1
|
Chang KT, Chen YC, Lien Y, Huang YH, Huang CY. Inhibition of RPA32 and Cytotoxic Effects of the Carnivorous Plant Sarracenia purpurea Root Extract in Non-Small-Cell Lung Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2025; 14:1426. [PMID: 40430991 PMCID: PMC12115182 DOI: 10.3390/plants14101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
The carnivorous plant Sarracenia purpurea has been traditionally used in various ethnobotanical applications, including treatments for type 2 diabetes and tuberculosis-like symptoms. This study investigates the cytotoxic effects of S. purpurea root extract (Sp-R) on human non-small-cell lung cancer (NSCLC) cell lines, including H1975, H838, and A549, focusing on its impact on cell survival, apoptosis, proliferation, and migration. Additionally, its ability to inhibit the single-stranded DNA-binding activity of human RPA32 (huRPA32), a key protein in DNA replication, was evaluated. Extracts from different plant parts (leaf, stem, and root) were prepared using various solvents (water, methanol, ethanol, and acetone) and screened for apoptosis-inducing potential using the chromatin condensation assay. Among these, the acetone-extracted root fraction (Sp-R-A) exhibited the most potent pro-apoptotic effects. The MTT assay demonstrated a dose-dependent cytotoxic effect on NSCLC cells, with IC50 values of 33.74 μg/mL for H1975, 60.79 μg/mL for H838, and 66.52 μg/mL for A549. Migration and clonogenic assays further revealed that Sp-R-A significantly inhibited cancer cell migration and colony formation in a dose-dependent manner. Moreover, Sp-R-A enhanced apoptosis when combined with the EGFR inhibitor afatinib, suggesting a potential synergistic effect. The electrophoretic mobility shift assay confirmed that Sp-R-A significantly inhibited the DNA-binding activity of huRPA32, with an IC50 of 13.6 μg/mL. AlphaFold structural prediction and molecular docking studies indicated that major bioactive compounds in S. purpurea, including α-amyrin, ursolic acid, and betulinaldehyde, strongly interact with the DNA-binding domain of huRPA32, potentially contributing to its inhibitory effect. Overall, these findings suggest that huRPA32 is a potential molecular target of Sp-R-A and the anticancer potential of S. purpurea root extract against NSCLC is highlighted, supporting further investigation into its therapeutic applications.
Collapse
Affiliation(s)
- Kuo-Ting Chang
- Division of Translational Medicine, Department of Research and Development, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Yu-Cheng Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
2
|
Darragh K, Kay KM, Ramírez SR. The Convergent Evolution of Hummingbird Pollination Results in Repeated Floral Scent Loss Through Gene Downregulation. Mol Biol Evol 2025; 42:msaf027. [PMID: 39899329 PMCID: PMC11848715 DOI: 10.1093/molbev/msaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025] Open
Abstract
The repeated evolution of the same trait in different lineages provides powerful natural experiments to study the phenotypic and genotypic predictability of trait gain and loss. A fascinating example is the repeated evolution of hummingbird pollination in plant lineages in the Americas, a widespread and often unidirectional phenomenon. The spiral gingers in the genus Costus are ancestrally bee pollinated, and hummingbird pollination has evolved multiple times independently in the tropical Americas. These pollinator transitions are accompanied by predictable morphological and color changes, but the changes in floral scent have not been described. In this study, we describe the floral scent composition of 30 species of Costus sampled across the phylogeny to understand how floral scent has evolved across the genus with respect to pollinator transitions. We then combine transcriptomics and genomics to identify gene expression differences and gene family evolution associated with pollinator transitions. We show that hummingbird-pollinated species have mostly lost their floral scent, whereas bee-pollinated species exhibit either floral scent maintenance or, in some cases, gains of more diverse scent profiles. We find the floral scent loss appears to be due to gene downregulation rather than pseudogenization. The remarkable consistency of scent loss in hummingbird-pollinated species highlights the shared strong selection pressures experienced by these lineages. Even species with more recent transitions from bee to hummingbird pollination exhibit scent loss, highlighting the rapid breakdown of scent emission following pollinator transitions. This research highlights the capacity for rapid changes when selection pressures are strong through downregulation of floral scent genes.
Collapse
Affiliation(s)
- Kathy Darragh
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Santiago R Ramírez
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Martín-Roca J, Barriuso G. CM, Martínez Fernández R, Betterelli Giuliano C, Zhang R, Valeriani C, Wilson LG. The carnivorous plant Genlisea harnesses active particle dynamics to prey on microfauna. Proc Natl Acad Sci U S A 2025; 122:e2409510121. [PMID: 39739813 PMCID: PMC11725881 DOI: 10.1073/pnas.2409510121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/16/2024] [Indexed: 01/02/2025] Open
Abstract
Carnivory in plants is an unusual trait that has arisen multiple times, independently, throughout evolutionary history. Plants in the genus Genlisea are carnivorous and feed on microorganisms that live in soil using modified subterranean leaf structures (rhizophylls). A surprisingly broad array of microfauna has been observed in the plants' digestive chambers, including ciliates, amoebae, and soil mites. Here, we show, through experiments and simulations, that Genlisea exploit active matter physics to "rectify" bacterial swimming and establish a local flux of bacteria through the structured environment of the rhizophyll toward the plant's digestion vesicle. In contrast, macromolecular digestion products are free to diffuse away from the digestion vesicle and establish a concentration gradient of carbon sources to draw larger microorganisms further inside the plant. Our experiments and simulations show that this mechanism is likely to be a localized one and that no large-scale efflux of digested matter is present.
Collapse
Affiliation(s)
- José Martín-Roca
- Departamento de Estructura de la Materia, Fisica Termica y Electronica, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Madrid28040, Spain
| | - C. Miguel Barriuso G.
- Departamento de Estructura de la Materia, Fisica Termica y Electronica, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Raúl Martínez Fernández
- Departamento de Estructura de la Materia, Fisica Termica y Electronica, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Madrid28040, Spain
| | | | - Rongjing Zhang
- Department of Physics, University of Science and Technology of China, Hefei230026, Anhui, China
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Fisica Termica y Electronica, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Laurence G. Wilson
- School of Physics, Engineering & Technology, University of York, Heslington, YorkYO10 5DD, United Kingdom
| |
Collapse
|
4
|
Puchalski K, Jacobs BL, Langland JO. In vitro evaluation of antiviral activity in carnivorous plant species. Virology 2024; 597:110144. [PMID: 38943782 DOI: 10.1016/j.virol.2024.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Sarracenia purpurea is a carnivorous plant historically used to treat smallpox infections. Our previous data found S. purpurea had broad spectrum antiviral activity in vitro. S. purpurea is one of several hundred identified carnivorous species of plants. Carnivorous plants have evolved through convergent evolution in at least ten independent events, usually in response to harsh environments where nutrition from prey is required for growth. These prey are known vectors of plant viruses that might introduce novel biotic stressors and defense pathways in carnivorous plants. This study evaluated the antiviral activity of several non-carnivorous and carnivorous plants from four evolutionarily distinct clades. Results demonstrated that carnivorous plants have evolved antiviral activity, a trait that is not present in related species of non-carnivorous plants. The antiviral trait may be due to the plant-prey relationship with insect vectors and an evolutionary need for carnivorous plants to have more robust antiviral defense systems.
Collapse
Affiliation(s)
- Keely Puchalski
- Sonoran University of Health Sciences, Ric Scalzo Institute for Botanical Research, Tempe, AZ, 85282, USA
| | - Bertram L Jacobs
- Biodesign Institute, Arizona State University, Tempe, AZ, 85287-5401, USA
| | - Jeffrey O Langland
- Sonoran University of Health Sciences, Ric Scalzo Institute for Botanical Research, Tempe, AZ, 85282, USA; Biodesign Institute, Arizona State University, Tempe, AZ, 85287-5401, USA.
| |
Collapse
|
5
|
Saul F, Scharmann M, Wakatake T, Rajaraman S, Marques A, Freund M, Bringmann G, Channon L, Becker D, Carroll E, Low YW, Lindqvist C, Gilbert KJ, Renner T, Masuda S, Richter M, Vogg G, Shirasu K, Michael TP, Hedrich R, Albert VA, Fukushima K. Subgenome dominance shapes novel gene evolution in the decaploid pitcher plant Nepenthes gracilis. NATURE PLANTS 2023; 9:2000-2015. [PMID: 37996654 DOI: 10.1038/s41477-023-01562-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/09/2023] [Indexed: 11/25/2023]
Abstract
Subgenome dominance after whole-genome duplication generates distinction in gene number and expression at the level of chromosome sets, but it remains unclear how this process may be involved in evolutionary novelty. Here we generated a chromosome-scale genome assembly of the Asian pitcher plant Nepenthes gracilis to analyse how its novel traits (dioecy and carnivorous pitcher leaves) are linked to genomic evolution. We found a decaploid karyotype and a clear indication of subgenome dominance. A male-linked and pericentromerically located region on the putative sex chromosome was identified in a recessive subgenome and was found to harbour three transcription factors involved in flower and pollen development, including a likely neofunctionalized LEAFY duplicate. Transcriptomic and syntenic analyses of carnivory-related genes suggested that the paleopolyploidization events seeded genes that subsequently formed tandem clusters in recessive subgenomes with specific expression in the digestive zone of the pitcher, where specialized cells digest prey and absorb derived nutrients. A genome-scale analysis suggested that subgenome dominance likely contributed to evolutionary innovation by permitting recessive subgenomes to diversify functions of novel tissue-specific duplicates. Our results provide insight into how polyploidy can give rise to novel traits in divergent and successful high-ploidy lineages.
Collapse
Affiliation(s)
- Franziska Saul
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Mathias Scharmann
- Institute for Biochemistry and Biology (IBB), University of Potsdam, Potsdam, Germany
| | - Takanori Wakatake
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Sitaram Rajaraman
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Matthias Freund
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Louisa Channon
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Emily Carroll
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yee Wen Low
- Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
| | | | - Kadeem J Gilbert
- Department of Plant Biology & W.K. Kellogg Biological Station & Program in Ecology, Evolution, and Behavior, Michigan State University, Hickory Corners, MI, USA
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Sachiko Masuda
- Riken Center for Sustainable Resource Science, Yokohama, Japan
| | - Michaela Richter
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Gerd Vogg
- Botanical Garden, University of Würzburg, Würzburg, Germany
| | - Ken Shirasu
- Riken Center for Sustainable Resource Science, Yokohama, Japan
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
6
|
Fleck SJ, Jobson RW. Molecular Phylogenomics Reveals the Deep Evolutionary History of Carnivory across Land Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3356. [PMID: 37836100 PMCID: PMC10574757 DOI: 10.3390/plants12193356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Plastid molecular phylogenies that broadly sampled angiosperm lineages imply that carnivorous plants evolved at least 11 times independently in 13 families and 6 orders. Within and between these clades, the different prey capture strategies involving flypaper and pitfall structures arose in parallel with the subsequent evolution of snap traps and suction bladders. Attempts to discern the deep ontological history of carnivorous structures using multigene phylogenies have provided a plastid-level picture of sister relationships at the family level. Here, we present a molecular phylogeny of the angiosperms based on nuclear target sequence capture data (Angiosperms-353 probe set), assembled by the Kew Plant Trees of Life initiative, which aims to complete the tree of life for plants. This phylogeny encompasses all carnivorous and protocarnivorous families, although certain genera such as Philcoxia (Plantaginaceae) are excluded. This study offers a novel nuclear gene-based overview of relationships within and between carnivorous families and genera. Consistent with previous broadly sampled studies, we found that most carnivorous families are not affiliated with any single family. Instead, they emerge as sister groups to large clades comprising multiple non-carnivorous families. Additionally, we explore recent genomic studies across various carnivorous clades that examine the evolution of the carnivorous syndrome in relation to whole-genome duplication, subgenome dominance, small-scale gene duplication, and convergent evolution. Furthermore, we discuss insights into genome size evolution through the lens of carnivorous plant genomes.
