1
|
Gonzalez CU, Jayaraman V. Structural dynamics in α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor gating. Curr Opin Struct Biol 2024; 87:102833. [PMID: 38733862 PMCID: PMC11283939 DOI: 10.1016/j.sbi.2024.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
The ionotropic glutamate receptors (iGluRs) are comprised of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), N-methyl-d-aspartate receptor, kainate, and delta subtypes and are pivotal in neuronal plasticity. Recent structural studies on AMPA receptors reveal intricate conformational changes during activation and desensitization elucidating the steps from agonist binding to channel opening and desensitization. Additionally, interactions with auxiliary subunits, including transmembrane AMPA-receptor regulatory proteins, germ-cell-specific gene 1-like protein, and cornichon homologs, intricately modulate AMPA receptors. We discuss the recent high-resolution structures of these complexes that unveil stoichiometry, subunit positioning, and differences in specific side-chain interactions that influence these functional modulations.
Collapse
Affiliation(s)
- Cuauhtemoc U Gonzalez
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. https://twitter.com/Cuau_Ulises
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Xu QW, Larosa A, Wong TP. Roles of AMPA receptors in social behaviors. Front Synaptic Neurosci 2024; 16:1405510. [PMID: 39056071 PMCID: PMC11269240 DOI: 10.3389/fnsyn.2024.1405510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
As a crucial player in excitatory synaptic transmission, AMPA receptors (AMPARs) contribute to the formation, regulation, and expression of social behaviors. AMPAR modifications have been associated with naturalistic social behaviors, such as aggression, sociability, and social memory, but are also noted in brain diseases featuring impaired social behavior. Understanding the role of AMPARs in social behaviors is timely to reveal therapeutic targets for treating social impairment in disorders, such as autism spectrum disorder and schizophrenia. In this review, we will discuss the contribution of the molecular composition, function, and plasticity of AMPARs to social behaviors. The impact of targeting AMPARs in treating brain disorders will also be discussed.
Collapse
Affiliation(s)
- Qi Wei Xu
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Amanda Larosa
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Tak Pan Wong
- Douglas Hospital Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Rinaldi B, Bayat A, Zachariassen LG, Sun JH, Ge YH, Zhao D, Bonde K, Madsen LH, Awad IAA, Bagiran D, Sbeih A, Shah SM, El-Sayed S, Lyngby SM, Pedersen MG, Stenum-Berg C, Walker LC, Krey I, Delahaye-Duriez A, Emrick LT, Sully K, Murali CN, Burrage LC, Plaud Gonzalez JA, Parnes M, Friedman J, Isidor B, Lefranc J, Redon S, Heron D, Mignot C, Keren B, Fradin M, Dubourg C, Mercier S, Besnard T, Cogne B, Deb W, Rivier C, Milani D, Bedeschi MF, Di Napoli C, Grilli F, Marchisio P, Koudijs S, Veenma D, Argilli E, Lynch SA, Au PYB, Ayala Valenzuela FE, Brown C, Masser-Frye D, Jones M, Patron Romero L, Li WL, Thorpe E, Hecher L, Johannsen J, Denecke J, McNiven V, Szuto A, Wakeling E, Cruz V, Sency V, Wang H, Piard J, Kortüm F, Herget T, Bierhals T, Condell A, Ben-Zeev B, Kaur S, Christodoulou J, Piton A, Zweier C, Kraus C, Micalizzi A, Trivisano M, Specchio N, Lesca G, Møller RS, Tümer Z, Musgaard M, Gerard B, Lemke JR, Shi YS, Kristensen AS. Gain-of-function and loss-of-function variants in GRIA3 lead to distinct neurodevelopmental phenotypes. Brain 2024; 147:1837-1855. [PMID: 38038360 PMCID: PMC11068105 DOI: 10.1093/brain/awad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) mediate fast excitatory neurotransmission in the brain. AMPARs form by homo- or heteromeric assembly of subunits encoded by the GRIA1-GRIA4 genes, of which only GRIA3 is X-chromosomal. Increasing numbers of GRIA3 missense variants are reported in patients with neurodevelopmental disorders (NDD), but only a few have been examined functionally. Here, we evaluated the impact on AMPAR function of one frameshift and 43 rare missense GRIA3 variants identified in patients with NDD by electrophysiological assays. Thirty-one variants alter receptor function and show loss-of-function or gain-of-function properties, whereas 13 appeared neutral. We collected detailed clinical data from 25 patients (from 23 families) harbouring 17 of these variants. All patients had global developmental impairment, mostly moderate (9/25) or severe (12/25). Twelve patients had seizures, including focal motor (6/12), unknown onset motor (4/12), focal impaired awareness (1/12), (atypical) absence (2/12), myoclonic (5/12) and generalized tonic-clonic (1/12) or atonic (1/12) seizures. The epilepsy syndrome was classified as developmental and epileptic encephalopathy in eight patients, developmental encephalopathy without seizures in 13 patients, and intellectual disability with epilepsy in four patients. Limb muscular hypotonia was reported in 13/25, and hypertonia in 10/25. Movement disorders were reported in 14/25, with hyperekplexia or non-epileptic erratic myoclonus being the most prevalent feature (8/25). Correlating receptor functional phenotype with clinical features revealed clinical features for GRIA3-associated NDDs and distinct NDD phenotypes for loss-of-function and gain-of-function variants. Gain-of-function variants were associated with more severe outcomes: patients were younger at the time of seizure onset (median age: 1 month), hypertonic and more often had movement disorders, including hyperekplexia. Patients with loss-of-function variants were older at the time of seizure onset (median age: 16 months), hypotonic and had sleeping disturbances. Loss-of-function and gain-of-function variants were disease-causing in both sexes but affected males often carried de novo or hemizygous loss-of-function variants inherited from healthy mothers, whereas affected females had mostly de novo heterozygous gain-of-function variants.
Collapse
Affiliation(s)
- Berardo Rinaldi
- Medical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Allan Bayat
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund 4293, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense 5230Denmark
| | - Linda G Zachariassen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jia-Hui Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210032, China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310030, China
| | - Yu-Han Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210032, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210032, China
| | - Dan Zhao
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristine Bonde
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Laura H Madsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | | | - Duygu Bagiran
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Amal Sbeih
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Syeda Maidah Shah
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Shaymaa El-Sayed
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Signe M Lyngby
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Miriam G Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Charlotte Stenum-Berg
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Louise Claudia Walker
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Andrée Delahaye-Duriez
- Unité fonctionnelle de médecine génomique et génétique clinique, Hôpital Jean Verdier, Assistance Publique des Hôpitaux de Paris, Bondy 93140, France
- NeuroDiderot, UMR 1141, Inserm, Université Paris Cité, Paris 75019, France
- UFR SMBH, Université Sorbonne Paris Nord, Bobigny 93000, France
| | - Lisa T Emrick
- Division of Neurology and Developmental Neurosciences, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krystal Sully
- Division of Neurology and Developmental Neurosciences, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julie Ana Plaud Gonzalez
- Division of Neurology and Developmental Neurosciences, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Mered Parnes
- Division of Neurology and Developmental Neurosciences, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
- Pediatric Movement Disorders Clinic, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer Friedman
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA 92123, USA
- Department of Pediatrics, University of California San Diego, San Diego, CA 92123, USA
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes 44000, France
| | - Jérémie Lefranc
- Pediatric Neurophysiology Department, CHU de Brest, Brest 29200, France
| | - Sylvia Redon
- Service de Génétique Médicale, CHU de Brest, Brest 29200, France
- Université de Brest, CHU de Brest, UMR 1078, Brest F29200, France
| | - Delphine Heron
- APHP Sorbonne Université, Département de Génétique, Hôpital Armand Trousseau and Groupe Hospitalier Pitié-Salpêtrière, Paris 75013, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris 75013, France
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique, Hôpital Armand Trousseau and Groupe Hospitalier Pitié-Salpêtrière, Paris 75013, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris 75013, France
| | - Boris Keren
- Genetic Department, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, Paris 75013, France
| | - Mélanie Fradin
- Service de Génétique Médicale, Hôpital Sud, CHU de Rennes, Rennes 35200, France
| | - Christele Dubourg
- Service de Génétique Moléculaire et Génomique, CHU de Rennes, Rennes 35200, France
- Université de Rennes, CNRS, Institut de Genetique et Developpement de Rennes, UMR 6290, Rennes 35200, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes 44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes 44000, France
| | - Thomas Besnard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes 44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes 44000, France
| | - Benjamin Cogne
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes 44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes 44000, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes 44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes 44000, France
| | - Clotilde Rivier
- Department of Paediatrics, Villefranche-sur-Saône Hospital, Villefranche-sur-Saône 69655, France
| | - Donatella Milani
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Maria Francesca Bedeschi
- Medical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Claudia Di Napoli
- Medical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Federico Grilli
- Medical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Paola Marchisio
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pediatria Pneumoinfettivologia, Milan 20122, Italy
- University of Milan, Milan 20122, Italy
| | - Suzanna Koudijs
- Department of Neurology, ENCORE, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam 3015, The Netherlands
| | - Danielle Veenma
- Department of Pediatrics, ENCORE, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam 3015, The Netherlands
| | - Emanuela Argilli
- Institute of Human Genetics, University of California, San Francisco, CA 94143, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94143, USA
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children’s Health Ireland Crumlin, Dublin D12 N512, Ireland
| | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | | - Diane Masser-Frye
- Division of Genetics, Department of Pediatrics, UC San Diego School of Medicine, Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Marilyn Jones
- Division of Genetics, Department of Pediatrics, UC San Diego School of Medicine, Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Leslie Patron Romero
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana 22010, Mexico
| | | | | | - Laura Hecher
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg 20215, Germany
| | - Jessika Johannsen
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg 20215, Germany
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg 20215, Germany
| | - Vanda McNiven
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada
- Fred A Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, ON M5G 2C4, Canada
| | - Anna Szuto
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada
- Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1E8, Canada
| | - Emma Wakeling
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Vincent Cruz
- DDC Clinic Center for Special Needs Children, Middlefield, OH 44062, USA
| | - Valerie Sency
- DDC Clinic Center for Special Needs Children, Middlefield, OH 44062, USA
| | - Heng Wang
- DDC Clinic Center for Special Needs Children, Middlefield, OH 44062, USA
| | - Juliette Piard
- Centre de Génétique Humaine, Centre Hospitalier Universitaire, Université de Franche-Comté, Besançon 25000, France
- UMR 1231 GAD, Inserm, Université de Bourgogne Franche-Comté, Dijon 21000, France
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Angelo Condell
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
| | - Bruria Ben-Zeev
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 4R73+8Q, Israel
| | - Simranpreet Kaur
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria 3052, Australia
- Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NewSouth Wales 2050, Australia
| | - Amelie Piton
- Hôpitaux Universitaires de Strasbourg, Laboratoire de Diagnostic Génétique, Strasbourg 67000, France
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern 3010, Switzerland
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Alessia Micalizzi
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome 00165, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome 00165, Italy
| | - Gaetan Lesca
- Department of Medical Genetics, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon 69100, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM U1315, Lyon 69100, France
