1
|
Martínez-Moreno CG, Calderón-Vallejo D, Díaz-Galindo C, Hernández-Jasso I, Olivares-Hernández JD, Ávila-Mendoza J, Epardo D, Balderas-Márquez JE, Urban-Sosa VA, Baltazar-Lara R, Carranza M, Luna M, Arámburo C, Quintanar JL. Neurotrophic and synaptic effects of GnRH and/or GH upon motor function after spinal cord injury in rats. Sci Rep 2024; 14:26420. [PMID: 39488642 PMCID: PMC11531546 DOI: 10.1038/s41598-024-78073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Thoracic spinal cord injury (SCI) profoundly impairs motor and sensory functions, significantly reducing life quality without currently available effective treatments for neuroprotection or full functional regeneration. This study investigated the neurotrophic and synaptic recovery potential of gonadotropin-releasing hormone (GnRH) and growth hormone (GH) treatments in ovariectomized rats subjected to thoracic SCI. Employing a multidisciplinary approach, we evaluated the effects of these hormones upon gene expression of classical neurotrophins (NGF, BDNF, and NT3) as well as indicative markers of synaptic function (Nlgn1, Nxn1, SNAP25, SYP, and syntaxin-1), together with morphological assessments of myelin sheath integrity (Klüver-Barrera staining and MBP immunoreactivity) and synaptogenic proteins (PSD95, SYP) by immunohystochemistry (IHC) , and also on the neuromotor functional recovery of hindlimbs in the lesioned animals. Results demonstrated that chronic administration of GnRH and GH induced notable upregulation in the expression of several neurotrophic and synaptogenic activity genes. Additionally, the treatment showed a significant impact on the restoration of functional synaptic markers and myelin integrity. Intriguingly, while individual GnRH application induced certain recovery benefits, the combined treatment with GH appeared to inhibit neuromotor recovery, suggesting a complex interplay in hormonal regulation post-SCI. GnRH and GH are bioactive and participate in modulating neurotrophic responses and synaptic restoration under neural damage conditions, offering insights into novel therapeutic approaches for SCI. However, the intricate effects of combined hormonal treatment accentuate the necessity for further investigation that conduce to optimal and novel therapeutic strategies for patients with spinal cord lesions.
Collapse
Affiliation(s)
- C G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - D Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - C Díaz-Galindo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - I Hernández-Jasso
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J D Olivares-Hernández
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - J Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - D Epardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - J E Balderas-Márquez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - V A Urban-Sosa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - R Baltazar-Lara
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - M Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - M Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - C Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México.
| | - J L Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
| |
Collapse
|
2
|
Basu R, Brody R, Sandbhor U, Kulkarni P, Davis E, Swegan D, Caggiano LJ, Brenya E, Neggers S, Kopchick JJ. Structure and function of a dual antagonist of the human growth hormone and prolactin receptors with site-specific PEG conjugates. J Biol Chem 2023; 299:105030. [PMID: 37442239 PMCID: PMC10410519 DOI: 10.1016/j.jbc.2023.105030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Human growth hormone (hGH) is a pituitary-derived endocrine protein that regulates several critical postnatal physiologic processes including growth, organ development, and metabolism. Following adulthood, GH is also a regulator of multiple pathologies like fibrosis, cancer, and diabetes. Therefore, there is a significant pharmaceutical interest in developing antagonists of hGH action. Currently, there is a single FDA-approved antagonist of the hGH receptor (hGHR) prescribed for treating patients with acromegaly and discovered in our laboratory almost 3 decades ago. Here, we present the first data on the structure and function of a new set of protein antagonists with the full range of hGH actions-dual antagonists of hGH binding to the GHR as well as that of hGH binding to the prolactin receptor. We describe the site-specific PEG conjugation, purification, and subsequent characterization using MALDI-TOF, size-exclusion chromatography, thermostability, and biochemical activity in terms of ELISA-based binding affinities with GHR and prolactin receptor. Moreover, these novel hGHR antagonists display distinct antagonism of GH-induced GHR intracellular signaling in vitro and marked reduction in hepatic insulin-like growth factor 1 output in vivo. Lastly, we observed potent anticancer biological efficacies of these novel hGHR antagonists against human cancer cell lines. In conclusion, we propose that these new GHR antagonists have potential for development towards multiple clinical applications related to GH-associated pathologies.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | | | | | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, USA; Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, USA; Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Deborah Swegan
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Lydia J Caggiano
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Honors Tutorial College, Ohio University, Athens, Ohio, USA
| | - Edward Brenya
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Sebastian Neggers
- Department of Medicine, Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, USA; Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.
| |
Collapse
|
3
|
Verreault M, Segoviano Vilchis I, Rosenberg S, Lemaire N, Schmitt C, Guehennec J, Royer-Perron L, Thomas JL, Lam TT, Dingli F, Loew D, Ducray F, Paris S, Carpentier C, Marie Y, Laigle-Donadey F, Rousseau A, Pigat N, Boutillon F, Bielle F, Mokhtari K, Frank SJ, de Reyniès A, Hoang-Xuan K, Sanson M, Goffin V, Idbaih A. Identification of growth hormone receptor as a relevant target for precision medicine in low-EGFR expressing glioblastoma. Clin Transl Med 2022; 12:e939. [PMID: 35808822 PMCID: PMC9270581 DOI: 10.1002/ctm2.939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/11/2022] Open
Abstract
Objective New therapeutic approaches are needed to improve the prognosis of glioblastoma (GBM) patients. Methods With the objective of identifying alternative oncogenic mechanisms to abnormally activated epidermal growth factor receptor (EGFR) signalling, one of the most common oncogenic mechanisms in GBM, we performed a comparative analysis of gene expression profiles in a series of 54 human GBM samples. We then conducted gain of function as well as genetic and pharmocological inhibition assays in GBM patient‐derived cell lines to functionnally validate our finding. Results We identified that growth hormone receptor (GHR) signalling defines a distinct molecular subset of GBMs devoid of EGFR overexpression. GHR overexpression was detected in one third of patients and was associated with low levels of suppressor of cytokine signalling 2 (SOCS2) expression due to SOCS2 promoter hypermethylation. In GBM patient‐derived cell lines, GHR signalling modulates the expression of proteins involved in cellular movement, promotes cell migration, invasion and proliferation in vitro and promotes tumourigenesis, tumour growth, and tumour invasion in vivo. GHR genetic and pharmacological inhibition reduced cell proliferation and migration in vitro. Conclusion This study pioneers a new field of investigation to improve the prognosis of GBM patients.
Collapse
Affiliation(s)
- Maïté Verreault
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Irma Segoviano Vilchis
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Shai Rosenberg
- Laboratory for Cancer Computational Biology & Gaffin Center for Neuro-Oncology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Nolwenn Lemaire
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Charlotte Schmitt
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jérémy Guehennec
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Louis Royer-Perron
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jean-Léon Thomas
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - TuKiet T Lam
- Mass Spectrometry & Proteomics Resource, Keck Biotechnology Resource Laboratory, New Haven, Connecticut, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Florent Dingli
- Institut Curie, Centre de Recherche, PSL Research University, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, PSL Research University, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | | | - Sophie Paris
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Catherine Carpentier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Yannick Marie
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Florence Laigle-Donadey
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Audrey Rousseau
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Natascha Pigat
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Florence Boutillon
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Franck Bielle
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Karima Mokhtari
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stuart J Frank
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama, Birmingham, Alabama, USA.,Endocrinology Section, Medical Service, Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Service de Bioinformatique, Paris, France
| | - Khê Hoang-Xuan
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Marc Sanson
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Vincent Goffin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Ahmed Idbaih
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
4
|
Kan WL, Cheung Tung Shing KS, Nero TL, Hercus TR, Tvorogov D, Parker MW, Lopez AF. Messing with βc: A unique receptor with many goals. Semin Immunol 2021; 54:101513. [PMID: 34836771 DOI: 10.1016/j.smim.2021.101513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022]
Abstract
Our understanding of the biological role of the βc family of cytokines has evolved enormously since their initial identification as bone marrow colony stimulating factors in the 1960's. It has become abundantly clear over the intervening decades that this family of cytokines has truly astonishing pleiotropic capacity, capable of regulating not only hematopoiesis but also many other normal and pathological processes such as development, inflammation, allergy and cancer. As noted in the current pandemic, βc cytokines contribute to the cytokine storm seen in acutely ill COVID-19 patients. Ongoing studies to discover how these cytokines activate their receptor are revealing insights into the fundamental mechanisms that give rise to cytokine pleiotropy and are providing tantalizing glimpses of how discrete signaling pathways may be dissected for activation with novel ligands for therapeutic benefit.
Collapse
Affiliation(s)
- Winnie L Kan
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Karen S Cheung Tung Shing
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Tracy L Nero
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Timothy R Hercus
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Denis Tvorogov
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia; Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.
| | - Angel F Lopez
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia 5000, Australia; Department of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia; Australian Cancer Research Foundation Cancer Genomics Facility, SA Pathology, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
5
|
Growth Hormone (GH) Enhances Endogenous Mechanisms of Neuroprotection and Neuroplasticity after Oxygen and Glucose Deprivation Injury (OGD) and Reoxygenation (OGD/R) in Chicken Hippocampal Cell Cultures. Neural Plast 2021; 2021:9990166. [PMID: 34567109 PMCID: PMC8461227 DOI: 10.1155/2021/9990166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/14/2021] [Indexed: 11/18/2022] Open
Abstract
As a classical growth promoter and metabolic regulator, growth hormone (GH) is involved in development of the central nervous system (CNS). This hormone might also act as a neurotrophin, since GH is able to induce neuroprotection, neurite growth, and synaptogenesis during the repair process that occurs in response to neural injury. After an ischemic insult, the neural tissue activates endogenous neuroprotective mechanisms regulated by local neurotrophins that promote tissue recovery. In this work, we investigated the neuroprotective effects of GH in cultured hippocampal neurons exposed to hypoxia-ischemia injury and further reoxygenation. Hippocampal cell cultures obtained from chick embryos were incubated under oxygen-glucose deprivation (OGD, <5% O2, 1 g/L glucose) conditions for 24 h and simultaneously treated with GH. Then, cells were either collected for analysis or submitted to reoxygenation and normal glucose incubation conditions (OGD/R) for another 24 h, in the presence of GH. Results showed that OGD injury significantly reduced cell survival, the number of cells, dendritic length, and number of neurites, whereas OGD/R stage restored most of those adverse effects. Also, OGD/R increased the mRNA expression of several synaptogenic markers (i.e., NRXN1, NRXN3, NLG1, and GAP43), as well as the growth hormone receptor (GHR). The expression of BDNF, IGF-1, and BMP4 mRNAs was augmented in response to OGD injury, and exposure to OGD/R returned it to normoxic control levels, while the expression of NT-3 increased in both conditions. The addition of GH (10 nM) to hippocampal cultures during OGD reduced apoptosis and induced a significant increase in cell survival, number of cells, and doublecortin immunoreactivity (DCX-IR), above that observed in the OGD/R stage. GH treatment also protected dendrites and neurites during OGD, inducing plastic changes reflected in an increase and complexity of their outgrowths during OGD/R. Furthermore, GH increased the expression of NRXN1, NRXN3, NLG1, and GAP43 after OGD injury. GH also increased the BDNF expression after OGD, but reduced it after OGD/R. Conversely, BMP4 was upregulated by GH after OGD/R. Overall, these results indicate that GH protective actions in the neural tissue may be explained by a synergic combination between its own effect and that of other local neurotrophins regulated by autocrine/paracrine mechanisms, which together accelerate the recovery of tissue damaged by hypoxia-ischemia.
