1
|
HIV-1 entry: Duels between Env and host antiviral transmembrane proteins on the surface of virus particles. Curr Opin Virol 2021; 50:59-68. [PMID: 34390925 DOI: 10.1016/j.coviro.2021.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) is the causative agent of AIDS. Its entry step is mediated by the envelope glycoprotein (Env). During the entry process, Env vastly changes its conformation. While non-liganded Env tends to have a closed structure, receptor-binding of Env opens its conformation, which leads to virus-cell membrane fusion. Single-molecule fluorescence resonance energy transfer (smFRET) imaging allows observation of these conformational changes on the virion surface. Nascent HIV-1 particles incorporate multiple host transmembrane proteins, some of which inhibit the entry process. The Env structure or its dynamics may determine the effectiveness of these antiviral mechanisms. Here, we review recent findings about the Env conformation changes on virus particles and inhibition of Env activities by virion-incorporated host transmembrane proteins.
Collapse
|
2
|
Differential recognition of HIV-stimulated IL-1β and IL-18 secretion through NLR and NAIP signalling in monocyte-derived macrophages. PLoS Pathog 2021; 17:e1009417. [PMID: 33861800 PMCID: PMC8109768 DOI: 10.1371/journal.ppat.1009417] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 05/10/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Macrophages are important drivers of pathogenesis and progression to AIDS in HIV infection. The virus in the later phases of the infection is often predominantly macrophage-tropic and this tropism contributes to a chronic inflammatory and immune activation state that is observed in HIV patients. Pattern recognition receptors of the innate immune system are the key molecules that recognise HIV and mount the inflammatory responses in macrophages. The innate immune response against HIV-1 is potent and elicits caspase-1-dependent pro-inflammatory cytokine production of IL-1β and IL-18. Although, NLRP3 has been reported as an inflammasome sensor dictating this response little is known about the pattern recognition receptors that trigger the “priming” signal for inflammasome activation, the NLRs involved or the HIV components that trigger the response. Using a combination of siRNA knockdowns in monocyte derived macrophages (MDMs) of different TLRs and NLRs as well as chemical inhibition, it was demonstrated that HIV Vpu could trigger inflammasome activation via TLR4/NLRP3 leading to IL-1β/IL-18 secretion. The priming signal is triggered via TLR4, whereas the activation signal is triggered by direct effects on Kv1.3 channels, causing K+ efflux. In contrast, HIV gp41 could trigger IL-18 production via NAIP/NLRC4, independently of priming, as a one-step inflammasome activation. NAIP binds directly to the cytoplasmic tail of HIV envelope protein gp41 and represents the first non-bacterial ligand for the NAIP/NLRC4 inflammasome. These divergent pathways represent novel targets to resolve specific inflammatory pathologies associated with HIV-1 infection in macrophages. It has been previously shown that inflammasome activation can be triggered during viral infection to produce the active cytokines IL-1β and IL-18. Our study represents a significant advance, as we now show that in fact there are distinct NLR inflammasome complexes and viral ligands for IL-1β secretion (Vpu) compared to IL-18 secretion (gp41) in response to HIV-1. Most importantly, we show that the HIV envelope protein gp41 represents the first non-bacterial ligand for the assembly of the NAIP/NLRC4 inflammasome. HIV gp41 is a viroporin, and thus our data demonstrates for the first time that the NAIP/NLRC4 inflammasome assembles for all pore-forming proteins, irrespective of whether they have a viral or bacterial origin. This is critical for the host antiviral response and has broad implications for innate immunity in general.
Collapse
|
3
|
Lubow J, Collins KL. Vpr Is a VIP: HIV Vpr and Infected Macrophages Promote Viral Pathogenesis. Viruses 2020; 12:E809. [PMID: 32726944 PMCID: PMC7472745 DOI: 10.3390/v12080809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
HIV infects several cell types in the body, including CD4+ T cells and macrophages. Here we review the role of macrophages in HIV infection and describe complex interactions between viral proteins and host defenses in these cells. Macrophages exist in many forms throughout the body, where they play numerous roles in healthy and diseased states. They express pattern-recognition receptors (PRRs) that bind viral, bacterial, fungal, and parasitic pathogens, making them both a key player in innate immunity and a potential target of infection by pathogens, including HIV. Among these PRRs is mannose receptor, a macrophage-specific protein that binds oligosaccharides, restricts HIV replication, and is downregulated by the HIV accessory protein Vpr. Vpr significantly enhances infection in vivo, but the mechanism by which this occurs is controversial. It is well established that Vpr alters the expression of numerous host proteins by using its co-factor DCAF1, a component of the DCAF1-DDB1-CUL4 ubiquitin ligase complex. The host proteins targeted by Vpr and their role in viral replication are described in detail. We also discuss the structure and function of the viral protein Env, which is stabilized by Vpr in macrophages. Overall, this literature review provides an updated understanding of the contributions of macrophages and Vpr to HIV pathogenesis.
Collapse
Affiliation(s)
- Jay Lubow
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kathleen L. Collins
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Skittrall JP, Ingemarsdotter CK, Gog JR, Lever AML. A scale-free analysis of the HIV-1 genome demonstrates multiple conserved regions of structural and functional importance. PLoS Comput Biol 2019; 15:e1007345. [PMID: 31545786 PMCID: PMC6791557 DOI: 10.1371/journal.pcbi.1007345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/14/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
HIV-1 replicates via a low-fidelity polymerase with a high mutation rate; strong conservation of individual nucleotides is highly indicative of the presence of critical structural or functional properties. Identifying such conservation can reveal novel insights into viral behaviour. We analysed 3651 publicly available sequences for the presence of nucleic acid conservation beyond that required by amino acid constraints, using a novel scale-free method that identifies regions of outlying score together with a codon scoring algorithm. Sequences with outlying score were further analysed using an algorithm for producing local RNA folds whilst accounting for alignment properties. 11 different conserved regions were identified, some corresponding to well-known cis-acting functions of the HIV-1 genome but also others whose conservation has not previously been noted. We identify rational causes for many of these, including cis functions, possible additional reading frame usage, a plausible mechanism by which the central polypurine tract primes second-strand DNA synthesis and a conformational stabilising function of a region at the 5' end of env.
Collapse
Affiliation(s)
- Jordan P. Skittrall
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Carin K. Ingemarsdotter
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Julia R. Gog
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Cambridge, United Kingdom
| | - Andrew M. L. Lever
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
5
|
Abstract
This review summarizes over a decade of investigations into how membrane-binding proteins from the HIV-1 virus interact with lipid membrane mimics various HIV and host T-cell membranes. The goal of the work was to characterize at the molecular level both the elastic and structural changes that occur due to HIV protein/membrane interactions, which could lead to new drugs to thwart the HIV virus. The main technique used to study these interactions is diffuse X-ray scattering, which yields the bending modulus, KC, as well as structural parameters such as membrane thickness, area/lipid and position of HIV peptides (parts of HIV proteins) in the membrane. Our methods also yield information about lipid chain order or disorder caused by the peptides. This review focuses on three stages of the HIV-1 life cycle: 1) infection, 2) Tat membrane transport, and 3) budding. In the infection stage, our lab studied three different parts of HIV-1 gp41 (glycoprotein 41 fusion protein): 1) FP23, the N-terminal 23 amino acids that interact non-specifically with the T-cell host membrane to cause fusion of two membranes, and its trimer version, 2) CRAC (cholesterol recognition amino acid consensus sequence), on the MPER (membrane proximal external region) near the membrane-spanning domain, and 3) LLP2 (lentiviral lytic peptide 2) on the CTT (cytoplasmic C-terminal tail). For Tat transport, we used membrane mimics of the T-cell nuclear membrane as well as simpler models that varied charge and negative curvature. For membrane budding, we varied the myristoylation of the MA31 peptide as well as the negatively charged lipid. These studies show that HIV peptides with different roles in the HIV life cycle affect differently the relevant membrane mimics. In addition, the membrane lipid composition plays an important role in the peptides' effects.