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund 4293, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense 5230Denmark
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Benedicte Gerard
- Laboratoires de diagnostic genetique, Institut de genetique Medicale d'Alsace, Hopitaux Universitaires de Strasbourg, Strasbourg 67000, France
| | - Johannes R Lemke
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210032, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210032, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai 519031, China
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
4
|
Zhou JJ, Shao JY, Chen SR, Chen H, Pan HL. Calcineurin regulates synaptic Ca 2+-permeable AMPA receptors in hypothalamic presympathetic neurons via α2δ-1-mediated GluA1/GluA2 assembly. J Physiol 2024; 602:2179-2197. [PMID: 38630836 PMCID: PMC11096015 DOI: 10.1113/jp286081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Hypertension is a major adverse effect of calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, used clinically as immunosuppressants. Calcineurin inhibitor-induced hypertension (CIH) is linked to augmented sympathetic output from the hypothalamic paraventricular nucleus (PVN). GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) are a key feature of glutamatergic synaptic plasticity, yet their role in CIH remains elusive. Here, we found that systemic administration of FK506 in rats significantly increased serine phosphorylation of GluA1 and GluA2 in PVN synaptosomes. Strikingly, FK506 treatment reduced GluA1/GluA2 heteromers in both synaptosomes and endoplasmic reticulum-enriched fractions from the PVN. Blocking CP-AMPARs with IEM-1460 induced a larger reduction of AMPAR-mediated excitatory postsynaptic current (AMPAR-EPSC) amplitudes in retrogradely labelled, spinally projecting PVN neurons in FK506-treated rats than in vehicle-treated rats. Furthermore, FK506 treatment shifted the current-voltage relationship of AMPAR-EPSCs from linear to inward rectification in labelled PVN neurons. FK506 treatment profoundly enhanced physical interactions of α2δ-1 with GluA1 and GluA2 in the PVN. Inhibiting α2δ-1 with gabapentin, α2δ-1 genetic knockout, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide restored GluA1/GluA2 heteromers in the PVN and diminished inward rectification of AMPAR-EPSCs in labelled PVN neurons induced by FK506 treatment. Additionally, microinjection of IEM-1460 or α2δ-1 C terminus peptide into the PVN reduced renal sympathetic nerve discharges and arterial blood pressure elevated in FK506-treated rats but not in vehicle-treated rats. Thus, calcineurin in the hypothalamus constitutively regulates AMPAR subunit composition and phenotypes by controlling GluA1/GluA2 interactions with α2δ-1. Synaptic CP-AMPARs in PVN presympathetic neurons contribute to augmented sympathetic outflow in CIH. KEY POINTS: Systemic treatment with the calcineurin inhibitor increases serine phosphorylation of synaptic GluA1 and GluA2 in the PVN. Calcineurin inhibition enhances the prevalence of postsynaptic Ca2+-permeable AMPARs in PVN presympathetic neurons. Calcineurin inhibition potentiates α2δ-1 interactions with GluA1 and GluA2, disrupting intracellular assembly of GluA1/GluA2 heterotetramers in the PVN. Blocking Ca2+-permeable AMPARs or α2δ-1-AMPAR interactions in the PVN attenuates sympathetic outflow augmented by the calcineurin inhibitor.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
5
|
Rosano G, Barzasi A, Lynagh T. Loss of activation by GABA in vertebrate delta ionotropic glutamate receptors. Proc Natl Acad Sci U S A 2024; 121:e2313853121. [PMID: 38285949 PMCID: PMC10861852 DOI: 10.1073/pnas.2313853121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Ionotropic glutamate receptors (iGluRs) mediate excitatory signals between cells by binding neurotransmitters and conducting cations across the cell membrane. In the mammalian brain, most of these signals are mediated by two types of iGluRs: AMPA and NMDA (i.e. iGluRs sensitive to 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid and N-methyl-D-aspartic acid, respectively). Delta-type iGluRs of mammals also form neurotransmitter-binding channels in the cell membrane, but in contrast, their channel is not activated by neurotransmitter binding, raising biophysical questions about iGluR activation and biological questions about the role of delta iGluRs. We therefore investigated the divergence of delta iGluRs from their iGluR cousins using molecular phylogenetics, electrophysiology, and site-directed mutagenesis. We find that delta iGluRs are found in numerous bilaterian animals (e.g., worms, starfish, and vertebrates) and are closely related to AMPA receptors, both genetically and functionally. Surprisingly, we observe that many iGluRs of the delta family are activated by the classical inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Finally, we identify nine amino acid substitutions that likely gave rise to the inactivity of today's mammalian delta iGluRs, and these mutations abolish activity when engineered into active invertebrate delta iGluRs, partly by inducing receptor desensitization. These results offer biophysical insight into iGluR activity and point to a role for GABA in excitatory signaling in invertebrates.
Collapse
Affiliation(s)
- Giulio Rosano
- Michael Sars Centre, University of Bergen, Bergen5008, Norway
| | - Allan Barzasi
- Michael Sars Centre, University of Bergen, Bergen5008, Norway
| | - Timothy Lynagh
- Michael Sars Centre, University of Bergen, Bergen5008, Norway
| |
Collapse
|
6
|
Zoller JA, Parasyraki E, Lu AT, Haghani A, Niehrs C, Horvath S. DNA methylation clocks for clawed frogs reveal evolutionary conservation of epigenetic aging. GeroScience 2024; 46:945-960. [PMID: 37270437 PMCID: PMC10828168 DOI: 10.1007/s11357-023-00840-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
To address how conserved DNA methylation-based epigenetic aging is in diverse branches of the tree of life, we generated DNA methylation data from African clawed frogs (Xenopus laevis) and Western clawed frogs (Xenopus tropicalis) and built multiple epigenetic clocks. Dual species clocks were developed that apply to both humans and frogs (human-clawed frog clocks), supporting that epigenetic aging processes are evolutionary conserved outside mammals. Highly conserved positively age-related CpGs are located in neural-developmental genes such as uncx, tfap2d as well as nr4a2 implicated in age-associated disease. We conclude that signatures of epigenetic aging are evolutionary conserved between frogs and mammals and that the associated genes relate to neural processes, altogether opening opportunities to employ Xenopus as a model organism to study aging.
Collapse
Affiliation(s)
- Joseph A Zoller
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany.
- German Cancer Research Center (DKFZ), Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Steve Horvath
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego, CA, USA.
| |
Collapse
|
7
|
Kelly L, Brown C, Gibbard AG, Jackson T, Swinny JD. Subunit-specific expression and function of AMPA receptors in the mouse locus coeruleus. J Anat 2023; 243:813-825. [PMID: 37391270 PMCID: PMC10557397 DOI: 10.1111/joa.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
The locus coeruleus (LC) provides the principal supply of noradrenaline (NA) to the brain, thereby modulating an array of brain functions. The release of NA, and therefore its impact on the brain, is governed by LC neuronal excitability. Glutamatergic axons, from various brain regions, topographically innervate different LC sub-domains and directly alter LC excitability. However, it is currently unclear whether glutamate receptor sub-classes, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, are divergently expressed throughout the LC. Immunohistochemistry and confocal microscopy were used to identify and localise individual GluA subunits in the mouse LC. Whole-cell patch clamp electrophysiology and subunit-preferring ligands were used to assess their impact on LC spontaneous firing rate (FR). GluA1 immunoreactive clusters were associated with puncta immunoreactive for VGLUT2 on somata, and VGLUT1 on distal dendrites. GluA4 was associated with these synaptic markers only in the distal dendrites. No specific signal was detected for the GluA2-3 subunits. The GluA1/2 receptor agonist (S)-CPW 399 increased LC FR, whilst the GluA1/3 receptor antagonist philanthotoxin-74 decreased it. 4-[2-(phenylsulfonylamino)ethylthio]-2,6-difluoro-phenoxyacetamide (PEPA), a positive allosteric modulator of GluA3/4 receptors, had no significant effect on spontaneous FR. The data suggest distinct AMPA receptor subunits are targeted to different LC afferent inputs and have contrasting effects on spontaneous neuronal excitability. This precise expression profile could be a mechanism for LC neurons to integrate diverse information contained in various glutamate afferents.
Collapse
Affiliation(s)
- Louise Kelly
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Christopher Brown
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Adina G. Gibbard
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Torquil Jackson
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Jerome D. Swinny
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
8
|
Alfaro-Ruiz R, Aguado C, Martín-Belmonte A, Moreno-Martínez AE, Merchán-Rubira J, Hernández F, Ávila J, Fukazawa Y, Luján R. Alteration in the Synaptic and Extrasynaptic Organization of AMPA Receptors in the Hippocampus of P301S Tau Transgenic Mice. Int J Mol Sci 2022; 23:13527. [PMID: 36362317 PMCID: PMC9656470 DOI: 10.3390/ijms232113527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2023] Open
Abstract
Tau pathology is a hallmark of Alzheimer's disease (AD) and other tauopathies, but how pathological tau accumulation alters the glutamate receptor dynamics driving synaptic dysfunction is unclear. Here, we determined the impact of tau pathology on AMPAR expression, density, and subcellular distribution in the hippocampus of P301S mice using immunoblot, histoblot, and quantitative SDS-digested freeze-fracture replica labeling (SDS-FRL). Histoblot and immunoblot showed differential regulation of GluA1 and GluA2 in the hippocampus of P301S mice. The GluA2 subunit was downregulated in the hippocampus at 3 months while both GluA1 and GluA2 subunits were downregulated at 10 months. However, the total amount of GluA1-4 was similar in P301S mice and in age-matched wild-type mice. Using quantitative SDS-FRL, we unraveled the molecular organization of GluA1-4 in various synaptic connections at a high spatial resolution on pyramidal cell spines and interneuron dendrites in the CA1 field of the hippocampus in 10-month-old P301S mice. The labeling density for GluA1-4 in the excitatory synapses established on spines was significantly reduced in P301S mice, compared to age-matched wild-type mice, in the strata radiatum and lacunosum-moleculare but unaltered in the stratum oriens. The density of synaptic GluA1-4 established on interneuron dendrites was significantly reduced in P301S mice in the three strata. The labeling density for GluA1-4 at extrasynaptic sites was significantly reduced in several postsynaptic compartments of CA1 pyramidal cells and interneurons in the three dendritic layers in P301S mice. Our data demonstrate that the progressive accumulation of phospho-tau is associated with alteration of AMPARs on the surface of different neuron types, including synaptic and extrasynaptic membranes, leading to a decline in the trafficking and synaptic transmission, thereby likely contributing to the pathological events taking place in AD.
Collapse
Affiliation(s)
- Rocio Alfaro-Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | - Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | | | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, ISCIII, 28049 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, ISCIII, 28049 Madrid, Spain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Fukui 910-1193, Japan
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| |
Collapse
|
9
|
Wu Q, Akhter A, Pant S, Cho E, Zhu JX, Garner AR, Ohyama T, Tajkhorshid E, van Meyel DJ, Ryan RM. Ataxia-linked SLC1A3 mutations alter EAAT1 chloride channel activity and glial regulation of CNS function. J Clin Invest 2022; 132:154891. [PMID: 35167492 PMCID: PMC8970671 DOI: 10.1172/jci154891] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). Excitatory Amino Acid Transporters (EAATs) regulate extracellular glutamate by transporting it into cells, mostly glia, to terminate neurotransmission and to avoid neurotoxicity. EAATs are also chloride (Cl-) channels, but the physiological role of Cl- conductance through EAATs is poorly understood. Mutations of human EAAT1 (hEAAT1) have been identified in patients with episodic ataxia type 6 (EA6). One mutation showed increased Cl- channel activity and decreased glutamate transport, but the relative contributions of each function of hEAAT1 to mechanisms underlying the pathology of EA6 remain unclear. Here we investigated the effects of five additional EA6-related mutations on hEAAT1 function in Xenopus laevis oocytes, and on CNS function in a Drosophila melanogaster model of locomotor behavior. Our results indicate that mutations resulting in decreased hEAAT1 Cl- channel activity but with functional glutamate transport can also contribute to the pathology of EA6, highlighting the importance of Cl- homeostasis in glial cells for proper CNS function. We also identified a novel mechanism involving an ectopic sodium (Na+) leak conductance in glial cells. Together, these results strongly support the idea that EA6 is primarily an ion channelopathy of CNS glia.
