1
|
Zhang Y, Plansinis M, Peak S, Weber E, Wei A, Xu Y, Ross M, Leagjeld A, Wallace DP, Zhang Y. Activation of toll-like receptor 2 promotes the expression of inflammatory mediators and cell proliferation of human polycystic kidney disease cells. Cell Signal 2025; 131:111749. [PMID: 40101851 PMCID: PMC11994280 DOI: 10.1016/j.cellsig.2025.111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive enlargement of fluid-filled cysts, leading to a decline in renal function. Toll-like receptors (TLR)-2 and TLR4 are pattern recognition receptors and components of the innate immune response. We found that mRNA levels for TLR2 and TLR4, an adaptor protein MyD88, and the transcription factor NF-κB were elevated in the kidneys of ADPKD patients and PKD mice. There was decreased expression of IκBα, an inhibitory protein sequestering NF-κB in the cytosol, and increased NF-κB nuclear translocation in human ADPKD kidneys compared with normal human kidneys (NHK). Pam3CSK4, a synthetic TLR2 agonist, increased the phosphorylation of IκBα, decreased its total levels, and caused NF-κB nuclear translocation and upregulation of pro-inflammatory mediators in cultured human ADPKD cells. Pam3CSK4 also increased phosphorylated ERK, a mitogen-activated protein kinase, and phosphorylated S6, a downstream target of the mTOR pathway, and accelerated ADPKD cell proliferation. By contrast, Pam3CSK4 did not affect NF-κB or ERK in NHK cells, but rather induced cytotoxicity, suggesting that TLR2 activation's effect was specific to ADPKD cells. Treatment with a TLR4 agonist did not affect NF-κB or ERK signaling in either ADPKD or NHK cells. Inhibition of TGF-β-activated kinase-1 (TAK1) effectively suppressed Pam3CSK4-induced NF-κB and ERK activation and the proliferation of ADPKD cells. These findings suggest that activation of TLR2 increases NF-κB-mediated-inflammatory mediators and ERK-dependent cell proliferation through TAK1 in ADPKD cells. We propose that the TLR2/TAK1 axis is a potential therapeutic target to reduce inflammation and cyst growth in ADPKD.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States; Department of Anesthesiology, First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Matthew Plansinis
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Sophia Peak
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Elisabeth Weber
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Aiping Wei
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States; Department of Anesthesiology, First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Yu Xu
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States; Department of Anesthesiology, First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Madelyn Ross
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Abigail Leagjeld
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Darren P Wallace
- Departments of Internal Medicine and Molecular and Integrative Physiology, and The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Yan Zhang
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States.
| |
Collapse
|
2
|
Xu X, Wang S, Zhou H, Tan Q, Lang Z, Zhu Y, Yuan H, Wu Z, Zhu L, Hu K, Li W, Zhou D, Wu M, Wu X. Transcriptome-wide association study of alternative polyadenylation identifies susceptibility genes in non-small cell lung cancer. Oncogene 2025:10.1038/s41388-025-03338-8. [PMID: 40205015 DOI: 10.1038/s41388-025-03338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/09/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
Alternative polyadenylation (APA) plays a crucial role in cancer development and prognosis. However, the molecular characteristics of APA related to non-small cell lung cancer (NSCLC) susceptibility remain understudied, especially in East Asian populations. In this study, we constructed an atlas of APA-regulated 3' untranslated region (3'UTR) and profiled its genetic regulation in 747 lung tissue samples (including tumors and paired normal tissues) from 417 NSCLC Chinese patients. We verified a significant global shortening of 3'UTRs in tumor samples compared to normal samples and underscored the value of APA-regulation as a prognostic marker. The 3'UTR APA quantitative trait loci (3'aQTL) was identified by regressing the percentage of distal poly(A) site usage index (PDUI) value on genetic variants. We found that a significant proportion 3'aQTLs are independent of genetic regulation of expression and are specific in Chinese. We also conducted a 3'UTR APA transcriptome-wide association study (3'aTWAS) by integrating the APA regulation atlas with a genome-wide association study (GWAS) for NSCLC involving 7035 cases and 185,413 cancer-free controls. We identified NSCLC-associated genes, highlighting TUBB, TEAD3, and PPP1R10. Combining the consistent results from colocalization analysis, differential APA analysis, and survival analysis, we provide novel evidence for the role TUBB APA regulation in NSCLC and identified potential upstream regulators. Overall, our study profiled the APA regulation and highlighted the substantial role of APA in NSCLC carcinogenesis and prognosis in East Asian populations.
Collapse
Affiliation(s)
- Xiaohang Xu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Sicong Wang
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Hanyi Zhou
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qilong Tan
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Zeyong Lang
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Huadi Yuan
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zixiang Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zhu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kejia Hu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenyuan Li
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Dan Zhou
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Ming Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xifeng Wu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- School of Medicine and Health Science, George Washington University, Washington, DC, USA.
- Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
3
|
Salauddin M, Bhattacharyya D, Samanta I, Saha S, Xue M, Hossain MG, Zheng C. Role of TLRs as signaling cascades to combat infectious diseases: a review. Cell Mol Life Sci 2025; 82:122. [PMID: 40105962 PMCID: PMC11923325 DOI: 10.1007/s00018-025-05631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Investigating innate immunity and its signaling transduction is essential to understand inflammation and host defence mechanisms. Toll-like receptors (TLRs), an evolutionarily ancient group of pattern recognition receptors, are crucial for detecting microbial components and initiating immune responses. This review summarizes the mechanisms and outcomes of TLR-mediated signaling, focusing on motifs shared with other immunological pathways, which enhances our understanding of the innate immune system. TLRs recognize molecular patterns in microbial invaders, activate innate immunity and promote antigen-specific adaptive immunity, and each of them triggers unique downstream signaling patterns. Recent advances have highlighted the importance of supramolecular organizing centers (SMOCs) in TLR signaling, ensuring precise cellular responses and pathogen detection. Furthermore, this review illuminates how TLR pathways coordinate metabolism and gene regulation, contributing to adaptive immunity and providing novel insights for next-generation therapeutic strategies. Ongoing studies hold promise for novel treatments against infectious diseases, autoimmune conditions, and cancers.
Collapse
Affiliation(s)
- Md Salauddin
- Department of Microbiology and Public Health, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna, 9202, Bangladesh
| | - Debaraj Bhattacharyya
- Department of Veterinary Biochemistry, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata, West Bengal, 700037, India
| | - Indranil Samanta
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata, West Bengal, 700037, India
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China.
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Huang YT, Calvi BR. Activation of a Src-JNK pathway in unscheduled endocycling cells of the Drosophila wing disc induces a chronic wounding response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642788. [PMID: 40161657 PMCID: PMC11952448 DOI: 10.1101/2025.03.12.642788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The endocycle is a specialized cell cycle during which cells undergo repeated G / S phases to replicate DNA without division, leading to large polyploid cells. The transition from a mitotic cycle to an endocycle can be triggered by various stresses, which results in unscheduled, or induced endocycling cells (iECs). While iECs can be beneficial for wound healing, they can also be detrimental by impairing tissue growth or promoting cancer. However, the regulation of endocycling and its role in tissue growth remain poorly understood. Using the Drosophila wing disc as a model, we previously demonstrated that iEC growth is arrested through a Jun N-Terminal Kinase (JNK)-dependent, reversible senescence-like response. However, it remains unclear how JNK is activated in iECs and how iECs impact overall tissue structure. In this study, we performed a genetic screen and identified the Src42A-Shark-Slpr pathway as an upstream regulator of JNK in iECs, leading to their senescence-like arrest. We found that tissues recognize iECs as wounds, releasing wound-related signals that induce a JNK-dependent developmental delay. Similar to wound closure, this response triggers Src-JNK-mediated actomyosin remodeling, yet iECs persist rather than being eliminated. Our findings suggest that the tissue response to iECs shares key signaling and cytoskeletal regulatory mechanisms with wound healing and dorsal closure, a developmental process during Drosophila embryogenesis. However, because iECs are retained within the tissue, they create a unique system that may serve as a model for studying chronic wounds and tumor progression.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, Indiana, 47405 USA
| | - Brian R. Calvi
- Department of Biology, Indiana University, Bloomington, Indiana, 47405 USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, 46202 USA
| |
Collapse
|
5
|
Huang K, Zhang Q, Wan H, Ban X, Chen X, Wan X, Lu R, He Y, Xiong K. TAK1 at the crossroads of multiple regulated cell death pathways: from molecular mechanisms to human diseases. FEBS J 2025. [DOI: 10.1111/febs.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 02/14/2025] [Indexed: 05/03/2025]
Abstract
Regulated cell death (RCD), the form of cell death that can be genetically controlled by multiple signaling pathways, plays an important role in organogenesis, tissue remodeling, and maintenance of organism homeostasis and is closely associated with various human diseases. Transforming growth factor‐beta‐activated kinase 1 (TAK1) is a member of the serine/threonine protein kinase family, which can respond to different internal and external stimuli and participate in inflammatory and immune responses. Emerging evidence suggests that TAK1 is an important regulator at the crossroad of multiple RCD pathways, including apoptosis, necroptosis, pyroptosis, and PANoptosis. The regulation of TAK1 affects disease progression through multiple signaling pathways, and therapeutic strategies targeting TAK1 have been proposed for inflammatory diseases, central nervous system diseases, and cancers. In this review, we provide an overview of the downstream signaling pathways regulated by TAK1 and its binding proteins. Their critical regulatory roles in different forms of cell death are also summarized. In addition, we discuss the potential of targeting TAK1 in the treatment of human diseases, with a specific focus on neurological disorders and cancer.
Collapse
Affiliation(s)
- Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Xiangya School of Medicine Central South University Changsha China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Department of Ophthalmology Stanford University School of Medicine Palo Alto CA USA
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xiao‐Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Xing Wan
- Department of Endocrinology Third Xiangya Hospital, Central South University Changsha China
| | - Rui Lu
- Department of Molecular and Cellular Physiology Stanford University Stanford CA USA
| | - Ye He
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Changsha Aier Eye Hospital China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
- Hunan Key Laboratory of Ophthalmology Changsha China
| |
Collapse
|
6
|
Benedik NS, Proj M, Steinebach C, Sova M, Sosič I. Targeting TAK1: Evolution of inhibitors, challenges, and future directions. Pharmacol Ther 2025; 267:108810. [PMID: 39909209 DOI: 10.1016/j.pharmthera.2025.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The increasing incidence of inflammatory and malignant diseases signifies the need to develop first-in-class drugs with novel mechanisms of action. In this respect, the transforming growth factor (TGF)-β-activated kinase 1 (TAK1), an essential part of several signaling pathways, is considered relevant and promising. This manuscript provides a brief overview of the signal transduction orchestrated by TAK1 within these pathways, followed by an in-depth and thorough analysis of the chemical matter demonstrated to inhibit this kinase. Special attention is given to the selectivity profiling of inhibitors, as well as to the outcomes of their biological characterization. Because published TAK1 inhibitors differ significantly in their kinome selectivity, active-site binding, and biological activity, we hope that this review will allow a judicial estimation of their quality and usefulness for TAK1-addressing assays. Our thoughts on the perspectives and possible developments of the field are also provided to assist scientists who are involved in the design and development of TAK1-targeting modulators.
