that combines pro-inflammatory and regulatory elements. In contrast, CB2R-KO mice exhibited a profile consistent with a more straightforward pro-inflammatory shift. Furthermore, microbiota analysis demonstrated that CB2R-KO mice experienced significant gut dysbiosis, including reduced levels of beneficial Lactobacillus and Bifidobacterium species and an increase in pro-inflammatory Alistipes species post-infection. Functional microbiome analysis further indicated declines in key metabolic pathways, such as the Bifidobacterium shunt, L-glutamine biosynthesis, and L-lysine biosynthesis, suggesting microbiota-driven immune dysregulation. Together, these findings highlight the distinct, non-redundant roles of CB1R and CB2R in modulating innate immunity, host defense, and microbiota composition during bacterial infections.
Collapse
Affiliation(s)
- Hailey A. Barker
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Saloni Bhimani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Deyaneira Tirado
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | | | - Luiz F.W. Roesch
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Ferraro
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
27
|
Elliott GO, Petrie GN, Kroll SL, Roche DJO, Mayo LM. Changes in peripheral endocannabinoid levels in substance use disorders: a review of clinical evidence. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2025; 51:152-164. [PMID: 40197861 DOI: 10.1080/00952990.2025.2456499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/31/2024] [Accepted: 01/16/2025] [Indexed: 04/10/2025]
Abstract
Background: The endocannabinoid (eCB) system is a key modulator of stress and reward and is impacted by alcohol and drug use. Recently, the eCB system has been highlighted as a potential novel target in the treatment of substance use disorders (SUDs).Objectives: Understanding how chronic substance use impacts the function of the eCB system can provide a mechanistic rationale for targeting this system in the treatment of SUDs.Methods: A comprehensive review of studies assessing concentrations of eCB ligands N-arachidonoyl ethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) in individuals with a SUD diagnosis was performed using all EBSCO databases, PubMed, and Google Scholar. Methods and results related to eCB concentrations, diagnosis, and other factors (e.g. treatment status) were extracted from papers written in English and published in peer-reviewed journals before May 22, 2024.Results: Fifteen studies were reviewed; three in alcohol use disorder (AUD), three in cannabis use disorder (CUD), four in cocaine use disorder, one in opioid use disorder (OUD) and four across SUDs. Generally, AEA concentrations were usually, but not always, increased in AUD, CUD, OUD, and cocaine use disorder. 2-AG concentrations were measured less often but were increased in CUD and decreased in cocaine use disorder.Conclusions: Studies generally support the hypothesis that chronic substance use can impact eCB levels, most often with increased AEA and decreased (or not quantified) 2-AG concentrations, though results were often conflicting. Variability in methodology and study design may limit generalizability across studies.
Collapse
Affiliation(s)
- Georgia O Elliott
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Calgary, Calgary, Canada
| | - Gavin N Petrie
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Calgary, Calgary, Canada
| | - Sara L Kroll
- University Hospital of Psychiatry, Adult Psychiatry and Psychotherapy, University of Zurich, Zurich, Switzerland
| | - Daniel J O Roche
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland Baltimore, Baltimore, MD, USA
| | - Leah M Mayo
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Calgary, Calgary, Canada
| |
Collapse
|
28
|
Alexander C, Jeon J, Nickerson K, Hassler S, Vasefi M. CBD and the 5-HT1A receptor: A medicinal and pharmacological review. Biochem Pharmacol 2025; 233:116742. [PMID: 39778776 DOI: 10.1016/j.bcp.2025.116742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Cannabidiol (CBD), a phytocannabinoid, has emerged as a promising candidate for addressing a wide array of symptoms. It has the ability to bind to multiple proteins and receptors, including 5-HT1AR, transient receptor potential vanilloid 1 (TRPV1), and cannabinoid receptors. However, CBD's pharmacodynamic interaction with 5-HT1AR and its medicinal outcomes are still debated. This review explores recent literature to elucidate these questions, highlighting the neurotherapeutic outcomes of this pharmacodynamic interaction and proposing a signaling pathway underlying the mechanism by which CBD desensitizes 5-HT1AR signaling. A comprehensive survey of the literature underscores CBD's multifaceted neurotherapeutic effects, which include antidepressant, anxiolytic, neuroprotective, antipsychotic, antiemetic, anti-allodynic, anti-epileptic, anti-degenerative, and addiction-treating properties, attributable in part to its interactions with 5-HT1AR. Furthermore, evidence suggests that the pharmacodynamic interaction between CBD and 5-HT1AR is contingent upon dosage. Moreover, we propose that CBD can induce desensitization of 5-HT1AR via both homologous and heterologous mechanisms. Homologous desensitization involves the recruitment of G protein-coupled receptor kinase 2 (GRK2) and β-arrestin, leading to receptor endocytosis. In contrast, heterologous desensitization is mediated by an elevated intracellular calcium level or activation of protein kinases, such as c-Jun N-terminal kinase (JNK), through the activity of other receptors.