Collapse
Affiliation(s)
- Qianyi Wu
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Azman Akhter
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Shashank Pant
- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Eunjoo Cho
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Jin Xin Zhu
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | - Tomoko Ohyama
- Department of Biology, McGill University, Montreal, Canada
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Donald J van Meyel
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Renae M Ryan
- School of Medical Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Skiteva O, Yao N, Chergui K. Ketamine induces opposite changes in AMPA receptor calcium permeability in the ventral tegmental area and nucleus accumbens. Transl Psychiatry 2021; 11:530. [PMID: 34650029 PMCID: PMC8516914 DOI: 10.1038/s41398-021-01658-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/12/2023] Open
Abstract
Ketamine elicits rapid and durable antidepressant actions in treatment-resistant patients with mood disorders such as major depressive disorder and bipolar depression. The mechanisms might involve the induction of metaplasticity in brain regions associated with reward-related behaviors, mood, and hedonic drive, particularly the ventral tegmental area (VTA) and the nucleus accumbens (NAc). We have examined if ketamine alters the insertion of the GluA2 subunit of AMPA receptors (AMPAR), which determines calcium permeability of the channel, at glutamatergic synapses onto dopamine (DA) neurons in the VTA and spiny projection neurons (SPNs) in the Core region of the NAc. Mice received one injection of either saline or a low dose of ketamine 24 h before electrophysiological recordings were performed. We found that GluA2-lacking calcium-permeable (CP) AMPARs were present in DA neurons in the VTA of mice treated with saline, and that ketamine-induced the removal of a fraction of these receptors. In NAc SPNs, ketamine induced the opposite change, i.e., GluA2-lacking CP-AMPARs were inserted at glutamatergic synapses. Ketamine-induced metaplasticity was independent of group I metabotropic glutamate receptors (mGluRs) because an agonist of these receptors had similar effects on glutamatergic transmission in mice treated with saline and in mice treated with ketamine in both VTA DA neurons and in the NAc. Thus, ketamine reduces the insertion of CP-AMPARs in VTA DA neurons and induces their insertion in the NAc. The mechanism by which ketamine elicits antidepressant actions might thus involve an alteration in the contribution of GluA2 to AMPARs thereby modulating synaptic plasticity in the mesolimbic circuit.
Collapse
Affiliation(s)
- Olga Skiteva
- grid.4714.60000 0004 1937 0626Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ning Yao
- grid.4714.60000 0004 1937 0626Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Karima Chergui
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
12
|
Wilding TJ, Huettner JE. Cadmium activates AMPA and NMDA receptors with M3 helix cysteine substitutions. J Gen Physiol 2021; 152:151704. [PMID: 32342094 PMCID: PMC7335009 DOI: 10.1085/jgp.201912537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
AMPA and NMDA receptors are ligand-gated ion channels that depolarize postsynaptic neurons when activated by the neurotransmitter L-glutamate. Changes in the distribution and activity of these receptors underlie learning and memory, but excessive change is associated with an array of neurological disorders, including cognitive impairment, developmental delay, and epilepsy. All of the ionotropic glutamate receptors (iGluRs) exhibit similar tetrameric architecture, transmembrane topology, and basic framework for activation; conformational changes induced by extracellular agonist binding deform and splay open the inner helix bundle crossing that occludes ion flux through the channel. NMDA receptors require agonist binding to all four subunits, whereas AMPA and closely related kainate receptors can open with less than complete occupancy. In addition to conventional activation by agonist binding, we recently identified two locations along the inner helix of the GluK2 kainate receptor subunit where cysteine (Cys) substitution yields channels that are opened by exposure to cadmium ions, independent of agonist site occupancy. Here, we generate AMPA and NMDA receptor subunits with homologous Cys substitutions and demonstrate similar activation of the mutant receptors by Cd. Coexpression of the auxiliary subunit stargazin enhanced Cd potency for activation of Cys-substituted GluA1 and altered occlusion upon treatment with sulfhydryl-reactive MTS reagents. Mutant NMDA receptors displayed voltage-dependent Mg block of currents activated by agonist and/or Cd as well as asymmetry between Cd effects on Cys-substituted GluN1 versus GluN2 subunits. In addition, Cd activation of each Cys-substituted iGluR was inhibited by protons. These results, together with our earlier work on GluK2, reveal a novel mechanism shared among the three different iGluR subtypes for prying open the gate that controls ion entry into the pore.
Collapse
Affiliation(s)
- Timothy J Wilding
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| |
Collapse
|
13
|
Campanelli F, Laricchiuta D, Natale G, Marino G, Calabrese V, Picconi B, Petrosini L, Calabresi P, Ghiglieri V. Long-Term Shaping of Corticostriatal Synaptic Activity by Acute Fasting. Int J Mol Sci 2021; 22:ijms22041916. [PMID: 33671915 PMCID: PMC7918979 DOI: 10.3390/ijms22041916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022] Open
Abstract
Food restriction is a robust nongenic, nonsurgical and nonpharmacologic intervention known to improve health and extend lifespan in various species. Food is considered the most essential and frequently consumed natural reward, and current observations have demonstrated homeostatic responses and neuroadaptations to sustained intermittent or chronic deprivation. Results obtained to date indicate that food deprivation affects glutamatergic synapses, favoring the insertion of GluA2-lacking α-Ammino-3-idrossi-5-Metil-4-idrossazol-Propionic Acid receptors (AMPARs) in postsynaptic membranes. Despite an increasing number of studies pointing towards specific changes in response to dietary restrictions in brain regions, such as the nucleus accumbens and hippocampus, none have investigated the long-term effects of such practice in the dorsal striatum. This basal ganglia nucleus is involved in habit formation and in eating behavior, especially that based on dopaminergic control of motivation for food in both humans and animals. Here, we explored whether we could retrieve long-term signs of changes in AMPARs subunit composition in dorsal striatal neurons of mice acutely deprived for 12 hours/day for two consecutive days by analyzing glutamatergic neurotransmission and the principal forms of dopamine and glutamate-dependent synaptic plasticity. Overall, our data show that a moderate food deprivation in experimental animals is a salient event mirrored by a series of neuroadaptations and suggest that dietary restriction may be determinant in shaping striatal synaptic plasticity in the physiological state.
Collapse
Affiliation(s)
- Federica Campanelli
- Dipartmento di Medicina, Università di Perugia, 06129 Perugia, Italy; (F.C.); (G.N.); (G.M.); (V.C.)
- Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Daniela Laricchiuta
- Laboratorio di Neurofisiologia Sperimentale e del Comportamento, IRCCS Fondazione Santa Lucia c/o CERC, 00143 Rome, Italy; (D.L.); (L.P.)
| | - Giuseppina Natale
- Dipartmento di Medicina, Università di Perugia, 06129 Perugia, Italy; (F.C.); (G.N.); (G.M.); (V.C.)
- Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Gioia Marino
- Dipartmento di Medicina, Università di Perugia, 06129 Perugia, Italy; (F.C.); (G.N.); (G.M.); (V.C.)
- Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Valeria Calabrese
- Dipartmento di Medicina, Università di Perugia, 06129 Perugia, Italy; (F.C.); (G.N.); (G.M.); (V.C.)
- IRCCS San Raffaele Pisana, Rome 00176, Italy;
| | - Barbara Picconi
- IRCCS San Raffaele Pisana, Rome 00176, Italy;
- Università Telematica San Raffaele, 00166 Rome, Italy
| | - Laura Petrosini
- Laboratorio di Neurofisiologia Sperimentale e del Comportamento, IRCCS Fondazione Santa Lucia c/o CERC, 00143 Rome, Italy; (D.L.); (L.P.)
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Clinica Neurologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Veronica Ghiglieri
- Laboratorio di Neurofisiologia Sperimentale e del Comportamento, IRCCS Fondazione Santa Lucia c/o CERC, 00143 Rome, Italy; (D.L.); (L.P.)
- Università Telematica San Raffaele, 00166 Rome, Italy
- Correspondence:
| |
Collapse
|
14
|
Martín-Belmonte A, Aguado C, Alfaro-Ruíz R, Itakura M, Moreno-Martínez AE, de la Ossa L, Molnár E, Fukazawa Y, Luján R. Age-Dependent Shift of AMPA Receptors From Synapses to Intracellular Compartments in Alzheimer's Disease: Immunocytochemical Analysis of the CA1 Hippocampal Region in APP/PS1 Transgenic Mouse Model. Front Aging Neurosci 2020; 12:577996. [PMID: 33132900 PMCID: PMC7572859 DOI: 10.3389/fnagi.2020.577996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Synapse loss occurs early in Alzheimer’s disease (AD) patients and animal models. Alterations at synaptic level are a major morphological correlate of the memory deficits and related symptoms of AD. Given the predominant roles of synaptic AMPA receptors (AMPARs) in excitatory synaptic transmission in the brain, changes in their dynamic regulation are also implicated in the pathophysiology of AD. Here, we used immunolocalization techniques to analyze the expression and subcellular distribution of AMPARs in the hippocampal region of APP/PS1 mouse model of AD. Immunoblots and histoblots revealed that the total amount of AMPARs and their regional expression pattern in the hippocampus was similar in APP/PS1 mice and in age-matched wild type mice. At the ultrastructural level, two synapse populations were examined using SDS-digested freeze-fracture replica labeling in the stratum radiatum in mice: (i) on spines of CA1 pyramidal cells; and (ii) on randomly found dendritic shafts of CA1 interneurons. While 1- and 6-months-old APP/PS1 mice exhibited no change, we observed a significant reduction at 12 months in AMPAR density at synapses in both pyramidal cells and interneurons, compared to wild-type. This reduction of AMPARs in dendritic spines was accompanied by a significant increase in AMPAR subunit proteins identified in intracellular compartments. Our data demonstrate an age-dependent reduction of synaptic AMPARs in APP/PS1 mice, which may contribute to impaired learning and memory at later stages of AD.
Collapse
Affiliation(s)
- Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Rocío Alfaro-Ruíz
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara-shi, Japan
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Luis de la Ossa
- Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería Informática, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Elek Molnár
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, Bristol, United Kingdom
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, Life Science Innovation Center, Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Rafael Luján
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
15
|
Schwenk J, Fakler B. Building of AMPA‐type glutamate receptors in the endoplasmic reticulum and its implication for excitatory neurotransmission. J Physiol 2020; 599:2639-2653. [DOI: 10.1113/jp279025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/21/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jochen Schwenk
- Institute of Physiology, Faculty of Medicine University of Freiburg Hermann‐Herder‐Str. 7 Freiburg 79104 Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine University of Freiburg Hermann‐Herder‐Str. 7 Freiburg 79104 Germany
- Signalling Research Centres BIOSS and CIBSS Schänzlestr. 18 Freiburg 79104 Germany
- Center for Basics in NeuroModulation Breisacherstr. 4 Freiburg 79106 Germany
| |
Collapse
|
16
|
TAK-137, an AMPA-R potentiator with little agonistic effect, has a wide therapeutic window. Neuropsychopharmacology 2019; 44:961-970. [PMID: 30209408 PMCID: PMC6461786 DOI: 10.1038/s41386-018-0213-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 01/08/2023]
Abstract
Activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPA-R) is a promising strategy to treat psychiatric and neurological diseases if issues of bell-shaped response and narrow safety margin against seizure can be overcome. Here, we show that structural interference at Ser743 in AMPA-R is a key to lower the agonistic effect of AMPA-R potentiators containing dihydropyridothiadiazine 2,2-dioxides skeleton. With this structural insight, TAK-137, 9-(4-phenoxyphenyl)-3,4-dihydropyrido[2,1-c][1,2,4]thiadiazine 2,2-dioxide, was discovered as a novel AMPA-R potentiator with a lower agonistic effect than an AMPA-R potentiator LY451646 ((R)-N-(2-(4'-cyanobiphenyl-4-yl)propyl)propane-2-sulfonamide) in rat primary neurons. TAK-137 induced brain-derived neurotrophic factor in neurons in rodents and potently improved cognition in both rats and monkeys. Compared to LY451646, TAK-137 had a wider safety margin against seizure in rats. TAK-137 enhanced neural progenitor proliferation over a broader range of doses in rodents. Thus, TAK-137 is a promising AMPA-R potentiator with potent procognitive effects and lower risks of bell-shaped response and seizure. These data may open the door for the development of AMPA-R potentiators as therapeutic drugs for psychiatric and neurological diseases.
