1
|
Guillemeney L, Dutta S, Valleix R, Patriarche G, Mahler B, Abécassis B. Ligand Tail Controls the Conformation of Indium Sulfide Ultrathin Nanoribbons. J Am Chem Soc 2024; 146:22318-22326. [PMID: 39078881 DOI: 10.1021/jacs.4c04905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
We report the conformational control of 2D ultrathin indium sulfide nanoribbons by tuning their amine ligands' alkyl chain. The initial orthorhombic InS nanoribbons bare n-octylamine ligands and display a highly curved geometry with a characteristic figure of eight shapes. Exchanging the native ligand by oleylamine induces their complete unfolding to yield flat board-shaped nanoribbons. Significant strain variations in the InS crystal structure accompany this shape-shifting. By tuning the linear alkyl chain length from 4 to 18 carbon atoms, we show using small-angle X-ray scattering in solution and transmission electron microscopy that the curvature of the nanoribbon subtly depends on the ligand-ligand interactions at the nanoribbon's surface. The curvature decreases gradually as the chain length increases, while carbon unsaturation has an unexpectedly significant effect at constant chain length. These experiments shed light on the critical role of the ligand monolayer on the curvature of ultrathin 2D crystalline nanosheets and demonstrate that weak supramolecular forces within the organic part of colloidal nanocrystals can dramatically impact their shape. This transduction mechanism, in which changes in the organic monolayer impact the shape of a nanocrystal, will help to devise new strategies to design stimuli-responsive systems that take advantage of both the flexibility of organic moieties and the physical properties of the inorganic core.
Collapse
Affiliation(s)
- Lilian Guillemeney
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| | - Sarit Dutta
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| | - Rodolphe Valleix
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| | - Gilles Patriarche
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris Saclay, 91120 Palaiseau, France
| | - Benoît Mahler
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumiere Matière (iLM), F-69622 Villeurbanne, France
| | - Benjamin Abécassis
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| |
Collapse
|
2
|
Udupa A, Mohanty DP, Sugihara T, Mann JB, Latanision RM, Chandrasekar S. Surface stress can initiate environment-assisted fracture in metals. Phys Rev E 2024; 109:L023002. [PMID: 38491645 DOI: 10.1103/physreve.109.l023002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/03/2024] [Indexed: 03/18/2024]
Abstract
Controlling environmental effects in surface plasticity/fracture of metals is of interest for areas as diverse as manufacturing processes, product performance, and structural safety. The key to controlling these effects is understanding the effect of adsorbates on surface energy (γ) and surface stress (f). While γ has been well studied, the role of surface stress has received much less attention. We characterize surface stress induced in metals by adsorption of organic monolayers. Linear alkanoic acids of varying chain length (3-18) are deposited by molecular self-assembly onto one side of an aluminum cantilever, several centimeters in length. The surface stress is estimated from in situ measurement of the cantilever deflection. We find that the organic adsorbates induce large surface stress of -4 to +30N/m. Furthermore, we show that f may be tuned by varying adsorbate-molecule chain length. The stress data explain beneficial embrittlement of metal surfaces by organic adsorbates in cutting and comminution processes, and point to a critical role, hitherto ignored, for f in environment assisted cracking (EAC) phenomena. Our results suggest opportunities for utilizing controlled environment-assisted fracture as an aid-fracture as a friend-to enhance material removal processes, apart from using surface stress itself as an experimental probe to explore various manifestations of EAC.
