1
|
Kumari R, Banerjee S. Regulation of Different Types of Cell Death by Noncoding RNAs: Molecular Insights and Therapeutic Implications. ACS Pharmacol Transl Sci 2025; 8:1205-1226. [PMID: 40370994 PMCID: PMC12070317 DOI: 10.1021/acsptsci.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/16/2025]
Abstract
Noncoding RNAs (ncRNAs) are crucial regulatory molecules in various biological processes, despite not coding for proteins. ncRNAs are further divided into long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) based on the size of their nucleotides. These ncRNAs play crucial roles in transcriptional, post-transcriptional, and epigenetic regulation. The regulatory roles of noncoding RNAs, including lncRNAs, miRNAs, and circRNAs, are essential in various modalities of cellular death, such as apoptosis, ferroptosis, cuproptosis, pyroptosis, disulfidptosis, and necroptosis. These noncoding RNAs are integral to modulating gene expression and protein functionality during cellular death mechanisms. In apoptosis, lncRNAs, miRNAs, and circRNAs influence the transcription of apoptotic genes. In ferroptosis, these noncoding RNAs target genes and proteins involved in iron homeostasis and oxidative stress responses. For cuproptosis, noncoding RNAs regulate pathways associated with the accumulation of copper ions, leading to cellular death. During pyroptosis, noncoding RNAs modulate inflammatory mediators and caspases, affecting the proinflammatory cell death pathway. In necroptosis, noncoding RNAs oversee the formation and functionality of necrosomes, thereby influencing the balance between cellular survival and death. Disulfidptosis is a unique type of regulated cell death caused by the excessive formation of disulfide bonds within cells, leading to cytoskeletal collapse and oxidative stress, especially under glucose-limited conditions. This investigation highlights the complex mechanisms through which noncoding RNAs coordinate cellular death, emphasizing their therapeutic promise as potential targets, particularly in the domain of cancer treatment.
Collapse
Affiliation(s)
- Reshmi Kumari
- Department of Biotechnology, School
of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- Department of Biotechnology, School
of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
2
|
Zhang S, Xiao H, Lin Y, Tang X, Tong W, Shao B, Li H, Xu L, Ding X, Chai R. Targeting Programmed Cell Death in Acquired Sensorineural Hearing Loss: Ferroptosis, Necroptosis, and Pyroptosis. Neurosci Bull 2025:10.1007/s12264-025-01370-y. [PMID: 40261527 DOI: 10.1007/s12264-025-01370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/06/2024] [Indexed: 04/24/2025] Open
Abstract
Sensorineural hearing loss (SNHL), the most commonly-occurring form of hearing loss, is caused mainly by injury to or the loss of hair cells and spiral ganglion neurons in the cochlea. Numerous environmental and physiological factors have been shown to cause acquired SNHL, such as ototoxic drugs, noise exposure, aging, infections, and diseases. Several programmed cell death (PCD) pathways have been reported to be involved in SNHL, especially some novel PCD pathways that have only recently been reported, such as ferroptosis, necroptosis, and pyroptosis. Here we summarize these PCD pathways and their roles and mechanisms in SNHL, aiming to provide new insights and potential therapeutic strategies for SNHL by targeting these PCD pathways.
Collapse
Affiliation(s)
- Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| | - Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Buwei Shao
- School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - He Li
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
| | - Xiaoqiong Ding
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Institute for Stem Cells and Regeneration, Chinese Academy of Science, Beijing, 100081, China.
| |
Collapse
|
3
|
Hassan EA, Abdelnaser A, Ibrahim S, Yousef EH, Mosallam AM, Zayed SE. 5H Pyrolo(3,4-b)Pyrazin-5,7-(6H)-dione 6-(N-Chitosanimide nanoparticle) composite nano silver and encapsulation in γ-cyclodextrin: Synthesis, molecular docking, and biological evaluation for thyroid cancer treatment. Int J Biol Macromol 2025; 304:140859. [PMID: 39947539 DOI: 10.1016/j.ijbiomac.2025.140859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/14/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Thyroid cancer is rapidly increasing worldwide, with some patients facing poor prognosis and recurrence despite current treatments. Chitosan-based nanoparticles have exhibited exciting antitumor efficacy both in vitro and in vivo, which indicates that there is vast scope of clinical application. This study develops a anhydride-modified chitosan and anhydride-modified chitosan‑silver nanoparticles, encapsulated in γ-cyclodextrin to help drug delivery by safe way and enhance thyroid cancer therapy. METHODS 5H pyrolo(3,4-b)pyrazin-5,7-(6H)-dione-6-(N-chitosanimide nanoparticle(composite constructed with nano silver (B1) was prepared and the optimized formula was further investigated regarding FT-IR, X-RD, SEM and TEM. Furthermore, it was encapsulated in γ-CD, and an in vivo study was conducted to investigate its anticancer activity. The binding affinities of 2,3-Pyrazinedicarboxylic anhydride to inhibitor of kappa B kinase beta (IKK-β) was demonstrated by molecular docking. RESULTS SEM and TEM revealed that Ag NPs were mostly uniformly incorporated into the 5H pyrolo(3,4-b)pyrazin-5,7-(6H)-dione 6-(N-chitosanimide nanoparticle, while FT-IR and X-RD findings verified the formation of 5H pyrolo(3,4-b)pyrazin-5,7-(6H)-dione-6-(N-chitosanimide nanoparticle)/composite constructed with nano silver and encapsulated in γ-CD (B2). γ-CD encapsulation induced a significant enhancement in pyrazine thyroid antitumor activity in xenografic model. CONCLUSION B2 could be considered a promising formula for suppression of thyroid cancer by modulating NF-κB signaling pathway, and hence, future studies could be planned to transfer our formula to the clinical field.
Collapse
Affiliation(s)
- Entesar A Hassan
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Amira Abdelnaser
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Samar Ibrahim
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Galala University, Ataka, Egypt
| | - Eman H Yousef
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.
| | - Ahmed M Mosallam
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Salem E Zayed
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
4
|
Rahmati-Dehkordi F, Birang N, Jalalian MN, Tamtaji Z, Dadgostar E, Aschner M, Shafiee Ardestani M, Jafarpour H, Mirzaei H, Nabavizadeh F, Tamtaji OR. Can infliximab serve as a new therapy for neuropsychiatric symptoms? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1081-1097. [PMID: 39225829 DOI: 10.1007/s00210-024-03397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neuropsychiatric disorders present a global challenge to public health. Mechanisms associated with neuropsychiatric disorders etiology include apoptosis, oxidative stress, and neuroinflammation. Tumor necrosis factor alpha, an inflammatory cytokine, mediates pathophysiology of neuropsychiatric disorders. Therefore, its inhibition by infliximab might afford a valuable target for intervention. Infliximab is commonly used to treat inflammatory diseases, including ulcerative colitis, Crohn's disease, and rheumatoid arthritis. Recently, it has been shown that infliximab improves cognitive dysfunction, depression, anxiety, and life quality. Here, we review contemporary knowledge supporting the need to further characterize infliximab as a potential treatment for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Fatemeh Rahmati-Dehkordi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Birang
- Department of Physical Medicine and Rehabilitation, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Mehdi Shafiee Ardestani
- Department of Radio Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Jafarpour
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Heesbeen EJ, Bijlsma EY, Risseeuw TA, Hessel EVS, Groenink L. A systematic approach to identify gaps in neuroimmunology: TNF-α and fear learning deficits, a worked example. Brain Behav Immun 2025; 123:752-764. [PMID: 39442635 DOI: 10.1016/j.bbi.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The pathophysiology of several neurodegenerative and neuropsychiatric disorders is linked to an altered immune system. However, it is often unclear how the immune system specifically affects these disorders since neuroimmune interactions are very complex. In this paper, we introduce an adjusted version of the adverse outcome pathway (AOP) approach from toxicology to the field of neuroimmunology. A review of the effect of TNF-α on fear learning deficits is used as a worked example to demonstrate how an AOP approach can help identify gaps of knowledge and crucial steps in the pathophysiology of neuroimmunological disorders. METHODS The AOP was constructed in five steps. First, the adverse outcome was formulated clearly and specifically. Second, the link between the molecular initiating event and the adverse outcome was established with a preliminary literature search in the Medline database. Third, a systematic literature search was performed in which we identified 95 relevant articles. Fourth, the main biological processes and relevant key events were identified. Fifth, the links between key events were determined and an AOP network was constructed. RESULTS We identified three pathways through which TNF-α may affect fear learning. First, TNF-α receptor activation increases NF-κB levels which increases oxidative stress levels and reduces the activity of glutamate transporters. This alters the synaptic plasticity which is associated with impaired fear acquisition, consolidation, and fear extinction. Second, activation of TNF-α receptors increases the expression and capacity of the serotonin transporter which is linked to impaired fear acquisition, expression, and extinction. Third, TNF-α receptor 1 activation can induce necroptosis, leading to neuroinflammation which is linked to fear learning deficits. CONCLUSION To successfully apply the AOP approach in neuroimmunology we recommend defining adverse outcomes more precisely, establishing stronger connections between key events from various biological processes, incorporating feedforward and feedback loops, and identifying more mechanistic knowledge in later key events. These adjustments are needed to map the complex processes within the field of neuroimmunology and to identify gaps of knowledge.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the).
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| | - Tristan A Risseeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| | - Ellen V S Hessel
- Public Health and Health Services, RIVM National Institute for Public Health and the Environment, Bilthoven, Netherlands (the)
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| |
Collapse
|
6
|
Yang CY, Tseng YC, Tu YF, Kuo BJ, Hsu LC, Lien CI, Lin YS, Wang YT, Lu YC, Su TW, Lo YC, Lin SC. Reverse hierarchical DED assembly in the cFLIP-procaspase-8 and cFLIP-procaspase-8-FADD complexes. Nat Commun 2024; 15:8974. [PMID: 39419969 PMCID: PMC11487272 DOI: 10.1038/s41467-024-53306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
cFLIP, a master anti-apoptotic regulator, targets the FADD-induced DED complexes of procaspase-8 in death receptor and ripoptosome signaling pathways. Several tumor cells maintain relatively high levels of cFLIP in achieving their immortality. However, understanding the three-dimensional regulatory mechanism initiated or mediated by elevated levels of cFLIP has been limited by the absence of the atomic coordinates for cFLIP-induced DED complexes. Here we report the crystal plus cryo-EM structures to uncover an unconventional mechanism where cFLIP and procaspase-8 autonomously form a binary tandem DED complex, independent of FADD. This complex gains the ability to recruit FADD, thereby allosterically modulating cFLIP assembly and partially activating caspase-8 for RIPK1 cleavage. Our structure-guided mutagenesis experiments provide critical insights into these regulatory mechanisms, elucidating the resistance to apoptosis and necroptosis in achieving immortality. Finally, this research offers a unified model for the intricate bidirectional hierarchy-based processes using multiprotein helical assembly to govern cell fate decisions.
Collapse
Affiliation(s)
- Chao-Yu Yang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chun Tseng
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Fan Tu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Bai-Jiun Kuo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Chia-I Lien
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - You-Sheng Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Yin-Ting Wang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yen-Chen Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tsung-Wei Su
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Su-Chang Lin
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
7
|
Fogarasi M, Dima S. Immunomodulatory Functions of TNF-Related Apoptosis-Inducing Ligand in Type 1 Diabetes. Cells 2024; 13:1676. [PMID: 39451194 PMCID: PMC11506310 DOI: 10.3390/cells13201676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF protein superfamily and was initially identified as a protein capable of inducing apoptosis in cancer cells. In addition, TRAIL can promote pro-survival and proliferation signaling in various cell types. Subsequent studies have demonstrated that TRAIL plays several important roles in immunoregulation, immunosuppression, and immune effector functions. Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia due to the loss of insulin-producing β-cells, primarily driven by T-cell-mediated pancreatic islet inflammation. Various genetic, epigenetic, and environmental factors, in conjunction with the immune system, contribute to the initiation, development, and progression of T1D. Recent reports have highlighted TRAIL as an important immunomodulatory molecule with protective effects on pancreatic islets. Experimental data suggest that TRAIL protects against T1D by reducing the proliferation of diabetogenic T cells and pancreatic islet inflammation and restoring normoglycemia in animal models. In this review, we aimed to summarize the consequences of TRAIL action in T1D, focusing on and discussing its signaling mechanisms, role in the immune system, and protective effects in T1D.