Collapse
|
6
|
Sepehri S, Soleymani S, Zabihollahi R, Aghasadeghi MR, Sadat M, Saghaie L, Fassihi A. Synthesis, Biological Evaluation, and Molecular Docking Studies of Novel 4-[4-Arylpyridin-1(4H)-yl]benzoic Acid Derivatives as Anti-HIV-1 Agents. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201700295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/17/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Saghi Sepehri
- Department of Medicinal Chemistry; School of Pharmacy and Pharmaceutical Sciences; Isfahan University of Medical Sciences; 81746-73461 Isfahan Iran
- Department of Medicinal Chemistry; School of Pharmacy; Ardabil University of Medical Sciences; 56189-53141 Ardabil Iran
| | - Sepehr Soleymani
- Department of Hepatitis and AIDS; Pasteur Institute of Iran; 13169-43551 Tehran Iran
| | - Rezvan Zabihollahi
- Department of Hepatitis and AIDS; Pasteur Institute of Iran; 13169-43551 Tehran Iran
| | | | - Mehdi Sadat
- Department of Hepatitis and AIDS; Pasteur Institute of Iran; 13169-43551 Tehran Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry; School of Pharmacy and Pharmaceutical Sciences; Isfahan University of Medical Sciences; 81746-73461 Isfahan Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry; School of Pharmacy and Pharmaceutical Sciences; Isfahan University of Medical Sciences; 81746-73461 Isfahan Iran
| |
Collapse
|
7
|
Serrano S, Huarte N, Rujas E, Andreu D, Nieva JL, Jiménez MA. Structure-Related Roles for the Conservation of the HIV-1 Fusion Peptide Sequence Revealed by Nuclear Magnetic Resonance. Biochemistry 2017; 56:5503-5511. [PMID: 28930470 DOI: 10.1021/acs.biochem.7b00745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite extensive characterization of the human immunodeficiency virus type 1 (HIV-1) hydrophobic fusion peptide (FP), the structure-function relationships underlying its extraordinary degree of conservation remain poorly understood. Specifically, the fact that the tandem repeat of the FLGFLG tripeptide is absolutely conserved suggests that high hydrophobicity may not suffice to unleash FP function. Here, we have compared the nuclear magnetic resonance (NMR) structures adopted in nonpolar media by two FP surrogates, wtFP-tag and scrFP-tag, which had equal hydrophobicity but contained wild-type and scrambled core sequences LFLGFLG and FGLLGFL, respectively. In addition, these peptides were tagged at their C-termini with an epitope sequence that folded independently, thereby allowing Western blot detection without interfering with FP structure. We observed similar α-helical FP conformations for both specimens dissolved in the low-polarity medium 25% (v/v) 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), but important differences in contact with micelles of the membrane mimetic dodecylphosphocholine (DPC). Thus, whereas wtFP-tag preserved a helix displaying a Gly-rich ridge, the scrambled sequence lost in great part the helical structure upon being solubilized in DPC. Western blot analyses further revealed the capacity of wtFP-tag to assemble trimers in membranes, whereas membrane oligomers were not observed in the case of the scrFP-tag sequence. We conclude that, beyond hydrophobicity, preserving sequence order is an important feature for defining the secondary structures and oligomeric states adopted by the HIV FP in membranes.
Collapse
Affiliation(s)
- Soraya Serrano
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC) , Serrano 119, E-28006 Madrid, Spain
| | - Nerea Huarte
- Biofisika Institute (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country , P.O. Box 644, 48080 Bilbao, Spain
| | - Edurne Rujas
- Biofisika Institute (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country , P.O. Box 644, 48080 Bilbao, Spain
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University , Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - José L Nieva
- Biofisika Institute (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country , P.O. Box 644, 48080 Bilbao, Spain
| | - María Angeles Jiménez
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC) , Serrano 119, E-28006 Madrid, Spain
| |
Collapse
|
8
|
The Envelope Cytoplasmic Tail of HIV-1 Subtype C Contributes to Poor Replication Capacity through Low Viral Infectivity and Cell-to-Cell Transmission. PLoS One 2016; 11:e0161596. [PMID: 27598717 PMCID: PMC5012655 DOI: 10.1371/journal.pone.0161596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022] Open
Abstract
The cytoplasmic tail (gp41CT) of the HIV-1 envelope (Env) mediates Env incorporation into virions and regulates Env intracellular trafficking. Little is known about the functional impact of variability in this domain. To address this issue, we compared the replication of recombinant virus pairs carrying the full Env (Env viruses) or the Env ectodomain fused to the gp41CT of NL4.3 (EnvEC viruses) (12 subtype C and 10 subtype B pairs) in primary CD4+ T-cells and monocyte-derived-macrophages (MDMs). In CD4+ T-cells, replication was as follows: B-EnvEC = B-Env>C-EnvEC>C-Env, indicating that the gp41CT of subtype C contributes to the low replicative capacity of this subtype. In MDMs, in contrast, replication capacity was comparable for all viruses regardless of subtype and of gp41CT. In CD4+ T-cells, viral entry, viral release and viral gene expression were similar. However, infectivity of free virions and cell-to-cell transmission of C-Env viruses released by CD4+ T-cells was lower, suggestive of lower Env incorporation into virions. Subtype C matrix only minimally rescued viral replication and failed to restore infectivity of free viruses and cell-to-cell transmission. Taken together, these results show that polymorphisms in the gp41CT contribute to viral replication capacity and suggest that the number of Env spikes per virion may vary across subtypes. These findings should be taken into consideration in the design of vaccines.
Collapse
|
9
|
Shen ZT, Sigalov AB. SARS Coronavirus Fusion Peptide-Derived Sequence Suppresses Collagen-Induced Arthritis in DBA/1J Mice. Sci Rep 2016; 6:28672. [PMID: 27349522 PMCID: PMC4923882 DOI: 10.1038/srep28672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/06/2016] [Indexed: 12/29/2022] Open
Abstract
During the co-evolution of viruses and their hosts, the viruses have evolved numerous strategies to counter and evade host antiviral immune responses in order to establish a successful infection, replicate and persist in the host. Recently, based on our model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, we suggested specific molecular mechanisms used by different viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) to modulate the host immune response mediated by members of the family of multichain immune recognition receptors (MIRRs). This family includes T cell receptor (TCR) that is critically involved in immune diseases such as autoimmune arthritis. In the present study, we provide compelling experimental in vivo evidence in support of our hypothesis. Using the SCHOOL approach and the SARS-CoV fusion peptide sequence, we rationally designed a novel immunomodulatory peptide that targets TCR. We showed that this peptide ameliorates collagen-induced arthritis in DBA/1J mice and protects against bone and cartilage damage. Incorporation of the peptide into self-assembling lipopeptide nanoparticles that mimic native human high density lipoproteins significantly increases peptide dosage efficacy. Together, our data further confirm that viral immune evasion strategies that target MIRRs can be transferred to therapeutic strategies that require similar functionalities.
Collapse
Affiliation(s)
- Zu T. Shen
- SignaBlok, Inc, P.O. Box 4064, Shrewsbury, MA 01545, United States of America
| | | |
Collapse
|
10
|
Palker TJ. Human T-cell Lymphotropic Viruses: Review and Prospects for Antiviral Therapy. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029200300301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human T-cell lymphotropic viruses types I and II (HTLV-I, II) pose challenges to researchers and clinicians who seek to unveil mechanisms of viral transformation and pathogenesis. HTLV-I infection in humans is associated with a wide array of primary and secondary diseases ranging from mild immunosuppression to adult T-cell leukaemia/lymphoma and HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a neurological degenerative syndrome. As retroviruses, HTLV-I and II share similar replicative cycles with human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency syndrome. However, in contrast to HIV-I which destroys CD4+ T cells, HTLV-I and II can preferentially transform a CD4+ T-cell subset to an unrestricted growth state. HTLV-I and II, along with simian T-lymphotropic virus (STLV) and bovine leukaemia virus (BLV), form a phylogenetic group which is distinct from ungulate, non-human primate and human lentiviruses such as visna, simian immunodeficiency virus (SIV), and human immunodeficiency viruses types 1 and 2. The proviral genome of HTLV-I is flanked at the 5′ and 3′ ends by long terminal repeats (LTR) and is further subdivided into structural gag and env genes, a pro gene encoding an aspartyl protease, a pol gene which encodes reverse transcriptase and endonuclease, and the regulatory gene elements tax and rex. Regions within the LTR contain recognition sites for cellular proteins and the tax gene product that collectively promote viral expression. Tax-mediated activation of cellular genes involved in growth and differentiation is suspected to play a dominant role in the leukaemogenic process associated with HTLV-I infection. Differential rex-regulated splicing of viral message gives rise to transcripts encoding the polyprotein precursor gag-pro-pol (unspliced), envelope (single spliced), or tax/rex (doubly spliced). The 100nm HTLV virion contains an electron-dense core surrounding a divalent-single stranded DNA genome. This core is in turn enclosed by concentric shells of matrix protein and an outer lipid bilayer, the latter acquired as the virus buds from the surface of the infected cell. Envelope glycoproteins associated with the outside of this lipid bilayer can interact with viral receptors on cells and mediate virus entry. Antiviral strategies have been directed at inhibiting viral entry into cells (sulphated and non-sulphated polysaccharides, vaccines), blocking of viral replication (AZT, suramin), intracellular immunization (transdominant repression of rex), and elimination of virus infected cells (IL-2 receptor-directed toxins). Serological screening of the blood supply and curtailing breast feeding of children by HTLV-I + mothers have likely had a major impact in preventing HTLV-I infection.