Collapse
Affiliation(s)
- Anirudh Udupa
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Debapriya Pinaki Mohanty
- Center for Materials Processing and Tribology, Purdue University, West Lafayette, Indiana 47906, USA
| | - Tatsuya Sugihara
- Department of Mechanical Engineering, Osaka University, Suita, Osaka 5650871, Japan
| | - James B Mann
- Center for Materials Processing and Tribology, Purdue University, West Lafayette, Indiana 47906, USA
| | - Ronald M Latanision
- Department of Materials Science and Engineering, MIT, Cambridge, Massachusetts 02139, USA
- Exponent Inc., Natick, Massachusetts 01760, USA
- College of Engineering, Purdue University, West Lafayette, Indiana 47906, USA
| | - Srinivasan Chandrasekar
- Center for Materials Processing and Tribology, Purdue University, West Lafayette, Indiana 47906, USA
| |
Collapse
|
3
|
Li L, Zhang T, Zhang L, Li W, Xu T, Wang L, Liu C, Li W, Li J, Lu R. One-step fabrication of flexible polyamide@Ag-dodecanethiol membranes for highly sensitive SERS detection of thiram. NANOTECHNOLOGY 2023; 35:105601. [PMID: 38035399 DOI: 10.1088/1361-6528/ad115e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
The surface-enhanced Raman scattering (SERS) is an effective spectral technology based on Raman scattering, but in practice, the commonly used SERS substrates suffer from low sensitivity and poor stability. In order to overcome these limitations, the SERS substrates were prepared from hydrophobic modification of dodecanethiol (C12) coupled with a flexible substrate, which was then used for pesticides detection in water. A flexible PA@Ag-C12 substrate with surface functionalization has been obtained. This work aims to investigate the self-assembly of Ag NPs modified with C12 onto polyamide (PA) membranes. Initially, transmission electron microscopy and scanning electron microscopy were used to analyze the substrate's morphology. Then with the help of an energy-dispersive spectrometer, sulfur content of C12-modified Ag NPs was analyzed. In order to determine the hydrophobicity of the modified Ag NPs, the contact angle was used. The results indicate that the gap between Ag NPs on PA membrane can be effectively controlled in order to prevent Ag NPs from aggregating. Furthermore, the finite-difference time-domain analysis indicated that the PA@Ag-C12 substrate exhibited a stronger electromagnetic enhancement effect than the PA@Ag substrate. By reducing NPs gaps on the PA membrane, the number of 'hot spots' increased, and the SERS performance of the substrate was improved as a result. According to the results of this study, this method can greatly reduce the manufacturing costs and time costs of the SERS substrate while maintaining the original uniformity. The SERS performance of PA@Ag-C12 was found to be three orders of magnitude better than that of PA@Ag direct self-assembled substrate, and the detection limit for Rhodamine 6G (R6G) was approximately 8.47 × 10-14M. On the basis of the PA@Ag-C12 substrate, thiram is detectable at a detection limit of 5.88 × 10-11M with a high degree of sensitivity and repeatability.
Collapse
Affiliation(s)
- Lujie Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Tingting Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Lan Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Wei Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Tao Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Chang Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
| | - Weihua Li
- School of Environment and Energy Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, People's Republic of China
| | - Jiansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Rui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
4
|
Bao N, Liu Q, Reynolds M, Figueras M, Smith E, Wang W, Cao M, Muller D, Mavrikakis M, Cohen I, McEuen P, Abbott N. Gas-phase microactuation using kinetically controlled surface states of ultrathin catalytic sheets. Proc Natl Acad Sci U S A 2023; 120:e2221740120. [PMID: 37126707 PMCID: PMC10175785 DOI: 10.1073/pnas.2221740120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/14/2023] [Indexed: 05/03/2023] Open
Abstract
Biological systems convert chemical energy into mechanical work by using protein catalysts that assume kinetically controlled conformational states. Synthetic chemomechanical systems using chemical catalysis have been reported, but they are slow, require high temperatures to operate, or indirectly perform work by harnessing reaction products in liquids (e.g., heat or protons). Here, we introduce a bioinspired chemical strategy for gas-phase chemomechanical transduction that sequences the elementary steps of catalytic reactions on ultrathin (<10 nm) platinum sheets to generate surface stresses that directly drive microactuation (bending radii of 700 nm) at ambient conditions (T = 20 °C; Ptotal = 1 atm). When fueled by hydrogen gas and either oxygen or ozone gas, we show how kinetically controlled surface states of the catalyst can be exploited to achieve fast actuation (600 ms/cycle) at 20 °C. We also show that the approach can integrate photochemically controlled reactions and can be used to drive the reconfiguration of microhinges and complex origami- and kirigami-based microstructures.