Collapse
Affiliation(s)
- Steven J. Fleck
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Richard W. Jobson
- National Herbarium of New South Wales, Botanic Gardens of Sydney, Locked Bag 6002, Mount Annan, NSW 2567, Australia
| |
Collapse
|
7
|
Baldwin E, McNair M, Leebens-Mack J. Rampant chloroplast capture in Sarracenia revealed by plastome phylogeny. FRONTIERS IN PLANT SCIENCE 2023; 14:1237749. [PMID: 37711293 PMCID: PMC10497973 DOI: 10.3389/fpls.2023.1237749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Abstract
Introgression can produce novel genetic variation in organisms that hybridize. Sympatric species pairs in the carnivorous plant genus Sarracenia L. frequently hybridize, and all known hybrids are fertile. Despite being a desirable system for studying the evolutionary consequences of hybridization, the extent to which introgression occurs in the genus is limited to a few species in only two field sites. Previous phylogenomic analysis of Sarracenia estimated a highly resolved species tree from 199 nuclear genes, but revealed a plastid genome that is highly discordant with the species tree. Such cytonuclear discordance could be caused by chloroplast introgression (i.e. chloroplast capture) or incomplete lineage sorting (ILS). To better understand the extent to which introgression is occurring in Sarracenia, the chloroplast capture and ILS hypotheses were formally evaluated. Plastomes were assembled de-novo from sequencing reads generated from 17 individuals in addition to reads obtained from the previous study. Assemblies of 14 whole plastomes were generated and annotated, and the remaining fragmented assemblies were scaffolded to these whole-plastome assemblies. Coding sequence from 79 homologous genes were aligned and concatenated for maximum-likelihood phylogeny estimation. The plastome tree is extremely discordant with the published species tree. Plastome trees were simulated under the coalescent and tree distance from the species tree was calculated to generate a null distribution of discordance that is expected under ILS alone. A t-test rejected the null hypothesis that ILS could cause the level of discordance seen in the plastome tree, suggesting that chloroplast capture must be invoked to explain the discordance. Due to the extreme level of discordance in the plastome tree, it is likely that chloroplast capture has been common in the evolutionary history of Sarracenia.
Collapse
Affiliation(s)
- Ethan Baldwin
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Mason McNair
- Department of Plant & Environmental Science, Clemson University, Florence, SC, United States
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Bittleston LS, Wolock CJ, Maeda J, Infante V, Ané JM, Pierce NE, Pringle A. Carnivorous Nepenthes Pitchers with Less Acidic Fluid House Nitrogen-Fixing Bacteria. Appl Environ Microbiol 2023; 89:e0081223. [PMID: 37338413 PMCID: PMC10370301 DOI: 10.1128/aem.00812-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
Carnivorous pitcher plants are uniquely adapted to nitrogen limitation, using pitfall traps to acquire nutrients from insect prey. Pitcher plants in the genus Sarracenia may also use nitrogen fixed by bacteria inhabiting the aquatic microcosms of their pitchers. Here, we investigated whether species of a convergently evolved pitcher plant genus, Nepenthes, might also use bacterial nitrogen fixation as an alternative strategy for nitrogen capture. First, we constructed predicted metagenomes of pitcher organisms from three species of Singaporean Nepenthes using 16S rRNA sequence data and correlated predicted nifH abundances with metadata. Second, we used gene-specific primers to amplify and quantify the presence or absence of nifH directly from 102 environmental samples and identified potential diazotrophs with significant differential abundance in samples that also had positive nifH PCR tests. Third, we analyzed nifH in eight shotgun metagenomes from four additional Bornean Nepenthes species. Finally, we conducted an acetylene reduction assay using greenhouse-grown Nepenthes pitcher fluids to confirm nitrogen fixation is indeed possible within the pitcher habitat. Results show active acetylene reduction can occur in Nepenthes pitcher fluid. Variation in nifH from wild samples correlates with Nepenthes host species identity and pitcher fluid acidity. Nitrogen-fixing bacteria are associated with more neutral fluid pH, while endogenous Nepenthes digestive enzymes are most active at low fluid pH. We hypothesize Nepenthes species experience a trade-off in nitrogen acquisition; when fluids are acidic, nitrogen is primarily acquired via plant enzymatic degradation of insects, but when fluids are neutral, Nepenthes plants take up more nitrogen via bacterial nitrogen fixation. IMPORTANCE Plants use different strategies to obtain the nutrients that they need to grow. Some plants access their nitrogen directly from the soil, while others rely on microbes to access the nitrogen for them. Carnivorous pitcher plants generally trap and digest insect prey, using plant-derived enzymes to break down insect proteins and generate a large portion of the nitrogen that they subsequently absorb. In this study, we present results suggesting that bacteria living in the fluids formed by Nepenthes pitcher plants can fix nitrogen directly from the atmosphere, providing an alternative pathway for plants to access nitrogen. These nitrogen-fixing bacteria are only likely to be present when pitcher plant fluids are not strongly acidic. Interestingly, the plant's enzymes are known to be more active under strongly acidic conditions. We propose a potential trade-off where pitcher plants sometimes access nitrogen using their own enzymes to digest prey and at other times take advantage of bacterial nitrogen fixation.
Collapse
Affiliation(s)
- Leonora S. Bittleston
- Department of Biological Sciences, Boise State University, Boise, Idaho, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Charles J. Wolock
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Agronomy, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Anne Pringle
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Botany, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Lin ES, Huang YH, Chung JC, Su HH, Huang CY. The Inhibitory Effects and Cytotoxic Activities of the Stem Extract of Nepenthes miranda against Single-Stranded DNA-Binding Protein and Oral Carcinoma Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112188. [PMID: 37299167 DOI: 10.3390/plants12112188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
The carnivorous pitcher plants of the genus Nepenthes exhibit many ethnobotanical uses, including treatments of stomachache and fever. In this study, we prepared different extracts from the pitcher, stem, and leaf extracts of Nepenthes miranda obtained using 100% methanol and analyzed their inhibitory effects on recombinant single-stranded DNA-binding protein (SSB) from Klebsiella pneumoniae (KpSSB). SSB is essential for DNA replication and cell survival and thus an attractive target for potential antipathogen chemotherapy. Different extracts prepared from Sinningia bullata, a tuberous member of the flowering plant family Gesneriaceae, were also used to investigate anti-KpSSB properties. Among these extracts, the stem extract of N. miranda exhibited the highest anti-KpSSB activity with an IC50 value of 15.0 ± 1.8 μg/mL. The cytotoxic effects of the stem extract of N. miranda on the survival and apoptosis of the cancer cell lines Ca9-22 gingival carcinoma, CAL27 oral adenosquamous carcinoma, PC-9 pulmonary adenocarcinoma, B16F10 melanoma, and 4T1 mammary carcinoma cells were also demonstrated and compared. Based on collective data, the cytotoxic activities of the stem extract at a concentration of 20 μg/mL followed the order Ca9-22 > CAL27 > PC9 > 4T1 > B16F10 cells. The stem extract of N. miranda at a concentration of 40 μg/mL completely inhibited Ca9-22 cell migration and proliferation. In addition, incubation with this extract at a concentration of 20 μg/mL boosted the distribution of the G2 phase from 7.9% to 29.2% in the Ca9-22 cells; in other words, the stem extract might suppress Ca9-22 cell proliferation by inducing G2 cell cycle arrest. Through gas chromatography-mass spectrometry, the 16 most abundant compounds in the stem extract of N. miranda were tentatively identified. The 10 most abundant compounds in the stem extract of N. miranda were used for docking analysis, and their docking scores were compared. The binding capacity of these compounds was in the order sitosterol > hexadecanoic acid > oleic acid > plumbagin > 2-ethyl-3-methylnaphtho[2,3-b]thiophene-4,9-dione > methyl α-d-galactopyranoside > 3-methoxycatechol > catechol > pyrogallol > hydroxyhydroquinone; thus, sitosterol might exhibit the greatest inhibitory capacity against KpSSB among the selected compounds. Overall, these results may indicate the pharmacological potential of N. miranda for further therapeutic applications.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Jo-Chi Chung
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
10
|
Lustofin K, Świątek P, Miranda VFO, Płachno BJ. Phylogenetical Position versus Pollination Syndromes: Floral Trichomes of Central American and Mexican Pinguicula. Int J Mol Sci 2023; 24:ijms24098423. [PMID: 37176130 PMCID: PMC10179228 DOI: 10.3390/ijms24098423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Central American and Mexican Pinguicula species are characterized by enormous divergence in size and color of flowers and are pollinated by butterflies, flies, bees, and hummingbirds. It is known that floral trichomes are key characters in plant-pollinator interaction. The main aim of our study was to verify our hypothesis that the distribution and diversity of non-glandular and glandular trichomes are related to the pollinator syndromes rather than the phylogenetic relationships. The studied sample consisted of Central American and Mexican species. In our study, we relied on light microscopy and scanning electron microscopy with a phylogenetic perspective based on ITS DNA sequences. The flower morphology of species pollinated by butterflies and hummingbirds was similar in contrast to species pollinated by flies and bees. Species pollinated by butterflies and hummingbirds contained low diversity of non-glandular trichomes, which occurred mostly in the tube and basal part of the spur. Surprisingly, in P. esseriana and P. mesophytica, non-glandular trichomes also occurred at the base of lower lip petals. In the case of species pollinated by flies/bees, we observed a high variety of non-glandular trichomes, which occurred on the surface of corolla petals, in the tube, and at the entrance to the spur. Furthermore, we did not identify any non-glandular trichomes in the spur. The capitate glandular trichomes were of similar morphology in all examined species. There were minor differences in the shape of the trichome head, as well as the length and the number of stalk cells. The distribution and the diversity of non-glandular and glandular trichomes and pollinator syndromes were mapped onto a phylogenetic reconstruction of the genus. Most micromorphological characters appear to be associated more with floral adaptation to pollinators and less with phylogeny.