Collapse
Affiliation(s)
- Claire Alexander
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Jiyoon Jeon
- Department of Biology, Lamar University, Beaumont, TX, 77710, USA
| | - Kyle Nickerson
- Department of Biology, Baylor University, Waco, TX, 76706, USA
| | - Shayne Hassler
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA
| | - Maryam Vasefi
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA.
| |
Collapse
|
29
|
Erustes AG, Abílio VC, Bincoletto C, Piacentini M, Pereira GJS, Smaili SS. Cannabidiol induces autophagy via CB 1 receptor and reduces α-synuclein cytosolic levels. Brain Res 2025; 1850:149414. [PMID: 39710053 DOI: 10.1016/j.brainres.2024.149414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Numerous studies have explored the role of cannabinoids in neurological conditions, chronic pain and neurodegenerative diseases. Restoring autophagy has been proposed as a potential target for the treatment of neurodegenerative diseases. In our study, we used a neuroblastoma cell line that overexpresses wild-type α-synuclein to investigate the effects of cannabidiol on autophagy modulation and reduction in the level of cytosolic α-synuclein. Our results demonstrated that cannabidiol enhances the accumulation of LC3-II- and GFP-LC3-positive vesicles, which indicates an increase in autophagic flux. In addition, cannabidiol-treated cells showed a reduction in cytosolic α-synuclein levels. These effects were inhibited when the cells were treated with a CB1 receptor-selective antagonist, which indicates that the biological effects of cannabidiol are mediated via its interaction with CB1 receptor. Additionally, we also observed that cannabinoid compounds induce autophagy and α-synuclein degradation after they interact with the CB1 receptor. In summary, our data suggest that cannabidiol induces autophagy and reduces cytosolic α-synuclein levels. These biological effects are mediated preferentially through the interaction of cannabidiol with CB1 receptors, and therefore, cannabinoid compounds that act selectively on this receptor could represent a new approach for autophagy modulation and degradation of protein aggregates.
Collapse
Affiliation(s)
- Adolfo G Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.
| | - Vanessa C Abílio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Gustavo J S Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Soraya S Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Gao Q, Asim M. CB 1 receptor signaling: Linking neuroplasticity, neuronal types, and mental health outcomes. Neurochem Int 2025; 184:105938. [PMID: 39904420 DOI: 10.1016/j.neuint.2025.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/18/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
The endocannabinoid system (ECS) is crucial in the pathophysiology of mental disorders. Historically, cannabis has been utilized for centuries to mitigate symptoms of anxiety and depression; however, the precise role of cannabinoids in these conditions has only recently garnered extensive research attention. Despite the growing body of literature on the ECS and its association with mental health, several critical questions remain unresolved. This review primarily focuses on cannabinoid CB1 receptors (CB1R), providing an examination of their regulatory roles in states related to mental disorders. Evidence suggests that CB1R distribution occurs among various neuronal types, astrocytes, and subcellular membranes across multiple brain regions, potentially exhibiting both analogous and antagonistic effects. Additionally, various forms of stress have been shown to produce divergent impacts on CB1R signaling pathways. Furthermore, numerous CB1R agonists demonstrate biphasic, dose-dependent effects on anxiety and depression; specifically, low doses may exert anxiolytic effects, while higher doses can induce anxiogenic responses, a phenomenon observed in both rodent models and human studies. We also discuss the diverse underlying mechanisms that mediate these effects. We anticipate that this review will yield valuable insights into the role of CB1R in mental disorders and provide a framework for future research endeavors on CB1R and the ECS. This knowledge may ultimately inform therapeutic strategies aimed at alleviating symptoms associated with mental health conditions.
Collapse
Affiliation(s)
- Qianqian Gao
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong, 0000, China; Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon Tong, Hong Kong, 0000, China
| | - Muhammad Asim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong, 0000, China; Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon Tong, Hong Kong, 0000, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, 0000, China; Current: Department of Psychiatry and Behavioral Science, Stanford University, California, USA.
| |
Collapse
|
31
|
Aloisio Caruso E, De Nunzio V, Tutino V, Notarnicola M. The Endocannabinoid System: Implications in Gastrointestinal Physiology and Pathology. Int J Mol Sci 2025; 26:1306. [PMID: 39941074 PMCID: PMC11818434 DOI: 10.3390/ijms26031306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
The endocannabinoid system (ECS), composed of receptors, endocannabinoids, and enzymes that regulate biosynthesis and degradation, plays a fundamental role in the physiology and pathology of the gastrointestinal tract, particularly in the small and large intestine and liver. Specifically, cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 (CB2R), located principally in the nervous system and immune cells, orchestrate processes such as intestinal motility, intestinal and hepatic inflammation, and energy metabolism, respectively. The main endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), influence appetite, body weight regulation, and inflammatory states and thus have implications in obesity, non-alcoholic fatty liver disease (NAFLD) and irritable bowel syndrome (IBS). Recent studies have highlighted the therapeutic potential of targeting the ECS to modulate gastrointestinal and metabolic diseases. In particular, peripheral CB1R antagonists and CB2R agonists have shown efficacy in treating intestinal inflammation, reducing hepatic steatosis, and controlling IBS symptoms. Moreover, the ECS is emerging as a potential target for the treatment of colorectal cancer, acting on cell proliferation and apoptosis. This review highlights the opportunity to exploit the endocannabinoid system in the search for innovative therapeutic strategies, emphasizing the importance of a targeted approach to optimize treatment efficacy and minimize side effects.