Collapse
Affiliation(s)
- T. J. Palker
- Duke University Medical Center, P.O. Box 3307, Durham, NC, 27710, USA
| |
Collapse
|
11
|
Mutational analysis of hepatitis B virus pre-S1 (9-24) fusogenic peptide. Biochem Biophys Res Commun 2016; 474:406-412. [PMID: 27120459 DOI: 10.1016/j.bbrc.2016.04.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 12/31/2022]
Abstract
A hollow nanoparticle known as a bio-nanocapsule (BNC) consisting of hepatitis B virus (HBV) envelope L protein and liposome (LP) can encapsulate drugs and genes and thereby deliver them in vitro and in vivo to human hepatic tissues, specifically by utilizing the HBV-derived infection machinery. Recently, we identified a low pH-dependent fusogenic domain at the N-terminal part of the pre-S1 region of the HBV L protein (amino acid residues 9 to 24; NPLGFFPDHQLDPAFG), which shows membrane destabilizing activity (i.e., membrane fusion, membrane disruption, and payload release) upon interaction with target LPs. In this study, instead of BNC and HBV, we generated LPs displaying a mutated form of the pre-S1 (9-24) peptide, and performed a membrane disruption assay using target LPs containing pyranine (fluorophore) and p-xylene-bis (N-pyridinium bromide) (DPX) as a quencher. The membrane disruption activity was found to correlate with the hydrophobicity of the whole structure, while the peptide retained a random-coil structure even under low pH condition. One large hydrophobic cluster (I) and one small hydrophobic cluster (II) residing in the peptide would be connected by the protonation of residues D16 and D20, and thereby exhibit strong membrane disruption activity in a low pH-dependent manner. Furthermore, the introduction of a positively charged residue enhanced the activity significantly, suggesting that a sole positively charged residue (H17) may be important for the interaction with target LPs by electrostatic interaction. Collectively, these results suggest that the pre-S1 (9-24) peptide may be involved in the endosomal escape of the BNC's payloads, as well as in the HBV uncoating process.
Collapse
|
12
|
Discovery and optimization of novel small-molecule HIV-1 entry inhibitors using field-based virtual screening and bioisosteric replacement. Bioorg Med Chem Lett 2015; 24:5439-45. [PMID: 25454268 DOI: 10.1016/j.bmcl.2014.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/22/2022]
Abstract
With the emergence of drug-resistant strains and the cumulative toxicities associated with current therapies, demand remains for new inhibitors of HIV-1 replication. The inhibition of HIV-1 entry is an attractive, yet underexploited therapeutic approach with implications for salvage and preexposure prophylactic regimens, as well as topical microbicides. Using the combination of a field-derived bioactive conformation template to perform virtual screening and iterative bioisosteric replacements, coupled with in silico predictions of absorption, distribution, metabolism, and excretion, we have identified new leads for HIV-1 entry inhibitors.
Collapse
|
13
|
Groppelli E, Len AC, Granger LA, Jolly C. Retromer regulates HIV-1 envelope glycoprotein trafficking and incorporation into virions. PLoS Pathog 2014; 10:e1004518. [PMID: 25393110 PMCID: PMC4231165 DOI: 10.1371/journal.ppat.1004518] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/13/2014] [Indexed: 01/01/2023] Open
Abstract
The envelope glycoprotein (Env) of the Human Immunodeficiency Virus Type-1 (HIV-1) is a critical determinant of viral infectivity, tropism and is the main target for humoral immunity; however, little is known about the cellular machinery that directs Env trafficking and its incorporation into nascent virions. Here we identify the mammalian retromer complex as a novel and important cellular factor regulating Env trafficking. Retromer mediates endosomal sorting and is most closely associated with endosome-to-Golgi transport. Consistent with this function, inactivating retromer using RNAi targeting the cargo selective trimer complex inhibited retrograde trafficking of endocytosed Env to the Golgi. Notably, in HIV-1 infected cells, inactivating retromer modulated plasma membrane expression of Env, along with Env incorporation into virions and particle infectivity. Mutagenesis studies coupled with coimmunoprecipitations revealed that retromer-mediated trafficking requires the Env cytoplasmic tail that we show binds directly to retromer components Vps35 and Vps26. Taken together these results provide novel insight into regulation of HIV-1 Env trafficking and infectious HIV-1 morphogenesis and show for the first time a role for retromer in the late-steps of viral replication and assembly of a virus. Virus assembly necessitates the hijacking of the host cell machinery in order for new infectious viral particles to be constructed and disseminate. The envelope glycoprotein (Env) of HIV is a critical determinant of viral infectivity and is also a major target for antiviral immune responses. The long cytoplasmic tail of HIV Env plays an essential role in the assembly of infectious virions and limiting exposure of Env to the immune system, but the cellular machinery that transports HIV Env in virus-infected cells remain poorly understood. Here we have identified the mammalian retromer complex involved in endosomal sorting as a novel cellular factor regulating Env trafficking in virus-infected cells. We show that inactivating retromer alters Env localization, cell surface expression and incorporation into virions and that retromer binds directly to the Env cytoplasmic tail to perform these functions. This study defines an important pathway of Env transport and describes for the first time a role for this highly conserved cellular complex in assembly of a virus.
Collapse
Affiliation(s)
- Elisabetta Groppelli
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Alice C. Len
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Luke A. Granger
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Balupuri A, Gadhe CG, Balasubramanian PK, Kothandan G, Cho SJ. In silico study on indole derivatives as anti HIV-1 agents: a combined docking, molecular dynamics and 3D-QSAR study. Arch Pharm Res 2013; 37:1001-15. [DOI: 10.1007/s12272-013-0313-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
|
15
|
Bakouche N, Vandenbroucke AT, Goubau P, Ruelle J. Study of the HIV-2 Env cytoplasmic tail variability and its impact on Tat, Rev and Nef. PLoS One 2013; 8:e79129. [PMID: 24223892 PMCID: PMC3815105 DOI: 10.1371/journal.pone.0079129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/18/2013] [Indexed: 11/24/2022] Open
Abstract
Background The HIV-2 env’s 3’ end encodes the cytoplasmic tail (CT) of the Env protein. This genomic region also encodes the rev, Tat and Nef protein in overlapping reading frames. We studied the variability in the CT coding region in 46 clinical specimens and in 2 reference strains by sequencing and by culturing. The aims were to analyse the variability of Env CT and the evolution of proteins expressed from overlapping coding sequences. Results A 70% reduction of the length of the CT region affected the HIV-2 ROD and EHO strains invitro due to a premature stop codon in the env gene. In clinical samples this wasn’t observed, but the CT length varied due to insertions and deletions. We noted 3 conserved and 3 variable regions in the CT. The conserved regions were those containing residues involved in Env endocytosis, the potential HIV-2 CT region implicated in the NF-kB activation and the potential end of the lentiviral lytic peptide one. The variable regions were the potential HIV-2 Kennedy region, the potential lentiviral lytic peptide two and the beginning of the potential lentiviral lytic peptide one. A very hydrophobic region was coded downstream of the premature stop codon observed invitro, suggesting a membrane spanning region. Interestingly, the nucleotides that are responsible for the variability of the CT don’t impact rev and Nef. However, in the Kennedy-like coding region variability resulted only from nucleotide changes that impacted Env and Tat together. Conclusion The HIV-2 Env, Tat and Rev C-terminal part are subject to major length variations in both clinical samples and cultured strains. The HIV-2 Env CT contains variable and conserved regions. These regions don’t affect the rev and Nef amino acids composition which evolves independently. In contrast, Tat co-evolves with the Env CT.