Collapse
Affiliation(s)
- Marton Fogarasi
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
8
|
Sun ND, Carr AR, Krogman EN, Chawla Y, Zhong J, Guttormson MC, Chan M, Hsu MA, Dong H, Bogunovic D, Pandey A, Rogers LM, Ting AT. TBK1 and IKKε protect target cells from IFNγ-mediated T cell killing via an inflammatory apoptotic mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606693. [PMID: 39149268 PMCID: PMC11326184 DOI: 10.1101/2024.08.06.606693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Cytotoxic T cells produce interferon gamma (IFNγ), which plays a critical role in anti-microbial and anti-tumor responses. However, it is not clear whether T cell-derived IFNγ directly kills infected and tumor target cells, and how this may be regulated. Here, we report that target cell expression of the kinases TBK1 and IKKε regulate IFNγ cytotoxicity by suppressing the ability of T cell-derived IFNγ to kill target cells. In tumor targets lacking TBK1 and IKKε, IFNγ induces expression of TNFR1 and the Z-nucleic acid sensor, ZBP1, to trigger RIPK1-dependent apoptosis, largely in a target cell-autonomous manner. Unexpectedly, IFNγ, which is not known to signal to NFκB, induces hyperactivation of NFκB in TBK1 and IKKε double-deficient cells. TBK1 and IKKε suppress IKKα/β activity and in their absence, IFNγ induces elevated NFκB-dependent expression of inflammatory chemokines and cytokines. Apoptosis is thought to be non-inflammatory, but our observations demonstrate that IFNγ can induce an inflammatory form of apoptosis, and this is suppressed by TBK1 and IKKε. The two kinases provide a critical connection between innate and adaptive immunological responses by regulating three key responses: (1) phosphorylation of IRF3/7 to induce type I IFN; (2) inhibition of RIPK1-dependent death; and (3) inhibition of NFκB-dependent inflammation. We propose that these kinases evolved these functions such that their inhibition by pathogens attempting to block type I IFN expression would enable IFNγ to trigger apoptosis accompanied by an alternative inflammatory response. Our findings show that loss of TBK1 and IKKε in target cells sensitizes them to inflammatory apoptosis induced by T cell-derived IFNγ.
Collapse
Affiliation(s)
- Nicholas D. Sun
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Allison R. Carr
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Yogesh Chawla
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Zhong
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Mark Chan
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michelle A. Hsu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dusan Bogunovic
- Columbia Center for Genetic Errors of Immunity, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura M. Rogers
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Adrian T. Ting
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Nataraj NM, Sillas RG, Herrmann BI, Shin S, Brodsky IE. Blockade of IKK signaling induces RIPK1-independent apoptosis in human macrophages. PLoS Pathog 2024; 20:e1012469. [PMID: 39186805 PMCID: PMC11407650 DOI: 10.1371/journal.ppat.1012469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/17/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Regulated cell death in response to microbial infection plays an important role in immune defense and is triggered by pathogen disruption of essential cellular pathways. Gram-negative bacterial pathogens in the Yersinia genus disrupt NF-κB signaling via translocated effectors injected by a type III secretion system, thereby preventing induction of cytokine production and antimicrobial defense. In murine models of infection, Yersinia blockade of NF-κB signaling triggers cell-extrinsic apoptosis through Receptor Interacting Serine-Threonine Protein Kinase 1 (RIPK1) and caspase-8, which is required for bacterial clearance and host survival. Unexpectedly, we find that human macrophages undergo apoptosis independently of RIPK1 in response to Yersinia or chemical blockade of IKKβ. Instead, IKK blockade led to decreased cFLIP expression, and overexpression of cFLIP contributed to protection from IKK blockade-induced apoptosis in human macrophages. We found that IKK blockade also induces RIPK1 kinase activity-independent apoptosis in human T cells and human pancreatic cells. Altogether, our data indicate that, in contrast to murine cells, blockade of IKK activity in human cells triggers a distinct apoptosis pathway that is independent of RIPK1 kinase activity. These findings have implications for the contribution of RIPK1 to cell death in human cells and the efficacy of RIPK1 inhibition in human diseases.
Collapse
Affiliation(s)
- Neha M Nataraj
- Institute for Immunology & Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Reyna Garcia Sillas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Beatrice I Herrmann
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sunny Shin
- Institute for Immunology & Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Igor E Brodsky
- Institute for Immunology & Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Lira GA, de Azevedo FM, Lins IGDS, Marques IDL, Lira GA, Eich C, de Araujo Junior RF. High M2-TAM Infiltration and STAT3/NF-κB Signaling Pathway as a Predictive Factor for Tumor Progression and Death in Cervical Cancer. Cancers (Basel) 2024; 16:2496. [PMID: 39061137 PMCID: PMC11275153 DOI: 10.3390/cancers16142496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION The tumor microenvironment (TME) plays a crucial role in the progression, invasion, and metastasis of cervical carcinoma (CC). Tumor-associated macrophages (TAMs) are significant components of the CC TME, but studies on their correlation with CC progression are still controversial. This study aimed to investigate the relationship between TAM infiltration, the STAT3/NF-κB signaling pathway, and Overall Survival (OS) in CC patients. METHODS In a retrospective study, 691 CC patients who had received a definitive histopathologic diagnosis of CC scored by the FIGO staging system and not undergone preoperative treatment were selected from a database. The effect of TAM infiltration on tumor progression biomarkers using Tissue Microarray (TMA) and immunohistochemistry was evaluated. Furthermore, the impact of the expression of these biomarkers and clinical-pathological parameters on recurrence-free (RF) and OS using Kaplan-Meier and multivariable Cox regression methods was also analyzed. RESULTS High stromal CD163 + 204 + TAMs density and via STAT3 and NF-κB pathways was relevant to the expression of E-cadherin, Vimentin, MMP9, VEGFα, Bcl-2, Ki-67, CD25, MIF, FOXP3, and IL-17 (all p < 0.0001). In addition, elevated TNM staging IV had a strong association correlation with STAT3 and NF-κB pathways (p < 0.0001), CD25 (p < 0.001), VEGFα (p < 0.001), MIF (p < 0.0001), and Ki-67 (p < 0.0001). On the other hand, overall and recurrence survival was shown to be strongly influenced by the expression of SNAIL (HR = 1.52), E-cadherin (HR = 1.78), and Ki-67 (HR = 1.44). CONCLUSION M2-TAM and via STAT3/NF-κB pathways had a strong effect on CC tumor progression which reverberated in the severity of clinicopathological findings, becoming an important factor of poor prognosis.
Collapse
Affiliation(s)
- George Alexandre Lira
- Cancer and Inflammation Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte Natal, Natal 59072-970, RN, Brazil;
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil;
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- League Against Cancer from Rio Grande do Norte, Advanced Oncology Center, Natal 59075-740, RN, Brazil; (I.G.d.S.L.); (G.A.L.)
| | | | | | - Isabelle de Lima Marques
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil;
| | - Giovanna Afonso Lira
- League Against Cancer from Rio Grande do Norte, Advanced Oncology Center, Natal 59075-740, RN, Brazil; (I.G.d.S.L.); (G.A.L.)
| | - Christina Eich
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Raimundo Fernandes de Araujo Junior
- Cancer and Inflammation Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte Natal, Natal 59072-970, RN, Brazil;
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil;
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Postgraduate Program in Functional and Structural Biology, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| |
Collapse
|
11
|
Sahu D, Gupta C, Yennamalli RM, Sharma S, Roy S, Hasan S, Gupta P, Sharma VK, Kashyap S, Kumar S, Dwivedi VP, Zhao X, Panda AK, Das HR, Liu CJ. Novel peptide inhibitor of human tumor necrosis factor-α has antiarthritic activity. Sci Rep 2024; 14:12935. [PMID: 38839973 PMCID: PMC11153517 DOI: 10.1038/s41598-024-63790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
The inhibition of tumor necrosis factor (TNF)-α trimer formation renders it inactive for binding to its receptors, thus mitigating the vicious cycle of inflammation. We designed a peptide (PIYLGGVFQ) that simulates a sequence strand of human TNFα monomer using a series of in silico methods, such as active site finding (Acsite), protein-protein interaction (PPI), docking studies (GOLD and Flex-X) followed by molecular dynamics (MD) simulation studies. The MD studies confirmed the intermolecular interaction of the peptide with the TNFα. Fluorescence-activated cell sorting and fluorescence microscopy revealed that the peptide effectively inhibited the binding of TNF to the cell surface receptors. The cell culture assays showed that the peptide significantly inhibited the TNFα-mediated cell death. In addition, the nuclear translocation of the nuclear factor kappa B (NFκB) was significantly suppressed in the peptide-treated A549 cells, as observed in immunofluorescence and gel mobility-shift assays. Furthermore, the peptide protected against joint damage in the collagen-induced arthritis (CIA) mouse model, as revealed in the micro focal-CT scans. In conclusion, this TNFα antagonist would be helpful for the prevention and repair of inflammatory bone destruction and subsequent loss in the mouse model of CIA as well as human rheumatoid arthritis (RA) patients. This calls upon further clinical investigation to utilize its potential effect as an antiarthritic drug.
Collapse
Affiliation(s)
- Debasis Sahu
- Product Development Cell, National Institute of Immunology, New Delhi, India.
- Department of Orthopedics Surgery, New York University School of Medicine, New York, NY, USA.
- Science Habitat, Ubioquitos Inc, London, ON, Canada.
| | - Charu Gupta
- School of Biomedical Sciences, Galgotias University, Greater Noida, UP, India
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamil Nadu, India
| | - Shikha Sharma
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
- Science Habitat, Ubioquitos Inc, London, ON, Canada
| | - Saugata Roy
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Sadaf Hasan
- Department of Orthopedics Surgery, New York University School of Medicine, New York, NY, USA
| | - Pawan Gupta
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Vishnu Kumar Sharma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Sujit Kashyap
- Division of Pediatric Rheumatology, University of California San Francisco, San Francisco, CA, USA
- Department of Genetics, University of Delhi, Delhi, India
| | - Santosh Kumar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Xiangli Zhao
- Department of Orthopedics Surgery, New York University School of Medicine, New York, NY, USA
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Amulya Kumar Panda
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Hasi Rani Das
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Chuan-Ju Liu
- Department of Orthopedics Surgery, New York University School of Medicine, New York, NY, USA
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Yang CY, Lien CI, Tseng YC, Tu YF, Kulczyk AW, Lu YC, Wang YT, Su TW, Hsu LC, Lo YC, Lin SC. Deciphering DED assembly mechanisms in FADD-procaspase-8-cFLIP complexes regulating apoptosis. Nat Commun 2024; 15:3791. [PMID: 38710704 PMCID: PMC11074299 DOI: 10.1038/s41467-024-47990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Fas-associated protein with death domain (FADD), procaspase-8, and cellular FLICE-inhibitory proteins (cFLIP) assemble through death-effector domains (DEDs), directing death receptor signaling towards cell survival or apoptosis. Understanding their three-dimensional regulatory mechanism has been limited by the absence of atomic coordinates for their ternary DED complex. By employing X-ray crystallography and cryogenic electron microscopy (cryo-EM), we present the atomic coordinates of human FADD-procaspase-8-cFLIP complexes, revealing structural insights into these critical interactions. These structures illustrate how FADD and cFLIP orchestrate the assembly of caspase-8-containing complexes and offer mechanistic explanations for their role in promoting or inhibiting apoptotic and necroptotic signaling. A helical procaspase-8-cFLIP hetero-double layer in the complex appears to promote limited caspase-8 activation for cell survival. Our structure-guided mutagenesis supports the role of the triple-FADD complex in caspase-8 activation and in regulating receptor-interacting protein kinase 1 (RIPK1). These results propose a unified mechanism for DED assembly and procaspase-8 activation in the regulation of apoptotic and necroptotic signaling across various cellular pathways involved in development, innate immunity, and disease.