Collapse
Affiliation(s)
- Nanqi Bao
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY14853
| | - Qingkun Liu
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY14853
| | - Michael F. Reynolds
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY14853
| | - Marc Figueras
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Evangelos Smith
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Wei Wang
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY14853
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY14853
| | - Michael C. Cao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY14853
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY14853
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Itai Cohen
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY14853
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853
| | - Paul L. McEuen
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY14853
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853
| | - Nicholas L. Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY14853
| |
Collapse
|
5
|
Rehn SM, Gerrard-Anderson TM, Chen Y, Wang P, Robertson T, Senftle TP, Jones MR. Surface Ligands Dictate the Mechanical Properties of Inorganic Nanomaterials. ACS NANO 2023; 17:6698-6707. [PMID: 36971281 DOI: 10.1021/acsnano.2c12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability for organic surface chemistry to influence the properties of inorganic nanomaterials is appreciated in some instances but is poorly understood in terms of mechanical behavior. Here we demonstrate that the global mechanical strength of a silver nanoplate can be modulated according to the local binding enthalpy of its surface ligands. A continuum-based core-shell model for nanoplate deformation shows that the interior of a particle retains bulk-like properties while the surface shell has yield strength values that depend on surface chemistry. Electron diffraction experiments reveal that, relative to the core, atoms at the nanoplate surface undergo lattice expansion and disordering directly related to the coordinating strength of the surface ligand. As a result, plastic deformation of the shell is more difficult, leading to an enhancement of the global mechanical strength of the plate. These results demonstrate a size-dependent coupling between chemistry and mechanics at the nanoscale.
Collapse
|
6
|
Muñoz-Galán H, Alemán C, Pérez-Madrigal MM. Beyond biology: alternative uses of cantilever-based technologies. LAB ON A CHIP 2023; 23:1128-1150. [PMID: 36636915 DOI: 10.1039/d2lc00873d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Micromechanical cantilever sensors are attracting a lot of attention because of the need for characterizing, detecting, and monitoring chemical and physical properties, as well as compounds at the nanoscale. The fields of application of micro-cantilever sensors span from biological and point-of-care, to military or industrial sectors. The purpose of this work focuses on thermal and mechanical characterization, environmental monitoring, and chemical detection, in order to provide a technical review of the most recent technical advances and applications, as well as the future prospective of micro-cantilever sensor research.
Collapse
Affiliation(s)
- Helena Muñoz-Galán
- Departament d'Enginyeria Química, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Maria M Pérez-Madrigal
- Departament d'Enginyeria Química, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
| |
Collapse
|
7
|
Karbelkar A, Ahlmark R, Zhou X, Austin K, Fan G, Yang VY, Furst A. Carbon Electrode-Based Biosensing Enabled by Biocompatible Surface Modification with DNA and Proteins. Bioconjug Chem 2023; 34:358-365. [PMID: 36633230 DOI: 10.1021/acs.bioconjchem.2c00542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Modification of electrodes with biomolecules is an essential first step for the development of bioelectrochemical systems, which are used in a variety of applications ranging from sensors to fuel cells. Gold is often used because of its ease of modification with thiolated biomolecules, but carbon screen-printed electrodes (SPEs) are gaining popularity due to their low cost and fabrication from abundant resources. However, their effective modification with biomolecules remains a challenge; the majority of work to-date relies on nonspecific adhesion or broad amide bond formation to chemical handles on the electrode surface. By combining facile electrochemical modification to add an aniline handle to electrodes with a specific and biocompatible oxidative coupling reaction, we can readily modify carbon electrodes with a variety of biomolecules. Importantly, both proteins and DNA maintain bioactive conformations following coupling. We have then used biomolecule-modified electrodes to generate microbial monolayers through DNA-directed immobilization. This work provides an easy, general strategy to modify inexpensive carbon electrodes, significantly expanding their potential as bioelectrochemical systems.
Collapse
Affiliation(s)
- Amruta Karbelkar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Rachel Ahlmark
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Xingcheng Zhou
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Katherine Austin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Gang Fan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Victoria Y Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Ariel Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
8
|
Zhang H, Yang S, Zeng J, Li X, Chuai R. A Genosensor Based on the Modification of a Microcantilever: A Review. MICROMACHINES 2023; 14:427. [PMID: 36838127 PMCID: PMC9959632 DOI: 10.3390/mi14020427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
When the free end of a microcantilever is modified by a genetic probe, this sensor can be used for a wider range of applications, such as for chemical analysis, biological testing, pharmaceutical screening, and environmental monitoring. In this paper, to clarify the preparation and detection process of a microcantilever sensor with genetic probe modification, the core procedures, such as probe immobilization, complementary hybridization, and signal extraction and processing, are combined and compared. Then, to reveal the microcantilever's detection mechanism and analysis, the influencing factors of testing results, the theoretical research, including the deflection principle, the establishment and verification of a detection model, as well as environmental influencing factors are summarized. Next, to demonstrate the application results of the genetic-probe-modified sensors, based on the classification of detection targets, the application status of other substances except nucleic acid, virus, bacteria and cells is not introduced. Finally, by enumerating the application results of a genetic-probe-modified microcantilever combined with a microfluidic chip, the future development direction of this technology is surveyed. It is hoped that this review will contribute to the future design of a genetic-probe-modified microcantilever, with further exploration of the sensitive mechanism, optimization of the design and processing methods, expansion of the application fields, and promotion of practical application.
