1
|
Halma MTJ, Kumar S, van Eck J, Abeln S, Gates A, Wuite GJL. FAIR data for optical tweezers experiments. Biophys J 2025; 124:1255-1272. [PMID: 40083158 DOI: 10.1016/j.bpj.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/11/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
The single-molecule biophysics community has delivered significant impacts to our understanding of fundamental biological processes, yet the field is also siloed and has fragmented data structures, which impede data sharing and limit the ability to conduct comprehensive meta-analyses. To advance the field of optical tweezers in single-molecule biophysics, it is important that the field adopts open and collaborative data sharing that facilitate meta-analyses that combine diverse resources and supports more advanced analyses, akin to those seen in projects such as the Protein Data Bank and the 1000 Genomes Project. Here, we assess the state of data findability, accessibility, interoperability, and reusability (the FAIR principles) within the single-molecule optical tweezers field. By combining a qualitative review with quantitative tools from bibliometrics, our analysis suggests that the field has significant room for improvement in terms of FAIR adherence. Finally, we discuss the potential of compulsory data deposition and a minimal set of metadata standards to ensure reproducibility and interoperability between systems. While implementing these measures may not be straightforward, they are key steps that will enhance the integration of optical tweezers biophysics with the broader biomedical literature.
Collapse
Affiliation(s)
- Matthew T J Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, North Holland, the Netherlands; Lumicks B.V., Amsterdam, North Holland, the Netherlands
| | - Sowmiyaa Kumar
- Department of Computer Science, Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Jan van Eck
- Department of Computer Science, Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Sanne Abeln
- Department of Computer Science, Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Alexander Gates
- School of Data Science, University of Virginia, Charlottesville, Virginia.
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, North Holland, the Netherlands; Lumicks B.V., Amsterdam, North Holland, the Netherlands.
| |
Collapse
|
2
|
Thirumalai D, Shi G, Shin S, Hyeon C. Organization and Dynamics of Chromosomes. Annu Rev Phys Chem 2025; 76:565-588. [PMID: 39971382 DOI: 10.1146/annurev-physchem-082423-024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
How long thread-like eukaryotic chromosomes fit tidily in the small volume of the nucleus without significant entanglement is just beginning to be understood, thanks to major advances in experimental techniques. Several polymer models, which reproduce contact maps that measure the probabilities that two loci are in spatial contact, have predicted the 3D structures of interphase chromosomes. Data-driven approaches, using contact maps as input, predict that mitotic helical chromosomes are characterized by a switch in handedness, referred to as perversion. By using experimentally derived effective interactions between chromatin loci in simulations, structures of conventional and inverted nuclei have been accurately predicted. Polymer theory and simulations show that the dynamics of individual loci in chromatin exhibit subdiffusive behavior but the diffusion exponents are broadly distributed, which accords well with experiments. Although coarse-grained models are successful, many challenging problems remain, which require the creation of new experimental and computational tools to understand genome biology.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
| | - Guang Shi
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Sucheol Shin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| |
Collapse
|
3
|
Herrera-Asmat O, Tong AB, Lin W, Kong T, Valle JRD, Guerra DG, Ebright YW, Ebright RH, Bustamante C. Pleomorphic effects of three small-molecule inhibitors on transcription elongation by Mycobacterium tuberculosis RNA polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637008. [PMID: 39975155 PMCID: PMC11839117 DOI: 10.1101/2025.02.07.637008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The Mycobacterium tuberculosis RNA polymerase (MtbRNAP) is the target of the first-line anti-tuberculosis inhibitor rifampin, however, the emergence of rifampin resistance necessitates the development of new antibiotics. Here, we communicate the first single-molecule characterization of MtbRNAP elongation and its inhibition by three diverse small-molecule inhibitors: N(α)-aroyl-N-aryl-phenylalaninamide (D-IX216), streptolydigin (Stl), and pseudouridimycin (PUM) using high-resolution optical tweezers. Compared to Escherichia coli RNA polymerase (EcoRNAP), MtbRNAP transcribes more slowly, has similar mechanical robustness, and only weakly recognizes E. coli pause sequences. The three small-molecule inhibitors of MtbRNAP exhibit strikingly different effects on transcription elongation. In the presence of D-IX216, which inhibits RNAP active-center bridge-helix motions required for nucleotide addition, the enzyme exhibits transitions between slowly and super-slowly elongating inhibited states. Stl, which inhibits the RNAP trigger-loop motions also required for nucleotide addition, inhibits RNAP primarily by inducing pausing and backtracking. PUM, a nucleoside analog of UTP, in addition to acting as a competitive inhibitor, induces the formation of slowly elongating RNAP inhibited states. Our results indicate that the three classes of small-molecule inhibitors affect the enzyme in distinct ways and show that the combination of Stl and D-IX216, which both target the RNAP bridge helix, has a strong synergistic effect on the enzyme.
Collapse
Affiliation(s)
- Omar Herrera-Asmat
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av Honorio Delgado 430, San Martin de Porras, Lima 15102, Peru
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720
| | - Alexander B Tong
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Wenxia Lin
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Juan R Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, IN 46556, USA
| | - Daniel G Guerra
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av Honorio Delgado 430, San Martin de Porras, Lima 15102, Peru
| | - Yon W Ebright
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Richard H Ebright
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Physics, University of California, Berkeley, CA 94720
- Biophysics Graduate Group, University of California, Berkeley, CA 94720
- Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
4
|
Cashen BA, Naufer MN, Morse M, McCauley MJ, Rouzina I, Jones CE, Furano AV, Williams MC. L1-ORF1p nucleoprotein can rapidly assume distinct conformations and simultaneously bind more than one nucleic acid. Nucleic Acids Res 2024; 52:14013-14029. [PMID: 39565204 DOI: 10.1093/nar/gkae1141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
LINE-1 (L1) is a parasitic retrotransposable DNA element, active in primates for the last 80-120 Myr. L1 has generated nearly one-third of the human genome by copying its transcripts, and those of other genetic elements (e.g. Alu and SVA), into genomic DNA by target site-primed reverse transcription (TPRT) and remains active in modern humans. L1 encodes two proteins that bind their encoding transcript (cis preference) to form an L1 ribonucleoprotein (RNP) that mediates retrotransposition. ORF2p provides reverse transcriptase and endonuclease activity. ORF1p, its major component, is a homo-trimeric phospho-protein that binds single-stranded nucleic acid (ssNA) with high affinity and exhibits nucleic acid (NA) chaperone activity. We used optical tweezers to examine ORF1p binding to individual single-stranded DNA (ssDNA) molecules and found that the arrangement of ORF1p on the ssDNA depends on their molar ratio. When the concentration of ORF1p is just sufficient to saturate the entire NA molecule, the nucleoprotein (NP) is compact and stable. However, additional ORF1p binds and destabilizes the compacted NP, allowing it to engage a second ssDNA. Our results suggest that ORF1p displaced from its RNA template during TPRT could bind and destabilize remaining downstream L1 RNP, making them susceptible to hijacking by non-L1 templates, and thereby enable retrotransposition of non-L1 transcripts.
Collapse
Affiliation(s)
- Ben A Cashen
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| | - M Nabuan Naufer
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Michael Morse
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Micah J McCauley
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Ioulia Rouzina
- Ohio State University, Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, 281 W Lane Avenue, Columbus, OH 43210, USA
| | - Charles E Jones
- The Laboratory of Molecular and Cellular Biology, NIDDK, NIH, 8 Center Drive, Bethesda, MD 20892, USA
| | - Anthony V Furano
- The Laboratory of Molecular and Cellular Biology, NIDDK, NIH, 8 Center Drive, Bethesda, MD 20892, USA
| | - Mark C Williams
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
5
|
Chiu HP, Shen CH, Wu JK, Mao EC, Yen HY, Chang YP, Wu CC, Fan HF. Nuclease-induced stepwise photodropping (NISP) to precisely investigate single-stranded DNA degradation behaviors of exonucleases and endonucleases. Nucleic Acids Res 2024; 52:e97. [PMID: 39351870 PMCID: PMC11551736 DOI: 10.1093/nar/gkae822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/12/2024] Open
Abstract
Here, we employed a fluorescence-based single molecule method called nuclease-induced stepwise photodropping (NISP) to measure in real time the DNA degradation mediated by mitochondrial genome maintenance exonuclease 1 (MGME1), a bidirectional single-stranded DNA (ssDNA)-specific exonuclease. The method detects a stepwise decrease in fluorescence signals from Cy3 fluorophores labeled on an immobilized DNA substrate. Using NISP, we successfully determined the DNA degradation rates of 6.3 ± 0.4 and 2.0 ± 0.1 nucleotides (nt) s-1 for MGME1 in the 5'-to-3' and 3'-to-5' directions, respectively. These results provide direct evidence of the stronger 5' directionality of MGME1, consistent with its established role in mitochondrial DNA maintenance. Importantly, when we employed NISP to investigate mung bean nuclease, an ss-specific endonuclease, we observed a markedly different NISP pattern, suggesting a distributive cleavage activity of the enzyme. Furthermore, we applied NISP to determine the ssDNA degradation behavior of the double-stranded-specific exonuclease, λ exonuclease. These findings underscore the capability of NISP to accurately and reliably measure the degradation of ssDNA by both exo- and endonucleases. Here, we demonstrate NISP as a powerful tool for investigating the ssDNA degradation behavior of nucleases at the single-molecule level.