Collapse
Affiliation(s)
- Nika Strašek Benedik
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Xie W, Li H, Yu T, Zhu Y, Gao J, Yang X, Cheng H, Qiao H, Zhang X, Gao X, Zhang L, Fang X, Zhang L, Bi Y. Design and Synthesis of Hederagenin Derivatives for the Treatment of Sepsis by Targeting TAK1 and Regulating the TAK1-NF-κB/MAPK Signaling. J Med Chem 2025; 68:2694-2719. [PMID: 39817810 DOI: 10.1021/acs.jmedchem.4c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Sepsis is a systemic inflammatory response caused by infection and is a leading cause of death worldwide. We designed and synthesized a series of hederagenin analogues with anti-inflammatory activity. The most effective compound, 14, reduced the release of TNF-α and IL-6 in RAW264.7 cells induced by lipopolysaccharide by affecting NF-κB/MAPK signaling. It demonstrated significant protection against sepsis in vivo and ameliorated histopathological changes in the liver, lungs, and kidneys. It exhibited good safety in subacute toxicity assays. Western blotting results indicated that it reduced the generation of p-p65, p-IκB, p-p38, p-JNK, and p-ERK. Immunofluorescence assay results suggested that the compound inhibited nuclear translocation of p65 and c-Fos. It was found to target TAK1 with a novel molecular backbone, distinct from the few TAK1 inhibitors previously reported. This work provides a new lead structure for the study of TAK1 inhibitors and a potential target for TAK1 in sepsis therapy.
Collapse
Affiliation(s)
- Wenbin Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Haixia Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Tao Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yatong Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Jing Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaoli Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Haoran Cheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Hui Qiao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xin Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaojin Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Lei Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xianhe Fang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Leiming Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| |
Collapse
|
8
|
Yin K, Zhang T, Lu X, Shen Q, Gu K, Huang Y, Li C, Hou J, Li J, Zhang G. Tak1 licenses mitochondrial transfer from astrocytes to POMC neurons to maintain glucose and cholesterol homeostasis. Cell Rep 2024; 43:114983. [PMID: 39565693 DOI: 10.1016/j.celrep.2024.114983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/24/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
It remains incompletely understood how the astrocytes in the mediobasal hypothalamus (MBH) regulate systemic glucose and cholesterol metabolism. Here, we show that MBH astrocytic Tak1 (transforming growth factor β [TGF-β]-activated kinase 1) controls the metabolism of glucose and cholesterol. Tak1 is expressed in MBH astrocytes and activated after a short-term nutritional excess. In chow-fed mice, astrocytic deletion of Tak1 across the brain or its suppression in the MBH impairs glucose tolerance, reduces insulin sensitivity, and results in hypercholesterolemia. Astrocytic Tak1 activation in the MBH alleviates these symptoms in mice fed a high-fat diet (HFD). We show that astrocytic Tak1 modulates the activity of proopiomelanocortin (POMC) neurons and enables the transport of mitochondria from astrocytes to POMC neurons. In astrocytic Tak1 knockout mice, supplementation of CD38, a molecule that is crucial in mitochondrial transfer, restores glucose and cholesterol homeostasis. Overall, these findings highlight an important role of MBH astrocytic Tak1 in glucose and cholesterol metabolism.
Collapse
Affiliation(s)
- Kaili Yin
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tingting Zhang
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiyuan Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qing Shen
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kaiyue Gu
- Department of Pathophysiology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; Institute of Metabolism and Health, Henan University, Kaifeng, Henan 475004, China; Zhongzhou Laboratory for Integrative Biology, Zhengzhou, Henan 450046, China
| | - Ying Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; Institute of Metabolism and Health, Henan University, Kaifeng, Henan 475004, China; Zhongzhou Laboratory for Integrative Biology, Zhengzhou, Henan 450046, China
| | - Chaonan Li
- Department of Pathophysiology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; Institute of Metabolism and Health, Henan University, Kaifeng, Henan 475004, China; Zhongzhou Laboratory for Integrative Biology, Zhengzhou, Henan 450046, China
| | - Jingyi Hou
- Department of Pathophysiology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; Institute of Metabolism and Health, Henan University, Kaifeng, Henan 475004, China; Zhongzhou Laboratory for Integrative Biology, Zhengzhou, Henan 450046, China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guo Zhang
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Pathophysiology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; Institute of Metabolism and Health, Henan University, Kaifeng, Henan 475004, China; Zhongzhou Laboratory for Integrative Biology, Zhengzhou, Henan 450046, China.
| |
Collapse
|
9
|
Samulevich ML, Carman LE, Aneskievich BJ. Critical Analysis of Cytoplasmic Progression of Inflammatory Signaling Suggests Potential Pharmacologic Targets for Wound Healing and Fibrotic Disorders. Biomedicines 2024; 12:2723. [PMID: 39767629 PMCID: PMC11726985 DOI: 10.3390/biomedicines12122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Successful skin wound healing is dependent on an interplay between epidermal keratinocytes and dermal fibroblasts as they react to local extracellular factors (DAMPs, PAMPs, cytokines, etc.) surveyed from that environment by numerous membrane receptors (e.g., TLRs, cytokine receptors, etc.). In turn, those receptors are the start of a cytoplasmic signaling pathway where balance is key to effective healing and, as needed, cell and matrix regeneration. When directed through NF-κB, these signaling routes lead to transient responses to the benefit of initiating immune cell recruitment, cell replication, local chemokine and cytokine production, and matrix protein synthesis. The converse can also occur, where ongoing canonical NF-κB activation leads to chronic, hyper-responsive states. Here, we assess three key players, TAK1, TNFAIP3, and TNIP1, in cytoplasmic regulation of NF-κB activation, which, because of their distinctive and yet inter-related functions, either promote or limit that activation. Their balanced function is integral to successful wound healing, given their significant control over the expression of inflammation-, fibrosis-, and matrix remodeling-associated genes. Intriguingly, these three proteins have also been emphasized in dysregulated NF-κB signaling central to systemic sclerosis (SSc). Notably, diffuse SSc shares some tissue features similar to an excessive inflammatory/fibrotic wound response without eventual resolution. Taking a cue from certain instances of aberrant wound healing and SSc having some shared aspects, e.g., chronic inflammation and fibrosis, this review looks for the first time, to our knowledge, at what those pathologies might have in common regarding the cytoplasmic progression of NF-κB-mediated signaling. Additionally, while TAK1, TNFAIP3, and TNIP1 are often investigated and reported on individually, we propose them here as three proteins whose consequences of function are very highly interconnected at the signaling focus of NF-κB. We thus highlight the emerging promise for the eventual clinical benefit derived from an improved understanding of these integral signal progression modulators. Depending on the protein, its indirect or direct pharmacological regulation has been reported. Current findings support further intensive studies of these points in NF-κB regulation both for their basic function in healthy cells as well as with the goal of targeting them for translational benefit in multiple cutaneous wound healing situations, whether stemming from acute injury or a dysregulated inflammatory/fibrotic response.
Collapse
Affiliation(s)
- Michael L. Samulevich
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (M.L.S.); (L.E.C.)
| | - Liam E. Carman
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (M.L.S.); (L.E.C.)
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
10
|
Ma ZJ, Yue SS, Qin BY, Hu YT, Peng AK, Wang QY, Qi R. Naringenin ameliorates MASH fibrosis via regulating TAK1/MAPK/FoxO3a-mediated apoptosis in the activated hepatic stellate cells. Biochem Biophys Res Commun 2024; 734:150732. [PMID: 39340924 DOI: 10.1016/j.bbrc.2024.150732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
This study aims to explore the regulating effect and mechanism of naringenin (NGN) on the hepatic stellate cells (HSCs) apoptosis and its preventive effects on MASH fibrosis. C57BL/6 mice were subjected to either high-fat diet (HFD) plus carbon tetrachloride (CCl4) injection (HFD + CCl4) for 8 weeks to induce a MASH fibrosis model or bile duct ligation (BDL) to establish a liver fibrosis model, NGN was administered by gavage. LX2 cells were stimulated by oleic acid (OA) and lipopolysaccharide (LPS) (OA + LPS) to study the effects of NGN on activated hepatic stellate cell (HSC). Additionally, LO2 cells stimulated with OA + LPS were used to assess the protective effects of NGN on lipotoxicity of hepatocytes. Our in vivo results showed that NGN administration effectively inhibited mouse liver fibrosis in both of the MASH model and BDL model. The in vitro results indicate that NGN directly inhibited HSCs activation and promoted apoptosis of the activated HSCs, while it suppressed the apoptosis of LO2 cells induced by OA + LPS. The underlying mechanisms were mainly elucidated through the reduction of TAK1 phosphorylation, leading to the downregulation of p-JNK and p-ERK expression. This in turn, inhibited the phosphorylation of FoxO3a and promoted the nuclear localization of FoxO3a. Consequently, this may enhance the transcription of apoptosis-related genes, resulting in the apoptosis of activated HSCs. In conclusion, NGN ameliorates MASH fibrosis by enhancing apoptosis of the activated HSCs. The inhibitory effects of NGN on the TAK1/MAPK/FoxO3a pathway were demonstrated as its preventive mechanisms against MASH fibrosis.
Collapse
Affiliation(s)
- Ze-Jiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China.
| | - Shan-Shan Yue
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China; School of Basic Medical Science, Shihezi University, Shihezi, 83200, Xinjiang, China.
| | - Bo-Yang Qin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China.
| | - Yi-Tong Hu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China.
| | - An-Kang Peng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China.
| | - Qin-Yu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China.
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China; School of Basic Medical Science, Shihezi University, Shihezi, 83200, Xinjiang, China.
| |
Collapse
|
11
|
Touny AA, Venkataraman B, Ojha S, Pessia M, Subramanian VS, Hariharagowdru SN, Subramanya SB. Phytochemical Compounds as Promising Therapeutics for Intestinal Fibrosis in Inflammatory Bowel Disease: A Critical Review. Nutrients 2024; 16:3633. [PMID: 39519465 PMCID: PMC11547603 DOI: 10.3390/nu16213633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVE Intestinal fibrosis, a prominent consequence of inflammatory bowel disease (IBD), presents considerable difficulty owing to the absence of licensed antifibrotic therapies. This review assesses the therapeutic potential of phytochemicals as alternate methods for controlling intestinal fibrosis. Phytochemicals, bioactive molecules originating from plants, exhibit potential antifibrotic, anti-inflammatory, and antioxidant activities, targeting pathways associated with inflammation and fibrosis. Compounds such as Asperuloside, Berberine, and olive phenols have demonstrated potential in preclinical models by regulating critical signaling pathways, including TGF-β/Smad and NFκB, which are integral to advancing fibrosis. RESULTS The main findings suggest that these phytochemicals significantly reduce fibrotic markers, collagen deposition, and inflammation in various experimental models of IBD. These phytochemicals may function as supplementary medicines to standard treatments, perhaps enhancing patient outcomes while mitigating the adverse effects of prolonged immunosuppressive usage. Nonetheless, additional clinical trials are necessary to validate their safety, effectiveness, and bioavailability in human subjects. CONCLUSIONS Therefore, investigating phytochemicals may lead to crucial advances in the formulation of innovative treatment approaches for fibrosis associated with IBD, offering a promising avenue for future therapeutic development.