Collapse
|
6
|
The prevalence of secondary neoplasms in acromegalic patients: possible preventive and/or protective role of metformin. Int J Clin Oncol 2021; 26:1015-1021. [PMID: 33713207 PMCID: PMC8134278 DOI: 10.1007/s10147-021-01895-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/24/2021] [Indexed: 01/21/2023]
Abstract
Background Acromegaly is a rare disease due to chronic growth hormone (GH) excess and the consequent increase in insulin-like growth factor-1 (IGF-1) levels. Both GH and IGF-1 play a role in intermediate metabolism affecting glucose homeostasis. The association between hyperinsulinemia/impaired glucose tolerance and an increased risk of cancer has been clarified. Insulin has a mitogenic effect through its interaction with the IGF-1 receptor (IGF-1R) that also binds IGF-1. On the other hand, metformin, an anti-hyperglycemic drug that decreases serum levels of insulin and IGF-1, could have a protective role in the treatment of endocrine tumors. Methods A retrospective, observational, multicenter study in 197 acromegalic patients, receiving/not receiving metformin, was performed to assess whether the prevalence of neoplasms might be correlated with insulin resistance and could eventually be modified by metformin treatment. Results In general, the occurrence of secondary neoplasia among our patients was significantly (pV = 0.035) associated with a positive family history of malignancy and with disease duration; a trend towards significance was observed in patients aged > 50 years. Acromegalic subjects who had undergone surgery showed a lower probability of developing a malignant tumor, whereas a higher prevalence of malignancies was observed in obese patients. No significant statistical difference was found when comparing metformin-treated or -untreated subjects for the presence of a second tumor. More interestingly, a trend towards statistical significance (pV = 0.065) was demonstrated in the metformin-treated group for the onset of a benign neoplasm. Conclusion Metformin could act directly on tumor cell metabolism and may have an adjuvant role in benign lesion progression.
Collapse
|
7
|
Lee J, Vernet A, Gruber NG, Kready KM, Burrill DR, Way JC, Silver PA. Rational engineering of an erythropoietin fusion protein to treat hypoxia. Protein Eng Des Sel 2021; 34:6414420. [PMID: 34725710 DOI: 10.1093/protein/gzab025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 12/16/2022] Open
Abstract
Erythropoietin enhances oxygen delivery and reduces hypoxia-induced cell death, but its pro-thrombotic activity is problematic for use of erythropoietin in treating hypoxia. We constructed a fusion protein that stimulates red blood cell production and neuroprotection without triggering platelet production, a marker for thrombosis. The protein consists of an anti-glycophorin A nanobody and an erythropoietin mutant (L108A). The mutation reduces activation of erythropoietin receptor homodimers that induce erythropoiesis and thrombosis, but maintains the tissue-protective signaling. The binding of the nanobody element to glycophorin A rescues homodimeric erythropoietin receptor activation on red blood cell precursors. In a cell proliferation assay, the fusion protein is active at 10-14 M, allowing an estimate of the number of receptor-ligand complexes needed for signaling. This fusion protein stimulates erythroid cell proliferation in vitro and in mice, and shows neuroprotective activity in vitro. Our erythropoietin fusion protein presents a novel molecule for treating hypoxia.
Collapse
Affiliation(s)
- Jungmin Lee
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andyna Vernet
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Nathalie G Gruber
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Kasia M Kready
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Devin R Burrill
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jeffrey C Way
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Wallis M. Do some viruses use growth hormone, prolactin and their receptors to facilitate entry into cells?: Episodic evolution of hormones and receptors suggests host-virus arms races; related placental lactogens may provide protective viral decoys. Bioessays 2021; 43:e2000268. [PMID: 33521987 DOI: 10.1002/bies.202000268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
The molecular evolution of pituitary growth hormone and prolactin in mammals shows two unusual features: episodes of markedly accelerated evolution and, in some species, complex families of related proteins expressed in placenta and resulting from multiple gene duplications. Explanations of these phenomena in terms of physiological adaptations seem unconvincing. Here, I propose an alternative explanation, namely that these evolutionary features reflect the use of the hormones (and their receptors) as viral receptors. Episodes of rapid evolution can then be explained as due to "arms races" in which changes in the hormone lead to reduced interaction with the virus, and subsequent changes in the virus counteract this. Placental paralogues of the hormones could provide decoys that bind viruses, and protect the foetus against infection. The hypothesis implies that the extensive changes introduced into growth hormone, prolactin and their receptors during the course of mammalian evolution reflect viral interactions, not endocrine adaptations.
Collapse
Affiliation(s)
- Michael Wallis
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
9
|
Wang Y, Langley RJ, Tamshen K, Harms J, Middleditch MJ, Maynard HD, Jamieson SMF, Perry JK. Enhanced Bioactivity of a Human GHR Antagonist Generated by Solid-Phase Site-Specific PEGylation. Biomacromolecules 2020; 22:299-308. [PMID: 33295758 DOI: 10.1021/acs.biomac.0c01105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Growth hormone (GH) has been implicated in cancer progression andis a potential target for anticancer therapy. Currently, pegvisomant is the only GH receptor (GHR) antagonist approved for clinical use. Pegvisomant is a mutated GH molecule (B2036) which is PEGylated on amine groups to extend serum half-life. However, PEGylation significantly reduces the bioactivity of the antagonist in mice. To improve bioactivity, we generated a series of B2036 conjugates with the site-specific attachment of 20, 30, or 40 kDa methoxyPEG maleimide (mPEG maleimide) by introduction of a cysteine residue at amino acid 144 (S144C). Recombinant B2036-S144C was expressed in Escherichia coli, purified, and then PEGylated using cysteine-specific conjugation chemistry. To avoid issues with dimerization due to the introduced cysteine, B2036-S144C was PEGylated while immobilized on an Ni-nitrilotriacetic (Ni-NTA) acid column, which effectively reduced disulfide-mediated dimer formation and allowed efficient conjugation to mPEG maleimide. Following PEGylation, the IC50 values for the 20, 30, and 40 kDa mPEG maleimide B2036-S144C conjugates were 66.2 ± 3.8, 106.1 ± 7.1, and 127.4 ± 3.6 nM, respectively. The circulating half-life of the 40 kDa mPEG conjugate was 58.3 h in mice. Subcutaneous administration of the 40 kDa mPEG conjugate (10 mg/kg/day) reduced serum insulin-like growth factor I (IGF-I) concentrations by 50.6%. This in vivo reduction in serum IGF-I was at a considerably lower dose compared to the higher doses required to observe comparable activity in studies with pegvisomant. In conclusion, we have generated a novel PEGylated GHR antagonist by the solid-phase site-specific attachment of mPEG maleimide at an introduced cysteine residue, which effectively reduces serum IGF-I in vivo.
Collapse
Affiliation(s)
- Yue Wang
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| | - Ries J Langley
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1023, New Zealand
| | - Kyle Tamshen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles 90095-1569, California, United States
| | - Julia Harms
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Martin J Middleditch
- School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles 90095-1569, California, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles 90095-1569, California, United States
| | - Stephen M F Jamieson
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1023, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1023, New Zealand
| |
Collapse
|
10
|
Frank SJ. Classical and novel GH receptor signaling pathways. Mol Cell Endocrinol 2020; 518:110999. [PMID: 32835785 PMCID: PMC7799394 DOI: 10.1016/j.mce.2020.110999] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
In this review, I summarize historical and recent features of the classical pathways activated by growth hormone (GH) through the cell surface GH receptor (GHR). GHR is a cytokine receptor superfamily member that signals by activating the non-receptor tyrosine kinase, JAK2, and members of the Src family kinases. Activation of the GHR engages STATs, PI3K, and ERK pathways, among others, and details of these now-classical pathways are presented. Modulating elements, including the SOCS proteins, phosphatases, and regulated GHR metalloproteolysis, are discussed. In addition, a novel physical and functional interaction of GHR with IGF-1R is summarized and discussed in terms of its mechanisms, consequences, and physiological and therapeutic implications.
Collapse
Affiliation(s)
- Stuart J Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, 1720 2nd Avenue South, BDB 485, AL, 35294-0012, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Endocrinology Section, Medical Service, Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
| |
Collapse
|
11
|
Tamshen K, Wang Y, Jamieson SM, Perry JK, Maynard HD. Genetic Code Expansion Enables Site-Specific PEGylation of a Human Growth Hormone Receptor Antagonist through Click Chemistry. Bioconjug Chem 2020; 31:2179-2190. [PMID: 32786367 PMCID: PMC8291075 DOI: 10.1021/acs.bioconjchem.0c00365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulation of human growth hormone (GH) signaling has important applications in the remediation of several diseases including acromegaly and cancer. Growth hormone receptor (GHR) antagonists currently provide the most effective means for suppression of GH signaling. However, these small 22 kDa recombinantly engineered GH analogues exhibit short plasma circulation times. To improve clinical viability, between four and six molecules of 5 kDa poly(ethylene glycol) (PEG) are nonspecifically conjugated to the nine amines of the GHR antagonist designated as B2036 in the FDA-approved therapeutic pegvisomant. PEGylation increases the molecular weight of B2036 and considerably extends its circulation time, but also dramatically reduces its bioactivity, contributing to high dosing requirements and increased cost. As an alternative to nonspecific PEGylation, we report the use of genetic code expansion technology to site-specifically incorporate the unnatural amino acid propargyl tyrosine (pglY) into B2036 with the goal of producing site-specific protein-polymer conjugates. Substitution of tyrosine 35 with pglY yielded a B2036 variant containing an alkyne functional group without compromising bioactivity, as verified by a cellular assay. Subsequent conjugation of 5, 10, and 20 kDa azide-containing PEGs via the copper-catalyzed click reaction yielded high purity, site-specific conjugates with >89% conjugation efficiencies. Site-specific attachment of PEG to B2036 is associated with substantially improved in vitro bioactivity values compared to pegvisomant, with an inverse relationship between polymer size and activity observed. Notably, the B2036-20 kDa PEG conjugate has a molecular weight comparable to pegvisomant, while exhibiting a 12.5 fold improvement in half-maximal inhibitory concentration in GHR-expressing Ba/F3 cells (103.3 nM vs 1289 nM). We expect that this straightforward route to achieve site-specific GHR antagonists will be useful for GH signal regulation.