Collapse
Affiliation(s)
- Nordine Bakouche
- Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | | | - Patrick Goubau
- Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - Jean Ruelle
- Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
16
|
Smith SA, Wood C, West JT. HIV-1 Env C2-V4 diversification in a slow-progressor infant reveals a flat but rugged fitness landscape. PLoS One 2013; 8:e63094. [PMID: 23638182 PMCID: PMC3639246 DOI: 10.1371/journal.pone.0063094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) fitness has been associated with virus entry, a process mediated by the envelope glycoprotein (Env). We previously described Env genetic diversification in a Zambian, subtype C infected, slow-progressor child (1157i) in parallel with an evolving neutralizing antibody response. Because of the role the Variable-3 loop (V3) plays in transmission, cell tropism, neutralization sensitivity, and fitness, longitudinally isolated 1157i C2-V4 alleles were cloned into HIV-1NL4-3-eGFP and -DsRed2 infectious molecular clones. The fluorescent reporters allowed for dual-infection competitions between all patient-derived C2-V4 chimeras to quantify the effect of V3 diversification and selection on fitness. 'Winners' and 'losers' were readily discriminated among the C2-V4 alleles. Exceptional sensitivity for detection of subtle fitness differences was revealed through analysis of two alleles differing in a single synonymous amino acid. However, when the outcomes of N = 33 competitions were averaged for each chimera, the aggregate analysis showed that despite increasing diversification and divergence with time, natural selection of C2-V4 sequences in this individual did not appear to be producing a 'survival of the fittest' evolutionary pattern. Rather, we detected a relatively flat fitness landscape consistent with mutational robustness. Fitness outcomes were then correlated with individual components of the entry process. Env incorporation into particles correlated best with fitness, suggesting a role for Env avidity, as opposed to receptor/coreceptor affinity, in defining fitness. Nevertheless, biochemical analyses did not identify any step in HIV-1 entry as a dominant determinant of fitness. Our results lead us to conclude that multiple aspects of entry contribute to maintaining adequate HIV-1 fitness, and there is no surrogate analysis for determining fitness. The capacity for subtle polymorphisms in Env to nevertheless significantly impact viral fitness suggests fitness is best defined by head-to-head competition.
Collapse
Affiliation(s)
- S. Abigail Smith
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Charles Wood
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - John T. West
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
17
|
Abstract
Envelope glycoproteins (Env) of lentiviruses typically possess unusually long cytoplasmic domains, often 150 amino acids or longer. It is becoming increasingly clear that these sequences contribute a diverse array of functional activities to the life cycle of their viruses. The cytoplasmic domain of gp41 (gp41CD) is required for replication of human immunodeficiency virus type 1 (HIV-1) in most but not all cell types, whereas it is largely dispensable for replication of simian immunodeficiency virus (SIV). Functionally, gp41CD has been shown to regulate rapid clathrin-mediated endocytosis of Env. The resultant low levels of Env expression at the cell surface likely serve as an immune avoidance mechanism to limit accessibility to the humoral immune response. Intracellular trafficking of Env is also regulated by gp41CD through interactions with a variety of cellular proteins. Furthermore, gp41CD has been implicated in the incorporation of Env into virions through an interaction with the virally encoded matrix protein. Most recently, the gp41CDs of HIV-1 and SIV were shown to activate the key cellular-transcription factor NF-κB via the serine/threonine kinase TAK1. Less well understood are the cytotoxicity- and apoptosis-inducing activities of gp41CD as well as potential roles in modulating the actin cytoskeleton and overcoming host cell restrictions. In this review, we summarize what is currently known about the cytoplasmic domains of HIV-1 and SIV and attempt to integrate the wealth of information in terms of defined functional activities.
Collapse
Affiliation(s)
- Thomas S. Postler
- New England Primate Research Center, Department of Microbiology and Immunobiology, Harvard Medical School, Southborough, Massachusetts, USA
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C. Desrosiers
- New England Primate Research Center, Department of Microbiology and Immunobiology, Harvard Medical School, Southborough, Massachusetts, USA
| |
Collapse
|
18
|
Steckbeck JD, Kuhlmann AS, Montelaro RC. C-terminal tail of human immunodeficiency virus gp41: functionally rich and structurally enigmatic. J Gen Virol 2012; 94:1-19. [PMID: 23079381 PMCID: PMC3542723 DOI: 10.1099/vir.0.046508-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) pandemic is amongst the most important current worldwide public health threats. While much research has been focused on AIDS vaccines that target the surface viral envelope (Env) protein, including gp120 and the gp41 ectodomain, the C-terminal tail (CTT) of gp41 has received relatively little attention. Despite early studies highlighting the immunogenicity of a particular CTT sequence, the CTT has been classically portrayed as a type I membrane protein limited to functioning in Env trafficking and virion incorporation. Recent studies demonstrate, however, that the Env CTT has other important functions. The CTT has been shown to additionally modulate Env ectodomain structure on the cell and virion surface, affect Env reactivity and viral sensitivity to conformation-dependent neutralizing antibodies, and alter cell–cell and virus–cell fusogenicity of Env. This review provides an overview of the Env structure and function with a particular emphasis on the CTT and recent studies that highlight its functionally rich nature.
Collapse
Affiliation(s)
- Jonathan D. Steckbeck
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Anne-Sophie Kuhlmann
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ronald C. Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
19
|
Shrivastava IH, Wendel K, LaLonde JM. Spontaneous rearrangement of the β20/β21 strands in simulations of unliganded HIV-1 glycoprotein, gp120. Biochemistry 2012; 51:7783-93. [PMID: 22963284 DOI: 10.1021/bi300878d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binding of the viral spike drives cell entry and infection by HIV-1 to the cellular CD4 and chemokine receptors with associated conformational change of the viral glycoprotein envelope, gp120. Crystal structures of the CD4-gp120-antibody ternary complex reveal a large internal gp120 cavity formed by three domains-the inner domain, outer domain, and bridging sheet domain-and are capped by CD4 residue Phe43. Several structures of gp120 envelope in complex with various antibodies indicated that the bridging sheet adopts varied conformations. Here, we examine bridging sheet dynamics using a crystal structure of gp120 bound to the F105 antibody exhibiting an open bridging sheet conformation and with an added V3 loop. The two strands of the bridging sheet β2/β3 and β20/β21 are dissociated from each other and are directed away from the inner and outer domains. Analysis of molecular dynamics (MD) trajectories indicates that the β2/β3 and β20/β21 strands rapidly rearrange to interact with the V3 loop and the inner and outer domains, respectively. Residue N425 on β20 leads the conformational rearrangement of the β20/β21 strands by interacting with W112 on the inner domain and F382 on the outer domain. An accompanying shift is observed in the inner domain as helix α1 exhibits a loss in helicity and pivots away from helix α5. The two simulations provide a framework for understanding the conformational diversity of the bridging sheet and the propensity of the β20/β21 strand to refold between the inner and outer domains of gp120, in the absence of a bound ligand.
Collapse
Affiliation(s)
- Indira H Shrivastava
- Department of Systems and Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.
| | | | | |
Collapse
|
20
|
LaLonde JM, Kwon YD, Jones DM, Sun AW, Courter JR, Soeta T, Kobayashi T, Princiotto AM, Wu X, Schön A, Freire E, Kwong PD, Mascola JR, Sodroski J, Madani N, Smith AB. Structure-based design, synthesis, and characterization of dual hotspot small-molecule HIV-1 entry inhibitors. J Med Chem 2012; 55:4382-96. [PMID: 22497421 PMCID: PMC3376652 DOI: 10.1021/jm300265j] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular infection by HIV-1 is initiated with a binding event between the viral envelope glycoprotein gp120 and the cellular receptor protein CD4. The CD4-gp120 interface is dominated by two hotspots: a hydrophobic gp120 cavity capped by Phe43(CD4) and an electrostatic interaction between residues Arg59(CD4) and Asp368(gp120). The CD4 mimetic small-molecule NBD-556 (1) binds within the gp120 cavity; however, 1 and related congeners demonstrate limited viral neutralization breadth. Herein, we report the design, synthesis, characterization, and X-ray structures of gp120 in complex with small molecules that simultaneously engage both binding hotspots. The compounds specifically inhibit viral infection of 42 tier 2 clades B and C viruses and are shown to be antagonists of entry into CD4-negative cells. Dual hotspot design thus provides both a means to enhance neutralization potency of HIV-1 entry inhibitors and a novel structural paradigm for inhibiting the CD4-gp120 protein-protein interaction.
Collapse
Affiliation(s)
- Judith M. LaLonde
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda MD 20892
| | - David M. Jones
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexander W. Sun
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Takahiro Soeta
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Toyoharu Kobayashi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Amy M. Princiotto
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02115
| | - Xueling Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda MD 20892
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda MD 20892
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda MD 20892
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02115
- Department of Microbiology and Immunology, Harvard Medical School; Department of Immunology and Infectious Diseases, Harvard School of Public Health; Ragon Institute of MGH, MIT and Harvard, Boston, MA 02115
| | - Navid Madani
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02115
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
21
|
Novel approaches to inhibit HIV entry. Viruses 2012; 4:309-24. [PMID: 22470838 PMCID: PMC3315218 DOI: 10.3390/v4020309] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/17/2012] [Accepted: 02/07/2012] [Indexed: 12/22/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) entry into target cells is a multi-step process involving binding of the viral glycoprotein, Env, to its receptor CD4 and a coreceptor-either CCR5 or CXCR4. Understanding the means by which HIV enters cells has led to the identification of genetic polymorphisms, such as the 32 base-pair deletion in the ccr5 gene (ccr5∆32) that confers resistance to infection in homozygous individuals, and has also resulted in the development of entry inhibitors-small molecule antagonists that block infection at the entry step. The recent demonstration of long-term control of HIV infection in a leukemic patient following a hematopoietic stem cell transplant using cells from a ccr5∆32 homozygous donor highlights the important role of the HIV entry in maintaining an established infection and has led to a number of attempts to treat HIV infection by genetically modifying the ccr5 gene. In this review, we describe the HIV entry process and provide an overview of the different classes of approved HIV entry inhibitors while highlighting novel genetic strategies aimed at blocking HIV infection at the level of entry.