Collapse
Grants
- AS-TP-107-L16, AS-TP-107-L16-1, AS-102-TP-B14 and AS-102-TP-B14-2 Academia Sinica
- AS-TP-107-L16-2 and AS-102-TP-B14-1 Academia Sinica
- AS-TP-107-L16-3 Academia Sinica
- MoST 107-2320-B-001-018-, 108-2311-B-001-018-, 109-2311-B-001-016-, and 110-2311-B-001-015- Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MoST 107-2320-B-006-062-MY3, and 111-2311-B-006-005-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MoST 108-2320-B-002-020-MY3, 111-2320-B-002-048-MY3, and 112-2326-B-002-007- Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
Collapse
Affiliation(s)
- Chao-Yu Yang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-I Lien
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Yi-Chun Tseng
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Fan Tu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Arkadiusz W Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, Department of Biochemistry and Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Yen-Chen Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yin-Ting Wang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsung-Wei Su
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Su-Chang Lin
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
13
|
Guo B, Wang H, Zhang Y, Wang C, Qin J. Glycyrrhizin alleviates varicellovirus bovinealpha 1-induced oxidative stress, inflammation, and apoptosis in MDBK cells by inhibiting NF-κB/NLRP3 axis through the Nrf2 signalling pathway. Vet Res Commun 2024; 48:749-759. [PMID: 37889426 DOI: 10.1007/s11259-023-10242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Varicellovirus bovinealpha 1 (BoAHV-1) is one of the crucial pathogens of bovine respiratory diseases, and its pathogenic mechanism involves oxidative stress, inflammation response, and apoptosis. Glycyrrhizin (GLY) possesses powerful antiviral, antioxidant, anti-inflammatory, and anti-apoptotic bioactivities. However, the anti-BoAHV-1 activity of GLY and its role in BoAHV-1-induced oxidative stress, inflammation, and apoptosis remain unclear. Therefore, the current study investigated the anti-BoAHV-1 effect of GLY and its ability to alleviate BoAHV-1-induced oxidative stress, inflammation, and apoptosis using an in vitro model (MDBK cells). Our results showed that BoAHV-1 titers significantly increased in MDBK cells after infection, and GLY reduced the BoAHV-1 titers in MDBK cells exposed to it. Furthermore, Interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)-α, phosphorylated NF-κB p65 (p-NF-κB p65), the NLR pyrin domain containing 3 (NLRP3), Caspase-1, and Cleaved Caspase-3 levels were significantly upregulated when MDBK cells were challenged with BoAHV-1. In BAY 11-7085 (a specific NF-κB inhibitor) treated MDBK cells, IL-1β, IL-8, TNF-α, p-NF-κB p65, NLRP3, Caspase-1, and Cleaved Caspase-3 levels were downregulated. Notably, GLY treatment had the same trend as the BAY 11-7085 treatment. Thus, these results suggested that GLY exerted anti-inflammatory and anti-apoptotic activities by blocking NF-κB/NLRP3 axis. In addition, after BoAHV-1 infection, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and p-NF-κB p65 and apoptosis rate were increased, and catalase (CAT) and glutathione peroxidase (GSH-Px) enzyme activities, as well as NF-E2-related nuclear factor erythroid-2 (Nrf2) protein expression were repressed. Compared with BoAHV-1-infected MDBK cells, GLY treatment significantly downregulated intracellular ROS, MDA, and p-NF-κB p65 levels and apoptotic rates and significantly increased intracellular CAT and GSH-Px enzyme activities and Nrf2 expression. Additionally, ML385 (a specific Nrf2 inhibitor) abolished the enhancing effect of GLY on Nrf2 and the attenuating effect on ROS, p-NF-κB p65, and apoptosis. These results suggested that GLY had an anti-BoAHV-1 effect and could mitigate BoAHV-1-induced oxidative stress, inflammation, and apoptosis by activating the Nrf2 signalling and restraining NF-κB/NLRP3 axis.
Collapse
Affiliation(s)
- Bing Guo
- Key Laboratory of Healthy Breeding in dairy cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China
- Department of Veterinary Medicine, College of Animal Science and Technology, Hebei North University, Zhangjiakou, Hebei Province, China
| | - Haifeng Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Hebei North University, Zhangjiakou, Hebei Province, China
| | - Yue Zhang
- Key Laboratory of Healthy Breeding in dairy cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Chuanwen Wang
- Key Laboratory of Healthy Breeding in dairy cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Jianhua Qin
- Key Laboratory of Healthy Breeding in dairy cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China.
| |
Collapse
|
14
|
Preedy MK, White MRH, Tergaonkar V. Cellular heterogeneity in TNF/TNFR1 signalling: live cell imaging of cell fate decisions in single cells. Cell Death Dis 2024; 15:202. [PMID: 38467621 PMCID: PMC10928192 DOI: 10.1038/s41419-024-06559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024]
Abstract
Cellular responses to TNF are inherently heterogeneous within an isogenic cell population and across different cell types. TNF promotes cell survival by activating pro-inflammatory NF-κB and MAPK signalling pathways but may also trigger apoptosis and necroptosis. Following TNF stimulation, the fate of individual cells is governed by the balance of pro-survival and pro-apoptotic signalling pathways. To elucidate the molecular mechanisms driving heterogenous responses to TNF, quantifying TNF/TNFR1 signalling at the single-cell level is crucial. Fluorescence live-cell imaging techniques offer real-time, dynamic insights into molecular processes in single cells, allowing for detection of rapid and transient changes, as well as identification of subpopulations, that are likely to be missed with traditional endpoint assays. Whilst fluorescence live-cell imaging has been employed extensively to investigate TNF-induced inflammation and TNF-induced cell death, it has been underutilised in studying the role of TNF/TNFR1 signalling pathway crosstalk in guiding cell-fate decisions in single cells. Here, we outline the various opportunities for pathway crosstalk during TNF/TNFR1 signalling and how these interactions may govern heterogenous responses to TNF. We also advocate for the use of live-cell imaging techniques to elucidate the molecular processes driving cell-to-cell variability in single cells. Understanding and overcoming cellular heterogeneity in response to TNF and modulators of the TNF/TNFR1 signalling pathway could lead to the development of targeted therapies for various diseases associated with aberrant TNF/TNFR1 signalling, such as rheumatoid arthritis, metabolic syndrome, and cancer.
Collapse
Affiliation(s)
- Marcus K Preedy
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, D3308, Dover Street, Manchester, M13 9PT, England, UK
| | - Michael R H White
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, D3308, Dover Street, Manchester, M13 9PT, England, UK.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, MD7, Singapore, 117596, Singapore.
| |
Collapse
|
15
|
Hou S, Zhang J, Jiang X, Yang Y, Shan B, Zhang M, Liu C, Yuan J, Xu D. PARP5A and RNF146 phase separation restrains RIPK1-dependent necroptosis. Mol Cell 2024; 84:938-954.e8. [PMID: 38272024 DOI: 10.1016/j.molcel.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Phase separation is a vital mechanism that mediates the formation of biomolecular condensates and their functions. Necroptosis is a lytic form of programmed cell death mediated by RIPK1, RIPK3, and MLKL downstream of TNFR1 and has been implicated in mediating many human diseases. However, whether necroptosis is regulated by phase separation is not yet known. Here, we show that upon the induction of necroptosis and recruitment by the adaptor protein TAX1BP1, PARP5A and its binding partner RNF146 form liquid-like condensates by multivalent interactions to perform poly ADP-ribosylation (PARylation) and PARylation-dependent ubiquitination (PARdU) of activated RIPK1 in mouse embryonic fibroblasts. We show that PARdU predominantly occurs on the K376 residue of mouse RIPK1, which promotes proteasomal degradation of kinase-activated RIPK1 to restrain necroptosis. Our data demonstrate that PARdU on K376 of mouse RIPK1 provides an alternative cell death checkpoint mediated by phase separation-dependent control of necroptosis by PARP5A and RNF146.
Collapse
Affiliation(s)
- Shouqiao Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215031, China
| | - Xiaoyan Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
16
|
Guo X, Sun W, Zhang B. Monotropein Alleviates Ovalbumin-Induced Asthma in Mouse Model by Inhibiting AKT/NF-κB Pathway. Int Arch Allergy Immunol 2024; 185:425-435. [PMID: 38432211 PMCID: PMC11098022 DOI: 10.1159/000535450] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/16/2023] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Clinical management of asthma remains as a prevalent challenge. Monotropein (MON) is a naturally occurring cyclic enol ether terpene glycoside with medical application potential. This study aims to evaluate the potential therapeutic effects of MON in the mouse model of chronic asthma. METHODS An ovalbumin (OVA)-induced asthmatic mouse model was established to evaluate the therapeutic effect of MON at different doses (20, 40, and 80 mg/kg). The potential involvement of protein kinase B (AKT)/nuclear factor kappa B (NF-κB) pathway in the effect of MON was investigated by the administration of an AKT activator SC79. Histological changes in pulmonary tissues were examined by hematoxylin and eosin staining. The profiles of inflammatory cytokines (interleukin [IL]-4, IL-5, IL-13, and tumor necrosis factor [TNF]-α) in bronchoalveolar lavage fluid (BALF), and OVA-specific IgE in blood samples were analyzed by enzyme-linked immunosorbent assay (ELISA). The oxidative stress in the lung tissues was determined by measuring malondialdehyde level. The phosphorylation activation of AKT and NF-κB was examined by immunoblotting in the lung tissues. RESULTS MON treatment suppressed the infiltration of inflammatory cells in the airways of OVA-induced asthma mice and reduced the thickness of the bronchial wall and smooth muscle layer in a dose-dependent manner. MON treatment also reduced the levels of OVA-specific IgE in serum and cytokines in BALF in asthma-induced mice, and attenuated the oxidative stress in the lung tissues. OVA induced the phosphorylation of AKT and NF-κB proteins in the lung tissues of asthmatic mice, which was significantly suppressed by MON treatment. The co-administration of AKT activator SC79 impaired the therapeutic effect of MON on asthma-induced mice. CONCLUSION Our data demonstrated the potential therapeutic effect of MON on asthmatic mouse model, suggesting that MON attenuated the inflammatory and oxidative damages in ling tissues by dampening the AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xin Guo
- Department of Pediatrics, Yantai Yuhuangding Hospital, Yantai, China
| | - Wenjie Sun
- Department of Pediatrics, Yantai Yuhuangding Hospital Laishan Hospital Area, Yantai, China
| | - Bingbing Zhang
- Department of Pediatrics, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
17
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. mBio 2024; 15:e0301123. [PMID: 38117084 PMCID: PMC10790708 DOI: 10.1128/mbio.03011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma (KS) is the most common cancer in HIV-infected patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Hyperinflammation is the hallmark of KS. In this study, we have shown that KSHV mediates hyperinflammation by inducing IL-1α and suppressing IL-1Ra. Mechanistically, KSHV miRNAs and vFLIP induce hyperinflammation by activating the NF-κB pathway. A common anti-inflammatory agent dexamethasone blocks KSHV-induced hyperinflammation and tumorigenesis by activating glucocorticoid receptor signaling to suppress IL-1α and induce IL-1Ra. This work has identified IL-1-mediated inflammation as a potential therapeutic target and dexamethasone as a potential therapeutic agent for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Hamed YS, Ahsan HM, Hussain M, Ahmad I, Tian B, Wang J, Zou XG, Bu T, Ming C, Rayan AM, Yang K. Polysaccharides from Brassica rapa root: Extraction, purification, structural features, and biological activities. A review. Int J Biol Macromol 2024; 254:128023. [PMID: 37952795 DOI: 10.1016/j.ijbiomac.2023.128023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Brassica rapa (B. rapa) roots are attracting increased attention from nutritionists and health-conscious customers because of their remarkable performance in supplying necessary nutrients. Polysaccharides are major biologically active substances in B. rapa roots, which come in a variety of monosaccharides with different molar ratios and glycosidic bond types. Depending on the source, extraction, separation, and purification methods of B. rapa roots polysaccharides (BRP); different structural features, and pharmacological activities are elucidated. Polysaccharides from B. rapa roots possess a range of nutritional, biological, and health-enhancing characteristics, including anti-hypoxic, antifatigue, immunomodulatory, hypoglycemic, anti-tumor, and antioxidant activities. This paper reviewed extraction and purification methods, structural features, and biological activities as well as correlations between the structural and functional characteristics of polysaccharides from the B. rapa roots. Ultimately, this work will serve as useful reference for understanding the connections between polysaccharide structure and biological activity and developing novel BRP-based functional foods.