Collapse
Affiliation(s)
- Kyle Tamshen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Yue Wang
- Liggins Institute, University of Auckland, Auckland 1203, New Zealand
| | - Stephen M.F. Jamieson
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1023, New Zealand
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jo K. Perry
- Liggins Institute, University of Auckland, Auckland 1203, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1023, New Zealand
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095-1569, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
12
|
Ishikawa M, Toyomura J, Yagi T, Kuboki K, Morita T, Sugihara H, Hirose T, Minami S, Yoshino G. Role of growth hormone signaling pathways in the development of atherosclerosis. Growth Horm IGF Res 2020; 53-54:101334. [PMID: 32721858 DOI: 10.1016/j.ghir.2020.101334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The direct actions of growth hormone (GH) in the development of atherosclerosis are unclear. The goal of this study was to characterize GH-induced changes in expression of signaling pathway elements and other proteins that may be related to atherosclerosis. METHODS Human umbilical vein endothelial cells (HUVEC) and THP-1, a human acute monocytic leukemia cell line, were stimulated by exposure to 10-9 M or 10-8 M human GH with or without pretreatment with a mitogen-activated protein kinase kinase (MEK) 1 inhibitor. Levels of transcripts encoding vascular cell adhesion molecule (VCAM) -1, E-selectin, monocyte chemotactic protein (MCP-1), interleukin (IL) -6, and IL-8 were investigated by reverse transcription (RT) -PCR. For the quantitative adhesion assay, THP-1 cells or human primary monocytes were fluorescently labeled with 3'-O-acetyl-2',7'-bis(carboxyethyl) -4 diacetoxymethyl ester (BCECF/AM). HUVEC treated with human GH were co-incubated with BCECF-labeled THP-1 cells. One hour later, the number of BCECF-labeled THP-1 cells was assessed. An equivalent experiment was performed using BCECF-labeled primary monocytes, and the number of monocytes adhering to HUVEC was counted. RESULTS Treatment with hGH increased the levels of E-selectin- and VCAM-1-encoding mRNAs in HUVEC. This effect was attenuated by pretreatment with a MEK1 inhibitor. Furthermore, hGH treatment increased adhesion of BCECF-labeled THP-1 cells or primary monocytes to HUVEC, and this effect was attenuated by pretreatment with a MEK1 inhibitor. CONCLUSIONS VCAM-1 and E-selectin expression was stimulated by GH via the mitogen-activated protein kinase pathway, resulting in augmented adhesion of THP-1 cells and monocytes to HUVEC. These data suggested that GH directly stimulates the development of atherosclerosis.
Collapse
Affiliation(s)
- Mayumi Ishikawa
- Center of Endocrinology, Diabetes and Arteriosclerosis, Nippon Medical School Musashikosugi Hospital, 1-396, Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| | - Junko Toyomura
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba-City, Ibaraki 305-8575, Japan
| | - Takashi Yagi
- Center of Endocrinology, Diabetes and Arteriosclerosis, Nippon Medical School Musashikosugi Hospital, 1-396, Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan
| | - Koji Kuboki
- The Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University, 6-11-1, Omorinishi, Ota-ku, Tokyo 143-8541, Japan
| | - Toshisuke Morita
- Department of Laboratory Medicine, Toho University, 6-11-1, Omorinishi, Ota-ku, Tokyo 143-8541, Japan
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Takahisa Hirose
- The Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University, 6-11-1, Omorinishi, Ota-ku, Tokyo 143-8541, Japan
| | - Shiro Minami
- Center of Endocrinology, Diabetes and Arteriosclerosis, Nippon Medical School Musashikosugi Hospital, 1-396, Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan
| | - Gen Yoshino
- The Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University, 6-11-1, Omorinishi, Ota-ku, Tokyo 143-8541, Japan
| |
Collapse
|
13
|
Metcalfe RD, Putoczki TL, Griffin MDW. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front Immunol 2020; 11:1424. [PMID: 32765502 PMCID: PMC7378365 DOI: 10.3389/fimmu.2020.01424] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small signaling proteins that have central roles in inflammation and cell survival. In the half-century since the discovery of the first cytokines, the interferons, over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common signaling receptor, gp130. In the last decade, there have been numerous advances in our understanding of the structural mechanisms of IL-6 family signaling, particularly for IL-6 itself. However, our understanding of the detailed structural mechanisms underlying signaling by most IL-6 family members remains limited. With the emergence of new roles for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular disease, lung disease, and cancer, there is an emerging need to develop therapeutics that can progress to clinical use. Here we outline our current knowledge of the structural mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge allows us to understand the mechanism of action of currently available inhibitors targeting IL-6 family cytokine signaling, and most importantly how it allows for improved opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on the need to develop and understand inhibitors that disrupt IL-11 signaling.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Montjean R, Escaich S, Paolini R, Carelli C, Pirson S, Neutelings T, Henrotin Y, Vêtu C. REG-O3 chimeric peptide combining growth hormone and somatostatin sequences improves joint function and prevents cartilage degradation in rat model of traumatic knee osteoarthritis. PLoS One 2020; 15:e0231240. [PMID: 32287299 PMCID: PMC7156079 DOI: 10.1371/journal.pone.0231240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Objective REG-O3 is a 24-aminoacid chimeric peptide combining a sequence derived from growth hormone (GH) and an analog of somatostatin (SST), molecules displaying cartilage repair and anti-inflammatory properties, respectively. This study aimed to investigate the disease-modifying osteoarthritis drug (DMOAD) potential of REG-O3 by analyzing its effect on pain, joint function and structure, upon injection into osteoarthritic rat knee joint. Design Osteoarthritis was induced in the right knee of mature male Lewis rats (n = 12/group) by surgical transection of the anterior cruciate ligament (ACLT) combined with partial medial meniscectomy (pMMx). Treatments were administered intra-articularly from fourteen days after surgery through three consecutive injections one week apart. The effect of REG-O3, solubilized in a liposomal solution and injected at either 5, 25 or 50 μg/50 μL, was compared to liposomal (LIP), dexamethasone and hyaluronic acid (HA) solutions. The study endpoints were the pain/function measured once a week throughout the entire study, and the joint structure evaluated eight weeks after surgery using OARSI score. Results ACLT/pMMx surgery induced a significant modification of weight bearing in all groups. When compared to liposomal solution, REG-O3 was able to significantly improve weight bearing as efficiently as dexamethasone and HA. REG-O3 (25 μg) was also able to significantly decrease OARSI histological global score as well as degeneration of both cartilage and matrix while the other treatments did not. Conclusion This study provides evidence of a remarkable protecting effect of REG-O3 on pain/knee joint function and cartilage/matrix degradation in ACLT/pMMx model of rat osteoarthritis. REG-O3 thus displays an interesting profile as a DMOAD.
Collapse
Affiliation(s)
| | - Sonia Escaich
- Regulaxis SAS, Romainville, France
- ESE Conseil, Saint-Cloud, France
| | | | | | | | | | - Yves Henrotin
- Artialis SA, Tour GIGA, CHU Sart-Tilman, Liège, Belgium
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Liège, Belgium
- Physical Therapy and Rehabilitation Department, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
- * E-mail:
| | | |
Collapse
|
15
|
Wilmes S, Hafer M, Vuorio J, Tucker JA, Winkelmann H, Löchte S, Stanly TA, Pulgar Prieto KD, Poojari C, Sharma V, Richter CP, Kurre R, Hubbard SR, Garcia KC, Moraga I, Vattulainen I, Hitchcock IS, Piehler J. Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science 2020; 367:643-652. [PMID: 32029621 PMCID: PMC8117407 DOI: 10.1126/science.aaw3242] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/08/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Homodimeric class I cytokine receptors are assumed to exist as preformed dimers that are activated by ligand-induced conformational changes. We quantified the dimerization of three prototypic class I cytokine receptors in the plasma membrane of living cells by single-molecule fluorescence microscopy. Spatial and spatiotemporal correlation of individual receptor subunits showed ligand-induced dimerization and revealed that the associated Janus kinase 2 (JAK2) dimerizes through its pseudokinase domain. Oncogenic receptor and hyperactive JAK2 mutants promoted ligand-independent dimerization, highlighting the formation of receptor dimers as the switch responsible for signal activation. Atomistic modeling and molecular dynamics simulations based on a detailed energetic analysis of the interactions involved in dimerization yielded a mechanistic blueprint for homodimeric class I cytokine receptor activation and its dysregulation by individual mutations.
Collapse
Affiliation(s)
- Stephan Wilmes
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Maximillian Hafer
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
- Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Julie A Tucker
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Hauke Winkelmann
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Sara Löchte
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Tess A Stanly
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Katiuska D Pulgar Prieto
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Chetan Poojari
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Christian P Richter
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Rainer Kurre
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Stevan R Hubbard
- Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ignacio Moraga
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland.
- Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Ian S Hitchcock
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany.
| |
Collapse
|
16
|
Shlamkovich T, Aharon L, Barton WA, Papo N. Utilizing combinatorial engineering to develop Tie2 targeting antagonistic angiopoetin-2 ligands as candidates for anti-angiogenesis therapy. Oncotarget 2018; 8:33571-33585. [PMID: 28422724 PMCID: PMC5464891 DOI: 10.18632/oncotarget.16827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022] Open
Abstract
In many human cancers, the receptor tyrosine kinase (RTK) Tie2 plays important roles in mediating proliferation, survival, migration and angiogenesis. Thus, molecules that could potently inhibit activation of the Tie2 receptor would have a significant impact on cancer therapy. Nevertheless, attempts to develop Tie2-targeted inhibitors have met with little success, and there is currently no FDA-approved therapeutic selectively targeting Tie2. We used a combinatorial protein engineering approach to develop a new generation of angiopoietin (Ang)2-derived Tie2 antagonists as potential cancer therapeutics and as tools to study angiogenesis. The construct for designing a yeast surface display (YSD) library of potential antagonists was an Ang2 binding domain (Ang2-BD) that retains Tie2 binding ability but prevents ligand multimerization and receptor dimerization and activation. This mutant library was then screened by quantitative high-throughput flow cytometric sorting to identify Ang2-BD variants with increased expression, stability and affinity to Tie2. The selected variants were recombinantly expressed and showed high affinity to soluble and cellular Tie2 and strongly inhibited both Tie2 phosphorylation and endothelial capillary tube formation and cell invasion compared to the parental Ang2-BD. The significance of the study lies in the insight it provides into the sequence-structure-function relationships and mechanism of action of the antagonistic Ang mutants. The approach of using a natural protein ligand as a molecular scaffold for engineering high-affinity agents can be applied to other ligands to create functional protein antagonists against additional biomedical targets.
Collapse
Affiliation(s)
- Tomer Shlamkovich
- Department of Biotechnology Engineering, and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lidan Aharon
- Department of Biotechnology Engineering, and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - William A Barton
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, Richmond, Virginia, United States of America
| | - Niv Papo
- Department of Biotechnology Engineering, and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
17
|
Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne) 2018; 9:35. [PMID: 29487568 PMCID: PMC5816795 DOI: 10.3389/fendo.2018.00035] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.
Collapse
Affiliation(s)
- Farhad Dehkhoda
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine M. M. Lee
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Johan Medina
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Brooks
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
18
|
|
19
|
GH/IGF-1 Signaling and Current Knowledge of Epigenetics; a Review and Considerations on Possible Therapeutic Options. Int J Mol Sci 2017; 18:ijms18101624. [PMID: 28981462 PMCID: PMC5666699 DOI: 10.3390/ijms18101624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/01/2023] Open
Abstract
Epigenetic mechanisms play an important role in the regulation of the Growth Hormone- Insulin-like Growth Factor 1 (GH-IGF1) axis and in processes for controlling long bone growth, and carbohydrate and lipid metabolism. Improvement of methodologies that allow for the assessment of epigenetic regulation have contributed enormously to the understanding of GH action, but many questions still remain to be clarified. The reversible nature of epigenetic factors and, particularly, their role as mediators between the genome and the environment, make them viable therapeutic target candidates. Rather than reviewing the molecular and epigenetic pathways regulated by GH action, in this review we have focused on the use of epigenetic modulators as potential drugs to improve the GH response. We first discuss recent progress in the understanding of intracellular molecular mechanisms controlling GH and IGF-I action. We then emphasize current advances in genetic and epigenetic mechanisms that control gene expression, and which support a key role for epigenetic regulation in the cascade of intracellular events that trigger GH action when coupled to its receptor. Thirdly, we focus on fetal programming and epigenetic regulation at the IGF1 locus. We then discuss epigenetic alterations in intrauterine growth retardation, and the possibility for a potential epigenetic pharmaceutical approach in short stature associated with this fetal condition. Lastly, we review an example of epigenetic therapeutics in the context of growth-related epigenetic deregulation disorders. The advance of our understanding of epigenetic changes and the impact they are having on new forms of therapy creates exciting prospects for the future.
Collapse
|
20
|
Engineering a monomeric variant of macrophage colony-stimulating factor (M-CSF) that antagonizes the c-FMS receptor. Biochem J 2017; 474:2601-2617. [PMID: 28655719 DOI: 10.1042/bcj20170276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 11/17/2022]
Abstract
Enhanced activation of the signaling pathways that mediate the differentiation of mononuclear monocytes into osteoclasts is an underlying cause of several bone diseases and bone metastasis. In particular, dysregulation and overexpression of macrophage colony-stimulating factor (M-CSF) and its c-FMS tyrosine kinase receptor, proteins that are essential for osteoclast differentiation, are known to promote bone metastasis and osteoporosis, making both the ligand and its receptor attractive targets for therapeutic intervention. With this aim in mind, our starting point was the previously held concept that the potential of the M-CSFC31S mutant as a therapeutic is derived from its inability to dimerize and hence to act as an agonist. The current study showed, however, that dimerization is not abolished in M-CSFC31S and that the protein retains agonistic activity toward osteoclasts. To design an M-CSF mutant with diminished dimerization capabilities, we solved the crystal structure of the M-CSFC31S dimer complex and used structure-based energy calculations to identify the residues responsible for its dimeric form. We then used that analysis to develop M-CSFC31S,M27R, a ligand-based, high-affinity antagonist for c-FMS that retained its binding ability but prevented the ligand dimerization that leads to receptor dimerization and activation. The monomeric properties of M-CSFC31S,M27R were validated using dynamic light scattering and small-angle X-ray scattering analyses. It was shown that this mutant is a functional inhibitor of M-CSF-dependent c-FMS activation and osteoclast differentiation in vitro Our study, therefore, provided insights into the sequence-structure-function relationships of the M-CSF/c-FMS interaction and of ligand/receptor tyrosine kinase interactions in general.
Collapse
|
21
|
Rotwein P. The New Genomics: What Molecular Databases Can Tell Us About Human Population Variation and Endocrine Disease. Endocrinology 2017; 158:2035-2042. [PMID: 28498917 PMCID: PMC7282473 DOI: 10.1210/en.2017-00338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 11/25/2022]
Abstract
Major recent advances in genetics and genomics present unique opportunities for enhancing our understanding of human physiology and disease predisposition. Here I demonstrate how analysis of genomic information can provide new insights into endocrine systems, using the human growth hormone (GH) signaling pathway as an illustrative example. GH is essential for normal postnatal growth in children, and plays important roles in other biological processes throughout life. GH actions are mediated by the GH receptor, primarily via the JAK2 protein tyrosine kinase and the STAT5B transcription factor, and inactivating mutations in this pathway all lead to impaired somatic growth. Variation in GH signaling genes has been evaluated using DNA sequence data from the Exome Aggregation Consortium, a compendium of information from >60,000 individuals. Results reveal many potential missense and other alterations in the coding regions of GH1, GHR, JAK2, and STAT5B, with most changes being uncommon. The total number of different alleles per gene varied by ~threefold, from 101 for GH1 to 338 for JAK2. Several known disease-linked mutations in GH1, GHR, and JAK2 were present but infrequent in the population; however, three amino acid changes in GHR were sufficiently prevalent (~4% to 44% of chromosomes) to suggest that they are not disease causing. Collectively, these data provide new opportunities to understand how genetically driven variability in GH signaling and action may modify human physiology and disease.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
22
|
Kapur S, Silverman AP, Ye AZ, Papo N, Jindal D, Blumenkranz MS, Cochran JR. Engineered ligand-based VEGFR antagonists with increased receptor binding affinity more effectively inhibit angiogenesis. Bioeng Transl Med 2017; 2:81-91. [PMID: 28516164 PMCID: PMC5412928 DOI: 10.1002/btm2.10051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/04/2016] [Accepted: 12/11/2016] [Indexed: 12/22/2022] Open
Abstract
Pathologic angiogenesis is mediated by the coordinated action of the vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling axis, along with crosstalk contributed by other receptors, notably αvβ3 integrin. We build on earlier work demonstrating that point mutations can be introduced into the homodimeric VEGF ligand to convert it into an antagonist through disruption of binding to one copy of VEGFR2. This inhibitor has limited potency, however, due to loss of avidity effects from bivalent VEGFR2 binding. Here, we used yeast surface display to engineer a variant with VEGFR2 binding affinity approximately 40‐fold higher than the parental antagonist, and 14‐fold higher than the natural bivalent VEGF ligand. Increased VEGFR2 binding affinity correlated with the ability to more effectively inhibit VEGF‐mediated signaling, both in vitro and in vivo, as measured using VEGFR2 phosphorylation and Matrigel implantation assays. High affinity mutations found in this variant were then incorporated into a dual‐specific antagonist that we previously designed to simultaneously bind to and inhibit VEGFR2 and αvβ3 integrin. The resulting dual‐specific protein bound to human and murine endothelial cells with relative affinities of 120 ± 10 pM and 360 ± 50 pM, respectively, which is at least 30‐fold tighter than wild‐type VEGF (3.8 ± 0.5 nM). Finally, we demonstrated that this engineered high‐affinity dual‐specific protein could inhibit angiogenesis in a murine corneal neovascularization model. Taken together, these data indicate that protein engineering strategies can be combined to generate unique antiangiogenic candidates for further clinical development.
Collapse
Affiliation(s)
- Shiven Kapur
- Dept. of Bioengineering Stanford University Stanford CA 94303
| | | | - Anne Z Ye
- Dept. of Bioengineering Stanford University Stanford CA 94303
| | - Niv Papo
- Dept. of Bioengineering Stanford University Stanford CA 94303
| | - Darren Jindal
- Dept. of Bioengineering Stanford University Stanford CA 94303
| | - Mark S Blumenkranz
- Dept. of Ophthalmology Byers Eye Institute, Stanford University Stanford CA 94303
| | - Jennifer R Cochran
- Dept. of Bioengineering Stanford University Stanford CA 94303.,Dept. of Chemical Engineering Stanford University Stanford CA 94303.,Stanford Cancer Institute Stanford University Stanford CA 94303
| |
Collapse
|
23
|
Abstract
PURPOSE To review published data on pegvisomant and its therapeutic role in acromegaly. METHODS Electronic searches of the published literature were conducted using the keywords: acromegaly, growth hormone (GH) receptor (antagonist), pegvisomant, therapy. Relevant articles (n = 141) were retrieved and considered for inclusion in this manuscript. RESULTS Pegvisomant is a genetically engineered, recombinant growth hormone receptor antagonist, which is effective in normalizing serum insulin-like growth factor 1 (IGF-1) levels in the majority of patients with acromegaly and ameliorating symptoms and signs associated with GH excess. Pegvisomant does not have direct antiproliferative effects on the underlying somatotroph pituitary adenoma, which is the etiology of GH excess in the vast majority of patients with acromegaly. Therefore, patients receiving pegvisomant monotherapy require regular pituitary imaging in order to monitor for possible increase in tumor size. Adverse events in patients on pegvisomant therapy include skin rashes, lipohypertrophy at injection sites, and idiosyncratic liver toxicity (generally asymptomatic transaminitis that is reversible upon drug discontinuation), thus necessitating regular patient monitoring. CONCLUSIONS Pegvisomant is an effective therapeutic agent in patients with acromegaly who are not in remission after undergoing pituitary surgery. It mitigates excess GH action, as demonstrated by IGF-1 normalization, but has no direct effects on pituitary tumors causing acromegaly. Regular surveillance for possible tumor growth and adverse effects (hepatotoxicity, skin manifestations) is warranted.