Collapse
Affiliation(s)
- Emanuela Aloisio Caruso
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| | - Valeria Tutino
- Laboratory of Clinical Pathology, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy;
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| |
Collapse
|
32
|
Sato R, da Fonseca GWP, das Neves W, von Haehling S. Mechanisms and pharmacotherapy of cancer cachexia-associated anorexia. Pharmacol Res Perspect 2025; 13:e70031. [PMID: 39776294 PMCID: PMC11707257 DOI: 10.1002/prp2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 01/30/2025] Open
Abstract
Cachexia is a multifactorial metabolic syndrome characterized by weight and skeletal muscle loss caused by underlying illnesses such as cancer, heart failure, and renal failure. Inflammation, insulin resistance, increased muscle protein degradation, decreased food intake, and anorexia are the primary pathophysiological drivers of cachexia. Cachexia causes physical deterioration and functional impairment, loss of quality of life, lower response to active treatment, and ultimately morbidity and mortality, while the difficulties in tackling cachexia in its advanced phases and the heterogeneity of the syndrome among patients require an individualized and multidisciplinary approach from an early stage. Specifically, strategies combining nutritional and exercise interventions as well as pharmacotherapy that directly affect the pathogenesis of cachexia, such as anti-inflammatory, metabolism-improving, and appetite-stimulating agents, have been proposed, but none of which have demonstrated sufficient evidence to date. Nevertheless, several agents have recently emerged, including anamorelin, a ghrelin receptor agonist, growth differentiation factor 15 neutralization therapy, and melanocortin receptor antagonist, as candidates for ameliorating anorexia associated with cancer cachexia. Therefore, in this review, we outline cancer cachexia-associated anorexia and its pharmacotherapy, including corticosteroids, progesterone analogs, cannabinoids, anti-psychotics, and thalidomide which have been previously explored for their efficacy, in addition to the aforementioned novel agents, along with their mechanisms.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower SaxonyGermany
| | - Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor)University of São Paulo Medical SchoolSão PauloSão PauloBrazil
- School of Physical Education and SportUniversity of São PauloSão PauloBrazil
| | - Willian das Neves
- Department of Anatomy, Institute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower SaxonyGermany
| |
Collapse
|
33
|
Pedrazzi JFC, Sales AJ, Ponciano RSM, Ferreira LG, Ferreira FR, Campos AC, Hallak JEC, Zuardi AW, Del Bel EA, Guimarães FS, Crippa JA. Acute cannabidiol treatment reverses behavioral impairments induced by embryonic valproic acid exposure in male mice. Pharmacol Biochem Behav 2025; 247:173919. [PMID: 39615556 DOI: 10.1016/j.pbb.2024.173919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024]
Abstract
Cannabidiol (CBD), the major non-psychotomimetic compound of the Cannabis sativa plant, has shown promising effects in addressing various symptoms associated with autism spectrum disorder (ASD). This neurodevelopmental disorder typically impacts cognitive, behavioral, social communication, and motor skills domains. However, effective treatments for the wide range of symptoms associated with the disorder are limited and may trigger undesirable effects. Embryonic exposure to valproic acid (VPA, 500 mg/kg at 12° day embryonic age) in rodents is a consolidated environmental model for studying behavioral and molecular characteristics related to ASD. Therefore, this study aimed to evaluate whether acute CBD could reverse behavioral impairments in adult mice (eight weeks) exposed to VPA in the embryonic period in four distinct trials. In independent groups of animals, the following assays were conducted: I) Pre-Pulse Inhibition Test (PPI), II) Marble Burying, III) Social Interaction, IV) Actimeter Test, and V) Novel Object Recognition Test (NOR). In the PPI paradigm, mice exposed to VPA showed PPI impairment, and CBD (30 and 60 mg/kg) reversed this disruption. CBD (60 mg/kg) respectively decreased the number of buried marbles, improved social interaction time, but failed to reduce stereotyped-like movements in the VPA group. In NOR test CBD at both doses reversed the impairment in index of recognition induced in VPA group. These findings suggest that acute CBD administration can ameliorate behavioral impairments associated with ASD in a well-established animal model for studying this neurodevelopmental disorder.
Collapse
Affiliation(s)
- J F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - A J Sales
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R S M Ponciano
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L G Ferreira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F R Ferreira
- Research Group in Neurodevelopment and Psychiatric Disorder, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - A C Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J E C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - A W Zuardi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - E A Del Bel
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
34
|
Dvorakova M, Mackie K, Straiker A. Muscarinic cannabinoid suppression of excitation, a novel form of coincidence detection. Pharmacol Res 2025; 212:107606. [PMID: 39824373 DOI: 10.1016/j.phrs.2025.107606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Δ9-tetrahydrocannabinol (THC), the chief psychoactive ingredient of cannabis, acts in the brain primarily via cannabinoid CB1 receptors. These receptors are implicated in several forms of synaptic plasticity - depolarization-induced suppression of excitation (DSE), metabotropic suppression of excitation (MSE), long term depression (LTD) and activation-dependent desensitization. Cultured autaptic hippocampal neurons express all of these, illustrating the rich functional and temporal heterogeneity of CB1 at a single set of synapses. Here we report that coincident activation of muscarinic acetylcholine receptors and elicitation of DSE in autaptic hippocampal neurons results in a substantial (∼40 %) and temporally precise inhibition of excitatory transmission lasting ∼10 minutes. Its induction is blocked by CB1 and muscarinic M3/M5 receptor antagonists and is absent in CB1 receptor knockout neurons. Notably, once it is established, inhibition is reversed by a CB1, but not a muscarinic, antagonist, suggesting that the inhibition occurs via persistent activation of CB1 receptors. We refer to this inhibition as muscarinic cannabinoid suppression of excitation (MCSE). MCSE can be mimicked by coapplication of muscarinic and cannabinoid agonists and requires Ca2+-release from internal stores. As such, MCSE represents a novel and targeted form of coincidence detection - important for many modes of learning and memory -- between cannabinoid and muscarinic signaling systems that elicits a medium-duration depression of synaptic signaling. Given the known roles of muscarinic and cannabinoid receptors in the hippocampus, MCSE may be important in the modulation of hippocampal signaling at the site of septal inputs, with potential implications for learning and memory, epilepsy and addiction.