Collapse
Affiliation(s)
- Hui-Pin Chiu
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Chung-Han Shen
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Jan-Kai Wu
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Eric Y C Mao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Han-Yi Yen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Yuan-Pin Chang
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Chyuan-Chuan Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Hsiu-Fang Fan
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| |
Collapse
|
6
|
Yadav DS, Savopol T. Optical tweezers in biomedical research - progress and techniques. J Med Life 2024; 17:978-993. [PMID: 39781305 PMCID: PMC11705474 DOI: 10.25122/jml-2024-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/04/2024] [Indexed: 01/12/2025] Open
Abstract
Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences. The applications of optical tweezers in biomedicine are vast, ranging from the investigation of cellular mechanical properties, such as cell stretching, membrane elasticity, and stiffness, to single-molecule studies encompassing DNA and protein mechanics, protein-DNA interactions, molecular motor functions, and pathogen-host interactions. Advancement of optical tweezers in this field includes their integration with holography, fluorescence microscopy, microfluidics, and enhancements in force sensitivity and positional accuracy. These tools have profoundly impacted the study of cellular mechanics, drug discovery processes, and disease diagnostics, providing unparalleled insights into the biophysical mechanisms underlying health and pathology.
Collapse
Key Words
- AFM, Atomic Force Microscopy
- CCD, Charge-Coupled Device
- DNA stretching
- E. Coli, Escherichia coli
- HOT, Holographic Optical Tweezers
- IVF, In-Vitro Fertilization
- ODS, Optical DNA Supercoiling
- RBC, Red Blood Cells
- RNAP, RNA Polymerase
- SLM, Spatial Light Modulator
- cell manipulation
- cell stretching
- dsDNA, Double-Stranded DNA
- elastic properties of cells
- membrane tethering
- optical tweezers
- single molecule studies
Collapse
Affiliation(s)
- Dharm Singh Yadav
- Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
7
|
Wu M, Beck C, Lee JH, Fulbright RM, Jeong J, Inman JT, Woodhouse MV, Berger JM, Wang MD. Human Topoisomerase IIα Promotes Chromatin Condensation Via a Phase Transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618281. [PMID: 39464128 PMCID: PMC11507700 DOI: 10.1101/2024.10.15.618281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Topoisomerase II (topo II) enzymes are essential enzymes known to resolve topological entanglements during DNA processing. Curiously, while yeast expresses a single topo II, humans express two topo II isozymes, topo IIα and topo IIβ, which share a similar catalytic domain but differ in their intrinsically disordered C-terminal domains (CTDs). During mitosis, topo IIα and condensin I constitute the most abundant chromosome scaffolding proteins essential for chromosome condensation. However, how topo IIα enables this function is poorly understood. Here, we discovered a new and functionally distinct role for human topo IIα - it condenses DNA and chromatin at a low topo IIα concentration (100 pM or less) during a polymer-collapse phase transition. The removal of the topo IIα CTDs effectively abolishes its condensation ability, indicating that the condensation is mediated by the CTDs. Although topo IIβ can also perform condensation, it is about 4-fold less effective. During the condensation, topo IIα-DNA condensates form along DNA, working against a DNA tension of up to 1.5 pN, greater than that previously reported for yeast condensin. In addition, this condensation does not require ATP and thus is independent of topo IIα's catalytic activity. We also found that condensation and catalysis can concurrently proceed with minimal mutual interference. Our findings suggest topo IIα may directly participate in chromosome condensation during mitosis.
Collapse
Affiliation(s)
- Meiling Wu
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Curtis Beck
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joyce H. Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James T. Inman
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | | | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michelle D. Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Qian J, Lubkowska L, Zhang S, Tan C, Hong Y, Fulbright RM, Inman JT, Kay TM, Jeong J, Gotte D, Berger JM, Kashlev M, Wang MD. Chromatin Buffers Torsional Stress During Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618270. [PMID: 39464147 PMCID: PMC11507789 DOI: 10.1101/2024.10.15.618270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Transcription through chromatin under torsion represents a fundamental problem in biology. Pol II must overcome nucleosome obstacles and, because of the DNA helical structure, must also rotate relative to the DNA, generating torsional stress. However, there is a limited understanding of how Pol II transcribes through nucleosomes while supercoiling DNA. In this work, we developed methods to visualize Pol II rotation of DNA during transcription and determine how torsion slows down the transcription rate. We found that Pol II stalls at ± 9 pN·nm torque, nearly sufficient to melt DNA. The stalling is due to extensive backtracking, and the presence of TFIIS increases the stall torque to + 13 pN·nm, making Pol II a powerful rotary motor. This increased torsional capacity greatly enhances Pol II's ability to transcribe through a nucleosome. Intriguingly, when Pol II encounters a nucleosome, nucleosome passage becomes more efficient on a chromatin substrate than on a single-nucleosome substrate, demonstrating that chromatin efficiently buffers torsional stress via its torsional mechanical properties. Furthermore, topoisomerase II relaxation of torsional stress significantly enhances transcription, allowing Pol II to elongate through multiple nucleosomes. Our results demonstrate that chromatin greatly reduces torsional stress on transcription, revealing a novel role of chromatin beyond the more conventional view of it being just a roadblock to transcription.
Collapse
Affiliation(s)
- Jin Qian
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Lucyna Lubkowska
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Shuming Zhang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Chuang Tan
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - James T. Inman
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Taryn M. Kay
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deanna Gotte
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mikhail Kashlev
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Michelle D. Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Hong Y, Ye F, Qian J, Gao X, Inman JT, Wang MD. Optical torque calculations and measurements for DNA torsional studies. Biophys J 2024; 123:3080-3089. [PMID: 38961622 PMCID: PMC11428274 DOI: 10.1016/j.bpj.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
The angular optical trap (AOT) is a powerful instrument for measuring the torsional and rotational properties of a biological molecule. Thus far, AOT studies of DNA torsional mechanics have been carried out using a high numerical aperture oil-immersion objective, which permits strong trapping but inevitably introduces spherical aberrations due to the glass-aqueous interface. However, the impact of these aberrations on torque measurements is not fully understood experimentally, partly due to a lack of theoretical guidance. Here, we present a numerical platform based on the finite element method to calculate forces and torques on a trapped quartz cylinder. We have also developed a new experimental method to accurately determine the shift in the trapping position due to the spherical aberrations by using a DNA molecule as a distance ruler. We found that the calculated and measured focal shift ratios are in good agreement. We further determined how the angular trap stiffness depends on the trap height and the cylinder displacement from the trap center and found full agreement between predictions and measurements. As a further verification of the methodology, we showed that DNA torsional properties, which are intrinsic to DNA, could be determined robustly under different trap heights and cylinder displacements. Thus, this work has laid both a theoretical and experimental framework that can be readily extended to investigate the trapping forces and torques exerted on particles with arbitrary shapes and optical properties.
Collapse
Affiliation(s)
- Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York
| | - Fan Ye
- Howard Hughes Medical Institute, Cornell University, Ithaca, New York; Department of Physics & LASSP, Cornell University, Ithaca, New York
| | - Jin Qian
- Department of Physics & LASSP, Cornell University, Ithaca, New York
| | - Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, New York; Department of Physics & LASSP, Cornell University, Ithaca, New York
| | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, New York; Department of Physics & LASSP, Cornell University, Ithaca, New York
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, New York; Department of Physics & LASSP, Cornell University, Ithaca, New York.
| |
Collapse
|
10
|
Walbrun A, Wang T, Matthies M, Šulc P, Simmel FC, Rief M. Single-molecule force spectroscopy of toehold-mediated strand displacement. Nat Commun 2024; 15:7564. [PMID: 39217165 PMCID: PMC11365964 DOI: 10.1038/s41467-024-51813-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Toehold-mediated strand displacement (TMSD) is extensively utilized in dynamic DNA nanotechnology and for a wide range of DNA or RNA-based reaction circuits. Investigation of TMSD kinetics typically relies on bulk fluorescence measurements providing effective, bulk-averaged reaction rates. Information on individual molecules or even base pairs is scarce. In this work, we explore the dynamics of strand displacement processes at the single-molecule level using single-molecule force spectroscopy with a microfluidics-enhanced optical trap supported by state-of-the-art coarse-grained simulations. By applying force, we can trigger and observe TMSD in real-time with microsecond and nanometer resolution. We find TMSD proceeds very rapidly under load with single step times of 1 µs. Tuning invasion efficiency by introducing mismatches allows studying thousands of forward/backward invasion events on a single molecule and analyze the kinetics of the invasion process. Extrapolation to zero force reveals single step times for DNA invading DNA four times faster than for RNA invading RNA. We also study the kinetics of DNA invading RNA, a process that in the absence of force would rarely occur. Our results reveal the importance of sequence effects for the TMSD process and have relevance for a wide range of applications in nucleic acid nanotechnology and synthetic biology.
