1
|
Gambi G, Boccalatte F, Rodriguez Hernaez J, Lin Z, Nadorp B, Polyzos A, Tan J, Avrampou K, Inghirami G, Kentsis A, Apostolou E, Aifantis I, Tsirigos A. 3D chromatin hubs as regulatory units of identity and survival in human acute leukemia. Mol Cell 2025; 85:42-60.e7. [PMID: 39719705 PMCID: PMC11934262 DOI: 10.1016/j.molcel.2024.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
Cancer progression involves genetic and epigenetic changes that disrupt chromatin 3D organization, affecting enhancer-promoter interactions and promoting growth. Here, we provide an integrative approach, combining chromatin conformation, accessibility, and transcription analysis, validated by in silico and CRISPR-interference screens, to identify relevant 3D topologies in pediatric T cell leukemia (T-ALL and ETP-ALL). We characterize 3D hubs as regulatory centers for oncogenes and disease markers, linking them to biological processes like cell division, inflammation, and stress response. Single-cell mapping reveals heterogeneous gene activation in discrete epigenetic clones, aiding in patient stratification for relapse risk after chemotherapy. Finally, we identify MYB as a 3D hub regulator in leukemia cells and show that the targeting of key regulators leads to hub dissolution, thereby providing a novel and effective anti-leukemic strategy. Overall, our work demonstrates the relevance of studying oncogenic 3D hubs to better understand cancer biology and tumor heterogeneity and to propose novel therapeutic strategies.
Collapse
Affiliation(s)
- Giovanni Gambi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Francesco Boccalatte
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy.
| | - Javier Rodriguez Hernaez
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Ziyan Lin
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Bettina Nadorp
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jimin Tan
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Kleopatra Avrampou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute and Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Departments of Pediatrics, Pharmacology, Physiology & Biophysics, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| | - Aristotelis Tsirigos
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Mulet-Lazaro R, Delwel R. Oncogenic Enhancers in Leukemia. Blood Cancer Discov 2024; 5:303-317. [PMID: 39093124 PMCID: PMC11369600 DOI: 10.1158/2643-3230.bcd-23-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Although the study of leukemogenesis has traditionally focused on protein-coding genes, the role of enhancer dysregulation is becoming increasingly recognized. The advent of high-throughput sequencing, together with a better understanding of enhancer biology, has revealed how various genetic and epigenetic lesions produce oncogenic enhancers that drive transformation. These aberrations include translocations that lead to enhancer hijacking, point mutations that modulate enhancer activity, and copy number alterations that modify enhancer dosage. In this review, we describe these mechanisms in the context of leukemia and discuss potential therapeutic avenues to target these regulatory elements. Significance: Large-scale sequencing projects have uncovered recurrent gene mutations in leukemia, but the picture remains incomplete: some patients harbor no such aberrations, whereas others carry only a few that are insufficient to bring about transformation on their own. One of the missing pieces is enhancer dysfunction, which only recently has emerged as a critical driver of leukemogenesis. Knowledge of the various mechanisms of enhancer dysregulation is thus key for a complete understanding of leukemia and its causes, as well as the development of targeted therapies in the era of precision medicine.
Collapse
Affiliation(s)
- Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Chi H, Pepper M, Thomas PG. Principles and therapeutic applications of adaptive immunity. Cell 2024; 187:2052-2078. [PMID: 38670065 PMCID: PMC11177542 DOI: 10.1016/j.cell.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Adaptive immunity provides protection against infectious and malignant diseases. These effects are mediated by lymphocytes that sense and respond with targeted precision to perturbations induced by pathogens and tissue damage. Here, we review key principles underlying adaptive immunity orchestrated by distinct T cell and B cell populations and their extensions to disease therapies. We discuss the intracellular and intercellular processes shaping antigen specificity and recognition in immune activation and lymphocyte functions in mediating effector and memory responses. We also describe how lymphocytes balance protective immunity against autoimmunity and immunopathology, including during immune tolerance, response to chronic antigen stimulation, and adaptation to non-lymphoid tissues in coordinating tissue immunity and homeostasis. Finally, we discuss extracellular signals and cell-intrinsic programs underpinning adaptive immunity and conclude by summarizing key advances in vaccination and engineering adaptive immune responses for therapeutic interventions. A deeper understanding of these principles holds promise for uncovering new means to improve human health.
Collapse
Affiliation(s)
- Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA, USA.
| | - Paul G Thomas
- Department of Host-Microbe Interactions and Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
4
|
PANAGOPOULOS IOANNIS, HEIM SVERRE. Neoplasia-associated Chromosome Translocations Resulting in Gene Truncation. Cancer Genomics Proteomics 2022; 19:647-672. [PMID: 36316036 PMCID: PMC9620447 DOI: 10.21873/cgp.20349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022] Open
Abstract
Chromosomal translocations in cancer as well as benign neoplasias typically lead to the formation of fusion genes. Such genes may encode chimeric proteins when two protein-coding regions fuse in-frame, or they may result in deregulation of genes via promoter swapping or translocation of the gene into the vicinity of a highly active regulatory element. A less studied consequence of chromosomal translocations is the fusion of two breakpoint genes resulting in an out-of-frame chimera. The breaks then occur in one or both protein-coding regions forming a stop codon in the chimeric transcript shortly after the fusion point. Though the latter genetic events and mechanisms at first awoke little research interest, careful investigations have established them as neither rare nor inconsequential. In the present work, we review and discuss the truncation of genes in neoplastic cells resulting from chromosomal rearrangements, especially from seemingly balanced translocations.
Collapse
Affiliation(s)
- IOANNIS PANAGOPOULOS
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - SVERRE HEIM
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Mikdache A, Boueid MJ, Lesport E, Delespierre B, Loisel-Duwattez J, Degerny C, Tawk M. Timely Schwann cell division drives peripheral myelination in vivo via the laminin/cAMP pathway. Development 2022; 149:276236. [DOI: 10.1242/dev.200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Schwann cells (SCs) migrate along peripheral axons and divide intensively to generate the right number of cells prior to axonal ensheathment; however, little is known regarding the temporal and molecular control of their division and its impact on myelination. We report that Sil, a spindle pole protein associated with autosomal recessive primary microcephaly, is required for temporal mitotic exit of SCs. In sil-deficient cassiopeia (csp−/−) mutants, SCs fail to radially sort and myelinate peripheral axons. Elevation of cAMP, but not Rac1 activity, in csp−/− restores myelin ensheathment. Most importantly, we show a significant decrease in laminin expression within csp−/− posterior lateral line nerve and that forcing Laminin 2 expression in csp−/− fully restores the ability of SCs to myelinate. Thus, we demonstrate an essential role for timely SC division in mediating laminin expression to orchestrate radial sorting and peripheral myelination in vivo.
Collapse
Affiliation(s)
- Aya Mikdache
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Marie-José Boueid
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Emilie Lesport
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | | | | | - Cindy Degerny
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Marcel Tawk
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| |
Collapse
|
6
|
Parriott G, Kee BL. E Protein Transcription Factors as Suppressors of T Lymphocyte Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:885144. [PMID: 35514954 PMCID: PMC9065262 DOI: 10.3389/fimmu.2022.885144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
T Lymphocyte Acute Lymphoblastic Leukemia (ALL) is an aggressive disease arising from transformation of T lymphocytes during their development. The mutation spectrum of T-ALL has revealed critical regulators of the growth and differentiation of normal and leukemic T lymphocytes. Approximately, 60% of T-ALLs show aberrant expression of the hematopoietic stem cell-associated helix-loop-helix transcription factors TAL1 and LYL1. TAL1 and LYL1 function in multiprotein complexes that regulate gene expression in T-ALL but they also antagonize the function of the E protein homodimers that are critical regulators of T cell development. Mice lacking E2A, or ectopically expressing TAL1, LYL1, or other inhibitors of E protein function in T cell progenitors, also succumb to an aggressive T-ALL-like disease highlighting that E proteins promote T cell development and suppress leukemogenesis. In this review, we discuss the role of E2A in T cell development and how alterations in E protein function underlie leukemogenesis. We focus on the role of TAL1 and LYL1 and the genes that are dysregulated in E2a-/- T cell progenitors that contribute to human T-ALL. These studies reveal novel mechanisms of transformation and provide insights into potential therapeutic targets for intervention in this disease.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, United States
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, United States.,Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.,Department of Pathology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Liu D, Lieber MR. The mechanisms of human lymphoid chromosomal translocations and their medical relevance. Crit Rev Biochem Mol Biol 2021; 57:227-243. [PMID: 34875186 DOI: 10.1080/10409238.2021.2004576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The most common human lymphoid chromosomal translocations involve concurrent failures of the recombination activating gene (RAG) complex and Activation-Induced Deaminase (AID). These are two enzymes that are normally expressed for purposes of the two site-specific DNA recombination processes: V(D)J recombination and class switch recombination (CSR). First, though it is rare, a low level of expression of AID can introduce long-lived T:G mismatch lesions at 20-600 bp fragile zones. Second, the V(D)J recombination process can occasionally fail to rejoin coding ends, and this failure may permit an opportunity for Artemis:DNA-dependent kinase catalytic subunit (DNA-PKcs) to convert the T:G mismatch sites at the fragile zones into double-strand breaks. The 20-600 bp fragile zones must be, at least transiently, in a single-stranded DNA (ssDNA) state for the first step to occur, because AID only acts on ssDNA. Here we discuss the key DNA sequence features that lead to AID action at a fragile zone, which are (a) the proximity and density of strings of cytosine nucleotides (C-strings) that cause a B/A-intermediate DNA conformation; (b) overlapping AID hotspots that contain a methyl CpG (WRCG), which AID converts to a long-lived T:G mismatch; and (c) transcription, which, though not essential, favors increased ssDNA in the fragile zone. We also summarize chromosomal features of the focal fragile zones in lymphoid malignancies and discuss the clinical relevance of understanding the translocation mechanisms. Many of the key principles covered here are also relevant to chromosomal translocations in non-lymphoid somatic cells as well.