Collapse
Affiliation(s)
- Krzysztof Lustofin
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Cracow, 9 Gronostajowa St., 30-387 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Cracow, Poland
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland
| | - Vitor F O Miranda
- Laboratory of Plant Systematics, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Cracow, 9 Gronostajowa St., 30-387 Cracow, Poland
| |
Collapse
|
11
|
Carnivorous Plants from Nepenthaceae and Droseraceae as a Source of Secondary Metabolites. Molecules 2023; 28:molecules28052155. [PMID: 36903400 PMCID: PMC10004607 DOI: 10.3390/molecules28052155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Carnivorous plants are able to attract small animals or protozoa and retain them in their specialized traps. Later, the captured organisms are killed and digested. The nutrients contained in the prey bodies are absorbed by the plants to use for growth and reproduction. These plants produce many secondary metabolites involved in the carnivorous syndrome. The main purpose of this review was to provide an overview of the secondary metabolites in the family Nepenthaceae and Droseraceae, which were studied using modern identification techniques, i.e., high-performance liquid chromatography or ultra-high-performance liquid chromatography with mass spectrometry and nuclear magnetic resonance spectroscopy. After literature screening, there is no doubt that tissues of species from the genera Nepenthes, Drosera, and Dionaea are rich sources of secondary metabolites that can be used in pharmacy and for medical purposes. The main types of the identified compounds include phenolic acids and their derivatives (gallic, protocatechuic, chlorogenic, ferulic, p-coumaric acids, gallic, hydroxybenzoic, vanillic, syringic caffeic acids, and vanillin), flavonoids (myricetin, quercetin, and kaempferol derivatives), including anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, and cyanidin), naphthoquinones (e.g., plumbagin, droserone, and 5-O-methyl droserone), and volatile organic compounds. Due to the biological activity of most of these substances, the importance of the carnivorous plant as a pharmaceutical crop will increase.
Collapse
|
12
|
Wal A, Staszek P, Pakula B, Paradowska M, Krasuska U. ROS and RNS Alterations in the Digestive Fluid of Nepenthes × ventrata Trap at Different Developmental Stages. PLANTS (BASEL, SWITZERLAND) 2022; 11:3304. [PMID: 36501343 PMCID: PMC9740137 DOI: 10.3390/plants11233304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The carnivorous pitcher plant, Nepenthes × ventrata (Hort. ex Fleming = N. ventricosa Blanco × N. alata Blanco), produces passive traps containing digestive fluid. Although reactive oxygen species (ROS) in the fluid were detected in some pitcher plants, the participation of reactive nitrogen species (RNS) in the digestion process has not yet been examined. The aim of this work was to investigate the production of superoxide anion (O2•-), nitric oxide (NO) and peroxynitrite (ONOO-) levels in the digestive fluid of traps throughout organ development. We revealed the ROS and RNS occurrence in the digestive fluid, linked to the ROS-scavenging capacity and total phenolics content. In digestive fluid from the fed traps, NO emission was higher than in the fluid from the developed unfed pitcher. The concentration of nitrite (NO2-) decreased in the fluid from the fed traps in comparison to the unfed ones, pointing at NO2- as the key source of NO. The enhanced emission of NO was associated with lowered content of ONOO- in the fluid, probably due to lower production of O2•-. At the same time, despite a decline in total phenolics, the maximum ROS scavenging capacity was detected. In addition, ROS and RNS were noted even in closed traps, suggesting their involvement not only in digestion per se but also their action as signaling agents in trap ontogeny.
Collapse
Affiliation(s)
- Agnieszka Wal
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | | | | | | | | |
Collapse
|
13
|
Freund M, Graus D, Fleischmann A, Gilbert KJ, Lin Q, Renner T, Stigloher C, Albert VA, Hedrich R, Fukushima K. The digestive systems of carnivorous plants. PLANT PHYSIOLOGY 2022; 190:44-59. [PMID: 35604105 PMCID: PMC9434158 DOI: 10.1093/plphys/kiac232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/08/2022] [Indexed: 05/19/2023]
Abstract
To survive in the nutrient-poor habitats, carnivorous plants capture small organisms comprising complex substances not suitable for immediate reuse. The traps of carnivorous plants, which are analogous to the digestive systems of animals, are equipped with mechanisms for the breakdown and absorption of nutrients. Such capabilities have been acquired convergently over the past tens of millions of years in multiple angiosperm lineages by modifying plant-specific organs including leaves. The epidermis of carnivorous trap leaves bears groups of specialized cells called glands, which acquire substances from their prey via digestion and absorption. The digestive glands of carnivorous plants secrete mucilage, pitcher fluids, acids, and proteins, including digestive enzymes. The same (or morphologically distinct) glands then absorb the released compounds via various membrane transport proteins or endocytosis. Thus, these glands function in a manner similar to animal cells that are physiologically important in the digestive system, such as the parietal cells of the stomach and intestinal epithelial cells. Yet, carnivorous plants are equipped with strategies that deal with or incorporate plant-specific features, such as cell walls, epidermal cuticles, and phytohormones. In this review, we provide a systematic perspective on the digestive and absorptive capacity of convergently evolved carnivorous plants, with an emphasis on the forms and functions of glands.
Collapse
Affiliation(s)
- Matthias Freund
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Dorothea Graus
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Andreas Fleischmann
- Botanische Staatssammlung München and GeoBio-Center LMU, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kadeem J Gilbert
- Department of Plant Biology & W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, USA
| | - Qianshi Lin
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christian Stigloher
- Imaging Core Facility of the Biocenter, University of Würzburg, Würzburg, Germany
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260, USA
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Illuminating protist diversity in pitcher plants and bromeliad tanks. PLoS One 2022; 17:e0270913. [PMID: 35895712 PMCID: PMC9328516 DOI: 10.1371/journal.pone.0270913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
Many species of plants have evolved structures called phytotelmata that store water and trap detritus and prey. These structures house diverse communities of organisms, the inquiline microbiome, that aids breakdown of litter and prey. The invertebrate and bacterial food webs in these systems are well characterized, but less is known about microbial eukaryotic community dynamics. In this study we focus on microbes in the SAR clade (Stramenopila, Alveolata, Rhizaria) inhabiting phytotelmata. Using small subunit rDNA amplicon sequencing from repeated temporal and geographic samples of wild and cultivated plants across the Northeast U.S.A., we demonstrate that communities are variable within and between host plant type. Across habitats, communities from tropical bromeliads grown in a single room of a greenhouse were nearly as heterogeneous as wild pitcher plants spread across hundreds of kilometers. At the scale of pitcher plants in a single bog, analyses of samples from three time points suggest that seasonality is a major driver of protist community structure, with variable spring communities transitioning to more homogeneous communities that resemble the surrounding habitat. Our results indicate that protist communities in phytotelmata are variable, likely due to stochastic founder events and colonization/competition dynamics, leading to tremendous heterogeneity in inquiline microeukaryotic communities.
Collapse
|
15
|
Phylogenetic relationships in Indian Daphne (Thymelaeaceae) based on nuclear ITS and cpDNAdata. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Bittleston LS, Benson EL, Bernardin JR, Pierce NE. Characterization and Comparison of Convergence Among Cephalotus follicularis Pitcher Plant-Associated Communities With Those of Nepenthes and Sarracenia Found Worldwide. FRONTIERS IN PLANT SCIENCE 2022; 13:887635. [PMID: 35734258 PMCID: PMC9207445 DOI: 10.3389/fpls.2022.887635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/13/2022] [Indexed: 05/09/2023]
Abstract
The Albany pitcher plant, Cephalotus follicularis, has evolved cup-shaped leaves and a carnivorous habit completely independently from other lineages of pitcher plants. It is the only species in the family Cephalotaceae and is restricted to a small region of Western Australia. Here, we used metabarcoding to characterize the bacterial and eukaryotic communities living in C. follicularis pitchers at two different sites. Bacterial and eukaryotic communities were correlated in both richness and composition; however, the factors associated with richness were not the same across bacteria and eukaryotes, with bacterial richness differing with fluid color, and eukaryotic richness differing with the concentration of DNA extracted from the fluid, a measure roughly related to biomass. For turnover in composition, the variation in both bacterial and eukaryotic communities primarily differed with fluid acidity, fluid color, and sampling site. We compared C. follicularis-associated community diversity with that of Australian Nepenthes mirabilis, as well as a global comparison of Southeast Asian Nepenthes and North American Sarracenia. Our results showed similarity in richness with communities from other pitcher plants, and specific bacterial taxa shared among all three independent lineages of pitcher plants. Overall, we saw convergence in richness and particular clades colonizing pitcher plants around the world, suggesting that these highly specialized habitats select for certain numbers and types of inhabitants.
Collapse
Affiliation(s)
- Leonora S. Bittleston
- Department of Biological Sciences, Boise State University, Boise, ID, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- *Correspondence: Leonora S. Bittleston,
| | - Elizabeth L. Benson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Jessica R. Bernardin
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
17
|
Böhm J, Scherzer S. Signaling and transport processes related to the carnivorous lifestyle of plants living on nutrient-poor soil. PLANT PHYSIOLOGY 2021; 187:2017-2031. [PMID: 35235668 PMCID: PMC8890503 DOI: 10.1093/plphys/kiab297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/04/2021] [Indexed: 05/29/2023]
Abstract
In Eukaryotes, long-distance and rapid signal transmission is required in order to be able to react fast and flexibly to external stimuli. This long-distance signal transmission cannot take place by diffusion of signal molecules from the site of perception to the target tissue, as their speed is insufficient. Therefore, for adequate stimulus transmission, plants as well as animals make use of electrical signal transmission, as this can quickly cover long distances. This update summarises the most important advances in plant electrical signal transduction with a focus on the carnivorous Venus flytrap. It highlights the different types of electrical signals, examines their underlying ion fluxes and summarises the carnivorous processes downstream of the electrical signals.
Collapse
Affiliation(s)
- Jennifer Böhm
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| |
Collapse
|
18
|
Carnivorous Nepenthes x ventrata plants use a naphthoquinone as phytoanticipin against herbivory. PLoS One 2021; 16:e0258235. [PMID: 34679089 PMCID: PMC8535358 DOI: 10.1371/journal.pone.0258235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023] Open
Abstract
Carnivorous plants feed on animal prey, mainly insects, to get additional nutrients. This carnivorous syndrome is widely investigated and reported. In contrast, reports on herbivores feeding on carnivorous plants and related defenses of the plants under attack are rare. Here, we studied the interaction of a pitcher plant, Nepenthes x ventrata, with a generalist lepidopteran herbivore, Spodoptera littoralis, using a combination of LC/MS-based chemical analytics, choice and feeding assays. Chemical defenses in N. x ventrata leaves were analyzed upon S. littoralis feeding. A naphthoquinone, plumbagin, was identified in Nepenthes defense against herbivores and as the compound mainly responsible for the finding that S. littoralis larvae gained almost no weight when feeding on Nepenthes leaves. Plumbagin is constitutively present but further 3-fold increased upon long-term (> 1 day) feeding. Moreover, in parallel de novo induced trypsin protease inhibitor (TI) activity was identified. In contrast to TI activity, enhanced plumbagin levels were not phytohormone inducible, not even by defense-related jasmonates although upon herbivory their level increased more than 50-fold in the case of the bioactive jasmonic acid-isoleucine. We conclude that Nepenthes is efficiently protected against insect herbivores by naphthoquinones acting as phytoanticipins, which is supported by additional inducible defenses. The regulation of these defenses remains to be investigated.