Collapse
Affiliation(s)
- Michaela Dvorakova
- Gill Institute for Neuroscience, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Ken Mackie
- Gill Institute for Neuroscience, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Alex Straiker
- Gill Institute for Neuroscience, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
35
|
Perez M, Barroso Spejo A, Bortolança Chiarotto G, Silveira Guimarães F, Leite Rodrigues de Oliveira A, Politti Cartarozzi L. Selective blockade of cannabinoid receptors influences motoneuron survival and glial responses after neonatal axotomy. Neuroscience 2025; 565:265-276. [PMID: 39481830 DOI: 10.1016/j.neuroscience.2024.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Sciatic nerve crush in neonatal rats leads to an extensive death of motor and sensory neurons, serving as a platform to develop new neuroprotective approaches. The endocannabinoid system plays important neuromodulatory roles and has been involved in neurodevelopment and neuroprotection. The present work investigated the role of the cannabinoid receptors CB1 and CB2 in the neuroprotective response after neonatal axotomy. CB1 and CB2 antagonists (AM251 and AM630, respectively) were used after sciatic nerve crush in 2-day-old Wistar rats. Five days after lesion and treatment, the rats were perfused, and the spinal cords and dorsal root ganglia (DRG) were obtained and processed to investigate neuronal survival and immunohistochemistry changes, or RT-qPCR analysis. Motoneuron survival analysis showed that blocking CB2 alone or in combination with CB1 was neuroprotective. This effect was associated with a decrease in astrogliosis and microglial reaction. Interestingly, Cnr1 (CB1) and Bdnf gene transcripts were downregulated in the spinal cords of the antagonist-treated groups. Despite no intergroup difference regarding neuronal survival in the DRG, the simultaneous blockade of CB1 and CB2 receptors led to an increased expression of both Cnr1 and Cnr2, combined with Gdnf upregulation. The results indicate that the selective antagonism of cannabinoid receptors facilitates neuroprotection and decreases glial reactivity, suggesting new potential treatment approaches.
Collapse
Affiliation(s)
- Matheus Perez
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083-862, Campinas, SP, Brazil; Center for Studies in Anatomy, São Francisco University - USF, Av. São Francisco de Assis, 218 14049-900, Bragança Paulista, SP, Brazil
| | - Aline Barroso Spejo
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083-862, Campinas, SP, Brazil
| | - Gabriela Bortolança Chiarotto
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083-862, Campinas, SP, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900 14040-907, Ribeirão Preto, SP, Brazil
| | - Alexandre Leite Rodrigues de Oliveira
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083-862, Campinas, SP, Brazil
| | - Luciana Politti Cartarozzi
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083-862, Campinas, SP, Brazil.
| |
Collapse
|
36
|
Gonçalves de Queiroz BF, Cristina de Sousa Fonseca F, Pinto Barra WC, Viana GB, Irie AL, de Castro Perez A, Lima Romero TR, Gama Duarte ID. Interaction between the dopaminergic and endocannabinoid systems promotes peripheral antinociception. Eur J Pharmacol 2025; 987:177195. [PMID: 39662656 DOI: 10.1016/j.ejphar.2024.177195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Dopamine has been widely related to pain modulation, at central and peripheral levels. In this study we aimed to investigate the mechanisms involved in peripheral antinociception, evaluating the interaction between the dopaminergic and endocannabinoid systems in this event. METHODS Male Swiss mice (30-40 g) were pre-sensitized by administration of the hyperalgesic PGE2 (2 μg/paw). The nociceptive threshold was measured using the paw withdrawal test. RESULTS Dopamine (80 ng/paw) promoted antinociception. This effect was reversed by the CB1 and CB2 cannabinoid receptor antagonists AM251 (20, 40, and 80 μg/paw) and AM630 (25, 50, and 100 μg/paw). JZL (4 μg/paw), an inhibitor of the degradation of the 2-arachidonylglycerol (2-AG), potentiated the antinociceptive action of the submaximal dose of dopamine (5 ng/paw). While anandamide degradation and reuptake inhibitors (MAFP 0.5 μg/paw and VDM11 2.5 μg/paw) did not promote changes in intermediate antinociception induced by dopamine. Anandamide at a submaximal dose (12.5 ng/paw) promoted intermediate antinociception that was not potentiated by the administration of the dopamine reuptake inhibitor GBR 12783 (16 μg/paw). In contrast, the administration of GBR potentiated the intermediate antinociception induced by a submaximal dose of 2-AG (10 μg/paw). Furthermore, the dopaminergic receptor antagonists D2 Remoxipride (4 μg/paw) and D3 U99194 (16 μg/paw) reversed the antinociception mediated by the maximum dose of this endocannabinoid (20 μg/paw). In contrast, the D4 receptor antagonist L-745,870 (16 μg/paw) did not change the nociceptive threshold. CONCLUSIONS In this way, we demonstrate the interaction between the dopaminergic and endocannabinoid systems to promote analgesia peripherally.
Collapse
Affiliation(s)
- Bárbara Formiga Gonçalves de Queiroz
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Flávia Cristina de Sousa Fonseca
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Walace Cassio Pinto Barra
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Giovanna Bauer Viana
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Audrey Lopes Irie
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Andrea de Castro Perez
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Thiago Roberto Lima Romero
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Igor Dimitri Gama Duarte
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
37
|
Zachut M, Butenko Y, Dos Santos Silva P. International Symposium on Ruminant Physiology: The involvement of the endocannabinoid system in metabolic and inflammatory responses in dairy cows during negative energy balance. J Dairy Sci 2025:S0022-0302(25)00017-7. [PMID: 39824501 DOI: 10.3168/jds.2024-25772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/18/2024] [Indexed: 01/20/2025]
Abstract
The endocannabinoid system (ECS) is involved in the regulation of energy metabolism, immune function and reproduction in mammals. The ECS is consisted of the endocannabinoid (eCB) ligands, enzymes, and cannabinoid receptors. In mammals, the cannabinoid-1 receptor (CB1/CNR1) is expressed in the central nervous system and in peripheral tissues; and its activation increases anabolic processes. The cannabinoid-2 receptor (CB2/CNR2) is most highly expressed in immune cells, and its activation exerts mainly anti-inflammatory effects. Until recently, little was known about the involvement of the ECS in physiological responses in dairy cows. As peripartum dairy cows undergo vast changes in energy metabolism and immune function, processes that are regulated by the ECS, several studies characterized ECS components in transition cows. Concentrations of eCB in the adipose tissue were higher postpartum (PP), and levels of the eCB N-arachidonoylethanolamide (AEA) were increased PP compared with prepartum. Exogenous injections of AEA to transition cows may increase adipose deposition, but did not affect feed intake. In vitro models showed that bovine adipocyte metabolism was differentially affected by CB1 agonists and antagonists in nonlactating non-gestating compared with PP cows. Thus, the responses of the PP dairy cows to ECS modulations may be related to the physiological and reproductive stage of the cow. Currently, whole-body ECS activation via agonists is mostly not feasible in vivo in livestock. Alternatively, downregulation of ECS activation can be achieved by supplementation of omega-3 (n-3) fatty acids. Indeed, in vivo studies with transition cows supplemented with n-3 showed a moderate downregulation of ECS components in the blood, adipose and liver, improved systemic insulin sensitivity, but evidently reduced insulin sensitivity in the adipose tissue PP. The abundance of CB1 was lower in immune cells, and anti-inflammatory effects were found in PP cows supplemented with n-3; possibly associating ECS downregulation with immune function. The physiological impact of ECS activation is an exciting and complex area of research, that could influence the physiology of dairy cows during metabolic and inflammatory challenges. Dairy cows may be an experimental model for ECS modulations, with broader relevance to female mammals. More research is required on how selective ECS activation/downregulation in tissues could affect immune-metabolic function in dairy cows.