Collapse
Affiliation(s)
- He Zhang
- Correspondence: ; Tel.: +86-024-2549-6401
| | | | | | | | | |
Collapse
|
9
|
Recent Advances in Nanomechanical Membrane-Type Surface Stress Sensors towards Artificial Olfaction. BIOSENSORS 2022; 12:bios12090762. [PMID: 36140147 PMCID: PMC9496807 DOI: 10.3390/bios12090762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Nanomechanical sensors have gained significant attention as powerful tools for detecting, distinguishing, and identifying target analytes, especially odors that are composed of a complex mixture of gaseous molecules. Nanomechanical sensors and their arrays are a promising platform for artificial olfaction in combination with data processing technologies, including machine learning techniques. This paper reviews the background of nanomechanical sensors, especially conventional cantilever-type sensors. Then, we focus on one of the optimized structures for static mode operation, a nanomechanical Membrane-type Surface stress Sensor (MSS), and discuss recent advances in MSS and their applications towards artificial olfaction.
Collapse
|
10
|
Bridging scales between solid mechanics and surface chemistry. Sci Rep 2022; 12:10665. [PMID: 35739296 PMCID: PMC9226078 DOI: 10.1038/s41598-022-14709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
A continuum mechanics framework is used herein to model the strains induced in a micromechanical structure by surface phenomena such as adsorption. The resulting picture significantly differs from those of a liquid under surface tension. Considering a solid isotropic elastic material, it is shown that a sphere undergoes a non uniform deformation under surface adsorption. The direction of the surface’s displacement is additionally shown to depend on both the material and the sphere’s radius. It is also shown that modeling surface effects with an elastic membrane surrounding a Cauchy elastic material, the elastic energy is usually misestimated. The reported results also reveal that the overall response of a mechanical structure to surface adsorption strongly depends, at a given scaling, of the higher-grade elastic behavior of the material.
Collapse
|
11
|
Guillemeney L, Lermusiaux L, Landaburu G, Wagnon B, Abécassis B. Curvature and self-assembly of semi-conducting nanoplatelets. Commun Chem 2022; 5:7. [PMID: 36697722 PMCID: PMC9814859 DOI: 10.1038/s42004-021-00621-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/21/2021] [Indexed: 01/28/2023] Open
Abstract
Semi-conducting nanoplatelets are two-dimensional nanoparticles whose thickness is in the nanometer range and controlled at the atomic level. They have come up as a new category of nanomaterial with promising optical properties due to the efficient confinement of the exciton in the thickness direction. In this perspective, we first describe the various conformations of these 2D nanoparticles which display a variety of bent and curved geometries and present experimental evidences linking their curvature to the ligand-induced surface stress. We then focus on the assembly of nanoplatelets into superlattices to harness the particularly efficient energy transfer between them, and discuss different approaches that allow for directional control and positioning in large scale assemblies. We emphasize on the fundamental aspects of the assembly at the colloidal scale in which ligand-induced forces and kinetic effects play a dominant role. Finally, we highlight the collective properties that can be studied when a fine control over the assembly of nanoplatelets is achieved.