Collapse
|
17
|
Shi EY, Yuan CL, Sipple MT, Srinivasan J, Ptak CP, Oswald RE, Nowak LM. Noncompetitive antagonists induce cooperative AMPA receptor channel gating. J Gen Physiol 2019; 151:156-173. [PMID: 30622133 PMCID: PMC6363417 DOI: 10.1085/jgp.201812209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/05/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022] Open
Abstract
Glutamate activates individual subunits of AMPA receptors in a stepwise manner. Shi et al. reveal that two noncompetitive antagonists disrupt this gating pattern and that their binding sites at the boundary between the transmembrane and extracellular linker domains is a tunable locus for gating. Glutamate is released from presynaptic nerve terminals in the central nervous system (CNS) and spreads excitation by binding to and activating postsynaptic iGluRs. Of the potential glutamate targets, tetrameric AMPA receptors mediate fast, transient CNS signaling. Each of the four AMPA subunits in the receptor channel complex is capable of binding glutamate at its ligand-binding domains and transmitting the energy of activation to the pore domain. Homotetrameric AMPA receptor channels open in a stepwise manner, consistent with independent activation of individual subunits, and they exhibit complex kinetic behavior that manifests as temporal shifts between four different conductance levels. Here, we investigate how two AMPA receptor-selective noncompetitive antagonists, GYKI-52466 and GYKI-53655, disrupt the intrinsic step-like gating patterns of maximally activated homotetrameric GluA3 receptors using single-channel recordings from cell-attached patches. Interactions of these 2,3-benzodiazepines with residues in the boundary between the extracellular linkers and transmembrane helical domains reorganize the gating behavior of channels. Low concentrations of modulators stabilize open and closed states to different degrees and coordinate the activation of subunits so that channels open directly from closed to higher conductance levels. Using kinetic and structural models, we provide insight into how the altered gating patterns might arise from molecular contacts within the extracellular linker-channel boundary. Our results suggest that this region may be a tunable locus for AMPA receptor channel gating.
Collapse
Affiliation(s)
- Edward Y Shi
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | - Christine L Yuan
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | - Matthew T Sipple
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | | | | | - Robert E Oswald
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | - Linda M Nowak
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
18
|
Mölders A, Koch A, Menke R, Klöcker N. Heterogeneity of the astrocytic AMPA-receptor transcriptome. Glia 2018; 66:2604-2616. [PMID: 30370555 DOI: 10.1002/glia.23514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/01/2018] [Accepted: 07/18/2018] [Indexed: 11/06/2022]
Abstract
Astrocytes form the largest class of glial cells in the central nervous system. They serve plenty of diverse functions that range from supporting the formation and proper operation of synapses to controlling the blood-brain barrier. For many of them, the expression of ionotropic glutamate receptors of the AMPA subtype (AMPARs) in astrocytes is of key importance. AMPARs form as macromolecular protein complexes, whose composition of the pore-lining GluA subunits and of an extensive set of core and peripheral complex constituents defines both their trafficking and gating behavior. Although astrocytic AMPARs have been reported to exhibit heterogeneous properties, their molecular composition is largely unknown. In this study, we sought to quantify the astrocytic AMPAR transcriptome during brain development and with respect to selected brain regions. Whereas the early postnatal pattern of AMPAR mRNA expression showed minor variation over time, it did show significant heterogeneity in different brain regions. Cerebellar astrocytes express a combination of AMPAR complex constituents that is remarkably distinct from the one in neocortical or hippocampal astrocytes. Our study provides a workflow and a first reference for future investigations into the molecular and functional diversity of glial AMPARs.
Collapse
Affiliation(s)
- Andrea Mölders
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Angela Koch
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Raphael Menke
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Zhang H, Mu L, Wang D, Xia D, Salmon A, Liu Q, Wong‐Riley MTT. Uncovering a critical period of synaptic imbalance during postnatal development of the rat visual cortex: role of brain-derived neurotrophic factor. J Physiol 2018; 596:4511-4536. [PMID: 30055019 PMCID: PMC6138289 DOI: 10.1113/jp275814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/26/2018] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS With daily electrophysiological recordings and neurochemical analysis, we uncovered a transient period of synaptic imbalance between enhanced inhibition and suppressed excitation in rat visual cortical neurons from the end of the fourth toward the end of the fifth postnatal weeks. The expression of brain-derived neurotrophic factor (BDNF), which normally enhances excitation and suppresses inhibition, was down-regulated during that time, suggesting that this may contribute to the inhibition/excitation imbalance. An agonist of the BDNF receptor tropomyosin-related kinase B (TrkB) partially reversed the imbalance, whereas a TrkB antagonist accentuated the imbalance during the transient period. Monocular lid suture during the transient period is more detrimental to the function and neurochemical properties of visual cortical neurons than before or after this period. We regard the period of synaptic imbalance as the peak critical period of vulnerability, and its existence is necessary for neurons to transition from immaturity to a more mature state of functioning. ABSTRACT The mammalian visual cortex is immature at birth and undergoes postnatal structural and functional adjustments. The exact timing of the vulnerable period in rodents remains unclear. The critical period is characterized by inhibitory GABAergic maturation reportedly dependent on brain-derived neurotrophic factor (BDNF). However, most of the studies were performed on experimental/transgenic animals, questioning the relationship in normal animals. The present study aimed to conduct in-depth analyses of the synaptic and neurochemical development of visual cortical neurons in normal and monocularly-deprived rats and to determine specific changes, if any, during the critical period. We found that (i) against a gradual increase in excitation and inhibition with age, a transient period of synaptic and neurochemical imbalance existed with suppressed excitation and enhanced inhibition at postnatal days 28 to 33/34; (ii) during this window, the expression of BDNF and tropomyosin-related kinase B (TrkB) receptors decreased, along with glutamatergic GluN1 and GluA1 receptors and the metabolic marker cytochrome oxidase, whereas that of GABAA Rα1 receptors continued to rise; (iii) monocular deprivation reduced both excitatory and inhibitory synaptic activity and neurochemicals mainly during this period; and (iv) in vivo TrkB agonist partially reversed the synaptic imbalance in normal and monocularly-deprived neurons during this time, whereas a TrkB antagonist accentuated the imbalance. Thus, our findings highlight a transitory period of synaptic imbalance with a negative relationship between BDNF and inhibitory GABA. This brief critical period may be necessary in transitioning from an immature to a more mature state of visual cortical functioning.
Collapse
Affiliation(s)
- Hanmeng Zhang
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Lianwei Mu
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Dandan Wang
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Dongdong Xia
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Alexander Salmon
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Qiuli Liu
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | | |
Collapse
|
20
|
Dual Effects of TARP γ-2 on Glutamate Efficacy Can Account for AMPA Receptor Autoinactivation. Cell Rep 2018; 20:1123-1135. [PMID: 28768197 PMCID: PMC5554777 DOI: 10.1016/j.celrep.2017.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/12/2017] [Accepted: 07/09/2017] [Indexed: 11/10/2022] Open
Abstract
Fast excitatory transmission in the CNS is mediated mainly by AMPA-type glutamate receptors (AMPARs) associated with transmembrane AMPAR regulatory proteins (TARPs). At the high glutamate concentrations typically seen during synaptic transmission, TARPs slow receptor desensitization and enhance mean channel conductance. However, their influence on channels gated by low glutamate concentrations, as encountered during delayed transmitter clearance or synaptic spillover, is poorly understood. We report here that TARP γ-2 reduces the ability of low glutamate concentrations to cause AMPAR desensitization and enhances channel gating at low glutamate occupancy. Simulations show that, by shifting the balance between AMPAR activation and desensitization, TARPs can markedly facilitate the transduction of spillover-mediated synaptic signaling. Furthermore, the dual effects of TARPs can account for biphasic steady-state glutamate concentration-response curves—a phenomenon termed “autoinactivation,” previously thought to reflect desensitization-mediated AMPAR/TARP dissociation. TARP γ-2 reduces desensitization and enhances the gating of singly liganded AMPARs This accounts for biphasic steady-state dose-response curves (autoinactivation) The effects of γ-2 are predicted to enhance synaptic spillover currents Desensitization does not lead to functional dissociation of the AMPAR/TARP complex
Collapse
|
21
|
Davies B, Brown LA, Cais O, Watson J, Clayton AJ, Chang VT, Biggs D, Preece C, Hernandez-Pliego P, Krohn J, Bhomra A, Twigg SRF, Rimmer A, Kanapin A, Sen A, Zaiwalla Z, McVean G, Foster R, Donnelly P, Taylor JC, Blair E, Nutt D, Aricescu AR, Greger IH, Peirson SN, Flint J, Martin HC. A point mutation in the ion conduction pore of AMPA receptor GRIA3 causes dramatically perturbed sleep patterns as well as intellectual disability. Hum Mol Genet 2018; 26:3869-3882. [PMID: 29016847 PMCID: PMC5639461 DOI: 10.1093/hmg/ddx270] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/06/2017] [Indexed: 01/19/2023] Open
Abstract
The discovery of genetic variants influencing sleep patterns can shed light on the physiological processes underlying sleep. As part of a large clinical sequencing project, WGS500, we sequenced a family in which the two male children had severe developmental delay and a dramatically disturbed sleep-wake cycle, with very long wake and sleep durations, reaching up to 106-h awake and 48-h asleep. The most likely causal variant identified was a novel missense variant in the X-linked GRIA3 gene, which has been implicated in intellectual disability. GRIA3 encodes GluA3, a subunit of AMPA-type ionotropic glutamate receptors (AMPARs). The mutation (A653T) falls within the highly conserved transmembrane domain of the ion channel gate, immediately adjacent to the analogous residue in the Grid2 (glutamate receptor) gene, which is mutated in the mouse neurobehavioral mutant, Lurcher. In vitro, the GRIA3(A653T) mutation stabilizes the channel in a closed conformation, in contrast to Lurcher. We introduced the orthologous mutation into a mouse strain by CRISPR-Cas9 mutagenesis and found that hemizygous mutants displayed significant differences in the structure of their activity and sleep compared to wild-type littermates. Typically, mice are polyphasic, exhibiting multiple sleep bouts of sleep several minutes long within a 24-h period. The Gria3A653T mouse showed significantly fewer brief bouts of activity and sleep than the wild-types. Furthermore, Gria3A653T mice showed enhanced period lengthening under constant light compared to wild-type mice, suggesting an increased sensitivity to light. Our results suggest a role for GluA3 channel activity in the regulation of sleep behavior in both mice and humans.