Collapse
Affiliation(s)
- Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel.
| | - Yana Butenko
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel
| | - Priscila Dos Santos Silva
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
38
|
Koyama S, Etkins J, Jun J, Miller M, So GC, Gisch DL, Eadon MT. Utilization of Cannabidiol in Post-Organ-Transplant Care. Int J Mol Sci 2025; 26:699. [PMID: 39859413 PMCID: PMC11765766 DOI: 10.3390/ijms26020699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Cannabidiol (CBD) is one of the major phytochemical constituents of cannabis, Cannabis sativa, widely recognized for its therapeutic potential. While cannabis has been utilized for medicinal purposes since ancient times, its psychoactive and addictive properties led to its prohibition in 1937, with only the medical use being reauthorized in 1998. Unlike tetrahydrocannabinol (THC), CBD lacks psychoactive and addictive properties, yet the name that suggests its association with cannabis has significantly contributed to its public visibility. CBD exhibits diverse pharmacological properties, most notably anti-inflammatory effects. Additionally, it interacts with key drug-metabolizing enzyme families, including cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT), which mediate phase I and phase II metabolism, respectively. By binding to these enzymes, CBD can inhibit the metabolism of co-administered drugs, which can potentially enhance their toxicity or therapeutic effects. Mild to moderate adverse events associated with CBD use have been reported. Advances in chemical formulation techniques have recently enabled strategies to minimize these effects. This review provides an overview of CBD, covering its historical background, recent clinical trials, adverse event profiles, and interactions with molecular targets such as receptors, channels, and enzymes. We particularly emphasize the mechanisms underlying its anti-inflammatory effects and interaction with drugs relevant to organ transplantation. Finally, we explore recent progress in the chemical formulation of CBD in order to enhance its bioavailability, which will enable decreasing the dose to use and increase its safety and efficacy.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Jumar Etkins
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Joshua Jun
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Matthew Miller
- College of Human Ecology, Cornell University, Ithaca, NY 14850, USA;
| | - Gerald C. So
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Debora L. Gisch
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Michael T. Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| |
Collapse
|
39
|
Marcus DJ, English AE, Chun G, Seth EF, Oomen R, Hwang S, Wells B, Piantadosi SC, Suko A, Li Y, Zweifel LS, Land BB, Stella N, Bruchas MR. Endocannabinoids facilitate transitory reward engagement through retrograde gain-control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.630792. [PMID: 39829909 PMCID: PMC11741309 DOI: 10.1101/2025.01.06.630792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Neuromodulatory signaling is poised to serve as a neural mechanism for gain control, acting as a crucial tuning factor to influence neuronal activity by dynamically shaping excitatory and inhibitory fast neurotransmission. The endocannabinoid (eCB) signaling system, the most widely expressed neuromodulatory system in the mammalian brain, is known to filter excitatory and inhibitory inputs through retrograde, pre-synaptic action. However, whether eCBs exert retrograde gain control to ultimately facilitate reward-seeking behaviors in freely moving mammals is not established. Using a suite of in vivo physiological, imaging, genetic and machine learning-based approaches, we report a fundamental role for eCBs in controlling behavioral engagement in reward-seeking behavior through a defined thalamo-striatal circuit.
Collapse
|
40
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
41
|
Di Marino C, Llorente-Berzal Á, Diego AM, Bella A, Boullon L, Berrocoso E, Roche M, Finn DP. Characterisation of the effects of the chemotherapeutic agent paclitaxel on neuropathic pain-related behaviour, anxiodepressive behaviour, cognition, and the endocannabinoid system in male and female rats. Front Pharmacol 2025; 15:1505980. [PMID: 39830350 PMCID: PMC11739114 DOI: 10.3389/fphar.2024.1505980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
Paclitaxel (PTX) is a commonly used chemotherapeutic drug, however, one of its major adverse effects is chronic neuropathic pain, with the incidence being higher in women than in men. The neurobiological mechanisms behind this sex difference are still largely unclear, and the endocannabinoid system, which exhibits sexual dimorphism and plays a key role in pain regulation, is a promising area for further studies. The present study aimed to characterise pain-, cognition-, anxiety-, and depression-related behaviours in male and female rats following PTX administration, and associated alterations in the endocannabinoid system. After the induction of the model, pain-related behaviours were assessed using von Frey, Acetone Drop and Hargreaves' tests, Novel Object Recognition and T-Maze Spontaneous Alternation tests were used for cognition-related behaviours, Elevated Plus Maze, Open Field, and Light Dark Box tests were used to assess anxiety-related behaviours, and Sucrose Preference, Sucrose Splash, and Forced Swim tests for depression-related behaviours. At each time point analysed, animals treated with PTX exhibited mechanical and cold hypersensitivity, with females displaying lower hind paw withdrawal thresholds to mechanical stimulation than males. No PTX-induced alterations in the other behavioural tests were detected. Post-mortem measurement of endocannabinoid and related N-acylethanolamine levels in spinal cord and discrete brain regions revealed a PTX-induced increase of 2-Arachidonoyl Glycerol (2-AG), N-Palmitoylethanolamine (PEA) and N-Oleoylethanolamine (OEA) levels in the amygdala of male and female animals, but not in the other areas. Collectively, these results suggest that PTX causes similar long-lasting hypersensitivity to mechanical and cold stimuli, but not heat, in rats of both sexes, effects accompanied by increases in amygdalar levels of endocannabinoids and N-acylethanolamines.