Collapse
|
22
|
Checkley MA, Luttge BG, Freed EO. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 2011; 410:582-608. [PMID: 21762802 PMCID: PMC3139147 DOI: 10.1016/j.jmb.2011.04.042] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.
Collapse
Affiliation(s)
- Mary Ann Checkley
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| | - Benjamin G. Luttge
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| |
Collapse
|
23
|
Haim H, Strack B, Kassa A, Madani N, Wang L, Courter JR, Princiotto A, McGee K, Pacheco B, Seaman MS, Smith AB, Sodroski J. Contribution of intrinsic reactivity of the HIV-1 envelope glycoproteins to CD4-independent infection and global inhibitor sensitivity. PLoS Pathog 2011; 7:e1002101. [PMID: 21731494 PMCID: PMC3121797 DOI: 10.1371/journal.ppat.1002101] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/18/2011] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the "intrinsic reactivity" of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant ("Tier 2-like") viruses, globally sensitive ("Tier 1") viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of inhibitor/antibody binding to the envelope glycoprotein trimer and by envelope glycoprotein reactivity to the inhibitor/antibody binding event. Quantitative differences in intrinsic reactivity contribute to HIV-1 strain variability in global susceptibility to neutralization and explain the long-observed relationship between increased inhibitor sensitivity and decreased entry requirements for target cell CD4.
Collapse
Affiliation(s)
- Hillel Haim
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bettina Strack
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aemro Kassa
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Navid Madani
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liping Wang
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amy Princiotto
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kathleen McGee
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beatriz Pacheco
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, Unites States of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
HIV cell entry and infection are driven by binding events to the CD4 and chemokine receptors with associated conformational change of the viral glycoprotein, gp120. Scyllatoxin miniprotein CD4 mimetics and a small molecule inhibitor of CD4 binding, NBD-556, also effectively induce gp120 conformational change. In this study we examine the fluctuation profile of gp120 in context of CD4, a miniprotein mimetic, and NBD-556 with the aim of understanding the effect of ligand binding on gp120 conformational dynamics. Analysis of molecular dynamics trajectories indicate that NBD-556 binding in the Phe 43 cavity enhances the overall mobility of gp120, especially in the outer domain in comparison to CD4 or miniprotein bound complex. Interactions with the more flexible bridging sheet strengthen upon NBD-556 binding and may contribute to gp120 restructuring. The enhanced mobility of D368, E370, and I371 with NBD-556 bound in the Phe 43 cavity suggests that interactions with α3-helix in the outer domain are not optimal, providing further insights into gp120--small molecule interactions that may impact small molecule designs.
Collapse
Affiliation(s)
- Indira Shrivastava
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh 3083 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh PA 15213
| | - Judith M. LaLonde
- Chemistry Department, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA 19010
| |
Collapse
|
25
|
Shrivastava I, LaLonde JM. Fluctuation dynamics analysis of gp120 envelope protein reveals a topologically based communication network. Proteins 2011; 78:2935-49. [PMID: 20718047 DOI: 10.1002/prot.22816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection is initiated by binding of the viral glycoprotein gp120, to the cellular receptor CD4. On CD4 binding, gp120 undergoes conformational change, permitting binding to the chemokine receptor. Crystal structures of gp120 ternary complex reveal the CD4 bound conformation of gp120. We report here the application of the Gaussian network model (GNM) to the crystal structures of gp120 bound to CD4 or CD4 mimic and 17b, to study the collective motions of the gp120 core and determine the communication propensities of the residue network. The GNM fluctuation profiles identify residues in the inner domain and outer domain that may facilitate conformational change or stability, respectively. Communication propensities delineate a residue network that is topologically suited for signal propagation from the Phe43 cavity throughout the gp120 outer domain. These results provide a new context for interpreting gp120 core envelope structure-function relationships.
Collapse
Affiliation(s)
- Indira Shrivastava
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3083 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
26
|
|
27
|
Sigalov AB. The SCHOOL of nature: III. From mechanistic understanding to novel therapies. SELF/NONSELF 2010; 1:192-224. [PMID: 21487477 PMCID: PMC3047783 DOI: 10.4161/self.1.3.12794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 11/19/2022]
Abstract
Protein-protein interactions play a central role in biological processes and thus represent an appealing target for innovative drug design and development. They can be targeted by small molecule inhibitors, modulatory peptides and peptidomimetics, which represent a superior alternative to protein therapeutics that carry many disadvantages. Considering that transmembrane signal transduction is an attractive process to therapeutically control multiple diseases, it is fundamentally and clinically important to mechanistically understand how signal transduction occurs. Uncovering specific protein-protein interactions critical for signal transduction, a general platform for receptor-mediated signaling, the signaling chain homooligomerization (SCHOOL) platform, suggests these interactions as universal therapeutic targets. Within the platform, the general principles of signaling are similar for a variety of functionally unrelated receptors. This suggests that global therapeutic strategies targeting key protein-protein interactions involved in receptor triggering and transmembrane signal transduction may be used to treat a diverse set of diseases. This also assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T cell-mediated skin diseases and platelet disorders or combined to develop novel pharmacological approaches. Intriguingly, human viruses use the SCHOOL-like strategies to modulate and/or escape the host immune response. These viral mechanisms are highly optimized over the millennia, and the lessons learned from viral pathogenesis can be used practically for rational drug design. Proof of the SCHOOL concept in the development of novel therapies for atopic dermatitis, rheumatoid arthritis, cancer, platelet disorders and other multiple indications with unmet needs opens new horizons in therapeutics.
Collapse
|
28
|
Sigalov AB. New therapeutic strategies targeting transmembrane signal transduction in the immune system. Cell Adh Migr 2010; 4:255-67. [PMID: 20519929 DOI: 10.4161/cam.4.2.10746] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Single-chain receptors and multi-chain immune recognition receptors (SRs and MIRRs, respectively) represent families of structurally related but functionally different surface receptors expressed on different cells. In contrast to SRs, a distinctive and common structural characteristic of MIRR family members is that the extracellular recognition domains and intracellular signaling domains are located on separate subunits. How extracellular ligand binding triggers MIRRs and initiates intracellular signal transduction processes is not clear. A novel model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, suggests that the homooligomerization of receptor intracellular signaling domains represents a necessary and sufficient condition for receptor triggering. In this review, I demonstrate striking similarities between a consensus model of SR signaling and the SCHOOL model of MIRR signaling and show how these models, together with the lessons learned from viral pathogenesis, provide a molecular basis for novel pharmacological approaches targeting inter- and intrareceptor transmembrane interactions as universal therapeutic targets for a diverse variety of immune and other disorders.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
29
|
Gkeka P, Sarkisov L. Interactions of Phospholipid Bilayers with Several Classes of Amphiphilic α-Helical Peptides: Insights from Coarse-Grained Molecular Dynamics Simulations. J Phys Chem B 2009; 114:826-39. [DOI: 10.1021/jp908320b] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Paraskevi Gkeka
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Edinburgh, U.K
| | - Lev Sarkisov
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
30
|
|
31
|
Pun PB, Bhat AA, Mohan T, Kulkarni S, Paranjape R, Rao DN. Intranasal administration of peptide antigens of HIV with mucosal adjuvant CpG ODN coentrapped in microparticles enhances the mucosal and systemic immune responses. Int Immunopharmacol 2009; 9:468-77. [PMID: 19291836 DOI: 10.1016/j.intimp.2009.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The mucosal immune system acts as a first line of defense against infection caused by luminal pathogens. Because HIV is transmitted primarily via mucosal associated tissues, particularly with sexual transmission, understanding antiviral immunity present at these sites is important. As most of the peptide antigens show poor immunogenicity when immunized alone but after incorporating the same peptide antigens along with adjuvant CpG ODN in microparticles has shown enhanced immunogenicity in the murine model. In the present study we have investigated the immunomodulatory effects of two adjuvants, CpG 1826 and CpG 2006 (Class B, Also known as type K) to the four peptide antigens of HIV such as envelope glycoproteins gp41 Leucine Zipper, gp41 fusion domain and gp120-C2 as well as regulatory protein (Nef) in microparticles, exploring nasal route with single immunization schedule. Peptide (s) alone in the microparticles elicited low peptide specific IgG and IgA peak titres in the sera, whereas the inclusion of CpG ODN with peptides in microparticles significantly enhanced peptide specific IgG and IgA peak titres and such responses were sustained for longer durations. Similarly higher SIgA response was achieved in the mucosal washes with CpG encapsulated in microparticles. Such presence of SIgA in washes was further correlated with the presence of secretory component (SC) in the respective washes. Both adjuvants induced excellent peptide specific IgG and IgA immune responses. Thus the overall study highlighted the importance of CpG ODNs as a mucosal adjuvant for weaker peptide antigens and thus can explore for developing peptide based vaccine against HIV.