Collapse
Affiliation(s)
- Lilian Guillemeney
- grid.463879.70000 0004 0383 1432Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, 69342 Lyon, France
| | - Laurent Lermusiaux
- grid.463879.70000 0004 0383 1432Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, 69342 Lyon, France
| | - Guillaume Landaburu
- grid.463879.70000 0004 0383 1432Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, 69342 Lyon, France
| | - Benoit Wagnon
- grid.463879.70000 0004 0383 1432Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, 69342 Lyon, France
| | - Benjamin Abécassis
- grid.463879.70000 0004 0383 1432Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, 69342 Lyon, France
| |
Collapse
|
12
|
Udupa A, Sugihara T, Viswanathan K, Latanision RM, Chandrasekar S. Surface-Stress Induced Embrittlement of Metals. NANO LETTERS 2021; 21:9502-9508. [PMID: 34726060 DOI: 10.1021/acs.nanolett.1c02887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Environment-assisted fracture phenomena in metals are usually associated with surface energy reduction due to an adsorbed film. Here we demonstrate a unique embrittlement effect in Al that is instead mediated by surface stress, induced by an adsorbed organic monolayer. Atomistic simulations show that the adsorbate carbon-chain length lc controls the surface stress via van der Waals forces, being compressive for lc < 8 and tensile otherwise. For lc > 8, we demonstrate experimentally that the nanoscale film causes a ductile-to-brittle transition on the macroscale. Concomitant with this transition is a nearly 85% reduction in deformation forces. Additional simulations reveal that the microscopic mechanism for the embrittlement is via suppression of dislocation emission at incipient crack-tips. In addition to challenging long-held views on environment-assisted fracture, our findings pertaining to surface-stress induced embrittlement suggest profitable utility in manufacturing processes such as machining and comminution.
Collapse
Affiliation(s)
- Anirudh Udupa
- Center for Materials Processing and Tribology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Tatsuya Sugihara
- Department of Mechanical Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koushik Viswanathan
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ronald M Latanision
- Materials Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
- Exponent Inc., Natick, Massachusetts 01760, United States
| | - Srinivasan Chandrasekar
- Center for Materials Processing and Tribology, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
13
|
Sugihara T, Udupa A, Viswanathan K, Davis JM, Chandrasekar S. Organic monolayers disrupt plastic flow in metals. SCIENCE ADVANCES 2020; 6:6/51/eabc8900. [PMID: 33328232 PMCID: PMC7744067 DOI: 10.1126/sciadv.abc8900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Adsorbed films often influence mechanical behavior of surfaces, leading to well-known mechanochemical phenomena such as liquid metal embrittlement and environment-assisted cracking. Here, we demonstrate a mechanochemical phenomenon wherein adsorbed long-chain organic monolayers disrupt large-strain plastic deformation in metals. Using high-speed in situ imaging and post facto analysis, we show that the monolayers induce a ductile-to-brittle transition. Sinuous flow, characteristic of ductile metals, gives way to quasi-periodic fracture, typical of brittle materials, with 85% reduction in deformation forces. By independently varying surface energy and molecule chain length via molecular self-assembly, we argue that this "embrittlement" is driven by adsorbate-induced surface stress, as against surface energy reduction. Our observations, backed by modeling and molecular simulations, could provide a basis for explaining diverse mechanochemical phenomena in solids. The results also have implications for manufacturing processes such as machining and comminution, and wear.
Collapse
Affiliation(s)
- Tatsuya Sugihara
- Department of Mechanical Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Anirudh Udupa
- Center for Materials Processing and Tribology, Purdue University, West Lafayette, IN 47907-2023, USA
| | - Koushik Viswanathan
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jason M Davis
- Center for Materials Processing and Tribology, Purdue University, West Lafayette, IN 47907-2023, USA
- Special Warfare and Expeditionary Systems Department, Naval Surface Warfare Center, Crane Division, Crane, IN 47552, USA
| | - Srinivasan Chandrasekar
- Center for Materials Processing and Tribology, Purdue University, West Lafayette, IN 47907-2023, USA.
| |
Collapse
|
14
|
Zhao Y, Gosai A, Kang K, Shrotriya P. Multiscale Modeling Reveals the Cause of Surface Stress Change on Microcantilevers Due to Alkanethiol SAM Adsorption. J Chem Inf Model 2020; 60:2998-3008. [DOI: 10.1021/acs.jcim.0c00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yue Zhao
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Agnivo Gosai
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kyungho Kang
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Pranav Shrotriya
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
15
|
Kidane S, Ishida H, Sawada K, Takahashi K. A suspended graphene-based optical interferometric surface stress sensor for selective biomolecular detection. NANOSCALE ADVANCES 2020; 2:1431-1436. [PMID: 36132319 PMCID: PMC9417660 DOI: 10.1039/c9na00788a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/18/2020] [Indexed: 06/13/2023]
Abstract
Graphene-based sensors are of great interest in research due to their high specific surface area and high electron mobility that make them suitable for numerous advanced applications. In this paper, selective molecular detection using an antigen-antibody reaction on suspended graphene with a cavity-sealing structure was demonstrated. The suspended graphene sealed nanocavities in a pre-patterned Si substrate, which increased robustness and allowed the use of wet chemical processes for surface functionalization of the suspended graphene to achieve selective molecular binding. The selectivity was evaluated by nanomechanical deflection induced by molecular adsorption on the suspended graphene, resulting in spectral shifts in the optical interference between the suspended graphene and Si substrate. The chemically functionalized suspended graphene enables the analysis of intermolecular interactions and molecular kinetics by colorimetry using optical interference.