Collapse
Affiliation(s)
- Benjamin Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Laurence A Brown
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Ondrej Cais
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Jake Watson
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Amber J Clayton
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Veronica T Chang
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Daniel Biggs
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Christopher Preece
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | | | - Jon Krohn
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Amarjit Bhomra
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | | | - Alexander Kanapin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,Department of Oncology, University of Oxford, Oxford, Oxfordshire OX3 7DQ, UK
| | | | - Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Zenobia Zaiwalla
- Department of Neuroscience, John Radcliffe Hospital, Oxford, Oxfordshire OX3 9DU, UK
| | - Gil McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, Oxfordshire OX3 7FZ, UK
| | - Russell Foster
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Peter Donnelly
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,Department of Statistics, University of Oxford, Oxford, Oxfordshire OX1 3LB, UK
| | - Jenny C Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,National Institute for Health Research Oxford Biomedical Research Centre (NIHR Oxford BRC), Oxford, Oxfordshire OX3 7LE, UK
| | - Edward Blair
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, Oxfordshire OX3 7HE, UK
| | - David Nutt
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, London W12 0NN, UK
| | - A Radu Aricescu
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Ingo H Greger
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Jonathan Flint
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, CA 90095, USA
| | - Hilary C Martin
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
22
|
Kunugi A, Tajima Y, Kuno H, Sogabe S, Kimura H. HBT1, a Novel AMPA Receptor Potentiator with Lower Agonistic Effect, Avoided Bell-Shaped Response in In Vitro BDNF Production. J Pharmacol Exp Ther 2018; 364:377-389. [PMID: 29298820 DOI: 10.1124/jpet.117.245050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/28/2017] [Indexed: 11/22/2022] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor (AMPA-R) potentiators with brain-derived neurotrophic factor (BDNF)-induction potential could be promising as therapeutic drugs for neuropsychiatric and neurologic disorders. However, AMPA-R potentiators such as LY451646 have risks of narrow bell-shaped responses in pharmacological effects, including in vivo BDNF induction. Interestingly, LY451646 and LY451395, other AMPA-R potentiators, showed agonistic effects and exhibited bell-shaped responses in the BDNF production in primary neurons. We hypothesized that the agonistic property is related to the bell-shaped response and endeavored to discover novel AMPA-R potentiators with lower agonistic effects. LY451395 showed an agonistic effect in primary neurons, but not in a cell line expressing AMPA-Rs, in Ca2+ influx assays; thus, we used a Ca2+ influx assay in primary neurons and, from a chemical library, discovered two AMPA-R potentiators with lower agonistic effects: 2-(((5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl)acetyl)amino)-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide (HBT1) and (3S)-1-(4-tert-butylphenyl)-N-((1R)-2-(dimethylamino)-1-phenylethyl)-3-isobutyl-2-oxopyrrolidine-3-carboxamide (OXP1). In a patch-clamp study using primary neurons, HBT1 showed little agonistic effect, whereas both LY451395 and OXP1 showed remarkable agonistic effects. HBT1, but not OXP1, did not show remarkable bell-shaped response in BDNF production in primary neurons. HBT1 bound to the ligand-binding domain (LBD) of AMPA-R in a glutamate-dependent manner. The mode of HBT1 and LY451395 binding to a pocket in the LBD of AMPA-R differed: HBT1, but not LY451395, formed hydrogen bonds with S518 in the LBD. OXP1 may bind to a cryptic binding pocket on AMPA-R. Lower agonistic profile of HBT1 may associate with its lower risks of bell-shaped responses in BDNF production in primary neurons.
Collapse
Affiliation(s)
- Akiyoshi Kunugi
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yasukazu Tajima
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Haruhiko Kuno
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Satoshi Sogabe
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Haruhide Kimura
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
23
|
Wall MJ, Corrêa SAL. The mechanistic link between Arc/Arg3.1 expression and AMPA receptor endocytosis. Semin Cell Dev Biol 2017; 77:17-24. [PMID: 28890421 DOI: 10.1016/j.semcdb.2017.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
The activity-regulated cytoskeleton associated protein (Arc/Arg3.1) plays a key role in determining synaptic strength through facilitation of AMPA receptor (AMPAR) endocytosis. Although there is considerable data on the mechanism by which Arc induction controls synaptic plasticity and learning behaviours, several key mechanistic questions remain. Here we review data on the link between Arc expression and the clathrin-mediated endocytic pathway which internalises AMPARs and discuss the significance of Arc binding to the clathrin adaptor protein 2 (AP-2) and to endophilin/dynamin. We consider which AMPAR subunits are selected for Arc-mediated internalisation, implications for synaptic function and consider Arc as a therapeutic target.
Collapse
Affiliation(s)
- Mark J Wall
- School of Life Sciences, University of Warwick, United Kingdom.
| | - Sonia A L Corrêa
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, United Kingdom.
| |
Collapse
|
24
|
Carbofuran causes neuronal vulnerability to glutamate by decreasing GluA2 protein levels in rat primary cortical neurons. Arch Toxicol 2017; 92:401-409. [PMID: 28725974 DOI: 10.1007/s00204-017-2018-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
Abstract
Glutamate receptor 2 (GluA2/GluR2) is one of the four subunits of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR); an increase in GluA2-lacking AMPARs contributes to neuronal vulnerability to excitotoxicity because of the receptor's high Ca2+ permeability. Carbofuran is a carbamate pesticide used in agricultural areas to increase crop productivity. Due to its broad-spectrum action, carbofuran has also been used as an insecticide, nematicide, and acaricide. In this study, we investigated the effect of carbofuran on GluA2 protein expression. The 9-day treatment of rat primary cortical neurons with 1 µM and 10 µM carbofuran decreased GluA2 protein expression, but not that of GluA1, GluA3, or GluA4 (i.e., other AMPAR subunits). Decreased GluA2 protein expression was also observed on the cell surface membrane of 10 µM carbofuran-treated neurons, and these neurons showed an increase in 25 µM glutamate-triggered Ca2+ influx. Treatment with 50 µM glutamate, which did not affect the viability of control neurons, significantly decreased the viability of 10 µM carbofuran-treated neurons, and this effect was abolished by pre-treatment with 300 µM 1-naphthylacetylspermine, an antagonist of GluA2-lacking AMPAR. At a concentration of 100 µM, but not 1 or 10 µM, carbofuran significantly decreased acetylcholine esterase activity, a well-known target of this chemical. These results suggest that carbofuran decreases GluA2 protein expression and increases neuronal vulnerability to glutamate toxicity at concentrations that do not affect acetylcholine esterase activity.
Collapse
|
25
|
Shimshek DR, Bus T, Schupp B, Jensen V, Marx V, Layer LE, Köhr G, Sprengel R. Different Forms of AMPA Receptor Mediated LTP and Their Correlation to the Spatial Working Memory Formation. Front Mol Neurosci 2017; 10:214. [PMID: 28725178 PMCID: PMC5495865 DOI: 10.3389/fnmol.2017.00214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/19/2017] [Indexed: 01/22/2023] Open
Abstract
Spatial working memory (SWM) and the classical, tetanus-induced long-term potentiation (LTP) at hippocampal CA3/CA1 synapses are dependent on L-α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) containing GluA1 subunits as demonstrated by knockout mice lacking GluA1. In GluA1 knockout mice LTP and SWM deficits could be partially recovered by transgenic re-installation of full-length GluA1 in principle forebrain neurons. Here we partially restored hippocampal LTP in GluA1-deficient mice by forebrain-specific depletion of the GluA2 gene, by the activation of a hypomorphic GluA2(Q) allele and by transgenic expression of PDZ-site truncated GFP-GluA1(TG). In none of these three mouse lines, the partial LTP recovery improved the SWM performance of GluA1-deficient mice suggesting a specific function of intact GluA1/2 receptors and the GluA1 intracellular carboxyl-terminus in SWM and its associated behavior.
Collapse
Affiliation(s)
- Derya R Shimshek
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany
| | - Thorsten Bus
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany.,Research Group of the Max Planck Institute for Medical Research, Institute for Anatomy and Cell Biology, Heidelberg UniversityHeidelberg, Germany
| | - Bettina Schupp
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany
| | - Vidar Jensen
- Letten Centre and GliaLab, Department of Physiology, Institute of Basic Medical Sciences, University of OsloOslo, Norway
| | - Verena Marx
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany.,Department of Neurophysiology, Donders Center for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Liliana E Layer
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany.,Faculty of Medicine, Institute of Anatomy, University of ZurichZurich, Switzerland
| | - Georg Köhr
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany.,Physiology of Neuronal Networks, Central Institute for Mental Health (CIMH), Medical Faculty, Heidelberg UniversityMannheim, Germany
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany.,Research Group of the Max Planck Institute for Medical Research, Institute for Anatomy and Cell Biology, Heidelberg UniversityHeidelberg, Germany
| |
Collapse
|
26
|
Haumann I, Junghans D, Anstötz M, Frotscher M. Presynaptic localization of GluK5 in rod photoreceptors suggests a novel function of high affinity glutamate receptors in the mammalian retina. PLoS One 2017; 12:e0172967. [PMID: 28235022 PMCID: PMC5325551 DOI: 10.1371/journal.pone.0172967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/13/2017] [Indexed: 01/04/2023] Open
Abstract
Kainate receptors mediate glutamatergic signaling through both pre- and presynaptic receptors. Here, we studied the expression of the high affinity kainate receptor GluK5 in the mouse retina. Double-immunofluoresence labeling and electron microscopic analysis revealed a presynaptic localization of GluK5 in the outer plexiform layer. Unexpectedly, we found GluK5 almost exclusively localized to the presynaptic ribbon of photoreceptor terminals. Moreover, in GluK5-deficient mutant mice the structural integrity of synaptic ribbons was severely altered pointing to a novel function of GluK5 in organizing synaptic ribbons in the presynaptic terminals of rod photoreceptors.
Collapse
Affiliation(s)
- Iris Haumann
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (MF); (IH)
| | - Dirk Junghans
- Institute of Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Max Anstötz
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (MF); (IH)
| |
Collapse
|
27
|
Ward SE, Beswick P, Calcinaghi N, Dawson LA, Gartlon J, Graziani F, Jones DNC, Lacroix L, Selina Mok MH, Oliosi B, Pardoe J, Starr K, Woolley ML, Harries MH. Pharmacological characterization of N-[(2S)-5-(6-fluoro-3-pyridinyl)-2, 3-dihydro-1H-inden-2-yl]-2-propanesulfonamide: a novel, clinical AMPA receptor positive allosteric modulator. Br J Pharmacol 2017; 174:370-385. [PMID: 28009436 DOI: 10.1111/bph.13696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/28/2016] [Accepted: 12/11/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE AMPA receptor positive allosteric modulators represent a potential therapeutic strategy to improve cognition in people with schizophrenia. These studies collectively constitute the preclinical pharmacology data package used to build confidence in the pharmacology of this molecule and enable a clinical trial application. EXPERIMENTAL APPROACH [N-[(2S)-5-(6-fluoro-3-pyridinyl)-2,3-dihydro 1H-inden-2-yl]-2-propanesulfonamide] (UoS12258) was profiled in a number of in vitro and in vivo studies to highlight its suitability as a novel therapeutic agent. KEY RESULTS We demonstrated that UoS12258 is a selective, positive allosteric modulator of the AMPA receptor. At rat native hetero-oligomeric AMPA receptors, UoS12258 displayed a minimum effective concentration of approximately 10 nM in vitro and enhanced AMPA receptor-mediated synaptic transmission at an estimated free brain concentration of approximately 15 nM in vivo. UoS12258 reversed a delay-induced deficit in novel object recognition in rats after both acute and sub-chronic dosing. Sub-chronic dosing reduced the minimum effective dose from 0.3 to 0.03 mg·kg-1 . UoS12258 was also effective at improving performance in two other cognition models, passive avoidance in scopolamine-impaired rats and water maze learning and retention in aged rats. In side-effect profiling studies, UoS12258 did not produce significant changes in the maximal electroshock threshold test at doses below 10 mg·kg-1 . CONCLUSION AND IMPLICATIONS We conclude that UoS12258 is a potent and selective AMPA receptor modulator exhibiting cognition enhancing properties in several rat behavioural models superior to other molecules that have previously entered clinical evaluation.