Collapse
|
19
|
Hatcher CR, Sommer U, Heaney LM, Millett J. Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis. ANNALS OF BOTANY 2021; 128:301-314. [PMID: 34077503 PMCID: PMC8389465 DOI: 10.1093/aob/mcab065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Secondary metabolites are integral to multiple key plant processes (growth regulation, pollinator attraction and interactions with conspecifics, competitors and symbionts) yet their role in plant adaptation remains an underexplored area of research. Carnivorous plants use secondary metabolites to acquire nutrients from prey, but the extent of the role of secondary metabolites in plant carnivory is not known. We aimed to determine the extent of the role of secondary metabolites in facilitating carnivory of the Cape sundew, Drosera capensis. METHODS We conducted metabolomic analysis of 72 plants in a time-series experiment before and after simulated prey capture. We used ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and the retention time index to identify compounds in the leaf trap tissue that changed up to 72 h following simulated prey capture. We identified associated metabolic pathways, and cross-compared these compounds with metabolites previously known to be involved in carnivorous plants across taxa. KEY RESULTS For the first time in a carnivorous plant, we have profiled the whole-leaf metabolome response to prey capture. Reliance on secondary plant metabolites was higher than previously thought - 2383 out of 3257 compounds in fed leaves had statistically significant concentration changes in comparison with unfed controls. Of these, ~34 compounds are also associated with carnivory in other species; 11 are unique to Nepenthales. At least 20 compounds had 10-fold changes in concentration, 12 of which had 30-fold changes and are typically associated with defence or attraction in non-carnivorous plants. CONCLUSIONS Secondary plant metabolites are utilized in plant carnivory to an extent greater than previously thought - we found a whole-metabolome response to prey capture. Plant carnivory, at the metabolic level, likely evolved from at least two distinct functions: attraction and defence. Findings of this study support the hypothesis that secondary metabolites play an important role in plant diversification and adaptation to new environments.
Collapse
Affiliation(s)
- Christopher R Hatcher
- Loughborough University, Loughborough, UK
- Agri-Tech Centre, Pershore College, Part of WCG, Pershore, UK
| | - Ulf Sommer
- Biocrates Life Sciences AG, Innsbruck, Austria
| | - Liam M Heaney
- Agri-Tech Centre, Pershore College, Part of WCG, Pershore, UK
| | | |
Collapse
|
20
|
Cheng Z, Fang Q, Wang F, Long CL. Utricularia lihengiae (Lentibulariaceae), a new species from Northwest Yunnan, China. PHYTOKEYS 2021; 177:17-24. [PMID: 33958946 PMCID: PMC8093183 DOI: 10.3897/phytokeys.177.63346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Utricularia lihengiae, a new species from the Dulongjiang region of northwest Yunnan, China, is here described and illustrated. The new species belongs to the section Oligocista and is similar to U. bifida L. and U. scandens Benj., from which it can be easily distinguished by the dark purple stripe on the corolla. The new species also differs in its shorter inflorescence and the shape of the calyx lobes.
Collapse
Affiliation(s)
- Zhuo Cheng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, ChinaMinzu University of ChinaBeijingChina
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, ChinaMinistry of EducationBeijingChina
| | - Qiong Fang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, ChinaMinzu University of ChinaBeijingChina
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, ChinaMinistry of EducationBeijingChina
| | - Fei Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, ChinaMinzu University of ChinaBeijingChina
| | - Chun-Lin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, ChinaMinzu University of ChinaBeijingChina
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, ChinaMinistry of EducationBeijingChina
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 10 0081, ChinaNational Ethnic Affairs CommissionBeijingChina
| |
Collapse
|
21
|
Arai N, Ohno Y, Jumyo S, Hamaji Y, Ohyama T. Organ-specific expression and epigenetic traits of genes encoding digestive enzymes in the lance-leaf sundew (Drosera adelae). JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1946-1961. [PMID: 33247920 PMCID: PMC7921302 DOI: 10.1093/jxb/eraa560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/25/2020] [Indexed: 05/16/2023]
Abstract
Over the last two decades, extensive studies have been performed at the molecular level to understand the evolution of carnivorous plants. As fruits, the repertoire of protein components in the digestive fluids of several carnivorous plants have gradually become clear. However, the quantitative aspects of these proteins and the expression mechanisms of the genes that encode them are still poorly understood. In this study, using the Australian sundew Drosera adelae, we identified and quantified the digestive fluid proteins. We examined the expression and methylation status of the genes corresponding to major hydrolytic enzymes in various organs; these included thaumatin-like protein, S-like RNase, cysteine protease, class I chitinase, β-1, 3-glucanase, and hevein-like protein. The genes encoding these proteins were exclusively expressed in the glandular tentacles. Furthermore, the promoters of the β-1, 3-glucanase and cysteine protease genes were demethylated only in the glandular tentacles, similar to the previously reported case of the S-like RNase gene da-I. This phenomenon correlated with high expression of the DNA demethylase DEMETER in the glandular tentacles, strongly suggesting that it performs glandular tentacle-specific demethylation of the genes. The current study strengthens and generalizes the relevance of epigenetics to trap organ-specific gene expression in D. adelae. We also suggest similarities between the trap organs of carnivorous plants and the roots of non-carnivorous plants.
Collapse
Affiliation(s)
- Naoki Arai
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Ohno
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shinya Jumyo
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Hamaji
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Takashi Ohyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
- Correspondence:
| |
Collapse
|
22
|
Dkhar J, Bhaskar YK, Lynn A, Pareek A. Pitchers of Nepenthes khasiana express several digestive-enzyme encoding genes, harbor mostly fungi and probably evolved through changes in the expression of leaf polarity genes. BMC PLANT BIOLOGY 2020; 20:524. [PMID: 33203377 PMCID: PMC7672872 DOI: 10.1186/s12870-020-02663-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/23/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND A structural phenomenon seen in certain lineages of angiosperms that has captivated many scholars including Charles Darwin is the evolution of plant carnivory. Evidently, these structural features collectively termed carnivorous syndrome, evolved to aid nutritional acquisition from attracted, captured and digested prey. We now understand why plant carnivory evolved but how carnivorous plants acquired these attributes remains a mystery. In an attempt to understand the evolution of Nepenthes pitcher and to shed more light on its role in prey digestion, we analyzed the transcriptome data of the highly specialized Nepenthes khasiana leaf comprising the leaf base lamina, tendril and the different parts/zones of the pitcher tube viz. digestive zone, waxy zone and lid. RESULTS In total, we generated around 262 million high-quality Illumina reads. Reads were pooled, normalized and de novo assembled to generate a reference transcriptome of about 412,224 transcripts. We then estimated transcript abundance along the N. khasiana leaf by mapping individual reads from each part/zone to the reference transcriptome. Correlation-based hierarchical clustering analysis of 27,208 commonly expressed genes indicated functional relationship and similar cellular processes underlying the development of the leaf base and the pitcher, thereby implying that the Nepenthes pitcher is indeed a modified leaf. From a list of 2386 differentially expressed genes (DEGs), we identified transcripts encoding key enzymes involved in prey digestion and protection against pathogen attack, some of which are expressed at high levels in the digestive zone. Interestingly, many of these enzyme-encoding genes are also expressed in the unopened N. khasiana pitcher. Transcripts showing homology to both bacteria and fungi were also detected; and in the digestive zone, fungi are more predominant as compared to bacteria. Taking cues from histology and scanning electron microscopy (SEM) photomicrographs, we found altered expressions of key regulatory genes involved in leaf development. Of particular interest, the expression of class III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIPIII) and ARGONAUTE (AGO) genes were upregulated in the tendril. CONCLUSIONS Our findings suggest that N. khasiana pitchers employ a wide range of enzymes for prey digestion and plant defense, harbor microbes and probably evolved through altered expression of leaf polarity genes.
Collapse
Affiliation(s)
- Jeremy Dkhar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061 India
| | - Yogendra Kumar Bhaskar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Andrew Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
23
|
Palfalvi G, Hackl T, Terhoeven N, Shibata TF, Nishiyama T, Ankenbrand M, Becker D, Förster F, Freund M, Iosip A, Kreuzer I, Saul F, Kamida C, Fukushima K, Shigenobu S, Tamada Y, Adamec L, Hoshi Y, Ueda K, Winkelmann T, Fuchs J, Schubert I, Schwacke R, Al-Rasheid K, Schultz J, Hasebe M, Hedrich R. Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory. Curr Biol 2020; 30:2312-2320.e5. [PMID: 32413308 PMCID: PMC7308799 DOI: 10.1016/j.cub.2020.04.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Most plants grow and develop by taking up nutrients from the soil while continuously under threat from foraging animals. Carnivorous plants have turned the tables by capturing and consuming nutrient-rich animal prey, enabling them to thrive in nutrient-poor soil. To better understand the evolution of botanical carnivory, we compared the draft genome of the Venus flytrap (Dionaea muscipula) with that of its aquatic sister, the waterwheel plant Aldrovanda vesiculosa, and the sundew Drosera spatulata. We identified an early whole-genome duplication in the family as source for carnivory-associated genes. Recruitment of genes to the trap from the root especially was a major mechanism in the evolution of carnivory, supported by family-specific duplications. Still, these genomes belong to the gene poorest land plants sequenced thus far, suggesting reduction of selective pressure on different processes, including non-carnivorous nutrient acquisition. Our results show how non-carnivorous plants evolved into the most skillful green hunters on the planet.
Collapse
Affiliation(s)
- Gergo Palfalvi
- National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Thomas Hackl
- Department for Bioinformatics, Biocenter, University Würzburg, Am Hubland, 97074 Würzburg, Germany; Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Niklas Terhoeven
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; Center for Computational and Theoretical Biology, Faculty for Biology, University Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | | | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan
| | - Markus Ankenbrand
- Department for Bioinformatics, Biocenter, University Würzburg, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, Faculty for Biology, University Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Frank Förster
- Department for Bioinformatics, Biocenter, University Würzburg, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, Faculty for Biology, University Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Matthias Freund
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; Center for Computational and Theoretical Biology, Faculty for Biology, University Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Anda Iosip
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; Center for Computational and Theoretical Biology, Faculty for Biology, University Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Franziska Saul
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; Center for Computational and Theoretical Biology, Faculty for Biology, University Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Chiharu Kamida
- National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Kenji Fukushima
- National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan; Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Yosuke Tamada
- National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan; School of Engineering, Utsunomiya University, Utsunomiya 321-8585, Japan
| | - Lubomir Adamec
- Department of Functional Ecology, Institute of Botany CAS, 379 01 Třeboň, Czech Republic
| | - Yoshikazu Hoshi
- Department of Plant Science, School of Agriculture, Tokai University, Kumamoto 862-8652, Japan
| | - Kunihiko Ueda
- Faculty of Education, Gifu University, Gifu 501-1193, Japan
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Woody Plant and Propagation Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Rainer Schwacke
- Institute of Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Corrensstraße 3, 06466 Gatersleben, Germany
| | - Khaled Al-Rasheid
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jörg Schultz
- Department for Bioinformatics, Biocenter, University Würzburg, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, Faculty for Biology, University Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany.