Collapse
Affiliation(s)
- Andreas Walbrun
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Tianhe Wang
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Garching, Germany
| | - Michael Matthies
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Garching, Germany
| | - Petr Šulc
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Garching, Germany
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Friedrich C Simmel
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Garching, Germany.
| | - Matthias Rief
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany.
| |
Collapse
|
11
|
Qian J, Wang B, Artsimovitch I, Dunlap D, Finzi L. Force and the α-C-terminal domains bias RNA polymerase recycling. Nat Commun 2024; 15:7520. [PMID: 39214958 PMCID: PMC11364550 DOI: 10.1038/s41467-024-51603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
After an RNA polymerase reaches a terminator, instead of dissociating from the template, it may diffuse along the DNA and recommence RNA synthesis from the previous or a different promoter. Magnetic tweezers were used to monitor such secondary transcription and determine the effects of low forces assisting or opposing translocation, protein roadblocks, and transcription factors. Remarkably, up to 50% of Escherichia coli (E. coli) RNA polymerases diffused along the DNA after termination. Force biased the direction of diffusion (sliding) and the velocity increased rapidly with force up to 0.7 pN and much more slowly thereafter. Sigma factor 70 (σ70) likely remained associated with the DNA promoting sliding and enabling re-initiation from promoters in either orientation. However, deletions of the α-C-terminal domains severely limited the ability of RNAP to turn around between successive rounds of transcription. The addition of elongation factor NusG, which competes with σ70 for binding to RNAP, limited additional rounds of transcription. Surprisingly, sliding RNA polymerases blocked by a DNA-bound lac repressor could slowly re-initiate transcription and were not affected by NusG, suggesting a σ-independent pathway. Low forces effectively biased promoter selection suggesting a prominent role for topological entanglements that affect RNA polymerase translocation.
Collapse
Affiliation(s)
- Jin Qian
- Physics Department, Emory University, Atlanta, GA, USA
| | - Bing Wang
- The Center for RNA Biology and Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Irina Artsimovitch
- The Center for RNA Biology and Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - David Dunlap
- Department of Physics & Astronomy, Clemson University, Clemson, SC, USA
| | - Laura Finzi
- Department of Physics & Astronomy, Clemson University, Clemson, SC, USA.
| |
Collapse
|
12
|
Hong Y, Ye F, Qian J, Gao X, Inman JT, Wang MD. Optical Torque Calculations and Measurements for DNA Torsional Studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596477. [PMID: 38853956 PMCID: PMC11160753 DOI: 10.1101/2024.05.29.596477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The angular optical trap (AOT) is a powerful instrument for measuring the torsional and rotational properties of a biological molecule. Thus far, AOT studies of DNA torsional mechanics have been carried out using a high numerical aperture oil-immersion objective, which permits strong trapping, but inevitably introduces spherical aberrations due to the glass-aqueous interface. However, the impact of these aberrations on torque measurements is not fully understood experimentally, partly due to a lack of theoretical guidance. Here, we present a numerical platform based on the finite element method to calculate forces and torques on a trapped quartz cylinder. We have also developed a new experimental method to accurately determine the shift in the trapping position due to the spherical aberrations by using a DNA molecule as a distance ruler. We found that the calculated and measured focal shift ratios are in good agreement. We further determined how the angular trap stiffness depends on the trap height and the cylinder displacement from the trap center and found full agreement between predictions and measurements. As further verification of the methodology, we showed that DNA torsional properties, which are intrinsic to DNA, could be determined robustly under different trap heights and cylinder displacements. Thus, this work has laid both a theoretical and experimental framework that can be readily extended to investigate the trapping forces and torques exerted on particles with arbitrary shapes and optical properties. SIGNIFICANCE We developed a simulation platform based on the finite element method for force and torque calculation for particles in an angular optical trap (AOT), with considerations of tightly focused Gaussian beam, spherical aberrations, and optically anisotropic particles. Experimental measurements of focal shift ratio, force, and torque under multiple conditions were in good agreement with predictions from the simulations. We also demonstrated that intrinsic DNA torsional properties can be robustly measured under different AOT measurement conditions, strongly validating our simulations and calibrations. Our platform can facilitate trapping particle design for single-molecule assays using the AOT.
Collapse
|
13
|
Cashen BA, Morse M, Rouzina I, Karpel RL, Williams MC. C-terminal Domain of T4 gene 32 Protein Enables Rapid Filament Reorganization and Dissociation. J Mol Biol 2024; 436:168544. [PMID: 38508303 DOI: 10.1016/j.jmb.2024.168544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Bacteriophage T4 gene 32 protein (gp32) is a single-stranded DNA (ssDNA) binding protein essential for DNA replication. gp32 forms stable protein filaments on ssDNA through cooperative interactions between its core and N-terminal domain. gp32's C-terminal domain (CTD) is believed to primarily help coordinate DNA replication via direct interactions with constituents of the replisome. However, the exact mechanisms of these interactions are not known, and it is unclear how tightly-bound gp32 filaments are readily displaced from ssDNA as required for genomic processing. Here, we utilized truncated gp32 variants to demonstrate a key role of the CTD in regulating gp32 dissociation. Using optical tweezers, we probed the binding and dissociation dynamics of CTD-truncated gp32, *I, to an 8.1 knt ssDNA molecule and compared these measurements with those for full-length gp32. The *I-ssDNA helical filament becomes progressively unwound with increased protein concentration but remains significantly more stable than that of full-length, wild-type gp32. Protein oversaturation, concomitant with filament unwinding, facilitates rapid dissociation of full-length gp32 from across the entire ssDNA segment. In contrast, *I primarily unbinds slowly from only the ends of the cooperative clusters, regardless of the protein density and degree of DNA unwinding. Our results suggest that the CTD may constrain the relative twist angle of proteins within the ssDNA filament such that upon critical unwinding the cooperative interprotein interactions largely vanish, facilitating prompt removal of gp32. We propose a model of CTD-mediated gp32 displacement via internal restructuring of its filament, providing a mechanism for rapid ssDNA clearing during genomic processing.
Collapse
Affiliation(s)
- Ben A Cashen
- Department of Physics, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Michael Morse
- Department of Physics, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, Ohio State University, 281 W Lane Avenue, Columbus, OH 43210, USA
| | - Richard L Karpel
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Shin S, Shi G, Cho HW, Thirumalai D. Transcription-induced active forces suppress chromatin motion. Proc Natl Acad Sci U S A 2024; 121:e2307309121. [PMID: 38489381 PMCID: PMC10963020 DOI: 10.1073/pnas.2307309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
The organization of interphase chromosomes in a number of species is starting to emerge thanks to advances in a variety of experimental techniques. However, much less is known about the dynamics, especially in the functional states of chromatin. Some experiments have shown that the motility of individual loci in human interphase chromosome decreases during transcription and increases upon inhibiting transcription. This is a counterintuitive finding because it is thought that the active mechanical force (F) on the order of ten piconewtons, generated by RNA polymerase II (RNAPII) that is presumably transmitted to the gene-rich region of the chromatin, would render it more open, thus enhancing the mobility. We developed a minimal active copolymer model for interphase chromosomes to investigate how F affects the dynamical properties of chromatin. The movements of the loci in the gene-rich region are suppressed in an intermediate range of F and are enhanced at small F values, which has also been observed in experiments. In the intermediate F, the bond length between consecutive loci increases, becoming commensurate with the distance at the minimum of the attractive interaction between nonbonded loci. This results in a transient disorder-to-order transition, leading to a decreased mobility during transcription. Strikingly, the F-dependent change in the locus dynamics preserves the organization of the chromosome at [Formula: see text]. Transient ordering of the loci, which is not found in the polymers with random epigenetic profiles, in the gene-rich region might be a plausible mechanism for nucleating a dynamic network involving transcription factors, RNAPII, and chromatin.
Collapse
Affiliation(s)
- Sucheol Shin
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712
| | - Guang Shi
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712
- Department of Materials Science, University of Illinois, Urbana, IL61801
| | - Hyun Woo Cho
- Department of Fine Chemistry and Center for Functional Biomaterials, Seoul National University of Science and Technology, Seoul01811, Republic of Korea
| | - D. Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712
- Department of Physics, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
15
|
Halma MTJ, Xu L. Life under tension: the relevance of force on biological polymers. BIOPHYSICS REPORTS 2024; 10:48-56. [PMID: 38737478 PMCID: PMC11079598 DOI: 10.52601/bpr.2023.230019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 05/14/2024] Open
Abstract
Optical tweezers have elucidated numerous biological processes, particularly by enabling the precise manipulation and measurement of tension. One question concerns the biological relevance of these experiments and the generalizability of these experiments to wider biological systems. Here, we categorize the applicability of the information garnered from optical tweezers in two distinct categories: the direct relevance of tension in biological systems, and what experiments under tension can tell us about biological systems, while these systems do not reach the same tension as the experiment, still, these artificial experimental systems reveal insights into the operations of biological machines and life processes.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
- LUMICKS B. V., 1081 HV, Amsterdam, the Netherlands
| | - Longfu Xu
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Fenstermaker TK, Petruk S, Mazo A. An emerging paradigm in epigenetic marking: coordination of transcription and replication. Transcription 2024; 15:22-37. [PMID: 38378467 PMCID: PMC11093037 DOI: 10.1080/21541264.2024.2316965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
DNA replication and RNA transcription both utilize DNA as a template and therefore need to coordinate their activities. The predominant theory in the field is that in order for the replication fork to proceed, transcription machinery has to be evicted from DNA until replication is complete. If that does not occur, these machineries collide, and these collisions elicit various repair mechanisms which require displacement of one of the enzymes, often RNA polymerase, in order for replication to proceed. This model is also at the heart of the epigenetic bookmarking theory, which implies that displacement of RNA polymerase during replication requires gradual re-building of chromatin structure, which guides recruitment of transcriptional proteins and resumption of transcription. We discuss these theories but also bring to light newer data that suggest that these two processes may not be as detrimental to one another as previously thought. This includes findings suggesting that these processes can occur without fork collapse and that RNA polymerase may only be transiently displaced during DNA replication. We discuss potential mechanisms by which RNA polymerase may be retained at the replication fork and quickly rebind to DNA post-replication. These discoveries are important, not only as new evidence as to how these two processes are able to occur harmoniously but also because they have implications on how transcriptional programs are maintained through DNA replication. To this end, we also discuss the coordination of replication and transcription in light of revising the current epigenetic bookmarking theory of how the active gene status can be transmitted through S phase.