Collapse
Affiliation(s)
- Di Liu
- Department of Pathology & Laboratory Medicine, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology and Immunology, and Section of Computational Biology in the Department of Biological Sciences, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael R Lieber
- Department of Pathology & Laboratory Medicine, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology and Immunology, and Section of Computational Biology in the Department of Biological Sciences, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
T-ALL can evolve to oncogene independence. Leukemia 2021; 35:2205-2219. [PMID: 33483615 DOI: 10.1038/s41375-021-01120-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/09/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023]
Abstract
The majority of cases of T-cell acute lymphoblastic leukemia (T-ALL) contain chromosomal abnormalities that drive overexpression of oncogenic transcription factors. However, whether these initiating oncogenes are required for leukemia maintenance is poorly understood. To address this, we developed a tetracycline-regulated mouse model of T-ALL driven by the oncogenic transcription factor Lmo2. This revealed that whilst thymus-resident pre-Leukemic Stem Cells (pre-LSCs) required continuous Lmo2 expression, the majority of leukemias relapsed despite Lmo2 withdrawal. Relapse was associated with a mature phenotype and frequent mutation or loss of tumor suppressor genes including Ikzf1 (Ikaros), with targeted deletion Ikzf1 being sufficient to transform Lmo2-dependent leukemias to Lmo2-independence. Moreover, we found that the related transcription factor TAL1 was dispensable in several human T-ALL cell lines that contain SIL-TAL1 chromosomal deletions driving its overexpression, indicating that evolution to oncogene independence can also occur in human T-ALL. Together these results indicate an evolution of oncogene addiction in murine and human T-ALL and show that loss of Ikaros is a mechanism that can promote self-renewal of T-ALL lymphoblasts in the absence of an initiating oncogenic transcription factor.
Collapse
|
9
|
Panagopoulos I, Heim S. Interstitial Deletions Generating Fusion Genes. Cancer Genomics Proteomics 2021; 18:167-196. [PMID: 33893073 DOI: 10.21873/cgp.20251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
A fusion gene is the physical juxtaposition of two different genes resulting in a structure consisting of the head of one gene and the tail of the other. Gene fusion is often a primary neoplasia-inducing event in leukemias, lymphomas, solid malignancies as well as benign tumors. Knowledge about fusion genes is crucial not only for our understanding of tumorigenesis, but also for the diagnosis, prognostication, and treatment of cancer. Balanced chromosomal rearrangements, in particular translocations and inversions, are the most frequent genetic events leading to the generation of fusion genes. In the present review, we summarize the existing knowledge on chromosome deletions as a mechanism for fusion gene formation. Such deletions are mostly submicroscopic and, hence, not detected by cytogenetic analyses but by array comparative genome hybridization (aCGH) and/or high throughput sequencing (HTS). They are found across the genome in a variety of neoplasias. As tumors are increasingly analyzed using aCGH and HTS, it is likely that more interstitial deletions giving rise to fusion genes will be found, significantly impacting our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Detection of DNA Double-Strand Breaks and Chromosome Translocations Using Ligation-Mediated PCR and Inverse PCR. Methods Mol Biol 2020; 2102:271-288. [PMID: 31989561 DOI: 10.1007/978-1-0716-0223-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Current techniques for examining the global creation and repair of DNA double-strand breaks are restricted in their sensitivity, and such techniques mask any site-dependent variations in breakage and repair rate or fidelity. We present here a system for analyzing the fate of documented DNA breaks, using the MLL gene as an example, through application of ligation-mediated PCR. Here, a simple asymmetric double-stranded DNA adapter molecule is ligated to experimentally induced DNA breaks and subjected to seminested PCR using adapter and gene-specific primers. The rate of appearance and loss of specific PCR products allow detection of both the break and its repair. Using the additional technique of inverse PCR, the presence of misrepaired products (translocations) can be detected at the same site, providing information on the fidelity of the ligation reaction in intact cells. Such techniques may be adapted for the analysis of DNA breaks and rearrangements introduced into any identifiable genomic location. We have also applied parallel sequencing for the high-throughput analysis of inverse PCR products to facilitate the unbiased recording of all rearrangements located at a specific genomic location.
Collapse
|
11
|
Gianni F, Belver L, Ferrando A. The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med 2020; 10:a035246. [PMID: 31570389 PMCID: PMC7050584 DOI: 10.1101/cshperspect.a035246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T-cell progenitors. The recognition of clinical, genetic, transcriptional, and biological heterogeneity in this disease has already translated into new prognostic biomarkers, improved leukemia animal models, and emerging targeted therapies. This work reviews our current understanding of the molecular mechanisms of T-ALL.
Collapse
Affiliation(s)
- Francesca Gianni
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Laura Belver
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
12
|
van der Zwet JCG, Cordo' V, Canté-Barrett K, Meijerink JPP. Multi-omic approaches to improve outcome for T-cell acute lymphoblastic leukemia patients. Adv Biol Regul 2019; 74:100647. [PMID: 31523030 DOI: 10.1016/j.jbior.2019.100647] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
In the last decade, tremendous progress in curative treatment has been made for T-ALL patients using high-intensive, risk-adapted multi-agent chemotherapy. Further treatment intensification to improve the cure rate is not feasible as it will increase the number of toxic deaths. Hence, about 20% of pediatric patients relapse and often die due to acquired therapy resistance. Personalized medicine is of utmost importance to further increase cure rates and is achieved by targeting specific initiation, maintenance or resistance mechanisms of the disease. Genomic sequencing has revealed mutations that characterize genetic subtypes of many cancers including T-ALL. However, leukemia may have various activated pathways that are not accompanied by the presence of mutations. Therefore, screening for mutations alone is not sufficient to identify all molecular targets and leukemic dependencies for therapeutic inhibition. We review the extent of the driving type A and the secondary type B genomic mutations in pediatric T-ALL that may be targeted by specific inhibitors. Additionally, we review the need for additional screening methods on the transcriptional and protein levels. An integrated 'multi-omic' screening will identify potential targets and biomarkers to establish significant progress in future individualized treatment of T-ALL patients.
Collapse
Affiliation(s)
| | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | |
Collapse
|
13
|
Ito H, Tsunoda T, Riku M, Inaguma S, Inoko A, Murakami H, Ikeda H, Matsuda M, Kasai K. Indispensable role of STIL in the regulation of cancer cell motility through the lamellipodial accumulation of ARHGEF7-PAK1 complex. Oncogene 2019; 39:1931-1943. [PMID: 31754215 DOI: 10.1038/s41388-019-1115-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/08/2023]
Abstract
Cell motility is a tightly regulated phenomenon that supports the accurate formation of organ structure during development and homeostasis, including wound healing and inflammation. Meanwhile, cancer cells exhibit dysregulated motility, which causes spreading and invasion. The Dbl family RhoGEF ARHGEF7/β-PIX and its binding partner p21-activated kinase PAK1 are overexpressed in a variety of cancers and have been shown to be responsible for cancer cell migration. A key step in motility is the intracellular transport of ARHGEF7-PAK1 complex to the migrating front of cells, where lamellipodia protrusion and cytoskeletal remodeling efficiently occur. However, the molecular mechanisms of the intracellular transport of this complex are not fully understood. Here we revealed that SCL/TAL1-interrupting locus (STIL) is indispensable for the efficient migration of cancer cells. STIL forms a ternary complex with ARHGEF7 and PAK1 and accumulates with those proteins at the lamellipodia protrusion of motile cells. Knockdown of STIL impedes the accumulation of ARHGEF7-PAK1 complex within membrane ruffles and attenuates the phosphorylation of PAK1 substrates and cortical actin remodeling at the migrating front. Intriguingly, ARHGEF7 knockdown also diminishes STIL and PAK1 accumulation in membrane ruffles. Either STIL or ARHGEF7 knockdown impedes cell migration and Rac1 activity at the migrating front of cells. These results indicate that STIL is involved in the ARHGEF7-mediated positive-feedback activation of cytoskeletal remodeling through accumulating the ARHGEF7-PAK1 complex in lamellipodia. We conclude that its involvement is crucial for the polarized formation of Rac1-mediated leading edge, which supports the efficient migration of cancer cells.
Collapse
Affiliation(s)
- Hideaki Ito
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Takumi Tsunoda
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Miho Riku
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shingo Inaguma
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Akihito Inoko
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hideki Murakami
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hiroshi Ikeda
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan.
| |
Collapse
|
14
|
STIL: a multi-function protein required for dopaminergic neural proliferation, protection, and regeneration. Cell Death Discov 2019; 5:90. [PMID: 31044090 PMCID: PMC6484007 DOI: 10.1038/s41420-019-0172-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023] Open
Abstract
Degeneration of dopaminergic (DA) neurons in the brain is the major cause for Parkinson’s disease (PD). While genetic loci and cellular pathways involved in DA neuron proliferation have been well documented, the genetic and molecular and cellular basis of DA cell survival remains to be elucidated. Recently, studies aimed to uncover the mechanisms of DA neural protection and regeneration have been reported. One of the most recent discoveries, i.e., multi-function of human oncogene SCL/TAL interrupting locus (Stil) in DA cell proliferation, neural protection, and regeneration, created a new field for studying DA cells and possible treatment of PD. In DA neurons, Stil functions through the Sonic hedgehog (Shh) pathway by releasing the inhibition of SUFU to GLI1, and thereby enhances Shh-target gene transcription required for neural proliferation, protection, and regeneration. In this review article, we will highlight some of the new findings from researches relate to Stil in DA cells using zebrafish models and cultured mammalian PC12 cells. The findings may provide the proof-of-concept for the development of Stil as a tool for diagnosis and/or treatment of human diseases, particularly those caused by DA neural degeneration.