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan.
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany.
| |
Collapse
|
24
|
Kocáb O, Jakšová J, Novák O, Petřík I, Lenobel R, Chamrád I, Pavlovič A. Jasmonate-independent regulation of digestive enzyme activity in the carnivorous butterwort Pinguicula × Tina. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3749-3758. [PMID: 32219314 PMCID: PMC7307851 DOI: 10.1093/jxb/eraa159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/25/2020] [Indexed: 05/18/2023]
Abstract
Carnivorous plants within the order Caryophyllales use jasmonates, a class of phytohormone, in the regulation of digestive enzyme activities. We used the carnivorous butterwort Pinguicula × Tina from the order Lamiales to investigate whether jasmonate signaling is a universal and ubiquitous signaling pathway that exists outside the order Caryophyllales. We measured the electrical signals, enzyme activities, and phytohormone tissue levels in response to prey capture. Mass spectrometry was used to identify proteins in the digestive secretion. We identified eight enzymes in the digestive secretion, many of which were previously found in other genera of carnivorous plants. Among them, alpha-amylase is unique in carnivorous plants. Enzymatic activities increased in response to prey capture; however, the tissue content of jasmonic acid and its isoleucine conjugate remained rather low in contrast to the jasmonate response to wounding. Enzyme activities did not increase in response to the exogenous application of jasmonic acid or coronatine. Whereas similar digestive enzymes were co-opted from plant defense mechanisms among carnivorous plants, the mode of their regulation differs. The butterwort has not co-opted jasmonate signaling for the induction of enzyme activities in response to prey capture. Moreover, the presence of alpha-amylase in digestive fluid of P. × Tina, which has not been found in other genera of carnivorous plants, might indicate that non-defense-related genes have also been co-opted for carnivory.
Collapse
Affiliation(s)
- Ondřej Kocáb
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc , Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc , Czech Republic
| | - René Lenobel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Ivo Chamrád
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
25
|
Oropeza-Aburto A, Cervantes-Pérez SA, Albert VA, Herrera-Estrella L. Agrobacterium tumefaciens mediated transformation of the aquatic carnivorous plant Utricularia gibba. PLANT METHODS 2020; 16:50. [PMID: 32308728 PMCID: PMC7149871 DOI: 10.1186/s13007-020-00592-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND The genus Utricularia belongs to Lentibulariaceae, the largest family of carnivorous plants, which includes terrestrial, epiphytic and aquatic species. The development of specialized structures that evolved for carnivory is a feature of this genus that has been of great interest to biologists since Darwin's early studies. Utricularia gibba is itself an aquatic plant with sophisticated bladder traps having one of the most complex suction mechanisms for trapping prey. However, the molecular characterization of the mechanisms that regulate trap development and the biophysical processes involved in prey trapping are still largely unknown due to the lack of a simple and reproducible gene transfer system. RESULTS Here, we report the establishment of a simple, fast and reproducible protocol for genetic transformation of U. gibba based on the T-DNA of Agrobacterium tumefaciens. An in vitro selection system using Phosphinotricin as a selective agent was established for U. gibba. Plant transformation was confirmed by histochemical GUS assays and PCR and qRT-PCR analyses. We report on the expression pattern of the 35S promoter and of the promoter of a trap-specific ribonuclease gene in transgenic U. gibba plants. CONCLUSIONS The genetic transformation protocol reported here is an effective method for studying developmental biology and functional genomics of this genus of carnivorous plants and advances the utility of U. gibba as a model system to study developmental processes involved in trap formation.
Collapse
Affiliation(s)
- A. Oropeza-Aburto
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato Mexico
| | - S. A. Cervantes-Pérez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato Mexico
| | - V. A. Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260 USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - L. Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Department, Texas Tech University, Lubbock, USA
| |
Collapse
|
26
|
Gruzdev EV, Kadnikov VV, Beletsky AV, Kochieva EZ, Mardanov AV, Skryabin KG, Ravin NV. Plastid Genomes of Carnivorous Plants Drosera rotundifolia and Nepenthes × ventrata Reveal Evolutionary Patterns Resembling Those Observed in Parasitic Plants. Int J Mol Sci 2019; 20:E4107. [PMID: 31443555 PMCID: PMC6747624 DOI: 10.3390/ijms20174107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022] Open
Abstract
Carnivorous plants have the ability to capture and digest small animals as a source of additional nutrients, which allows them to grow in nutrient-poor habitats. Here we report the complete sequences of the plastid genomes of two carnivorous plants of the order Caryophyllales, Drosera rotundifolia and Nepenthes × ventrata. The plastome of D. rotundifolia is repeat-rich and highly rearranged. It lacks NAD(P)H dehydrogenase genes, as well as ycf1 and ycf2 genes, and three essential tRNA genes. Intron losses are observed in some protein-coding and tRNA genes along with a pronounced reduction of RNA editing sites. Only six editing sites were identified by RNA-seq in D. rotundifolia plastid genome and at most conserved editing sites the conserved amino acids are already encoded at the DNA level. In contrast, the N. × ventrata plastome has a typical structure and gene content, except for pseudogenization of the ccsA gene. N. × ventrata and D. rotundifolia could represent different stages of evolution of the plastid genomes of carnivorous plants, resembling events observed in parasitic plants in the course of the switch from autotrophy to a heterotrophic lifestyle.
Collapse
Affiliation(s)
- Eugeny V Gruzdev
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
- Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vitaly V Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Elena Z Kochieva
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Konstantin G Skryabin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
- Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
27
|
Pavlovič A, Mithöfer A. Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3379-3389. [PMID: 31120525 DOI: 10.1093/jxb/erz188] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/09/2019] [Indexed: 05/09/2023]
Abstract
The lipid-derived jasmonate phytohormones (JAs) regulate a wide spectrum of physiological processes in plants such as growth, development, tolerance to abiotic stresses, and defence against pathogen infection and insect attack. Recently, a new role for JAs has been revealed in carnivorous plants. In these specialized plants, JAs can induce the formation of digestive cavities and regulate enzyme production in response to different stimuli from caught prey. Appearing to be a new function for JAs in plants, a closer look reveals that the signalling pathways involved resemble known signalling pathways from plant defence mechanisms. Moreover, the digestion-related secretome of carnivorous plants is composed of many pathogenesis-related (PR) proteins and low molecular weight compounds, indicating that the plant carnivory syndrome is related to and has evolved from plant defence mechanisms. This review describes the similarities between defence and carnivory. It further describes how, after recognition of caught insects, JAs enable the carnivorous plants to digest and benefit from the prey. In addition, a causal connection between electrical and jasmonate signalling is discussed.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, CZ, Olomouc, Czech Republic
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße, Jena, Germany
| |
Collapse
|
28
|
Nevill PG, Howell KA, Cross AT, Williams AV, Zhong X, Tonti-Filippini J, Boykin LM, Dixon KW, Small I. Plastome-Wide Rearrangements and Gene Losses in Carnivorous Droseraceae. Genome Biol Evol 2019; 11:472-485. [PMID: 30629170 PMCID: PMC6380313 DOI: 10.1093/gbe/evz005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2019] [Indexed: 12/22/2022] Open
Abstract
The plastid genomes of four related carnivorous plants (Drosera regia, Drosera erythrorhiza, Aldrovanda vesiculosa, and Dionaea muscipula) were sequenced to examine changes potentially induced by the transition to carnivory. The plastid genomes of the Droseraceae show multiple rearrangements, gene losses, and large expansions or contractions of the inverted repeat. All the ndh genes are lost or nonfunctional, as well as in some of the species, clpP1, ycf1, ycf2 and some tRNA genes. Uniquely, among land plants, the trnK gene has no intron. Carnivory in the Droseraceae coincides with changes in plastid gene content similar to those induced by parasitism and mycoheterotrophy, suggesting parallel changes in chloroplast function due to the similar switch from autotrophy to (mixo-) heterotrophy. A molecular phylogeny of the taxa based on all shared plastid genes indicates that the "snap-traps" of Aldrovanda and Dionaea have a common origin.
Collapse
Affiliation(s)
- Paul G Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Kings Park, Western Australia, Australia
| | - Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- The University of Notre Dame, Fremantle, Western Australia, Australia
| | - Adam T Cross
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Kings Park, Western Australia, Australia
| | - Anna V Williams
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Xiao Zhong
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Julian Tonti-Filippini
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Laura M Boykin
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kingsley W Dixon
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
29
|
Henarejos-Escudero P, Guadarrama-Flores B, García-Carmona F, Gandía-Herrero F. Digestive glands extraction and precise pigment analysis support the exclusion of the carnivorous plant Dionaea muscipula Ellis from the Caryophyllales order. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:342-348. [PMID: 30080622 DOI: 10.1016/j.plantsci.2018.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
In the order Caryophyllales, plants synthesize betalains instead of anthocyanins, with only two exceptions, the Caryophyllaceae and Molluginaceae. Dionaea muscipula Ellis was included in the Caryophyllales order but recent research based on genetic studies proposed the consideration of the Droseraceae family into the Nepenthales order. In this work we face the dilemma of the phylogenetic classification of Dionaea from a phytochemical point of view. Dionaea's pigments were analyzed by using techniques of structural analysis. Extracts from the leaves, mature stem and flowers of different specimens of Dionaea were analyzed, to find possible differences in the types of pigments or in their proportion in different parts of the plant. These extracts were analyzed by spectrophotometry, HPLC co-elution and ESI-MS/MS. In addition, digestive glands were extracted from the snap trap with minor sample manipulation and by reducing the non-pigmented plant tissue. Considering only the digestive glands instead of whole snap traps, the analyses allowed to quantitate and elucidate the structure of the compounds responsible for the red coloration: delphinidin-3-O-glucoside (myrtillin), cyanidin-3-O-glucoside (kuromanin) and a third compound, the aglycone cyanidin, detected in the species for the first time. The unambiguous results of the present work support the exclusion of Dionaea from the Caryophyllales.