Collapse
Affiliation(s)
- Tyler K. Fenstermaker
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
17
|
Malinowska AM, van Mameren J, Peterman EJG, Wuite GJL, Heller I. Introduction to Optical Tweezers: Background, System Designs, and Applications. Methods Mol Biol 2024; 2694:3-28. [PMID: 37823997 DOI: 10.1007/978-1-0716-3377-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Optical tweezers are a means to manipulate objects with light. With the technique, microscopically small objects can be held and steered, allowing for accurate measurement of the forces applied to these objects. Optical tweezers can typically obtain a nanometer spatial resolution, a picoNewton force resolution, and a millisecond time resolution, which makes the technique well suited for the study of biological processes from the single-cell down to the single-molecule level. In this chapter, we aim to provide an introduction to the use of optical tweezers for single-molecule analyses. We start from the basic principles and methodology involved in optical trapping, force calibration, and force measurements. Next, we describe the components of an optical tweezers setup and their experimental relevance. Finally, we will provide an overview of the broad applications in context of biological research, with the emphasis on the measurement modes, experimental assays, and possible combinations with fluorescence microscopy techniques.
Collapse
Affiliation(s)
- Agata M Malinowska
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joost van Mameren
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Iddo Heller
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Lewis JS, van Oijen AM, Spenkelink LM. Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines. Chem Rev 2023; 123:13419-13440. [PMID: 37971892 PMCID: PMC10790245 DOI: 10.1021/acs.chemrev.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.
Collapse
Affiliation(s)
- Jacob S. Lewis
- Macromolecular
Machines Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Antoine M. van Oijen
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M. Spenkelink
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
19
|
Tišma M, Janissen R, Antar H, Martin-Gonzalez A, Barth R, Beekman T, van der Torre J, Michieletto D, Gruber S, Dekker C. Dynamic ParB-DNA interactions initiate and maintain a partition condensate for bacterial chromosome segregation. Nucleic Acids Res 2023; 51:11856-11875. [PMID: 37850647 PMCID: PMC10681803 DOI: 10.1093/nar/gkad868] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
In most bacteria, chromosome segregation is driven by the ParABS system where the CTPase protein ParB loads at the parS site to trigger the formation of a large partition complex. Here, we present in vitro studies of the partition complex for Bacillus subtilis ParB, using single-molecule fluorescence microscopy and AFM imaging to show that transient ParB-ParB bridges are essential for forming DNA condensates. Molecular Dynamics simulations confirm that condensation occurs abruptly at a critical concentration of ParB and show that multimerization is a prerequisite for forming the partition complex. Magnetic tweezer force spectroscopy on mutant ParB proteins demonstrates that CTP hydrolysis at the N-terminal domain is essential for DNA condensation. Finally, we show that transcribing RNA polymerases can steadily traverse the ParB-DNA partition complex. These findings uncover how ParB forms a stable yet dynamic partition complex for chromosome segregation that induces DNA condensation and segregation while enabling replication and transcription.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Hammam Antar
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alejandro Martin-Gonzalez
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Twan Beekman
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Stephan Gruber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
20
|
Karna D, Mano E, Ji J, Kawamata I, Suzuki Y, Mao H. Chemo-mechanical forces modulate the topology dynamics of mesoscale DNA assemblies. Nat Commun 2023; 14:6459. [PMID: 37833326 PMCID: PMC10575982 DOI: 10.1038/s41467-023-41604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
The intrinsic complexity of many mesoscale (10-100 nm) cellular machineries makes it challenging to elucidate their topological arrangement and transition dynamics. Here, we exploit DNA origami nanospring as a model system to demonstrate that tens of piconewton linear force can modulate higher-order conformation dynamics of mesoscale molecular assemblies. By switching between two chemical structures (i.e., duplex and tetraplex DNA) in the junctions of adjacent origami modules, the corresponding stretching or compressing chemo-mechanical stress reversibly flips the backbone orientations of the DNA nanosprings. Both coarse-grained molecular dynamics simulations and atomic force microscopy measurements reveal that such a backbone conformational switch does not alter the right-handed chirality of the nanospring helix. This result suggests that mesoscale helical handedness may be governed by the torque, rather than the achiral orientation, of nanospring backbones. It offers a topology-based caging/uncaging concept to present chemicals in response to environmental cues in solution.
Collapse
Affiliation(s)
- Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Eriko Mano
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Jiahao Ji
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Ibuki Kawamata
- Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan.
| | - Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-Cho, Tsu, 514-8507, Japan.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
21
|
Chen X, Zhao Y, Zhang Y, Li B, Li Y, Jiang L. Optical Manipulation of Soft Matter. SMALL METHODS 2023:e2301105. [PMID: 37818749 DOI: 10.1002/smtd.202301105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/22/2023] [Indexed: 10/13/2023]
Abstract
Optical manipulation has emerged as a pivotal tool in soft matter research, offering superior applicability, spatiotemporal precision, and manipulation capabilities compared to conventional methods. Here, an overview of the optical mechanisms governing the interaction between light and soft matter materials during manipulation is provided. The distinct characteristics exhibited by various soft matter materials, including liquid crystals, polymers, colloids, amphiphiles, thin liquid films, and biological soft materials are highlighted, and elucidate their fundamental response characteristics to optical manipulation techniques. This knowledge serves as a foundation for designing effective strategies for soft matter manipulation. Moreover, the diverse range of applications and future prospects that arise from the synergistic collaboration between optical manipulation and soft matter materials in emerging fields are explored.
Collapse
Affiliation(s)
- Xixi Chen
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yanan Zhao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yao Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
22
|
Stadlbauer P, Mlýnský V, Krepl M, Šponer J. Complexity of Guanine Quadruplex Unfolding Pathways Revealed by Atomistic Pulling Simulations. J Chem Inf Model 2023; 63:4716-4731. [PMID: 37458574 PMCID: PMC10428220 DOI: 10.1021/acs.jcim.3c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 08/15/2023]
Abstract
Guanine quadruplexes (GQs) are non-canonical nucleic acid structures involved in many biological processes. GQs formed in single-stranded regions often need to be unwound by cellular machinery, so their mechanochemical properties are important. Here, we performed steered molecular dynamics simulations of human telomeric GQs to study their unfolding. We examined four pulling regimes, including a very slow setup with pulling velocity and force load accessible to high-speed atomic force microscopy. We identified multiple factors affecting the unfolding mechanism, i.e.,: (i) the more the direction of force was perpendicular to the GQ channel axis (determined by GQ topology), the more the base unzipping mechanism happened, (ii) the more parallel the direction of force was, GQ opening and cross-like GQs were more likely to occur, (iii) strand slippage mechanism was possible for GQs with an all-anti pattern in a strand, and (iv) slower pulling velocity led to richer structural dynamics with sampling of more intermediates and partial refolding events. We also identified that a GQ may eventually unfold after a force drop under forces smaller than those that the GQ withstood before the drop. Finally, we found out that different unfolding intermediates could have very similar chain end-to-end distances, which reveals some limitations of structural interpretations of single-molecule spectroscopic data.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| |
Collapse
|
23
|
Luengo-Márquez J, Zalvide-Pombo J, Pérez R, Assenza S. Force-dependent elasticity of nucleic acids. NANOSCALE 2023; 15:6738-6744. [PMID: 36942727 DOI: 10.1039/d2nr06324g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The functioning of double-stranded (ds) nucleic acids (NAs) in cellular processes is strongly mediated by their elastic response. These processes involve proteins that interact with dsDNA or dsRNA and distort their structures. The perturbation of the elasticity of NAs arising from these deformations is not properly considered by most theoretical frameworks. In this work, we introduce a novel method to assess the impact of mechanical stress on the elastic response of dsDNA and dsRNA through the analysis of the fluctuations of the double helix. Application of this approach to atomistic simulations reveals qualitative differences in the force dependence of the mechanical properties of dsDNA with respect to those of dsRNA, which we relate to structural features of these molecules by means of physically-sound minimalistic models.