Collapse
|
15
|
Yi K, Ju YS. Patterns and mechanisms of structural variations in human cancer. Exp Mol Med 2018; 50:1-11. [PMID: 30089796 PMCID: PMC6082854 DOI: 10.1038/s12276-018-0112-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022] Open
Abstract
Next-generation sequencing technology has enabled the comprehensive detection of genomic alterations in human somatic cells, including point mutations, chromosomal rearrangements, and structural variations (SVs). Using sophisticated bioinformatics algorithms, unbiased catalogs of SVs are emerging from thousands of human cancer genomes for the first time. Via careful examination of SV breakpoints at single-nucleotide resolution as well as local DNA copy number changes, diverse patterns of genomic rearrangements are being revealed. These "SV signatures" provide deep insight into the mutational processes that have shaped genome changes in human somatic cells. This review summarizes the characteristics of recently identified complex SVs, including chromothripsis, chromoplexy, microhomology-mediated breakage-induced replication (MMBIR), and others, to provide a holistic snapshot of the current knowledge on genomic rearrangements in somatic cells.
Collapse
Affiliation(s)
- Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
16
|
Bhagwat AS, Lu B, Vakoc CR. Enhancer dysfunction in leukemia. Blood 2018; 131:1795-1804. [PMID: 29439951 PMCID: PMC5909760 DOI: 10.1182/blood-2017-11-737379] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic cancers are often initiated by deregulation of the transcriptional machinery. Prominent among such regulators are the sequence-specific DNA-binding transcription factors (TFs), which bind to enhancer and promoter elements in the genome to control gene expression through the recruitment of cofactors. Remarkably, perturbing the function of even a single TF or cofactor can modulate the active enhancer landscape of a cell; conversely, knowledge of the enhancer configuration can be used to discover functionally important TFs in a given cellular process. Our expanding insight into enhancer function can be attributed to the emergence of genome-scale measurements of enhancer activity, which can be applied to virtually any cell type to expose regulatory mechanisms. Such approaches are beginning to reveal the abnormal enhancer configurations present in cancer cells, thereby providing a framework for understanding how transcriptional dysregulation can lead to malignancy. Here, we review the evidence for alterations in enhancer landscapes contributing to the pathogenesis of leukemia, a malignancy in which enhancer-binding proteins and enhancer DNA itself are altered via genetic mutation. We will also highlight examples of small molecules that reprogram the enhancer landscape of leukemia cells in association with therapeutic benefit.
Collapse
Affiliation(s)
| | - Bin Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | |
Collapse
|
17
|
Cristofoli F, De Keersmaecker B, De Catte L, Vermeesch JR, Van Esch H. Novel STIL Compound Heterozygous Mutations Cause Severe Fetal Microcephaly and Centriolar Lengthening. Mol Syndromol 2017; 8:282-293. [PMID: 29230157 DOI: 10.1159/000479666] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2017] [Indexed: 01/20/2023] Open
Abstract
STIL (SCL/TAL1 interrupting locus) is a core component of the centriole duplication process. STIL mutations have been associated with both autosomal recessive primary microcephaly (MCPH) and holoprosencephaly. In this report, we describe a family with multiple miscarriages and 2 terminations of pregnancy due to marked fetal microcephaly, delayed cortical gyrification, and dysgenesis of the corpus callosum. Whole exome sequencing allowed us to identify novel compound heterozygous mutations in STIL. The mutations lie, respectively, in the CPAP/CENPJ and the hsSAS6 interacting domains of STIL. M-phase synchronized amniocytes from both affected fetuses did not display an aberrant number of centrioles, as shown previously for either STIL-depleted or overexpressing cells. However, we observed an elongation of at least 1 centriole for each duplicated centrosome. These preliminary results may point to a novel mechanism causing MCPH and embryonic lethality in humans.
Collapse
Affiliation(s)
| | - Bart De Keersmaecker
- Laboratories for Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - Luc De Catte
- Laboratories for Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - Joris R Vermeesch
- Laboratories for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium.,Laboratories for Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Hilde Van Esch
- Laboratories for Genetics of Cognition, Center for Human Genetics, KU Leuven, Leuven, Belgium.,Laboratories for Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Ghasemian Sorbeni F, Montazersaheb S, Ansarin A, Esfahani A, Rezamand A, Sakhinia E. Molecular analysis of more than 140 gene fusion variants and aberrant activation of EVI1 and TLX1 in hematological malignancies. Ann Hematol 2017; 96:1605-1623. [PMID: 28779353 DOI: 10.1007/s00277-017-3075-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/13/2017] [Indexed: 12/01/2022]
Abstract
Gene fusions are observed in abnormal chromosomal rearrangements such as translocations in hematopoietic malignancies, especially leukemia subtypes. Hence, it is critical to obtain correct information about these rearrangements in order to apply proper treatment techniques. To identify abnormal molecular changes in patients with leukemia, we developed a multiplex reverse transcriptase polymerase chain reaction (MRT-PCR) protocol and investigated more than 140 gene fusions resulting from variations of 29 prevalent chromosomal rearrangements along with EVI1 and TLX1 oncogenic expression in the presence of optimized primers. The potential of the MRT-PCR method was approved by evaluating the available cell lines as positive control and confirmed by sequencing. Samples from 53 patients afflicted with hematopoiesis malignancies were analyzed. Results revealed at least one chromosomal rearrangement in 69% of acute myeloid leukemia subjects, 64% of acute lymphoblastic leukemia subjects, and 81% of chronic myeloid leukemia subjects, as well as a subject with hypereosinophilic syndrome. Also, five novel fusion variants were detected. Results of this study also showed that chromosomal rearrangements, both alone and in conjunction with other rearrangements, are involved in leukemogenesis. Moreover, it was found that EVI1 is a suitable hallmark for hematopoietic malignancies.
Collapse
Affiliation(s)
| | | | - Atefeh Ansarin
- Tabriz Genetic Analysis Center (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Esfahani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azim Rezamand
- Department of Pediatrics, Children Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
The PLK4-STIL-SAS-6 module at the core of centriole duplication. Biochem Soc Trans 2017; 44:1253-1263. [PMID: 27911707 PMCID: PMC5095913 DOI: 10.1042/bst20160116] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/09/2016] [Accepted: 06/24/2016] [Indexed: 11/17/2022]
Abstract
Centrioles are microtubule-based core components of centrosomes and cilia. They are duplicated exactly once during S-phase progression. Central to formation of each new (daughter) centriole is the formation of a nine-fold symmetrical cartwheel structure onto which microtubule triplets are deposited. In recent years, a module comprising the protein kinase polo-like kinase 4 (PLK4) and the two proteins STIL and SAS-6 have been shown to stay at the core of centriole duplication. Depletion of any one of these three proteins blocks centriole duplication and, conversely, overexpression causes centriole amplification. In this short review article, we summarize recent insights into how PLK4, STIL and SAS-6 co-operate in space and time to form a new centriole. These advances begin to shed light on the very first steps of centriole biogenesis.
Collapse
|
20
|
Seki M, Kimura S, Isobe T, Yoshida K, Ueno H, Nakajima-Takagi Y, Wang C, Lin L, Kon A, Suzuki H, Shiozawa Y, Kataoka K, Fujii Y, Shiraishi Y, Chiba K, Tanaka H, Shimamura T, Masuda K, Kawamoto H, Ohki K, Kato M, Arakawa Y, Koh K, Hanada R, Moritake H, Akiyama M, Kobayashi R, Deguchi T, Hashii Y, Imamura T, Sato A, Kiyokawa N, Oka A, Hayashi Y, Takagi M, Manabe A, Ohara A, Horibe K, Sanada M, Iwama A, Mano H, Miyano S, Ogawa S, Takita J. Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia. Nat Genet 2017; 49:1274-1281. [PMID: 28671687 DOI: 10.1038/ng.3900] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/24/2017] [Indexed: 12/12/2022]
Abstract
The outcome of treatment-refractory and/or relapsed pediatric T cell acute lymphoblastic leukemia (T-ALL) is extremely poor, and the genetic basis for this is not well understood. Here we report comprehensive profiling of 121 cases of pediatric T-ALL using transcriptome and/or targeted capture sequencing, through which we identified new recurrent gene fusions involving SPI1 (STMN1-SPI1 and TCF7-SPI1). Cases positive for fusions involving SPI1 (encoding PU.1), accounting for 3.9% (7/181) of the examined pediatric T-ALL cases, showed a double-negative (DN; CD4-CD8-) or CD8+ single-positive (SP) phenotype and had uniformly poor overall survival. These cases represent a subset of pediatric T-ALL distinguishable from the known T-ALL subsets in terms of expression of genes involved in T cell precommitment, establishment of T cell identity, and post-β-selection maturation and with respect to mutational profile. PU.1 fusion proteins retained transcriptional activity and, when constitutively expressed in mouse stem/progenitor cells, induced cell proliferation and resulted in a maturation block. Our findings highlight a unique role of SPI1 fusions in high-risk pediatric T-ALL.