Collapse
Affiliation(s)
- Aya A. Touny
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | | | - Shamanth Neralagundi Hariharagowdru
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
12
|
Huang K, He Y, Wan H, Ban XX, Chen XY, Hu XM, Wan XX, Lu R, Zhang Q, Xiong K. Bibliometric and visualized analysis on global trends and hotspots of TAK1 in regulated cell death: 1999 to 2024. Front Immunol 2024; 15:1437570. [PMID: 39474417 PMCID: PMC11518718 DOI: 10.3389/fimmu.2024.1437570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/02/2024] [Indexed: 03/07/2025] Open
Abstract
BACKGROUND Regulated cell death (RCD) is a genetically controlled form of cell death that plays an important role in organogenesis, tissue remodeling, and pathogenesis of cancers. Transforming growth factor-beta-activation kinase 1 (TAK1) is a member of the serine/threonine protein kinase family, which can respond to internal and external stimuli and participate in inflammatory responses through multiple signaling pathways and cellular processes. In the last two decades, the regulatory roles of TAK1 at the crossroads of multiple RCD pathways, including apoptosis, necroptosis, pyroptosis, and PANoptosis were revealed by 801 articles retrieved from the Web of Science Core Collection database. To analyze global research trends and hotspots concerning the role of TAK1 in RCD, the bibliometric and visualized analysis were applied in the current study. METHODS The data for this bibliometrics study were retrieved from the Web of Science Core Collection database. The search formula was (TS=(Apoptosis) OR TS=(pyroptosis) OR TS=(Necroptosis) OR TS=(PANoptosis) OR TS=(Autophagy) OR TS=(Ferroptosis) OR TS=(cuproptosis)) AND ((TS=(TAK1)) OR TS=(MAP3K7)). The co-occurrence and co-cited analysis on basic bibliometric parameters were conducted by VOSviewer. The dual-map overlay of journals, citation bursts, keyword timelines, and keyword bursts were analyzed by CiteSpace. RESULTS A total of 801 articles from 46 countries have been included in the analysis. The number of publications demonstrates a consistent increase from 1999 to 2024. The primary research institutions driving this field are Osaka University Notably, the Journal of Biological Chemistry stands out as the most popular journal in this domain. These publications collectively involve contributions from 4663 authors, with Jun Tsuji emerging as a prolific author. Jun Tsuji also gains the highest co-citation frequency. Emerging research hotspots are encapsulated by keywords, including apoptosis, NF-κB, inflammation, autophagy, and TNFα. CONCLUSION This is the first bibliometric and visualized study to analyze the global trends and hotspots of TAK1 in RCD. Based on the analysis of 801 articles, the results provide a retrospective and comprehensive visualized view of the research hotspots and frontiers of TAK1 at the crossroads of multiple RCD signaling pathways and propose ideas for guiding their future investigations in molecular mechanisms and therapeutic strategies in this field.
Collapse
Affiliation(s)
- Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ye He
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Changsha Aier Eye Hospital, Changsha, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xin-Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xi-Min Hu
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Rui Lu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
13
|
Huang RH, Zeng QM, Jiang B, Xu G, Xiao GC, Xia W, Liao YF, Wu YT, Zou JR, Qian B, Xiao RH, Yuan YH, Zhang GX, Zou XF. Overexpression of DUSP26 gene suppressed the proliferation, migration, and invasion of human prostate cancer cells. Exp Cell Res 2024; 442:114231. [PMID: 39222869 DOI: 10.1016/j.yexcr.2024.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Prostate cancer (PCa) is threatening the health of millions of people, the pathological mechanism of prostate cancer has not been fully elaborated, and needs to be further explored. Here, we found that the expression of DUSP26 is dramatically suppressed, and a positive connection of its expression with PCa prognosis was also observed. In vitro, overexpression of DUSP26 significantly inhibited the proliferative, migrative, and invasive capacities of PC3 cells, DUSP26 silencing presented opposite results. Tumor formation experiments in subcutaneous nude mice demonstrated that DUSP26 overexpression could significantly suppress PC3 growth in vivo. Moreover, the mechanism of DUSP26 gene and PCa was discovered by RNA-Seq analysis. We found that DUSP26 significantly inhibited MAPK signaling pathway activation, and further experiments displayed that DUSP26 could impair TAK1, p38, and JNK phosphorylation. Interestingly, treatment with the TAK1 inhibitor (iTAK1) attenuated the effect of DUSP26 on PC3 cells. Together, these results suggested that DUSP26 may serve as a novel therapeutic target for PC3 cell type PCa, the underlying mechanism may be through TAK1-JNK/p38 signaling.
Collapse
Affiliation(s)
- Ruo-Hui Huang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Medical College of Soochow University, Suzhou, Jiangsu, 215006, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China.
| | - Qing-Ming Zeng
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Bo Jiang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Gang Xu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Guan-Cheng Xiao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Wei Xia
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Yun-Feng Liao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Yu-Ting Wu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Jun-Rong Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Biao Qian
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Ri-Hai Xiao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Yuan-Hu Yuan
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Guo-Xi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Xiao-Feng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China.
| |
Collapse
|
14
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
15
|
Wang D, Zheng Y, Zhang J, Cao Y, Cheng J, Geng M, Li K, Yang J, Wei X. The TAK1/JNK axis participates in adaptive immunity by promoting lymphocyte activation in Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109747. [PMID: 38969154 DOI: 10.1016/j.fsi.2024.109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The transforming growth factor beta-activated kinase 1 (TAK1)/c-Jun N-terminal kinase (JNK) axis is an essential MAPK upstream mediator and regulates immune signaling pathways. However, whether the TAK1/JNK axis harnesses the strength in regulation of signal transduction in early vertebrate adaptive immunity is unclear. In this study, by modeling on Nile tilapia (Oreochromis niloticus), we investigated the potential regulatory function of TAK1/JNK axis on lymphocyte-mediated adaptive immune response. Both OnTAK1 and OnJNK exhibited highly conserved sequences and structures relative to their counterparts in other vertebrates. Their mRNA was widely expressed in the immune-associated tissues, while phosphorylation levels in splenic lymphocytes were significantly enhanced on the 4th day post-infection by Edwardsiella piscicida. In addition, OnTAK1 and OnJNK were significantly up-regulated in transcriptional level after activation of lymphocytes in vitro by phorbol 12-myristate 13-acetate plus ionomycin (P + I) or PHA, accompanied by a predominant increase in phosphorylation level. More importantly, inhibition of OnTAK1 activity by specific inhibitor NG25 led to a significant decrease in the phosphorylation level of OnJNK. Furthermore, blocking the activity of OnJNK with specific inhibitor SP600125 resulted in a marked reduction in the expression of T-cell activation markers including IFN-γ, CD122, IL-2, and CD44 during PHA-induced T-cell activation. In summary, these findings indicated that the conserved TAK1/JNK axis in Nile tilapia was involved in adaptive immune responses by regulating the activation of lymphocytes. This study enriched the current knowledge of adaptive immunity in teleost and provided a new perspective for understanding the regulatory mechanism of fish immunity.
Collapse
Affiliation(s)
- Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuying Zheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jie Cheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
16
|
Tang M, Cao H, Ma Y, Yao S, Wei X, Tan Y, Liu F, Peng Y, Fan N. USP13 ameliorates nonalcoholic fatty liver disease through inhibiting the activation of TAK1. J Transl Med 2024; 22:671. [PMID: 39033101 PMCID: PMC11264885 DOI: 10.1186/s12967-024-05465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND The molecular mechanisms underlying nonalcoholic fatty liver disease (NAFLD) remain to be fully elucidated. Ubiquitin specific protease 13 (USP13) is a critical participant in inflammation-related signaling pathways, which are linked to NAFLD. Herein, the roles of USP13 in NAFLD and the underlying mechanisms were investigated. METHODS L02 cells and mouse primary hepatocytes were subjected to free fatty acid (FFA) to establish an in vitro model reflective of NAFLD. To prepare in vivo model of NAFLD, mice fed a high-fat diet (HFD) for 16 weeks and leptin-deficient (ob/ob) mice were used. USP13 overexpression and knockout (KO) strategies were employed to study the function of USP13 in NAFLD in mice. RESULTS The expression of USP13 was markedly decreased in both in vitro and in vivo models of NAFLD. USP13 overexpression evidently inhibited lipid accumulation and inflammation in FFA-treated L02 cells in vitro. Consistently, the in vivo experiments showed that USP13 overexpression ameliorated hepatic steatosis and metabolic disorders in HFD-fed mice, while its deficiency led to contrary outcomes. Additionally, inflammation was similarly attenuated by USP13 overexpression and aggravated by its deficiency in HFD-fed mice. Notably, overexpressing of USP13 also markedly alleviated hepatic steatosis and inflammation in ob/ob mice. Mechanistically, USP13 bound to transforming growth factor β-activated kinase 1 (TAK1) and inhibited K63 ubiquitination and phosphorylation of TAK1, thereby dampening downstream inflammatory pathways and promoting insulin signaling pathways. Inhibition of TAK1 activation reversed the exacerbation of NAFLD caused by USP13 deficiency in mice. CONCLUSIONS Our findings indicate the protective role of USP13 in NAFLD progression through its interaction with TAK1 and inhibition the ubiquitination and phosphorylation of TAK1. Targeting the USP13-TAK1 axis emerges as a promising therapeutic strategy for NAFLD treatment.