Collapse
Affiliation(s)
- Chiara Di Marino
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Department of Neuroscience, Neuropsychopharmacology and Psychobiology Research Group, University of Cádiz, Cádiz, Spain
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
| | - Alba M. Diego
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
| | - Ariadni Bella
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Physiology, School of Medicine, University of Galway, Galway, Ireland
| | - Laura Boullon
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
| | - Esther Berrocoso
- Department of Neuroscience, Neuropsychopharmacology and Psychobiology Research Group, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Michelle Roche
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Physiology, School of Medicine, University of Galway, Galway, Ireland
| | - David P. Finn
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
| |
Collapse
|
42
|
Jarvis M, Hamzah KA, Nichols D, Ney LJ. Hair and Saliva Endocannabinoid and Steroid Hormone Analysis by Liquid Chromatography Paired with Tandem Mass Spectrometry. Methods Mol Biol 2025; 2868:135-147. [PMID: 39546229 DOI: 10.1007/978-1-0716-4200-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Endocannabinoids are lipid neurotransmitters that play an important part in human health. Recent methods have found that quantification of endocannabinoids in hair and saliva samples is possible using liquid chromatography paired with tandem mass spectrometry (LC-MS/MS). This chapter describes two simple sample preparation methods that can be used to prepare hair and saliva samples for analysis using LC-MS/MS. Our LC-MS/MS method can be applied to both hair and saliva samples and is sufficiently sensitive for endocannabinoid, as well as steroid hormone, quantification in both of these sample matrices. This chapter provides a comprehensive description of how this can be achieved and provides tips and tricks for troubleshooting problems users may experience.
Collapse
Affiliation(s)
- Madeline Jarvis
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Khalisa Amir Hamzah
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
43
|
Zhou F, Shi Y, Tan S, Wang X, Yuan W, Tao S, Xiang P, Cong B, Ma C, Wen D. Unveiling the toxicity of JWH-018 and JWH-019: Insights from behavioral and molecular studies in vivo and vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117500. [PMID: 39662456 DOI: 10.1016/j.ecoenv.2024.117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/16/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Due to the structural diversity and rapid prevalence of synthetic cannabinoids (SCs) in the market, the information linking the chemical structure of SCs to their toxicity remains scant, despite emerging in the 1970s. In the present study, we aimed to investigate the toxicity and underlying mechanisms of indole SCs JWH-018 and JWH-019 in mice (C57BL/6, male, 6-8 weeks old), zebrafish (AB strain, male, 4-5 months old) and modified human embryonic kidney (HEK) 293 T cells, using behavioral, pharmacokinetic, pharmacological approaches, and molecular docking. JWH-018 induced time- and dose-dependent cannabinoid-like effects in mice (administration dosages: 0.02, 0.1, and 0.5 mg/kg, i.p.), and yielded dose-dependent anxiogenic effects and lower aggression behavior in zebrafish (administration dosages: 0.01, 0.05, and 0.25 µg/g, i.p.), unlike JWH-019. These effects were blocked by the selective cannabinoid receptor 1 (CB1R) antagonist AM251. JWH-018, but not JWH-019, activated the CB1R-dependent extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway in vivo and in vitro. Molecular docking identified essential residues PHE268, PHE170, and TRP279 within CB1R as pivotal contributors to enhancing receptor-ligand associations. While both drugs had a similar binding pattern with shared linker binding pockets in CB1R, there were still differences in their spatial conformation. These findings shed light on the molecular pharmacology and activation mechanism of SCs for CB1R and should guide further research into the mechanisms underlying their deleterious effects in humans.
Collapse
Affiliation(s)
- Fenghua Zhou
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China; Clinical Pathology Department, Shandong Second Medical University, Shandong Province, Weifang, Shandong Province 261042, PR China
| | - Yan Shi
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Judicial Expertise, Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China
| | - Sujun Tan
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Xiaoli Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Weicheng Yuan
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Shuqi Tao
- Clinical Pathology Department, Shandong Second Medical University, Shandong Province, Weifang, Shandong Province 261042, PR China
| | - Ping Xiang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Judicial Expertise, Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province 050017, PR China.