Collapse
Affiliation(s)
- Juan Luengo-Márquez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Zalvide-Pombo
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Rubén Pérez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Salvatore Assenza
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
24
|
Lostao A, Lim K, Pallarés MC, Ptak A, Marcuello C. Recent advances in sensing the inter-biomolecular interactions at the nanoscale - A comprehensive review of AFM-based force spectroscopy. Int J Biol Macromol 2023; 238:124089. [PMID: 36948336 DOI: 10.1016/j.ijbiomac.2023.124089] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Biomolecular interactions underpin most processes inside the cell. Hence, a precise and quantitative understanding of molecular association and dissociation events is crucial, not only from a fundamental perspective, but also for the rational design of biomolecular platforms for state-of-the-art biomedical and industrial applications. In this context, atomic force microscopy (AFM) appears as an invaluable experimental technique, allowing the measurement of the mechanical strength of biomolecular complexes to provide a quantitative characterization of their interaction properties from a single molecule perspective. In the present review, the most recent methodological advances in this field are presented with special focus on bioconjugation, immobilization and AFM tip functionalization, dynamic force spectroscopy measurements, molecular recognition imaging and theoretical modeling. We expect this work to significantly aid in grasping the principles of AFM-based force spectroscopy (AFM-FS) technique and provide the necessary tools to acquaint the type of data that can be achieved from this type of experiments. Furthermore, a critical assessment is done with other nanotechnology techniques to better visualize the future prospects of AFM-FS.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain; Fundación ARAID, Aragón, Spain.
| | - KeeSiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Ishikawa 920-1192, Japan
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan 60-925, Poland
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
25
|
Haghizadeh A, Iftikhar M, Dandpat SS, Simpson T. Looking at Biomolecular Interactions through the Lens of Correlated Fluorescence Microscopy and Optical Tweezers. Int J Mol Sci 2023; 24:2668. [PMID: 36768987 PMCID: PMC9916863 DOI: 10.3390/ijms24032668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Understanding complex biological events at the molecular level paves the path to determine mechanistic processes across the timescale necessary for breakthrough discoveries. While various conventional biophysical methods provide some information for understanding biological systems, they often lack a complete picture of the molecular-level details of such dynamic processes. Studies at the single-molecule level have emerged to provide crucial missing links to understanding complex and dynamic pathways in biological systems, which are often superseded by bulk biophysical and biochemical studies. Latest developments in techniques combining single-molecule manipulation tools such as optical tweezers and visualization tools such as fluorescence or label-free microscopy have enabled the investigation of complex and dynamic biomolecular interactions at the single-molecule level. In this review, we present recent advances using correlated single-molecule manipulation and visualization-based approaches to obtain a more advanced understanding of the pathways for fundamental biological processes, and how this combination technique is facilitating research in the dynamic single-molecule (DSM), cell biology, and nanomaterials fields.
Collapse
|
26
|
Mondal A, Bhattacherjee A. Understanding protein diffusion on force-induced stretched DNA conformation. Front Mol Biosci 2022; 9:953689. [PMID: 36545509 PMCID: PMC9760818 DOI: 10.3389/fmolb.2022.953689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/22/2022] [Indexed: 12/11/2022] Open
Abstract
DNA morphology is subjected to environmental conditions and is closely coupled with its function. For example, DNA experiences stretching forces during several biological processes, including transcription and genome transactions, that significantly alter its conformation from that of B-DNA. Indeed, a well-defined 1.5 times extended conformation of dsDNA, known as Σ-DNA, has been reported in DNA complexes with proteins such as Rad51 and RecA. A striking feature in Σ-DNA is that the nucleobases are partitioned into triplets of three locally stacked bases separated by an empty rise gap of ∼ 5 Å. The functional role of such a DNA base triplet was hypothesized to be coupled with the ease of recognition of DNA bases by DNA-binding proteins (DBPs) and the physical origin of three letters (codon/anti-codon) in the genetic code. However, the underlying mechanism of base-triplet formation and the ease of DNA base-pair recognition by DBPs remain elusive. To investigate, here, we study the diffusion of a protein on a force-induced stretched DNA using coarse-grained molecular dynamics simulations. Upon pulling at the 3' end of DNA by constant forces, DNA exhibits a conformational transition from B-DNA to a ladder-like S-DNA conformation via Σ-DNA intermediate. The resulting stretched DNA conformations exhibit non-uniform base-pair clusters such as doublets, triplets, and quadruplets, of which triplets are energetically more stable than others. We find that protein favors the triplet formation compared to its unbound form while interacting non-specifically along DNA, and the relative population of it governs the ruggedness of the protein-DNA binding energy landscape and enhances the efficiency of DNA base recognition. Furthermore, we analyze the translocation mechanism of a DBP under different force regimes and underscore the significance of triplet formation in regulating the facilitated diffusion of protein on DNA. Our study, thus, provides a plausible framework for understanding the structure-function relationship between triplet formation and base recognition by a DBP and helps to understand gene regulation in complex regulatory processes.
Collapse
Affiliation(s)
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
27
|
Eshghi I, Zidovska A, Grosberg AY. Symmetry-based classification of forces driving chromatin dynamics. SOFT MATTER 2022; 18:8134-8146. [PMID: 36239271 DOI: 10.1039/d2sm00840h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chromatin - the functional form of DNA in the cell - exists in the form of a polymer immersed in a nucleoplasmic fluid inside the cell nucleus. Both chromatin and nucleoplasm are subject to active forces resulting from local biological processes. This activity leads to non-equilibrium phenomena, affecting chromatin organization and dynamics, yet the underlying physics is far from understood. Here, we expand upon a previously developed two-fluid model of chromatin and nucleoplasm by considering three types of activity in the form of force dipoles - two with both forces of the dipole acting on the same fluid (either polymer or nucleoplasm) and a third, with two forces pushing chromatin and solvent in opposite directions. We find that this latter type results in the most significant flows, dominating over most length scales of interest. Due to the friction between the fluids and their viscosity, we observe emergent screening length scales in the active flows of this system. We predict that the presence of different activity types and their relative strengths can be inferred from observing the power spectra of hydrodynamic fluctuations in the chromatin and the nucleoplasm.
Collapse
Affiliation(s)
- Iraj Eshghi
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003, USA.
| | - Alexandra Zidovska
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003, USA.
| | - Alexander Y Grosberg
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003, USA.
| |
Collapse
|
28
|
Johnson RS, Strausbauch M, McCloud C. An NTP-driven mechanism for the nucleotide addition cycle of Escherichia coli RNA polymerase during transcription. PLoS One 2022; 17:e0273746. [PMID: 36282801 PMCID: PMC9595533 DOI: 10.1371/journal.pone.0273746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/15/2022] [Indexed: 11/06/2022] Open
Abstract
The elementary steps of transcription as catalyzed by E. coli RNA polymerase during one and two rounds of the nucleotide addition cycle (NAC) were resolved in rapid kinetic studies. Modelling of stopped-flow kinetic data of pyrophosphate release in a coupled enzyme assay during one round of the NAC indicates that the rate of pyrophosphate release is significantly less than that for nucleotide incorporation. Upon modelling of the stopped-flow kinetic data for pyrophosphate release during two rounds of the NAC, it was observed that the presence of the next nucleotide for incorporation increases the rate of release of the first pyrophosphate equivalent; incorrect nucleotides for incorporation had no effect on the rate of pyrophosphate release. Although the next nucleotide for incorporation increases the rate of pyrophosphate release, it is still significantly less than the rate of incorporation of the first nucleotide. The results from the stopped-flow kinetic studies were confirmed by using quench-flow followed by thin-layer chromatography (QF-TLC) with only the first nucleotide for incorporation labeled on the gamma phosphate with 32P to monitor pyrophosphate release. Collectively, the results are consistent with an NTP-driven model for the NAC in which the binding of the next cognate nucleotide for incorporation causes a synergistic conformational change in the enzyme that triggers the more rapid release of pyrophosphate, translocation of the enzyme along the DNA template strand and nucleotide incorporation.
Collapse
Affiliation(s)
- Ronald S. Johnson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| | - Mark Strausbauch
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Christopher McCloud
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
29
|
Hilton MA, Manning HW, Górniak I, Brady SK, Johnson MM, Zimmer J, Lang MJ. Single-molecule investigations of single-chain cellulose biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2122770119. [PMID: 36161928 PMCID: PMC9546554 DOI: 10.1073/pnas.2122770119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Cellulose biosynthesis in sessile bacterial colonies originates in the membrane-integrated bacterial cellulose synthase (Bcs) AB complex. We utilize optical tweezers to measure single-strand cellulose biosynthesis by BcsAB from Rhodobacter sphaeroides. Synthesis depends on uridine diphosphate glucose, Mg2+, and cyclic diguanosine monophosphate, with the last displaying a retention time of ∼80 min. Below a stall force of 12.7 pN, biosynthesis is relatively insensitive to force and proceeds at a rate of one glucose addition every 2.5 s at room temperature, increasing to two additions per second at 37°. At low forces, conformational hopping is observed. Single-strand cellulose stretching unveiled a persistence length of 6.2 nm, an axial stiffness of 40.7 pN, and an ability for complexes to maintain a tight grip, with forces nearing 100 pN. Stretching experiments exhibited hysteresis, suggesting that cellulose microstructure underpinning robust biofilms begins to form during synthesis. Cellohexaose spontaneously binds to nascent single cellulose strands, impacting polymer mechanical properties and increasing BcsAB activity.
Collapse
Affiliation(s)
- Mark A. Hilton
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Harris W. Manning
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Ireneusz Górniak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908
| | - Sonia K. Brady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Madeline M. Johnson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908
- HHMI, Chevy Chase, MD 20815
| | - Matthew J. Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37235
| |
Collapse
|
30
|
Zhou LM, Shi Y, Zhu X, Hu G, Cao G, Hu J, Qiu CW. Recent Progress on Optical Micro/Nanomanipulations: Structured Forces, Structured Particles, and Synergetic Applications. ACS NANO 2022; 16:13264-13278. [PMID: 36053722 DOI: 10.1021/acsnano.2c05634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical manipulation has achieved great success in the fields of biology, micro/nano robotics and physical sciences in the past few decades. To date, the optical manipulation is still witnessing substantial progress powered by the growing accessibility of the complex light field, advanced nanofabrication and developed understandings of light-matter interactions. In this perspective, we highlight recent advancements of optical micro/nanomanipulations in cutting-edge applications, which can be fostered by structured optical forces enabled with diverse auxiliary multiphysical field/forces and structured particles. We conclude with our vision of ongoing and futuristic directions, including heat-avoided and heat-utilized manipulation, nonlinearity-mediated trapping and manipulation, metasurface/two-dimensional material based optical manipulation, as well as interface-based optical manipulation.