Collapse
Affiliation(s)
- Min Tang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Cao
- Department of Endocrinology and Metabolism, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
- Department of Endocrinology, Songjiang District Central Hospital, Shanghai, China
| | - Yunqin Ma
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangshuang Yao
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Wei
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijiong Tan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Endocrinology and Metabolism, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.
| | - Nengguang Fan
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Hu H, Ma J, Peng Y, Feng R, Luo C, Zhang M, Tao Z, Chen L, Zhang T, Chen W, Yin Q, Zhai J, Chen J, Yin A, Wang CC, Zhong M. Thrombospondin-1 Regulates Trophoblast Necroptosis via NEDD4-Mediated Ubiquitination of TAK1 in Preeclampsia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309002. [PMID: 38569496 PMCID: PMC11151050 DOI: 10.1002/advs.202309002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Preeclampsia (PE) is considered as a disease of placental origin. However, the specific mechanism of placental abnormalities remains elusive. This study identified thrombospondin-1 (THBS1) is downregulated in preeclamptic placentae and negatively correlated with blood pressure. Functional studies show that THBS1 knockdown inhibits proliferation, migration, and invasion and increases the cycle arrest and apoptosis rate of HTR8/SVneo cells. Importantly, THBS1 silencing induces necroptosis in HTR8/SVneo cells, accompanied by the release of damage-associated molecular patterns (DAMPs). Necroptosis inhibitors necrostatin-1 and GSK'872 restore the trophoblast survival while pan-caspase inhibitor Z-VAD-FMK has no effect. Mechanistically, the results show that THBS1 interacts with transforming growth factor B-activated kinase 1 (TAK1), which is a central modulator of necroptosis quiescence and affects its stability. Moreover, THBS1 silencing up-regulates the expression of neuronal precursor cell-expressed developmentally down-regulated 4 (NEDD4), which acts as an E3 ligase of TAK1 and catalyzes K48-linked ubiquitination of TAK1 in HTR8/SVneo cells. Besides, THBS1 attenuates PE phenotypes and improves the placental necroptosis in vivo. Taken together, the down-regulation of THBS1 destabilizes TAK1 by activating NEDD4-mediated, K48-linked TAK1 ubiquitination and promotes necroptosis and DAMPs release in trophoblast cells, thus participating in the pathogenesis of PE.
Collapse
Affiliation(s)
- Haoyue Hu
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangzhou Key Laboratory of Forensic Multi‐Omics for Precision IdentificationSchool of Forensic MedicineSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jing Ma
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangzhou Key Laboratory of Forensic Multi‐Omics for Precision IdentificationSchool of Forensic MedicineSouthern Medical UniversityGuangzhouGuangdong510515China
| | - You Peng
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangzhou Key Laboratory of Forensic Multi‐Omics for Precision IdentificationSchool of Forensic MedicineSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Rixuan Feng
- School of NursingSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Chenling Luo
- School of NursingSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Minyi Zhang
- Department of EpidemiologySchool of Public HealthSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Zixin Tao
- Department of Obstetrics and GynecologyGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhouGuangdong510180China
| | - Lu Chen
- Department of Obstetrics and Gynaecology;Li Ka Shing Institute of Health Sciences;School of Biomedical Sciences;Chinese University of Hong Kong‐Sichuan University Joint Laboratory in Reproductive Medicine; The Chinese University of Hong KongHong Kong SARNTChina
| | - Tao Zhang
- Department of Obstetrics and Gynaecology;Li Ka Shing Institute of Health Sciences;School of Biomedical Sciences;Chinese University of Hong Kong‐Sichuan University Joint Laboratory in Reproductive Medicine; The Chinese University of Hong KongHong Kong SARNTChina
| | - Wenqian Chen
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangzhou Key Laboratory of Forensic Multi‐Omics for Precision IdentificationSchool of Forensic MedicineSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Qian Yin
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jinguo Zhai
- School of NursingSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jun Chen
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Ailan Yin
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology;Li Ka Shing Institute of Health Sciences;School of Biomedical Sciences;Chinese University of Hong Kong‐Sichuan University Joint Laboratory in Reproductive Medicine; The Chinese University of Hong KongHong Kong SARNTChina
| | - Mei Zhong
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| |
Collapse
|
18
|
Chi LH, Redfern AD, Roslan S, Street IP, Burrows AD, Anderson RL. Loss of tumor-derived SMAD4 enhances primary tumor growth but not metastasis following BMP4 signalling. Cell Commun Signal 2024; 22:248. [PMID: 38689334 PMCID: PMC11060976 DOI: 10.1186/s12964-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Bone morphogenetic protein 4 (BMP4) is a potent inhibitor of breast cancer metastasis. However, a tumor-promoting effect of BMP4 is reported in other tumor types, especially when SMAD4 is inactive. METHODS To assess the requirement for SMAD4 in BMP4-mediated suppression of metastasis, we knocked down SMAD4 in two different breast tumors and enforced SMAD4 expression in a third line with endogenous SMAD4 deletion. In addition, we assessed the requirement for SMAD4 in tumor cell-specific BMP signalling by expression of a constitutively active BMP receptor. Delineation of genes regulated by BMP4 in the presence or absence of SMAD4 was assessed by RNA sequencing and a BMP4-induced gene, MYO1F was assessed for its role in metastasis. Genes regulated by BMP4 and/or SMAD4 were assessed in a publicly available database of gene expression profiles of breast cancer patients. RESULTS In the absence of SMAD4, BMP4 promotes primary tumor growth that is accompanied by increased expression of genes associated with DNA replication, cell cycle, and MYC signalling pathways. Despite increased primary tumor growth, BMP4 suppresses metastasis in the absence of tumor cell expression of SMAD4. Consistent with the anti-metastatic activity of BMP4, enforced signalling through the constitutively active receptor in SMAD4 positive tumors that lacked BMP4 expression still suppressed metastasis, but in the absence of SMAD4, the suppression of metastasis was largely prevented. Thus BMP4 is required for suppression of metastasis regardless of tumor SMAD4 status. The BMP4 upregulated gene, MYO1F, was shown to be a potent suppressor of breast cancer metastasis. Gene signature upregulated by BMP4 in the absence of SMAD4 was associated with poor prognosis in breast cancer patients, whereas gene signature upregulated by BMP4 in the presence of SMAD4 was associated with improved prognosis. CONCLUSIONS BMP4 expression is required for suppression of metastasis regardless of the SMAD4 status of the tumor cells. Since BMP4 is a secreted protein, we conclude that it can act both in an autocrine manner in SMAD4-expressing tumor cells and in a paracrine manner on stromal cells to suppress metastasis. Deletion of SMAD4 from tumor cells does not prevent BMP4 from suppressing metastasis via a paracrine mechanism.
Collapse
Affiliation(s)
- Lap Hing Chi
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Andrew D Redfern
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - Suraya Roslan
- Department of Surgery, St. Vincent's Hospital, Fitzroy, VIC, Australia
| | - Ian P Street
- Children's Cancer Institute, University of New South Wales, New South Wales, Australia
| | - Allan D Burrows
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Damhofer H, Tatar T, Southgate B, Scarneo S, Agger K, Shlyueva D, Uhrbom L, Morrison GM, Hughes PF, Haystead T, Pollard SM, Helin K. TAK1 inhibition leads to RIPK1-dependent apoptosis in immune-activated cancers. Cell Death Dis 2024; 15:273. [PMID: 38632238 PMCID: PMC11024179 DOI: 10.1038/s41419-024-06654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Poor survival and lack of treatment response in glioblastoma (GBM) is attributed to the persistence of glioma stem cells (GSCs). To identify novel therapeutic approaches, we performed CRISPR/Cas9 knockout screens and discovered TGFβ activated kinase (TAK1) as a selective survival factor in a significant fraction of GSCs. Loss of TAK1 kinase activity results in RIPK1-dependent apoptosis via Caspase-8/FADD complex activation, dependent on autocrine TNFα ligand production and constitutive TNFR signaling. We identify a transcriptional signature associated with immune activation and the mesenchymal GBM subtype to be a characteristic of cancer cells sensitive to TAK1 perturbation and employ this signature to accurately predict sensitivity to the TAK1 kinase inhibitor HS-276. In addition, exposure to pro-inflammatory cytokines IFNγ and TNFα can sensitize resistant GSCs to TAK1 inhibition. Our findings reveal dependency on TAK1 kinase activity as a novel vulnerability in immune-activated cancers, including mesenchymal GBMs that can be exploited therapeutically.
Collapse
Affiliation(s)
- Helene Damhofer
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Tülin Tatar
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin Southgate
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Scott Scarneo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- EydisBio Inc., Durham, NC, USA
| | - Karl Agger
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Daria Shlyueva
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gillian M Morrison
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- EydisBio Inc., Durham, NC, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- EydisBio Inc., Durham, NC, USA
| | - Steven M Pollard
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Kristian Helin
- Division of Cancer Biology, The Institute of Cancer Research, London, UK.
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
21
|
Wang K, Lai W, Min T, Wei J, Bai Y, Cao H, Guo J, Su Z. The Effect of Enteric-Derived Lipopolysaccharides on Obesity. Int J Mol Sci 2024; 25:4305. [PMID: 38673890 PMCID: PMC11050189 DOI: 10.3390/ijms25084305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Endotoxin is a general term for toxic substances in Gram-negative bacteria, whose damaging effects are mainly derived from the lipopolysaccharides (LPS) in the cell walls of Gram-negative bacteria, and is a strong pyrogen. Obesity is a chronic, low-grade inflammatory condition, and LPS are thought to trigger and exacerbate it. The gut flora is the largest source of LPS in the body, and it is increasingly believed that altered intestinal microorganisms can play an essential role in the pathology of different diseases. Today, the complex axis linking gut flora to inflammatory states and adiposity has not been well elucidated. This review summarises the evidence for an interconnection between LPS, obesity, and gut flora, further expanding our understanding of LPS as a mediator of low-grade inflammatory disease and contributing to lessening the effects of obesity and related metabolic disorders. As well as providing targets associated with LPS, obesity, and gut flora, it is hoped that interventions that combine targets with gut flora address the individual differences in gut flora treatment.
Collapse
Affiliation(s)
- Kai Wang
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiwen Lai
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jintao Wei
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China;
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
22
|
Enomoto A, Fukasawa T, Terunuma H, Nakagawa K, Yoshizaki A, Sato S, Hosoya N, Miyagawa K. Deregulated JNK signaling enhances apoptosis during hyperthermia. Int J Hyperthermia 2024; 41:2335199. [PMID: 38565204 DOI: 10.1080/02656736.2024.2335199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE c-Jun N-terminal kinases (JNKs) comprise a subfamily of mitogen-activated protein kinases (MAPKs). The JNK group is known to be activated by a variety of stimuli. However, the molecular mechanism underlying heat-induced JNK activation is largely unknown. The aim of this study was to clarify how JNK activity is stimulated by heat. METHODS AND MATERIALS The expression levels of various MAPK members in HeLa cells, with or without hyperthermia treatment, were evaluated via western blotting. The kinase activity of MAPK members was assessed through in vitro kinase assays. Cell death was assessed in the absence or presence of siRNAs targeting MAPK-related members. RESULTS Hyperthermia decreased the levels of MAP3Ks, such as ASK1 and MLK3 which are JNK kinase kinase members, but not those of the downstream MAP2K/SEK1 and MAPK/JNK. Despite the reduced or transient phosphorylation of ASK1, MLK3, or SEK1, downstream JNK was phosphorylated in a temperature-dependent manner. In vitro kinase assays demonstrated that heat did not directly stimulate SEK1 or JNK. However, the expression levels of DUSP16, a JNK phosphatase, were decreased upon hyperthermia treatment. DUSP16 knockdown enhanced the heat-induced activation of ASK1-SEK1-JNK pathway and apoptosis. CONCLUSION JNK was activated in a temperature-dependent manner despite reduced or transient phosphorylation of the upstream MAP3K and MAP2K. Hyperthermia-induced degradation of DUSP16 may induce activation of the ASK1-SEK1-JNK pathway and subsequent apoptosis.