Collapse
Affiliation(s)
- Shin Kidane
- Toyohashi University of Technology Toyohashi Aichi 441-8580 Japan
| | - Hayato Ishida
- Toyohashi University of Technology Toyohashi Aichi 441-8580 Japan
| | - Kazuaki Sawada
- Toyohashi University of Technology Toyohashi Aichi 441-8580 Japan
| | | |
Collapse
|
16
|
Nuryadi R, Aprilia L, Hosoda M, Barique MA, Udhiarto A, Hartanto D, Setiawan MB, Neo Y, Mimura H. Observation of CO Detection Using Aluminum-Doped ZnO Nanorods on Microcantilever. SENSORS 2020; 20:s20072013. [PMID: 32260130 PMCID: PMC7181168 DOI: 10.3390/s20072013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022]
Abstract
An oscillating piezoresistive microcantilever (MC) coated with an aluminum (Al)-doped zinc oxide (ZnO) nanorods was used to detect carbon monoxide (CO) in air at room temperature. Al-doped ZnO nanorods were grown on the MC surface using the hydrothermal method, and a response to CO gas was observed by measuring a resonant frequency shift of vibrated MC. CO gas response showed a significant increase in resonant frequency, where sensitivity in the order of picogram amounts was obtained. An increase in resonant frequency was also observed with increasing gas flow rate, which was simultaneously followed by a decrease in relative humidity, indicating that the molecular interface between ZnO and H2O plays a key role in CO absorption. The detection of other gases of carbon compounds such as CO2 and CH4 was also performed; the sensitivity of CO was found to be higher than those gases. The results demonstrate the reversibility and reproducibility of the proposed technique, opening up future developments of highly sensitive CO-gas detectors with a fast response and room temperature operation.
Collapse
Affiliation(s)
- Ratno Nuryadi
- Center for Materials Technology, Agency for the Assessment and Application of Technology, Puspiptek Building #224, South Tangerang, Banten 15314, Indonesia
- Correspondence: ; Tel.: +62-21-75791324
| | - Lia Aprilia
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Shizuoka, Japan; (L.A.); (M.H.); (M.A.B.); (Y.N.); (H.M.)
| | - Makoto Hosoda
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Shizuoka, Japan; (L.A.); (M.H.); (M.A.B.); (Y.N.); (H.M.)
| | - Mohamad Abdul Barique
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Shizuoka, Japan; (L.A.); (M.H.); (M.A.B.); (Y.N.); (H.M.)
| | - Arief Udhiarto
- Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, West Java 16424, Indonesia; (A.U.); (D.H.)
| | - Djoko Hartanto
- Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, West Java 16424, Indonesia; (A.U.); (D.H.)
| | - Muhammad Budi Setiawan
- Center for Technology and Safety of Nuclear Reactor, National Nuclear Energy Agency, Puspiptek, South Tangerang, Banten 15314, Indonesia;
| | - Yoichiro Neo
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Shizuoka, Japan; (L.A.); (M.H.); (M.A.B.); (Y.N.); (H.M.)
| | - Hidenori Mimura
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Shizuoka, Japan; (L.A.); (M.H.); (M.A.B.); (Y.N.); (H.M.)