Collapse
Affiliation(s)
- Masafumi Seki
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shunsuke Kimura
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Tomoya Isobe
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroo Ueno
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Changshan Wang
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Lin Lin
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromichi Suzuki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoichi Fujii
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kyoko Masuda
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuki Arakawa
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Ryoji Hanada
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Hiroshi Moritake
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masaharu Akiyama
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | - Ryoji Kobayashi
- Department of Pediatrics, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Takao Deguchi
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Manabe
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Akira Ohara
- Department of Pediatrics, Toho University, Tokyo, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masashi Sanada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Mano
- Department of Cellular Signaling, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
de Smith AJ, Kaur M, Gonseth S, Endicott A, Selvin S, Zhang L, Roy R, Shao X, Hansen HM, Kang AY, Walsh KM, Dahl GV, McKean-Cowdin R, Metayer C, Wiemels JL. Correlates of Prenatal and Early-Life Tobacco Smoke Exposure and Frequency of Common Gene Deletions in Childhood Acute Lymphoblastic Leukemia. Cancer Res 2017; 77:1674-1683. [PMID: 28202519 PMCID: PMC5380517 DOI: 10.1158/0008-5472.can-16-2571] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/22/2016] [Accepted: 01/11/2017] [Indexed: 12/29/2022]
Abstract
Tobacco smoke exposure has been associated with risk of childhood acute lymphoblastic leukemia (ALL). Understanding the relationship between tobacco exposures and specific mutations may yield etiologic insights. We carried out a case-only analysis to explore whether prenatal and early-life tobacco smoke exposure influences the formation of leukemogenic genomic deletions. Somatic copy number of 8 genes frequently deleted in ALL (CDKN2A, ETV6, IKZF1, PAX5, RB1, BTG1, PAR1 region, and EBF1) was assessed in 559 pretreatment tumor samples from the California Childhood Leukemia Study. Parent and child's passive tobacco exposure was assessed using interview-assisted questionnaires as well as DNA methylation in aryl-hydrocarbon receptor repressor (AHRR), a sentinel epigenetic biomarker of exposure to maternal smoking during pregnancy. Multivariable Poisson regressions were used to test the association between the smoking exposures and total number of deletions. Deletion burden varied by subtype, with a lower frequency in high-hyperdiploid and higher frequency in ETV6-RUNX1 fusion ALL. The total number of deletions per case was positively associated with tobacco smoke exposure, in particular for maternal ever-smoking (ratio of means, RM, 1.31; 95% CI, 1.08-1.59), maternal smoking during pregnancy (RM, 1.48; 95% CI, 1.12-1.94), and during breastfeeding (RM, 2.11; 95% CI, 1.48-3.02). The magnitude of association with maternal ever-smoking was stronger in male children compared with females (Pinteraction = 0.04). The total number of deletions was also associated with DNA methylation at the AHRR epigenetic biomarker (RM, 1.32; 95% CI, 1.02-1.69). Our results suggest that prenatal and early-life tobacco smoke exposure increase the frequency of somatic deletions in children who develop ALL. Cancer Res; 77(7); 1674-83. ©2017 AACR.
Collapse
Affiliation(s)
- Adam J de Smith
- Department of Epidemiology and Biostatistics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California.
| | - Maneet Kaur
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Semira Gonseth
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Alyson Endicott
- Department of Epidemiology and Biostatistics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California
| | - Steve Selvin
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Luoping Zhang
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Ritu Roy
- Computational Biology Core, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California
| | - Xiaorong Shao
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Helen M Hansen
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California
| | - Alice Y Kang
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California
| | - Gary V Dahl
- Stanford University School of Medicine, Stanford, California
| | - Roberta McKean-Cowdin
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Catherine Metayer
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Joseph L Wiemels
- Department of Epidemiology and Biostatistics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California
| |
Collapse
|
22
|
Henssen AG, Jiang E, Zhuang J, Pinello L, Socci ND, Koche R, Gonen M, Villasante CM, Armstrong SA, Bauer DE, Weng Z, Kentsis A. Forward genetic screen of human transposase genomic rearrangements. BMC Genomics 2016; 17:548. [PMID: 27491780 PMCID: PMC4973553 DOI: 10.1186/s12864-016-2877-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/05/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Numerous human genes encode potentially active DNA transposases or recombinases, but our understanding of their functions remains limited due to shortage of methods to profile their activities on endogenous genomic substrates. RESULTS To enable functional analysis of human transposase-derived genes, we combined forward chemical genetic hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) screening with massively parallel paired-end DNA sequencing and structural variant genome assembly and analysis. Here, we report the HPRT1 mutational spectrum induced by the human transposase PGBD5, including PGBD5-specific signal sequences (PSS) that serve as potential genomic rearrangement substrates. CONCLUSIONS The discovered PSS motifs and high-throughput forward chemical genomic screening approach should prove useful for the elucidation of endogenous genome remodeling activities of PGBD5 and other domesticated human DNA transposases and recombinases.
Collapse
Affiliation(s)
- Anton G. Henssen
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Eileen Jiang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Jiali Zhuang
- Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA USA
| | - Luca Pinello
- Dana-Farber Cancer Institute and Boston Children’s Hospital, Boston, MA USA
| | - Nicholas D. Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Richard Koche
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY USA
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY USA
| | - Camila M. Villasante
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Scott A. Armstrong
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Daniel E. Bauer
- Dana-Farber Cancer Institute and Boston Children’s Hospital, Boston, MA USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Weill Cornell Medical College, Cornell University, New York, NY USA
| |
Collapse
|
23
|
Abstract
Analysis of chromosomal translocation sequence locations in human lymphomas has provided valuable clues about the mechanism of the translocations and when they occur. Biochemical analyses on the mechanisms of DNA breakage and rejoining permit formulation of detailed models of the human chromosomal translocation process in lymphoid neoplasms. Most human lymphomas are derived from B cells in which a DNA break at an oncogene is initiated by activation-induced deaminase (AID). The partner locus in many cases is located at one of the antigen receptor loci, and this break is generated by the recombination activating gene (RAG) complex or by AID. After breakage, the joining process typically occurs by non-homologous DNA end-joining (NHEJ). Some of the insights into this mechanism also apply to translocations that occur in non-lymphoid neoplasms.
Collapse
Affiliation(s)
- Michael R Lieber
- USC Norris Comprehensive Cancer Center, Room 5428, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, MC9176, Los Angeles, California 90089-9176, USA
| |
Collapse
|
24
|
Abstract
V(D)J recombination, the mechanism responsible for generating antigen receptor diversity, has the potential to generate aberrant DNA rearrangements in developing lymphocytes. Indeed, the recombinase has been implicated in several different kinds of errors leading to oncogenic transformation. Here we review the basic aspects of V(D)J recombination, mechanisms underlying aberrant DNA rearrangements, and the types of aberrant events uncovered in recent genomewide analyses of lymphoid neoplasms.
Collapse
|
25
|
Raveendran D, Raghavan SC. Biochemical Characterization of Nonamer Binding Domain of RAG1 Reveals its Thymine Preference with Respect to Length and Position. Sci Rep 2016; 6:19091. [PMID: 26742581 PMCID: PMC4705477 DOI: 10.1038/srep19091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/20/2015] [Indexed: 12/15/2022] Open
Abstract
RAG complex consisting of RAG1 and RAG2 is a site-specific endonuclease responsible for the generation of antigen receptor diversity. It cleaves recombination signal sequence (RSS), comprising of conserved heptamer and nonamer. Nonamer binding domain (NBD) of RAG1 plays a central role in the recognition of RSS. To investigate the DNA binding properties of the domain, NBD of murine RAG1 was cloned, expressed and purified. Electrophoretic mobility shift assays showed that NBD binds with high affinity to nonamer in the context of 12/23 RSS or heteroduplex DNA. NBD binding was specific to thymines when single stranded DNA containing poly A, C, G or T were used. Biolayer interferometry studies showed that poly T binding to NBD was robust and comparable to that of 12RSS. More than 23 nt was essential for NBD binding at homothymidine stretches. On a double-stranded DNA, NBD could bind to A:T stretches, but not G:C or random sequences. Although NBD is indispensable for sequence specific activity of RAGs, external supplementation of purified nonamer binding domain to NBD deleted cRAG1/cRAG2 did not restore its activity, suggesting that the overall domain architecture of RAG1 is important. Therefore, we define the sequence requirements of NBD binding to DNA.