Collapse
Affiliation(s)
- Atsushi Enomoto
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takemichi Fukasawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Cannabinoid Research, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Keiichi Nakagawa
- Comprehensive Radiation Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Cannabinoid Research, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriko Hosoya
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Wang W, Gong Z, Wang K, Tian M, Zhang Y, Li X, You X, Wu J. Activation of the BMP2-SMAD1-CGRP pathway in dorsal root ganglia contributes to bone cancer pain in a rat model. Heliyon 2024; 10:e27350. [PMID: 38496903 PMCID: PMC10944225 DOI: 10.1016/j.heliyon.2024.e27350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Peripheral nerve remodeling and sensitization are involved in cancer-related bone pain. As a member of the transforming growth factor-β class, bone morphogenetic protein 2 (BMP2) is recognized to have a role in the development of the neurological and skeletal systems. Our previous work showed that BMP2 is critical for bone cancer pain (BCP) sensitization. However, the mechanism remains unknown. In the current study, we demonstrated a substantial increase in BMP2 expression in the dorsal root ganglia (DRG) in a rat model of BCP. Knockdown of BMP2 expression ameliorated BCP in rats. Furthermore, the DRG neurons of rats with BCP expressed higher levels of calcitonin gene-related peptide (CGRP), and BCP was successfully suppressed by intrathecal injection of a CGRP receptor blocker (CGRP8-37). Downregulation of BMP2 expression reduced the expression of CGRP in the DRG of rats with BCP and relieved pain behavior. Moreover, we revealed that upregulation of CGRP expression in the DRG may be induced by activation of the BMPR/Smad1 signaling pathway. These findings suggest that BMP2 contributes to BCP by upregulating CGRP in DRG neurons via activating BMPR/Smad1 signaling pathway and that therapeutic targeting of the BMP2-Smad1-CGRP pathway may ameliorate BCP in the context of advanced cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200030, China
| | - Zhihao Gong
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200030, China
| | - Kai Wang
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200030, China
| | - Mi Tian
- Department of Intensive Care Medicine, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Yuxin Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200030, China
| | - Xin Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xingji You
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200030, China
| |
Collapse
|
24
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|
25
|
Ahuja S, Zaheer S. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities. Cell Biol Int 2024; 48:87-127. [PMID: 37859532 DOI: 10.1002/cbin.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Physiological embryogenesis and adult tissue homeostasis are regulated by transforming growth factor-β (TGF-β), an evolutionarily conserved family of secreted polypeptide factors, acting in an autocrine and paracrine manner. The role of TGF-β in inflammation, fibrosis, and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, especially fibrosis and cancer, overexpressed TGF-β causes extracellular matrix deposition, epithelial-mesenchymal transition, cancer-associated fibroblast formation, and/or angiogenesis. In this review article, we have tried to dive deep into the mechanism of action of TGF-β in inflammation, fibrosis, and carcinogenesis. As TGF-β and its downstream signaling mechanism are implicated in fibrosis and carcinogenesis blocking this signaling mechanism appears to be a promising avenue. However, targeting TGF-β carries substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. There is a need for careful dosing of TGF-β drugs for therapeutic use and patient selection.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
26
|
Jash R, Maparu K, Seksaria S, Das S. Decrypting the Pathological Pathways in IgA Nephropathy. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:43-56. [PMID: 37870060 DOI: 10.2174/0127722708275167231011102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
IgAN is the most common form of glomerulonephritis affecting 2000000 people annually. The disease ultimately progresses to chronic renal failure and ESRD. In this article, we focused on a comprehensive understanding of the pathogenesis of the disease and thus identifying different target proteins that could be essential in therapeutic approaches in the management of the disease. Aberrantly glycosylated IgA1 produced by the suppression of the enzyme β-1, 3 galactosyltransferase ultimately triggered the formation of IgG autoantibodies which form complexes with Gd-IgA1. The complex gets circulated through the blood vessels through monocytes and ultimately gets deposited in the glomerular mesangial cells via CD71 receptors present locally. This complex triggers the inflammatory pathways activating the alternate complement system, various types of T Cells, toll-like receptors, cytokines, and chemokines ultimately recruiting the phagocytic cells to eliminate the Gd-IgA complex. The inflammatory proteins cause severe mesangial and podocyte damage in the kidney which ultimately initiates the repair process following chronic inflammation by an important protein named TGFβ1. TGF β1 is an important protein produced during chronic inflammation mediating the repair process via various downstream transduction proteins and ultimately producing fibrotic proteins which help in the repair process but permanently damage the glomerular cells.
Collapse
Affiliation(s)
- Rajiv Jash
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| | - Kousik Maparu
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Sanket Seksaria
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Saptarshi Das
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| |
Collapse
|
27
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
28
|
Ge R, Huang GM. Targeting transforming growth factor beta signaling in metastatic osteosarcoma. J Bone Oncol 2023; 43:100513. [PMID: 38021074 PMCID: PMC10666000 DOI: 10.1016/j.jbo.2023.100513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Osteosarcoma is a rare type of bone cancer, and half of the cases affect children and adolescents younger than 20 years of age. Despite intensive efforts to improve both chemotherapeutics and surgical management, the clinical outcome for metastatic osteosarcoma remains poor. Transforming growth factor β (TGF-β) is one of the most abundant growth factors in bones. The TGF-β signaling pathway has complex and contradictory roles in the pathogenesis of human cancers. TGF-β is primarily a tumor suppressor that inhibits proliferation and induces apoptosis of premalignant epithelial cells. In the later stages of cancer progression, however, TGF-β functions as a metastasis promoter by promoting tumor growth, inducing epithelial-mesenchymal transition (EMT), blocking antitumor immune responses, increasing tumor-associated fibrosis, and enhancing angiogenesis. In contrast with the dual effects of TGF-β on carcinoma (epithelial origin) progression, TGF-β seems to mainly have a pro-tumoral effect on sarcomas including osteosarcoma (mesenchymal origin). Many drugs that target TGF-β signaling have been developed: neutralizing antibodies that prevent TGF-β binding to receptor complexes; ligand trap employing recombinant Fc-fusion proteins containing the soluble ectodomain of either type II (TβRII) or the type III receptor ((TβRIII), preventing TGF-β from binding to its receptors; antisense nucleotides that reduce TGF-β expression at the transcriptional/translational level; small molecule inhibitors of serine/threonine kinases of the type I receptor (TβRI) preventing downstream signaling; and vaccines that contain cell lines transfected with TβRII antisense genes, or target furin convertase, resulting in reduced TGF-β signaling. TGF-β antagonists have been shown to have effects on osteosarcoma in vitro and in vivo. One of the small molecule TβRI inhibitors, Vactosertib, is currently undergoing a phase 1/2 clinical trial to evaluate its effect on osteosarcoma. Several phase 1/2/3 clinical trials have shown TGF-β antagonists are safe and well tolerated. For instance, Luspatercept, a TGF-β ligand trap, has been approved by the FDA for the treatment of anemia associated with myeloid dysplastic syndrome (MDS) with ring sideroblasts/mutated SF3B1 with acceptable safety. Clinical trials evaluating the long-term safety of Luspatercept are in process.
Collapse
Affiliation(s)
- Rongrong Ge
- Hillman Cancer Center at Central Pennsylvania, University of Pittsburg Medical Center, Harrisburg, PA, 17109, USA
| | - Gavin M. Huang
- Harrisburg Academy School, 10 Erford Rd, Wormleysburg, PA, 17043, USA
| |
Collapse
|
29
|
Qu Z, Sun Y, Zhou X, Yan X, Xu T. Smyd3 negatively regulates the anti-viral pathway by promoting TAK1 degradation in teleost fish. J Virol 2023; 97:e0130623. [PMID: 37943055 PMCID: PMC10688333 DOI: 10.1128/jvi.01306-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE In this study, we have found that the existence of Smyd3 promoted the replication of SCRV. Additionally, we report that Smyd3 negatively regulates the NF-κB and IRF3 signaling pathway by facilitating the degradation of TAK1 in fish. Our findings suggest that Smyd3 interacts with TAK1. Further investigations have revealed that Smyd3 specifically mediates K48-linked ubiquitination of TAK1 and enhances TAK1 degradation, resulting in a significant inhibition of the NF-κB and IRF3 signaling pathway. These results not only contribute to the advancement of fish anti-viral immunity but also provide new evidence for understanding the mechanism of TAK1 in mammals.
Collapse
Affiliation(s)
- Zhili Qu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuqin Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xuefeng Zhou
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
30
|
Hwang SH, Jang HA, Kojour MAM, Yun K, Lee YS, Han YS, Jo YH. Effects of TmTak1 silencing on AMP production as an Imd pathway component in Tenebrio molitor. Sci Rep 2023; 13:18914. [PMID: 37919359 PMCID: PMC10622451 DOI: 10.1038/s41598-023-45978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Mealworms beetles, Tenebrio molitor, are the limelight next-generation food for humans due to their high nutrient contents. Since Tenebrio molitor is used as feed for pets and livestock in addition to their ability to decompose polystyrene and plastic waste, it is recognized as an insect with an industrial core value. Therefore, it is important to study the immune mechanism related to the development and infection of mealworms for mass breeding purposes. The immune deficiency (Imd) signaling is one of the main pathways with pivotal roles in the production of antimicrobial peptides (AMPs). Transforming growth factor-β activated kinase (TAK1) is one of the Imd pathway components, forms a complex with TAK1 binding protein 2 (TAB2) to ultimately help activate the transcription factor Relish and eventually induce host to produce AMPs. Relatively, little has been revealed about TAK1 in insect models, especially in the T. molitor. Therefore, this study was conducted to elucidate the function of TmTak1 in T. molitor. Our results showed that the highest and lowest mRNA expression of TmTak1 were found in egg and young larvae respectively. The tissue-specific expression patterns were reported in the gut of T. molitor larvae and the fat bodies of adults. Systemic microbial challenge illustrated TmTak1 high expression following the fungal infection in all dissected tissues except for the whole body. However, silencing TmTak1 experiments showed that the survivability of T. molitor larvae affected significantly following Escherichia coli infection. Accordingly, AMP induction after TmTak1 knock down was mainly reported in the integument and the fat bodies.
Collapse
Affiliation(s)
- Su Hyeon Hwang
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ho Am Jang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Maryam Ali Mohammadie Kojour
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Keunho Yun
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Seok Lee
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Hun Jo
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea.