Collapse
Affiliation(s)
- Par Bahadur Pun
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
32
|
Nieva JL, Nir S, Wilschut J. Destabilization and Fusion of Zwitterionic Large Unilamellar Lipid Vesicles Induced by a β-Type Structure of the Hiv-1 Fusion Peptide. J Liposome Res 2008. [DOI: 10.3109/08982109809035524] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol Mol Biol Rev 2008; 72:54-84, table of contents. [PMID: 18322034 DOI: 10.1128/mmbr.00020-07] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Enormous efforts have been made to produce a protective vaccine against human immunodeficiency virus type 1; there has been little success. However, the identification of broadly neutralizing antibodies against epitopes on the highly conserved membrane-proximal external region (MPER) of the gp41 envelope protein has delineated this region as an attractive vaccine target. Furthermore, emerging structural information on the MPER has provided vaccine designers with new insights for building relevant immunogens. This review describes the current state of the field regarding (i) the structure and function of the gp41 MPER; (ii) the structure and binding mechanisms of the broadly neutralizing antibodies 2F5, 4E10, and Z13; and (iii) the development of an MPER-targeting vaccine. In addition, emerging approaches to vaccine design are presented.
Collapse
|
34
|
Moreno MR, Pérez-Berná AJ, Guillén J, Villalaín J. Biophysical characterization and membrane interaction of the most membranotropic region of the HIV-1 gp41 endodomain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1298-307. [DOI: 10.1016/j.bbamem.2007.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/19/2007] [Accepted: 12/21/2007] [Indexed: 01/04/2023]
|
35
|
A conserved sequence within the H2 subunit of the vaccinia virus entry/fusion complex is important for interaction with the A28 subunit and infectivity. J Virol 2008; 82:6244-50. [PMID: 18417576 DOI: 10.1128/jvi.00434-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recently described vaccinia virus entry/fusion complex (EFC) comprises at least eight polypeptides that are conserved in all poxviruses. Neither the structure of the complex nor the roles of individual subunits are known. Here we provide evidence for an interaction between the H2 and A28 subunits in the context of a virus infection as well as in uninfected cells transfected with plasmids expressing the corresponding genes. We focused on a highly conserved 21-amino acid-segment in H2 that is flanked by cysteine residues. The effect of amino acid substitutions within the 21-amino-acid segment was determined by an infectivity complementation assay using a conditional H2-null mutant of vaccinia virus. Mutations that had no, moderate, or large negative effects on complementation were found. The latter group included glutamic acid substitutions of leucine and individual glycines and alanine substitution of both glycines within a LGYSG sequence. Mutations with the most pronounced effect on infectivity disrupted the interaction of H2 with A28 to the greatest extent in both infected and uninfected cells. These data indicate that the LGYSG sequence is important for the interaction of H2 with A28 and suggest that this sequence is buried within the EFC complex.
Collapse
|
36
|
Abstract
Protein-protein interactions play a central role in biological processes and thus are an appealing target for innovative drug design a nd development. They can be targeted bysmall molecule inhibitors, peptides and peptidomimetics, which represent an alternative to protein therapeutics that carry many disadvantages. In this chapter, I describe specific protein-protein interactions suggested by a novel model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, to be critical for cell activation mediated by multichain immune recognition receptors (MIRRs) expressed on different cells of the hematopoietic system. Unraveling a long-standing mystery of MIRR triggering and transmembrane signaling, the SCHOOL model reveals the intrareceptor transmembrane interactions and interreceptor cytoplasmic homointeractions as universal therapeutic targets for a diverse variety of disorders mediated by immune cells. Further, assuming that the general principles underlying MIRR-mediated transmembrane signaling mechanisms are similar, the SCHOOL model can be applied to any particular receptor of the MIRR family. Thus, an important application of the SCHOOL model is that global therapeutic strategies targeting key protein-protein interactions involved in MIRR triggering and transmembrane signal transduction may be used to treat a diverse set of immune-mediated diseases. This assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T-cell-mediated skin diseases and platelet disorders, or combined to develop novel pharmacological approaches. Intriguingly, the SCHOOL model unravels the molecular mechanisms underlying ability of different human viruses such as human immunodeficiency virus, cytomegalovirus and severe acute respiratory syndrome coronavirus to modulate and/or escape the host immune response. It also demonstrates how the lessons learned from viral pathogenesis can be used practically for rational drug design. Application of this model to platelet collagen receptor signaling has already led to the development of a novel concept of platelet inhibition and the invention of new platelet inhibitors, thus proving the suggested hypothesis and highlighting the importance and broad perspectives of the SCHOOL model in the development of new targeting strategies.
Collapse
|
37
|
Lorin A, Lins L, Stroobant V, Brasseur R, Charloteaux B. The minimal fusion peptide of simian immunodeficiency virus corresponds to the 11 first residues of gp32. J Pept Sci 2007; 14:423-8. [DOI: 10.1002/psc.949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Efremov RG, Volynsky PE, Nolde DE, Vergoten G, Arseniev AS. The Membrane-proximal Fusion Domain of HIV-1 GP41 Reveals Sequence-specific and Fine-tuning Mechanism of Membrane Binding. J Biomol Struct Dyn 2007; 25:195-205. [PMID: 17718599 DOI: 10.1080/07391102.2007.10507169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The membrane interface-partitioning region preceding the transmembrane anchor of the human immunodeficiency virus type 1 (HIV-1) gp41 envelope protein is one of the sites responsible for virus binding to its host cell membrane and subsequent fusion events. Here, we used molecular modeling techniques to assess membrane interactions, structure, and hydrophobic properties of the fusion-active peptide representing this region, several of its homologs from different HIV-1 strains, as well as a peptide - defective gp41 phenotype - unable to mediate cell-cell fusion and virus entry. It is shown that the wild-type peptides bind to the water-membrane interface in alpha-helical conformation, while the mutant adopts partly destabilized helix-break-helix structure on the membrane surface. The wild-type peptides reveal specific "tilted oblique-oriented" pattern of hydrophobicity on their surfaces - the property specific for fusion regions of other viruses. Fusion peptides penetrate into the membrane with their N-termini and reveal "fine-tuning" interactions with membrane and water environments: the shift of this balance (e.g., due to point mutations) may dramatically change the mode of membrane binding, and therefore, may cause loss of fusion activity. The modeling results agree well with experimental data and provide a strategy to delineate fusogenic regions in amino acid sequences of viral proteins.
Collapse
Affiliation(s)
- Roman G Efremov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, Moscow V-437, 117997 GSP, Russia.
| | | | | | | | | |
Collapse
|
39
|
Tristram-Nagle S, Nagle JF. HIV-1 fusion peptide decreases bending energy and promotes curved fusion intermediates. Biophys J 2007; 93:2048-55. [PMID: 17526585 PMCID: PMC1959562 DOI: 10.1529/biophysj.107.109181] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/18/2007] [Indexed: 11/18/2022] Open
Abstract
A crucial step in human immunodeficiency virus (HIV) infection is fusion between the viral envelope and the T-cell membrane, which must involve intermediate membrane states with high curvature. Our main result from diffuse x-ray scattering is that the bending modulus K(C) is greatly reduced upon addition of the HIV fusion peptide FP-23 to lipid bilayers. A smaller bending modulus reduces the free energy barriers required to achieve and pass through the highly curved intermediate states and thereby facilitates fusion and HIV infection. The reduction in K(C) is by a factor of 13 for the thicker, stiffer 1,2-sn-dierucoylphosphatidylcholine bilayers and by a factor of 3 for 1,2-sn-dioleoylphosphatidylcholine bilayers. The reduction in K(C) decays exponentially with concentration of FP-23, and the 1/e concentration is <1 mol % peptide/lipid, which is well within the physiological range for a fusion site. A secondary result is, when FP-23 is added to the samples which consist of stacks of membranes, that the distance between membranes increases and eventually becomes infinite at full hydration (unbinding); we attribute this both to electrostatic repulsion of the positively charged arginine in the FP-23 and to an increase in the repulsive fluctuation interaction brought about by the smaller K(C). Although this latter interaction works against membrane fusion, our results show that the energy that it requires of the fusion protein machinery to bring the HIV envelope membrane and the target T-cell membrane into close contact is negligible.
