1
|
Fan SH, Li N, Huang KF, Chang YT, Wu CC, Chen SL. MyoD Over-Expression Rescues GST-bFGF Repressed Myogenesis. Int J Mol Sci 2024; 25:4308. [PMID: 38673893 PMCID: PMC11050597 DOI: 10.3390/ijms25084308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
During embryogenesis, basic fibroblast growth factor (bFGF) is released from neural tube and myotome to promote myogenic fate in the somite, and is routinely used for the culture of adult skeletal muscle (SKM) stem cells (MuSC, called satellite cells). However, the mechanism employed by bFGF to promote SKM lineage and MuSC proliferation has not been analyzed in detail. Furthermore, the question of if the post-translational modification (PTM) of bFGF is important to its stemness-promoting effect has not been answered. In this study, GST-bFGF was expressed and purified from E.coli, which lacks the PTM system in eukaryotes. We found that both GST-bFGF and commercially available bFGF activated the Akt-Erk pathway and had strong cell proliferation effect on C2C12 myoblasts and MuSC. GST-bFGF reversibly compromised the myogenesis of C2C12 myoblasts and MuSC, and it increased the expression of Myf5, Pax3/7, and Cyclin D1 but strongly repressed that of MyoD, suggesting the maintenance of myogenic stemness amid repressed MyoD expression. The proliferation effect of GST-bFGF was conserved in C2C12 over-expressed with MyoD (C2C12-tTA-MyoD), implying its independence of the down-regulation of MyoD. In addition, the repressive effect of GST-bFGF on myogenic differentiation was almost totally rescued by the over-expression of MyoD. Together, these evidences suggest that (1) GST-bFGF and bFGF have similar effects on myogenic cell proliferation and differentiation, and (2) GST-bFGF can promote MuSC stemness and proliferation by differentially regulating MRFs and Pax3/7, (3) MyoD repression by GST-bFGF is reversible and independent of the proliferation effect, and (4) GST-bFGF can be a good substitute for bFGF in sustaining MuSC stemness and proliferation.
Collapse
Affiliation(s)
| | | | | | | | | | - Shen-Liang Chen
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan; (S.-H.F.); (N.L.); (K.-F.H.); (Y.-T.C.); (C.-C.W.)
| |
Collapse
|
2
|
Helzer D, Kannan P, Reynolds JC, Gibbs DE, Crosbie RH. Role of microenvironment on muscle stem cell function in health, adaptation, and disease. Curr Top Dev Biol 2024; 158:179-201. [PMID: 38670705 DOI: 10.1016/bs.ctdb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.
Collapse
Affiliation(s)
- Daniel Helzer
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pranav Kannan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph C Reynolds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Devin E Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
3
|
Hidalgo-Alvarez V, Madl CM. Leveraging Biomaterial Platforms to Study Aging-Related Neural and Muscular Degeneration. Biomolecules 2024; 14:69. [PMID: 38254669 PMCID: PMC10813704 DOI: 10.3390/biom14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a complex multifactorial process that results in tissue function impairment across the whole organism. One of the common consequences of this process is the loss of muscle mass and the associated decline in muscle function, known as sarcopenia. Aging also presents with an increased risk of developing other pathological conditions such as neurodegeneration. Muscular and neuronal degeneration cause mobility issues and cognitive impairment, hence having a major impact on the quality of life of the older population. The development of novel therapies that can ameliorate the effects of aging is currently hindered by our limited knowledge of the underlying mechanisms and the use of models that fail to recapitulate the structure and composition of the cell microenvironment. The emergence of bioengineering techniques based on the use of biomimetic materials and biofabrication methods has opened the possibility of generating 3D models of muscular and nervous tissues that better mimic the native extracellular matrix. These platforms are particularly advantageous for drug testing and mechanistic studies. In this review, we discuss the developments made in the creation of 3D models of aging-related neuronal and muscular degeneration and we provide a perspective on the future directions for the field.
Collapse
Affiliation(s)
| | - Christopher M. Madl
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
4
|
Endo T. Postnatal skeletal muscle myogenesis governed by signal transduction networks: MAPKs and PI3K-Akt control multiple steps. Biochem Biophys Res Commun 2023; 682:223-243. [PMID: 37826946 DOI: 10.1016/j.bbrc.2023.09.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
5
|
Pang KT, Loo LSW, Chia S, Ong FYT, Yu H, Walsh I. Insight into muscle stem cell regeneration and mechanobiology. Stem Cell Res Ther 2023; 14:129. [PMID: 37173707 PMCID: PMC10176686 DOI: 10.1186/s13287-023-03363-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Stem cells possess the unique ability to differentiate into specialized cell types. These specialized cell types can be used for regenerative medicine purposes such as cell therapy. Myosatellite cells, also known as skeletal muscle stem cells (MuSCs), play important roles in the growth, repair, and regeneration of skeletal muscle tissues. However, despite its therapeutic potential, the successful differentiation, proliferation, and expansion processes of MuSCs remain a significant challenge due to a variety of factors. For example, the growth and differentiation of MuSCs can be greatly influenced by actively replicating the MuSCs microenvironment (known as the niche) using mechanical forces. However, the molecular role of mechanobiology in MuSC growth, proliferation, and differentiation for regenerative medicine is still poorly understood. In this present review, we comprehensively summarize, compare, and critically analyze how different mechanical cues shape stem cell growth, proliferation, differentiation, and their potential role in disease development (Fig. 1). The insights developed from the mechanobiology of stem cells will also contribute to how these applications can be used for regenerative purposes using MuSCs.
Collapse
Affiliation(s)
- Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, 62 Nanyang Drive, N1.2-B3, Singapore, 637459, Singapore.
| | - Larry Sai Weng Loo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Francesca Yi Teng Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hanry Yu
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Interdisplinary Science and Engineering Program, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
6
|
Cai L, Shi L, Peng Z, Sun Y, Chen J. Ageing of skeletal muscle extracellular matrix and mitochondria: finding a potential link. Ann Med 2023; 55:2240707. [PMID: 37643318 PMCID: PMC10732198 DOI: 10.1080/07853890.2023.2240707] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Aim: To discuss the progress of extracellular matrix (ECM) characteristics, mitochondrial homeostasis, and their potential crosstalk in the pathogenesis of sarcopenia, a geriatric syndrome characterized by a generalized and progressive reduction in muscle mass, strength, and physical performance.Methods: This review focuses on the anatomy and physiology of skeletal muscle, alterations of ECM and mitochondria during ageing, and the role of the interplay between ECM and mitochondria in the pathogenesis of sarcopenia.Results: Emerging evidence points to a clear interplay between mitochondria and ECM in various tissues and organs. Under the ageing process, the ECM undergoes changes in composition and physical properties that may mediate mitochondrial changes via the systematic metabolism, ROS, SPARC pathway, and AMPK/PGC-1α signalling, which in turn exacerbate muscle degeneration. However, the precise effects of such crosstalk on the pathobiology of ageing, particularly in skeletal muscle, have not yet been fully understood.Conclusion: The changes in skeletal muscle ECM and mitochondria are partially responsible for the worsened muscle function during the ageing process. A deeper understanding of their alterations and interactions in sarcopenic patients can help prevent sarcopenia and improve its prognoses.
Collapse
Affiliation(s)
- Lubing Cai
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luze Shi
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
FGF-2-dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis. Proc Natl Acad Sci U S A 2021; 118:2021013118. [PMID: 34493647 PMCID: PMC8449320 DOI: 10.1073/pnas.2021013118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/23/2021] [Indexed: 01/07/2023] Open
Abstract
Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus-mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2-dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.
Collapse
|
8
|
Young KG, Regnault TRH, Guglielmo CG. Extraordinarily rapid proliferation of cultured muscle satellite cells from migratory birds. Biol Lett 2021; 17:20210200. [PMID: 34403643 PMCID: PMC8370802 DOI: 10.1098/rsbl.2021.0200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Migratory birds experience bouts of muscle growth and depletion as they prepare for, and undertake prolonged flight. Our studies of migratory bird muscle physiology in vitro led to the discovery that sanderling (Calidris alba) muscle satellite cells proliferate more rapidly than other normal cell lines. Here we determined the proliferation rate of muscle satellite cells isolated from five migratory species (sanderling; ruff, Calidris pugnax; western sandpiper, Calidris mauri; yellow-rumped warbler, Setophaga coronata; Swainson's thrush, Catharus ustulatus) from two families (shorebirds and songbirds) and with different migratory strategies. Ruff and sanderling satellite cells exhibited rapid proliferation, with population doubling times of 9.3 ± 1.3 and 11.4 ± 2 h, whereas the remaining species' cell doubling times were greater than or equal to 24 h. The results indicate that the rapid proliferation of satellite cells is not associated with total migration distance but may be related to flight bout duration and interact with lifespan.