Collapse
Affiliation(s)
- Simon E Ward
- University of Sussex, Brighton, UK.,Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | | | - Novella Calcinaghi
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline Medicines Research Centre, Verona, Italy
| | - Lee A Dawson
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Jane Gartlon
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Francesca Graziani
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline Medicines Research Centre, Verona, Italy
| | - Declan N C Jones
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Laurent Lacroix
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK.,Health Sciences Research Center, Whiteland's College, University of Roehampton, London, UK
| | - M H Selina Mok
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Beatrice Oliosi
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline Medicines Research Centre, Verona, Italy
| | - Joanne Pardoe
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Kathryn Starr
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Marie L Woolley
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Mark H Harries
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| |
Collapse
|
28
|
Filippini A, Bonini D, La Via L, Barbon A. The Good and the Bad of Glutamate Receptor RNA Editing. Mol Neurobiol 2016; 54:6795-6805. [DOI: 10.1007/s12035-016-0201-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022]
|
29
|
Morrison JH, Siegel SJ, Gazzaley AH, Huntley GW. ■ REVIEW : Glutamate Receptors: Emerging Links Between Subunit Proteins and Specific Excitatory Circuits in Primate Hippocampus and Neocortex. Neuroscientist 2016. [DOI: 10.1177/107385849600200513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glutamate receptors (GluRs) are the primary mediators of excitatory neurotransmission in the CNS and play an indispensable role in brain function. Recent molecular advances have revealed an increasingly elaborate panel of GluR subunits that combine to form a variety of heteromeric GluR complexes with distinct functional characteristics determined by the stoichiometry of the subunit composition. Excitatory circuits in hippocampus and neocortex exhibit a complex and highly ordered array of termination patterns that reflect both segregation and convergence at specific target sites. We hypothesize that the molecular diversity of the GluRs will be manifested as circuit-specific profiles that will generate extensive functional diversity in cortical excitatory circuits. To elucidate the link between GluR diversity and neuroanatomical circuitry, immunocytochemical techniques employing subunit-specific antibodies have been used to localize various subunit proteins at the cellular and synaptic level. Such studies have revealed differential subunit parcellation between neocortical neuronal populations, as well as within defined dendritic compartments of hippocampal pyramidal cells. Additionally, the intradendritic parcellation of a specific GluR subunit is modifiable in an age-related and circuit-specific manner. NEUROSCIENTIST 2:272-283, 1996
Collapse
Affiliation(s)
- John H. Morrison
- Fishberg Research Center for Neurobiology, Department of Geriatrics and Adult Development, Mount
Sinai School of Medicine New York, New York
| | | | | | | |
Collapse
|
30
|
Cervetto C, Vergani L, Passalacqua M, Ragazzoni M, Venturini A, Cecconi F, Berretta N, Mercuri N, D'Amelio M, Maura G, Mariottini P, Voci A, Marcoli M, Cervelli M. Astrocyte-Dependent Vulnerability to Excitotoxicity in Spermine Oxidase-Overexpressing Mouse. Neuromolecular Med 2016; 18:50-68. [PMID: 26530396 DOI: 10.1007/s12017-015-8377-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022]
Abstract
Transgenic mice overexpressing spermine oxidase (SMO) in the cerebral cortex (Dach-SMO mice) showed increased vulnerability to excitotoxic brain injury and kainate-induced epileptic seizures. To investigate the mechanisms by which SMO overexpression leads to increased susceptibility to kainate excitotoxicity and seizure, in the cerebral cortex of Dach-SMO and control mice we assessed markers for astrocyte proliferation and neuron loss, and the ability of kainate to evoke glutamate release from nerve terminals and astrocyte processes. Moreover, we assessed a possible role of astrocytes in an in vitro model of epileptic-like activity in combined cortico-hippocampal slices recorded with a multi-electrode array device. In parallel, as the brain is a major metabolizer of oxygen and yet has relatively feeble protective antioxidant mechanisms, we analyzed the oxidative status of the cerebral cortex of both SMO-overexpressing and control mice by evaluating enzymatic and non-enzymatic scavengers such as metallothioneins. The main findings in the cerebral cortex of Dach-SMO mice as compared to controls are the following: astrocyte activation and neuron loss; increased oxidative stress and activation of defense mechanisms involving both neurons and astrocytes; increased susceptibility to kainate-evoked cortical epileptogenic activity, dependent on astrocyte function; appearance of a glutamate-releasing response to kainate from astrocyte processes due to activation of Ca(2+)-permeable AMPA receptors in Dach-SMO mice. We conclude that reactive astrocytosis and activation of glutamate release from astrocyte processes might contribute, together with increased reactive oxygen species production, to the vulnerability to kainate excitotoxicity in Dach-SMO mice. This mouse model with a deregulated polyamine metabolism would shed light on roles for astrocytes in increasing vulnerability to excitotoxic neuron injury.
Collapse
Affiliation(s)
- Chiara Cervetto
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Via L. B. Alberti 2, 16132, Genoa, Italy
| | - Milena Ragazzoni
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Arianna Venturini
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
| | - Francesco Cecconi
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, 00133, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Nicola Berretta
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Nicola Mercuri
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
- Department of Systems Medicine, University of Rome 'Tor Vergata', Viale Oxford 81, 00133, Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
- Medical School Campus, Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Guido Maura
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Paolo Mariottini
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
- Interuniversity Consortium of Structural and Systems Biology, Viale Medaglie d'Oro 305, 00136, Rome, Italy
| | - Adriana Voci
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Manuela Marcoli
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy.
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy.
| | - Manuela Cervelli
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy.
- Interuniversity Consortium of Structural and Systems Biology, Viale Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
31
|
Erlenhardt N, Yu H, Abiraman K, Yamasaki T, Wadiche JI, Tomita S, Bredt DS. Porcupine Controls Hippocampal AMPAR Levels, Composition, and Synaptic Transmission. Cell Rep 2016; 14:782-794. [PMID: 26776514 DOI: 10.1016/j.celrep.2015.12.078] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 11/19/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022] Open
Abstract
AMPA receptor (AMPAR) complexes contain auxiliary subunits that modulate receptor trafficking and gating. In addition to the transmembrane AMPAR regulatory proteins (TARPs) and cornichons (CNIH-2/3), recent proteomic studies identified a diverse array of additional AMPAR-associated transmembrane and secreted partners. We systematically surveyed these and found that PORCN and ABHD6 increase GluA1 levels in transfected cells. Knockdown of PORCN in rat hippocampal neurons, which express it in high amounts, selectively reduces levels of all tested AMPAR complex components. Regulation of AMPARs is independent of PORCN's membrane-associated O-acyl transferase activity. PORCN knockdown in hippocampal neurons decreases AMPAR currents and accelerates desensitization and leads to depletion of TARP γ-8 from AMPAR complexes. Conditional PORCN knockout mice also exhibit specific changes in AMPAR expression and gating that reduce basal synaptic transmission but leave long-term potentiation intact. These studies define additional roles for PORCN in controlling synaptic transmission by regulating the level and composition of hippocampal AMPAR complexes.
Collapse
Affiliation(s)
- Nadine Erlenhardt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA; Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Hong Yu
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Kavitha Abiraman
- Department of Neurobiology, McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tokiwa Yamasaki
- CNNR program, Department of Cellular and Molecular Physiology, Yale University School of Medicine, 295 Congress Avenue BCMM441, P.O. Box 208026, New Haven, CT 06510, USA
| | - Jacques I Wadiche
- Department of Neurobiology, McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Susumu Tomita
- CNNR program, Department of Cellular and Molecular Physiology, Yale University School of Medicine, 295 Congress Avenue BCMM441, P.O. Box 208026, New Haven, CT 06510, USA
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA.
| |
Collapse
|
32
|
AMPA receptor-positive allosteric modulators for the treatment of schizophrenia: an overview of recent patent applications. Future Med Chem 2016; 7:473-91. [PMID: 25875874 DOI: 10.4155/fmc.15.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The role of glutamate and its receptors in central nervous system biology and disease has long been of interest to scientists involved in both fundamental research and drug discovery, however the complex pharmacology and lack of highly selective compounds has severely hampered drug discovery efforts in this area. Recent advances in the identification and profiling of positive allosteric modulators of the AMPA receptor offer a potential way forward and the hope of a new treatment for schizophrenia. This article will review recent patent applications published in this area.
Collapse
|
33
|
Friedman LK, Slomko AM, Wongvravit JP, Naseer Z, Hu S, Wan WY, Ali SS. Efficacy of Retigabine on Acute Limbic Seizures in Adult Rats. J Epilepsy Res 2015; 5:46-59. [PMID: 26819936 PMCID: PMC4724852 DOI: 10.14581/jer.15010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/01/2015] [Indexed: 12/17/2022] Open
Abstract
Background and Purpose: The efficacy of retigabine (RGB), a positive allosteric modulator of K+ channels indicated for adjunct treatment of partial seizures, was studied in two adult models of kainic acid (KA)-induced status epilepticus to determine it’s toleratbility. Methods: Retigabine was administered systemiclly at high (5 mg/kg) and low (1–2 mg/kg) doses either 30 min prior to or 2 hr after KA-induced status epilepticus. High (1 µg/µL) and low (0.25 µg/µL) concentrations of RGB were also delivered by intrahippocampal microinjection in the presence of KA. Results: Dose-dependent effects of RGB were observed with both models. Lower doses increased seizure behavior latency and reduced the number of single spikes and synchronized burst events in the electroencephalogram (EEG). Higher doses worsened seizure behavior, produced severe ataxia, and increased spiking activity. Animals treated with RGB that were resistant to seizures did not exhibit significant injury or loss in GluR1 expression; however if stage 5–6 seizures were reached, typical hippocampal injury and depletion of GluR1 subunit protein in vulernable pyramidal fields occurred. Conclusions: RGB was neuroprotective only if seizures were significantly attenuated. GluR1 was simultaneously suppressed in the resistant granule cell layer in presence of RGB which may weaken excitatory transmission. Biphasic effects observed herein suggest that the human dosage must be carefully scrutinized to produce the optimal clinical response.
Collapse
Affiliation(s)
- L K Friedman
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - A M Slomko
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - J P Wongvravit
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Z Naseer
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - S Hu
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - W Y Wan
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - S S Ali
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
34
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
35
|
|
36
|
Rajić V, Debeljak M, Goričar K, Jazbec J. Polymorphisms in GRIA1 gene are a risk factor for asparaginase hypersensitivity during the treatment of childhood acute lymphoblastic leukemia. Leuk Lymphoma 2015; 56:3103-8. [PMID: 25697915 DOI: 10.3109/10428194.2015.1020802] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
l-asparaginase is an effective antineoplastic agent used in chemotherapy of acute lymphoblastic leukemia. The drug effect may be compromised by an elicited immune response, resulting in the production of anti-asparaginase antibodies causing an anaphylactic reaction or silent inactivation of the enzyme. To elucidate possible genetic predisposition for inter-individual differences in asparaginase hypersensitivity, we studied single nucleotide polymorphisms (SNPs) in the GRIA1 gene in 146 pediatric patients treated with l-asparaginase. Allergic reaction to l-asparaginase occurred in 49.3% of patients. We observed a statistically significant association between SNPs in the GRIA1 gene and the occurrence of asparaginase allergy: rs4958351 with p = 0.003, rs4958676 with p = 0.005, rs6889909 with p = 0.005, rs6890057 with p = 0.005 and rs10070447 with p = 0.006. We found a statistically significant correlation between asparaginase allergy and event-free survival (p-value 0.005).