Collapse
Affiliation(s)
- Deepthi Raveendran
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
26
|
Vicente C, Schwab C, Broux M, Geerdens E, Degryse S, Demeyer S, Lahortiga I, Elliott A, Chilton L, La Starza R, Mecucci C, Vandenberghe P, Goulden N, Vora A, Moorman AV, Soulier J, Harrison CJ, Clappier E, Cools J. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia. Haematologica 2015. [PMID: 26206799 DOI: 10.3324/haematol.2015.130179] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Carmen Vicente
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Claire Schwab
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Michaël Broux
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Ellen Geerdens
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Sandrine Degryse
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Sofie Demeyer
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Idoya Lahortiga
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Alannah Elliott
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lucy Chilton
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Roberta La Starza
- Hematology Unit, University of Perugia, Polo Unico S.M. Misericordia, Italy
| | - Cristina Mecucci
- Hematology Unit, University of Perugia, Polo Unico S.M. Misericordia, Italy
| | | | - Nicholas Goulden
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Ajay Vora
- Department of Haematology, Sheffield Children's Hospital, Sheffield, UK
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jean Soulier
- U944 INSERM and Hematology Laboratory, St-Louis Hospital, APHP, Hematology University Institute, University Paris-Diderot, Paris, France
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Emmanuelle Clappier
- U944 INSERM and Hematology Laboratory, St-Louis Hospital, APHP, Hematology University Institute, University Paris-Diderot, Paris, France
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| |
Collapse
|
27
|
Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD, Etchin J, Lawton L, Sallan SE, Silverman LB, Loh ML, Hunger SP, Sanda T, Young RA, Look AT. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 2014; 346:1373-7. [PMID: 25394790 PMCID: PMC4720521 DOI: 10.1126/science.1259037] [Citation(s) in RCA: 618] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In certain human cancers, the expression of critical oncogenes is driven from large regulatory elements, called super-enhancers, that recruit much of the cell's transcriptional apparatus and are defined by extensive acetylation of histone H3 lysine 27 (H3K27ac). In a subset of T-cell acute lymphoblastic leukemia (T-ALL) cases, we found that heterozygous somatic mutations are acquired that introduce binding motifs for the MYB transcription factor in a precise noncoding site, which creates a super-enhancer upstream of the TAL1 oncogene. MYB binds to this new site and recruits its H3K27 acetylase-binding partner CBP, as well as core components of a major leukemogenic transcriptional complex that contains RUNX1, GATA-3, and TAL1 itself. Additionally, most endogenous super-enhancers found in T-ALL cells are occupied by MYB and CBP, which suggests a general role for MYB in super-enhancer initiation. Thus, this study identifies a genetic mechanism responsible for the generation of oncogenic super-enhancers in malignant cells.
Collapse
Affiliation(s)
- Marc R Mansour
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Lars Anders
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Alla Berezovskaya
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alejandro Gutierrez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Division of Pediatric Hematology-Oncology, Boston Children's Hospital, MA 02115, USA
| | - Adam D Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Julia Etchin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lee Lawton
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Stephen E Sallan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Division of Pediatric Hematology-Oncology, Boston Children's Hospital, MA 02115, USA
| | - Lewis B Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Division of Pediatric Hematology-Oncology, Boston Children's Hospital, MA 02115, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco, CA 94143, USA
| | - Stephen P Hunger
- Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, and Department of Medicine, Yong Loo Lin School of Medicine, 117599, Singapore
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Division of Pediatric Hematology-Oncology, Boston Children's Hospital, MA 02115, USA.
| |
Collapse
|
28
|
PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events. Blood 2014; 124:567-78. [PMID: 24904117 DOI: 10.1182/blood-2014-03-562751] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN)-inactivating mutations and/or deletions are an independent risk factor for relapse of T-cell acute lymphoblastic leukemia (T-ALL) patients treated on Dutch Childhood Oncology Group or German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia protocols. Some monoallelic mutated or PTEN wild-type patients lack PTEN protein, implying that additional PTEN inactivation mechanisms exist. We show that PTEN is inactivated by small deletions affecting a few exons in 8% of pediatric T-ALL patients. These microdeletions were clonal in 3% and subclonal in 5% of patients. Conserved deletion breakpoints are flanked by cryptic recombination signal sequences (cRSSs) and frequently have non-template-derived nucleotides inserted in between breakpoints, pointing to an illegitimate RAG recombination-driven activity. Identified cRSSs drive RAG-dependent recombination in a reporter system as efficiently as bona fide RSSs that flank gene segments of the T-cell receptor locus. Remarkably, equivalent microdeletions were detected in thymocytes of healthy individuals. Microdeletions strongly associate with the TALLMO subtype characterized by TAL1 or LMO2 rearrangements. Primary and secondary xenotransplantation of TAL1-rearranged leukemia allowed development of leukemic subclones with newly acquired PTEN microdeletions. Ongoing RAG activity may therefore actively contribute to the acquisition of preleukemic hits, clonal diversification, and disease progression.
Collapse
|
29
|
Sun L, Carr AL, Li P, Lee J, McGregor M, Li L. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons. Biochem Biophys Res Commun 2014; 449:444-8. [PMID: 24853807 DOI: 10.1016/j.bbrc.2014.05.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 11/19/2022]
Abstract
The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STIL interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson's disease.
Collapse
Affiliation(s)
- Lei Sun
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Physiology, Nankai University School of Medicine, Tianjin 300071, China
| | - Aprell L Carr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ping Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jessica Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mary McGregor
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
30
|
Van der Meulen J, Van Roy N, Van Vlierberghe P, Speleman F. The epigenetic landscape of T-cell acute lymphoblastic leukemia. Int J Biochem Cell Biol 2014; 53:547-57. [PMID: 24786297 DOI: 10.1016/j.biocel.2014.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 12/29/2022]
Abstract
The genetic landscape of T-ALL has been very actively explored during the past decades. This leads to an overwhelming body of exciting novel findings providing insight into (1) the genetic heterogeneity of the disease with marked genetic subsets, (2) the mechanisms by which aberrant T-cell development drive leukemogenesis and (3) emerging opportunities for novel therapeutic interventions. Of further interest, recent genome wide sequencing studies identified proteins that actively participate in the regulation of the T-cell epigenome as novel oncogenes and tumor suppressor genes in T-ALL. The identification of these perturbed molecular epigenetic events in the pathogenesis of T-ALL will contribute to the further exploration of novel therapies in this cancer type. As some epigenetic therapies have recently been approved for a number of hematological neoplasms, one could speculate that targeted therapies against epigenetic regulators might offer good prospects for T-ALL treatment in the near future. In this review, we summarize the epigenetic discoveries made in T-ALL hitherto and discuss possible new venues for epigenetic therapeutic intervention in this aggressive subtype of human leukemia. This article is part of a Directed Issue entitled: Rare Cancers.
Collapse
Affiliation(s)
| | - Nadine Van Roy
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium.
| |
Collapse
|
31
|
Tal N, Shochat C, Geron I, Bercovich D, Izraeli S. Interleukin 7 and thymic stromal lymphopoietin: from immunity to leukemia. Cell Mol Life Sci 2014; 71:365-78. [PMID: 23625073 PMCID: PMC11113825 DOI: 10.1007/s00018-013-1337-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/10/2013] [Accepted: 04/08/2013] [Indexed: 01/12/2023]
Abstract
Cancer is often caused by deregulation of normal developmental processes. Here, we review recent research on the aberrant activation of two hematopoietic cytokine receptors in acute lymphoid leukemias. Somatic events in the genes for thymic stromal lymphopoietin and Interleukin 7 receptors as well as in their downstream JAK kinases result in constitutive ligand-independent activation of survival and proliferation in B and T lymphoid precursors. Drugs targeting these receptors or the signaling pathways might provide effective therapies of these leukemias.
Collapse
Affiliation(s)
- Noa Tal
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Shochat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Migal Galilee Technology Center, Kiryat Shmona, Israel
- Tel Hai College, 12210 Upper Galilee, Israel
| | - Ifat Geron
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Biological Sciences and Department of Medicine Stem Cell Program, University of California San Diego, La Jolla, California USA
| | - Dani Bercovich
- Migal Galilee Technology Center, Kiryat Shmona, Israel
- Tel Hai College, 12210 Upper Galilee, Israel
| | - Shai Izraeli
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Meissner B, Bartram T, Eckert C, Trka J, Panzer-Grümayer R, Hermanova I, Ellinghaus E, Franke A, Möricke A, Schrauder A, Teigler-Schlegel A, Dörge P, von Stackelberg A, Basso G, Bartram CR, Kirschner-Schwabe R, Bornhäuser B, Bourquin JP, Cazzaniga G, Hauer J, Attarbaschi A, Izraeli S, Zaliova M, Cario G, Zimmermann M, Avigad S, Sokalska-Duhme M, Metzler M, Schrappe M, Koehler R, Te Kronnie G, Stanulla M. Frequent and sex-biased deletion of SLX4IP by illegitimate V(D)J-mediated recombination in childhood acute lymphoblastic leukemia. Hum Mol Genet 2014; 23:590-601. [PMID: 24045615 DOI: 10.1093/hmg/ddt447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) accounts for ∼25% of pediatric malignancies. Of interest, the incidence of ALL is observed ∼20% higher in males relative to females. The mechanism behind the phenomenon of sex-specific differences is presently not understood. Employing genome-wide genetic aberration screening in 19 ALL samples, one of the most recurrent lesions identified was monoallelic deletion of the 5' region of SLX4IP. We characterized this deletion by conventional molecular genetic techniques and analyzed its interrelationships with biological and clinical characteristics using specimens and data from 993 pediatric patients enrolled into trial AIEOP-BFM ALL 2000. Deletion of SLX4IP was detected in ∼30% of patients. Breakpoints within SLX4IP were defined to recurrent positions and revealed junctions with typical characteristics of illegitimate V(D)J-mediated recombination. In initial and validation analyses, SLX4IP deletions were significantly associated with male gender and ETV6/RUNX1-rearranged ALL (both overall P < 0.0001). For mechanistic validation, a second recurrent deletion affecting TAL1 and caused by the same molecular mechanism was analyzed in 1149 T-cell ALL patients. Validating a differential role by sex of illegitimate V(D)J-mediated recombination at the TAL1 locus, 128 out of 1149 T-cell ALL samples bore a deletion and males were significantly more often affected (P = 0.002). The repeatedly detected association of SLX4IP deletion with male sex and the extension of the sex bias to deletion of the TAL1 locus suggest that differential illegitimate V(D)J-mediated recombination events at specific loci may contribute to the consistent observation of higher incidence rates of childhood ALL in boys compared with girls.