Collapse
Affiliation(s)
- Kevin G. Young
- Department of Biology, Advanced Facility for Avian Research, Western University, London, Ontario, Canada
| | - Timothy R. H. Regnault
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada
| | - Christopher G. Guglielmo
- Department of Biology, Advanced Facility for Avian Research, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Rudell JC, McLoon LK. Effect of Fibroblast Growth Factor 2 on Extraocular Muscle Structure and Function. Invest Ophthalmol Vis Sci 2021; 62:34. [PMID: 34293078 PMCID: PMC8300058 DOI: 10.1167/iovs.62.9.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mutations in the fibroblast growth factor (FGF) receptor can result in strabismus, but little is known about how FGFs affect extraocular muscle structure and function. These were assessed after short-term and long-term exposure to exogenously applied FGF2 to determine the effect of enhanced signaling. Methods One superior rectus muscle of adult rabbits received either a series of three injections of 500 ng, 1 µg, or 5 µg FGF2 and examined after 1 week, or received sustained treatment with FGF2 and examined after 1, 2, or 3 months. Muscles were assessed for alterations in force generation, myofiber size, and satellite cell number after each treatment. Results One week after the 5 µg FGF2 injections, treated muscles showed significantly increased force generation compared with naïve controls, which correlated with increased myofiber cross-sectional areas and Pax7-positive satellite cells. In contrast, 3 months of sustained FGF2 treatment resulted in decreased force generation, which correlated with decreased myofiber size and decreased satellite cells compared with naïve control and the untreated contralateral side. Conclusions FGF2 had distinctly different effects when short-term and long-term treatments were compared. The decreased size and ability to generate force correlated with decreased myofiber areas seen in individuals with Apert syndrome, where there is sustained activation of FGF signaling. Knowing more about signaling pathways critical for extraocular muscle function, development, and disease will pave the way for improved treatment options for strabismus patients with FGF abnormalities in craniofacial disease, which also may be applicable to other strabismus patients.
Collapse
Affiliation(s)
- Jolene C Rudell
- Department of Ophthalmology, University of California San Diego, San Diego, California, United States
| | - Linda K McLoon
- Departments of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
10
|
Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci 2021; 11:65. [PMID: 33789727 PMCID: PMC8011170 DOI: 10.1186/s13578-021-00579-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular matrix (ECM) is a kind of connective tissue in the cell microenvironment, which is of great significance to tissue development. ECM in muscle fiber niche consists of three layers: the epimysium, the perimysium, and the endomysium (basal lamina). These three layers of connective tissue structure can not only maintain the morphology of skeletal muscle, but also play an important role in the physiological functions of muscle cells, such as the transmission of mechanical force, the regeneration of muscle fiber, and the formation of neuromuscular junction. In this paper, detailed discussions are made for the structure and key components of ECM in skeletal muscle tissue, the role of ECM in skeletal muscle development, and the application of ECM in biomedical engineering. This review will provide the reader with a comprehensive overview of ECM, as well as a comprehensive understanding of the structure, physiological function, and application of ECM in skeletal muscle tissue.
Collapse
|
11
|
Péladeau C, Jasmin BJ. Targeting IRES-dependent translation as a novel approach for treating Duchenne muscular dystrophy. RNA Biol 2020; 18:1238-1251. [PMID: 33164678 DOI: 10.1080/15476286.2020.1847894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Internal-ribosomal entry sites (IRES) are translational elements that allow the initiation machinery to start protein synthesis via internal initiation. IRESs promote tissue-specific translation in stress conditions when conventional cap-dependent translation is inhibited. Since many IRES-containing mRNAs are relevant to diseases, this cellular mechanism is emerging as an attractive therapeutic target for pharmacological and genetic modulations. Indeed, there has been growing interest over the past years in determining the therapeutic potential of IRESs for several disease conditions such as cancer, neurodegeneration and neuromuscular diseases including Duchenne muscular dystrophy (DMD). IRESs relevant for DMD have been identified in several transcripts whose protein product results in functional improvements in dystrophic muscles. Together, these converging lines of evidence indicate that activation of IRES-mediated translation of relevant transcripts in DMD muscle represents a novel and appropriate therapeutic strategy for DMD that warrants further investigation, particularly to identify agents that can modulate their activity.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5:181. [PMID: 32879300 PMCID: PMC7468161 DOI: 10.1038/s41392-020-00222-7] [Citation(s) in RCA: 474] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
13
|
Allogeneic Decellularized Muscle Scaffold Is Less Fibrogenic and Inflammatory than Acellular Dermal Matrices in a Rat Model of Skeletal Muscle Regeneration. Plast Reconstr Surg 2020; 146:43e-53e. [PMID: 32590650 DOI: 10.1097/prs.0000000000006922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Skeletal muscle trauma can produce grave functional deficits, but therapeutic options remain limited. The authors studied whether a decellularized skeletal muscle scaffold would provide benefits in inducing skeletal muscle regeneration over acellular dermal matrices. METHODS Eighty-two rat muscle defects were surgically created and assigned to no intervention or implantation of AlloDerm, Strattice, decellularized rat muscle, or decellularized rat dermis to 30 or 60 days. Decellularized rat muscle and dermis were prepared using a negative pressure-assisted protocol. Assessment for cellularity, neovascularization, myogenesis, inflammation and fibrosis were done histologically and by polymerase chain reaction. RESULTS Histology showed relative hypercellularity of AlloDerm (p < 0.003); Strattice appeared encapsulated. Immunofluorescence for CD31 and myosin heavy chain in decellularized rat muscle revealed dense microvasculature and peripheral islands of myogenesis. MyoD expression in muscle scaffolds was 23-fold higher than in controls (p < 0.01). Decellularized rat muscle showed no up-regulation of COX-2 (p < 0.05), with less expression than decellularized rat dermis and Strattice (p < 0.002). Decellularized rat muscle scaffolds expressed tumor necrosis factor-α less than Strattice, AlloDerm, and decellularized rat dermis (p < 0.01); collagen-1a less than decellularized rat dermis and Strattice (p < 0.04); α-smooth muscle actin 7-fold less than AlloDerm (p = 0.04); and connective tissue growth factor less than Strattice, AlloDerm, and decellularized rat dermis (p < 0.02). CONCLUSION Decellularized muscle matrix appears to reduce inflammation and fibrosis in an animal muscle defect as compared with dermal matrices and promotes greater expression of myocyte differentiation-inducing genes.
Collapse
|
14
|
Nguyen JH, Chung JD, Lynch GS, Ryall JG. The Microenvironment Is a Critical Regulator of Muscle Stem Cell Activation and Proliferation. Front Cell Dev Biol 2019; 7:254. [PMID: 31737625 PMCID: PMC6828616 DOI: 10.3389/fcell.2019.00254] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle has a remarkable capacity to regenerate following injury, a property conferred by a resident population of muscle stem cells (MuSCs). In response to injury, MuSCs must double their cellular content to divide, a process requiring significant new biomass in the form of nucleotides, phospholipids, and amino acids. This new biomass is derived from a series of intracellular metabolic cycles and alternative routing of carbon. In this review, we examine the link between metabolism and skeletal muscle regeneration with particular emphasis on the role of the cellular microenvironment in supporting the production of new biomass and MuSC proliferation.
Collapse
Affiliation(s)
- John H Nguyen
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| | - Jin D Chung
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| | - Gordon S Lynch
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| | - James G Ryall
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Wallner C, Huber J, Drysch M, Schmidt SV, Wagner JM, Dadras M, Dittfeld S, Becerikli M, Jaurich H, Lehnhardt M, Behr B. Activin Receptor 2 Antagonization Impairs Adipogenic and Enhances Osteogenic Differentiation in Mouse Adipose-Derived Stem Cells and Mouse Bone Marrow-Derived Stem Cells In Vitro and In Vivo. Stem Cells Dev 2019; 28:384-397. [PMID: 30654712 DOI: 10.1089/scd.2018.0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tumors, traumata, burn injuries or surgeries can lead to critical-sized bony defects which need to be reconstructed. Mesenchymal stem cells (MSCs) have the ability to differentiate into multiple cell lineages and thus present a promising alternative for use in tissue engineering and reconstruction. However, there is an ongoing debate whether all MSCs are equivalent in their differentiation and proliferation ability. The goal of this study was to assess osteogenic and adipogenic characteristic changes of adipose-derived stem cells (ASCs) and bone marrow-derived stem cells (BMSCs) upon Myostatin inhibition with Follistatin in vitro and in vivo. We harvested ASCs from mice inguinal fat pads and BMSCs from tibiae of mice. By means of histology, real-time cell analysis, immunohistochemistry, and PCR osteogenic and adipogenic proliferation and differentiation in the presence or absence of Follistatin were analyzed. In vivo, osteogenic capacity was investigated in a tibial defect model of wild-type (WT) mice treated with mASCs and mBMSCs of Myo-/- and WT origin. In vitro, we were able to show that inhibition of Myostatin leads to markedly reduced proliferative capacity in mBMSCs and mASCs in adipogenic differentiation and reduced proliferation in osteogenic differentiation in mASCs, whereas proliferation in mBMSCs in osteogenic differentiation was increased. Adipogenic differentiation was inhibited in mASCs and mBMSCs upon Follistatin treatment, whereas osteogenic differentiation was increased in both cell lineages. In vivo, we could demonstrate increased osteoid formation in WT mice treated with mASCs and mBMSCs of Myo-/- origin and enhanced osteogenic differentiation and proliferation of mASCs of Myo-/- origin. We could demonstrate that the osteogenic potential of mASCs could be raised to a level comparable to mBMSCs upon inhibition of Myostatin. Moreover, Follistatin treatment led to inhibition of adipogenesis in both lineages.