| |
Collapse
|
44
|
Di Meo C, Tortolani D, Standoli S, Ciaramellano F, Angelucci BC, Tisi A, Kadhim S, Hsu E, Rapino C, Maccarrone M. Cannabinol modulates the endocannabinoid system and shows TRPV1-mediated anti-inflammatory properties in human keratinocytes. Biofactors 2025; 51:e2122. [PMID: 39275884 DOI: 10.1002/biof.2122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
Cannabinol (CBN) is a secondary metabolite of cannabis whose beneficial activity on inflammatory diseases of human skin has attracted increasing attention. Here, we sought to investigate the possible modulation by CBN of the major elements of the endocannabinoid system (ECS), in both normal and lipopolysaccharide-inflamed human keratinocytes (HaCaT cells). CBN was found to increase the expression of cannabinoid receptor 1 (CB1) at gene level and that of vanilloid receptor 1 (TRPV1) at protein level, as well as their functional activity. In addition, CBN modulated the metabolism of anandamide (AEA) and 2-arachidonoylglicerol (2-AG), by increasing the activities of N-acyl phosphatidylethanolamines-specific phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH)-the biosynthetic and degradative enzyme of AEA-and that of monoacylglycerol lipase (MAGL), the hydrolytic enzyme of 2-AG. CBN also affected keratinocyte inflammation by reducing the release of pro-inflammatory interleukin (IL)-8, IL-12, and IL-31 and increasing the release of anti-inflammatory IL-10. Of note, the release of IL-31 was mediated by TRPV1. Finally, the mitogen-activated protein kinases (MAPK) signaling pathway was investigated in inflamed keratinocytes, demonstrating a specific modulation of glycogen synthase kinase 3β (GSK3β) upon treatment with CBN, in the presence or not of distinct ECS-directed drugs. Overall, these results demonstrate that CBN modulates distinct ECS elements and exerts anti-inflammatory effects-remarkably via TRPV1-in human keratinocytes, thus holding potential for both therapeutic and cosmetic purposes.
Collapse
Affiliation(s)
- Camilla Di Meo
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Daniel Tortolani
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Sara Standoli
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | | | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Salam Kadhim
- InMed Pharmaceuticals Inc., Vancouver, BC, Canada
| | - Eric Hsu
- InMed Pharmaceuticals Inc., Vancouver, BC, Canada
| | - Cinzia Rapino
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
45
|
Hoekstra A, Giera M, Sánchez-López E. LC-MS/MS Quantification of Endocannabinoids in Tissues. Methods Mol Biol 2025; 2855:133-145. [PMID: 39354305 DOI: 10.1007/978-1-0716-4116-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Endocannabinoids (ECBs) are lipid-derived endogenous molecules with important physiological roles such as regulation of energy balance, immunity, or neural development. Quantitation of ECBs helps better understand their physiological role and modulation of biological processes. This chapter presents the simultaneous quantification of 14 ECBs and related molecules in the brain, liver, and muscle, as well as white and brown adipose tissue using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The dynamic range of the method has been tuned to cover the endogenous concentrations of these analytes given the fact that they are endogenously present at different orders of magnitude. Specifically, three groups are established: 0.5-5000 ng/mL for 2-oleoyl- and 2-linoleoylglycerol and arachidonic acid, 0.05-500 ng/mL for 2-arachidonoylglycerol, and 0.0005-0.5 ng/mL for anandamide, palmitoyl-, palmitoleoyl-, stearoyl-, oleoyl-, linoleoyl-, alpha-linolenoyl-, dihomo-gamma-linolenoyl-, docosahexaenoyl-, and pentadecanoylethanolamide.
Collapse
Affiliation(s)
- Anna Hoekstra
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- Endocrinology Department, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Sánchez-López
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
46
|
Cuevas AR, Tillman MC, Wang MC, Ortlund EA. Structural dynamics and binding of Caenorhabditis elegans lifespan-extending lipid binding protein-3 to polyunsaturated fatty acids. Protein Sci 2025; 34:e5249. [PMID: 39660930 PMCID: PMC11633055 DOI: 10.1002/pro.5249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
Intracellular lipid binding proteins (iLBPs) play crucial roles in lipid transport and cellular metabolism across the animal kingdom. Recently, a fat-to-neuron axis was described in Caenorhabditis elegans, in which lysosomal activity in the fat liberates polyunsaturated fatty acids (PUFAs) that signal to neurons and extend lifespan with durable fecundity. In this study, we investigate the structure and binding mechanisms of a lifespan-extending lipid chaperone, lipid binding protein-3 (LBP-3), which shuttles dihomo-γ-linolenic (DGLA) acid from intestinal fat to neurons. We present the first high-resolution crystal structure of LBP-3, which reveals a classic iLBP fold with an unexpected and unique homodimeric arrangement via interstrand interactions that is incompatible with ligand binding. We identify key ionic interactions that mediate DGLA binding within the lipid binding pocket. Molecular dynamics simulations further elucidate LBP-3's preferential binding to DGLA due to its rotational freedom and access to favorable binding conformations compared to other 20-carbon PUFAs. We also propose that LBP-3 dimerization may be a unique regulatory mechanism for lipid chaperones.