Collapse
Affiliation(s)
- Barbara Meissner
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Patel B, Kang Y, Cui K, Litt M, Riberio MSJ, Deng C, Salz T, Casada S, Fu X, Qiu Y, Zhao K, Huang S. Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia. Leukemia 2014; 28:349-61. [PMID: 23698277 PMCID: PMC10921969 DOI: 10.1038/leu.2013.158] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/09/2013] [Accepted: 05/16/2013] [Indexed: 01/21/2023]
Abstract
Long-range chromatin interactions control metazoan gene transcription. However, the involvement of intra- and interchromosomal interactions in development and oncogenesis remains unclear. TAL1/SCL is a critical transcription factor required for the development of all hematopoietic lineages; yet, aberrant TAL1 transcription often occurs in T-cell acute lymphoblastic leukemia (T-ALL). Here, we report that oncogenic TAL1 expression is regulated by different intra- and interchromosomal loops in normal hematopoietic and leukemic cells, respectively. These intra- and interchromosomal loops alter the cell-type-specific enhancers that interact with the TAL1 promoter. We show that human SET1 (hSET1)-mediated H3K4 methylations promote a long-range chromatin loop, which brings the +51 enhancer in close proximity to TAL1 promoter 1 in erythroid cells. The CCCTC-binding factor (CTCF) facilitates this long-range enhancer/promoter interaction of the TAL1 locus in erythroid cells while blocking the same enhancer/promoter interaction of the TAL1 locus in human T-cell leukemia. In human T-ALL, a T-cell-specific transcription factor c-Maf-mediated interchromosomal interaction brings the TAL1 promoter into close proximity with a T-cell-specific regulatory element located on chromosome 16, activating aberrant TAL1 oncogene expression. Thus, our study reveals a novel molecular mechanism involving changes in three-dimensional chromatin interactions that activate the TAL1 oncogene in human T-cell leukemia.
Collapse
Affiliation(s)
- B Patel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- These authors contributed equally to this work
| | - Y Kang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- College of Life Science, Jilin University, Changchun, China
- These authors contributed equally to this work
| | - K Cui
- Center for System Biology, NHLBI, National Institute of Health, Bethesda, MD, USA
| | - M Litt
- Medical Education Center, Ball State University, Muncie, IN, USA
| | - MSJ Riberio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - C Deng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - T Salz
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - S Casada
- Medical Education Center, Ball State University, Muncie, IN, USA
| | - X Fu
- College of Life Science, Jilin University, Changchun, China
| | - Y Qiu
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Shands Cancer Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - K Zhao
- Center for System Biology, NHLBI, National Institute of Health, Bethesda, MD, USA
| | - S Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Shands Cancer Center, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Sun L, Li P, Carr AL, Gorsuch R, Yarka C, Li J, Bartlett M, Pfister D, Hyde DR, Li L. Transcription of the SCL/TAL1 interrupting Locus (Stil) is required for cell proliferation in adult Zebrafish Retinas. J Biol Chem 2014; 289:6934-6940. [PMID: 24469449 DOI: 10.1074/jbc.m113.506295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in vertebrate species. Previously, we identified a homolog of the Stil gene in zebrafish mutant (night blindness b, nbb), which showed neural defects in the retina (e.g. dopaminergic cell degeneration and/or lack of regeneration). In this research, we examined the roles of Stil in cell proliferation after degeneration in adult zebrafish retinas. We demonstrated that knockdown of Stil gene expression or inhibition of Sonic hedgehog (Shh) signaling transduction decreases the rate of cell proliferation. In contrast, activation of Shh signal transduction promotes cell proliferation. In nbb(+/-) retinas, inhibition of SUFU (a repressor in the Shh pathway) rescues the defects in cell proliferation due to down-regulation of Stil gene expression. The latter data suggest that Stil play a role in cell proliferation through the Shh signal transduction pathway.
Collapse
Affiliation(s)
- Lei Sun
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Department of Physiology, Nankai University, Tianjin, China 370001
| | - Ping Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Aprell L Carr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556
| | - Ryne Gorsuch
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556
| | - Clare Yarka
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Jingling Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556
| | - Michael Bartlett
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Delaney Pfister
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - David R Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556
| | - Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556.
| |
Collapse
|
35
|
Abstract
T-cell neoplasms include both mature T-cell leukemias and lymphomas and immature proliferations of precursor T cells. Molecular laboratories routinely assay suspected T-cell proliferations for evidence of clonality. In addition, some T-cell neoplasms are characterized by recurrent structural abnormalities that can be readily identified by such techniques as fluorescence in situ hybridization. New massively parallel sequencing technologies have led to the identification of numerous recurrent gene mutations in T-cell neoplasms. These findings are reviewed. As new technologies become implemented in molecular diagnostic laboratories and as targeted therapies are developed, it is anticipated that more extensive genomic characterization of T-cell neoplasms will be routinely performed in the future.
Collapse
|
36
|
Carr AL, Sun L, Lee E, Li P, Antonacci C, Gorbea E, Finlay C, Li L. The human oncogene SCL/TAL1 interrupting locus is required for mammalian dopaminergic cell proliferation through the Sonic hedgehog pathway. Cell Signal 2013; 26:306-12. [PMID: 24240054 DOI: 10.1016/j.cellsig.2013.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 11/17/2022]
Abstract
The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil regulates cancer cell proliferation and survival. In this study, we examined the function of Stil in neural progenitor cell proliferation and neural differentiation using the mammalian dopaminergic (DA) PC12 cells. Stil is expressed in both proliferating and differentiated PC12 cells. The RNAi-mediated knockdown of Stil expression yielded a decreased proliferation rate of PC12 cells, whereas the overexpression of Stil transcript increased PC12 cell proliferation. The up- and down-regulation of the Sonic hedgehog (Shh) pathway by pharmacological approaches targeting Smoothened (Smo) demonstrated that Stil functions in the Shh pathway for PC12 proliferation. Smo antagonist cyclopamine decreased the proliferation rate of PC12 cells, whereas the overexpression of Stil rescued the cyclopamine-induced decrease in cell proliferation. Oppositely, the application of Smo agonist purmorphamine increased the rate of PC12 cell proliferation. However, the proliferation defect caused by Stil knockdown remained evident after activating the Shh pathway by purmorphamine. The expression of Stil is not required for PC12 cell neural differentiation. In PC12 cells transfected with Stil shRNA plasmids, the outgrowth of neurites persisted after treatment with nerve growth factor (NGF), whereas overexpression of Stil did not increase neurite growth in response to NGF induction. Together, the results from this study suggest a novel role for the oncogene Stil in neural progenitor cells through the Shh pathway, and further introduces Stil as a bio-marker for DA cells.
Collapse
Affiliation(s)
- Aprell L Carr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Lei Sun
- Department of Physiology, Nankai University, Tianjin 300071, China
| | - Eric Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ping Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Chris Antonacci
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Enrique Gorbea
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Colleen Finlay
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
37
|
Amartely H, David A, Lebendiker M, Benyamini H, Izraeli S, Friedler A. The STIL protein contains intrinsically disordered regions that mediate its protein-protein interactions. Chem Commun (Camb) 2013; 50:5245-7. [PMID: 24022511 DOI: 10.1039/c3cc45096a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The STIL protein participates in mitosis and malignant transformation by regulating centrosomal duplication. Using biophysical methods we studied the structure and interactions of STIL. We revealed that its central domain is intrinsically disordered and mediates protein-protein interactions of STIL. The intrinsic disorder may provide STIL with the conformational flexibility required for its multitude binding.
Collapse
Affiliation(s)
- Hadar Amartely
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel.
| | | | | | | | | | | |
Collapse
|
38
|
Tosello V, Ferrando AA. The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol 2013; 4:199-210. [PMID: 23730497 DOI: 10.1177/2040620712471368] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) is characterized by aberrant activation of NOTCH1 in over 60% of T-ALL cases. The high prevalence of activating NOTCH1 mutations highlights the critical role of NOTCH signaling in the pathogenesis of this disease and has prompted the development of therapeutic approaches targeting the NOTCH signaling pathway. Small molecule gamma secretase inhibitors (GSIs) can effectively inhibit oncogenic NOTCH1 and are in clinical testing for the treatment of T-ALL. Treatment with GSIs and glucocorticoids are strongly synergistic and may overcome the gastrointestinal toxicity associated with systemic inhibition of the NOTCH pathway. In addition, emerging new anti-NOTCH1 therapies include selective inhibition of NOTCH1 with anti-NOTCH1 antibodies and stapled peptides targeting the NOTCH transcriptional complex in the nucleus.