Collapse
Affiliation(s)
- Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Julika Huber
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marius Drysch
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Sonja Verena Schmidt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes Maximilian Wagner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Stephanie Dittfeld
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Henriette Jaurich
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Zhao Y, Cao F, Yu X, Chen C, Meng J, Zhong R, Zhang Y, Zhu D. Linc-RAM is required for FGF2 function in regulating myogenic cell differentiation. RNA Biol 2018; 15:404-412. [PMID: 29364044 DOI: 10.1080/15476286.2018.1431494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Myogenic differentiation of skeletal muscle stem cells, also known satellite cells, is tightly orchestrated by extrinsic and intrinsic regulators. Basic fibroblast growth factor (FGF2) is well documented to be implicated in satellite cell self-renewal and differentiation by repressing MyoD. We recently identified a MyoD-regulated and skeletal muscle-specifically expressed long non-coding RNA Linc-RAM which enhances myogenic differentiation by facilitating MyoD/Baf60c/Brg1 complex assembly. Herein, we investigated the transcriptional regulation and intracellular signaling pathway in mediating Linc-RAM gene expression during muscle cell differentiation. Firstly, we demonstrate Linc-RAM is negatively regulated by FGF2 via Ras/Raf/Mek/Erk signaling pathway in muscle cells. Overexpression of MyoD significantly attenuates repression of Linc-RAM promoter activities in C2C12 cells treated with FGF2. Knockout of MyoD abolishes FGF2-mediated repression of Linc-RAM gene transcription in satellite cells sorted from skeletal muscle of MyoD-/-;Pax7-nGFP mice, suggesting inhibition of MyoD is required for FGF2-mediated expression of Linc-RAM. For the functional significance, we show that overexpression of Linc-RAM rescues FGF2-induced inhibition of C2C12 cell differentiation, indicating inhibition of Linc-RAM is required for FGF2-mediated suppression of myogenic differentiation. Consistently, we are able to further corroborate the requirement of Linc-RAM inhibition for FGF2-modulated repression of myogenic differentiation by using an ex vivo cultured single fiber system and satellite cells sorted from Linc-RAM-/-;Pax7-nGFP knockout mice. Collectively, the present study not only reveals the intracellular signaling in FGF2-mediated Linc-RAM gene expression but also demonstrate the functional significance of Linc-RAM in FGF2-mediated muscle cell differentiation.
Collapse
Affiliation(s)
- Yixia Zhao
- a The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College , 5 Dong Dan San Tiao, Beijing , China
| | - Fengqi Cao
- a The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College , 5 Dong Dan San Tiao, Beijing , China
| | - Xiaohua Yu
- a The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College , 5 Dong Dan San Tiao, Beijing , China
| | - Chuyan Chen
- b Peking Union Medical College Hospital , Shuaifuyuan No.1, Beijing , China
| | - Jiao Meng
- a The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College , 5 Dong Dan San Tiao, Beijing , China
| | - Ran Zhong
- a The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College , 5 Dong Dan San Tiao, Beijing , China
| | - Yong Zhang
- a The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College , 5 Dong Dan San Tiao, Beijing , China
| | - Dahai Zhu
- a The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College , 5 Dong Dan San Tiao, Beijing , China
| |
Collapse
|
17
|
Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF. The Muscle Stem Cell Niche in Health and Disease. Curr Top Dev Biol 2017; 126:23-65. [PMID: 29305000 DOI: 10.1016/bs.ctdb.2017.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The regulation of stem cells that maintain and regenerate postnatal tissues depends on extrinsic signals originating from their microenvironment, commonly referred to as the stem cell niche. Complex higher-order regulatory interrelationships with the tissue and factors in the systemic circulation are integrated and propagated to the stem cells through the niche. The stem cell niche in skeletal muscle tissue is both a paradigm for a structurally and functionally relatively static niche that maintains stem cell quiescence during tissue homeostasis, and a highly dynamic regenerative niche that is subject to extensive structural remodeling and a flux of different support cell populations. Conditions ranging from aging to chronically degenerative skeletal muscle diseases affect the composition of the niche and thereby impair the regenerative potential of muscle stem cells. A holistic and integrative understanding of the extrinsic mechanisms regulating muscle stem cells in health and disease in a broad systemic context will be imperative for the identification of regulatory hubs in the niche interactome that can be targeted to maintain, restore, or enhance the regenerative capacity of muscle tissue. Here, we review the microenvironmental regulation of muscle stem cells, summarize how niche dysfunction can contribute to disease, and discuss emerging therapeutic implications.
Collapse
Affiliation(s)
- Omid Mashinchian
- Nestlé Institute of Health Sciences, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne, Doctoral Program in Biotechnology and Bioengineering, Lausanne, Switzerland
| | - Addolorata Pisconti
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Emmeran Le Moal
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - C Florian Bentzinger
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
18
|
Ito N, Kii I, Shimizu N, Tanaka H, Takeda S. Direct reprogramming of fibroblasts into skeletal muscle progenitor cells by transcription factors enriched in undifferentiated subpopulation of satellite cells. Sci Rep 2017; 7:8097. [PMID: 28808339 PMCID: PMC5556026 DOI: 10.1038/s41598-017-08232-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023] Open
Abstract
Satellite cells comprise a functionally heterogeneous population of stem cells in skeletal muscle. Separation of an undifferentiated subpopulation and elucidation of its molecular background are necessary to identify the reprogramming factors to induce skeletal muscle progenitor cells. In this study, we found that intracellular esterase activity distinguishes a subpopulation of cultured satellite cells with high stemness using esterase-sensitive cell staining reagent, calcein-AM. Gene expression analysis of this subpopulation revealed that defined combinations of transcription factors (Pax3, Mef2b, and Pitx1 or Pax7, Mef2b, and Pitx1 in embryonic fibroblasts, and Pax7, Mef2b and MyoD in adult fibroblasts) reprogrammed fibroblasts into skeletal muscle progenitor cells. These reprogrammed cells formed Dystrophin-positive mature muscle fibers when transplanted into a mouse model of Duchenne muscular dystrophy. These results highlight the new marker for heterogenous population of cultured satellite cells, potential therapeutic approaches and cell sources for degenerative muscle diseases.
Collapse
Affiliation(s)
- Naoki Ito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan.,Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Isao Kii
- Pathophysiological and Health Science Team, Imaging Application Group, Division of Bio-Function Dynamics Imaging, Riken Center for Life Science Technologies, Hyogo, 650-0047, Japan
| | - Noriaki Shimizu
- Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Hirotoshi Tanaka
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan.
| |
Collapse
|
19
|
Passipieri JA, Baker HB, Siriwardane M, Ellenburg MD, Vadhavkar M, Saul JM, Tomblyn S, Burnett L, Christ GJ. Keratin Hydrogel Enhances In Vivo Skeletal Muscle Function in a Rat Model of Volumetric Muscle Loss. Tissue Eng Part A 2017; 23:556-571. [PMID: 28169594 DOI: 10.1089/ten.tea.2016.0458] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Volumetric muscle loss (VML) injuries exceed the considerable intrinsic regenerative capacity of skeletal muscle, resulting in permanent functional and cosmetic deficits. VML and VML-like injuries occur in military and civilian populations, due to trauma and surgery as well as due to a host of congenital and acquired diseases/syndromes. Current therapeutic options are limited, and new approaches are needed for a more complete functional regeneration of muscle. A potential solution is human hair-derived keratin (KN) biomaterials that may have significant potential for regenerative therapy. The goal of these studies was to evaluate the utility of keratin hydrogel formulations as a cell and/or growth factor delivery vehicle for functional muscle regeneration in a surgically created VML injury in the rat tibialis anterior (TA) muscle. VML injuries were treated with KN hydrogels in the absence and presence of skeletal muscle progenitor cells (MPCs), and/or insulin-like growth factor 1 (IGF-1), and/or basic fibroblast growth factor (bFGF). Controls included VML injuries with no repair (NR), and implantation of bladder acellular matrix (BAM, without cells). Initial studies conducted 8 weeks post-VML injury indicated that application of keratin hydrogels with growth factors (KN, KN+IGF-1, KN+bFGF, and KN+IGF-1+bFGF, n = 8 each) enabled a significantly greater functional recovery than NR (n = 7), BAM (n = 8), or the addition of MPCs to the keratin hydrogel (KN+MPC, KN+MPC+IGF-1, KN+MPC+bFGF, and KN+MPC+IGF-1+bFGF, n = 8 each) (p < 0.05). A second series of studies examined functional recovery for as many as 12 weeks post-VML injury after application of keratin hydrogels in the absence of cells. A significant time-dependent increase in functional recovery of the KN, KN+bFGF, and KN+IGF+bFGF groups was observed, relative to NR and BAM implantation, achieving as much as 90% of the maximum possible functional recovery. Histological findings from harvested tissue at 12 weeks post-VML injury documented significant increases in neo-muscle tissue formation in all keratin treatment groups as well as diminished fibrosis, in comparison to both BAM and NR. In conclusion, keratin hydrogel implantation promoted statistically significant and physiologically relevant improvements in functional outcomes post-VML injury to the rodent TA muscle.