Collapse
Affiliation(s)
- Vladan Rajić
- a Department of Hematology and Oncology , University Children's Hospital , Ljubljana , Slovenia
| | - Maruša Debeljak
- b Unit of Special Laboratory Diagnostics, Centre for Medical Genetics, University Medical Centre Ljubljana , Ljubljana , Slovenia
| | - Katja Goričar
- c Institute of Biochemistry, Medical Faculty, University of Ljubljana , Ljubljana , Slovenia
| | - Janez Jazbec
- a Department of Hematology and Oncology , University Children's Hospital , Ljubljana , Slovenia
| |
Collapse
|
37
|
Target-specific properties of thalamocortical synapses onto layer 4 of mouse primary visual cortex. J Neurosci 2015; 34:15455-65. [PMID: 25392512 DOI: 10.1523/jneurosci.2595-14.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In primary sensory cortices, thalamocortical (TC) inputs can directly activate excitatory and inhibitory neurons. In vivo experiments in the main input layer (L4) of primary visual cortex (V1) have shown that excitatory and inhibitory neurons have different tuning properties. The different functional properties may arise from distinct intrinsic properties of L4 neurons, but could also depend on cell type-specific properties of the synaptic inputs from the lateral geniculate nucleus of the thalamus (LGN) onto L4 neurons. While anatomical studies identified LGN inputs onto both excitatory and inhibitory neurons in V1, their synaptic properties have not been investigated. Here we used an optogenetic approach to selectively activate LGN terminal fields in acute coronal slices containing V1, and recorded monosynaptic currents from excitatory and inhibitory neurons in L4. LGN afferents made monosynaptic connections with pyramidal (Pyr) and fast-spiking (FS) neurons. TC EPSCs on FS neurons were larger and showed steeper short-term depression in response to repetitive stimulation than those on Pyr neurons. LGN inputs onto Pyr and FS neurons also differed in postsynaptic receptor composition and organization of presynaptic release sites. Together, our results demonstrate that LGN input onto L4 neurons in mouse V1 have target-specific presynaptic and postsynaptic properties. Distinct mechanisms of activation of feedforward excitatory and inhibitory neurons in the main input layer of V1 are likely to endow neurons with different response properties to incoming visual stimuli.
Collapse
|
38
|
Tu YC, Kuo CC. The differential contribution of GluN1 and GluN2 to the gating operation of the NMDA receptor channel. Pflugers Arch 2014; 467:1899-917. [PMID: 25339225 DOI: 10.1007/s00424-014-1630-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/27/2014] [Accepted: 10/12/2014] [Indexed: 11/25/2022]
Abstract
The Ν-methyl-D-aspartate (NMDA) receptor channel is an obligatory heterotetramer formed by two GluN1 and two GluN2 subunits. However, the differential contribution of the two different subunits to channel operation is not clear. We found that the apparent affinity of glycine to GluN1 (K gly ∼ 0.6 μM) is much higher than NMDA or glutamate to GluN2 (K NMDA ∼ 36 μM, K glu ∼ 4.8 μM). The binding rate constant (derived from the linear regression of the apparent macroscopic binding rates) of glycine to GluN1 (∼9.8 × 10(6) M(-1) s(-1)), however, is only slightly faster than NMDA to GluN2 (∼4.1 × 10(6) M(-1) s(-1)). Accordingly, the apparent unbinding rates of glycine from activated GluN1 (time constant ∼2 s) are much slower than NMDA from activated GluN2 (time constant ∼70 ms). Moreover, the decay of NMDA currents upon wash-off of both glycine and NMDA seems to follow the course of NMDA rather than glycine unbinding. But if only glycine is washed off, the current decay is much slower, apparently following the course of glycine unbinding. The apparent binding rate of glycine to the fully deactivated channel, in the absence of NMDA, is roughly the same as that measured with co-application of both ligands, whereas the apparent binding rate of NMDA to the fully deactivated channel in the absence of glycine is markedly slower. In this regard, it is interesting that the seventh residue in the highly conserved SYTANLAAF motif (A7) in GluN1 and GluN2 are so close that they may interact with each other to control the dimension of the external pore mouth. Moreover, specific mutations involving A7 in GluN1 but not in GluN2 result in channels showing markedly enhanced affinity to both glycine and NMDA and readily activated by only NMDA, as if the channel is already partially activated. We conclude that GluN2 is most likely directly responsible for the activation gate of the NMDA channel, whereas GluN1 assumes a role of more global control, especially on the gating conformational changes in GluN2. Structurally, this intersubunit regulatory interaction seems to involve the SYTANLAAF motif, especially the A7 residue.
Collapse
Affiliation(s)
- Ya-Chi Tu
- Department of Physiology, National Taiwan University College of Medicine, 1, Jen-Ai Road, 1st Section, Taipei, 100, Taiwan
| | | |
Collapse
|
39
|
Dürr KL, Chen L, Stein RA, De Zorzi R, Folea IM, Walz T, Mchaourab HS, Gouaux E. Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell 2014; 158:778-792. [PMID: 25109876 DOI: 10.1016/j.cell.2014.07.023] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory signaling in the nervous system. Despite the profound importance of iGluRs to neurotransmission, little is known about the structures and dynamics of intact receptors in distinct functional states. Here, we elucidate the structures of the intact GluA2 AMPA receptor in an apo resting/closed state, in an activated/pre-open state bound with partial agonists and a positive allosteric modulator, and in a desensitized/closed state in complex with fluorowilliardiine. To probe the conformational properties of these states, we carried out double electron-electron resonance experiments on cysteine mutants and cryoelectron microscopy studies. We show how agonist binding modulates the conformation of the ligand-binding domain "layer" of the intact receptors and how, upon desensitization, the receptor undergoes large conformational rearrangements of the amino-terminal and ligand-binding domains. We define mechanistic principles by which to understand antagonism, activation, and desensitization in AMPA iGluRs.
Collapse
Affiliation(s)
- Katharina L Dürr
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Lei Chen
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Rita De Zorzi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - I Mihaela Folea
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Howard Hughes Medical Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
40
|
Rubio MD, Drummond JB, Meador-Woodruff JH. Glutamate receptor abnormalities in schizophrenia: implications for innovative treatments. Biomol Ther (Seoul) 2014; 20:1-18. [PMID: 24116269 PMCID: PMC3792192 DOI: 10.4062/biomolther.2012.20.1.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/25/2011] [Indexed: 01/18/2023] Open
Abstract
Schizophrenia is a devastating psychiatric illness that afflicts 1% of the population worldwide, resulting in substantial impact to patients, their families, and health care delivery systems. For many years, schizophrenia has been felt to be associated with dysregulated dopaminergic neurotransmission as a key feature of the pathophysiology of the illness. Although numerous studies point to dopaminergic abnormalities in schizophrenia, dopamine dysfunction cannot completely account for all of the symptoms seen in schizophrenia, and dopamine-based treatments are often inadequate and can be associated with serious side effects. More recently, converging lines of evidence have suggested that there are abnormalities of glutamate transmission in schizophrenia. Glutamatergic neurotransmission involves numerous molecules that facilitate glutamate release, receptor activation, glutamate reuptake, and other synaptic activities. Evidence for glutamatergic abnormalities in schizophrenia primarily has implicated the NMDA and AMPA subtypes of the glutamate receptor. The expression of these receptors and other molecules associated with glutamate neurotransmission has been systematically studied in the brain in schizophrenia. These studies have generally revealed region- and molecule-specific changes in glutamate receptor transcript and protein expression in this illness. Given that glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia, recent drug development efforts have targeted the glutamate system. Much effort to date has focused on modulation of the NMDA receptor, although more recently other glutamate receptors and transporters have been the targets of drug development. These efforts have been promising thus far, and ongoing efforts to develop additional drugs that modulate glutamatergic neurotransmission are underway that may hold the potential for novel classes of more effective treatments for this serious psychiatric illness.
Collapse
Affiliation(s)
- Maria D Rubio
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0021, USA
| | | | | |
Collapse
|
41
|
Marinho da Silva S, Carrettiero DC, Chadi DRF. Glutamate requires NMDA receptors to modulate alpha2 adrenoceptor in medulla oblongata cultured cells of newborn rats. Neurosci Lett 2014; 564:83-8. [PMID: 24530256 DOI: 10.1016/j.neulet.2014.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 11/19/2022]
Abstract
α2 Adrenoceptors (α2-ARs) are important in regulating the central control of blood pressure in medulla oblongata. However, it is unclear how this receptor is modulated by different receptors, especially the glutamatergic. In the present study, we studied the influence of ionotropic glutamatergic receptors over the α2-ARs in cultured cells of the medulla oblongata of newborn rats. For this purpose, the protein level of the α2-ARs was assessed after administration to the cultured cells of glutamate (glu), the agonists NMDA and kainate (KA), the NMDA receptor antagonist MK801 and the KA receptor antagonist DNQX. Results indicate that the α2-AR protein levels were increased after the treatments with glu and NMDA, and the addition of MK801 to this treatment thwarted this increase. Notwithstanding the fact that KA did not alter the receptor protein level, the combined treatment of DNQX with glu prevented the α2-AR protein modulation. In conclusion, the present study suggests that ionotropic glutamatergic receptors could be related to the α2-AR protein regulation in the medulla oblongata.
Collapse
Affiliation(s)
- Sergio Marinho da Silva
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Daniel C Carrettiero
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Brazil
| | - Débora R F Chadi
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
42
|
Levite M, Ganor Y. Autoantibodies to glutamate receptors can damage the brain in epilepsy, systemic lupus erythematosus and encephalitis. Expert Rev Neurother 2014; 8:1141-60. [DOI: 10.1586/14737175.8.7.1141] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Ghrelin triggers the synaptic incorporation of AMPA receptors in the hippocampus. Proc Natl Acad Sci U S A 2013; 111:E149-58. [PMID: 24367106 DOI: 10.1073/pnas.1313798111] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ghrelin is a peptide mainly produced by the stomach and released into circulation, affecting energy balance and growth hormone release. These effects are guided largely by the expression of the ghrelin receptor growth hormone secretagogue type 1a (GHS-R1a) in the hypothalamus and pituitary. However, GHS-R1a is expressed in other brain regions, including the hippocampus, where its activation enhances memory retention. Herein we explore the molecular mechanism underlying the action of ghrelin on hippocampal-dependent memory. Our data show that GHS-R1a is localized in the vicinity of hippocampal excitatory synapses, and that its activation increases delivery of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic-type receptors (AMPARs) to synapses, producing functional modifications at excitatory synapses. Moreover, GHS-R1a activation enhances two different paradigms of long-term potentiation in the hippocampus, activates the phosphatidylinositol 3-kinase, and increases GluA1 AMPAR subunit and stargazin phosphorylation. We propose that GHS-R1a activation in the hippocampus enhances excitatory synaptic transmission and synaptic plasticity by regulating AMPAR trafficking. Our study provides insights into mechanisms that may mediate the cognition-enhancing effect of ghrelin, and suggests a possible link between the regulation of energy metabolism and learning.