Collapse
Affiliation(s)
- Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum″, Universidad de Murcia, 30100, Murcia, Spain
| | - Berenice Guadarrama-Flores
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum″, Universidad de Murcia, 30100, Murcia, Spain
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum″, Universidad de Murcia, 30100, Murcia, Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum″, Universidad de Murcia, 30100, Murcia, Spain.
| |
Collapse
|
30
|
Bittleston LS, Wolock CJ, Yahya BE, Chan XY, Chan KG, Pierce NE, Pringle A. Convergence between the microcosms of Southeast Asian and North American pitcher plants. eLife 2018; 7:36741. [PMID: 30152327 PMCID: PMC6130972 DOI: 10.7554/elife.36741] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/08/2018] [Indexed: 01/11/2023] Open
Abstract
The ‘pitchers’ of carnivorous pitcher plants are exquisite examples of convergent evolution. An open question is whether the living communities housed in pitchers also converge in structure or function. Using samples from more than 330 field-collected pitchers of eight species of Southeast Asian Nepenthes and six species of North American Sarracenia, we demonstrate that the pitcher microcosms, or miniature ecosystems with complex communities, are strikingly similar. Compared to communities from surrounding habitats, pitcher communities house fewer species. While communities associated with the two genera contain different microbial organisms and arthropods, the species are predominantly from the same phylogenetic clades. Microbiomes from both genera are enriched in degradation pathways and have high abundances of key degradation enzymes. Moreover, in a manipulative field experiment, Nepenthes pitchers placed in a North American bog assembled Sarracenia-like communities. An understanding of the convergent interactions in pitcher microcosms facilitates identification of selective pressures shaping the communities. The ecosystems found across the Earth, including in forests, lakes and prairies, consist of communities of plants, animals and microbes. How these organisms interact with each other determines which ones grow and thrive. We still do not understand how communities form: why different species exist where they do, and what enables them to survive in different locations. This knowledge is particularly limited with regard to communities of microbes because they are hard to see and count. Pitcher plants are an ideal system for studying how communities and ecosystems assemble. The pitcher-shaped leaves of these plants each contain small aquatic communities of microbes and arthropods (including insects and mites) that can be relatively easily studied. Because unrelated groups of plants have evolved pitchers at different times and on different continents, these communities can also be used to explore how evolutionary history and the current environment determine which species thrive in a particular location. Bittleston et al. sampled the DNA of the communities living within 330 pitchers from various North American and Southeast Asian pitcher plant species. This revealed that very distantly related plants on opposite sides of the planet have pitchers that host similar communities, with the organisms found in one pitcher plant often closely related to the organisms found in others. The genes within the community’s DNA also shared many functions, with the majority of shared genes devoted to digesting captured insect prey. Bittleston et al. also relocated pitcher plants from Southeast Asia to grow alongside North American species and found the same microbes and arthropods colonizing both groups, indicating that the different types of pitchers present a similar habitat. Overall, the results of the experiments performed by Bittleston et al. suggest that certain kinds of interactions between species (such as between the pitcher plants and their microbes) can evolve independently in different parts of the world. Researchers can use these interactions to learn more about how communities and ecosystems form. With a greater understanding of the Earth’s ecosystems, it will be easier to protect them and predict how they will fare as global conditions change.
Collapse
Affiliation(s)
- Leonora S Bittleston
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Museum of Comparative Zoology, Harvard University, Cambridge, United States
| | - Charles J Wolock
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Museum of Comparative Zoology, Harvard University, Cambridge, United States
| | - Bakhtiar E Yahya
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Xin Yue Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Museum of Comparative Zoology, Harvard University, Cambridge, United States
| | - Anne Pringle
- Departments of Botany and Bacteriology, University of Wisconsin-Madison, Wisconsin, United States
| |
Collapse
|
31
|
Biswal DK, Debnath M, Konhar R, Yanthan S, Tandon P. Phylogeny and Biogeography of Carnivorous Plant Family Nepenthaceae With Reference to the Indian Pitcher Plant Nepenthes Khasiana Reveals an Indian Subcontinent Origin of Nepenthes Colonization in South East Asia During the Miocene Epoch. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Santos BF, Perrard A. Testing the Dutilleul syndrome: host use drives the convergent evolution of multiple traits in parasitic wasps. J Evol Biol 2018; 31:1430-1439. [PMID: 29957856 DOI: 10.1111/jeb.13343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 11/27/2022]
Abstract
Common life-history aspects among independent lineages often result in the repeated evolution of suites of adaptive traits, or 'syndromes'. Such syndromes can be key avenues to understand relationships between morphological and ecological traits, but are rarely tested due to insufficient trait shift repetitions. We use a hyperdiverse lineage to investigate the evolution of a syndrome. Cryptine ichneumonid wasps that parasitize insects concealed in hard substrates display several traits that are putative adaptations to that end. Using a phylogenetic framework from a combined multigene molecular and morphological data set with 308 cryptine species, we tested whether these traits were part of a morphofunctional syndrome related to host use. Ancestral state estimations show multiple origins for six investigated traits, which are correlated to each other and to the use of deeply concealed hosts, suggesting adaptation. Putatively adaptive traits showed a much stronger link among themselves than with an assemblage of 49 other morphological traits. However, estimation of the order of evolution in adaptive traits showed no structured pattern. The results indicate that the challenge of attacking deeply concealed hosts induced the repeated evolution of a 'Dutilleul syndrome', named after the 'walker-through-walls' character from French literature. They also point towards a dynamic scenario in the evolution of complex functional systems. These findings highlight the power of morphology to illuminate poorly known aspects of natural history, and how hyperdiverse lineages can be used to understand the evolution of complex traits.
Collapse
Affiliation(s)
- Bernardo F Santos
- Department of Entomology, National Museum of Natural History, Washington, DC, USA
| | - Adrien Perrard
- Université Paris Diderot, Sorbonne Université, CNRS, IRD, INRA, Institute of Ecology and Environmental Sciences, iEES-Paris, Paris, France
| |
Collapse
|
33
|
Walker JF, Yang Y, Feng T, Timoneda A, Mikenas J, Hutchison V, Edwards C, Wang N, Ahluwalia S, Olivieri J, Walker-Hale N, Majure LC, Puente R, Kadereit G, Lauterbach M, Eggli U, Flores-Olvera H, Ochoterena H, Brockington SF, Moore MJ, Smith SA. From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. AMERICAN JOURNAL OF BOTANY 2018; 105:446-462. [PMID: 29738076 DOI: 10.1002/ajb2.1069] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/04/2018] [Indexed: 05/27/2023]
Abstract
PREMISE OF THE STUDY The Caryophyllales contain ~12,500 species and are known for their cosmopolitan distribution, convergence of trait evolution, and extreme adaptations. Some relationships within the Caryophyllales, like those of many large plant clades, remain unclear, and phylogenetic studies often recover alternative hypotheses. We explore the utility of broad and dense transcriptome sampling across the order for resolving evolutionary relationships in Caryophyllales. METHODS We generated 84 transcriptomes and combined these with 224 publicly available transcriptomes to perform a phylogenomic analysis of Caryophyllales. To overcome the computational challenge of ortholog detection in such a large data set, we developed an approach for clustering gene families that allowed us to analyze >300 transcriptomes and genomes. We then inferred the species relationships using multiple methods and performed gene-tree conflict analyses. KEY RESULTS Our phylogenetic analyses resolved many clades with strong support, but also showed significant gene-tree discordance. This discordance is not only a common feature of phylogenomic studies, but also represents an opportunity to understand processes that have structured phylogenies. We also found taxon sampling influences species-tree inference, highlighting the importance of more focused studies with additional taxon sampling. CONCLUSIONS Transcriptomes are useful both for species-tree inference and for uncovering evolutionary complexity within lineages. Through analyses of gene-tree conflict and multiple methods of species-tree inference, we demonstrate that phylogenomic data can provide unparalleled insight into the evolutionary history of Caryophyllales. We also discuss a method for overcoming computational challenges associated with homolog clustering in large data sets.
Collapse
Affiliation(s)
- Joseph F Walker
- Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI, 48109-1048, USA
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Tao Feng
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Alfonso Timoneda
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Jessica Mikenas
- Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH, 44074-1097, USA
| | - Vera Hutchison
- Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH, 44074-1097, USA
| | - Caroline Edwards
- Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH, 44074-1097, USA
| | - Ning Wang
- Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI, 48109-1048, USA
| | - Sonia Ahluwalia
- Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI, 48109-1048, USA
| | - Julia Olivieri
- Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH, 44074-1097, USA
- Institute of Computational and Mathematical Engineering (ICME), Stanford University, 475 Via Ortega, Suite B060, Stanford, CA, 94305-4042, USA
| | - Nathanael Walker-Hale
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Kelburn, Wellington, 6012, New Zealand
| | - Lucas C Majure
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 N. Galvin Pkwy, Phoenix, AZ, 85008, USA
| | - Raúl Puente
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 N. Galvin Pkwy, Phoenix, AZ, 85008, USA
| | - Gudrun Kadereit
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, D-55099, Mainz, Germany
- Institut für Molekulare und Organismische Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, D-55099, Mainz, Germany
| | - Maximilian Lauterbach
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, D-55099, Mainz, Germany
- Institut für Molekulare und Organismische Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, D-55099, Mainz, Germany
| | - Urs Eggli
- Sukkulenten-Sammlung Zürich / Grün Stadt Zürich, Mythenquai 88, CH-8002, Zürich, Switzerland
| | - Hilda Flores-Olvera
- Departamento de Botánica, Universidad Nacional Autónoma de México, Apartado, Postal 70-367, 04510, Mexico City, Mexico
| | - Helga Ochoterena
- Departamento de Botánica, Universidad Nacional Autónoma de México, Apartado, Postal 70-367, 04510, Mexico City, Mexico
| | | | - Michael J Moore
- Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH, 44074-1097, USA
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI, 48109-1048, USA
| |
Collapse
|
34
|
Cook JL, Newton J, Millett J. Environmental differences between sites control the diet and nutrition of the carnivorous plant Drosera rotundifolia. PLANT AND SOIL 2017; 423:41-58. [PMID: 31402798 PMCID: PMC6647551 DOI: 10.1007/s11104-017-3484-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/31/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Carnivorous plants are sensitive to small changes in resource availability, but few previous studies have examined how differences in nutrient and prey availability affect investment in and the benefit of carnivory. We studied the impact of site-level differences in resource availability on ecophysiological traits of carnivory for Drosera rotundifolia L. METHODS We measured prey availability, investment in carnivory (leaf stickiness), prey capture and diet of plants growing in two bogs with differences in N deposition and plant available N: Cors Fochno (0.62 g m-2 yr.-1, 353 μg l-1), Whixall Moss (1.37 g m-2 yr.-1, 1505 μg l-1). The total N amount per plant and the contributions of prey/root N to the plants' N budget were calculated using a single isotope natural abundance method. RESULTS Plants at Whixall Moss invested less in carnivory, were less likely to capture prey, and were less reliant on prey-derived N (25.5% compared with 49.4%). Actual prey capture did not differ between sites. Diet composition differed - Cors Fochno plants captured 62% greater proportions of Diptera. CONCLUSIONS Our results show site-level differences in plant diet and nutrition consistent with differences in resource availability. Similarity in actual prey capture may be explained by differences in leaf stickiness and prey abundance.