Collapse
Affiliation(s)
- J A Passipieri
- 1 Biomedical Engineering Department, University of Virginia , Charlottesville, Virginia.,2 Wake Forest Institute for Regenerative Medicine, Wake Forest University , Winston-Salem, North Carolina
| | - H B Baker
- 2 Wake Forest Institute for Regenerative Medicine, Wake Forest University , Winston-Salem, North Carolina.,3 Fischell Department of Bioengineering, University of Maryland , College Park, Maryland
| | - Mevan Siriwardane
- 2 Wake Forest Institute for Regenerative Medicine, Wake Forest University , Winston-Salem, North Carolina
| | | | - Manasi Vadhavkar
- 2 Wake Forest Institute for Regenerative Medicine, Wake Forest University , Winston-Salem, North Carolina
| | - Justin M Saul
- 5 Department of Chemical, Paper and Biomedical Engineering, Miami University , Oxford, Ohio
| | - Seth Tomblyn
- 4 KeraNetics, LLC , Winston-Salem, North Carolina
| | - Luke Burnett
- 4 KeraNetics, LLC , Winston-Salem, North Carolina
| | - George J Christ
- 1 Biomedical Engineering Department, University of Virginia , Charlottesville, Virginia.,2 Wake Forest Institute for Regenerative Medicine, Wake Forest University , Winston-Salem, North Carolina.,6 Orthopaedics Department, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
20
|
Cavanaugh E, DiMario JX. Sp3 controls fibroblast growth factor receptor 4 gene activity during myogenic differentiation. Gene 2017; 617:24-31. [PMID: 28359915 DOI: 10.1016/j.gene.2017.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/20/2016] [Accepted: 03/25/2017] [Indexed: 11/17/2022]
Abstract
Fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling is a critical component in the regulation of myoblast proliferation and differentiation. The transient FGFR4 gene expression during the transition from proliferating myoblasts to differentiated myotubes indicates that FGFR4 regulates this critical phase of myogenesis. The Specificity Protein (SP) family of transcription factors controls FGFR family member gene activity. We sought to determine if members of the Sp family regulate mouse FGFR4 gene activity during myogenic differentiation. RT-PCR and western blot analysis of FGFR4 mRNA and protein revealed transient expression over 72h, with peak expression between 24 and 36h after addition of differentiation medium to C2C12 myogenic cultures. Sp3 also displayed a transient expression pattern with peak expression occurring after 6h of differentiation. We cloned a 1527bp fragment of the mouse FGFR4 promoter into a luciferase reporter. This FGFR4 promoter contains eight putative Sp binding sites and directed luciferase gene activity comparable to native FGFR4 expression. Overexpression of Sp1 and Sp3 showed that Sp1 repressed FGFR4 gene activity, and Sp3 activated FGFR4 gene activity during myogenic differentiation. Mutational analyses of multiple Sp binding sites within the FGFR4 promoter revealed that three of these sites were transcriptionally active. Electromobility shift assays and chromatin immunoprecipitation of the area containing the activator sites showed that Sp3 bound to this promoter location.
Collapse
Affiliation(s)
- Eric Cavanaugh
- School of Graduate and Postdoctoral Studies and Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, United States
| | - Joseph X DiMario
- School of Graduate and Postdoctoral Studies and Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, United States.
| |
Collapse
|
21
|
Pawlikowski B, Vogler TO, Gadek K, Olwin BB. Regulation of skeletal muscle stem cells by fibroblast growth factors. Dev Dyn 2017; 246:359-367. [PMID: 28249356 DOI: 10.1002/dvdy.24495] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/04/2023] Open
Abstract
Fibroblast growth factors (FGFs) are essential for self-renewal of skeletal muscle stem cells (satellite cells) and required for maintenance and repair of skeletal muscle. Satellite cells express high levels of FGF receptors 1 and 4, low levels of FGF receptor 3, and little or no detectable FGF receptor 2. Of the multiple FGFs that influence satellite cell function in culture, FGF2 and FGF6 are the only members that regulate satellite cell function in vivo by activating ERK MAPK, p38α/β MAPKs, PI3 kinase, PLCγ and STATs. Regulation of FGF signaling is complex in satellite cells, requiring Syndecan-4, a heparan sulfate proteoglycan, as well as ß1-integrin and fibronectin. During aging, reduced responsiveness to FGF diminishes satellite cell self-renewal, leading to impaired skeletal muscle regeneration and depletion of satellite cells. Mislocalization of ß1-integrin, reductions in fibronectin, and alterations in heparan sulfate content all contribute to reduced FGF responsiveness in satellite cells. How these cell surface proteins regulate satellite cell self-renewal is incompletely understood. Here we summarize the current knowledge, highlighting the role(s) for FGF signaling in skeletal muscle regeneration, satellite cell behavior, and age-induced muscle wasting. Developmental Dynamics 246:359-367, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bradley Pawlikowski
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Thomas Orion Vogler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Katherine Gadek
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Bradley B Olwin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| |
Collapse
|
22
|
Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2016; 5:1027-59. [PMID: 26140708 DOI: 10.1002/cphy.c140068] [Citation(s) in RCA: 492] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscles are essential for vital functions such as movement, postural support, breathing, and thermogenesis. Muscle tissue is largely composed of long, postmitotic multinucleated fibers. The life-long maintenance of muscle tissue is mediated by satellite cells, lying in close proximity to the muscle fibers. Muscle satellite cells are a heterogeneous population with a small subset of muscle stem cells, termed satellite stem cells. Under homeostatic conditions all satellite cells are poised for activation by stimuli such as physical trauma or growth signals. After activation, satellite stem cells undergo symmetric divisions to expand their number or asymmetric divisions to give rise to cohorts of committed satellite cells and thus progenitors. Myogenic progenitors proliferate, and eventually differentiate through fusion with each other or to damaged fibers to reconstitute fiber integrity and function. In the recent years, research has begun to unravel the intrinsic and extrinsic mechanisms controlling satellite cell behavior. Nonetheless, an understanding of the complex cellular and molecular interactions of satellite cells with their dynamic microenvironment remains a major challenge, especially in pathological conditions. The goal of this review is to comprehensively summarize the current knowledge on satellite cell characteristics, functions, and behavior in muscle regeneration and in pathological conditions.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - C Florian Bentzinger
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland
| | - Marie-Claude Sincennes
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Galimov A, Merry TL, Luca E, Rushing EJ, Mizbani A, Turcekova K, Hartung A, Croce CM, Ristow M, Krützfeldt J. MicroRNA-29a in Adult Muscle Stem Cells Controls Skeletal Muscle Regeneration During Injury and Exercise Downstream of Fibroblast Growth Factor-2. Stem Cells 2016; 34:768-80. [PMID: 26731484 DOI: 10.1002/stem.2281] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 09/23/2015] [Accepted: 10/31/2015] [Indexed: 01/18/2023]
Abstract
The expansion of myogenic progenitors (MPs) in the adult muscle stem cell niche is critical for the regeneration of skeletal muscle. Activation of quiescent MPs depends on the dismantling of the basement membrane and increased access to growth factors such as fibroblast growth factor-2 (FGF2). Here, we demonstrate using microRNA (miRNA) profiling in mouse and human myoblasts that the capacity of FGF2 to stimulate myoblast proliferation is mediated by miR-29a. FGF2 induces miR-29a expression and inhibition of miR-29a using pharmacological or genetic deletion decreases myoblast proliferation. Next generation RNA sequencing from miR-29a knockout myoblasts (Pax7(CE/+) ; miR-29a(flox/flox) ) identified members of the basement membrane as the most abundant miR-29a targets. Using gain- and loss-of-function experiments, we confirm that miR-29a coordinately regulates Fbn1, Lamc1, Nid2, Col4a1, Hspg2 and Sparc in myoblasts in vitro and in MPs in vivo. Induction of FGF2 and miR-29a and downregulation of its target genes precedes muscle regeneration during cardiotoxin (CTX)-induced muscle injury. Importantly, MP-specific tamoxifen-induced deletion of miR-29a in adult skeletal muscle decreased the proliferation and formation of newly formed myofibers during both CTX-induced muscle injury and after a single bout of eccentric exercise. Our results identify a novel miRNA-based checkpoint of the basement membrane in the adult muscle stem cell niche. Strategies targeting miR-29a might provide useful clinical approaches to maintain muscle mass in disease states such as ageing that involve aberrant FGF2 signaling.
Collapse
Affiliation(s)
- Artur Galimov
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Troy L Merry
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Edlira Luca
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Elisabeth J Rushing
- Institute of Neuropathology, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Amir Mizbani
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Katarina Turcekova
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Angelika Hartung
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, Ohio, USA
| | - Michael Ristow
- Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jan Krützfeldt
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Sicari BM, Londono R, Badylak SF. Strategies for skeletal muscle tissue engineering: seed vs. soil. J Mater Chem B 2015; 3:7881-7895. [PMID: 32262901 DOI: 10.1039/c5tb01714a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The most commonly used tissue engineering approach includes the ex vivo combination of site-appropriate cell(s) and scaffold material(s) to create three-dimensional constructs for tissue replacement or reconstruction. These three-dimensional combinations are typically subjected to a period of culture and conditioning (i.e., self-assembly and maturation) to promote the development of ex vivo constructs which closely mimic native target tissue. This cell-based approach is challenged by the host response to the engineered tissue construct following surgical implantation. As an alternative to the cell-based approach, acellular biologic scaffolds attract endogenous cells and remodel into partially functional mimics of native tissue upon implantation. The present review examines cell-types (i.e., seed), scaffold materials (i.e., soil), and challenges associated with functional tissue engineering. Skeletal muscle is used as the target tissue prototype but the discussed principles will largely apply to most body systems.