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea.
| |
Collapse
|
31
|
Ma M, Dang Y, Chang B, Wang F, Xu J, Chen L, Su H, Li J, Ge B, Chen C, Liu H. TAK1 is an essential kinase for STING trafficking. Mol Cell 2023; 83:3885-3903.e5. [PMID: 37832545 DOI: 10.1016/j.molcel.2023.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/13/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
The translocation of stimulator of interferon genes (STING) from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC) enables its activation. However, the mechanism underlying the regulation of STING exit from the ER remains elusive. Here, we found that STING induces the activation of transforming growth factor beta-activated kinase 1 (TAK1) prior to STING trafficking in a TAK1 binding protein 1 (TAB1)-dependent manner. Intriguingly, activated TAK1 directly mediates STING phosphorylation on serine 355, which facilitates its interaction with STING ER exit protein (STEEP) and thereby promotes its oligomerization and translocation to the ERGIC for subsequent activation. Importantly, activation of TAK1 by monophosphoryl lipid A, a TLR4 agonist, boosts cGAMP-induced antitumor immunity dependent on STING phosphorylation in a mouse allograft tumor model. Taken together, TAK1 was identified as a checkpoint for STING activation by promoting its trafficking, providing a basis for combinatory tumor immunotherapy and intervention in STING-related diseases.
Collapse
Affiliation(s)
- Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China; Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yifang Dang
- Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China
| | - Boran Chang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China; Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China
| | - Junfang Xu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China
| | - Li Chen
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China
| | - Hang Su
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China; Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China.
| | - Haipeng Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China; Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China.
| |
Collapse
|
32
|
Sarrand J, Soyfoo MS. Involvement of Epithelial-Mesenchymal Transition (EMT) in Autoimmune Diseases. Int J Mol Sci 2023; 24:14481. [PMID: 37833928 PMCID: PMC10572663 DOI: 10.3390/ijms241914481] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex reversible biological process characterized by the loss of epithelial features and the acquisition of mesenchymal features. EMT was initially described in developmental processes and was further associated with pathological conditions including metastatic cascade arising in neoplastic progression and organ fibrosis. Fibrosis is delineated by an excessive number of myofibroblasts, resulting in exuberant production of extracellular matrix (ECM) proteins, thereby compromising organ function and ultimately leading to its failure. It is now well acknowledged that a significant number of myofibroblasts result from the conversion of epithelial cells via EMT. Over the past two decades, evidence has accrued linking fibrosis to many chronic autoimmune and inflammatory diseases, including systemic sclerosis (SSc), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjögren's syndrome (SS), and inflammatory bowel diseases (IBD). In addition, chronic inflammatory states observed in most autoimmune and inflammatory diseases can act as a potent trigger of EMT, leading to the development of a pathological fibrotic state. In the present review, we aim to describe the current state of knowledge regarding the contribution of EMT to the pathophysiological processes of various rheumatic conditions.
Collapse
Affiliation(s)
- Julie Sarrand
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad S. Soyfoo
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
33
|
Massagué J, Sheppard D. TGF-β signaling in health and disease. Cell 2023; 186:4007-4037. [PMID: 37714133 PMCID: PMC10772989 DOI: 10.1016/j.cell.2023.07.036] [Citation(s) in RCA: 292] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023]
Abstract
The TGF-β regulatory system plays crucial roles in the preservation of organismal integrity. TGF-β signaling controls metazoan embryo development, tissue homeostasis, and injury repair through coordinated effects on cell proliferation, phenotypic plasticity, migration, metabolic adaptation, and immune surveillance of multiple cell types in shared ecosystems. Defects of TGF-β signaling, particularly in epithelial cells, tissue fibroblasts, and immune cells, disrupt immune tolerance, promote inflammation, underlie the pathogenesis of fibrosis and cancer, and contribute to the resistance of these diseases to treatment. Here, we review how TGF-β coordinates multicellular response programs in health and disease and how this knowledge can be leveraged to develop treatments for diseases of the TGF-β system.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Dean Sheppard
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
34
|
Bale S, Verma P, Yalavarthi B, Scarneo SA, Hughes P, Amin MA, Tsou PS, Khanna D, Haystead TA, Bhattacharyya S, Varga J. Pharmacological inhibition of TAK1 prevents and induces regression of experimental organ fibrosis. JCI Insight 2023; 8:e165358. [PMID: 37306632 PMCID: PMC10443806 DOI: 10.1172/jci.insight.165358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Multiorgan fibrosis in systemic sclerosis (SSc) accounts for substantial mortality and lacks effective therapies. Lying at the crossroad of TGF-β and TLR signaling, TGF-β-activated kinase 1 (TAK1) might have a pathogenic role in SSc. We therefore sought to evaluate the TAK1 signaling axis in patients with SSc and to investigate pharmacological TAK1 blockade using a potentially novel drug-like selective TAK1 inhibitor, HS-276. Inhibiting TAK1 abrogated TGF-β1 stimulation of collagen synthesis and myofibroblasts differentiation in healthy skin fibroblasts, and it ameliorated constitutive activation of SSc skin fibroblasts. Moreover, treatment with HS-276 prevented dermal and pulmonary fibrosis and reduced the expression of profibrotic mediators in bleomycin-treated mice. Importantly, initiating HS-276 treatment even after fibrosis was already established prevented its progression in affected organs. Together, these findings implicate TAK1 in the pathogenesis of SSc and identify targeted TAK1 inhibition using a small molecule as a potential strategy for the treatment of SSc and other fibrotic diseases.
Collapse
Affiliation(s)
- Swarna Bale
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Priyanka Verma
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bharath Yalavarthi
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Philip Hughes
- EydisBio Inc., Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - M. Asif Amin
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pei-Suen Tsou
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dinesh Khanna
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy A.J. Haystead
- EydisBio Inc., Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Swati Bhattacharyya
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Tawarayama H, Umeki K, Inoue-Yanagimachi M, Takahashi N, Hasegawa H, Himori N, Tsuda S, Kunikata H, Akaike T, Nakazawa T. Glutathione trisulfide prevents lipopolysaccharide-induced retinal inflammation via inhibition of proinflammatory cytokine production in glial cells. Sci Rep 2023; 13:11513. [PMID: 37460786 DOI: 10.1038/s41598-023-38696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
We aimed to investigate the impact of glutathione trisulfide (GSSSG) on lipopolysaccharide (LPS)-induced inflammation in retinal glia. Inflammatory responses in mouse-derived glial cells and Wistar rat retinas were stimulated with administration of LPS. Cell survival and proinflammatory cytokine production were examined using the Calcein-AM assay, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Retinal microglia were visualized with immunohistochemistry for Iba1. Administration of LPS (10 µg/mL) or GSSSG (less than 100 µM) did not affect survival of cultured primary Müller cells and established microglial cells (BV-2). RT-qPCR and ELISA indicated that GSSSG inhibited LPS-induced gene upregulation and protein secretion of proinflammatory cytokines in these glial cells and rat retinas. GSSSG inhibited LPS-induced activation of TGF-β-activated kinase 1 (TAK1), which is an upstream kinase of NF-κB, in BV-2 cells. Finally, in vivo experiments indicated that intravitreal administration of GSSSG but not its relative glutathione disulfide (GSSG) inhibited LPS (500 ng)-induced accumulation of Iba1-immunopositive microglia in rat retinas. Taken together, GSSSG has the potential to prevent pathogenesis of inflammation-associated ocular diseases by inhibiting proinflammatory cytokine expression in retinal glial cells.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kota Umeki
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Maki Inoue-Yanagimachi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Naoki Takahashi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hirokazu Hasegawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8579, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Collaborative Program of Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| |
Collapse
|
36
|
Sun EG, Vijayan V, Park MR, Yoo KH, Cho SH, Bae WK, Shim HJ, Hwang JE, Park IK, Chung IJ. Suppression of triple-negative breast cancer aggressiveness by LGALS3BP via inhibition of the TNF-α-TAK1-MMP9 axis. Cell Death Discov 2023; 9:122. [PMID: 37041137 PMCID: PMC10090165 DOI: 10.1038/s41420-023-01419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1), which is highly expressed and aberrantly activated in triple-negative breast cancer (TNBC), plays a pivotal role in metastasis and progression. This makes it a potential therapeutic target for TNBC. Previously, we reported lectin galactoside-binding soluble 3 binding protein (LGALS3BP) as a negative regulator of TAK1 signaling in the inflammatory response and inflammation-associated cancer progression. However, the role of LGALS3BP and its molecular interaction with TAK1 in TNBC remain unclear. This study aimed to investigate the function and underlying mechanism of action of LGALS3BP in TNBC progression and determine the therapeutic potential of nanoparticle-mediated delivery of LGALS3BP in TNBC. We found that LGALS3BP overexpression suppressed the overall aggressive phenotype of TNBC cells in vitro and in vivo. LGALS3BP inhibited TNF-α-mediated gene expression of matrix metalloproteinase 9 (MMP9), which encodes a protein crucial for lung metastasis in TNBC patients. Mechanistically, LGALS3BP suppressed TNF-α-mediated activation of TAK1, a key kinase linking TNF-α stimulation and MMP9 expression in TNBC. Nanoparticle-mediated delivery enabled tumor-specific targeting and inhibited TAK1 phosphorylation and MMP9 expression in tumor tissues, suppressing primary tumor growth and lung metastasis in vivo. Our findings reveal a novel role of LGALS3BP in TNBC progression and demonstrate the therapeutic potential of nanoparticle-mediated delivery of LGALS3BP in TNBC.