Collapse
Affiliation(s)
- Joni L. Cook
- Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Loughborough, LE11 3TU Leicestershire UK
- NERC Life Sciences Mass Spectrometry Facility, Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF UK
- Department of Geography, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| | - J. Newton
- NERC Life Sciences Mass Spectrometry Facility, Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF UK
| | - J. Millett
- Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Loughborough, LE11 3TU Leicestershire UK
| |
Collapse
|
35
|
Schwallier R, Gravendeel B, de Boer H, Nylinder S, van Heuven BJ, Sieder A, Sumail S, van Vugt R, Lens F. Evolution of wood anatomical characters in Nepenthes and close relatives of Caryophyllales. ANNALS OF BOTANY 2017; 119:1179-1193. [PMID: 28387789 PMCID: PMC5604564 DOI: 10.1093/aob/mcx010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 01/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND AIMS Nepenthes attracts wide attention with its spectacularly shaped carnivorous pitchers, cultural value and horticultural curiosity. Despite the plant's iconic fascination, surprisingly little anatomical detail is known about the genus beyond its modified leaf tip traps. Here, the wood anatomical diversity of Nepenthes is explored. This diversity is further assessed with a phylogenetic framework to investigate whether the wood characters within the genus are relevant from an evolutionary or ecological perspective, or rather depend on differences in developmental stages, growth habits, substrates or precipitation. METHODS Observations were performed using light microscopy and scanning electron microscopy. Ancestral states of selected wood and pith characters were reconstructed using an existing molecular phylogeny for Nepenthes and a broader Caryophyllales framework. Pairwise comparisons were assessed for possible relationships between wood anatomy and developmental stages, growth habits, substrates and ecology. KEY RESULTS Wood anatomy of Nepenthes is diffuse porous, with mainly solitary vessels showing simple, bordered perforation plates and alternate intervessel pits, fibres with distinctly bordered pits (occasionally septate), apotracheal axial parenchyma and co-occurring uni- and multiseriate rays often including silica bodies. Precipitation and growth habit (stem length) are linked with vessel density and multiseriate ray height, while soil type correlates with vessel diameter, vessel element length and maximum ray width. For Caryophyllales as a whole, silica grains, successive cambia and bordered perforation plates are the result of convergent evolution. Peculiar helical sculpturing patterns within various cell types occur uniquely within the insectivorous clade of non-core Caryophyllales. CONCLUSIONS The wood anatomical variation in Nepenthes displays variation for some characters dependent on soil type, precipitation and stem length, but is largely conservative. The helical-banded fibre-sclereids that mainly occur idioblastically in pith and cortex are synapomorphic for Nepenthes , while other typical Nepenthes characters evolved convergently in different Caryophyllales lineages.
Collapse
Affiliation(s)
- Rachel Schwallier
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
- Grand Valley State University, 1 Campus Drive, Allendale, MI 49401, USA
| | - Barbara Gravendeel
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 CC Leiden, The Netherlands
- University of Applied Sciences Leiden, Zernikedreef 11, 2300 AJ Leiden, The Netherlands
| | - Hugo de Boer
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
- Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- The Natural History Museum, University of Oslo, PO Box 1172, 0318 Oslo, Norway
| | - Stephan Nylinder
- Swedish Museum of Natural History, Frescativägen 40, 114 18 Stockholm, Sweden
| | | | - Anton Sieder
- University of Vienna, Universitätsring 1, 1010 Wien, Austria
| | - Sukaibin Sumail
- Sabah Park Herbarium, PO Box 6, Kinabalu Park, Kundasang, Ranau, Sabah, Malaysia
| | - Rogier van Vugt
- Hortus Botanicus of Leiden University, Rapenburg 73, 2311 GJ Leiden, The Netherlands
| | - Frederic Lens
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
| |
Collapse
|
36
|
Fukushima K, Fang X, Alvarez-Ponce D, Cai H, Carretero-Paulet L, Chen C, Chang TH, Farr KM, Fujita T, Hiwatashi Y, Hoshi Y, Imai T, Kasahara M, Librado P, Mao L, Mori H, Nishiyama T, Nozawa M, Pálfalvi G, Pollard ST, Rozas J, Sánchez-Gracia A, Sankoff D, Shibata TF, Shigenobu S, Sumikawa N, Uzawa T, Xie M, Zheng C, Pollock DD, Albert VA, Li S, Hasebe M. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat Ecol Evol 2017; 1:59. [DOI: 10.1038/s41559-016-0059] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/16/2016] [Indexed: 11/09/2022]
|
37
|
Bemm F, Becker D, Larisch C, Kreuzer I, Escalante-Perez M, Schulze WX, Ankenbrand M, Van de Weyer AL, Krol E, Al-Rasheid KA, Mithöfer A, Weber AP, Schultz J, Hedrich R. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Res 2016; 26:812-25. [PMID: 27197216 PMCID: PMC4889972 DOI: 10.1101/gr.202200.115] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/07/2016] [Indexed: 11/24/2022]
Abstract
Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death-related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition.
Collapse
Affiliation(s)
- Felix Bemm
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Christina Larisch
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Maria Escalante-Perez
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Markus Ankenbrand
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany; Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Anna-Lena Van de Weyer
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Elzbieta Krol
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Khaled A Al-Rasheid
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Axel Mithöfer
- Bioorganic Chemistry Department, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Andreas P Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| |
Collapse
|
38
|
Bittleston LS, Pierce NE, Ellison AM, Pringle A. Convergence in Multispecies Interactions. Trends Ecol Evol 2016; 31:269-280. [PMID: 26858111 DOI: 10.1016/j.tree.2016.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 12/29/2022]
Abstract
The concepts of convergent evolution and community convergence highlight how selective pressures can shape unrelated organisms or communities in similar ways. We propose a related concept, convergent interactions, to describe the independent evolution of multispecies interactions with similar physiological or ecological functions. A focus on convergent interactions clarifies how natural selection repeatedly favors particular kinds of associations among species. Characterizing convergent interactions in a comparative context is likely to facilitate prediction of the ecological roles of organisms (including microbes) in multispecies interactions and selective pressures acting in poorly understood or newly discovered multispecies systems. We illustrate the concept of convergent interactions with examples: vertebrates and their gut bacteria; ectomycorrhizae; insect-fungal-bacterial interactions; pitcher-plant food webs; and ants and ant-plants.
Collapse
Affiliation(s)
- Leonora S Bittleston
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Aaron M Ellison
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA 01366, USA
| | - Anne Pringle
- Departments of Bacteriology and Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
39
|
Risør MW, Thomsen LR, Sanggaard KW, Nielsen TA, Thøgersen IB, Lukassen MV, Rossen L, Garcia-Ferrer I, Guevara T, Scavenius C, Meinjohanns E, Gomis-Rüth FX, Enghild JJ. Enzymatic and Structural Characterization of the Major Endopeptidase in the Venus Flytrap Digestion Fluid. J Biol Chem 2015; 291:2271-87. [PMID: 26627834 DOI: 10.1074/jbc.m115.672550] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Indexed: 11/06/2022] Open
Abstract
Carnivorous plants primarily use aspartic proteases during digestion of captured prey. In contrast, the major endopeptidases in the digestive fluid of the Venus flytrap (Dionaea muscipula) are cysteine proteases (dionain-1 to -4). Here, we present the crystal structure of mature dionain-1 in covalent complex with inhibitor E-64 at 1.5 Å resolution. The enzyme exhibits an overall protein fold reminiscent of other plant cysteine proteases. The inactive glycosylated pro-form undergoes autoprocessing and self-activation, optimally at the physiologically relevant pH value of 3.6, at which the protective effect of the pro-domain is lost. The mature enzyme was able to efficiently degrade a Drosophila fly protein extract at pH 4 showing high activity against the abundant Lys- and Arg-rich protein, myosin. The substrate specificity of dionain-1 was largely similar to that of papain with a preference for hydrophobic and aliphatic residues in subsite S2 and for positively charged residues in S1. A tentative structure of the pro-domain was obtained by homology modeling and suggested that a pro-peptide Lys residue intrudes into the S2 pocket, which is more spacious than in papain. This study provides the first analysis of a cysteine protease from the digestive fluid of a carnivorous plant and confirms the close relationship between carnivorous action and plant defense mechanisms.
Collapse
Affiliation(s)
- Michael W Risør
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark, the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark
| | - Line R Thomsen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark, the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark
| | - Kristian W Sanggaard
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark, the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark
| | - Tania A Nielsen
- the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark
| | - Ida B Thøgersen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Marie V Lukassen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Litten Rossen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Irene Garcia-Ferrer
- the Proteolysis Laboratory, Department of Structural Biology ("María de Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain, and
| | - Tibisay Guevara
- the Proteolysis Laboratory, Department of Structural Biology ("María de Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain, and
| | - Carsten Scavenius
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | | | - F Xavier Gomis-Rüth
- the Proteolysis Laboratory, Department of Structural Biology ("María de Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain, and
| | - Jan J Enghild
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark, the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark,
| |
Collapse
|
40
|
Poppinga S, Weisskopf C, Westermeier AS, Masselter T, Speck T. Fastest predators in the plant kingdom: functional morphology and biomechanics of suction traps found in the largest genus of carnivorous plants. AOB PLANTS 2015; 8:plv140. [PMID: 26602984 PMCID: PMC4717191 DOI: 10.1093/aobpla/plv140] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/07/2015] [Indexed: 05/18/2023]
Abstract
Understanding the physics of plant movements, which describe the interplay between plant architecture, movement speed and actuation principles, is essential for the comprehension of important processes like plant morphogenesis. Recent investigations especially on rapid plant movements at the interface of biology, physics and engineering sciences highlight how such fast motions can be achieved without the presence of muscles, nerves and technical hinge analogies. The suction traps (bladders) of carnivorous bladderworts (Utricularia spp., Lentibulariaceae, Lamiales) are considered as some of the most elaborate moving structures in the plant kingdom. A complex interplay of morphological and physiological adaptations allows the traps to pump water out of their body and to store elastic energy in the deformed bladder walls. Mechanical stimulation by prey entails opening of the otherwise watertight trapdoor, followed by trap wall relaxation, sucking in of water and prey, and consecutive trapdoor closure. Suction can also occur spontaneously in non-stimulated traps. We review the current state of knowledge about the suction trap mechanism with a focus on architectonically homogeneous traps of aquatic bladderwort species from section Utricularia (the so-called 'Utricularia vulgaris trap type'). The functional morphology and biomechanics of the traps are described in detail. We discuss open questions and propose promising aspects for future studies on these sophisticated ultra-fast trapping devices.
Collapse
Affiliation(s)
- Simon Poppinga
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg im Breisgau, Germany
| | - Carmen Weisskopf
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany Present address: Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Anna Sophia Westermeier
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Tom Masselter
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
41
|
A Drosera-bioinspired hydrogel for catching and killing cancer cells. Sci Rep 2015; 5:14297. [PMID: 26396063 PMCID: PMC4585793 DOI: 10.1038/srep14297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/24/2015] [Indexed: 01/01/2023] Open
Abstract
A variety of bioinspired materials have been successfully synthesized to mimic the sophisticated structures or functions of biological systems. However, it is still challenging to develop materials with multiple functions that can be performed synergistically or sequentially. The purpose of this work was to demonstrate a novel bioinspired hydrogel that can interact with cancer cells, functionally similar to Drosera in catching and killing prey. This hydrogel had two layers with the top one functionalized with oligonucleotide aptamers and the bottom one functionalized with double-stranded DNA. The results show that the top hydrogel layer was able to catch target cells with high efficiency and specificity, and that the bottom hydrogel layer could sequester doxorubicin (Dox) for sustained drug release. Importantly, the released Dox could kill 90% of the cells after 1-h residence of the cells on the hydrogel. After the cell release, this bifunctional hydrogel could be regenerated for continuous cell catching and killing. Therefore, the data presented in this study has successfully demonstrated the potential of developing a material system with the functions of attracting, catching and killing diseased cells (e.g., circulating tumor cells) or even invading microorganisms (e.g., bacteria).