Collapse
Affiliation(s)
- Yahya S Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China; Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt.
| | - Hafiz Muhammad Ahsan
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China; Department of Human Nutrition, Faculty of Food Science and Nutrition, Bahahuddin Zakaria University, Multan, Pakistan
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Ishtiaq Ahmad
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Jian Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Xian-Guo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Tingting Bu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Cai Ming
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| |
Collapse
|
19
|
Lee YS, Mun EG, Sim EA, Lee BY. Antioxidant and anti-gastritis effects of a mixture of Ipomoea batatas extract and Dioscorea japonica extract on an animal model by HCl/ethanol-induced gastritis. JOURNAL OF NUTRITION AND HEALTH 2024; 57:389. [DOI: 10.4163/jnh.2024.57.4.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Yun-seong Lee
- Nain Healthcare Co. Ltd, Iksan 54613, Republic of Korea
| | - Eun-Gyung Mun
- Jeonju AgroBio-Materials Institute, Jeonju 54810, Republic of Korea
| | - Eun Ah Sim
- Jeonju AgroBio-Materials Institute, Jeonju 54810, Republic of Korea
| | - Bo-Young Lee
- Department of Food and Nutrition, College of Agriculture and Food Sciences, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
20
|
Davidovich P, Higgins CA, Najda Z, Longley DB, Martin SJ. cFLIP L acts as a suppressor of TRAIL- and Fas-initiated inflammation by inhibiting assembly of caspase-8/FADD/RIPK1 NF-κB-activating complexes. Cell Rep 2023; 42:113476. [PMID: 37988267 DOI: 10.1016/j.celrep.2023.113476] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/16/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
TRAIL and FasL are potent inducers of apoptosis but can also promote inflammation through assembly of cytoplasmic caspase-8/FADD/RIPK1 (FADDosome) complexes, wherein caspase-8 acts as a scaffold to drive FADD/RIPK1-mediated nuclear factor κB (NF-κB) activation. cFLIP is also recruited to FADDosomes and restricts caspase-8 activity and apoptosis, but whether cFLIP also regulates death receptor-initiated inflammation is unclear. Here, we show that silencing or deletion of cFLIP leads to robustly enhanced Fas-, TRAIL-, or TLR3-induced inflammatory cytokine production, which can be uncoupled from the effects of cFLIP on caspase-8 activation and apoptosis. Mechanistically, cFLIPL suppresses Fas- or TRAIL-initiated NF-κB activation through inhibiting the assembly of caspase-8/FADD/RIPK1 FADDosome complexes, due to the low affinity of cFLIPL for FADD. Consequently, increased cFLIPL occupancy of FADDosomes diminishes recruitment of FADD/RIPK1 to caspase-8, thereby suppressing NF-κB activation and inflammatory cytokine production downstream. Thus, cFLIP acts as a dual suppressor of apoptosis and inflammation via distinct modes of action.
Collapse
Affiliation(s)
- Pavel Davidovich
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Catherine A Higgins
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK
| | - Zaneta Najda
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
21
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566578. [PMID: 38014281 PMCID: PMC10680621 DOI: 10.1101/2023.11.10.566578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hyperinflammation is the hallmark of Kaposi's sarcoma (KS), the most common cancer in AIDS patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. However, the role and mechanism of induction of inflammation in KS remain unclear. In a screening for inhibitors of KSHV-induced oncogenesis, over half of the identified candidates were anti-inflammatory agents including dexamethasone functions by activating glucocorticoid receptor (GR) signaling. Here, we examined the mechanism mediating KSHV-induced inflammation. We found that numerous inflammatory pathways were activated in KSHV-transformed cells. Particularly, interleukin-1 alpha (IL-1α) and IL-1 receptor antagonist (IL-1Ra) from the IL-1 family were the most induced and suppressed cytokines, respectively. We found that KSHV miRNAs mediated IL-1α induction while both miRNAs and vFLIP mediated IL-1Ra suppression. Furthermore, GR signaling was inhibited in KSHV-transformed cells, which was mediated by vFLIP and vCyclin. Dexamethasone treatment activated GR signaling, and inhibited cell proliferation and colony formation in soft agar of KSHV-transformed cells but had a minimal effect on matched primary cells. Consequently, dexamethasone suppressed the initiation and growth of KSHV-induced tumors in mice. Mechanistically, dexamethasone suppressed IL-1α but induced IL-1Ra expression. Treatment with recombinant IL-1α protein rescued the inhibitory effect of dexamethasone while overexpression of IL-1Ra caused a weak growth inhibition of KSHV-transformed cells. Furthermore, dexamethasone induced IκBα expression resulting in inhibition of NF-κB pathway and IL-1α expression. These results reveal an important role of IL-1 pathway in KSHV-induced inflammation and oncogenesis, which can be inhibited by dexamethasone-activated GR signaling, and identify IL-1-mediated inflammation as a potential therapeutic target for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Berner J, Miebach L, Kordt M, Seebauer C, Schmidt A, Lalk M, Vollmar B, Metelmann HR, Bekeschus S. Chronic oxidative stress adaptation in head and neck cancer cells generates slow-cyclers with decreased tumour growth in vivo. Br J Cancer 2023; 129:869-883. [PMID: 37460712 PMCID: PMC10449771 DOI: 10.1038/s41416-023-02343-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) are implicated in cancer therapy and as drivers of microenvironmental tumour cell adaptations. Medical gas plasma is a multi-ROS generating technology that has been shown effective for palliative tumour control in head and neck cancer (HNC) patients before tumour cells adapted to the oxidative stress and growth regressed fatally. METHODS In a bedside-to-bench approach, we sought to explore the oxidative stress adaptation in two human squamous cell carcinoma cell lines. Gas plasma was utilised as a putative therapeutic agent and chronic oxidative stress inducer. RESULTS Cellular responses of single and multiple treated cells were compared regarding sensitivity, cellular senescence, redox state and cytokine release. Whole transcriptome analysis revealed a strong correlation of cancer cell adaption with increased interleukin 1 receptor type 2 (IL1R2) expression. Using magnetic resonance imaging, tumour growth and gas plasma treatment responses of wild-type (WT) and repeatedly exposed (RE) A431 cells were further investigated in a xenograft model in vivo. RE cells generated significantly smaller tumours with suppressed inflammatory secretion profiles and increased epidermal growth factor receptor (EGFR) activity showing significantly lower gas plasma sensitivity until day 8. CONCLUSIONS Clinically, combination treatments together with cetuximab, an EGFR inhibitor, may overcome acquired oxidative stress resistance in HNC.
Collapse
Grants
- This study was funded by the joint research project ONKOTHER-H is supported by the European Social Fund (ESF, grant numbers ESF/14-BM-A55-0003/18, ESF/14-BM-A55-0005/18, and ESF/14-BM-A55-0006/18) and the Ministry of Education, Science, and Culture of Mecklenburg-Vorpommern, Germany, as well as the German Federal Ministry of Education and Research (BMBF, grant numbers 03Z22DN11 and 03Z22Di1).
- This study was funded by the joint research project ONKOTHER-H is supported by the European Social Fund (ESF, grant numbers ESF/14-BM-A55-0005/18).
- Gerhard-Domagk-Foundation Greifswald (Germany).
- This study was funded by the joint research project ONKOTHER-H is supported by the European Social Fund (ESF, grant numbers ESF/14-BM-A55-0003/18).
Collapse
Affiliation(s)
- Julia Berner
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str, 17475, Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str, 17475, Greifswald, Germany
| | - Marcel Kordt
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany
| | - Christian Seebauer
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str, 17475, Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Michael Lalk
- Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany
| | - Hans-Robert Metelmann
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str, 17475, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
23
|
Yang X, Xu L, Yang L, Xu S. Research progress of STAT3-based dual inhibitors for cancer therapy. Bioorg Med Chem 2023; 91:117382. [PMID: 37369169 DOI: 10.1016/j.bmc.2023.117382] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3), a transcription factor, regulates gene levels that are associated with cell survival, cell cycle, and immune reaction. It is correlated with the grade of malignancy and the development of various cancers and targeting STAT3 protein is a potentially promising therapeutic strategy for tumors. Over the past 20 years, various compounds have been found to directly inhibit STAT3 activity via different strategies. However, numerous difficulties exist in the development of STAT3 inhibitors, such as serious toxic effects, poor therapeutic effects, and intrinsic and acquired drug resistance. STAT3 inhibitors synergistically suppress cancer development with additional anti-tumor drugs, such as indoleamine 2,3-dioxygenase 1 inhibitors (IDO1i), histone deacetylase inhibitors (HDACi), DNA inhibitors, pro-tumorigenic cytokine inhibitors (PTCi), NF-κB inhibitors, and tubulin inhibitors. Therefore, individual molecule- based dual-target inhibitors can be the candidate alternative or complementary treatment to overcome the disadvantages of just STAT3 or other targets as a monotherapy. In this review, we discuss the theoretical basis for formulating STAT3-based dual-target inhibitors and also summarize their structure-activity relationships (SARs).
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| | - Lu Xu
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Li Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Shaohong Xu
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| |
Collapse
|
24
|
Rogers NM, Zammit N, Nguyen-Ngo D, Souilmi Y, Minhas N, Meijles DN, Self E, Walters SN, Warren J, Cultrone D, El-Rashid M, Li J, Chtanova T, O'Connell PJ, Grey ST. The impact of the cytoplasmic ubiquitin ligase TNFAIP3 gene variation on transcription factor NF-κB activation in acute kidney injury. Kidney Int 2023; 103:1105-1119. [PMID: 37097268 DOI: 10.1016/j.kint.2023.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 04/26/2023]
Abstract
Nuclear factor κB (NF-κB) activation is a deleterious molecular mechanism that drives acute kidney injury (AKI) and manifests in transplanted kidneys as delayed graft function. The TNFAIP3 gene encodes A20, a cytoplasmic ubiquitin ligase and a master negative regulator of the NF- κB signaling pathway. Common population-specific TNFAIP3 coding variants that reduce A20's enzyme function and increase NF- κB activation have been linked to heightened protective immunity and autoimmune disease, but have not been investigated in AKI. Here, we functionally identified a series of unique human TNFAIP3 coding variants linked to the autoimmune genome-wide association studies single nucleotide polymorphisms of F127C; namely F127C;R22Q, F127C;G281E, F127C;W448C and F127C;N449K that reduce A20's anti-inflammatory function in an NF- κB reporter assay. To investigate the impact of TNFAIP3 hypomorphic coding variants in AKI we tested a mouse Tnfaip3 hypomorph in a model of ischemia reperfusion injury (IRI). The mouse Tnfaip3 coding variant I325N increases NF- κB activation without overt inflammatory disease, providing an immune boost as I325N mice exhibit enhanced innate immunity to a bacterial challenge. Surprisingly, despite exhibiting increased intra-kidney NF- κB activation with inflammation in IRI, the kidney of I325N mice was protected. The I325N variant influenced the outcome of IRI by changing the dynamic expression of multiple cytoprotective mechanisms, particularly by increasing NF- κB-dependent anti-apoptotic factors BCL-2, BCL-XL, c-FLIP and A20, altering the active redox state of the kidney with a reduction of superoxide levels and the enzyme super oxide dismutase-1, and enhancing cellular protective mechanisms including increased Foxp3+ T cells. Thus, TNFAIP3 gene variants represent a kidney and population-specific molecular factor that can dictate the course of IRI.
Collapse
Affiliation(s)
- Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Renal and Transplant Medicine Unit, Westmead Hospital, Westmead, New South Wales, Australia; Westmead Clinical School, University of Sydney, New South Wales, Australia
| | - Nathan Zammit
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Danny Nguyen-Ngo
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, South Australia, Australia; Environment Institute, Faculty of Sciences, University of Adelaide, South Australia, Australia
| | - Nikita Minhas
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Daniel N Meijles
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Eleanor Self
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Stacey N Walters
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Joanna Warren
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Daniele Cultrone
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Maryam El-Rashid
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Tatyana Chtanova
- Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Innate and Tumour Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Renal and Transplant Medicine Unit, Westmead Hospital, Westmead, New South Wales, Australia; Westmead Clinical School, University of Sydney, New South Wales, Australia
| | - Shane T Grey
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
25
|
Ildefonso GV, Oliver Metzig M, Hoffmann A, Harris LA, Lopez CF. A biochemical necroptosis model explains cell-type-specific responses to cell death cues. Biophys J 2023; 122:817-834. [PMID: 36710493 PMCID: PMC10027451 DOI: 10.1016/j.bpj.2023.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/31/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Necroptosis is a form of regulated cell death associated with degenerative disorders, autoimmune and inflammatory diseases, and cancer. To better understand the biochemical mechanisms regulating necroptosis, we constructed a detailed computational model of tumor necrosis factor-induced necroptosis based on known molecular interactions from the literature. Intracellular protein levels, used as model inputs, were quantified using label-free mass spectrometry, and the model was calibrated using Bayesian parameter inference to experimental protein time course data from a well-established necroptosis-executing cell line. The calibrated model reproduced the dynamics of phosphorylated mixed lineage kinase domain-like protein, an established necroptosis reporter. A subsequent dynamical systems analysis identified four distinct modes of necroptosis signal execution, distinguished by rate constant values and the roles of the RIP1 deubiquitinating enzymes A20 and CYLD. In one case, A20 and CYLD both contribute to RIP1 deubiquitination, in another RIP1 deubiquitination is driven exclusively by CYLD, and in two modes either A20 or CYLD acts as the driver with the other enzyme, counterintuitively, inhibiting necroptosis. We also performed sensitivity analyses of initial protein concentrations and rate constants to identify potential targets for modulating necroptosis sensitivity within each mode. We conclude by associating numerous contrasting and, in some cases, counterintuitive experimental results reported in the literature with one or more of the model-predicted modes of necroptosis execution. In all, we demonstrate that a consensus pathway model of tumor necrosis factor-induced necroptosis can provide insights into unresolved controversies regarding the molecular mechanisms driving necroptosis execution in numerous cell types under different experimental conditions.