Collapse
Affiliation(s)
- Stephanie Tristram-Nagle
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
40
|
Reichert J, Grasnick D, Afonin S, Buerck J, Wadhwani P, Ulrich AS. A critical evaluation of the conformational requirements of fusogenic peptides in membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 36:405-13. [PMID: 17089152 DOI: 10.1007/s00249-006-0106-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 09/29/2006] [Accepted: 10/10/2006] [Indexed: 11/30/2022]
Abstract
It is generally assumed that fusogenic peptides would require a certain conformation, which triggers or participates in the rate-determining step of membrane fusion. Previous structure analyses of the viral fusion peptide from gp41 of HIV-1 have yielded contradictory results, showing either an alpha-helical or a beta-stranded conformation under different conditions. To find out whether either of these conformations is relevant in the actual fusion process, we have placed sterically demanding substitutions into the fusion peptide FP23 to prevent or partially inhibit folding and self-assembly. A single substitution of either D- or L-CF(3)-phenylglycine was introduced in different positions of the sequence, and the capability of these peptide analogues to fuse large unilamellar vesicles was monitored by lipid mixing and dynamic light scattering. If fusion proceeds via a beta-stranded oligomer, then the D- and L-epimers are expected to differ systematically in their activity, since the D-epimers should be unable to form beta-structures due to sterical hindrance. If an alpha-helical conformation is relevant for fusion, then the D-epimers would be slightly disfavoured compared to the L-forms, hence a small systematic difference in fusion activity should be observed. Interestingly, we find that (1) all D- and L-epimers are fusogenically active, though to different extents compared to the wild type, and--most importantly--(ii) there is no systematic preference for either the D- or L-forms. We therefore suggest that a well-structured alpha-helical peptide conformation or a beta-stranded oligomeric assembly can be excluded as the rate-determining state. Instead, fusion appears to involve conformationally disordered peptides with a pronounced structural plasticity.
Collapse
Affiliation(s)
- Johannes Reichert
- Institute of Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Pacheco B, Gómez-Gutiérrez J, Yélamos B, Delgado C, Roncal F, Albar JP, Peterson D, Gavilanes F. Membrane-perturbing properties of three peptides corresponding to the ectodomain of hepatitis C virus E2 envelope protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:755-63. [PMID: 16777058 DOI: 10.1016/j.bbamem.2006.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/31/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022]
Abstract
Based on the predicted capacity to interact with membranes at the interface, we have found three regions in the ectodomain of the hepatitis C virus envelope glycoprotein E2 (430-449, 543-560 and 603-624) with the ability to destabilize membranes. Three peptides corresponding to the sequence of these regions have been synthesized and their interaction with liposomes have been characterized. The three peptides were able to insert deeply into the hydrophobic core of negatively charged phospholipids as stated by fluorescence depolarization of the probe 1,6-diphenyl-1,3,5-hexatriene. Peptides E2(430-449) and E2(603-624) were able to induce aggregation of phosphatidylglycerol vesicles in a concentration-dependent manner both at neutral and acidic pH while peptide E2(543-560) did not induce any increase of optical density at 360 nm in the concentration range studied. The three peptides induced lipid mixing and the release of the internal contents in a dose-dependent manner when acidic phospholipids were used. Fourier transformed infrared spectroscopy indicated that the peptides adopted mainly a beta-sheet conformation which is not modified by the presence of acidic phospholipids. Taken together, our results point out to the involvement of these three regions in the fusion mechanism of HCV at the plasma membrane level.
Collapse
Affiliation(s)
- Beatriz Pacheco
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gómara MJ, Lorizate M, Huarte N, Mingarro I, Perez-Payá E, Nieva JL. Hexapeptides that interfere with HIV-1 fusion peptide activity in liposomes block GP41-mediated membrane fusion. FEBS Lett 2006; 580:2561-6. [PMID: 16647705 DOI: 10.1016/j.febslet.2006.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/24/2006] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
Upon receptor-mediated activation, the gp41 hydrophobic, conserved fusion peptide inserts into the target membrane and promotes the kind of perturbations required for the progression of the HIV-cell fusion reaction. Using a synthetic combinatorial library we have identified all d-amino acid hexapeptide sequences that inhibited the fusion peptide capacity of perturbing model membranes. Two hexapeptides that effectively inhibited the fusion peptide in these systems were subsequently shown to inhibit cell-cell fusion promoted by gp41 expressed at cell surfaces. These observations might be of importance for understanding the mechanisms underlying fusion peptide activity and suggest new strategies for screening compounds that target these viral sequences.
Collapse
Affiliation(s)
- María J Gómara
- Biofisika Unitatea, CSIC-UPV/EHU, and Biokimika Saila, Euskal Herriko Unibertsitatea, Posta Kutxa 644, 48080 Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Jin BS, Lee WK, Ahn K, Lee MK, Yu YG. High-throughput screening method of inhibitors that block the interaction between 2 helical regions of HIV-1 gp41. ACTA ACUST UNITED AC 2005; 10:13-9. [PMID: 15695339 DOI: 10.1177/1087057104269726] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The HIV-1 envelope glycoprotein transmembrane subunit, gp41, mediates the fusion of viral and target cell membranes. The 2 helical regions in the ectodomain of gp41, the N-helix and the C-helix, form a helical bundle complex that has been suggested as a fusion-active conformation. Previously, an enzyme-linked immunosorbent assay (ELISA) method had been established to measure the interaction of 2 helical regions of gp41. In this study, the ELISA method was modified to apply high-throughput screening (HTS) of an organic compound library. A few compounds had been identified to prevent the interaction between 2 helical regions of gp41, and they were further shown to inhibit the gp41-mediated viral infection. In addition, they specifically quenched the fluorescence of tryptophan in the N-helix region, indicating that these compounds bound to the N-helix rather than the C-helix of gp41. These results suggested that this assay method targeting gp41 could be used for HTS of HIV fusion inhibitors.
Collapse
Affiliation(s)
- Bong-Suk Jin
- Division of Life Sciences, Korea Institute of Science and Technology, Seoul, Korea
| | | | | | | | | |
Collapse
|
44
|
Castagna A, Biswas P, Beretta A, Lazzarin A. The appealing story of HIV entry inhibitors : from discovery of biological mechanisms to drug development. Drugs 2005; 65:879-904. [PMID: 15892586 DOI: 10.2165/00003495-200565070-00001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Current therapeutic intervention in HIV infection relies upon 20 different drugs. Despite the impressive efficacy shown by these drugs, we are confronted with an unexpected frequency of adverse effects, such as mitochondrial toxicity and lipodystrophy, and resistance, not only to individual drugs but to entire drug classes.Thus, there is now a great need for new antiretroviral drugs with reduced toxicity, increased activity against drug-resistant viruses and a greater capacity to reach tissue sanctuaries of the virus. Two different HIV molecules have been selected as targets of drug inhibition so far: reverse transcriptase and protease. Drugs that target the interactions between the HIV envelope and the cellular receptor complex are a 'new entry' into the scenario of HIV therapy and have recently raised great interest because of their activity against multidrug-resistant viruses. There are several compounds that are at different developmental stages in the pipeline to counter HIV entry, among them: (i) the attachment inhibitor dextrin-2-sulfate; (ii) the inhibitors of the glycoprotein (gp) 120/CD4 interaction PRO 542, TNX 355 and BMS 488043; (iii) the co-receptor inhibitors subdivided in those targeting CCR5 (SCH 417690 [SCH D], UK 427857 GW 873140, PRO 140, TAK 220, AMD 887) and those targeting CXCR4 (AMD 070, KRH 2731); and (iv) the fusion inhibitors enfuvirtide (T-20) and tifuvirtide (T-1249). The story of the first of these drugs, enfuvirtide, which has successfully completed phase III clinical trials, has been approved by the US FDA and by the European Medicines Agency, and is now commercially available worldwide, is an example of how the knowledge of basic molecular mechanisms can rapidly translate into the development of clinically effective molecules.