Collapse
Affiliation(s)
- Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
| | - Xiaoyu Zhu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Guangtao Cao
- School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410004, China
| | - Jigang Hu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
31
|
Kor R, Mohammad-Rafiee F. Theoretical study of RNA-polymerase behavior considering the backtracking state. SOFT MATTER 2022; 18:5979-5988. [PMID: 35920142 DOI: 10.1039/d2sm00232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The dynamical behavior of the RNA polymerase in the transcription process is vital to gene expression. During the transcription process, the 3' end of the transcribed RNA can be dislocated from the active site of the enzyme and as a result, the RNA polymerase goes to the backtracked state. Here, we develop a theoretical model to study the transcription process considering the backtracking state. We aim at describing the behavior of the enzyme in the backtracking state in the presence of an external force, which leads to two possibilities: (i) rescuing from the backtracking state and, (ii) the arresting of the enzyme. We study the probability and the rate of the mentioned processes. In addition, we find that entering the backtracking state behaves like the Brownian ratchet mechanism. This model could shed some light on the modeling of the transcription process and further studies on the energy landscape of the backtracking channel and the gene regulation.
Collapse
Affiliation(s)
- Razieh Kor
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Farshid Mohammad-Rafiee
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| |
Collapse
|
32
|
The Development of Single Molecule Force Spectroscopy: From Polymer Biophysics to Molecular Machines. Q Rev Biophys 2022; 55:e9. [PMID: 35916314 DOI: 10.1017/s0033583522000087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Janissen R, Eslami-Mossallam B, Artsimovitch I, Depken M, Dekker NH. High-throughput single-molecule experiments reveal heterogeneity, state switching, and three interconnected pause states in transcription. Cell Rep 2022; 39:110749. [PMID: 35476989 DOI: 10.1016/j.celrep.2022.110749] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/17/2022] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
Pausing by bacterial RNA polymerase (RNAp) is vital in the recruitment of regulatory factors, RNA folding, and coupled translation. While backtracking and intra-structural isomerization have been proposed to trigger pausing, our mechanistic understanding of backtrack-associated pauses and catalytic recovery remains incomplete. Using high-throughput magnetic tweezers, we examine the Escherichia coli RNAp transcription dynamics over a wide range of forces and NTP concentrations. Dwell-time analysis and stochastic modeling identify, in addition to a short-lived elemental pause, two distinct long-lived backtrack pause states differing in recovery rates. We identify two stochastic sources of transcription heterogeneity: alterations in short-pause frequency that underlies elongation-rate switching, and variations in RNA cleavage rates in long-lived backtrack states. Together with effects of force and Gre factors, we demonstrate that recovery from deep backtracks is governed by intrinsic RNA cleavage rather than diffusional Brownian dynamics. We introduce a consensus mechanistic model that unifies our findings with prior models.
Collapse
Affiliation(s)
- Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Behrouz Eslami-Mossallam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Irina Artsimovitch
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA.
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
34
|
Abstract
Biomolecular condensates are intracellular organelles that are not bounded by membranes and often show liquid-like, dynamic material properties. They typically contain various types of proteins and nucleic acids. How the interaction of proteins and nucleic acids finally results in dynamic condensates is not fully understood. Here we use optical tweezers and fluorescence microscopy to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) condenses with individual molecules of single- and double-stranded DNA. We find that FUS adsorbs on DNA in a monolayer and hence generates an effectively sticky FUS–DNA polymer that collapses and finally forms a dynamic, reversible FUS–DNA co-condensate. We speculate that protein monolayer-based protein–nucleic acid co-condensation is a general mechanism for forming intracellular membraneless organelles. Biomolecular condensates provide distinct compartments that can localize and organize biochemistry inside cells. Recent evidence suggests that condensate formation is prevalent in the cell nucleus. To understand how different components of the nucleus interact during condensate formation is an important challenge. In particular, the physics of co-condensation of proteins together with nucleic acids remains elusive. Here we use optical tweezers to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) forms liquid-like assemblies in vitro, by co-condensing together with individual DNA molecules. Through progressive force-induced peeling of dsDNA, buffer exchange, and force measurements, we show that FUS adsorbing in a single layer on DNA effectively generates a sticky FUS–DNA polymer that can collapse to form a liquid-like FUS–DNA co-condensate. Condensation occurs at constant DNA tension for double-stranded DNA, which is a signature of phase separation. We suggest that co-condensation mediated by protein monolayer adsorption on nucleic acids is an important mechanism for intracellular compartmentalization.
Collapse
|
35
|
Abstract
The compaction of linear DNA into micrometer-sized nuclear boundaries involves the establishment of specific three-dimensional (3D) DNA structures complexed with histone proteins that form chromatin. The resulting structures modulate essential nuclear processes such as transcription, replication, and repair to facilitate or impede their multi-step progression and these contribute to dynamic modification of the 3D-genome organization. It is generally accepted that protein–protein and protein–DNA interactions form the basis of 3D-genome organization. However, the constant generation of mechanical forces, torques, and other stresses produced by various proteins translocating along DNA could be playing a larger role in genome organization than currently appreciated. Clearly, a thorough understanding of the mechanical determinants imposed by DNA transactions on the 3D organization of the genome is required. We provide here an overview of our current knowledge and highlight the importance of DNA and chromatin mechanics in gene expression.
Collapse
Affiliation(s)
- Rajiv Kumar Jha
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| | - Fedor Kouzine
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| |
Collapse
|
36
|
Jonchhe S, Pandey S, Beneze C, Emura T, Sugiyama H, Endo M, Mao H. Dissection of nanoconfinement and proximity effects on the binding events in DNA origami nanocavity. Nucleic Acids Res 2022; 50:697-703. [PMID: 35037040 PMCID: PMC8789071 DOI: 10.1093/nar/gkab1298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/06/2021] [Accepted: 01/09/2022] [Indexed: 12/02/2022] Open
Abstract
Both ligand binding and nanocavity can increase the stability of a biomolecular structure. Using mechanical unfolding in optical tweezers, here we found that a DNA origami nanobowl drastically increased the stability of a human telomeric G-quadruplex bound with a pyridostatin (PDS) ligand. Such a stability change is equivalent to >4 orders of magnitude increase (upper limit) in binding affinity (Kd: 490 nM → 10 pM (lower limit)). Since confined space can assist the binding through a proximity effect between the ligand-receptor pair and a nanoconfinement effect that is mediated by water molecules, we named such a binding as mechanochemical binding. After minimizing the proximity effect by using PDS that can enter or leave the DNA nanobowl freely, we attributed the increased affinity to the nanoconfinement effect (22%) and the proximity effect (78%). This represents the first quantification to dissect the effects of proximity and nanoconfinement on binding events in nanocavities. We anticipate these DNA nanoassemblies can deliver both chemical (i.e. ligand) and mechanical (i.e. nanocavity) milieus to facilitate robust mechanochemical binding in various biological systems.
Collapse
Affiliation(s)
- Sagun Jonchhe
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Christian Beneze
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.,Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita, Osaka 564-8680, Japan
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
37
|
Gao X, Inman JT, Wang MD. Angular Optical Trapping to Directly Measure DNA Torsional Mechanics. Methods Mol Biol 2022; 2478:37-73. [PMID: 36063318 DOI: 10.1007/978-1-0716-2229-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Angular optical trapping (AOT) is a powerful technique that permits direct angular manipulation of a trapped particle with simultaneous measurement of torque and rotation, while also retaining the capabilities of position and force detection. This technique provides unique approaches to investigate the torsional properties of nucleic acids and DNA-protein complexes, as well as impacts of torsional stress on fundamental biological processes, such as transcription and replication. Here we describe the principle, construction, and calibration of the AOT in detail and provide a guide to the performance of single-molecule torque measurements on DNA molecules. We include the constant-force method and, notably, a new constant-extension method that enables measurement of the twist persistence length of both extended DNA, under an extremely low force, and plectonemic DNA. This chapter can assist in the implementation and application of this technique for general researchers in the single-molecule field.
Collapse
Affiliation(s)
- Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Laboratory of Atomic and Solid State Physics (LASSP), Department of Physics, Cornell University, Ithaca, NY, USA
| | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Laboratory of Atomic and Solid State Physics (LASSP), Department of Physics, Cornell University, Ithaca, NY, USA
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA.