Collapse
|
42
|
Bittleston LS, Baker CCM, Strominger LB, Pringle A, Pierce NE. Metabarcoding as a tool for investigating arthropod diversity inNepenthespitcher plants. AUSTRAL ECOL 2015. [DOI: 10.1111/aec.12271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Leonora S. Bittleston
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology; Harvard University; 26 Oxford Street Cambridge Massachusetts 02138 USA
| | - Christopher C. M. Baker
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology; Harvard University; 26 Oxford Street Cambridge Massachusetts 02138 USA
| | - Lila B. Strominger
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology; Harvard University; 26 Oxford Street Cambridge Massachusetts 02138 USA
| | - Anne Pringle
- Harvard Forest; Harvard University; Petersham Massachusetts USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology; Harvard University; 26 Oxford Street Cambridge Massachusetts 02138 USA
| |
Collapse
|
43
|
Cao HX, Schmutzer T, Scholz U, Pecinka A, Schubert I, Vu GTH. Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species. Front Microbiol 2015; 6:526. [PMID: 26236284 PMCID: PMC4500957 DOI: 10.3389/fmicb.2015.00526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/12/2015] [Indexed: 01/21/2023] Open
Abstract
In the carnivorous plant genus Genlisea a unique lobster pot trapping mechanism supplements nutrition in nutrient-poor habitats. A wide spectrum of microbes frequently occurs in Genlisea's leaf-derived traps without clear relevance for Genlisea carnivory. We sequenced the metatranscriptomes of subterrestrial traps vs. the aerial chlorophyll-containing leaves of G. nigrocaulis and of G. hispidula. Ribosomal RNA assignment revealed soil-borne microbial diversity in Genlisea traps, with 92 genera of 19 phyla present in more than one sample. Microbes from 16 of these phyla including proteobacteria, green algae, amoebozoa, fungi, ciliates and metazoans, contributed additionally short-lived mRNA to the metatranscriptome. Furthermore, transcripts of 438 members of hydrolases (e.g., proteases, phosphatases, lipases), mainly resembling those of metazoans, ciliates and green algae, were found. Compared to aerial leaves, Genlisea traps displayed a transcriptional up-regulation of endogenous NADH oxidases generating reactive oxygen species as well as of acid phosphatases for prey digestion. A leaf-vs.-trap transcriptome comparison reflects that carnivory provides inorganic P- and different forms of N-compounds (ammonium, nitrate, amino acid, oligopeptides) and implies the need to protect trap cells against oxidative stress. The analysis elucidates a complex food web inside the Genlisea traps, and suggests ecological relationships between this plant genus and its entrapped microbiome.
Collapse
Affiliation(s)
- Hieu X. Cao
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Thomas Schmutzer
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Uwe Scholz
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Ales Pecinka
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research (MPIPZ)Köln, Germany
| | - Ingo Schubert
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
- Faculty of Science and Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
| | - Giang T. H. Vu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| |
Collapse
|
44
|
Shu C, Lai Y, Yang E, Chen S, Xiang M, Liu X. Functional response of the fungus Hirsutella rhossiliensis to the nematode, Heterodera glycines. SCIENCE CHINA-LIFE SCIENCES 2015; 58:704-12. [PMID: 26032589 DOI: 10.1007/s11427-015-4868-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
Functional response is a key index in determining the population fluctuation in predation. However, the lack of operable research system limits the studies on functional response of fungal predators. Hirsutella rhossiliensis is a dominant parasite of the soybean cyst nematode, Heterodera glycines. In a soil microcosm bioassay, we determined fungal biomass at different days within 21 days after inoculation, and parasitism rate of H. glycines by the fungus was determined. The functional response of H. rhossiliensis to H. glycines was established and found to be Holling's type III, which was influenced by mycelial densities. Meanwhile, we conducted anti-fungal analysis of metabolic fractions extracted from H. rhossiliensis to explain the potential mechanism of the intraspecific competition illustrated by functional response. The result of anti-fungal experiments indicated that the fungal predators had more complicated interaction at population level than expected, which might be regulated by self-inhibition metabolite(s). This study was the first functional response study of fungal predators in microcosm. With the increasing recognition of emerging fungal threats to animal, plant, and ecosystem health, the methodologies and hypotheses proposed in this study might inspire further research in fungal ecology.
Collapse
Affiliation(s)
- Chi Shu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | |
Collapse
|
45
|
Pavlovič A, Saganová M. A novel insight into the cost-benefit model for the evolution of botanical carnivory. ANNALS OF BOTANY 2015; 115:1075-92. [PMID: 25948113 PMCID: PMC4648460 DOI: 10.1093/aob/mcv050] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/02/2015] [Accepted: 03/20/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The cost-benefit model for the evolution of botanical carnivory provides a conceptual framework for interpreting a wide range of comparative and experimental studies on carnivorous plants. This model assumes that the modified leaves called traps represent a significant cost for the plant, and this cost is outweighed by the benefits from increased nutrient uptake from prey, in terms of enhancing the rate of photosynthesis per unit leaf mass or area (AN) in the microsites inhabited by carnivorous plants. SCOPE This review summarizes results from the classical interpretation of the cost-benefit model for evolution of botanical carnivory and highlights the costs and benefits of active trapping mechanisms, including water pumping, electrical signalling and accumulation of jasmonates. Novel alternative sequestration strategies (utilization of leaf litter and faeces) in carnivorous plants are also discussed in the context of the cost-benefit model. CONCLUSIONS Traps of carnivorous plants have lower AN than leaves, and the leaves have higher AN after feeding. Prey digestion, water pumping and electrical signalling represent a significant carbon cost (as an increased rate of respiration, RD) for carnivorous plants. On the other hand, jasmonate accumulation during the digestive period and reprogramming of gene expression from growth and photosynthesis to prey digestion optimizes enzyme production in comparison with constitutive secretion. This inducibility may have evolved as a cost-saving strategy beneficial for carnivorous plants. The similarities between plant defence mechanisms and botanical carnivory are highlighted.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Michaela Saganová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| |
Collapse
|
46
|
Stephens JD, Godwin RL, Folkerts DR. Distinctions in Pitcher Morphology and Prey Capture of the Okefenokee Variety within the Carnivorous Plant SpeciesSarracenia minor. SOUTHEAST NAT 2015. [DOI: 10.1656/058.014.0208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Jensen MK, Vogt JK, Bressendorff S, Seguin-Orlando A, Petersen M, Sicheritz-Pontén T, Mundy J. Transcriptome and genome size analysis of the Venus flytrap. PLoS One 2015; 10:e0123887. [PMID: 25886597 PMCID: PMC4401711 DOI: 10.1371/journal.pone.0123887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/23/2015] [Indexed: 11/30/2022] Open
Abstract
The insectivorous Venus flytrap (Dionaea muscipula) is renowned from Darwin’s studies of plant carnivory and the origins of species. To provide tools to analyze the evolution and functional genomics of D. muscipula, we sequenced a normalized cDNA library synthesized from mRNA isolated from D. muscipula flowers and traps. Using the Oases transcriptome assembler 79,165,657 quality trimmed reads were assembled into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO) and classified into functional categories. A total of 15,547 full-length cDNA sequences were identified, from which open reading frames were detected in 10,941. Comparative GO analyses revealed that D. muscipula is highly represented in molecular functions related to catalytic, antioxidant, and electron carrier activities. Also, using a single copy sequence PCR-based method, we estimated that the genome size of D. muscipula is approx. 3 Gb. Our genome size estimate and transcriptome analyses will contribute to future research on this fascinating, monotypic species and its heterotrophic adaptations.
Collapse
Affiliation(s)
| | - Josef Korbinian Vogt
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Morten Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Sicheritz-Pontén
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- * E-mail: (TS); (JM)
| | - John Mundy
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (TS); (JM)
| |
Collapse
|
48
|
Resolving phylogenetic relationships of the recently radiated carnivorous plant genus Sarracenia using target enrichment. Mol Phylogenet Evol 2015; 85:76-87. [DOI: 10.1016/j.ympev.2015.01.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 01/23/2015] [Accepted: 01/27/2015] [Indexed: 12/22/2022]
|
49
|
Fukushima K, Fujita H, Yamaguchi T, Kawaguchi M, Tsukaya H, Hasebe M. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea. Nat Commun 2015; 6:6450. [PMID: 25774486 PMCID: PMC4382701 DOI: 10.1038/ncomms7450] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/30/2015] [Indexed: 11/22/2022] Open
Abstract
Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf. The pitcher-shaped leaf of the carnivorous plant Sarracenia purpurea acts as a pitfall trap to capture small animals. Here, Fukushima et al. analyse pitcher leaf development and propose that this unusual shape evolved from ancestral planar leaves through changes in the orientation of cell division.
Collapse
Affiliation(s)
- Kenji Fukushima
- 1] 1Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan [2] National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| | - Hironori Fujita
- National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| | - Takahiro Yamaguchi
- Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayoshi Kawaguchi
- 1] 1Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan [2] National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuyasu Hasebe
- 1] 1Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan [2] National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
50
|
Abstract
The independent origin and evolution of leaves as small, simple microphylls or larger, more complex megaphylls in plants has shaped and influenced the natural composition of the environment. Significant contributions have come from megaphyllous leaves, characterized usually as flat, thin lamina entrenched with photosynthetic organelles and stomata, which serve as the basis of primary productivity. During the course of evolution, the megaphylls have attained complexity not only in size or venation patterns but also in shape. This has fascinated scientists worldwide, and research has progressed tremendously in understanding the concept of leaf shape determination. Here, we review these studies and discuss the various factors that contributed towards shaping the leaf; initiated as a small bulge on the periphery of the shoot apical meristem (SAM) followed by asymmetric outgrowth, expansion and maturation until final shape is achieved. We found that the underlying factors governing these processes are inherently genetic: PIN1 and KNOX1 are indicators of leaf initiation, HD-ZIPIII, KANADI, and YABBY specify leaf outgrowth while ANGUSTIFOLIA3 and GROWTH-REGULATING FACTOR5 control leaf expansion and maturation; besides, recent research has identified new players such as APUM23, known to specify leaf polarity. In addition to genetic control, environmental factors also play an important role during the final adjustment of leaf shape. This immense amount of information available will serve as the basis for studying and understanding innovative leaf morphologies viz. the pitchers of the carnivorous plant Nepenthes which have evolved to provide additional support to the plant survival in its nutrient-deficient habitat. In hindsight, formation of the pitcher tube in Nepenthes might involve the recruitment of similar genetic mechanisms that occur during sympetaly in Petunia.
Collapse
Affiliation(s)
- Jeremy Dkhar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|