Collapse
Affiliation(s)
- Brian M Sicari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Suite 300, 450 Technology Drive, Pittsburgh, PA 15218, USA.
| | | | | |
Collapse
|
25
|
Nakano SI, Nakamura K, Teramoto N, Yamanouchi K, Nishihara M. Basic fibroblast growth factor is pro-adipogenic in rat skeletal muscle progenitor clone, 2G11 cells. Anim Sci J 2015; 87:99-108. [DOI: 10.1111/asj.12397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Shin-ichi Nakano
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Katsuyuki Nakamura
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Naomi Teramoto
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| |
Collapse
|
26
|
Sciorati C, Clementi E, Manfredi AA, Rovere-Querini P. Fat deposition and accumulation in the damaged and inflamed skeletal muscle: cellular and molecular players. Cell Mol Life Sci 2015; 72:2135-56. [PMID: 25854633 PMCID: PMC11113943 DOI: 10.1007/s00018-015-1857-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/16/2022]
Abstract
The skeletal muscle has the capacity to repair damage by the activation and differentiation of fiber sub-laminar satellite cells. Regeneration impairment due to reduced satellite cells number and/or functional capacity leads to fiber substitution with ectopic tissues including fat and fibrous tissue and to the loss of muscle functions. Muscle mesenchymal cells that in physiological conditions sustain or directly contribute to regeneration differentiate in adipocytes in patients with persistent damage and inflammation of the skeletal muscle. These cells comprise the fibro-adipogenic precursors, the PW1-expressing cells and some interstitial cells associated with vessels (pericytes, mesoangioblasts and myoendothelial cells). Resident fibroblasts that are responsible for collagen deposition and extracellular matrix remodeling during regeneration yield fibrotic tissue and can differentiate into adipose cells. Some authors have also proposed that satellite cells themselves could transdifferentiate into adipocytes, although recent results by lineage tracing techniques seem to put this theory to discussion. This review summarizes findings about muscle resident mesenchymal cell differentiation in adipocytes and recapitulates the molecular mediators involved in intramuscular adipose tissue deposition.
Collapse
Affiliation(s)
- Clara Sciorati
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, via Olgettina 58, 20132, Milan, Italy,
| | | | | | | |
Collapse
|
27
|
Morrissey JB, Cheng RY, Davoudi S, Gilbert PM. Biomechanical Origins of Muscle Stem Cell Signal Transduction. J Mol Biol 2015; 428:1441-54. [PMID: 26004541 DOI: 10.1016/j.jmb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/03/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Skeletal muscle, the most abundant and widespread tissue in the human body, contracts upon receiving electrochemical signals from the nervous system to support essential functions such as thermoregulation, limb movement, blinking, swallowing and breathing. Reconstruction of adult muscle tissue relies on a pool of mononucleate, resident muscle stem cells, known as "satellite cells", expressing the paired-box transcription factor Pax7 necessary for their specification during embryonic development and long-term maintenance during adult life. Satellite cells are located around the myofibres in a niche at the interface of the basal lamina and the host fibre plasma membrane (i.e., sarcolemma), at a very low frequency. Upon damage to the myofibres, quiescent satellite cells are activated and give rise to a population of transient amplifying myogenic progenitor cells, which eventually exit the cell cycle permanently and fuse to form new myofibres and regenerate the tissue. A subpopulation of satellite cells self-renew and repopulate the niche, poised to respond to future demands. Harnessing the potential of satellite cells relies on a complete understanding of the molecular mechanisms guiding their regulation in vivo. Over the past several decades, studies revealed many signal transduction pathways responsible for satellite cell fate decisions, but the niche cues driving the activation and silencing of these pathways are less clear. Here we explore the scintillating possibility that considering the dynamic changes in the biophysical properties of the skeletal muscle, namely stiffness, and the stretch and shear forces to which a myofibre can be subjected to may provide missing information necessary to gain a full understanding of satellite cell niche regulation.
Collapse
Affiliation(s)
- James B Morrissey
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Richard Y Cheng
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Sadegh Davoudi
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Penney M Gilbert
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1.
| |
Collapse
|
28
|
Ferreira MM, Dewi RE, Heilshorn SC. Microfluidic analysis of extracellular matrix-bFGF crosstalk on primary human myoblast chemoproliferation, chemokinesis, and chemotaxis. Integr Biol (Camb) 2015; 7:569-79. [PMID: 25909157 PMCID: PMC4528978 DOI: 10.1039/c5ib00060b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exposing myoblasts to basic fibroblast growth factor (bFGF), which is released after muscle injury, results in receptor phosphorylation, faster migration, and increased proliferation. These effects occur on time scales that extend across three orders of magnitude (10(0)-10(3) minutes). Finite element modeling of Transwell assays, which are traditionally used to assess chemotaxis, revealed that the bFGF gradient formed across the membrane pore is short-lived and diminishes 45% within the first minute. Thus, to evaluate bFGF-induced migration over 10(2) minutes, we employed a microfluidic assay capable of producing a stable, linear concentration gradient to perform single-cell analyses of chemokinesis and chemotaxis. We hypothesized that the composition of the underlying extracellular matrix (ECM) may affect the behavioral response of myoblasts to soluble bFGF, as previous work with other cell types has suggested crosstalk between integrin and fibroblast growth factor (FGF) receptors. Consistent with this notion, we found that bFGF significantly reduced the doubling time of myoblasts cultured on laminin but not fibronectin or collagen. Laminin also promoted significantly faster migration speeds (13.4 μm h(-1)) than either fibronectin (10.6 μm h(-1)) or collagen (7.6 μm h(-1)) without bFGF stimulation. Chemokinesis driven by bFGF further increased migration speed in a strictly additive manner, resulting in an average increase of 2.3 μm h(-1) across all ECMs tested. We observed relatively mild chemoattraction (∼67% of myoblast population) in response to bFGF gradients of 3.2 ng mL(-1) mm(-1) regardless of ECM identity. Thus, while ECM-bFGF crosstalk did impact chemoproliferation, it did not have a significant effect on chemokinesis or chemotaxis. These data suggest that the main physiological effect of bFGF on myoblast migration is chemokinesis and that changes in the surrounding ECM, resulting from aging and/or disease may impact muscle regeneration by altering myoblast migration and proliferation.
Collapse
Affiliation(s)
| | - Ruby E. Dewi
- Department of Materials Science and Engineering, Stanford University
| | | |
Collapse
|
29
|
Abstract
Muscle stem cells facilitate the long-term regenerative capacity of skeletal muscle. This self-renewing population of satellite cells has only recently been defined through genetic and transplantation experiments. Although muscle stem cells remain in a dormant quiescent state in uninjured muscle, they are poised to activate and produce committed progeny. Unlike committed myogenic progenitor cells, the self-renewal capacity gives muscle stem cells the ability to engraft as satellite cells and capitulate long-term regeneration. Similar to other adult stem cells, understanding the molecular regulation of muscle stem cells has significant implications towards the development of pharmacological or cell-based therapies for muscle disorders. This Cell Science at a Glance article and accompanying poster will review satellite cell characteristics and therapeutic potential, and provide an overview of the muscle stem cell hallmarks: quiescence, self-renewal and commitment.
Collapse
Affiliation(s)
- Yu Xin Wang
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
30
|
Chung HJ, Mahalingam M. Angiogenesis, vasculogenic mimicry and vascular invasion in cutaneous malignant melanoma – implications for therapeutic strategies and targeted therapies. Expert Rev Anticancer Ther 2014; 14:621-39. [DOI: 10.1586/14737140.2014.883281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Abstract
Skeletal muscle continuously adapts to changes in its mechanical environment through modifications in gene expression and protein stability that affect its physiological function and mass. However, mechanical stresses commonly exceed the parameters that induce adaptations, producing instead acute injury. Furthermore, the relatively superficial location of many muscles in the body leaves them further vulnerable to acute injuries by exposure to extreme temperatures, contusions, lacerations or toxins. In this article, the molecular, cellular, and mechanical factors that underlie muscle injury and the capacity of muscle to repair and regenerate are presented. Evidence shows that muscle injuries that are caused by eccentric contractions result from direct mechanical damage to myofibrils. However, muscle pathology following other acute injuries is largely attributable to damage to the muscle cell membrane. Many feaures in the injury-repair-regeneration cascade relate to the unregulated influx of calcium through membrane lesions, including: (i) activation of proteases and hydrolases that contribute muscle damage, (ii) activation of enzymes that drive the production of mitogens and motogens for muscle and immune cells involved in injury and repair, and (iii) enabling protein-protein interactions that promote membrane repair. Evidence is also presented to show that the myogenic program that is activated by acute muscle injury and the inflammatory process that follows are highly coordinated, with myeloid cells playing a central role in modulating repair and regeneration. The early-invading, proinflammatory M1 macrophages remove debris caused by injury and express Th1 cytokines that play key roles in regulating the proliferation, migration, and differentiation of satellite cells. The subsequent invasion by anti-inflammatory, M2 macrophages promotes tissue repair and attenuates inflammation. Although this system provides an effective mechanism for muscle repair and regeneration following acute injury, it is dysregulated in chronic injuries. In this article, the process of muscle injury, repair and regeneration that occurs in muscular dystrophy is used as an example of chronic muscle injury, to highlight similarities and differences between the injury and repair processes that occur in acutely and chronically injured muscle.