- Laboratory of Atomic and Solid State Physics (LASSP), Department of Physics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
38
|
Man T, Geldhof JJ, Peterman EJG, Wuite GJL, Heller I. One-Dimensional STED Microscopy in Optical Tweezers. Methods Mol Biol 2022; 2478:101-122. [PMID: 36063320 DOI: 10.1007/978-1-0716-2229-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical tweezers and fluorescence microscopy are powerful methods for investigating the mechanical and structural properties of biomolecules and for studying the dynamics of the biomolecular processes that these molecules are involved in. Here we provide an outline of the concurrent use of optical tweezers and fluorescence microscopy for analyzing biomolecular processes. In particular, we focus on the use of super-resolution microscopy in optical tweezers, which allows visualization of molecules at the higher molecular densities that are typically encountered in living systems. We provide specific details on the alignment procedures of the optical pathways for confocal fluorescence microscopy and 1D-STED microscopy and elaborate on how to diagnose and correct optical aberrations and STED phase plate misalignments.
Collapse
Affiliation(s)
- Tianlong Man
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joost J Geldhof
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Iddo Heller
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Piccolo JG, Méndez Harper J, McCalla D, Xu W, Miller S, Doan J, Kovari D, Dunlap D, Finzi L. Force spectroscopy with electromagnetic tweezers. JOURNAL OF APPLIED PHYSICS 2021; 130:134702. [PMID: 38681504 PMCID: PMC11055633 DOI: 10.1063/5.0060276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/07/2021] [Indexed: 05/01/2024]
Abstract
Force spectroscopy using magnetic tweezers (MTs) is a powerful method to probe the physical characteristics of single polymers. Typically, molecules are functionalized for specific attachment to a glass surface at one end and a micrometer-scale paramagnetic bead at the other end. By applying an external magnetic field, multiple molecules can be stretched and twisted simultaneously without exposure to potentially damaging radiation. The majority of MTs utilize mobile, permanent magnets to produce forces on the beads (and the molecule under test). However, translating and rotating the permanent magnets may require expensive precision actuators, limit the rate at which force can be changed, and may induce vibrations that disturb tether dynamics and bead tracking. Alternatively, the magnetic field can be produced with an electromagnet, which allows fast force modulation and eliminates motor-associated vibration. Here, we describe a low-cost quadrapolar electromagnetic tweezer design capable of manipulating DNA-tethered MyOne paramagnetic beads with forces as high as 15 pN. The solid-state nature of the generated B-field modulated along two axes is convenient for accessing the range of forces and torques relevant for studying the activity of DNA motor enzymes like polymerases and helicases. Our design specifically leverages technology available at an increasing number of university maker spaces and student-run machine shops. Thus, it is an accessible tool for undergraduate education that is applicable to a wide range of biophysical research questions.
Collapse
Affiliation(s)
- Joseph G. Piccolo
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| | - Joshua Méndez Harper
- Department of Earth Science, University of Oregon, 1272 University of Oregon, Eugene, Oregon 97403, USA
| | - Derrica McCalla
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| | - Wenxuan Xu
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| | - Sam Miller
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| | - Jessie Doan
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| | - Dan Kovari
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| |
Collapse
|
40
|
Meng X, Kukura P, Faez S. Sensing force and charge at the nanoscale with a single-molecule tether. NANOSCALE 2021; 13:12687-12696. [PMID: 34477619 PMCID: PMC8319944 DOI: 10.1039/d1nr01970h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Measuring the electrophoretic mobility of molecules is a powerful experimental approach for investigating biomolecular processes. A frequent challenge in the context of single-particle measurements is throughput, limiting the obtainable statistics. Here, we present a molecular force sensor and charge detector based on parallelised imaging and tracking of tethered double-stranded DNA functionalised with charged nanoparticles interacting with an externally applied electric field. Tracking the position of the tethered particle with simultaneous nanometre precision and microsecond temporal resolution allows us to detect and quantify the electrophoretic force down to the sub-piconewton scale. Furthermore, we demonstrate that this approach is suitable for detecting changes to the particle charge state, as induced by the addition of charged biomolecules or changes to pH. Our approach provides an alternative route to studying structural and charge dynamics at the single molecule level.
Collapse
Affiliation(s)
- Xuanhui Meng
- Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks RoadOX1 3QZ OxfordUK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks RoadOX1 3QZ OxfordUK
| | - Sanli Faez
- Nanophotonics, Debye Institute for Nanomaterials Research, Utrecht UniversityNLThe Netherlands
| |
Collapse
|
41
|
Mechanical strength of RNA knot in Zika virus protects against cellular defenses. Nat Chem Biol 2021; 17:975-981. [PMID: 34253909 DOI: 10.1038/s41589-021-00829-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
Unusual knot-like structures recently discovered in viral exoribonuclease-resistant RNAs (xrRNAs) prevent digestion by host RNases to create subgenomic RNAs enhancing infection and pathogenicity. xrRNAs are proposed to prevent digestion through mechanical resistance to unfolding. However, their unfolding force has not been measured, and the factors determining RNase resistance are unclear. Furthermore, how these knots fold remains unknown. Unfolding a Zika virus xrRNA with optical tweezers revealed that it was the most mechanically stable RNA yet observed. The knot formed by threading the 5' end into a three-helix junction before pseudoknot interactions closed a ring around it. The pseudoknot and tertiary contacts stabilizing the threaded 5' end were both required to generate extreme force resistance, whereas removing a 5'-end contact produced a low-force knot lacking RNase resistance. These results indicate mechanical resistance plays a central functional role, with the fraction of molecules forming extremely high-force knots determining the RNase resistance level.
Collapse
|
42
|
Bustamante CJ, Chemla YR, Liu S, Wang MD. Optical tweezers in single-molecule biophysics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:25. [PMID: 34849486 PMCID: PMC8629167 DOI: 10.1038/s43586-021-00021-6] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Optical tweezers have become the method of choice in single-molecule manipulation studies. In this Primer, we first review the physical principles of optical tweezers and the characteristics that make them a powerful tool to investigate single molecules. We then introduce the modifications of the method to extend the measurement of forces and displacements to torques and angles, and to develop optical tweezers with single-molecule fluorescence detection capabilities. We discuss force and torque calibration of these instruments, their various modes of operation and most common experimental geometries. We describe the type of data obtained in each experimental design and their analyses. This description is followed by a survey of applications of these methods to the studies of protein-nucleic acid interactions, protein/RNA folding and molecular motors. We also discuss data reproducibility, the factors that lead to the data variability among different laboratories and the need to develop field standards. We cover the current limitations of the methods and possible ways to optimize instrument operation, data extraction and analysis, before suggesting likely areas of future growth.
Collapse
Affiliation(s)
- Carlos J. Bustamante
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Yann R. Chemla
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Michelle D. Wang
- Department of Physics, Laboratory of Atomic and Solid State Physics, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| |
Collapse
|
43
|
Keenan CR, Mlodzianoski MJ, Coughlan HD, Bediaga NG, Naselli G, Lucas EC, Wang Q, de Graaf CA, Hilton DJ, Harrison LC, Smyth GK, Rogers KL, Boudier T, Allan RS, Johanson TM. Chromosomes distribute randomly to, but not within, human neutrophil nuclear lobes. iScience 2021; 24:102161. [PMID: 33665577 PMCID: PMC7905186 DOI: 10.1016/j.isci.2021.102161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 02/03/2021] [Indexed: 11/19/2022] Open
Abstract
The proximity pattern and radial distribution of chromosome territories within spherical nuclei are random and non-random, respectively. Whether this distribution pattern is conserved in the partitioned or lobed nuclei of polymorphonuclear cells is unclear. Here we use chromosome paint technology to examine the chromosome territories of all 46 chromosomes in hundreds of single human neutrophils - an abundant and famously polymorphonuclear immune cell. By comparing the distribution of chromosomes to randomly shuffled controls and validating with orthogonal chromosome conformation capture technology, we show for the first time that human chromosomes randomly distribute to neutrophil nuclear lobes, while maintaining a non-random radial distribution within these lobes. Furthermore, we demonstrate that chromosome length correlates with three-dimensional volume not only in neutrophils but other human immune cells. This work demonstrates that chromosomes are largely passive passengers during the neutrophil lobing process but are able to subsequently maintain their macro-level organization within lobes.
Collapse
Affiliation(s)
- Christine R. Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J. Mlodzianoski
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hannah D. Coughlan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Naiara G. Bediaga
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gaetano Naselli
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Erin C. Lucas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Qike Wang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Carolyn A. de Graaf
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Douglas J. Hilton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Leonard C. Harrison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kelly L. Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Thomas Boudier
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Institute of Biology Paris-Seine, Sorbonne Université, Paris, France
| | - Rhys S. Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Timothy M. Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
44
|
Takahashi S, Oshige M, Katsura S. DNA Manipulation and Single-Molecule Imaging. Molecules 2021; 26:1050. [PMID: 33671359 PMCID: PMC7922115 DOI: 10.3390/molecules26041050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/22/2022] Open
Abstract
DNA replication, repair, and recombination in the cell play a significant role in the regulation of the inheritance, maintenance, and transfer of genetic information. To elucidate the biomolecular mechanism in the cell, some molecular models of DNA replication, repair, and recombination have been proposed. These biological studies have been conducted using bulk assays, such as gel electrophoresis. Because in bulk assays, several millions of biomolecules are subjected to analysis, the results of the biological analysis only reveal the average behavior of a large number of biomolecules. Therefore, revealing the elementary biological processes of a protein acting on DNA (e.g., the binding of protein to DNA, DNA synthesis, the pause of DNA synthesis, and the release of protein from DNA) is difficult. Single-molecule imaging allows the analysis of the dynamic behaviors of individual biomolecules that are hidden during bulk experiments. Thus, the methods for single-molecule imaging have provided new insights into almost all of the aspects of the elementary processes of DNA replication, repair, and recombination. However, in an aqueous solution, DNA molecules are in a randomly coiled state. Thus, the manipulation of the physical form of the single DNA molecules is important. In this review, we provide an overview of the unique studies on DNA manipulation and single-molecule imaging to analyze the dynamic interaction between DNA and protein.