Collapse
Affiliation(s)
- Eun-Gene Sun
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences and Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Mi-Ra Park
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Sang-Hee Cho
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Woo-Kyun Bae
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC Center, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Hyun-Jeong Shim
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Jun-Eul Hwang
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Ik-Joo Chung
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
| |
Collapse
|
37
|
Roy A, Narkar VA, Kumar A. Emerging role of TAK1 in the regulation of skeletal muscle mass. Bioessays 2023; 45:e2300003. [PMID: 36789559 PMCID: PMC10023406 DOI: 10.1002/bies.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/02/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Maintenance of skeletal muscle mass and strength throughout life is crucial for heathy living and longevity. Several signaling pathways have been implicated in the regulation of skeletal muscle mass in adults. TGF-β-activated kinase 1 (TAK1) is a key protein, which coordinates the activation of multiple signaling pathways. Recently, it was discovered that TAK1 is essential for the maintenance of skeletal muscle mass and myofiber hypertrophy following mechanical overload. Forced activation of TAK1 in skeletal muscle causes hypertrophy and attenuates denervation-induced muscle atrophy. TAK1-mediated signaling in skeletal muscle promotes protein synthesis, redox homeostasis, mitochondrial health, and integrity of neuromuscular junctions. In this article, we have reviewed the role and potential mechanisms through which TAK1 regulates skeletal muscle mass and growth. We have also proposed future areas of research that could be instrumental in exploring TAK1 as therapeutic target for improving muscle mass in various catabolic conditions and diseases.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| |
Collapse
|
38
|
Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, Ali A, Ali MN. TGF-β signaling pathway: Therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol 2023; 947:175678. [PMID: 36990262 DOI: 10.1016/j.ejphar.2023.175678] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Transforming growth factor-β (TGFβ) is a pleiotropic secretory cytokine exhibiting both cancer-inhibitory and promoting properties. It transmits its signals via Suppressor of Mother against Decapentaplegic (SMAD) and non-SMAD pathways and regulates cell proliferation, differentiation, invasion, migration, and apoptosis. In non-cancer and early-stage cancer cells, TGFβ signaling suppresses cancer progression via inducing apoptosis, cell cycle arrest, or anti-proliferation, and promoting cell differentiation. On the other hand, TGFβ may also act as an oncogene in advanced stages of tumors, wherein it develops immune-suppressive tumor microenvironments and induces the proliferation of cancer cells, invasion, angiogenesis, tumorigenesis, and metastasis. Higher TGFβ expression leads to the instigation and development of cancer. Therefore, suppressing TGFβ signals may present a potential treatment option for inhibiting tumorigenesis and metastasis. Different inhibitory molecules, including ligand traps, anti-sense oligo-nucleotides, small molecule receptor-kinase inhibitors, small molecule inhibitors, and vaccines, have been developed and clinically trialed for blocking the TGFβ signaling pathway. These molecules are not pro-oncogenic response-specific but block all signaling effects induced by TGFβ. Nonetheless, targeting the activation of TGFβ signaling with maximized specificity and minimized toxicity can enhance the efficacy of therapeutic approaches against this signaling pathway. The molecules that are used to target TGFβ are non-cytotoxic to cancer cells but designed to curtail the over-activation of invasion and metastasis driving TGFβ signaling in stromal and cancer cells. Here, we discussed the critical role of TGFβ in tumorigenesis, and metastasis, as well as the outcome and the promising achievement of TGFβ inhibitory molecules in the treatment of cancer.
Collapse
|
39
|
MicroRNA-377: A therapeutic and diagnostic tumor marker. Int J Biol Macromol 2023; 226:1226-1235. [PMID: 36442575 DOI: 10.1016/j.ijbiomac.2022.11.236] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Cancer is considered as one of the main causes of human deaths globally. Despite the recent progresses in therapeutic modalities, there is still a high rate of mortality among cancer patients. Late diagnosis in advanced tumor stages is one of the main reasons for treatment failure in cancer patients. Therefore, it is required to suggest the novel strategies for the early tumor detection. MicroRNAs (miRNAs) have critical roles in neoplastic transformation by regulation of cell proliferation, migration, and apoptosis. They are always considered as non-invasive markers due to their high stability in body fluids. Since, all of the miRNAs have tissue-specific functions in different tumors as tumor suppressor or oncogene; it is required to investigate the molecular mechanisms of every miRNA in different tumors to introduce that as a suitable non-invasive diagnostic marker in cancer patients. For the first time in the present review, we discussed the role of miR-377 during tumor progression. It has been reported that miR-377 mainly functions as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review is an important step toward introducing the miR-377 as a novel diagnostic marker as well as a therapeutic target in cancer patients.
Collapse
|
40
|
Han N, Geng WJ, Li J, Liu ST, Zhang J, Wen YJ, Xu HH, Li MY, Li YR, Han PP. Transcription level differences in Taxus wallichiana var. mairei elicited by Ce 3+, Ce 4+ and methyl jasmonate. FRONTIERS IN PLANT SCIENCE 2022; 13:1040596. [PMID: 36438113 PMCID: PMC9685566 DOI: 10.3389/fpls.2022.1040596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Taxol is a precious and effective anticancer drug. Cerium and methyl jasmonate (MJ) have been shown to increase the yield of taxol in taxus cells. However, the mechanisms of cerium-mediated and MJ-mediated taxol biosynthesis remain unknown. RNA-Seq was applied to study the overall regulation mechanism of cerium and MJ on taxol biosynthesis and analyze the differences among T. mairei cells elicited by Ce3+, Ce4+ and MJ on transcriptional level . Using sequence homology, 179 unigenes were identified as taxol synthesis genes. Under the condition of 100 μM MJ, taxol synthesis genes were up-regulated. Notably, taxol synthesis genes were down-regulated expression at 1 mM Ce3+ and 1 mM Ce4+. Differential expression genes involved in some related functions were analyzed, such as MAPK signaling pathway and plant-pathogen interaction. Sequence alignment and phylogenetic analysis of nine differentially expressed WRKYs in our data were carried out.
Collapse
|
41
|
Saxena V, Arregui S, Kamocka MM, Hains DS, Schwaderer A. MAP3K7 is an innate immune regulatory gene with increased expression in human and murine kidney intercalated cells following uropathogenic Escherichia coli exposure. J Cell Biochem 2022; 123:1817-1826. [PMID: 35959632 PMCID: PMC9671826 DOI: 10.1002/jcb.30318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/28/2022] [Accepted: 08/01/2022] [Indexed: 01/09/2023]
Abstract
Understanding the mechanisms responsible for the kidney's defense against ascending uropathogen is critical to devise novel treatment strategies against increasingly antibiotic resistant uropathogen. Growing body of evidence indicate Intercalated cells of the kidney as the key innate immune epithelial cells against uropathogen. The aim of this study was to find orthologous and differentially expressed bacterial defense genes in human versus murine intercalated cells. We simultaneously analyzed 84 antibacterial genes in intercalated cells enriched from mouse and human kidney samples. Intercalated cell "reporter mice" were exposed to saline versus uropathogenic Escherichia coli (UPEC) transurethrally for 1 h in vivo, and intercalated cells were flow sorted. Human kidney intercalated cells were enriched from kidney biopsy using magnetic-activated cell sorting and exposed to UPEC in vitro for 1 h. RT2 antibacterial PCR array was performed. Mitogen-activated protein kinase kinase kinase 7 (MAP3K7) messenger RNA (mRNA) expression increased in intercalated cells of both humans and mice following UPEC exposure. Intercalated cell MAP3K7 protein expression was defined by immunofluorescence and confocal imaging analysis, was consistent with the increased MAP3K7 mRNA expression profiles defined by PCR. The presence of the orthologous innate immune gene MAP3K7/TAK1 suggests that it may be a key regulator of the intercalated cell antibacterial response and demands further investigation of its role in urinary tract infection pathogenesis.
Collapse
Affiliation(s)
- Vijay Saxena
- Department of Pediatric NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Samuel Arregui
- Department of Pediatric NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Malgorzata Maria Kamocka
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - David S. Hains
- Department of Pediatric NephrologyIndiana University School of MedicineIndianapolisIndianaUSA,Department of Pediatrics, Division of NephrologyRiley Hospital for ChildrenIndianapolisIndianaUSA
| | - Andrew Schwaderer
- Department of Pediatric NephrologyIndiana University School of MedicineIndianapolisIndianaUSA,Department of Pediatrics, Division of NephrologyRiley Hospital for ChildrenIndianapolisIndianaUSA
| |
Collapse
|
42
|
Zhou M, Ren X, Yan X, Sun Y, Xu T. Rho-GDP-dissociation inhibitor-γ negatively regulates NF-κB signaling by promoting the degradation of TAK1 in miiuy croaker (Miichthys miiuy). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104496. [PMID: 35870543 DOI: 10.1016/j.dci.2022.104496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Transforming growth factor-beta activated kinase 1 (TAK1) is an adaptor molecular in TLR-mediated NF-κB signaling pathway and plays indispensable roles in innate immunity. As the most typical innate immune pathway, the strict regulation of NF-κB signaling pathway is particularly important. Rho-GDP-dissociation inhibitor-γ (Rho-GDIγ) is a member of the Rho protein family that regulates many important physiological processes. In this study, we demonstrated the mechanism of suppressing TAK1 expression in the teleost and found that Rho-GDIγ negatively regulated the NF-κB signaling pathway mediated by TAK1. We determined that TAK1 could directly interact with Rho-GDIγ. It is interesting that Rho-GDIγ promotes TAK1 degradation through the ubiquitin proteasome pathway. This study brings a new experimental basis to the teleost fish innate immune signaling pathway. Moreover, this discovery may provide new insights into innate immune regulation mechanism in mammals.
Collapse
Affiliation(s)
- Ming Zhou
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaomeng Ren
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
43
|
Sun X, Li X, Zhou Y, Wang Y, Liu X. Exogenous TIPE2 Inhibit TAK1 to Improve Inflammation and Neuropathic Pain Induced by Sciatic Nerve Injury Through Inactivating NF-κB and JNK. Neurochem Res 2022; 47:3167-3177. [PMID: 35842555 PMCID: PMC9470725 DOI: 10.1007/s11064-022-03671-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
Tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) possesses potent anti-inflammatory effect. However, if TIPE2 ameliorates sciatic nerve injury (SNI)-induced inflammation and pain remains undiscussed, and the underlying role TAK1 in it were unknown. To verify our imagine, we performed SNI surgery, and analyzed expression and colocalization of TIPE2 and TAK1 in spinal cord and dorsal root neurons (DRG) by immunofluorescence staining and western blot. And the biological analysis, inflammatory factors, and pathological improvement were determined, and the regulation of TIPE2 in TAK1, phosphor-NF-κB, phospho-JNK was also tested by immunofluorescence staining and western blot. Experimental results showed the parabola-like change of TIPE2 and rising expression of TAK1 in spinal cord and DRG. And intrathecal TIPE2 injection could significantly improve the status of SNI rats, inhibit level of IL-6, IL-10 and TNF-α, raise the thermal withdrawal relax latency and mechanical withdrawal thresholds. Meanwhile, we also detected how TIPE2 regulated TAK1, and the downstream pathway NF-κB and JNK. The result indicated that TIPE2 could reduce TAK1 expression, and make NF-κB and JNK inactivated. To deeply discuss the potential mechanism, we injected TAK1 oligodeoxynucleotide into rats, and found that TIPE2 exerted the protective role against SNI through TAK1. In brief, TIPE2 reduced expression of TAK1, thereby inhibiting activation of NF-kB and JNK, further improving the neuroinflammation and neuropathic pain. TIPE2 played a protective role in sciatic nerve injury rats through regulating TAK1.