Collapse
Affiliation(s)
- James G Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA.
| |
Collapse
|
32
|
Yamanouchi K, Nakamura K, Takegahara Y, Nakano SI, Nishihara M. Ex vivobupivacaine treatment results in increased adipogenesis of skeletal muscle cells in the rat. Anim Sci J 2013; 84:757-63. [DOI: 10.1111/asj.12112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/01/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Keitaro Yamanouchi
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo; Tokyo; Japan
| | - Katsuyuki Nakamura
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo; Tokyo; Japan
| | - Yuki Takegahara
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo; Tokyo; Japan
| | - Shin-ichi Nakano
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo; Tokyo; Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo; Tokyo; Japan
| |
Collapse
|
33
|
Bentzinger CF, Wang YX, von Maltzahn J, Soleimani VD, Yin H, Rudnicki MA. Fibronectin regulates Wnt7a signaling and satellite cell expansion. Cell Stem Cell 2013; 12:75-87. [PMID: 23290138 DOI: 10.1016/j.stem.2012.09.015] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 06/07/2012] [Accepted: 09/14/2012] [Indexed: 01/07/2023]
Abstract
The influence of the extracellular matrix (ECM) within the stem cell niche remains poorly understood. We found that Syndecan-4 (Sdc4) and Frizzled-7 (Fzd7) form a coreceptor complex in satellite cells and that binding of the ECM glycoprotein Fibronectin (FN) to Sdc4 stimulates the ability of Wnt7a to induce the symmetric expansion of satellite stem cells. Newly activated satellite cells dynamically remodel their niche via transient high-level expression of FN. Knockdown of FN in prospectively isolated satellite cells severely impaired their ability to repopulate the satellite cell niche. Conversely, in vivo overexpression of FN with Wnt7a dramatically stimulated the expansion of satellite stem cells in regenerating muscle. Therefore, activating satellite cells remodel their niche through autologous expression of FN that provides feedback to stimulate Wnt7a signaling through the Fzd7/Sdc4 coreceptor complex. Thus, FN and Wnt7a together regulate the homeostatic levels of satellite stem cells and satellite myogenic cells during regenerative myogenesis.
Collapse
Affiliation(s)
- C Florian Bentzinger
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Hagiwara K, Chen G, Kawazoe N, Tabata Y, Komuro H. Promotion of muscle regeneration by myoblast transplantation combined with the controlled and sustained release of bFGFcpr. J Tissue Eng Regen Med 2013; 10:325-33. [PMID: 23554408 DOI: 10.1002/term.1732] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/02/2012] [Accepted: 01/29/2013] [Indexed: 11/09/2022]
Abstract
Although myoblast transplantation is an attractive method for muscle regeneration, its efficiency remains limited. The efficacy of myoblast transplantation in combination with the controlled and sustained delivery of basic fibroblast growth factor (bFGF) was investigated. Defects of thigh muscle in Sprague-Dawley (SD) rats were created, and GFP-positive myoblasts were subsequently transplanted. The rats were divided into three groups. In control group 1 (C1) only myoblasts were transplanted, while in control group 2 (C2) myoblasts were introduced along with empty gelatin hydrogel microspheres. In the experimental group (Ex), myoblasts were transplanted along with bFGF incorporated into gelatin hydrogel microspheres. Four weeks after transplantation, GFP-positive myoblasts were found to be integrated into the recipient muscle and to contribute to muscle fibre regeneration in all groups. A significantly higher expression level of GFP in the Ex group demonstrated that the survival rate of transplanted myoblasts in Ex was remarkably improved compared with that in C1 and C2. Furthermore, myofibre regeneration, characterized by centralization of the nuclei, was markedly accelerated in Ex. The expression level of CD31 in Ex was higher than that in both C1 and C2, but the differences were not statistically significant. A significantly higher expression level of Myogenin and a lower expression level of MyoD1 were both observed in Ex after 4 weeks, suggesting the promotion of differentiation to myotubes. Our findings suggest that the controlled and sustained release of bFGF from gelatin hydrogel microspheres improves the survival rate of transplanted myoblasts and promotes muscle regeneration by facilitating myogenesis rather than angiogenesis.
Collapse
Affiliation(s)
- Koki Hagiwara
- Department of Paediatric Surgery, Faculty of Medicine, University of Tsukuba, Japan.,Organoid Group, Biomaterial Centre, National Institute for Materials Science, Tsukuba, Japan
| | - Guoping Chen
- Organoid Group, Biomaterial Centre, National Institute for Materials Science, Tsukuba, Japan
| | - Naoki Kawazoe
- Organoid Group, Biomaterial Centre, National Institute for Materials Science, Tsukuba, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Japan
| | - Hiroaki Komuro
- Department of Paediatric Surgery, Graduate School of Medicine, University of Tokyo, Japan
| |
Collapse
|
35
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
36
|
Kim SG, Zhou J, Solomon C, Zheng Y, Suzuki T, Chen M, Song S, Jiang N, Cho S, Mao JJ. Effects of growth factors on dental stem/progenitor cells. Dent Clin North Am 2013; 56:563-75. [PMID: 22835538 DOI: 10.1016/j.cden.2012.05.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The primary goal of regenerative endodontics is to restore the vitality and functions of the dentin-pulp complex, as opposed to filing of the root canal with bioinert materials. A myriad of growth factors regulates multiple cellular functions including migration, proliferation, differentiation, and apoptosis of several cell types intimately involved in dentin-pulp regeneration. Recent work showing that growth factor delivery, without cell transplantation, can yield pulp-dentin-like tissues in vivo provides one of the tangible pathways for regenerative endodontics. This review synthesizes knowledge on many growth factors that are known or anticipated to be efficacious in dental pulp-dentin regeneration.
Collapse
Affiliation(s)
- Sahng G Kim
- Center for Craniofacial Regeneration, Columbia University, 630 West 168 Street, PH7E, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
He D, Ujjal K. Bhawal, Hamada N, Kuboyama N, Abiko Y, Arakawa H. Low Level Fluoride Stimulates Epithelial-Mesenchymal Interaction in Oral Mucosa. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.59] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Mercer SE, Cheng CH, Atkinson DL, Krcmery J, Guzman CE, Kent DT, Zukor K, Marx KA, Odelberg SJ, Simon HG. Multi-tissue microarray analysis identifies a molecular signature of regeneration. PLoS One 2012; 7:e52375. [PMID: 23300656 PMCID: PMC3530543 DOI: 10.1371/journal.pone.0052375] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/14/2012] [Indexed: 02/06/2023] Open
Abstract
The inability to functionally repair tissues that are lost as a consequence of disease or injury remains a significant challenge for regenerative medicine. The molecular and cellular processes involved in complete restoration of tissue architecture and function are expected to be complex and remain largely unknown. Unlike humans, certain salamanders can completely regenerate injured tissues and lost appendages without scar formation. A parsimonious hypothesis would predict that all of these regenerative activities are regulated, at least in part, by a common set of genes. To test this hypothesis and identify genes that might control conserved regenerative processes, we performed a comprehensive microarray analysis of the early regenerative response in five regeneration-competent tissues from the newt Notophthalmus viridescens. Consistent with this hypothesis, we established a molecular signature for regeneration that consists of common genes or gene family members that exhibit dynamic differential regulation during regeneration in multiple tissue types. These genes include members of the matrix metalloproteinase family and its regulators, extracellular matrix components, genes involved in controlling cytoskeleton dynamics, and a variety of immune response factors. Gene Ontology term enrichment analysis validated and supported their functional activities in conserved regenerative processes. Surprisingly, dendrogram clustering and RadViz classification also revealed that each regenerative tissue had its own unique temporal expression profile, pointing to an inherent tissue-specific regenerative gene program. These new findings demand a reconsideration of how we conceptualize regenerative processes and how we devise new strategies for regenerative medicine.
Collapse
Affiliation(s)
- Sarah E. Mercer
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| | - Chia-Ho Cheng
- Department of Chemistry, University of Massachusetts-Lowell, Lowell, Massachusetts, United States of America
| | - Donald L. Atkinson
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jennifer Krcmery
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| | - Claudia E. Guzman
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| | - David T. Kent
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Katherine Zukor
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kenneth A. Marx
- Department of Chemistry, University of Massachusetts-Lowell, Lowell, Massachusetts, United States of America
| | - Shannon J. Odelberg
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hans-Georg Simon
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| |
Collapse
|
39
|
Gurriarán-Rodríguez U, Santos-Zas I, Al-Massadi O, Mosteiro CS, Beiroa D, Nogueiras R, Crujeiras AB, Seoane LM, Señarís J, García-Caballero T, Gallego R, Casanueva FF, Pazos Y, Camiña JP. The obestatin/GPR39 system is up-regulated by muscle injury and functions as an autocrine regenerative system. J Biol Chem 2012; 287:38379-89. [PMID: 22992743 DOI: 10.1074/jbc.m112.374926] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The maintenance and repair of skeletal muscle are attributable to an elaborate interaction between extrinsic and intrinsic regulatory signals that regulate the myogenic process. In the present work, we showed that obestatin, a 23-amino acid peptide encoded by the ghrelin gene, and the GPR39 receptor are expressed in rat skeletal muscle and are up-regulated upon experimental injury. To define their roles in muscle regeneration, L6E9 cells were used to perform in vitro assays. For the in vivo assays, skeletal muscle tissue was obtained from male rats and maintained under continuous subcutaneous infusion of obestatin. In differentiating L6E9 cells, preproghrelin expression and correspondingly obestatin increased during myogenesis being sustained throughout terminal differentiation. Autocrine action was demonstrated by neutralization of the endogenous obestatin secreted by differentiating L6E9 cells using a specific anti-obestatin antibody. Knockdown experiments by preproghrelin siRNA confirmed the contribution of obestatin to the myogenic program. Furthermore, GPR39 siRNA reduced obestatin action and myogenic differentiation. Exogenous obestatin stimulation was also shown to regulate myoblast migration and proliferation. Furthermore, the addition of obestatin to the differentiation medium increased myogenic differentiation of L6E9 cells. The relevance of the actions of obestatin was confirmed in vivo by the up-regulation of Pax-7, MyoD, Myf5, Myf6, myogenin, and myosin heavy chain (MHC) in obestatin-infused rats when compared with saline-infused rats. These data elucidate a novel mechanism whereby the obestatin/GPR39 system is coordinately regulated as part of the myogenic program and operates as an autocrine signal regulating skeletal myogenesis.