Collapse
Affiliation(s)
- Geena V Ildefonso
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marie Oliver Metzig
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California
| | - Alexander Hoffmann
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California
| | - Leonard A Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas; Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas; Cancer Biology Program, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Carlos F Lopez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
26
|
Inhibition of RNA Polymerase III Augments the Anti-Cancer Properties of TNFα. Cancers (Basel) 2023; 15:cancers15051495. [PMID: 36900285 PMCID: PMC10000776 DOI: 10.3390/cancers15051495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Tumour necrosis factor alpha (TNFα) is a multifunctional cytokine that plays a pivotal role in apoptosis, cell survival, as well as in inflammation and immunity. Although named for its antitumor properties, TNFα also has tumour-promoting properties. TNFα is often present in large quantities in tumours, and cancer cells frequently acquire resistance to this cytokine. Consequently, TNFα may increase the proliferation and metastatic potential of cancer cells. Furthermore, the TNFα-driven increase in metastasis is a result of the ability of this cytokine to induce the epithelial-to-mesenchymal transition (EMT). Overcoming the resistance of cancer cells to TNFα may have a potential therapeutic benefit. NF-κB is a crucial transcription factor mediating inflammatory signals and has a wide-ranging role in tumour progression. NF-κB is strongly activated in response to TNFα and contributes to cell survival and proliferation. The pro-inflammatory and pro-survival function of NF-κB can be disrupted by blocking macromolecule synthesis (transcription, translation). Consistently, inhibition of transcription or translation strongly sensitises cells to TNFα-induced cell death. RNA polymerase III (Pol III) synthesises several essential components of the protein biosynthetic machinery, such as tRNA, 5S rRNA, and 7SL RNA. No studies, however, directly explored the possibility that specific inhibition of Pol III activity sensitises cancer cells to TNFα. Here we show that in colorectal cancer cells, Pol III inhibition augments the cytotoxic and cytostatic effects of TNFα. Pol III inhibition enhances TNFα-induced apoptosis and also blocks TNFα-induced EMT. Concomitantly, we observe alterations in the levels of proteins related to proliferation, migration, and EMT. Finally, our data show that Pol III inhibition is associated with lower NF-κB activation upon TNFα treatment, thus potentially suggesting the mechanism of Pol III inhibition-driven sensitisation of cancer cells to this cytokine.
Collapse
|
27
|
Jin K, Qiu S, Chen B, Zhang Z, Zhang C, Zhou X, Yang L, Ai J, Wei Q. DOK3 promotes proliferation and inhibits apoptosis of prostate cancer via the NF-κB signaling pathway. Chin Med J (Engl) 2023; 136:423-432. [PMID: 36867541 PMCID: PMC10106266 DOI: 10.1097/cm9.0000000000002251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND DOK3 (Downstream of kinase 3) is involved primarily with immune cell infiltration. Recent research reported the role of DOK3 in tumor progression, with opposite effects in lung cancer and gliomas; however, its role in prostate cancer (PCa) remains elusive. This study aimed to explore the role of DOK3 in PCa and to determine the mechanisms involved. METHODS To investigate the functions and mechanisms of DOK3 in PCa, we performed bioinformatic and biofunctional analyses. Samples from patients with PCa were collected from West China Hospital, and 46 were selected for the final correlation analysis. A lentivirus-based short hairpin ribonucleic acid (shRNA) carrier was established for silencing DOK3. A series of experiments involving the cell counting kit-8, bromodeoxyuridine, and flow cytometry assays were performed to identify cell proliferation and apoptosis. Changes in biomarkers from the nuclear factor kappa B (NF-κB) signaling pathway were detected to verify the relationship between DOK3 and the NF-κB pathway. A subcutaneous xenograft mouse model was performed to examine phenotypes after knocking down DOK3 in vivo . Rescue experiments with DOK3 knockdown and NF-κB pathway activation were designed to verify regulating effects. RESULTS DOK3 was up-regulated in PCa cell lines and tissues. In addition, a high level of DOK3 was predictive of higher pathological stages and worse prognoses. Similar results were observed with PCa patient samples. After silencing DOK3 in PCa cell lines 22RV1 and PC3, cell proliferation was significantly inhibited while apoptosis was promoted. Gene set enrichment analysis revealed that DOK3 function was enriched in the NF-κB pathway. Mechanism experiments determined that knockdown of DOK3 suppressed activation of the NF-κB pathway, increased the expressions of B-cell lymphoma-2 like 11 (BIM) and B-cell lymphoma-2 associated X (BAX), and decreased the expression of phosphorylated-P65 and X-linked inhibitor of apoptosis (XIAP). In the rescue experiments, pharmacological activation of NF-κB by tumor necrosis factor-α (TNF-α) partially recovered cell proliferation after the knockdown of DOK3. CONCLUSION Our findings suggest that overexpression of DOK3 promotes PCa progression by activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Kun Jin
- Department of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shi Qiu
- Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bo Chen
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zilong Zhang
- Department of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chichen Zhang
- Department of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianghong Zhou
- Department of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lu Yang
- Department of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiang Wei
- Department of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
28
|
Kaur K, Chen PC, Ko MW, Mei A, Huerta-Yepez S, Maharaj D, Malarkannan S, Jewett A. Successes and Challenges in Taming the Beast: Cytotoxic Immune Effectors in Amyotrophic Lateral Sclerosis. Crit Rev Immunol 2023; 43:1-11. [PMID: 37522557 DOI: 10.1615/critrevimmunol.2023047235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurological disease characterized by the progressive loss of motor neurons in the brain and spinal cord. No effective therapeutic strategies have been established thus far, and therefore there is a significant unmet need for effective therapeutics to arrest the disease and reverse the pathologies induced by it. Although the cause of ALS is not well-defined, it appears to be heterogenous. Currently over 20 genes have been found to be associated with ALS. Family history can only be found in 10% of ALS patients, but in the remaining 90% no association with family history is found. The most common genetic causes are expansion in the C9orf72 gene and mutations in superoxide dismutase 1, TDP-43, and FUS. In our recent study, we also found mutations in TDP43 and FUS in ALS patients. To understand the pathogenesis of the disease, we set ourselves the task of analyzing the phenotype and function of all key immune effectors in ALS patients, comparing them with either a genetically healthy twin or healthy individuals. Our study demonstrated a significant increase in functional activation of NK and CD8+ T cytotoxic immune effectors and release of significant IFN-γ not only by the effector cells but also in the serum of ALS patients. Longitudinal analysis of CD8+ T cell-mediated IFN-γ secretion from ALS patients demonstrated continued and sustained increase in IFN-γ secretion with periods of decrease which coincided with certain treatments; however, the effects were largely short-lived. N-acetyl cysteine (NAC), one of the treatments used, is known to block cell death; however, even though such treatment was able to block most of the proinflammatory cytokines, chemokines, and growth factor release, it was not able to block IFN-γ and TNF-α, the two cytokines we had demonstrated previously to induce differentiation of the cells. In this review, we discuss the contribution of cytotoxic effector cells, especially primary NK cells, supercharged NK cells (sNK), and the contribution of sNK cells in expansion and functional activation of CD8+ T cells to memory/effector T cells in the pathogenesis of ALS. Potential new targeted therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA
| | - Po-Chun Chen
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA
| | - Meng-Wei Ko
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA
| | - Ao Mei
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Sara Huerta-Yepez
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Los Angeles, CA 90095, USA
| | - Dipnarine Maharaj
- South Florida Bone Marrow Stem Cell Transplant Institute, DBA Maharaj Institute of Immune Regenerative Medicine, Boynton Beach, FL 33437
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee WI 53226; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI; Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| |
Collapse
|
29
|
Huyghe J, Priem D, Van Hove L, Gilbert B, Fritsch J, Uchiyama Y, Hoste E, van Loo G, Bertrand MJM. ATG9A prevents TNF cytotoxicity by an unconventional lysosomal targeting pathway. Science 2022; 378:1201-1207. [PMID: 36520901 DOI: 10.1126/science.add6967] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell death induced by tumor necrosis factor (TNF) can be beneficial during infection by helping to mount proper immune responses. However, TNF-induced death can also drive a variety of inflammatory pathologies. Protectives brakes, or cell-death checkpoints, normally repress TNF cytotoxicity to protect the organism from its potential detrimental consequences. Thus, although TNF can kill, this only occurs when one of the checkpoints is inactivated. Here, we describe a checkpoint that prevents apoptosis through the detoxification of the cytotoxic complex IIa that forms upon TNF sensing. We found that autophagy-related 9A (ATG9A) and 200kD FAK family kinase-interacting protein (FIP200) promote the degradation of this complex through a light chain 3 (LC3)-independent lysosomal targeting pathway. This detoxification mechanism was found to counteract TNF receptor 1 (TNFR1)-mediated embryonic lethality and inflammatory skin disease in mouse models.
Collapse
Affiliation(s)
- Jon Huyghe
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dario Priem
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Lisette Van Hove
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Barbara Gilbert
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Yasuo Uchiyama
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 113-8654 Tokyo, Japan
| | - Esther Hoste
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
30
|
Yan L, Zhang T, Wang K, Chen Z, Yang Y, Shan B, Sun Q, Zhang M, Zhang Y, Zhong Y, Liu N, Gu J, Xu D. SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation. Nat Commun 2022; 13:7153. [PMID: 36414671 PMCID: PMC9681887 DOI: 10.1038/s41467-022-34993-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK1. SENP1 is progressively reduced in proportion to NASH severity in patients. Hepatocyte-specific SENP1-knockout mice develop spontaneous NASH-related phenotypes in a RIPK1 kinase-dependent manner. We demonstrate that SENP1 deficiency sensitizes cells to RIPK1 kinase-dependent apoptosis by promoting RIPK1 activation following TNFα stimulation. Mechanistically, SENP1 deSUMOylates RIPK1 in TNF-R1 signaling complex (TNF-RSC), keeping RIPK1 in check. Loss of SENP1 leads to SUMOylation of RIPK1, which re-orchestrates TNF-RSC and modulates the ubiquitination patterns and activity of RIPK1. Notably, genetic inhibition of RIPK1 effectively reverses disease progression in hepatocyte-specific SENP1-knockout male mice with high-fat-diet-induced nonalcoholic fatty liver. We propose that deSUMOylation of RIPK1 by SENP1 provides a pathophysiologically relevant cell death-restricting checkpoint that modulates RIPK1 activation in the pathogenesis of nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Lingjie Yan
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tao Zhang
- grid.38142.3c000000041936754XDepartment of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Kai Wang
- grid.13402.340000 0004 1759 700XDepartment of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People’s Hospital Affiliated Zhejiang University School of Medicine, Hangzhou, 310006 China ,grid.13402.340000 0004 1759 700XInstitute of Organ Transplantation, Zhejiang University, Hangzhou, 310003 China
| | - Zezhao Chen
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuanxin Yang
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bing Shan
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Qi Sun
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Mengmeng Zhang
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Yichi Zhang
- grid.412987.10000 0004 0630 1330Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Yedan Zhong
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Nan Liu
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,Shanghai Key Laboratory of Aging Studies, Shanghai, 201210 China
| | - Jinyang Gu
- grid.412987.10000 0004 0630 1330Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China ,grid.33199.310000 0004 0368 7223Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Daichao Xu
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,Shanghai Key Laboratory of Aging Studies, Shanghai, 201210 China
| |
Collapse
|
31
|
Abstract
Tumour necrosis factor (TNF) is a central cytokine in inflammatory reactions, and biologics that neutralize TNF are among the most successful drugs for the treatment of chronic inflammatory and autoimmune pathologies. In recent years, it became clear that TNF drives inflammatory responses not only directly by inducing inflammatory gene expression but also indirectly by inducing cell death, instigating inflammatory immune reactions and disease development. Hence, inhibitors of cell death are being considered as a new therapy for TNF-dependent inflammatory diseases.