Collapse
Affiliation(s)
- André R. Cuevas
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Matthew C. Tillman
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Meng C. Wang
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVirginiaUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTexasUSA
| | - Eric A. Ortlund
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
47
|
Rock EM, Parker LA. The Role of Cannabinoids and the Endocannabinoid System in the Treatment and Regulation of Nausea and Vomiting. Curr Top Behav Neurosci 2024. [PMID: 39739175 DOI: 10.1007/7854_2024_554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Despite using the recommended anti-emetic treatments, control of nausea and vomiting is still an unmet need for cancer patients undergoing chemotherapy treatment. Few properly controlled clinical trials have evaluated the potential of exogenously administered cannabinoids or manipulations of the endogenous cannabinoid (eCB) system to treat nausea and vomiting. In this chapter, we explore the pre-clinical and human clinical trial evidence for the potential of exogenous cannabinoids and manipulations of the eCB system to reduce nausea and vomiting. Although there are limited high-quality human clinical trials, pre-clinical evidence suggests that cannabinoids and manipulations of the eCB system have anti-nausea/anti-emetic potential. The pre-clinical anti-nausea/anti-emetic evidence highlights the need for further evaluation of cannabinoids and manipulations of eCBs and other fatty acid amides in clinical trials.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
48
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
49
|
Simei JLQ, Souza JDR, Pedrazzi JF, Guimarães FS, Campos AC, Zuardi A, Hallak JEC, Crippa JAS. Research and Clinical Practice Involving the Use of Cannabis Products, with Emphasis on Cannabidiol: A Narrative Review. Pharmaceuticals (Basel) 2024; 17:1644. [PMID: 39770486 PMCID: PMC11677192 DOI: 10.3390/ph17121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Emerging evidence supports cannabidiol (CBD) as a promising therapeutic compound for various health conditions, despite its approval as a medication (product for medical purposes) remaining restricted to a limited range of clinical indications. Simultaneously, the regulation of cannabis-derived products for medicinal and recreational use has expanded their global market availability to meet local community demands. This scenario presents a complex challenge for clinicians, researchers, and industry, as the global appeal of therapeutic uses of CBD is growing more rapidly than the scientific evidence supporting its safety and effectiveness. OUTCOMES A narrative review was conducted to discuss the best evidence regarding the pharmacological profile of CBD, its efficacy, and safety within the context of regulation and perspectives on the development of new cannabinoid-based drugs. Key articles addressing the various facets of this issue were selected for comprehensive analysis. CONCLUSIONS Clinicians and researchers may face unique challenges in understanding the pharmacological profile of CBD and the prospects for developing its clinical indications, given the heterogeneity of clinical terminologies and the quality and composition of cannabis-based medical products available on the market. More basic and clinical research that complies with regulatory agencies' testing guidelines, such as good manufacturing practices (GMPs), good laboratory practices (GLPs), and good clinical practices (GCPs), is needed to obtain approval for CBD or any other cannabinoid as a therapeutic for broader clinical indications.
Collapse
Affiliation(s)
- João Luís Q. Simei
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (J.L.Q.S.); (J.D.R.S.); (J.F.P.); (A.Z.); (J.E.C.H.)
| | - José Diogo R. Souza
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (J.L.Q.S.); (J.D.R.S.); (J.F.P.); (A.Z.); (J.E.C.H.)
| | - João Francisco Pedrazzi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (J.L.Q.S.); (J.D.R.S.); (J.F.P.); (A.Z.); (J.E.C.H.)
| | - Francisco S. Guimarães
- National Institute for Science and Technology-Translational Medicine, Ribeirão Preto 14049-900, São Paulo, Brazil;
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil;
| | - Alline Cristina Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil;
| | - Antônio Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (J.L.Q.S.); (J.D.R.S.); (J.F.P.); (A.Z.); (J.E.C.H.)
- National Institute for Science and Technology-Translational Medicine, Ribeirão Preto 14049-900, São Paulo, Brazil;
| | - Jaime Eduardo C. Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (J.L.Q.S.); (J.D.R.S.); (J.F.P.); (A.Z.); (J.E.C.H.)
- National Institute for Science and Technology-Translational Medicine, Ribeirão Preto 14049-900, São Paulo, Brazil;
| | - José Alexandre S. Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (J.L.Q.S.); (J.D.R.S.); (J.F.P.); (A.Z.); (J.E.C.H.)
- National Institute for Science and Technology-Translational Medicine, Ribeirão Preto 14049-900, São Paulo, Brazil;
| |
Collapse
|
50
|
Murataeva N, Yust K, Mattox S, Du W, Straiker A. A Sex-Dependent Cannabinoid CB1 Receptor Role in Circadian Tearing of the Mouse. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 39630463 PMCID: PMC11622162 DOI: 10.1167/iovs.65.14.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/07/2024] [Indexed: 12/08/2024] Open
Abstract
Purpose We have shown that cannabinoid CB1 receptors regulate both salivation and tearing, but for tearing, this regulation is sex dependent with opposing effects by sex. We investigated a potential interplay of circadian and cannabinoid regulation of tearing. Methods We measured cannabinoid and circadian regulation of tearing in CD1 strain mice as well as CB1 receptor protein expression using immunohistochemistry. Results We now report that CD1 strain mice have a circadian variation in basal tearing, differing by sex in terms of phase and amplitude. The amplitude of circadian variation in females is substantially dampened relative to males. Male CB1 receptor knockout mice do not differ from strain controls, but in female CB1 knockouts, the amplitude is enhanced and resembles that of WT males. This increased tearing is mimicked by the CB1 antagonist SR141716 (4 mg/kg, intraperitoneally [IP]), suggesting that tonic CB1 activation dampens female circadian tearing. Consistent with this, the cannabinoid receptor agonist CP55940 (0.5 mg/kg, IP) decreases tearing during the rest phase but increases tearing during the active phase in females. CB1 protein expression also differs by sex. While both males and females have CB1 receptors in parasympathetic inputs to the lacrimal gland, in female lacrimal glands, CB1 is also detected in myoepithethial cells. Conclusions Mice have a sex-dependent circadian cycle of tearing. The endogenous cannabinoid signaling system appears to mediate some circadian effects, albeit in a sex-dependent manner and via distinct cellular targets.
Collapse
Affiliation(s)
- Natalia Murataeva
- The Gill Institute for Neuroscience, Indiana University, Bloomington, Indiana, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| | - Kyle Yust
- The Gill Institute for Neuroscience, Indiana University, Bloomington, Indiana, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| | - Sam Mattox
- The Gill Institute for Neuroscience, Indiana University, Bloomington, Indiana, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| | - Wenwen Du
- The Gill Institute for Neuroscience, Indiana University, Bloomington, Indiana, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
- Program in Neuroscience, Indiana University, Bloomington, Indiana, United States
| | - Alex Straiker
- The Gill Institute for Neuroscience, Indiana University, Bloomington, Indiana, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
- Program in Neuroscience, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|