Collapse
Affiliation(s)
- Nicholas A Tritos
- Neuroendocrine Unit, Massachusetts General Hospital, Zero Emerson Place # 112, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Beverly M K Biller
- Neuroendocrine Unit, Massachusetts General Hospital, Zero Emerson Place # 112, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Menezes ACSC, Suzuki MF, Oliveira JE, Ribela MTCP, Furigo IC, Donato J, Bartolini P, Soares CRJ. Expression, purification and characterization of the authentic form of human growth hormone receptor antagonist G120R-hGH obtained in Escherichia coli periplasmic space. Protein Expr Purif 2016; 131:91-100. [PMID: 28013084 DOI: 10.1016/j.pep.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 11/29/2022]
Abstract
The human growth hormone receptor antagonist G120R-hGH precludes dimerization of GH and prolactin receptors and consequently JAK/STAT signaling. Some modifications in this antagonist resulted in a drug specific for the GH receptor, called Pegvisomant (Somavert®). However, the original G120R-hGH is usually synthesized in bacterial cytoplasm as inclusion bodies, not being a commercial product. The present work describes the synthesis and characterization of G120R-hGH secreted into bacterial periplasm and obtained with a vector based on a constitutive lambda-PL promoter. This antagonist can be useful for studies aiming at investigating the effects of a simultaneous inhibition of GH and prolactin signaling, as a potential anti-tumoral or anti-diabetic compound. G120R-hGH, synthesized using the W3110 E. coli strain, showed a yield of 1.34 ± 0.24 μg/ml/A600 (∼0.79 mg G120R-hGH/g of wet weight cells) after cultivation at 30 °C up to 3 A600 units and induction at 37 °C, for 6 h, with final 4.3 ± 0.3 A600. A laboratory scale purification was carried out using three chromatographic steps with a total yield of 32%, reaching 98% purity. The obtained protein was characterized by SDS-PAGE, Western Blotting, Mass spectrometry, RP-HPLC, HPSEC and in vitro proliferation bioassay. The proliferation assay, based on Ba/F3-LLP cells, shows that G120R-hGH (100 ng/ml) significantly inhibited (64%) the proliferative action of hGH (1 ng/ml). This is the first time that G120R-hGH is synthesized in bacterial periplasmic space and therefore correctly folded, without the initial methionine. The reasons for a divergent efficacy for antagonizing hGH versus hPRL is currently unknown and deserves further investigation.
Collapse
Affiliation(s)
- Ana C S C Menezes
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - Miriam F Suzuki
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - João E Oliveira
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - Maria T C P Ribela
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - José Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Paolo Bartolini
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil
| | - Carlos R J Soares
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP, São Paulo, Brazil.
| |
Collapse
|
25
|
Kopchick JJ. Lessons learned from studies with the growth hormone receptor. Growth Horm IGF Res 2016; 28:21-25. [PMID: 26216709 DOI: 10.1016/j.ghir.2015.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 11/17/2022]
Abstract
Findings related to GH's biological activities have continued to be a fascinating topic over the past decade. Below, I will review several items related to the actions of GH including the GH/GHR interaction, pegvisomant (a GH receptor antagonist), GHR gene disruptions in mice, and clinical consequences of human GHR gene mutations.
Collapse
Affiliation(s)
- John J Kopchick
- Growth Hormone Research Society, Edison Biotechnology Institute & Dept. of Biomedical Sciences, HCOM, Ohio University, Athens, OH 45701, United States.
| |
Collapse
|
26
|
Jenni S, Goyal Y, von Grotthuss M, Shvartsman SY, Klein DE. Structural Basis of Neurohormone Perception by the Receptor Tyrosine Kinase Torso. Mol Cell 2015; 60:941-52. [PMID: 26698662 DOI: 10.1016/j.molcel.2015.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/17/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
In insects, brain-derived Prothoracicotropic hormone (PTTH) activates the receptor tyrosine kinase (RTK) Torso to initiate metamorphosis through the release of ecdysone. We have determined the crystal structure of silkworm PTTH in complex with the ligand-binding region of Torso. Here we show that ligand-induced Torso dimerization results from the sequential and negatively cooperative formation of asymmetric heterotetramers. Mathematical modeling of receptor activation based upon our biophysical studies shows that ligand pulses are "buffered" at low receptor levels, leading to a sustained signal. By contrast, high levels of Torso develop the signal intensity and duration of a noncooperative system. We propose that this may allow Torso to coordinate widely different functions from a single ligand by tuning receptor levels. Phylogenic analysis indicates that Torso is found outside arthropods, including human parasitic roundworms. Together, our findings provide mechanistic insight into how this receptor system, with roles in embryonic and adult development, is regulated.
Collapse
Affiliation(s)
- Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yogesh Goyal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Daryl E Klein
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Division of Molecular Medicine, Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Lan H, Zheng X, Khan MA, Li S. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist. Int J Biochem Cell Biol 2015; 68:101-8. [DOI: 10.1016/j.biocel.2015.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/23/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
|
28
|
Miller JL, Church TJ, Leonoudakis D, Lariosa-Willingham K, Frigon NL, Tettenborn CS, Spencer JR, Punnonen J. Discovery and Characterization of Nonpeptidyl Agonists of the Tissue-Protective Erythropoietin Receptor. Mol Pharmacol 2015; 88:357-67. [PMID: 26018904 PMCID: PMC4518087 DOI: 10.1124/mol.115.098400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/27/2015] [Indexed: 11/22/2022] Open
Abstract
Erythropoietin (EPO) and its receptor are expressed in a wide variety of tissues, including the central nervous system. Local expression of both EPO and its receptor is upregulated upon injury or stress and plays a role in tissue homeostasis and cytoprotection. High-dose systemic administration or local injection of recombinant human EPO has demonstrated encouraging results in several models of tissue protection and organ injury, while poor tissue availability of the protein limits its efficacy. Here, we describe the discovery and characterization of the nonpeptidyl compound STS-E412 (2-[2-(4-chlorophenoxy)ethoxy]-5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine), which selectively activates the tissue-protective EPO receptor, comprising an EPO receptor subunit (EPOR) and the common β-chain (CD131). STS-E412 triggered EPO receptor phosphorylation in human neuronal cells. STS-E412 also increased phosphorylation of EPOR, CD131, and the EPO-associated signaling molecules JAK2 and AKT in HEK293 transfectants expressing EPOR and CD131. At low nanomolar concentrations, STS-E412 provided EPO-like cytoprotective effects in primary neuronal cells and renal proximal tubular epithelial cells. The receptor selectivity of STS-E412 was confirmed by a lack of phosphorylation of the EPOR/EPOR homodimer, lack of activity in off-target selectivity screening, and lack of functional effects in erythroleukemia cell line TF-1 and CD34(+) progenitor cells. Permeability through artificial membranes and Caco-2 cell monolayers in vitro and penetrance across the blood-brain barrier in vivo suggest potential for central nervous system availability of the compound. To our knowledge, STS-E412 is the first nonpeptidyl, selective activator of the tissue-protective EPOR/CD131 receptor. Further evaluation of the potential of STS-E412 in central nervous system diseases and organ protection is warranted.
Collapse
|
29
|
Broughton SE, Nero TL, Dhagat U, Kan WL, Hercus TR, Tvorogov D, Lopez AF, Parker MW. The βc receptor family – Structural insights and their functional implications. Cytokine 2015; 74:247-58. [DOI: 10.1016/j.cyto.2015.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/25/2022]
|
30
|
Choi JS, Han SH, Hyun C, Yoo HS. Buccal adhesive nanofibers containing human growth hormone for oral mucositis. J Biomed Mater Res B Appl Biomater 2015; 104:1396-406. [PMID: 26227055 DOI: 10.1002/jbm.b.33487] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/19/2015] [Accepted: 07/02/2015] [Indexed: 11/08/2022]
Abstract
Due to a lack of proper drug carriers to deliver treatments for mucositis, many cancer patients suffer from oral mucositis caused by chemotherapy and radiotherapy. We prepared a double-layered electrospun nanofibrous sheets composed of Eudragit and chitosan to accelerate the healing rate of oral mucous ulcer. Human growth hormone (hGH) and Eudragit in a mixture of dimethylacetamide and ethanol were co-electrospun to nanofibrous sheets. The electrospun fibrous mat was subsequently layered with chitosan by a dip-coating method. Chitosan-layered sheets showed attenuated mass erosion while uncoated sheets were instantly melted at the physiological condition. The released hGH was trapped on the chitosan layer by the ionic interaction between positively charged chitosan and negatively charged hGH, and a large number of entrapped proteins remained on the SIS membrane due to the muco-adhesive properties of chitosan. hGH-incorporated sheets significantly increased proliferation of human dermal fibroblasts. In vivo study employing oral ulcers in dogs, the ulcers dressed with chitosan-layered sheets showed enhanced wound recovery and the chitosan layers on the sheet greatly assisted prolonged recovery. Therefore, chitosan-layered Eudragit nanofibrous sheets can be potentially applied to developing muco-adhesive wound dressing materials with pH-dependent drug release by adjusting the thickness of chitosan sheath on the sheets. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1396-1406, 2016.