Collapse
|
44
|
Affiliation(s)
- Hannah Monyer
- University of Heidelberg, Center for Molecular Biology, Heidelberg, Germany
| | - Peter H. Seeburg
- University of Heidelberg, Center for Molecular Biology, Heidelberg, Germany
| |
Collapse
|
45
|
Ballaz S, Morales I, Rodríguez M, Obeso JA. Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. J Neurosci Res 2013; 91:1609-17. [PMID: 23996657 DOI: 10.1002/jnr.23276] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 01/31/2023]
Abstract
Ascorbate (vitamin C) is a nonenzymatic antioxidant highly concentrated in the brain. In addition to mediating redox balance, ascorbate is linked to glutamate neurotransmission in the striatum, where it renders neuroprotection against excessive glutamate stimulation. Oxidative stress and glutamatergic overactivity are key biochemical features accompanying the loss of dopaminergic neurons in the substantia nigra that characterizes Parkinson's disease (PD). At present, it is not clear whether antiglutamate agents and ascorbate might be neuroprotective agents for PD. Thus, we tested whether ascorbate can prevent cell death from prolonged exposure to glutamate using dopaminergic neurons of human origin. To this purpose, dopamine-like neurons were obtained by differentiation of SH-SY5Y cells and then cultured for 4 days without antioxidant (antiaging) protection to evaluate glutamate toxicity and ascorbate protection as a model system of potential factors contributing to dopaminergic neuron death in PD. Glutamate dose dependently induced toxicity in dopaminergic cells largely by the stimulation of AMPA and metabotropic receptors and to a lesser extent by N-methyl-D-aspartate and kainate receptors. At relatively physiological levels of extracellular concentration, ascorbate protected cells against glutamate excitotoxicity. This neuroprotection apparently relies on the inhibition of oxidative stress, because ascorbate prevented the pro-oxidant action of the scavenging molecule quercetin, which occurred over the course of prolonged exposure, as is also seen with glutamate. Our findings show the relevance of ascorbate as a neuroprotective agent and emphasize an often underappreciated role of oxidative stress in glutamate excitotoxicity. Occurrence of a glutamate-ascorbate link in dopaminergic neurons may explain previous contradictions regarding their putative role in PD.
Collapse
Affiliation(s)
- Santiago Ballaz
- Laboratory of Movement Disorders, Department of Neuroscience, Centre for Applied Medicine Research (CIMA), University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | | | | | | |
Collapse
|
46
|
Gut IM, Beske PH, Hubbard KS, Lyman ME, Hamilton TA, McNutt PM. Novel application of stem cell-derived neurons to evaluate the time- and dose-dependent progression of excitotoxic injury. PLoS One 2013; 8:e64423. [PMID: 23691214 PMCID: PMC3653859 DOI: 10.1371/journal.pone.0064423] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 04/15/2013] [Indexed: 12/23/2022] Open
Abstract
Glutamate receptor (GluR)-mediated neurotoxicity is implicated in a variety of disorders ranging from ischemia to neural degeneration. Under conditions of elevated glutamate, the excessive activation of GluRs causes internalization of pathologic levels of Ca2+, culminating in bioenergetic failure, organelle degradation, and cell death. Efforts to characterize cellular and molecular aspects of excitotoxicity and conduct therapeutic screening for pharmacologic inhibitors of excitogenic progression have been hindered by limitations associated with primary neuron culture. To address this, we evaluated glutamate-induced neurotoxicity in highly enriched glutamatergic neurons (ESNs) derived from murine embryonic stem cells. As of 18 days in vitro (DIV 18), ESNs were synaptically coupled, exhibited spontaneous network activity with neurotypic mEPSCs and expressed NMDARs and AMPARs with physiological current:voltage behaviors. Addition of 0.78–200 μM glutamate evoked reproducible time- and dose-dependent metabolic failure in 6 h, with a calculated EC50 value of 0.44 μM at 24 h. Using a combination of cell viability assays and electrophysiology, we determined that glutamate-induced toxicity was specifically mediated by NMDARs and could be inhibited by addition of NMDAR antagonists, increased extracellular Mg2+ or substitution of Ba2+ for Ca2+. Glutamate treatment evoked neurite fragmentation and focal swelling by both immunocytochemistry and scanning electron microscopy. Presentation of morphological markers of cell death was dose-dependent, with 0.78–200 μM glutamate resulting in apoptosis and 3000 μM glutamate generating a mixture of necrosis and apoptosis. Addition of neuroprotective small molecules reduced glutamate-induced neurotoxicity in a dose-dependent fashion. These data indicate that ESNs replicate many of the excitogenic mechanisms observed in primary neuron culture, offering a moderate-throughput model of excitotoxicity that combines the verisimilitude of primary neurons with the flexibility and scalability of cultured cells. ESNs therefore offer a physiologically relevant platform that exhibits characteristic NMDAR responses, and appears suitable to evaluate molecular mechanisms of glutamate-induced excitotoxicity and screen for candidate therapeutics.
Collapse
Affiliation(s)
- Ian M. Gut
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Phillip H. Beske
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Kyle S. Hubbard
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Megan E. Lyman
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Tracey A. Hamilton
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Patrick M. McNutt
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
- * E-mail:
| |
Collapse
|
47
|
Russo I, Bonini D, Via LL, Barlati S, Barbon A. AMPA receptor properties are modulated in the early stages following pilocarpine-induced status epilepticus. Neuromolecular Med 2013; 15:324-38. [PMID: 23494293 DOI: 10.1007/s12017-013-8221-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 02/08/2013] [Indexed: 01/28/2023]
Abstract
Glutamate over-activation and the consequent neuronal excitotoxicity have been identified as crucial players in brain dysfunctions such as status epilepticus (SE). Owing to the central function of 2-amino-3-(hydroxyl-5-methylisoxazole-4-yl) propionic acid receptors (AMPARs) in fast excitatory neurotransmission, these receptors have been recognized to play a prominent role in the development and generation of epileptic seizure. This study was undertaken to investigate both the early changes that affect glutamatergic neurons in the rat cerebral cortex and hippocampus and the level and channel properties of AMPARs in response to SE. The results obtained after 3 h of pilocarpine (PILO)-induced SE showed a disorganization of glutamatergic neurons in the CA3 and a thinner neuronal cell layer in the dentate gyrus (DG) region as compared with controls. A significant increase in AMPAR GluA2 protein expression, a decrease in GluA1, GluA3, and GluA4 expression, and a reduction in the phosphorylation of Ser831-GluA1 and Ser880-GluA2 were also observed. In addition, we report a downregulation of R/G editing levels and of Flip splicing isoforms, with a prominent effect on the hippocampus of PILO-treated rats. Our results suggest the presence of an attenuation of AMPARs' post-synaptic excitatory response to glutamate after PILO treatment, thus conferring neuronal protection from the excitotoxic conditions observed in the SE. This study suggests a role for AMPARs in alterations of the glutamatergic pathway during the onset and early progression of epilepsy, thus indicating additional targets for potential therapeutic interventions.
Collapse
Affiliation(s)
- Isabella Russo
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnology and National Institute of Neuroscience, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | | | | | | | | |
Collapse
|
48
|
Linsenbardt AJ, Chisari M, Yu A, Shu HJ, Zorumski CF, Mennerick S. Noncompetitive, voltage-dependent NMDA receptor antagonism by hydrophobic anions. Mol Pharmacol 2013; 83:354-66. [PMID: 23144238 PMCID: PMC3558806 DOI: 10.1124/mol.112.081794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/09/2012] [Indexed: 11/22/2022] Open
Abstract
NMDA receptor (NMDAR) antagonists are dissociative anesthetics, drugs of abuse, and are of therapeutic interest in neurodegeneration and neuropsychiatric disease. Many well-known NMDAR antagonists are positively charged, voltage-dependent channel blockers. We recently showed that the hydrophobic anion dipicrylamine (DPA) negatively regulates GABA(A) receptor function by a mechanism indistinguishable from that of sulfated neurosteroids. Because sulfated neurosteroids also modulate NMDARs, here we examined the effects of DPA on NMDAR function. In rat hippocampal neurons DPA inhibited currents gated by 300 µM NMDA with an IC(50) of 2.3 µM. Neither onset nor offset of antagonism exhibited dependence on channel activation but exhibited a noncompetitive profile. DPA antagonism was independent of NMDAR subunit composition and was similar at extrasynaptic and total receptor populations. Surprisingly, similar to cationic channel blockers but unlike sulfated neurosteroids, DPA antagonism was voltage dependent. Onset and offset of DPA antagonism were nearly 10-fold faster than DPA-induced increases in membrane capacitance, suggesting that membrane interactions do not directly explain antagonism. Furthermore, voltage dependence did not derive from association of DPA with a site on NMDARs directly accessible to the outer membrane leaflet, assessed by DPA translocation experiments. Consistent with the expected lack of channel block, DPA antagonism did not interact with permeant ions. Therefore, we speculate that voltage dependence may arise from interactions of DPA with the inherent voltage dependence of channel gating. Overall, we conclude that DPA noncompetitively inhibits NMDA-induced current by a novel voltage-dependent mechanism and represents a new class of anionic NMDAR antagonists.
Collapse
Affiliation(s)
- Andrew J Linsenbardt
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
49
|
La Via L, Bonini D, Russo I, Orlandi C, Barlati S, Barbon A. Modulation of dendritic AMPA receptor mRNA trafficking by RNA splicing and editing. Nucleic Acids Res 2012; 41:617-31. [PMID: 23166306 PMCID: PMC3592400 DOI: 10.1093/nar/gks1223] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA trafficking to dendrites and local translation are crucial processes for superior neuronal functions. To date, several α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) mRNAs have been detected in dendrites and are subject to local protein synthesis. Here, we report the presence of all AMPAR GluA1-4 mRNAs in hippocampal and cortical rat synaptic spines by synaptoneurosomes analysis. In particular, we showed that dendritic AMPAR mRNAs are present in the Flip versions in the cortex and hippocampus. To further confirm these data, we demonstrate, using in situ hybridization, the dendritic localization of the GluA2 Flip isoform in vitro and in vivo, whereas the Flop variant is restricted mainly to the soma. In addition, we report that dendritic AMPA mRNAs are edited at low levels at their R/G sites; this result was also supported with transfection experiments using chimeric GluA2 DNA vectors, showing that transcripts carrying an unedited nucleotide at the R/G site, in combination with the Flip exon, are more efficiently targeted to dendrites when compared with the edited-Flip versions. Our data show that post-transcriptional regulations such as RNA splicing, editing and trafficking might be mutually coordinated and that the localization of different AMPAR isoforms in dendrites might play a functional role in the regulation of neuronal transmission.
Collapse
Affiliation(s)
- Luca La Via
- Department of Biomedical Sciences and Biotechnology, Division of Biology and Genetics, National Institute of Neuroscience, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Wang M, Li S, Zhang H, Pei L, Zou S, Lee FJS, Wang YT, Liu F. Direct interaction between GluR2 and GAPDH regulates AMPAR-mediated excitotoxicity. Mol Brain 2012; 5:13. [PMID: 22537872 PMCID: PMC3407747 DOI: 10.1186/1756-6606-5-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 04/26/2012] [Indexed: 12/30/2022] Open
Abstract
Over-activation of AMPARs (α−amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptors) is implicated in excitotoxic neuronal death associated with acute brain insults, such as ischemic stroke. However, the specific molecular mechanism by which AMPARs, especially the calcium-impermeable AMPARs, induce neuronal death remains poorly understood. Here we report the identification of a previously unrecognized molecular pathway involving a direct protein-protein interaction that underlies GluR2-containing AMPAR-mediated excitotoxicity. Agonist stimulation of AMPARs promotes GluR2/GAPDH (glyceraldehyde-3-phosphate dehydrogenase) complex formation and subsequent internalization. Disruption of GluR2/GAPDH interaction by administration of an interfering peptide prevents AMPAR-mediated excitotoxicity and protects against damage induced by oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia.
Collapse
Affiliation(s)
- Min Wang
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|