Collapse
|
32
|
Kaur K, Chen PC, Ko MW, Mei A, Chovatiya N, Huerta-Yepez S, Ni W, Mackay S, Zhou J, Maharaj D, Malarkannan S, Jewett A. The Potential Role of Cytotoxic Immune Effectors in Induction, Progression and Pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Cells 2022; 11:3431. [PMID: 36359827 PMCID: PMC9656116 DOI: 10.3390/cells11213431] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an auto-immune neurodegenerative disorder affecting the motor-neuron system. The causes of ALS are heterogeneous, and are only partially understood. We studied different aspects of immune pathogenesis in ALS and found several basic mechanisms which are potentially involved in the disease. Our findings demonstrated that ALS patients' peripheral blood contains higher proportions of NK and B cells in comparison to healthy individuals. Significantly increased IFN-γ secretion by anti-CD3/28 mAbs-treated peripheral blood mononuclear cells (PBMCs) were observed in ALS patients, suggesting that hyper-responsiveness of T cell compartment could be a potential mechanism for ALS progression. In addition, elevated granzyme B and perforin secretion at a single cell level, and increased cytotoxicity and secretion of IFN-γ by patients' NK cells under specific treatment conditions were also observed. Increased IFN-γ secretion by ALS patients' CD8+ T cells in the absence of IFN-γ receptor expression, and increased CD8+ T cell effector/memory phenotype as well as increased granzyme B at the single cell level points to the CD8+ T cells as potential cells in targeting motor neurons. Along with the hyper-responsiveness of cytotoxic immune cells, significantly higher levels of inflammatory cytokines including IFN-γ was observed in peripheral blood-derived serum of ALS patients. Supernatants obtained from ALS patients' CD8+ T cells induced augmented cell death and differentiation of the epithelial cells. Weekly N-acetyl cysteine (NAC) infusion in patients decreased the levels of many inflammatory cytokines in peripheral blood of ALS patient except IFN-γ, TNF-α, IL-17a and GMCSF which remained elevated. Findings of this study indicated that CD8+ T cells and NK cells are likely culprits in targeting motor neurons and therefore, strategies should be designed to decrease their function, and eliminate the aggressive nature of these cells. Analysis of genetic mutations in ALS patient in comparison to identical twin revealed a number of differences and similarities which may be important in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Po-Chun Chen
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Meng-Wei Ko
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Ao Mei
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Nishant Chovatiya
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Sara Huerta-Yepez
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Weiming Ni
- IsoPlexis, 35 North East Industrial Road, Branford, CT 06405, USA
| | - Sean Mackay
- IsoPlexis, 35 North East Industrial Road, Branford, CT 06405, USA
| | - Jing Zhou
- IsoPlexis, 35 North East Industrial Road, Branford, CT 06405, USA
| | - Dipanarine Maharaj
- South Florida Bone Marrow Stem Cell Transplant Institute, DBA Maharaj Institute of Immune Regenerative Medicine, 10301 Hagen Ranch Rd Ste. 600, Boynton Beach, FL 33437, USA
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
- The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, 10833 Le Conte Ave., Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Biswas S, Tikader B, Kar S, Viswanathan GA. Modulation of signaling cross-talk between pJNK and pAKT generates optimal apoptotic response. PLoS Comput Biol 2022; 18:e1010626. [PMID: 36240239 PMCID: PMC9604984 DOI: 10.1371/journal.pcbi.1010626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/26/2022] [Accepted: 10/03/2022] [Indexed: 01/25/2023] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a well-known modulator of apoptosis by maintaining a balance between proliferation and cell-death in normal cells. Cancer cells often evade apoptotic response following TNFα stimulation by altering signaling cross-talks. Thus, varying the extent of signaling cross-talk could enable optimal TNFα mediated apoptotic dynamics. Herein, we use an experimental data-driven mathematical modeling to quantitate the extent of synergistic signaling cross-talk between the intracellular entities phosphorylated JNK (pJNK) and phosphorylated AKT (pAKT) that orchestrate the phenotypic apoptosis level by modulating the activated Caspase3 dynamics. Our study reveals that this modulation is orchestrated by the distinct dynamic nature of the synergism at early and late phases. We show that this synergism in signal flow is governed by branches originating from either TNFα receptor and NFκB, which facilitates signaling through survival pathways. We demonstrate that the experimentally quantified apoptosis levels semi-quantitatively correlates with the model simulated Caspase3 transients. Interestingly, perturbing pJNK and pAKT transient dynamics fine-tunes this accumulated Caspase3 guided apoptotic response. Thus, our study offers useful insights for identifying potential targeted therapies for optimal apoptotic response.
Collapse
Affiliation(s)
- Sharmila Biswas
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Baishakhi Tikader
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Sandip Kar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail: (SK); (GAV)
| | - Ganesh A. Viswanathan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail: (SK); (GAV)
| |
Collapse
|
34
|
Apoptotic caspase inhibits innate immune signaling by cleaving NF-κBs in both Mammals and Flies. Cell Death Dis 2022; 13:731. [PMID: 36002459 PMCID: PMC9402571 DOI: 10.1038/s41419-022-05156-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Host organisms use different innate immune mechanisms to defend against pathogenic infections, while tight control of innate immunity is essential for proper immune induction and balance. Here, we reported that apoptotic induction or caspase-3 overexpression caused dramatic reduction of differently triggered cytokine signalings in human cells, murine primary cells and mouse model, while the loss of caspase-3 or inhibiting apoptosis markedly enhances these immune signalings. Furthermore, caspase-3 can mediate the cleavage of NF-κB members p65/RelA, RelB, and c-Rel via its protease activity. And the caspase-3-resistant p65/RelA, RelB, or c-Rel mutant mostly restored the caspase-3-induced suppression of cytokine production. Interestingly, we further uncovered that apoptotic induction also dramatically inhibited Toll immune signaling in Drosophila, and the Drosophila effector caspases, drICE and DCP-1, also mediated the degradation of DIF, the NF-κB of Toll signaling. Together, our findings demonstrate apoptotic effector caspases, including mammalian caspase-3 and fly drICE/DCP-1, can function as repressors of NF-κB-mediated innate immune signalings.
Collapse
|
35
|
Qi M, Zheng C, Wu W, Yu G, Wang P. Exopolysaccharides from Marine Microbes: Source, Structure and Application. Mar Drugs 2022; 20:md20080512. [PMID: 36005515 PMCID: PMC9409974 DOI: 10.3390/md20080512] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
The unique living environment of marine microorganisms endows them with the potential to produce novel chemical compounds with various biological activities. Among them, the exopolysaccharides produced by marine microbes are an important factor for them to survive in these extreme environments. Up to now, exopolysaccharides from marine microbes, especially from extremophiles, have attracted more and more attention due to their structural complexity, biodegradability, biological activities, and biocompatibility. With the development of culture and separation methods, an increasing number of novel exopolysaccharides are being found and investigated. Here, the source, structure and biological activities of exopolysaccharides, as well as their potential applications in environmental restoration fields of the last decade are summarized, indicating the commercial potential of these versatile EPS in different areas, such as food, cosmetic, and biomedical industries, and also in environmental remediation.
Collapse
Affiliation(s)
- Mingxing Qi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (W.W.); (G.Y.); (P.W.); Tel.: +86-021-61900388 (W.W.); +86-0532-8203-1609 (G.Y.); +86-021-61900388 (P.W.)
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266237, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (W.W.); (G.Y.); (P.W.); Tel.: +86-021-61900388 (W.W.); +86-0532-8203-1609 (G.Y.); +86-021-61900388 (P.W.)
| | - Peipei Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (W.W.); (G.Y.); (P.W.); Tel.: +86-021-61900388 (W.W.); +86-0532-8203-1609 (G.Y.); +86-021-61900388 (P.W.)
| |
Collapse
|
36
|
Sehring IM, Mohammadi HF, Haffner-Luntzer M, Ignatius A, Huber-Lang M, Weidinger G. Zebrafish fin regeneration involves generic and regeneration-specific osteoblast injury responses. eLife 2022; 11:77614. [PMID: 35748539 PMCID: PMC9259016 DOI: 10.7554/elife.77614] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Successful regeneration requires the coordinated execution of multiple cellular responses to injury. In amputated zebrafish fins, mature osteoblasts dedifferentiate, migrate towards the injury and form proliferative osteogenic blastema cells. We show that osteoblast migration is preceded by cell elongation and alignment along the proximodistal axis, which require actomyosin, but not microtubule turnover. Surprisingly, osteoblast dedifferentiation and migration can be uncoupled. Using pharmacological and genetic interventions, we found that NF-ĸB and retinoic acid signalling regulate dedifferentiation without affecting migration, while the complement system and actomyosin dynamics affect migration but not dedifferentiation. Furthermore, by removing bone at two locations within a fin ray, we established an injury model containing two injury sites. We found that osteoblasts dedifferentiate at and migrate towards both sites, while accumulation of osteogenic progenitor cells and regenerative bone formation only occur at the distal-facing injury. Together, these data indicate that osteoblast dedifferentiation and migration represent generic injury responses that are differentially regulated and can occur independently of each other and of regenerative growth. We conclude that successful fin bone regeneration appears to involve the coordinated execution of generic and regeneration-specific responses of osteoblasts to injury.
Collapse
Affiliation(s)
| | | | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Hospital Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| |
Collapse
|
37
|
Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther 2022; 7:196. [PMID: 35725836 PMCID: PMC9208265 DOI: 10.1038/s41392-022-01046-3] [Citation(s) in RCA: 517] [Impact Index Per Article: 172.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, immunotherapy represented by immune checkpoint inhibitors (ICIs) has led to unprecedented breakthroughs in cancer treatment. However, the fact that many tumors respond poorly or even not to ICIs, partly caused by the absence of tumor-infiltrating lymphocytes (TILs), significantly limits the application of ICIs. Converting these immune “cold” tumors into “hot” tumors that may respond to ICIs is an unsolved question in cancer immunotherapy. Since it is a general characteristic of cancers to resist apoptosis, induction of non-apoptotic regulated cell death (RCD) is emerging as a new cancer treatment strategy. Recently, several studies have revealed the interaction between non-apoptotic RCD and antitumor immunity. Specifically, autophagy, ferroptosis, pyroptosis, and necroptosis exhibit synergistic antitumor immune responses while possibly exerting inhibitory effects on antitumor immune responses. Thus, targeted therapies (inducers or inhibitors) against autophagy, ferroptosis, pyroptosis, and necroptosis in combination with immunotherapy may exert potent antitumor activity, even in tumors resistant to ICIs. This review summarizes the multilevel relationship between antitumor immunity and non-apoptotic RCD, including autophagy, ferroptosis, pyroptosis, and necroptosis, and the potential targeting application of non-apoptotic RCD to improve the efficacy of immunotherapy in malignancy.
Collapse
Affiliation(s)
- Weitong Gao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, changsha, 410008, China
| | - Yang Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xueqian Wang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
38
|
Chaturvedi S, Pablo M, Wolf M, Rosas-Rivera D, Calia G, Kumar AJ, Vardi N, Du K, Glazier J, Ke R, Chan MF, Perelson AS, Weinberger LS. Disrupting autorepression circuitry generates "open-loop lethality" to yield escape-resistant antiviral agents. Cell 2022; 185:2086-2102.e22. [PMID: 35561685 PMCID: PMC9097017 DOI: 10.1016/j.cell.2022.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 12/27/2022]
Abstract
Across biological scales, gene-regulatory networks employ autorepression (negative feedback) to maintain homeostasis and minimize failure from aberrant expression. Here, we present a proof of concept that disrupting transcriptional negative feedback dysregulates viral gene expression to therapeutically inhibit replication and confers a high evolutionary barrier to resistance. We find that nucleic-acid decoys mimicking cis-regulatory sites act as "feedback disruptors," break homeostasis, and increase viral transcription factors to cytotoxic levels (termed "open-loop lethality"). Feedback disruptors against herpesviruses reduced viral replication >2-logs without activating innate immunity, showed sub-nM IC50, synergized with standard-of-care antivirals, and inhibited virus replication in mice. In contrast to approved antivirals where resistance rapidly emerged, no feedback-disruptor escape mutants evolved in long-term cultures. For SARS-CoV-2, disruption of a putative feedback circuit also generated open-loop lethality, reducing viral titers by >1-log. These results demonstrate that generating open-loop lethality, via negative-feedback disruption, may yield a class of antimicrobials with a high genetic barrier to resistance.