Collapse
Affiliation(s)
- Ji Suk Choi
- Department of Biomedical Materials Engineering, School of Bioscience and Bioengineering, Kangwon National University, Chuncheon, 200-701, Republic of Korea.,Institute of Bioscience and Bioengineering, Kangwon National University, Republic of Korea
| | - Suk-Hee Han
- Section of Small Animal Internal Medicine, College of Veterinary Medicine, Kangwon National University, Republic of Korea
| | - Changbaig Hyun
- Section of Small Animal Internal Medicine, College of Veterinary Medicine, Kangwon National University, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, School of Bioscience and Bioengineering, Kangwon National University, Chuncheon, 200-701, Republic of Korea. .,Institute of Bioscience and Bioengineering, Kangwon National University, Republic of Korea.
| |
Collapse
|
31
|
Sun F, Liu Y, Sun H, Tian B. Development and characterization of a novel GHR antibody antagonist, GF185. Int J Biol Macromol 2015; 79:864-70. [PMID: 26051340 DOI: 10.1016/j.ijbiomac.2015.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 11/19/2022]
Abstract
Here, we describe the development of a panel of monoclonal antibodies targeting the growth hormone receptor (GHR). Of these monoclonal antibodies (Mabs), GF185 was selected for further characterization due to its activities. Competitive receptor-binding assays and Western blotting analyses were used to demonstrate that GF185's epitopes are localized within subdomain 1 of the growth hormone receptor extracellular domain (GHR-ECD). Subsequently, we evaluated GF185's antagonistic activities in vivo and in vitro and showed that GF185 was able to neutralize growth hormone (GH) signalling and inhibit GH-induced Ba/F3-GHR proliferation. Our findings suggest that GF185 may serve as an attractive tool for GHR-related research and has a potential future application for the treatment of GH-dependent disease.
Collapse
Affiliation(s)
- Fengjuan Sun
- Department of Endocrinology, The First People's Hospital, Jining 272000, Shandong, PR China
| | - Yaping Liu
- Department of Endocrinology, The First People's Hospital, Jining 272000, Shandong, PR China
| | - Hui Sun
- Central Laboratory, The First People's Hospital, Jining 272000, Shandong, PR China
| | - Baofang Tian
- Traumatology Department, The First People's Hospital, Jining 272000, Shandong, PR China.
| |
Collapse
|
32
|
Seger ST, Breinholt J, Faber JH, Andersen MD, Wiberg C, Schjødt CB, Rand KD. Probing the Conformational and Functional Consequences of Disulfide Bond Engineering in Growth Hormone by Hydrogen-Deuterium Exchange Mass Spectrometry Coupled to Electron Transfer Dissociation. Anal Chem 2015; 87:5973-80. [PMID: 25978680 DOI: 10.1021/ac504782v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human growth hormone (hGH), and its receptor interaction, is essential for cell growth. To stabilize a flexible loop between helices 3 and 4, while retaining affinity for the hGH receptor, we have engineered a new hGH variant (Q84C/Y143C). Here, we employ hydrogen-deuterium exchange mass spectrometry (HDX-MS) to map the impact of the new disulfide bond on the conformational dynamics of this new hGH variant. Compared to wild type hGH, the variant exhibits reduced loop dynamics, indicating a stabilizing effect of the introduced disulfide bond. Furthermore, the disulfide bond exhibits longer ranging effects, stabilizing a short α-helix quite distant from the mutation sites, but also rendering a part of the α-helical hGH core slightly more dynamic. In the regions where the hGH variant exhibits a different deuterium uptake than the wild type protein, electron transfer dissociation (ETD) fragmentation has been used to pinpoint the residues responsible for the observed differences (HDX-ETD). Finally, by use of surface plasmon resonance (SPR) measurements, we show that the new disulfide bond does not compromise receptor affinity. Our work highlight the analytical potential of HDX-ETD combined with functional assays to guide protein engineering.
Collapse
Affiliation(s)
- Signe T Seger
- †Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark.,‡Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Jens Breinholt
- †Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Johan H Faber
- †Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Mette D Andersen
- †Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Charlotte Wiberg
- †Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Christine B Schjødt
- †Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Kasper D Rand
- ‡Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| |
Collapse
|
33
|
Abstract
There is a pressing need for new medicines (new molecular entities; NMEs) for rare diseases as few of the 6800 rare diseases (according to the NIH) have approved treatments. Drug discovery strategies for the 102 orphan NMEs approved by the US FDA between 1999 and 2012 were analyzed to learn from past success: 46 NMEs were first in class; 51 were followers; and five were imaging agents. First-in-class medicines were discovered with phenotypic assays (15), target-based approaches (12) and biologic strategies (18). Identification of genetic causes in areas with more basic and translational research such as cancer and in-born errors in metabolism contributed to success regardless of discovery strategy. In conclusion, greater knowledge increases the chance of success and empirical solutions can be effective when knowledge is incomplete.
Collapse
|
34
|
Adams JM, Otero-Corchon V, Hammond GL, Veldhuis JD, Qi N, Low MJ. Somatostatin is essential for the sexual dimorphism of GH secretion, corticosteroid-binding globulin production, and corticosterone levels in mice. Endocrinology 2015; 156:1052-65. [PMID: 25551181 PMCID: PMC4330306 DOI: 10.1210/en.2014-1429] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Distinct male and female patterns of pituitary GH secretion produce sexually differentiated hepatic gene expression profiles, thereby influencing steroid and xenobiotic metabolism. We used a fully automated system to obtain serial nocturnal blood samples every 15 minutes from cannulated wild-type (WT) and somatostatin knockout (Sst-KO) mice to determine the role of SST, the principal inhibitor of GH release, in the generation of sexually dimorphic GH pulsatility. WT males had lower mean and median GH values, less random GH secretory bursts, and longer trough periods between GH pulses than WT females. Each of these parameters was feminized in male Sst-KO mice, whereas female Sst-KO mice had higher GH levels than all other groups, but GH pulsatility was unaffected. We next performed hepatic mRNA profiling with high-density microarrays. Male Sst-KO mice exhibited a globally feminized pattern of GH-dependent mRNA levels, but female Sst-KO mice were largely unaffected. Among the differentially expressed female-predominant genes was Serpina6, which encodes corticosteroid-binding globulin (CBG). Increased CBG was associated with elevated diurnal peak plasma corticosterone in unstressed WT females and both sexes of Sst-KO mice compared with WT males. Sst-KO mice also had exaggerated ACTH and corticosterone responses to acute restraint stress. However, consistent with their lack of phenotypic signs of excess glucocorticoids, cerebrospinal fluid concentrations of free corticosterone in Sst-KO mice were not elevated. In summary, SST is necessary for the prolonged interpulse troughs that define masculinized pituitary GH secretion. SST also contributes to sexual dimorphism of the hypothalamic-pituitary-adrenal axis via GH-dependent regulation of hepatic CBG production.
Collapse
Affiliation(s)
- Jessica M Adams
- Neuroscience Graduate Program (J.M.A.), University of Michigan, Ann Arbor, Michigan, 48109; Department of Molecular and Integrative Physiology (J.M.A., V.O.-C., M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan, 48109; Department of Cellular and Physiological Sciences (G.L.H.), University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3; Department of Internal Medicine (J.D.V.), Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905; and Department of Internal Medicine (N.Q., M.J.L.), Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, 48109
| | | | | | | | | | | |
Collapse
|
35
|
Waters M, Brooks A. JAK2 activation by growth hormone and other cytokines. Biochem J 2015; 466:1-11. [PMID: 25656053 PMCID: PMC4325515 DOI: 10.1042/bj20141293] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/30/2022]
Abstract
Growth hormone (GH) and structurally related cytokines regulate a great number of physiological and pathological processes. They do this by coupling their single transmembrane domain (TMD) receptors to cytoplasmic tyrosine kinases, either as homodimers or heterodimers. Recent studies have revealed that many of these receptors exist as constitutive dimers rather than being dimerized as a consequence of ligand binding, which has necessitated a new paradigm for describing their activation process. In the present study, we describe a model for activation of the tyrosine kinase Janus kinase 2 (JAK2) by the GH receptor homodimer based on biochemical data and molecular dynamics simulations. Binding of the bivalent ligand reorientates and rotates the receptor subunits, resulting in a transition from a form with parallel TMDs to one where the TMDs separate at the point of entry into the cytoplasm. This movement slides the pseudokinase inhibitory domain of one JAK kinase away from the kinase domain of the other JAK within the receptor dimer-JAK complex, allowing the two kinase domains to interact and trans-activate. This results in phosphorylation and activation of STATs and other signalling pathways linked to this receptor which then regulate postnatal growth, metabolism and stem cell activation. We believe that this model will apply to most if not all members of the class I cytokine receptor family, and will be useful in the design of small antagonists and agonists of therapeutic value.
Collapse
Key Words
- class i cytokine receptors
- cytokine receptor signalling
- growth hormone
- growth hormone receptor
- janus kinase 2 (jak2)
- srk family kinases
- cntf, ciliary neurotropic factor
- crh, cytokine receptor homology
- ct-1, cardiotropin-1
- ecd, extracellular domain
- epo, erythropoietin
- fniii, fibronectin iii-like
- gh, growth hormone
- gm-csf, granulocyte-macrophage colony-stimulating factor
- jak, janus kinase
- jm, juxtamembrane
- mab, monoclonal antibody
- osm, oncostatin-m
- pk, pseudokinase
- tmd, transmembrane domain
- tpo, thrombopoietin
Collapse
Affiliation(s)
- Michael J. Waters
- *Institute for Molecular Bioscience, The University of Queensland Institute, QLD 4072, Australia
| | - Andrew J. Brooks
- *Institute for Molecular Bioscience, The University of Queensland Institute, QLD 4072, Australia
- †The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, QLD 4072, Australia
| |
Collapse
|
36
|
Chen WY. The many faces of prolactin in breast cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:61-81. [PMID: 25472534 DOI: 10.1007/978-3-319-12114-7_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prolactin (PRL) is a neuroendocrine polypeptide hormone primarily produced by the lactotrophs in the anterior pituitary gland of all vertebrates. The physiological role of PRL in mammary glands is relatively certain while its role in breast tumor has been a topic of debate for over 20 years. In this review, the author attempts to briefly summarize the data coming from his laboratory in the past years, focusing on G129R, a PRL receptor (PRLR) antagonist developed by introducing a single amino acid substitution mutation into human PRL (hPRL) at position 129, and a variety of G129R derivatives. The author has proposed two novel ideas for potential use of PRL, not anti-PRL agents, as an adjuvant agent for breast cancer, making it a hormone of many faces.