Collapse
Affiliation(s)
- Shunsuke Takahashi
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University, Hatoyama-cho, Hiki-gun, Saitama 350-0394, Japan;
| | - Masahiko Oshige
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan;
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan
| | - Shinji Katsura
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan;
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan
| |
Collapse
|
45
|
Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A. Biofunctional hydrogels based on host–guest interactions. Polym J 2020. [DOI: 10.1038/s41428-020-0352-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Mitra J, Ha T. Streamlining effects of extra telomeric repeat on telomeric DNA folding revealed by fluorescence-force spectroscopy. Nucleic Acids Res 2020; 47:11044-11056. [PMID: 31617570 PMCID: PMC6868435 DOI: 10.1093/nar/gkz906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 01/26/2023] Open
Abstract
A human telomere ends in a single-stranded 3′ tail, composed of repeats of T2AG3. G-quadruplexes (GQs) formed from four consecutive repeats have been shown to possess high-structural and mechanical diversity. In principle, a GQ can form from any four repeats that are not necessarily consecutive. To understand the dynamics of GQs with positional multiplicity, we studied five and six repeats human telomeric sequence using a combination of single molecule FRET and optical tweezers. Our results suggest preferential formation of GQs at the 3′ end both in K+ and Na+ solutions, with minor populations of 5′-GQ or long-loop GQs. A vectorial folding assay which mimics the directional nature of telomere extension showed that the 3′ preference holds even when folding is allowed to begin from the 5′ side. In 100 mM K+, the unassociated T2AG3 segment has a streamlining effect in that one or two mechanically distinct species was observed at a single position instead of six or more observed without an unassociated repeat. We did not observe such streamlining effect in 100 mM Na+. Location of GQ and reduction in conformational diversity in the presence of extra repeats have implications in telomerase inhibition, T-loop formation and telomere end protection.
Collapse
Affiliation(s)
- Jaba Mitra
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana IL 61801, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
47
|
Shoji T, Itoh K, Saitoh J, Kitamura N, Yoshii T, Murakoshi K, Yamada Y, Yokoyama T, Ishihara H, Tsuboi Y. Plasmonic Manipulation of DNA using a Combination of Optical and Thermophoretic Forces: Separation of Different-Sized DNA from Mixture Solution. Sci Rep 2020; 10:3349. [PMID: 32098985 PMCID: PMC7042363 DOI: 10.1038/s41598-020-60165-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/10/2020] [Indexed: 11/08/2022] Open
Abstract
We demonstrate the size-dependent separation and permanent immobilization of DNA on plasmonic substrates by means of plasmonic optical tweezers. We found that a gold nanopyramidal dimer array enhanced the optical force exerted on the DNA, leading to permanent immobilization of the DNA on the plasmonic substrate. The immobilization was realized by a combination of the plasmon-enhanced optical force and the thermophoretic force induced by a photothermal effect of the plasmons. In this study, we applied this phenomenon to the separation and fixation of size-different DNA. During plasmon excitation, DNA strands of different sizes became permanently immobilized on the plasmonic substrate forming micro-rings of DNA. The diameter of the ring was larger for longer DNA (in base pairs). When we used plasmonic optical tweezers to trap DNA of two different lengths dissolved in solution (φx DNA (5.4 kbp) and λ-DNA (48.5 kbp), or φx DNA and T4 DNA (166 kbp)), the DNA were immobilized, creating a double micro-ring pattern. The DNA were optically separated and immobilized in the double ring, with the shorter sized DNA and the larger one forming the smaller and larger rings, respectively. This phenomenon can be quantitatively explained as being due to a combination of the plasmon-enhanced optical force and the thermophoretic force. Our plasmonic optical tweezers open up a new avenue for the separation and immobilization of DNA, foreshadowing the emergence of optical separation and fixation of biomolecules such as proteins and other ncuelic acids.
Collapse
Affiliation(s)
- Tatsuya Shoji
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 5558-8585, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 5558-8585, Japan
| | - Kenta Itoh
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 5558-8585, Japan
| | - Junki Saitoh
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Noboru Kitamura
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Takahiro Yoshii
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Kei Murakoshi
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Yuto Yamada
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Tomohiro Yokoyama
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hajime Ishihara
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Yasuyuki Tsuboi
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 5558-8585, Japan.
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 5558-8585, Japan.
| |
Collapse
|
48
|
Badman RP, Ye F, Wang MD. Towards biological applications of nanophotonic tweezers. Curr Opin Chem Biol 2019; 53:158-166. [PMID: 31678712 DOI: 10.1016/j.cbpa.2019.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
Abstract
Optical trapping (synonymous with optical tweezers) has become a core biophysical technique widely used for interrogating fundamental biological processes on size scales ranging from the single-molecule to the cellular level. Recent advances in nanotechnology have led to the development of 'nanophotonic tweezers,' an exciting new class of 'on-chip' optical traps. Here, we describe how nanophotonic tweezers are making optical trap technology more broadly accessible and bringing unique biosensing and manipulation capabilities to biological applications of optical trapping.
Collapse
Affiliation(s)
- Ryan P Badman
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Fan Ye
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
49
|
Dahlke K, Zhao J, Sing CE, Banigan EJ. Force-Dependent Facilitated Dissociation Can Generate Protein-DNA Catch Bonds. Biophys J 2019; 117:1085-1100. [PMID: 31427067 DOI: 10.1016/j.bpj.2019.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular structures are continually subjected to forces, which may serve as mechanical signals for cells through their effects on biomolecule interaction kinetics. Typically, molecular complexes interact via "slip bonds," so applied forces accelerate off rates by reducing transition energy barriers. However, biomolecules with multiple dissociation pathways may have considerably more complicated force dependencies. This is the case for DNA-binding proteins that undergo "facilitated dissociation," in which competitor biomolecules from solution enhance molecular dissociation in a concentration-dependent manner. Using simulations and theory, we develop a generic model that shows that proteins undergoing facilitated dissociation can form an alternative type of molecular bond, known as a "catch bond," for which applied forces suppress protein dissociation. This occurs because the binding by protein competitors responsible for the facilitated dissociation pathway can be inhibited by applied forces. Within the model, we explore how the force dependence of dissociation is regulated by intrinsic factors, including molecular sensitivity to force and binding geometry and the extrinsic factor of competitor protein concentration. We find that catch bonds generically emerge when the force dependence of the facilitated unbinding pathway is stronger than that of the spontaneous unbinding pathway. The sharpness of the transition between slip- and catch-bond kinetics depends on the degree to which the protein bends its DNA substrate. This force-dependent kinetics is broadly regulated by the concentration of competitor biomolecules in solution. Thus, the observed catch bond is mechanistically distinct from other known physiological catch bonds because it requires an extrinsic factor-competitor proteins-rather than a specific intrinsic molecular structure. We hypothesize that this mechanism for regulating force-dependent protein dissociation may be used by cells to modulate protein exchange, regulate transcription, and facilitate diffusive search processes.
Collapse
Affiliation(s)
- Katelyn Dahlke
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
50
|
Strick TR, Portman JR. Transcription-Coupled Repair: From Cells to Single Molecules and Back Again. J Mol Biol 2019; 431:4093-4102. [PMID: 31175845 DOI: 10.1016/j.jmb.2019.05.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 11/19/2022]
Abstract
Transcription-coupled repair is mediated by the Mfd protein. TCR is defined as the preferential repair of DNA lesions in the transcribed strand of actively transcribed genes, and is opposed to the strand-aspecific global genome repair. The Mfd protein mediates TCR by binding to and displacing RNA polymerase, which is stalled at a DNA lesion on the transcribed strand of DNA, then recruiting UvrA and UvrB. The repair cascade results in the recruitment of, and DNA excision by, UvrC; removal of the damage-bearing oligonucleotide by UvrD; "filling-in" of the DNA by DNA polymerase; and sealing of the strands by DNA ligase. The gene required for Mfd was originally identified as a gene needed for the "mutation frequency decline" phenotype in which the repair of certain UV-induced lesions in the transcribed strand of tRNA genes is increased when cells are forced to delay replication immediately following UV exposure. This review will focus on the genetics that led to the discovery of the Mfd gene; summarize the subsequent biochemical, structural and single-molecule interrogations of the Mfd protein; and explore the more recent findings of Mfd in mutagenesis.
Collapse
Affiliation(s)
- T R Strick
- Institut Jacques Monod, CNRS and Université Paris 7, Paris Université, Paris, France; Institut de Biologie de l'Ecole normale supérieure, PSL Université, INSERM, CNRS, Paris, France; Equipe Labellisée de la Ligue Nationale Contre le Cancer, Paris, France; Horizons 2020 Innovative Training Network, DNAREPAIRMAN, Paris, France.
| | - J R Portman
- Institut Jacques Monod, CNRS and Université Paris 7, Paris Université, Paris, France; Institut de Biologie de l'Ecole normale supérieure, PSL Université, INSERM, CNRS, Paris, France; Horizons 2020 Innovative Training Network, DNAREPAIRMAN, Paris, France
| |
Collapse
|