Collapse
Affiliation(s)
- Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang D, Li X, Chen C, Li Y, Zhao L, Jing Y, Liu W, Wang X, Zhang Y, Xia H, Chang Y, Gao X, Yan J, Ying H. Attenuation of p38-mediated miR-1/133 expression facilitates myoblast proliferation during the early stage of muscle regeneration. PLoS One 2012; 7:e41478. [PMID: 22911796 PMCID: PMC3404058 DOI: 10.1371/journal.pone.0041478] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/26/2012] [Indexed: 01/11/2023] Open
Abstract
Myoblast proliferation following myotrauma is regulated by multiple factors including growth factors, signal pathways, transcription factors, and miRNAs. However, the molecular mechanisms underlying the orchestration of these regulatory factors remain unclear. Here we show that p38 signaling is required for miR-1/133a clusters transcription and both p38 activity and miR-1/133 expression are attenuated during the early stage of muscle regeneration in various animal models. Additionally, we show that both miR-1 and miR-133 reduce Cyclin D1 expression and repress myoblast proliferation by inducing G1 phase arrest. Furthermore, we demonstrate that miR-133 inhibits mitotic progression by targeting Sp1, which mediates Cyclin D1 transcription, while miR-1 suppresses G1/S phase transition by targeting Cyclin D1. Finally, we reveal that proproliferative FGF2, which is elevated during muscle regeneration, attenuates p38 signaling and miR-1/133 expression. Taken together, our results suggest that downregulation of p38-mediated miR-1/133 expression by FGF2 and subsequent upregulation of Sp1/Cyclin D1 contribute to the increased myoblast proliferation during the early stage of muscle regeneration.
Collapse
Affiliation(s)
- Duo Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xihua Li
- Department of Neuromuscular Disease, Children’s Hospital of Fudan University, Shanghai, China
| | - Chuchu Chen
- School of Biotechnology of East China University of Science & Technology, Shanghai, China
| | - Yuyin Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhao
- Department of Neuromuscular Disease, Children’s Hospital of Fudan University, Shanghai, China
| | - Yanyan Jing
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyun Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongfeng Xia
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaning Chang
- School of Biotechnology of East China University of Science & Technology, Shanghai, China
| | - Xiang Gao
- Model Animal Research Center, and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China
| | - Jun Yan
- Model Animal Research Center, and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, China
| | - Hao Ying
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
41
|
Suppression of tumor growth in xenograft model mice by small interfering RNA targeting osteopontin delivery using biocompatible poly(amino ester). Int J Pharm 2012; 431:197-203. [DOI: 10.1016/j.ijpharm.2012.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/30/2012] [Accepted: 04/09/2012] [Indexed: 01/16/2023]
|
42
|
Balmer GM, Riley PR. Harnessing the potential of adult cardiac stem cells: lessons from haematopoiesis, the embryo and the niche. J Cardiovasc Transl Res 2012; 5:631-40. [PMID: 22700450 DOI: 10.1007/s12265-012-9386-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/03/2012] [Indexed: 12/16/2022]
Abstract
Across biomedicine, there is a major drive to develop stem cell (SC) treatments for debilitating diseases. Most effective treatments restore an embryonic phenotype to adult SCs. This has led to two emerging paradigms in SC biology: the application of developmental biology studies and the manipulation of the SC niche. Developmental studies can reveal how SCs are orchestrated to build organs, the understanding of which is important in order to instigate tissue repair in the adult. SC niche studies can reveal cues that maintain SC 'stemness' and how SCs may be released from the constraints of the niche to differentiate and repopulate a 'failing' organ. The haematopoietic system provides an exemplar whereby characterisation of the blood lineages during development and the bone marrow niche has resulted in therapeutics now routinely used in the clinic. Ischaemic heart disease is a major cause of morbidity and mortality in humans and the question remains as to whether these principles can be applied to the heart, in order to exploit the potential of adult SCs for use in cardiovascular repair and regeneration.
Collapse
Affiliation(s)
- Gemma M Balmer
- Molecular Medicine Unit, UCL Institute of Child Health, University College London, UK
| | | |
Collapse
|
43
|
Lee CW, Fukushima K, Usas A, Xin L, Pelinkovic D, Martinek V, Somogyi G, Robbins PD, Fu FH, Huard J. BIOLOGICAL INTERVENTION BASED ON CELL AND GENE THERAPY TO IMPROVE MUSCLE HEALING AFTER LACERATION. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s0218957700000264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Muscle laceration is a challenging problem in traumatology and is common in sports injuries, with functional recovery remaining slow and incomplete. Even though muscles retain their ability to regenerate after injury, muscles' healing process after such injuries has been found to be very slow and often leads to incomplete muscle recovery. Growth factors may have a role in enhancing recovery. Our previous study showed that IGF-1, β-FGF and NGF can improve myoblast proliferation and differentiation in vitro. We then investigated whether the delivery of IGF-1 would improve muscle healing after injuries. We observed that muscle regeneration was enhanced in lacerated muscles treated with IGF-1 protein, which consequently led to an improvement in muscle healing. However, the rapid clearance and short biological half-lives of these proteins may have limited the success of this approach. We then investigated the efficiency of gene therapy based on adenovirus to deliver a stable expression of the growth factor IGF-1. Although a slight improvement in the healing process occurred in the muscle injected with adenovirus (AIGF), the combination of myoblast transplantation and gene therapy with the ex vivo approach further improved the healing process. The injection of normal myoblasts into the injured muscle led to the best improvement of muscle healing at two weeks post-injection. Implantation of normal minced muscle into mdx mice was also capable of improving muscle healing at 2–4 weeks post-implantation. These studies will further our understanding of muscle healing post-injury and help in the development of strategies to promote efficient muscle healing and complete functional recovery after common muscle injuries.
Collapse
Affiliation(s)
- Chang Woo Lee
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, University of Pittsburgh and Children's Hospital of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Orthopaedic Surgery, Division of Sports Medicine, Athletic Department, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Kazumasa Fukushima
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, University of Pittsburgh and Children's Hospital of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Orthopaedic Surgery, Division of Sports Medicine, Athletic Department, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Arvydas Usas
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, University of Pittsburgh and Children's Hospital of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Orthopaedic Surgery, Division of Sports Medicine, Athletic Department, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Lin Xin
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, University of Pittsburgh and Children's Hospital of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Orthopaedic Surgery, Division of Sports Medicine, Athletic Department, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Dalip Pelinkovic
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, University of Pittsburgh and Children's Hospital of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Orthopaedic Surgery, Division of Sports Medicine, Athletic Department, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Vladimir Martinek
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, University of Pittsburgh and Children's Hospital of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Orthopaedic Surgery, Division of Sports Medicine, Athletic Department, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - George Somogyi
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Paul D. Robbins
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Freddie H. Fu
- Department of Orthopaedic Surgery, Division of Sports Medicine, Athletic Department, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, University of Pittsburgh and Children's Hospital of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
44
|
Dumke BR, Lees SJ. Age-related impairment of T cell-induced skeletal muscle precursor cell function. Am J Physiol Cell Physiol 2011; 300:C1226-33. [PMID: 21325640 DOI: 10.1152/ajpcell.00354.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sarcopenia is the age-associated loss of skeletal muscle mass and strength. Recent evidence suggests that an age-associated loss of muscle precursor cell (MPC) functionality contributes to sarcopenia. The objectives of the present study were to examine the influence of activated T cells on MPCs and determine whether an age-related defect in this signaling occurs. MPCs were collected from the gastrocnemius and plantaris of 3-mo-old (young) and 32-mo-old (old) animals. Splenic T cells were harvested using anti-CD3 Dynabead isolation. T cells were activated for 48 h with costimulation of 100 IU/ml interleukin-2 (IL-2) and 5 μg/ml of anti-CD28. Costimulation increased 5-bromo-2'-deoxyuridine incorporation of T cells from 13.4 ± 4.6% in control to 64.8 ± 6.0% in costimulated cells. Additionally, T cell cytokines increased proliferation on MPCs isolated from young muscle by 24.0 ± 5.7%, whereas there was no effect on MPCs isolated from aged muscle. T cell cytokines were also found to be a chemoattractant. T cells were able to promote migration of MPCs isolated from young muscle; however, MPCs isolated from aged muscle did not respond to the T cell-released chemokines. Conversely, whereas T cell-released cytokines did not affect myogenesis of MPCs isolated from young animals, there was a decrease in MPCs isolated from old animals. These data suggest that T cells may play a critical role in mediating MPC function. Furthermore, aging may alter T cell-induced MPC function. These findings have implications for developing strategies aimed at increasing MPC migration and proliferation leading to an improved regenerative capacity of aged skeletal muscle.