Collapse
Affiliation(s)
- Wen Y Chen
- Department of Biological Sciences, Clemson University, Greenville Health System, 900 W Faris Road, 29605, Greenville, SC, USA,
| |
Collapse
|
37
|
Spangler JB, Moraga I, Mendoza JL, Garcia KC. Insights into cytokine-receptor interactions from cytokine engineering. Annu Rev Immunol 2014; 33:139-67. [PMID: 25493332 DOI: 10.1146/annurev-immunol-032713-120211] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines exert a vast array of immunoregulatory actions critical to human biology and disease. However, the desired immunotherapeutic effects of native cytokines are often mitigated by toxicity or lack of efficacy, either of which results from cytokine receptor pleiotropy and/or undesired activation of off-target cells. As our understanding of the structural principles of cytokine-receptor interactions has advanced, mechanism-based manipulation of cytokine signaling through protein engineering has become an increasingly feasible and powerful approach. Modified cytokines, both agonists and antagonists, have been engineered with narrowed target cell specificities, and they have also yielded important mechanistic insights into cytokine biology and signaling. Here we review the theory and practice of cytokine engineering and rationalize the mechanisms of several engineered cytokines in the context of structure. We discuss specific examples of how structure-based cytokine engineering has opened new opportunities for cytokines as drugs, with a focus on the immunotherapeutic cytokines interferon, interleukin-2, and interleukin-4.
Collapse
Affiliation(s)
- Jamie B Spangler
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305; , , ,
| | | | | | | |
Collapse
|
38
|
Lan H, Li W, Jiang H, Yang Y, Zheng X. Intracellular signaling transduction pathways triggered by a well-known anti-GHR monoclonal antibody, Mab263, in vitro and in vivo. Int J Mol Sci 2014; 15:20538-54. [PMID: 25391041 PMCID: PMC4264182 DOI: 10.3390/ijms151120538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 11/18/2022] Open
Abstract
A series of studies have reported that monoclonal antibody 263 (Mab263), a monoclonal antibody against the growth hormone receptor (GHR), acts as an agonist in vitro and in vivo. However, the intracellular signaling pathways triggered by Mab263 have not yet been delineated. Therefore, we examined the intracellular signaling pathways induced by Mab263 in vivo and in vitro in the present study. The results show that this antibody activated janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), STAT1 and extracellular signal-regulated kinase 1/2 (ERK1/2), but not STAT5. The phosphorylation kinetics of JAK2, STAT3/1 and ERK1/2 induced by Mab263 were subsequently analyzed in dose-response and time course experiments. Our observations indicate that Mab263 induced different intracellular signaling pathways than GH, which indicates that Mab263 is a signal-specific molecule and that Mab263 may be a valuable biological reagent to study the mechanism(s) of GHR-mediated intracellular signaling pathways.
Collapse
Affiliation(s)
- Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China.
| | - Wei Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Hailong Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China.
| | - Yanhong Yang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China.
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China.
| |
Collapse
|
39
|
Liu Y, Berry PA, Zhang Y, Jiang J, Lobie PE, Paulmurugan R, Langenheim JF, Chen WY, Zinn KR, Frank SJ. Dynamic analysis of GH receptor conformational changes by split luciferase complementation. Mol Endocrinol 2014; 28:1807-1819. [PMID: 25188449 PMCID: PMC4213363 DOI: 10.1210/me.2014-1153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/28/2014] [Indexed: 11/19/2022] Open
Abstract
The transmembrane GH receptor (GHR) exists at least in part as a preformed homodimer on the cell surface. Structural and biochemical studies suggest that GH binds GHR in a 1:2 stoichiometry to effect acute GHR conformational changes that trigger the activation of the receptor-associated tyrosine kinase, Janus kinase 2 (JAK2), and downstream signaling. Despite information about GHR-GHR association derived from elegant fluorescence resonance energy transfer/bioluminescence resonance energy transfer studies, an assessment of the dynamics of GH-induced GHR conformational changes has been lacking. To this end, we used a split luciferase complementation assay that allowed detection in living cells of specific ligand-independent GHR-GHR interaction. Furthermore, GH treatment acutely augmented complementation of enzyme activity between GHRs fused, respectively, to N- and C-terminal fragments of firefly luciferase. Analysis of the temporal pattern of GH-induced complementation changes, pharmacological manipulation, genetic alteration of JAK2 levels, and truncation of the GHR intracellular domain (ICD) tail suggested that GH acutely enhances proximity of the GHR homodimer partners independent of the presence of JAK2, phosphorylation of GHR-luciferase chimeras, or an intact ICD. However, subsequent reduction of complementation requires JAK2 kinase activity and the ICD tail. This conclusion is in contrast to existing models of the GHR activation process.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medicine (Y.L., P.A.B., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Departments of Radiology (K.R.Z.), and Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ferreri L, Auriemma RS, Grasso LFS, Pivonello R, Colao A. Efficacy and tolerability of treatment with pegvisomant in acromegaly: an overview of literature. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.970171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Wu XY, Chen C, Yao XQ, Cao QH, Xu Z, Li WS, Liu FK, Li G. Growth hormone protects colorectal cancer cells from radiation by improving the ability of DNA damage repair. Mol Med Rep 2014; 10:486-90. [PMID: 24788673 DOI: 10.3892/mmr.2014.2185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/03/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to examine the effects of recombinant human growth hormone (rhGH) on the sensitivity of a colorectal cancer cell line to radiotherapy, and to investigate its association with DNA damage and repair. Flow cytometry and immunofluorescence were employed to detect growth hormone receptor (GHR) expression in nine human colorectal cancer cell lines. A colony forming assay was performed to measure the colorectal cancer cell proliferation post‑radiotherapy, as an indicator of radiotherapy sensitivity. The comet assay results were interpreted as an indicator of radiotherapy‑induced DNA damage, and growth arrest and DNA damage 45 (GADD45) and apurinic/apyrimidinic endonuclease (APEN) protein expression were quantified with western blot analysis from the same cell lines. The results demonstrated that the colony‑forming efficiency (CFE) was significantly increased in HCT‑8 cells subject to radiotherapy and rhGH pretreatment compared with the cells treated with radiotherapy alone, in a dose‑dependent manner (0‑100 mg/l). This effect was enhanced under high doses of radiation (8 Gy; 52.1±2.9 vs. 21.0±2.7; P<0.001) and was ameliorated with GHR neutralizing antibody exposure. By contrast, rhGH pre‑incubation did not change the colony formation rate in GHR(‑) LOVO cells. rhGH intervention reduced the early HCT‑8 cell DNA damage (21.53±2.88 vs. 36.56±3.93; P=0.003) as well as the following plateau phase, compared with cells treated with radiotherapy alone (5.5±0.42 vs. 9.07±0.84; P=0.012). rhGH upregulated GADD45 and APEN protein expression, which is associated with cellular stress responses and DNA damage repair (P=0.007). The results suggest that rhGH is able to protect colorectal cancer cells from radiation through the interaction with GHR, which is associated with the promotion of DNA damage repair activity.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Gastrointestinal Tumor Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Che Chen
- Department of Gastrointestinal Tumor Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xue-Quan Yao
- Department of Gastrointestinal Tumor Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Qin-Hong Cao
- Department of Gastrointestinal Tumor Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Zhe Xu
- Department of Gastrointestinal Tumor Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Wei-Su Li
- Department of Gastrointestinal Tumor Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Fu-Kun Liu
- Department of Gastrointestinal Tumor Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
42
|
Waters MJ, Brooks AJ, Chhabra Y. A new mechanism for growth hormone receptor activation of JAK2, and implications for related cytokine receptors. JAKSTAT 2014; 3:e29569. [PMID: 25101218 PMCID: PMC4119067 DOI: 10.4161/jkst.29569] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 11/25/2022] Open
Abstract
The growth hormone receptor was the first cytokine receptor to be cloned and crystallized, and provides a valuable exemplar for activation of its cognate kinase, JAK2. We review progress in understanding its activation mechanism, in particular the molecular movements made by this constitutively dimerized receptor in response to ligand binding, and how these lead to a separation of JAK-binding Box1 motifs. Such a separation leads to removal of the pseudokinase inhibitory domain from the kinase domain of a partner JAK2 bound to the receptor, and vice versa, leading to apposition of the kinase domains and transactivation. This may be a general mechanism for class I cytokine receptor action.
Collapse
Affiliation(s)
- Michael J Waters
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia, QLD Australia
| | - Andrew J Brooks
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia, QLD Australia
| | - Yash Chhabra
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia, QLD Australia
| |
Collapse
|
43
|
Lan H, Li W, Fu Z, Yang Y, Wu T, Liu Y, Zhang H, Cui H, Li Y, Hong P, Liu J, Zheng X. Differential intracellular signalling properties of the growth hormone receptor induced by the activation of an anti-GHR antibody. Mol Cell Endocrinol 2014; 390:54-64. [PMID: 24755421 DOI: 10.1016/j.mce.2014.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/16/2014] [Accepted: 04/11/2014] [Indexed: 11/27/2022]
Abstract
A series of studies have reported that anti-GHR antibody can function as a GHR agonist and may serve as an attractive tool for studying the mechanisms of GHR activation. However, to date, there is relatively little information about intracellular signalling triggered by anti-GHR antibody. Therefore, in this work, we have developed a panel of monoclonal antibodies to GHBP, among which one Mab, termed CG-172, was selected for further characterisation because of its signalling properties. The results from FACS assays, receptor binding and immunoprecipitation assays and western blotting demonstrated that CG-172 specifically binds to GHR expressed on target cells. Subsequently, epitope mapping studies that used receptor binding analysis showed that CG-172 specifically binds subdomain 1 of GHR ECD. We next examined the resulting signal transduction pathways triggered by this antibody in CHO-GHR638 cells and rat hepatocytes. We found that CG-172 can activate JAK2, AKT, ERK1/2 and STAT1/3 but not STAT5. The phosphorylation kinetics of STAT1/3, AKT and ERK1/2 induced by either GH or CG-172 were analysed in dose-response and time course experiments. Our observations demonstrated that an anti-GHR monoclonal antibody (CG-172) can serve as an attractive tool to study the mechanism(s) of GHR-mediated intracellular signalling pathways and may lead to the production of signal-specific molecules that are capable of inducing different biochemical responses.