Collapse
Affiliation(s)
- Antonella Castagna
- Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | |
Collapse
|
45
|
Martín-García J, Cocklin S, Chaiken IM, González-Scarano F. Interaction with CD4 and antibodies to CD4-induced epitopes of the envelope gp120 from a microglial cell-adapted human immunodeficiency virus type 1 isolate. J Virol 2005; 79:6703-13. [PMID: 15890908 PMCID: PMC1112147 DOI: 10.1128/jvi.79.11.6703-6713.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that the envelope glycoprotein from an in vitro microglia-adapted human immunodeficiency virus type 1 isolate (HIV-1(Bori-15)) is able to use lower levels of CD4 for infection and demonstrates greater exposure of the CD4-induced epitope recognized by the 17b monoclonal antibody than the envelope of its parental, peripheral isolate (HIV-1(Bori)). We investigated whether these phenotypic changes were related to a different interaction of their soluble monomeric gp120 proteins with CD4 or 17b. Equilibrium binding analyses showed no difference between Bori and Bori-15 gp120s. However, kinetic analysis of surface plasmon resonance-based, real-time binding experiments showed that while both proteins have similar association rates, Bori-15 gp120 has a statistically significant, 3-fold-lower dissociation rate from immobilized CD4 than Bori and a statistically significant, 14-fold-lower dissociation rate from 17b than Bori in the absence of soluble CD4. In addition, using the sensitivity to inhibition by anti-CD4 antibodies as a surrogate for CD4:trimeric envelope interaction, we found that Bori-15 envelope-pseudotyped viruses were significantly less sensitive than Bori pseudotypes, with four- to sixfold-higher 50% inhibitory concentration values for the three anti-CD4 antibodies tested. These differences, though small, suggest that adaptation to microglia correlates with the generation of a gp120 that forms a more stable interaction with CD4. Nonetheless, the observation of limited binding changes leaves open the possibility that HIV-1 adaptation to microglia and HIV-associated dementia may be related not only to diminished CD4 dependence but also to changes in other molecular factors involved in the infection process.
Collapse
Affiliation(s)
- Julio Martín-García
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6146, USA.
| | | | | | | |
Collapse
|
46
|
Sainz B, Rausch JM, Gallaher WR, Garry RF, Wimley WC. Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein. J Virol 2005; 79:7195-206. [PMID: 15890958 PMCID: PMC1112137 DOI: 10.1128/jvi.79.11.7195-7206.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a newly identified member of the family Coronaviridae and poses a serious public health threat. Recent studies indicated that the SARS-CoV viral spike glycoprotein is a class I viral fusion protein. A fusion peptide present at the N-terminal region of class I viral fusion proteins is believed to initiate viral and cell membrane interactions and subsequent fusion. Although the SARS-CoV fusion protein heptad repeats have been well characterized, the fusion peptide has yet to be identified. Based on the conserved features of known viral fusion peptides and using Wimley and White interfacial hydrophobicity plots, we have identified two putative fusion peptides (SARS(WW-I) and SARS(WW-II)) at the N terminus of the SARS-CoV S2 subunit. Both peptides are hydrophobic and rich in alanine, glycine, and/or phenylalanine residues and contain a canonical fusion tripeptide along with a central proline residue. Only the SARS(WW-I) peptide strongly partitioned into the membranes of large unilamellar vesicles (LUV), adopting a beta-sheet structure. Likewise, only SARS(WW-I) induced the fusion of LUV and caused membrane leakage of vesicle contents at peptide/lipid ratios of 1:50 and 1:100, respectively. The activity of this synthetic peptide appeared to be dependent on its amino acid (aa) sequence, as scrambling the peptide rendered it unable to partition into LUV, assume a defined secondary structure, or induce both fusion and leakage of LUV. Based on the activity of SARS(WW-I), we propose that the hydrophobic stretch of 19 aa corresponding to residues 770 to 788 is a fusion peptide of the SARS-CoV S2 subunit.
Collapse
Affiliation(s)
- Bruno Sainz
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-43, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
47
|
Wilson KA, Bär S, Maerz AL, Alizon M, Poumbourios P. The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function. J Virol 2005; 79:4533-9. [PMID: 15767455 PMCID: PMC1061562 DOI: 10.1128/jvi.79.7.4533-4539.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral transmembrane proteins (TMs) contain an N-terminal fusion peptide that initiates virus-cell membrane fusion. The fusion peptide is linked to the coiled-coil core through a conserved sequence that is often rich in glycines. We investigated the functional role of the glycine-rich segment, Met-326 to Ser-337, of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, by alanine and proline scanning mutagenesis. Alanine substitution for the hydrophobic residue Ile-334 caused an approximately 90% reduction in cell-cell fusion activity without detectable effects on the lipid-mixing and pore formation phases of fusion. Alanine substitutions at other positions had smaller effects (Gly-329, Val-330, and Gly-332) or no effect on fusion function. Proline substitution for glycine residues inhibited cell-cell fusion function with position-dependent effects on the three phases of fusion. Retroviral glycoprotein fusion function thus appears to require flexibility within the glycine-rich segment and hydrophobic contacts mediated by this segment.
Collapse
Affiliation(s)
- Kirilee A Wilson
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | |
Collapse
|
48
|
Pascual R, Moreno MR, Villalaín J. A peptide pertaining to the loop segment of human immunodeficiency virus gp41 binds and interacts with model biomembranes: implications for the fusion mechanism. J Virol 2005; 79:5142-52. [PMID: 15795298 PMCID: PMC1069547 DOI: 10.1128/jvi.79.8.5142-5152.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 11/05/2004] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus gp41 envelope protein mediates the entry of the virus into the target cell by promoting membrane fusion. In order to gain new insights into the viral fusion mechanism, we studied a 35-residue peptide pertaining to the loop domain of gp41, both in solution and membrane bound, by using infrared and fluorescence spectroscopy. We show here that the peptide, which has a membrane-interacting surface, binds and interacts with phospholipid model membranes and tends to aggregate in the presence of a membranous medium and induce the leakage of vesicle contents. The results reported in this work, i.e., the destabilization and fusion of negatively charged model membranes, suggest an essential role of the loop domain in the membrane fusion process induced by gp41.
Collapse
Affiliation(s)
- Roberto Pascual
- Instituto de Biología Molecular y Celular, Universidad "Miguel Hernández," E-03202 Elche-Alicante, Spain
| | | | | |
Collapse
|
49
|
Rote NS, Chakrabarti S, Stetzer BP. The role of human endogenous retroviruses in trophoblast differentiation and placental development. Placenta 2005; 25:673-83. [PMID: 15450384 DOI: 10.1016/j.placenta.2004.02.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2004] [Indexed: 11/29/2022]
Abstract
A major portion of the human genome appears to be of retroviral origin. These endogenous retroviral elements are expressed in a variety of normal tissues and during disease states, such as autoimmune and malignant conditions. Recently, potential roles have been described for endogenous retroviral envelope proteins in normal differentiation of human villous cytotrophoblast into syncytiotrophoblast. This article provides a brief critical review of the current state of knowledge concerning the expression of the env regions of three endogenous retroviral elements: ERV-3, HERV-W, and HERV-FRD. A testable model of villous cytotrophoblast differentiation is constructed, in which a complementary expression of endogenous retroviral envelope proteins initiates hCG production, decreased cell proliferation, and intercellular fusion.
Collapse
Affiliation(s)
- N S Rote
- Department of Obstetrics and Gynecology, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
50
|
Gerber D, Pritsker M, Gunther-Ausborn S, Johnson B, Blumenthal R, Shai Y. Inhibition of HIV-1 envelope glycoprotein-mediated cell fusion by a DL-amino acid-containing fusion peptide: possible recognition of the fusion complex. J Biol Chem 2004; 279:48224-30. [PMID: 15339935 DOI: 10.1074/jbc.m403436200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal fusion peptide (FP) of human immunodeficiency virus-1 (HIV-1) is a potent inhibitor of cell-cell fusion, possibly because of its ability to recognize the corresponding segments inside the fusion complex within the membrane. Here we show that a fusion peptide in which the highly conserved Ile(4), Phe(8), Phe(11), and Ala(14) were replaced by their d-enantiomers (IFFA) is a potent inhibitor of cell-cell fusion. Fourier transform infrared spectroscopy confirmed that despite these drastic modifications, the peptide preserved most of its structure within the membrane. Fluorescence energy transfer studies demonstrated that the diastereomeric peptide interacted with the wild type FP, suggesting this segment as the target site for inhibition of membrane fusion. This is further supported by the similar localization of the wild type and IFFA FPs to microdomains in T cells and the preferred partitioning into ordered regions within sphingomyelin/phosphatidyl-choline/cholesterol giant vesicles. These studies provide insight into the mechanism of molecular recognition within the membrane milieu and may serve in designing novel HIV entry inhibitors.
Collapse
Affiliation(s)
- Doron Gerber
- The Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | | | | | | | |
Collapse
|