Collapse
|
39
|
Ali H, Daser A, Dear P, Wood H, Rabbitts P, Rabbitts T. Nonreciprocal chromosomal translocations in renal cancer involve multiple DSBs and NHEJ associated with breakpoint inversion but not necessarily with transcription. Genes Chromosomes Cancer 2013; 52:402-9. [PMID: 23341332 DOI: 10.1002/gcc.22038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 11/10/2022] Open
Abstract
Chromosomal translocations and other abnormalities are central to the initiation of cancer in all cell types. Understanding the mechanism is therefore important to evaluate the evolution of cancer from the cancer initiating events to overt disease. Recent work has concentrated on model systems to develop an understanding of the molecular mechanisms of translocations but naturally occurring events are more ideal case studies since biological selection is absent from model systems. In solid tumours, nonreciprocal translocations are most commonly found, and accordingly we have investigated the recurrent nonreciprocal t(3;5) chromosomal translocations in renal carcinoma to better understand the mechanism of these naturally occurring translocations in cancer. Unexpectedly, the junctions of these translocations can be associated with site-specific, intrachromosomal inversion involving at least two double strand breaks (DSB) in cis and rejoining by nonhomologous end joining or micro-homology end joining. However, these translocations are not necessarily associated with transcribed regions questioning accessibility per se in controlling these events. In addition, intrachromosomal deletions also occur. We conclude these naturally occurring, nonreciprocal t(3;5) chromosomal translocations occur after complex and multiple unresolved intrachromosomal DSBs leading to aberrant joining with concurrent interstitial inversion and that clonal selection of cells is the critical element in cancer development emerging from a plethora of DSBs that may not always be pathogenic.
Collapse
Affiliation(s)
- Hanif Ali
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | | | | | | | | | | |
Collapse
|
40
|
Li Y, Deng C, Hu X, Patel B, Fu X, Qiu Y, Brand M, Zhao K, Huang S. Dynamic interaction between TAL1 oncoprotein and LSD1 regulates TAL1 function in hematopoiesis and leukemogenesis. Oncogene 2012; 31:5007-18. [PMID: 22310283 PMCID: PMC3510314 DOI: 10.1038/onc.2012.8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/15/2011] [Accepted: 12/30/2011] [Indexed: 12/29/2022]
Abstract
TAL1/SCL is a hematopoietic-specific oncogene and its activity is regulated by associated transcriptional co-activators and corepressors. Dysregulation of TAL1 activity has been associated with T-cell leukemogenesis. However, it remains unclear how the interactions between TAL1 and corepressors versus co-activators are properly regulated. Here, we reported that protein kinase A (PKA)-mediated phosphorylation regulates TAL1 interaction with the lysine-specific demethylase (LSD1) that removes methyl group from methylated Lys 4 on histone H3 tails. Phosphorylation of serine 172 in TAL1 specifically destabilizes the TAL1-LSD1 interaction leading to promoter H3K4 hypermethylation and activation of target genes that have been suppressed in normal and malignant hematopoiesis. Knockdown of TAL1 or LSD1 led to a derepression of the TAL1 target genes in T-cell acute lymphoblast leukemia (T-ALL) Jurkat cells, which is accompanied by elevating promoter H3K4 methylation. Similarly, treatment of PKA activator forskolin resulted in derepression of target genes by reducing its interaction with LSD1 while PKA inhibitor H89 represses them by suppressing H3K4 methylation levels. Consistent with the dual roles of TAL1 in transcription, TAL1-associated LSD1 is decreased while recruitment of hSET1 is increased at the TAL1 targets during erythroid differentiation. This process is accompanied by a dramatic increase in H3K4 methylation. Thus, our data revealed a novel interplay between PKA phosphorylation and TAL1-mediated epigenetic regulation that regulates hematopoietic transcription and differentiation programs during hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Ying Li
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
- College of Life Science, Jilin University, Changchun 130023, China
| | - Changwang Deng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
| | - Xin Hu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
- College of Life Science, Jilin University, Changchun 130023, China
| | - Bhavita Patel
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
| | - Xueqi Fu
- College of Life Science, Jilin University, Changchun 130023, China
| | - Yi Qiu
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610
- Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Keji Zhao
- Laboratory of Molecular Immunology, NHLBI, NIH, Bethesda, MD
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
- Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610
| |
Collapse
|
41
|
Li J, Li P, Carr A, Wang X, DeLaPaz A, Sun L, Lee E, Tomei E, Li L. Functional expression of SCL/TAL1 interrupting locus (Stil) protects retinal dopaminergic cells from neurotoxin-induced degeneration. J Biol Chem 2012; 288:886-93. [PMID: 23166330 DOI: 10.1074/jbc.m112.417089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We previously isolated a dominant mutation, night blindness b (nbb), which causes a late onset of retinal dopaminergic cell degeneration in zebrafish. In this study, we cloned the zebrafish nbb locus. Sequencing results revealed that nbb is a homolog of the vertebrate SCL/TAL1 interrupting locus (Stil). The Stil gene has been shown to play important roles in the regulation of vertebrate embryonic neural development and human cancer cell proliferation. In this study, we demonstrate that functional expression of Stil is also required for neural survival. In zebrafish, decreased expression of Stil resulted in increased toxic susceptibility of retinal dopaminergic cells to 6-hydroxydopamine. Increases in Stil-mediated Shh signaling transduction (i.e. by knocking down the Shh repressor Sufu) prevented dopaminergic cell death induced by neurotoxic insult. The data suggest that the oncogene Stil also plays important roles in neural protection.
Collapse
Affiliation(s)
- Jingling Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012; 122:3398-406. [PMID: 23023710 DOI: 10.1172/jci61269] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
T cell acute lymphoblastic leukemias (T-ALLs) arise from the malignant transformation of hematopoietic progenitors primed toward T cell development, as result of a multistep oncogenic process involving constitutive activation of NOTCH signaling and genetic alterations in transcription factors, signaling oncogenes, and tumor suppressors. Notably, these genetic alterations define distinct molecular groups of T-ALL with specific gene expression signatures and clinicobiological features. This review summarizes recent advances in our understanding of the molecular genetics of T-ALL.
Collapse
Affiliation(s)
- Pieter Van Vlierberghe
- Institute for Cancer Genetics, Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
| | | |
Collapse
|
43
|
Kumar A, Rajendran V, Sethumadhavan R, Purohit R. In silico prediction of a disease-associated STIL mutant and its affect on the recruitment of centromere protein J (CENPJ). FEBS Open Bio 2012; 2:285-93. [PMID: 23772360 PMCID: PMC3678130 DOI: 10.1016/j.fob.2012.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 11/30/2022] Open
Abstract
Human STIL (SCL/TAL1 interrupting locus) protein maintains centriole stability and spindle pole localisation. It helps in recruitment of CENPJ (Centromere protein J)/CPAP (centrosomal P4.1-associated protein) and other centrosomal proteins. Mutations in STIL protein are reported in several disorders, especially in deregulation of cell cycle cascades. In this work, we examined the non-synonymous single nucleotide polymorphisms (nsSNPs) reported in STIL protein for their disease association. Different SNP prediction tools were used to predict disease-associated nsSNPs. Our evaluation technique predicted rs147744459 (R242C) as a highly deleterious disease-associated nsSNP and its interaction behaviour with CENPJ protein. Molecular modelling, docking and molecular dynamics simulation were conducted to examine the structural consequences of the predicted disease-associated mutation. By molecular dynamic simulation we observed structural consequences of R242C mutation which affects interaction of STIL and CENPJ functional domains. The result obtained in this study will provide a biophysical insight into future investigations of pathological nsSNPs using a computational platform.
Collapse
Key Words
- CENPJ protein
- CENPJ, Centromere protein J
- Docking
- ED, Essential dynamics
- MDS, Molecular dynamics simulation
- Molecular dynamics simulation
- NHbonds, Number of hydrogen bonds
- RMSD, Root-mean-square deviation
- RMSF, Root-mean square fluctuation
- Rg, Radius of gyration
- SASA, Solvent-accessible surface area
- STIL protein
- STIL, SCL/TAL1 interrupting locus
- nsSNPs, non-synonymous single nucleotide polymorphisms
Collapse
Affiliation(s)
- Ambuj Kumar
- Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| | | | | | | |
Collapse
|
44
|
Onozawa M, Aplan PD. Illegitimate V(D)J recombination involving nonantigen receptor loci in lymphoid malignancy. Genes Chromosomes Cancer 2012; 51:525-35. [PMID: 22334400 PMCID: PMC3323722 DOI: 10.1002/gcc.21942] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/10/2012] [Indexed: 11/09/2022] Open
Abstract
V(D)J recombination of antigen receptor loci (IGH, IGK, IGL, TCRA, TCRB, TCRG, and TCRD) is an essential mechanism that confers enormous diversity to the mammalian immune system. However, there are now at least six examples of intrachromosomal interstitial deletions caused by aberrant V(D)J recombination between nonantigen receptor loci; five of out these six are associated with lymphoid malignancy. The SIL-SCL fusion and deletions of CDKN2A, IKZF1, Notch1, and Bcl11b are all associated with lymphoid malignancy. These interstitial deletions seem to be species specific, as the deletions seen in mice are not seen in humans; the converse is true as well. Nucleotide sequence analysis of these rearrangements reveals the hallmarks of V(D)J recombination, including site specificity near cryptic heptamer signal sequences, exonucleolytic "nibbling" at the junction site, and nontemplated "N"-region nucleotide insertion at the junction site. Two of these interstitial deletions (murine Notch1 and Bcl11b deletions) have been detected, at low frequency, in tissues from healthy mice with no evidence of malignancy, similar to the finding of chromosomal translocations in the peripheral blood or tonsils of healthy individuals. The contention that these are mediated via V(D)J recombination is strengthened by in vivo assays using extrachromosomal substrates, and chromatin immunoprecipitation-sequence analysis which shows Rag2 binding at the sites of rearrangement. Although the efficiency of these "illegitimate" recombination events is several orders of magnitude less than that at bona fide antigen receptor loci, the consequence of such deletions, namely activation of proto-oncogenes or deletion of tumor suppressor genes, is devastating, and a major cause for lymphoid malignancy.