Collapse
Affiliation(s)
- Sonali Chaturvedi
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA.
| | - Michael Pablo
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Marie Wolf
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Daniel Rosas-Rivera
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Giuliana Calia
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Arjun J Kumar
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Noam Vardi
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kelvin Du
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Joshua Glazier
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Matilda F Chan
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Leor S Weinberger
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
39
|
Milani D, Caruso L, Zauli E, Al Owaifeer AM, Secchiero P, Zauli G, Gemmati D, Tisato V. p53/NF-kB Balance in SARS-CoV-2 Infection: From OMICs, Genomics and Pharmacogenomics Insights to Tailored Therapeutic Perspectives (COVIDomics). Front Pharmacol 2022; 13:871583. [PMID: 35721196 PMCID: PMC9201997 DOI: 10.3389/fphar.2022.871583] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection affects different organs and tissues, including the upper and lower airways, the lung, the gut, the olfactory system and the eye, which may represent one of the gates to the central nervous system. Key transcriptional factors, such as p53 and NF-kB and their reciprocal balance, are altered upon SARS-CoV-2 infection, as well as other key molecules such as the virus host cell entry mediator ACE2, member of the RAS-pathway. These changes are thought to play a central role in the impaired immune response, as well as in the massive cytokine release, the so-called cytokine storm that represents a hallmark of the most severe form of SARS-CoV-2 infection. Host genetics susceptibility is an additional key side to consider in a complex disease as COVID-19 characterized by such a wide range of clinical phenotypes. In this review, we underline some molecular mechanisms by which SARS-CoV-2 modulates p53 and NF-kB expression and activity in order to maximize viral replication into the host cells. We also face the RAS-pathway unbalance triggered by virus-ACE2 interaction to discuss potential pharmacological and pharmacogenomics approaches aimed at restoring p53/NF-kB and ACE1/ACE2 balance to counteract the most severe forms of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Daniela Milani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Adi Mohammed Al Owaifeer
- Department of Research, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
- Ophthalmology Unit, Department of Surgery, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Research, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis and Thrombosis, University of Ferrara, Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
40
|
Cao H, Tadros V, Hiramoto B, Leeper K, Hino C, Xiao J, Pham B, Kim DH, Reeves ME, Chen CS, Zhong JF, Zhang KK, Xie L, Wasnik S, Baylink DJ, Xu Y. Targeting TKI-Activated NFKB2-MIF/CXCLs-CXCR2 Signaling Pathways in FLT3 Mutated Acute Myeloid Leukemia Reduced Blast Viability. Biomedicines 2022; 10:biomedicines10051038. [PMID: 35625776 PMCID: PMC9138861 DOI: 10.3390/biomedicines10051038] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Disease relapse is a common cause of treatment failure in FMS-like tyrosine kinase 3 (FLT3) mutated acute myeloid leukemia (AML). In this study, to identify therapeutic targets responsible for the survival and proliferation of leukemic cells (blasts) with FLT3 mutations after gilteritinib (GILT, a 2nd generation tyrosine kinase inhibitor (TKI)) treatment, we performed proteomic screening of cytokine release and in vitro/ex vivo studies to investigate their associated signaling pathways and transcriptional regulation. Here, we report that macrophage migration inhibition factor (MIF) was significantly increased in the supernatant of GILT-treated blasts when compared to untreated controls. Additionally, the GILT-treated blasts that survived were found to exhibit higher expressions of the CXCR2 gene and protein, a common receptor for MIF and pro-inflammatory cytokines. The supplementation of exogenous MIF to GILT-treated blasts revealed a group of CD44High+ cells that might be responsible for the relapse. Furthermore, we identified the highly activated non-classical NFKB2 pathway after GILT-treatment. The siRNA transient knockdown of NFKB2 significantly reduced the gene expressions of MIF, CXCR2, and CXCL5. Finally, treatments of AML patient samples ex vivo demonstrated that the combination of a pharmaceutical inhibitor of the NFKB family and GILT can effectively suppress primary blasts’ secretion of tumor-promoting cytokines, such as CXCL1/5/8. In summary, we provide the first evidence that targeting treatment-activated compensatory pathways, such as the NFKB2-MIF/CXCLs-CXCR2 axis could be a novel therapeutic strategy to overcome TKI-resistance and effectively treat AML patients with FLT3 mutations.
Collapse
Affiliation(s)
- Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
- Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
| | - Verena Tadros
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Benjamin Hiramoto
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Kevin Leeper
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Christopher Hino
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Bryan Pham
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
| | - Do Hyun Kim
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Mark E. Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
- Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
- Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
| | - Jiang F. Zhong
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA;
| | - Ke K. Zhang
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA; (K.K.Z.); (L.X.)
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA; (K.K.Z.); (L.X.)
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
- Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
- Correspondence: ; Tel.: +1-9096515887
| |
Collapse
|
41
|
Leichtle A, Kurabi A, Leffers D, Därr M, Draf CS, Ryan AF, Bruchhage KL. Immunomodulation as a Protective Strategy in Chronic Otitis Media. Front Cell Infect Microbiol 2022; 12:826192. [PMID: 35433505 PMCID: PMC9005906 DOI: 10.3389/fcimb.2022.826192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction Major features of the pathogenesis in otitis media, the most common disease in childhood, include hyperplasia of the middle ear mucosa and infiltration by leukocytes, both of which typically resolve upon bacterial clearance via apoptosis. Activation of innate immune receptors during the inflammatory process leads to the activation of intracellular transcription factors (such as NF-κB, AP-1), which regulate both the inflammatory response and tissue growth. We investigated these leading signaling pathways in otitis media using mouse models, human samples, and human middle ear epithelial cell (HMEEC) lines for therapeutic immunomodulation. Methods A stable otitis media model in wild-type mice and immunodeficient KO-mice, as well as human tissue samples from chronic otitis media, skin from the external auditory canal and middle ear mucosa removed from patients undergoing ear surgery, were studied. Gene and protein expression of innate immune signaling molecules were evaluated using microarray, qPCR and IHC. In situ apoptosis detection determined the apoptotic rate. The influence of bacterial infection on immunomodulating molecules (TNFα, MDP, Tri-DAP, SB203580, Cycloheximide) in HMEEC was evaluated. HMEEC cells were examined after bacterial stimulation/inhibition for gene expression and cellular growth. Results Persistent mucosal hyperplasia of the middle ear mucosa in chronic otitis media resulted from gene and protein expression of inflammatory and apoptotic genes, including NODs, TNFα, Casp3 and cleaved Casp3. In clinical chronic middle ear samples, these molecules were modulated after a specific stimulation. They also induced a hyposensitive response after bacterial/NOD-/TLR-pathway double stimulation of HMEEC cells in vitro. Hence, they might be suitable targets for immunological therapeutic approaches. Conclusion Uncontrolled middle ear mucosal hyperplasia is triggered by TLRs/NLRs immunoreceptor activation of downstream inflammatory and apoptotic molecules.
Collapse
Affiliation(s)
- Anke Leichtle
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
- *Correspondence: Anke Leichtle,
| | - Arwa Kurabi
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - David Leffers
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| | - Markus Därr
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| | - Clara Sophia Draf
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Allen Frederic Ryan
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
- Research Section, Veterans Affairs (VA) San Diego Healthcare System, La Jolla, CA, United States
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| |
Collapse
|
42
|
Fanfone D, Wu Z, Mammi J, Berthenet K, Neves D, Weber K, Halaburkova A, Virard F, Bunel F, Jamard C, Hernandez-Vargas H, Tait SWG, Hennino A, Ichim G. Confined migration promotes cancer metastasis through resistance to anoikis and increased invasiveness. eLife 2022; 11:e73150. [PMID: 35256052 PMCID: PMC8903834 DOI: 10.7554/elife.73150] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mechanical stress is known to fuel several hallmarks of cancer, ranging from genome instability to uncontrolled proliferation or invasion. Cancer cells are constantly challenged by mechanical stresses not only in the primary tumour but also during metastasis. However, this latter has seldom been studied with regards to mechanobiology, in particular resistance to anoikis, a cell death programme triggered by loss of cell adhesion. Here, we show in vitro that migrating breast cancer cells develop resistance to anoikis following their passage through microporous membranes mimicking confined migration (CM), a mechanical constriction that cancer cells encounter during metastasis. This CM-induced resistance was mediated by Inhibitory of Apoptosis Proteins, and sensitivity to anoikis could be restored after their inhibition using second mitochondria-derived activator of caspase (SMAC) mimetics. Anoikis-resistant mechanically stressed cancer cells displayed enhanced cell motility and evasion from natural killer cell-mediated immune surveillance, as well as a marked advantage to form lung metastatic lesions in mice. Our findings reveal that CM increases the metastatic potential of breast cancer cells.
Collapse
Affiliation(s)
- Deborah Fanfone
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - Zhichong Wu
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Université Lyon 1, VilleurbanneVilleurbanneFrance
- Centre Léon BérardLyonFrance
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jade Mammi
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - Kevin Berthenet
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
- Centre Léon BérardLyonFrance
| | | | - Kathrin Weber
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - Andrea Halaburkova
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - François Virard
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Université Claude Bernard Lyon 1, Faculté d’Odontologie, Hospices Civils de LyonLyonFrance
| | - Félix Bunel
- ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de PhysiqueLyonFrance
| | - Catherine Jamard
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - Hector Hernandez-Vargas
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Centre Léon BérardLyonFrance
- Université Claude Bernard Lyon 1LyonFrance
| | - Stephen WG Tait
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Ana Hennino
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Université Lyon 1, VilleurbanneVilleurbanneFrance
- Centre Léon BérardLyonFrance
| | - Gabriel Ichim
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| |
Collapse
|
43
|
Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res 2022; 87:100998. [PMID: 34348167 PMCID: PMC8803988 DOI: 10.1016/j.preteyeres.2021.100998] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Neuroinflammation relying on the inflammatory responses of glial cells has emerged as an impactful component of the multifactorial etiology of neurodegeneration in glaucoma. It has become increasingly evident that despite early adaptive and reparative features of glial responses, prolonged reactivity of the resident glia, along with the peripheral immune cells, create widespread toxicity to retinal ganglion cell (RGC) axons, somas, and synapses. As much as the synchronized responses of astrocytes and microglia to glaucoma-related stress or neuron injury, their bi-directional interactions are critical to build and amplify neuroinflammation and to dictate the neurodegenerative outcome. Although distinct molecular programs regulate somatic and axonal degeneration in glaucoma, inhibition of neurodegenerative inflammation can provide a broadly beneficial treatment strategy to rescue RGC integrity and function. Since inflammatory toxicity and mitochondrial dysfunction are converging etiological paths that can boost each other and feed into a vicious cycle, anti-inflammatory treatments may also offer a multi-target potential. This review presents an overview of the current knowledge on neuroinflammation in glaucoma with particular emphasis on the cell-intrinsic and cell-extrinsic factors involved in the reciprocal regulation of glial responses, the interdependence between inflammatory and mitochondrial routes of neurodegeneration, and the research aspects inspiring for prospective immunomodulatory treatments. With the advent of powerful technologies, ongoing research on molecular and functional characteristics of glial responses is expected to accumulate more comprehensive and complementary information and to rapidly move the field forward to safe and effective modulation of the glial pro-inflammatory activities, while restoring or augmenting the glial immune-regulatory and neurosupport functions.
Collapse
|
44
|
Benbrook DM. SHetA2 Attack on Mortalin and Colleagues in Cancer Therapy and Prevention. Front Cell Dev Biol 2022; 10:848682. [PMID: 35281109 PMCID: PMC8906462 DOI: 10.3389/fcell.2022.848682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Heat Shock Proteins of the 70-kDa family (HSP70s) do not cause cancer by themselves, but instead protect cells as they transform into cancer. These molecular chaperones bind numerous client proteins and utilize ATP hydrolysis to facilitate proper protein folding, formation of functional complexes and cellular localizations, or degradation of irreparably damaged proteins. Their transient upregulation by stressful situations avoids induction of programmed cell death. Continued upregulation of the mortalin, heat shock cognate (hsc70) and glucose regulated protein 78 (Grp78) support cancer development and progression by supporting pro-proliferative and metabolic functions and repressing pro-death functions of oncoproteins and tumor suppressor proteins. This review describes the discovery and development of a lead anti-cancer compound, sulfur heteroarotinoid A2 (SHetA2, NSC726189), which was originally developed to bind retinoic acid receptors, but was subsequently found to work independently of these receptors. The discovery and validation of mortalin, hsc70 and Grp78 as SHetA2 target proteins is summarized. The documented and hypothesized roles of these HSP70 proteins and their clients in the mechanism of SHetA2 inhibition of cancer without toxicity are discussed. Use of this mechanistic data to evaluate drug action in a cancer clinical trial and develop synergistic drug combinations is explained. Knowledge needed to optimize SHetA2 analogs for use in cancer therapy and prevention is proposed as future directions.