Collapse
Affiliation(s)
- Breanna R Dumke
- Medical Sciences Division, Northern Ontario School of Medicine, 955 Oliver Rd., Thunder Bay, Ontario, Canada
| | | |
Collapse
|
45
|
Boldrin L, Muntoni F, Morgan JE. Are human and mouse satellite cells really the same? J Histochem Cytochem 2010; 58:941-55. [PMID: 20644208 PMCID: PMC2958137 DOI: 10.1369/jhc.2010.956201] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 06/24/2010] [Indexed: 12/20/2022] Open
Abstract
Satellite cells are quiescent cells located under the basal lamina of skeletal muscle fibers that contribute to muscle growth, maintenance, repair, and regeneration. Mouse satellite cells have been shown to be muscle stem cells that are able to regenerate muscle fibers and self-renew. As human skeletal muscle is also able to regenerate following injury, we assume that the human satellite cell is, like its murine equivalent, a muscle stem cell. In this review, we compare human and mouse satellite cells and highlight their similarities and differences. We discuss gaps in our knowledge of human satellite cells, compared with that of mouse satellite cells, and suggest ways in which we may advance studies on human satellite cells, particularly by finding new markers and attempting to re-create the human satellite cell niche in vitro.
Collapse
Affiliation(s)
- Luisa Boldrin
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom.
| | | | | |
Collapse
|
46
|
Lee T. Host tissue response in stem cell therapy. World J Stem Cells 2010; 2:61-6. [PMID: 21031156 PMCID: PMC2964154 DOI: 10.4252/wjsc.v2.i4.61] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 07/22/2010] [Accepted: 07/29/2010] [Indexed: 02/06/2023] Open
Abstract
Preclinical and clinical trials of stem cell therapy have been carried out for treating a broad spectrum of diseases using several types of adult stem cells. While encouraging therapeutic results have been obtained, much remains to be investigated regarding the best cell type to use, cell dosage, delivery route, long-term safety, clinical feasibility, and ultimately treatment cost. Logistic aspects of stem cell therapeutics remain an area that requires urgent attention from the medical community. Recent cardiovascular trial studies have demonstrated that growth factors and cytokines derived from the injected stem cells and host tissue appear to contribute largely to the observed therapeutic benefits, indicating that trophic actions rather than the multilineage potential (or stemness) of the administered stem cells may provide the underlying tissue healing power. However, the capacity for trophic factor production can be aberrantly downregulated as seen in human heart disease. Skeletal muscle is a dynamic tissue with an impressive ability to continuously respond to environmental stimuli. Indeed, a relation exists between active skeletal muscle and low cardiovascular risk, highlighting the critical link between the skeletal muscle and cardiovascular systems. Adding to this notion are recent studies showing that stem cells injected into skeletal muscle can rescue the failing rodent heart through activation of the muscle trophic factor network and mobilization of bone marrow multilineage progenitor cells. However, aging and disease can adversely affect the host tissue into which stem cells are injected. A better understanding of the host tissue response in stem cell therapy is necessary to advance the field and bridge the gap between preclinical and clinical findings.
Collapse
Affiliation(s)
- Techung Lee
- Techung Lee, Department of Biochemistry and Center for Research in Cardiovascular Medicine, University at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
47
|
House SL, House BE, Glascock B, Kimball T, Nusayr E, Schultz JEJ, Doetschman T. Fibroblast Growth Factor 2 Mediates Isoproterenol-induced Cardiac Hypertrophy through Activation of the Extracellular Regulated Kinase. MOLECULAR AND CELLULAR PHARMACOLOGY 2010; 2:143-154. [PMID: 21274419 PMCID: PMC3026329 DOI: 10.4255/mcpharmacol.10.20] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factor 2 (basic FGF or FGF2) has been shown to affect growth and differentiation in some tissues and to be required for cardiac hypertrophy in vivo. FGF2 has been shown in vitro to signal through the mitogen-activated protein kinase (MAPK) to affect cell survival and growth. To ascertain the role of FGF2 in cardiac hypertrophy, wildtype, Fgf2 knockout, non-transgenic, and FGF2 transgenic mice were treated with isoproterenol or saline via subcutaneous mini-osmotic pump implants to induce a hypertrophic response to β-adrenergic stimulation. Fgf2 knockout hearts are protected from isoproterenol-induced cardiac hypertrophy; whereas, FGF2 transgenic hearts show exacerbated cardiac hypertrophy as assessed by heart weight-to-body weight ratios and myocyte cross-sectional area. Echocardiography reveals significantly decreased fractional shortening in isoproterenol-treated FGF2 transgenic mice but not in Fgf2 knockout mice suggesting that FGF2 mediates the maladaptive cardiac dysfunction seen in cardiac hypertrophy induced by isoproterenol. Western blot analysis also reveals alterations in MAPK signaling in Fgf2 knockout and FGF2 transgenic hearts subjected to isoproterenol treatment, suggesting that this cascade mediates FGF2's pro-hypertrophic effect. Pharmacologic inhibition of extracellular signal-regulated kinase (ERK) signaling results in an attenuated hypertrophic response in isoproterenol-treated FGF2 transgenic mice, but this response is not seen with p38 mitogen-activated protein kinase (p38) pathway inhibition, suggesting that FGF2 activation of ERK but not p38 is necessary for FGF2's role in the mediation of cardiac hypertrophy.
Collapse
Affiliation(s)
- Stacey L. House
- Division of Emergency Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brian E. House
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Betty Glascock
- Non-invasive Cardiac Imaging and Hemodynamic Research Laboratory, Division of Cardiology, Department of Pediatrics, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Thomas Kimball
- Non-invasive Cardiac Imaging and Hemodynamic Research Laboratory, Division of Cardiology, Department of Pediatrics, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Eyad Nusayr
- BIO5 Institute and Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona
| | - Jo El J. Schultz
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Thomas Doetschman
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
- BIO5 Institute and Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona
| |
Collapse
|
48
|
Cosgrove BD, Sacco A, Gilbert PM, Blau HM. A home away from home: challenges and opportunities in engineering in vitro muscle satellite cell niches. Differentiation 2009; 78:185-94. [PMID: 19751902 PMCID: PMC2801624 DOI: 10.1016/j.diff.2009.08.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 08/11/2009] [Indexed: 12/24/2022]
Abstract
Satellite cells are skeletal muscle stem cells with a principal role in postnatal skeletal muscle regeneration. Satellite cells, like many tissue-specific adult stem cells, reside in a quiescent state in an instructive, anatomically defined niche. The satellite cell niche constitutes a distinct membrane-enclosed compartment within the muscle fiber, containing a diversity of biochemical and biophysical signals that influence satellite cell function. A major limitation to the study and clinical utility of satellite cells is that upon removal from the muscle fiber and plating in traditional plastic tissue culture platforms, their muscle stem cell properties are rapidly lost. Clearly, the maintenance of stem cell function is critically dependent on in vivo niche signals, highlighting the need to create novel in vitro microenvironments that allow for the maintenance and propagation of satellite cells while retaining their potential to function as muscle stem cells. Here, we discuss how emerging biomaterials technologies offer great promise for engineering in vitro microenvironments to meet these challenges. In engineered biomaterials, signaling molecules can be presented in a manner that more closely mimics cell-cell and cell-matrix interactions, and matrices can be fabricated with diverse rigidities that approximate in vivo tissues. The development of in vitro microenvironments in which niche features can be systematically modulated will be instrumental not only to future insights into muscle stem cell biology and therapeutic approaches to muscle diseases and muscle wasting with aging, but also will provide a paradigm for the analysis of numerous adult tissue-specific stem cells.
Collapse
Affiliation(s)
- Benjamin D. Cosgrove
- Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Stem Cell Biology and Regenerative Medicine Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alessandra Sacco
- Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stem Cell Biology and Regenerative Medicine Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Penney M. Gilbert
- Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stem Cell Biology and Regenerative Medicine Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen M. Blau
- Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Stem Cell Biology and Regenerative Medicine Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
49
|
Kuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2009; 2:22-31. [PMID: 18371418 DOI: 10.1016/j.stem.2007.12.012] [Citation(s) in RCA: 349] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Muscle satellite cells have been shown to be a heterogeneous population of committed myogenic progenitors and noncommitted stem cells. This hierarchical composition of differentiating progenitors and self-renewable stem cells assures the extraordinary regenerative capacity of skeletal muscles. Recent studies have revealed a role for asymmetric division in satellite cell maintenance and offer novel insights into the regulation of satellite cell function by the niche. A thorough understanding of the molecular regulation and cell fate determination of satellite cells and other potential stem cells resident in muscle is essential for successful stem cell-based therapies to treat muscular diseases.
Collapse
Affiliation(s)
- Shihuan Kuang
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Health Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | | | | |
Collapse
|
50
|
Cornelison DDW. Context matters: in vivo and in vitro influences on muscle satellite cell activity. J Cell Biochem 2008; 105:663-9. [PMID: 18759329 DOI: 10.1002/jcb.21892] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Skeletal muscle is formed during development by the progressive specification, proliferation, migration, and fusion of myoblasts to form terminally differentiated, contractile, highly patterned myofibers. Skeletal muscle is repaired or replaced postnatally by a similar process, involving a resident myogenic stem cell population referred to as satellite cells. In both cases, the activity of the myogenic precursor cells in question is regulated by local signals from the environment, frequently involving other, non-muscle cell types. However, while the majority of studies on muscle development were done in the context of the whole embryo, much of the current work on muscle satellite cells has been done in vitro, or on satellite cell-derived cell lines. While significant practical reasons for these approaches exist, it is almost certain that important influences from the context of the injured and regenerating muscle are lost, while potential tissue culture artifacts are introduced. This review will briefly address extracellular influences on satellite cells in vivo and in vitro that would be expected to impinge on their activity.
Collapse
Affiliation(s)
- D D W Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|