Collapse
Affiliation(s)
- Masahiro Onozawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD
| |
Collapse
|
45
|
Nambiar M, Raghavan SC. How does DNA break during chromosomal translocations? Nucleic Acids Res 2011; 39:5813-25. [PMID: 21498543 PMCID: PMC3152359 DOI: 10.1093/nar/gkr223] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 12/20/2022] Open
Abstract
Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal translocations.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
46
|
Mahmood S, Ahmad W, Hassan MJ. Autosomal Recessive Primary Microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 2011; 6:39. [PMID: 21668957 PMCID: PMC3123551 DOI: 10.1186/1750-1172-6-39] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 06/13/2011] [Indexed: 12/21/2022] Open
Abstract
Autosomal Recessive Primary Microcephaly (MCPH) is a rare disorder of neurogenic mitosis characterized by reduced head circumference at birth with variable degree of mental retardation. In MCPH patients, brain size reduced to almost one-third of its original volume due to reduced number of generated cerebral cortical neurons during embryonic neurogensis. So far, seven genetic loci (MCPH1-7) for this condition have been mapped with seven corresponding genes (MCPH1, WDR62, CDK5RAP2, CEP152, ASPM, CENPJ, and STIL) identified from different world populations. Contribution of ASPM and WDR62 gene mutations in MCPH World wide is more than 50%. By and large, primary microcephaly patients are phenotypically indistinguishable, however, recent studies in patients with mutations in MCPH1, WDR62 and ASPM genes showed a broader clinical and/or cellular phenotype. It has been proposed that mutations in MCPH genes can cause the disease phenotype by disturbing: 1) orientation of mitotic spindles, 2) chromosome condensation mechanism during embryonic neurogenesis, 3) DNA damage-response signaling, 4) transcriptional regulations and microtubule dynamics, 5) certain unknown centrosomal mechanisms that control the number of neurons generated by neural precursor cells. Recent discoveries of mammalian models for MCPH have open up horizons for researchers to add more knowledge regarding the etiology and pathophysiology of MCPH. High incidence of MCPH in Pakistani population reflects the most probable involvement of consanguinity. Genetic counseling and clinical management through carrier detection/prenatal diagnosis in MCPH families can help reducing the incidence of this autosomal recessive disorder.
Collapse
Affiliation(s)
- Saqib Mahmood
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Khayaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| | | | | |
Collapse
|
47
|
Dougherty MJ, Wilmoth DM, Tooke LS, Shaikh TH, Gai X, Hakonarson H, Biegel JA. Implementation of high resolution single nucleotide polymorphism array analysis as a clinical test for patients with hematologic malignancies. Cancer Genet 2011; 204:26-38. [PMID: 21356189 DOI: 10.1016/j.cancergencyto.2010.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
Abstract
Single nucleotide polymorphism-based oligonucleotide arrays have been used as a research tool to detect genomic copy number changes and allelic imbalance in a variety of hematologic malignancies and solid tumors. The high resolution, genome-wide coverage, minimal DNA requirements, and relatively short turnaround time are advantageous for use in a clinical setting. We validated the Illumina HumanHap550 BeadChip array for clinical use by analyzing 127 pediatric leukemia and lymphoma samples that had previously been characterized by means of standard cytogenetic analysis and fluorescence in situ hybridization. A higher resolution Illumina HumanHap610 BeadChip array was ultimately used for clinical testing. To date, 180 samples from children with a suspected or confirmed hematologic malignancy have been analyzed. Of the 180 clinical samples, 130 (72%) bone marrow or lymphoma specimens had aberrations revealed by the array that were not seen in the karyotypes. These typically included deletions in genes associated with B- or T-cell malignancies, such as CDKN2A/B, PAX5, and IKZF1. There were also 75 regions of copy number neutral loss of heterozygosity (>5 Mb threshold) detected in 49 samples in this cohort, which could be categorized as constitutional or acquired abnormalities. On the basis of our experience in the last 2 years, we suggest that single nucleotide polymorphism arrays are a valuable addition to, but not a replacement for, standard cytogenetic approaches for hematologic malignancies.
Collapse
Affiliation(s)
- Margaret J Dougherty
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Sinclair PB, Parker H, An Q, Rand V, Ensor H, Harrison CJ, Strefford JC. Analysis of a breakpoint cluster reveals insight into the mechanism of intrachromosomal amplification in a lymphoid malignancy. Hum Mol Genet 2011; 20:2591-602. [PMID: 21487021 DOI: 10.1093/hmg/ddr159] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A distinct sub-group of B-cell precursor acute lymphoblastic leukemia, defined by intrachromosomal amplification of chromosome 21 (iAMP21), is restricted to older children and has been associated with a poor outcome. Accurate diagnosis is important for appropriate risk stratification for treatment. It could be improved by understanding the initiating mechanism. iAMP21 is characterized by amplification of a 5.1-24 Mb region of chromosome 21, which includes the RUNX1 gene. It is thought to arise through a breakage-fusion-bridge (BFB) mechanism. Breakpoints initiating BFB cycles were determined from recent array data from 18 patients. Three occurred within the PDE9A gene. Other patients with breakpoints in PDE9A were identified by fluorescence in situ hybridization and molecular copy number counting. Sequencing defined a 1.7 Kb breakpoint cluster region, positioned 400 bp distal to an extensive region enriched for CA repeats with the potential to form Z-DNA. None of the rearranged sequences showed the inverted repeat structure characteristic of BFB; instead PDE9A was fused to intergenic regions of chromosome 21 or to genes on other chromosomes. These observations indicated that previously unrecognized complex events, involving microhomology-mediated end joining, preceded or accompanied initiation of the BFB cycle. A chi-like heptomer, CCTCAGC, contained four of the breakpoints, two within PDE9A and two within partner Alu-repeat sequences. This heptomer was closely homologous to a breakpoint hotspot within the TCF3 gene, suggesting involvement of a common novel recombinogenic mechanism that might also contribute to the recombinogenic potential of Alu repeats. These findings provide insight into potential mechanisms involved in the formation of iAMP21.
Collapse
Affiliation(s)
- Paul B Sinclair
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Paganin M, Ferrando A. Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia. Blood Rev 2011; 25:83-90. [PMID: 20965628 PMCID: PMC3033461 DOI: 10.1016/j.blre.2010.09.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic tumor resulting from the malignant transformation of immature T-cell progenitors. Originally associated with a dismal prognosis, the outcome of T-ALL patients has improved remarkably over the last two decades as a result of the introduction of intensified chemotherapy protocols. However, these treatments are associated with significant acute and long-term toxicities, and the treatment of patients presenting with primary resistant disease or those relapsing after a transient response remains challenging. T-ALL is a genetically heterogeneous disease in which numerous chromosomal and genetic alterations cooperate to promote the aberrant proliferation and survival of leukemic lymphoblasts. However, the identification of activating mutations in the NOTCH1 gene in over 50% of T-ALL cases has come to define aberrant NOTCH signaling as a central player in this disease. Therefore, the NOTCH pathway represents an important potential therapeutic target. In this review, we will update our current understanding of the molecular basis of T-ALL, with a particular focus on the role of the NOTCH1 oncogene and the development of anti-NOTCH1 targeted therapies for the treatment of this disease.
Collapse
|
50
|
Score J, Calasanz MJ, Ottman O, Pane F, Yeh RF, Sobrinho-Simões MA, Kreil S, Ward D, Hidalgo-Curtis C, Melo JV, Wiemels J, Nadel B, Cross NCP, Grand FH. Analysis of genomic breakpoints in p190 and p210 BCR-ABL indicate distinct mechanisms of formation. Leukemia 2010; 24:1742-50. [PMID: 20703256 DOI: 10.1038/leu.2010.174] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/16/2010] [Accepted: 06/29/2010] [Indexed: 12/20/2022]
Abstract
We sought to understand the genesis of the t(9;22) by characterizing genomic breakpoints in chronic myeloid leukemia (CML) and BCR-ABL-positive acute lymphoblastic leukemia (ALL). BCR-ABL breakpoints were identified in p190 ALL (n=25), p210 ALL (n=25) and p210 CML (n=32); reciprocal breakpoints were identified in 54 cases. No evidence for significant clustering and no association with sequence motifs was found except for a breakpoint deficit in repeat regions within BCR for p210 cases. Comparison of reciprocal breakpoints, however, showed differences in the patterns of deletion/insertions between p190 and p210. To explore the possibility that recombinase-activating gene (RAG) activity might be involved in ALL, we performed extra-chromosomal recombination assays for cases with breakpoints close to potential cryptic recombination signal sequence (cRSS) sites. Of 13 ALL cases tested, 1/10 with p190 and 1/3 with p210 precisely recapitulated the forward BCR-ABL breakpoint and 1/10 with p190 precisely recapitulated the reciprocal breakpoint. In contrast, neither of the p210 CMLs tested showed functional cRSSs. Thus, although the t(9;22) does not arise from aberrant variable (V), joining (J) and diversity (D) (V(D)J) recombination, our data suggest that in a subset of ALL cases RAG might create one of the initiating double-strand breaks.
Collapse
MESH Headings
- Base Sequence
- Chromosome Breakpoints
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 9/genetics
- Fusion Proteins, bcr-abl/genetics
- Genome, Human/genetics
- Homeodomain Proteins/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Sequence Data
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Prognosis
- Sequence Homology, Nucleic Acid
- Translocation, Genetic
Collapse
Affiliation(s)
- J Score
- Wessex Regional Genetics Laboratory, Salisbury and Human Genetics Division, University of Southampton School of Medicine, Southampton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|