Collapse
|
45
|
Yan S, Ruan J, Wang Y, Xu J, Sun C, Niu Y. Association of Prenatal Famine Exposure With Inflammatory Markers and Its Impact on Adulthood Liver Function Across Consecutive Generations. Front Nutr 2022; 8:758633. [PMID: 35047538 PMCID: PMC8762197 DOI: 10.3389/fnut.2021.758633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Although there has been increasing recognition that famine exposure in the fetal stage damages liver function in adulthood, this deteriorated effect could be extended to the next generation remains vague. This study aimed to explore whether famine exposure was associated with liver function in the two consecutive generations, and its association with the mediation role of inflammatory markers. We analyzed the data of 2,681 participants from Suihua rural area, Heilongjiang Province, China. According to the date of birth, the participants were classified as fetal exposed and nonexposed. The F2 subjects were classified as having no parents exposed to famine, maternal famine exposure, paternal famine exposure, or parental famine exposure. In the mixed-effect models, prenatal exposure to famine was associated with the elevation of Δ aspartate aminotransferase (ΔAST) (β: 0.22, 95% CI: 0.01, 0.43) and Δ alanine aminotransferase (ΔALT) (β: 0.42, 95% CI: 0.19, 0.66) levels in F1 adults. The mediation analysis showed that the inflammatory markers including serum C-reactive protein (CRP) and tumor necrosis factor-alpha (TNF-α) might mediate the famine-liver function association. This longitudinal data were consistent with the hypothesis that the inflammatory markers explained part of the influence of prenatal famine exposure on liver function injury, and the natal mechanism was needed to be elucidated in the future study.
Collapse
Affiliation(s)
- Shiwei Yan
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Jingqi Ruan
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Yu Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Jiaxu Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
46
|
Zhang P, The E, Luo Z, Zhai Y, Yao Q, Ao L, Fullerton DA, Xu D, Meng X. Pro-inflammatory mediators released by activated monocytes promote aortic valve fibrocalcific activity. Mol Med 2022; 28:5. [PMID: 35062861 PMCID: PMC8780233 DOI: 10.1186/s10020-022-00433-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background Calcific aortic valve disease (CAVD) is the most prevalent heart valve disorder in the elderly. Valvular fibrocalcification is a characteristic pathological change. In diseased valves, monocyte accumulation is evident, and aortic valve interstitial cells (AVICs) display greater fibrogenic and osteogenic activities. However, the impact of activated monocytes on valular fibrocalcification remains unclear. We tested the hypothesis that pro-inflammatory mediators from activated monocytes elevate AVIC fibrogenic and osteogenic activities.
Methods and results Picro-sirius red staining and Alizarin red staining revealed collagen and calcium depositions in cultured human AVICs exposed to conditioned media derived from Pam3CSK4-stimulated monocytes (Pam3 CM). Pam3 CM up-regulated alkaline phosphatase (ALP), an osteogenic biomarker, and extracellular matrix proteins collagen I and matrix metalloproteinase-2 (MMP-2). ELISA analysis identified high levels of RANTES and TNF-α in Pam3 CM. Neutralizing RANTES in the Pam3 CM reduced its effect on collagen I and MMP-2 production in AVICs while neutralizing TNF-α attenuated the effect on AVIC ALP production. In addition, Pam3 CM induced NF-κB and JNK activation. While JNK mediated the effect of Pam3 CM on collagen I and MMP-2 production, NF-κB was critical for the effect of Pam3 CM on ALP production in AVICs. Conclusions This study demonstrates that activated monocytes elevate the fibrogenic and osteogenic activities in human AVICs through a paracrine mechanism. TNF-α and RANTES mediate the pro-fibrogenic effect of activated monocytes on AVICs through activation of JNK, and TNF-α also activates NF-κB to elevate AVIC osteogenic activity. The results suggest that infiltrated monocytes elevate AVIC fibrocalcific activity to promote CAVD progression.
Collapse
Affiliation(s)
- Peijian Zhang
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA.,Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Erlinda The
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Zichao Luo
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA.,Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yufeng Zhai
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Qingzhou Yao
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Lihua Ao
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA
| | - David A Fullerton
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Dingli Xu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA.
| |
Collapse
|
47
|
Chora AF, Pedroso D, Kyriakou E, Pejanovic N, Colaço H, Gozzelino R, Barros A, Willmann K, Velho T, Moita CF, Santos I, Pereira P, Carvalho S, Martins FB, Ferreira JA, de Almeida SF, Benes V, Anrather J, Weis S, Soares MP, Geerlof A, Neefjes J, Sattler M, Messias AC, Neves-Costa A, Moita LF. DNA damage independent inhibition of NF-κB transcription by anthracyclines. eLife 2022; 11:77443. [PMID: 36476511 PMCID: PMC9771368 DOI: 10.7554/elife.77443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Anthracyclines are among the most used and effective anticancer drugs. Their activity has been attributed to DNA double-strand breaks resulting from topoisomerase II poisoning and to eviction of histones from select sites in the genome. Here, we show that the extensively used anthracyclines Doxorubicin, Daunorubicin, and Epirubicin decrease the transcription of nuclear factor kappa B (NF-κB)-dependent gene targets, but not interferon-responsive genes in primary mouse (Mus musculus) macrophages. Using an NMR-based structural approach, we demonstrate that anthracyclines disturb the complexes formed between the NF-κB subunit RelA and its DNA-binding sites. The anthracycline variants Aclarubicin, Doxorubicinone, and the newly developed Dimethyl-doxorubicin, which share anticancer properties with the other anthracyclines but do not induce DNA damage, also suppressed inflammation, thus uncoupling DNA damage from the effects on inflammation. These findings have implications for anticancer therapy and for the development of novel anti-inflammatory drugs with limited side effects for life-threatening conditions such as sepsis.
Collapse
Affiliation(s)
- Angelo Ferreira Chora
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Dora Pedroso
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Eleni Kyriakou
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Nadja Pejanovic
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Henrique Colaço
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | - André Barros
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Tiago Velho
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Centro Hospitalar Lisboa Norte - Hospital de Santa Maria, EPE, Avenida Professor Egas MonizLisbonPortugal
| | - Catarina F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Isa Santos
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Serviço de Cirurgia, Centro Hospitalar de SetúbalSetúbalPortugal
| | - Pedro Pereira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Silvia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Filipa Batalha Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - João A Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | | | | | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUnited States
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, Friedrich-Schiller UniversityJenaGermany,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller UniversityJenaGermany,Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI)JenaGermany
| | - Miguel P Soares
- Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Arie Geerlof
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, LUMCLeidenNetherlands
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Ana C Messias
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Ana Neves-Costa
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Luis Ferreira Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de LisboaLisbonPortugal
| |
Collapse
|
48
|
Chen J, Li F, Yang W, Jiang S, Li Y. Comparison of Gut Microbiota and Metabolic Status of Sows With Different Litter Sizes During Pregnancy. Front Vet Sci 2021; 8:793174. [PMID: 35004929 PMCID: PMC8733392 DOI: 10.3389/fvets.2021.793174] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023] Open
Abstract
The experiment was conducted to compare the differences of gut microbiota and metabolic status of sows with different litter sizes on days 30 and 110 of gestation, and uncover the relationship between the composition of maternal gut microbiota during gestation and sow reproductive performance. Twenty-six Large White × Landrace crossbred multiparous sows (2nd parity) with similar back fat thickness and body weight were assigned to two groups [high-reproductive performance group (HP group) and low-reproductive performance group (LP group)] according to their litter sizes and fed a common gestation diet. Results showed that compared with LP sows, HP sows had significantly lower plasma levels of triglyceride (TG) on gestation d 30 (P < 0.05), but had significantly higher plasma levels of TG, non-esterified fatty acid, tumor necrosis factor-α, and immunoglobulin M on gestation d 110 (P < 0.05). Consistently, HP sows revealed increased alpha diversity and butyrate-producing genera, as well as fecal butyrate concentration, on gestation d 30; HP sows showed significantly different microbiota community structure with LP sows (P < 0.05) and had markedly higher abundance of Firmicutes (genera Christensenellaceae_R-7_group and Terrisporobacter) which were positively related with litter size on gestation d 110 than LP sows (P < 0.05). In addition, plasma biochemical parameters, plasma cytokines, and fecal microbiota shifted dramatically from gestation d 30 to d 110. Therefore, our findings demonstrated that microbial abundances and community structures differed significantly between sows with different litter sizes and gestation stages, which was associated with changes in plasma biochemical parameters, inflammatory factors, and immunoglobulin. Moreover, these findings revealed that there was a significant correlation between litter size and gut microbiota of sows, and provided a microbial perspective to improve sow reproductive performance in pig production.
Collapse
Affiliation(s)
| | | | | | | | - Yang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
49
|
Zhong Y, Zhang ZH, Wang JY, Xing Y, Ri MH, Jin HL, Zuo HX, Li MY, Ma J, Jin X. Zinc finger protein 91 mediates necroptosis by initiating RIPK1-RIPK3-MLKL signal transduction in response to TNF receptor 1 ligation. Toxicol Lett 2021; 356:75-88. [PMID: 34942311 DOI: 10.1016/j.toxlet.2021.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/03/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Necroptosis is a form of regulated programmed cell death that is mediated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting serine/threonine protein kinase-3 (RIPK3), and mixed lineage kinase domain-like protein (MLKL); however, it is not known whether zinc finger protein 91 (ZFP91) is involved in this process. Here, we investigated ZFP91 as a potential mediator of necroptosis. Our mechanistic study demonstrates that ZFP91 promotes RIPK1-RIPK3 interaction, thereby stabilizing the RIPK1 and RIPK3 proteins and facilitating necroptosis. ZFP91 stabilized RIPK1 to promote cell death by inducing RIPK1 de-ubiquitination. ZFP91 also significantly increased production of mitochondrial reactive oxygen species (ROS). Accumulation of ROS promoted RIPK3-independent necroptosis triggered by tumor necrosis factor (TNF). in vivo, ZFP91 knockdown alleviated TNFα-induced systemic inflammatory response syndrome (SIRS). These results provide direct evidence that ZFP91 plays an important role in the initiation of RIPK1/RIPK3-dependent necroptosis in vitro and in vivo. We discussed the potential of ZFP91 as a novel therapeutic target for necroptosis-associated diseases.
Collapse
Affiliation(s)
- Yi Zhong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Zhi Hong Zhang
- Department of Pharmacology, College of Pharmacy, Beihua University, No. 3999 Binjiang East Road, Jilin, Jilin Province, 132013, China
| | - Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
50
|
Li H, Fang H, Chang L, Qiu S, Ren X, Cao L, Bian J, Wang Z, Guo Y, Lv J, Sun Z, Wang T, Li B. TC2N: A Novel Vital Oncogene or Tumor Suppressor Gene In Cancers. Front Immunol 2021; 12:764749. [PMID: 34925334 PMCID: PMC8674203 DOI: 10.3389/fimmu.2021.764749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Several C2 domain-containing proteins play key roles in tumorigenesis, signal transduction, and mediating protein–protein interactions. Tandem C2 domains nuclear protein (TC2N) is a tandem C2 domain-containing protein that is differentially expressed in several types of cancers and is closely associated with tumorigenesis and tumor progression. Notably, TC2N has been identified as an oncogene in lung and gastric cancer but as a tumor suppressor gene in breast cancer. Recently, a large number of tumor-associated antigens (TAAs), such as heat shock proteins, alpha-fetoprotein, and carcinoembryonic antigen, have been identified in a variety of malignant tumors. Differences in the expression levels of TAAs between cancer cells and normal cells have led to these antigens being investigated as diagnostic and prognostic biomarkers and as novel targets in cancer treatment. In this review, we summarize the clinical characteristics of TC2N-positive cancers and potential mechanisms of action of TC2N in the occurrence and development of specific cancers. This article provides an exploration of TC2N as a potential target for the diagnosis and treatment of different types of cancers.
Collapse
Affiliation(s)
- Hanyang Li
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - He Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Li Chang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Qiu
- Department of Biobank, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaojun Ren
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Lidong Cao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jinda Bian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhenxiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yi Guo
- Department of Breast Surgery, The Affiliated Hospital Changchun University of Chinese Medicine, Changchun, China
| | - Jiayin Lv
- Department of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Tiejun Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Tiejun Wang, ; Bingjin Li,
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Tiejun Wang, ; Bingjin Li,
| |
Collapse
|