Collapse
Affiliation(s)
- Xuehua Sun
- Pain department, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu street, Muping District, Yantai City, 264100, Shandong, People's Republic of China.
| | - Xinyou Li
- Pain department, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu street, Muping District, Yantai City, 264100, Shandong, People's Republic of China
| | - Youfei Zhou
- Pain department, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu street, Muping District, Yantai City, 264100, Shandong, People's Republic of China
| | - Yufei Wang
- Pain department, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu street, Muping District, Yantai City, 264100, Shandong, People's Republic of China
| | - Xiaochen Liu
- Pain department, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu street, Muping District, Yantai City, 264100, Shandong, People's Republic of China
| |
Collapse
|
44
|
FAK mediates LPS-induced inflammatory lung injury through interacting TAK1 and activating TAK1-NFκB pathway. Cell Death Dis 2022; 13:589. [PMID: 35803916 PMCID: PMC9270420 DOI: 10.1038/s41419-022-05046-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Acute lung injury (ALI), characterized by inflammatory damage, is a major clinical challenge. Developing specific treatment options for ALI requires the identification of novel targetable signaling pathways. Recent studies reported that endotoxin lipopolysaccharide (LPS) induced a TLR4-dependent activation of focal adhesion kinase (FAK) in colorectal adenocarcinoma cells, suggesting that FAK may be involved in LPS-induced inflammatory responses. Here, we investigated the involvement and mechanism of FAK in mediating LPS-induced inflammation and ALI. We show that LPS phosphorylates FAK in macrophages. Either FAK inhibitor, site-directly mutation, or siRNA knockdown of FAK significantly suppresses LPS-induced inflammatory cytokine production in macrophages. FAK inhibition also blocked LPS-induced activation of MAPKs and NFκB. Mechanistically, we demonstrate that activated FAK directly interacts with transforming growth factor-β-activated kinase-1 (TAK1), an upstream kinase of MAPKs and NFκB, and then phosphorylates TAK1 at Ser412. In a mouse model of LPS-induced ALI, pharmacological inhibition of FAK suppressed FAK/TAK activation and inflammatory response in lung tissues. These activities resulted in the preservation of lung tissues in LPS-challenged mice and increased survival during LPS-induced septic shock. Collectively, our results illustrate a novel FAK-TAK1-NFκB signaling axis in LPS-induced inflammation and ALI, and support FAK as a potential target for the treatment of ALI.
Collapse
|
45
|
Jianwei W, Ye T, Hongwei W, Dachuan L, Fei Z, Jianyuan J, Hongli W. The Role of TAK1 in RANKL-Induced Osteoclastogenesis. Calcif Tissue Int 2022; 111:1-12. [PMID: 35286417 DOI: 10.1007/s00223-022-00967-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 12/31/2022]
Abstract
Bone remodelling is generally a dynamic process orchestrated by bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoclasts are the only cell type capable of bone resorption to maintain bone homeostasis in the human body. However, excessive osteoclastogenesis can lead to osteolytic diseases. The receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) has been widely considered to be an important modulator of osteoclastogenesis thereby participating in the pathogenesis of osteolytic diseases. Transforming growth factor β-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, is an important intracellular molecule that regulates multiple signalling pathways, such as NF-κB and mitogen-activated protein kinase to mediate multiple physiological processes, including cell survival, inflammation, and tumourigenesis. Furthermore, increasing evidence has demonstrated that TAK1 is intimately involved in RANKL-induced osteoclastogenesis. Moreover, several detailed mechanisms by which TAK1 regulates RANKL-induced osteoclastogenesis have been clarified, and some potential approaches targeting TAK1 for the treatment of osteolytic diseases have emerged. In this review, we discuss how TAK1 functions in RANKL-mediated signalling pathways and highlight the significant role of TAK1 in RANKL-induced osteoclastogenesis. In addition, we discuss the potential clinical implications of TAK1 inhibitors for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Wu Jianwei
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Tian Ye
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Wang Hongwei
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Li Dachuan
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Zou Fei
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Jiang Jianyuan
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China.
| | - Wang Hongli
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China.
| |
Collapse
|
46
|
Pathophysiology and Emerging Molecular Therapeutic Targets in Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23136983. [PMID: 35805978 PMCID: PMC9266941 DOI: 10.3390/ijms23136983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
The term heterotopic ossification (HO) describes bone formation in tissues where bone is normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells, probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms through a combination of endochondral and intramembranous ossification, depending on the aetiology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types and biological pathways have been studied in efforts to find effective therapeutic strategies for the disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been implicated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR), and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has resulted in the emergence of several novel investigational therapeutic avenues, including palovarotene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent advances in emerging molecular therapies to treat and prevent HO that have had early success in the monogenic disease and are currently being explored in the common complex forms of HO.
Collapse
|
47
|
Zhang L, Kang S, Chen H, Liao J, Sun M, Wu S, Xu Z, Xu L, Zhang X, Qin Q, Wei J. The roles of grouper TAK1 in regulating the infection of Singapore grouper iridovirus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:164-173. [PMID: 35398221 DOI: 10.1016/j.fsi.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Transforming growth factor-β activated kinase 1 (TAK1) is a member of the mitogen-activated protein kinase family. It is an upstream factor of the IκB kinase, which activates IKKα and IKKβ. TAK1 is a key factor in the induction of nuclear factor κB (NF-κB) and plays a crucial role in the activation of inflammatory responses. However, the roles of TAK1 during viral infection in teleost fish are largely unknown. In this study, we cloned a TAK1 homolog (HgTAK1) from the hybrid grouper (Epinephelus fuscoguttatus♂ × Epinephelus lanceolatus♀). The open reading frame of HgTAK1 consists of 1728 nucleotides encoding 575 amino acids, and the predicted molecular weight is 64.32 kDa HgTAK1 has an S_TKc domain, which consists of a serine/threonine protein kinase and a catalytic domain. Expression pattern analysis showed that HgTAK1 was distributed in all tested tissues, with abundant contents in the heart, head kidney, and blood. Additionally, HgTAK1 was distributed in the cytoplasm of grouper spleen (GS) cells. After Singapore grouper iridovirus (SGIV) infection, the expression of HgTAK1 increased in GS cells. Overexpression of HgTAK1 could promote the replication of SGIV in GS cells and inhibit the activation of NF-κB and IFN stimulated response elements (ISRE) in reporter assay. When co-expressed with IRF3 or HgIRF7 in GS cells, HgTAK1 obviously down-regulated IRF3- or IRF7-mediated the NF-κB and ISRE promoter induction. The interaction between HgTAK1 and IRF3 or IRF7 has been identified by co-immunoprecipitation assay. These findings provide a basis for understanding the innate immune mechanism of the grouper response to viral infection.
Collapse
Affiliation(s)
- Luhao Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shaozhu Kang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hong Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiaming Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Mengshi Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Siting Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhuqing Xu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Linting Xu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qiwei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 528478, China.
| | - Jingguang Wei
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
48
|
Li J, Yan C, Wang Y, Chen C, Yu H, Liu D, Huang K, Han Y. GCN5-mediated regulation of pathological cardiac hypertrophy via activation of the TAK1-JNK/p38 signaling pathway. Cell Death Dis 2022; 13:421. [PMID: 35490166 PMCID: PMC9056507 DOI: 10.1038/s41419-022-04881-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022]
Abstract
Pathological cardiac hypertrophy is a process of abnormal remodeling of cardiomyocytes in response to pressure overload or other stress stimuli, resulting in myocardial injury, which is a major risk factor for heart failure, leading to increased morbidity and mortality. General control nonrepressed protein 5 (GCN5)/lysine acetyltransferase 2 A, a member of the histone acetyltransferase and lysine acetyltransferase families, regulates a variety of physiological and pathological events. However, the function of GCN5 in pathological cardiac hypertrophy remains unclear. This study aimed to explore the role of GCN5 in the development of pathological cardiac hypertrophy. GCN5 expression was increased in isolated neonatal rat cardiomyocytes (NRCMs) and mouse hearts of a hypertrophic mouse model. GCN5 overexpression aggravated the cardiac hypertrophy triggered by transverse aortic constriction surgery. In contrast, inhibition of GCN5 impairs the development of pathological cardiac hypertrophy. Similar results were obtained upon stimulation of NRCMs (having GCN5 overexpressed or knocked down) with phenylephrine. Mechanistically, our results indicate that GCN5 exacerbates cardiac hypertrophy via excessive activation of the transforming growth factor β-activated kinase 1 (TAK1)-c-Jun N-terminal kinase (JNK)/p38 signaling pathway. Using a TAK1-specific inhibitor in rescue experiments confirmed that the activation of TAK1 is essential for GCN5-mediated cardiac hypertrophy. In summary, the current study elucidated the role of GCN5 in promotion of cardiac hypertrophy, thereby implying it to be a potential target for treatment.
Collapse
Affiliation(s)
- Jia Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Can Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haibo Yu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yaling Han
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
49
|
Liver Steatosis: A Marker of Metabolic Risk in Children. Int J Mol Sci 2022; 23:ijms23094822. [PMID: 35563210 PMCID: PMC9100068 DOI: 10.3390/ijms23094822] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is one of the greatest health challenges affecting children of all ages and ethnicities. Almost 19% of children and adolescents worldwide are overweight or obese, with an upward trend in the last decades. These reports imply an increased risk of fat accumulation in hepatic cells leading to a series of histological hepatic damages gathered under the acronym NAFLD (Non-Alcoholic Fatty Liver Disease). Due to the complex dynamics underlying this condition, it has been recently renamed as 'Metabolic Dysfunction Associated Fatty Liver Disease (MAFLD)', supporting the hypothesis that hepatic steatosis is a key component of the large group of clinical and laboratory abnormalities of Metabolic Syndrome (MetS). This review aims to share the latest scientific knowledge on MAFLD in children in an attempt to offer novel insights into the complex dynamics underlying this condition, focusing on the novel molecular aspects. Although there is still no treatment with a proven efficacy for this condition, starting from the molecular basis of the disease, MAFLD's therapeutic landscape is rapidly expanding, and different medications seem to act as modifiers of liver steatosis, inflammation, and fibrosis.
Collapse
|
50
|
A Comprehensive View on the Quercetin Impact on Colorectal Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061873. [PMID: 35335239 PMCID: PMC8953922 DOI: 10.3390/molecules27061873] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) represents the third type of cancer in incidence and second in mortality worldwide, with the newly diagnosed case number on the rise. Among the diagnosed patients, approximately 70% have no hereditary germ-line mutations or family history of pathology, thus being termed sporadic CRC. Diet and environmental factors are to date considered solely responsible for the development of sporadic CRC; therefore; attention should be directed towards the discovery of preventative actions to combat the CRC initiation, promotion, and progression. Quercetin is a polyphenolic flavonoid plant secondary metabolite with a well-characterized antioxidant activity. It has been extensively reported as an anti-carcinogenic agent in the scientific literature, and the modulated targets of quercetin have been also characterized in the context of CRC, mainly in original research publications. In this fairly comprehensive review, we summarize the molecular targets of quercetin reported to date in in vivo and in vitro CRC models, while also giving background information about the signal transduction pathways that it up- and downregulates. Among the most relevant modulated pathways, the Wnt/β-catenin, PI3K/AKT, MAPK/Erk, JNK, or p38, p53, and NF-κB have been described. With this work, we hope to encourage further quests in the elucidation of quercetin anti-carcinogenic activity as single agent, as dietary component, or as pharmaconutrient delivered in the form of plant extracts.
Collapse
|