Collapse
Affiliation(s)
- Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, PR China
| | - Zhiling Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Yanhong Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Tiancheng Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Yu Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Hui Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Huanzhong Cui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Yumeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Pan Hong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Jingsheng Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China.
| |
Collapse
|
44
|
Brooks AJ, Dai W, O'Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, Gardon O, Tunny KA, Blucher KM, Morton CJ, Parker MW, Sierecki E, Gambin Y, Gomez GA, Alexandrov K, Wilson IA, Doxastakis M, Mark AE, Waters MJ. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science 2014; 344:1249783. [PMID: 24833397 DOI: 10.1126/science.1249783] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Signaling from JAK (Janus kinase) protein kinases to STAT (signal transducers and activators of transcription) transcription factors is key to many aspects of biology and medicine, yet the mechanism by which cytokine receptors initiate signaling is enigmatic. We present a complete mechanistic model for activation of receptor-bound JAK2, based on an archetypal cytokine receptor, the growth hormone receptor. For this, we used fluorescence resonance energy transfer to monitor positioning of the JAK2 binding motif in the receptor dimer, substitution of the receptor extracellular domains with Jun zippers to control the position of its transmembrane (TM) helices, atomistic modeling of TM helix movements, and docking of the crystal structures of the JAK2 kinase and its inhibitory pseudokinase domain with an opposing kinase-pseudokinase domain pair. Activation of the receptor dimer induced a separation of its JAK2 binding motifs, driven by a ligand-induced transition from a parallel TM helix pair to a left-handed crossover arrangement. This separation leads to removal of the pseudokinase domain from the kinase domain of the partner JAK2 and pairing of the two kinase domains, facilitating trans-activation. This model may well generalize to other class I cytokine receptors.
Collapse
Affiliation(s)
- Andrew J Brooks
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia.
| | - Wei Dai
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA
| | - Megan L O'Mara
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia
| | - Daniel Abankwa
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Yash Chhabra
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Rebecca A Pelekanos
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Olivier Gardon
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Kathryn A Tunny
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Kristopher M Blucher
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Craig J Morton
- Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Michael W Parker
- Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. Department of Biochemistry and Molecular Biology and Bio21 Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Emma Sierecki
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Yann Gambin
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Guillermo A Gomez
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Kirill Alexandrov
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Ian A Wilson
- Scripps Research Institute, La Jolla, CA 92037, USA
| | - Manolis Doxastakis
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA
| | - Alan E Mark
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia
| | - Michael J Waters
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia.
| |
Collapse
|
45
|
Affiliation(s)
- James A Wells
- Pharmaceutical Chemistry; Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158, USA.
| | - Anthony A Kossiakoff
- Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Kopchick JJ, List EO, Kelder B, Gosney ES, Berryman DE. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications. Mol Cell Endocrinol 2014; 386:34-45. [PMID: 24035867 PMCID: PMC3943600 DOI: 10.1016/j.mce.2013.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022]
Abstract
The discovery of a growth hormone receptor antagonist (GHA) was initially established via expression of mutated GH genes in transgenic mice. Following this discovery, development of the compound resulted in a drug termed pegvisomant, which has been approved for use in patients with acromegaly. Pegvisomant treatment in a dose dependent manner results in normalization of IGF-1 levels in most patients. Thus, it is a very efficacious and safe drug. Since the GH/IGF-1 axis has been implicated in the progression of several types of cancers, many have suggested the use of pegvisomant as an anti-cancer therapeutic. In this manuscript, we will review the use of mouse strains that possess elevated or depressed levels of GH action for unraveling many of GH actions. Additionally, we will describe experiments in which the GHA was discovered, review results of pegvisomant's preclinical and clinical trials, and provide data suggesting pegvisomant's therapeutic value in selected types of cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Bruce Kelder
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Elahu S Gosney
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; School of Applied Health Sciences and Wellness, Ohio University, Athens, OH 45701, United States
| |
Collapse
|
47
|
Moraga I, Spangler J, Mendoza JL, Garcia KC. Multifarious determinants of cytokine receptor signaling specificity. Adv Immunol 2014; 121:1-39. [PMID: 24388212 DOI: 10.1016/b978-0-12-800100-4.00001-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines play crucial roles in regulating immune homeostasis. Two important characteristics of most cytokines are pleiotropy, defined as the ability of one cytokine to exhibit diverse functionalities, and redundancy, defined as the ability of multiple cytokines to exert overlapping activities. Identifying the determinants for unique cellular responses to cytokines in the face of shared receptor usage, pleiotropy, and redundancy will be essential in order to harness the potential of cytokines as therapeutics. Here, we discuss the biophysical (ligand-receptor geometry and affinity) and cellular (receptor trafficking and intracellular abundance of signaling molecules) parameters that contribute to the specificity of cytokine bioactivities. Whereas the role of extracellular ternary complex geometry in cytokine-induced signaling is still not completely elucidated, cytokine-receptor affinity is known to impact signaling through modulation of the stability and kinetics of ternary complex formation. Receptor trafficking also plays an important and likely underappreciated role in the diversification of cytokine bioactivities but it has been challenging to experimentally probe trafficking effects. We also review recent efforts to quantify levels of intracellular signaling components, as second messenger abundance can affect cytokine-induced bioactivities both quantitatively and qualitatively. We conclude by discussing the application of protein engineering to develop therapeutically relevant cytokines with reduced pleiotropy and redirected biological functionalities.
Collapse
Affiliation(s)
- Ignacio Moraga
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA; Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Jamie Spangler
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA; Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Juan L Mendoza
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA; Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA; Program in Immunology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
48
|
Abstract
Acromegaly is predominantly caused by a pituitary adenoma, which secretes an excess of GH resulting in increased IGF1 levels. Most of the GH assays used currently measure only the levels of the 22 kDa form of GH. In theory, the diagnostic sensitivity may be lower compared with the previous assays, which have used polyclonal antibodies. Many GH-secreting adenomas are plurihormonal and may co-secrete prolactin, TSH and α-subunit. Hyperprolactinaemia is found in 30-40% of patients with acromegaly, and hyperprolactinaemia may occasionally be diagnosed before acromegaly is apparent. Although trans-sphenoidal surgery of a GH-secreting adenoma remains the first treatment at most centres, the role of somatostatin analogues, octreotide long-acting repeatable and lanreotide Autogel as primary therapy is still the subject of some debate. Although the normalisation of GH and IGF1 levels is the main objective in all patients with acromegaly, GH and IGF1 levels may be discordant, especially during somatostatin analogue therapy. This discordance usually takes the form of high GH levels and an IGF1 level towards the upper limit of the normal range. Pasireotide, a new somatostatin analogue, may be more efficacious in some patients, but the drug has not yet been registered for acromegaly. Papers published on pasireotide have reported an increased risk of diabetes mellitus due to a reduction in insulin levels. Pegvisomant, the GH receptor antagonist, is indicated - alone or in combination with a somatostatin analogue - in most patients who fail to enter remission on a somatostatin analogue. Dopamine-D2-agonists may be effective as monotherapy in a few patients, but it may prove necessary to apply combination therapy involving a somatostatin analogue and/or pegvisomant.
Collapse
Affiliation(s)
- Marianne Andersen
- Department of Endocrinology, Odense University Hospital, Sønder Boulevard 29, 5000 Odense C, Denmark and Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
49
|
Regalado-Santiago C, López-Meraz ML, Santiago-García J, Fernández-Pomares C, Juárez-Aguilar E. Growth hormone (GH) is a survival rather than a proliferative factor for embryonic striatal neural precursor cells. Growth Horm IGF Res 2013; 23:179-186. [PMID: 23891194 DOI: 10.1016/j.ghir.2013.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/30/2013] [Accepted: 07/04/2013] [Indexed: 01/15/2023]
Abstract
OBJECTIVE A possible role of GH during central nervous system (CNS) development has been suggested by the presence of this hormone and its receptor in brain areas before its production by the pituitary gland. Although several effects have been reported for GH, the specific role of this hormone during CNS development remains unclear. Here, we examined the effect of GH on proliferation, survival and neurosphere formation in primary cultures of striatal tissue from 14-day-old (E14) mouse embryos. DESIGN GH receptor gene expression was confirmed by RT-PCR. Primary cultures of embryonic striatal cells were treated with different doses of GH in serum free media, then the number of neurospheres was determined. To examine the GH effect on proliferation and survival of the striatal primary cultures, bromodeoxyuridine (BrdU) and TUNEL immunoreactivity was conducted. RESULTS In the presence of the epidermal growth factor (EGF), GH increased the formation of neurospheres, with a maximal response at 10 ng/ml, higher doses were inhibitory. In absence of EGF, GH failed to stimulate neurosphere formation. Proliferation rate in the primary striatal cultures was inhibited by 24 or 48 h incubation with GH. However, in the absence of EGF, GH increased BrdU incorporation. GH treatment decreases the rate of apoptosis of nestin and GFAP positive cells in the primary striatal cultures, enhancing neurosphere formation. CONCLUSIONS Our in vitro data demonstrate that GH plays a survival role on the original population of embryonic striatal cells, improving Neural Precursor Cells (NPCs) expansion. We suggest that this GH action could be predominant during striatal neurodevelopment.
Collapse
|
50
|
Abstract
INTRODUCTION Granulocyte colony-stimulating factor (G-CSF; filgrastim) and its pegylated form (pegfilgrastim) are widely used to treat neutropenia associated with myelosuppressive chemotherapy and bone marrow transplantation, AIDS-associated or drug-induced neutropenia, and neutropenic diseases. G-CSF facilitates restoration of neutrophil counts, decreases incidence of infection/febrile neutropenia and reduces resource utilization. G-CSF is also widely used to mobilize peripheral blood stem cells for hematopoietic transplant. AREAS COVERED We review the therapeutic use, cost effectiveness and disease impact of G-CSF for neutropenia, development of G-CSF biosimilars and current next-generation discovery efforts. EXPERT OPINION G-CSF has impacted the treatment and survival of patients with congenital neutropenias. For chemotherapy-associated neutropenia, cost effectiveness and impact on survival are still unclear. G-CSFs are expensive and require systemic administration. Market entry of new biosimilars, some with enhanced half-life profiles, will probably reduce cost and increase cost effectiveness. There is no evidence that marketed or late development biosimilars display effectiveness superior to current G-CSFs. Second-generation compounds that mimic the activity of G-CSF at its receptor, induce endogenous ligand(s) or offer adjunct activity have been reported and represent attractive G-CSF alternatives, but are in preclinical stages. A significant therapeutic advance will require reduced depth and duration of neutropenia compared to current G-CSFs.
Collapse
Affiliation(s)
- Jonathan Hoggatt
- Harvard University, Massachusetts General Hospital, Department of Stem Cell and Regenerative Medicine/Center for Regenerative Medicine , 185 Cambridge Street, CPZN 4400, Boston, MA 02114 , USA
| | | |
Collapse
|