| |
Collapse
|
17
|
A CMOS MEMS-based Membrane-Bridge Nanomechanical Sensor for Small Molecule Detection. Sci Rep 2020; 10:2931. [PMID: 32076079 PMCID: PMC7031247 DOI: 10.1038/s41598-020-60057-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/05/2020] [Indexed: 11/10/2022] Open
Abstract
Small molecule compounds are necessary to detect with high sensitivity since they may cause a strong effect on the human body even in small concentrations. But existing methods used to evaluate small molecules in blood are inconvenient, costly, time-consuming, and do not allow for portable usage. In response to these shortcomings, we introduce a complementary metal-oxide-semiconductor bio-microelectromechanical system (CMOS BioMEMS) based piezoresistive membrane-bridge (MB) sensor for detecting small molecule (phenytoin) concentrations as the demonstration. Phenytoin is one of anticonvulsant drugs licensed for the management of seizures, which has a narrow therapeutic window hence a level of concentration monitoring was needed. The MB sensor was designed to enhance the structural stability and increase the sensitivity, which its signal response increased 2-fold higher than that of the microcantilever-based sensor. The MB sensor was used to detect phenytoin in different concentrations from 5 to 100 μg/mL. The limit of detection of the sensor was 4.06 ± 0.15 μg/mL and the linear detection range was 5–100 μg/mL, which was within the therapeutic range of phenytoin concentration (10–20 μg/mL). Furthermore, the MB sensor was integrated with an on-chip thermal effect eliminating modus and a reaction tank on a compact chip carrier for disposable utilization. The required amount of sample solution was only 10 μL and the response time of the sensor was about 25 minutes. The nano-mechanical MB sensing method with thermal effect compensation is specific, sensitive, robust, affordable and well reproducible; it is, therefore, an appropriate candidate for detecting small molecules.
Collapse
|
18
|
Gurdal Y. Aromatic versus aliphatic thiols on Au(111) surface: a DFT exploration of adsorption registry and electronic structure. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1663844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yeliz Gurdal
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| |
Collapse
|
19
|
Theoretical investigation of metalated and unmetalated pyrphyrins immobilized on Ag(111) surface. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00942-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Wang S, Chen Z, Gao C. Analytic solution for a circular nano-inhomogeneity in a finite matrix. NANO MATERIALS SCIENCE 2019. [DOI: 10.1016/j.nanoms.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Lapinski N, Liu Z, Yang S, Hui CY, Jagota A. A surface with stress, extensional elasticity, and bending stiffness. SOFT MATTER 2019; 15:3817-3827. [PMID: 30993278 DOI: 10.1039/c9sm00075e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrate that the surface of a commonly used polydimethylsiloxane formulation (PDMS, Sylgard 184) treated by ultraviolet ozonolysis (UVO) has significant surface stress, considerable extensional elasticity (the "Shuttleworth Effect"), and surface bending elasticity. For soft solids, phenomena such as wetting, contact, surface flattening, and stiffening by liquid inclusions are often governed by their surface, which is usually represented by a liquid-like constant surface stress. Whether the surfaces of soft solids can have more complex constitutive response is actively debated. We studied the deformation of three surface-patterned materials systems: untreated polydimethylsiloxane (PDMS), an organogel, and patterned PDMS with surface treatment by UVO. The last of these three, we found, has complex surface elasticity. This is analogous to the situation for liquids in which the presence of a second phase at the interface yields Gibbs elasticity. Our finding is of broad applicability because in soft solids the behavior of the surface can often dominate bulk deformation.
Collapse
Affiliation(s)
- Nicole Lapinski
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18017, USA.
| | | | | | | | | |
Collapse
|
22
|
Mustazzolu A, Venturelli L, Dinarelli S, Brown K, Floto RA, Dietler G, Fattorini L, Kasas S, Girasole M, Longo G. A Rapid Unraveling of the Activity and Antibiotic Susceptibility of Mycobacteria. Antimicrob Agents Chemother 2019; 63:e02194-18. [PMID: 30602518 PMCID: PMC6395931 DOI: 10.1128/aac.02194-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/14/2018] [Indexed: 01/10/2023] Open
Abstract
The development of antibiotic-resistant bacteria is a worldwide health-related emergency that calls for new tools to study the bacterial metabolism and to obtain fast diagnoses. Indeed, the conventional analysis time scale is too long and affects our ability to fight infections. Slowly growing bacteria represent a bigger challenge, since their analysis may require up to months. Among these bacteria, Mycobacterium tuberculosis, the causative agent of tuberculosis, has caused more than 10 million new cases and 1.7 million deaths in 2016 only. We employed a particularly powerful nanomechanical oscillator, the nanomotion sensor, to characterize rapidly and in real time tuberculous and nontuberculous bacterial species, Mycobacterium bovis bacillus Calmette-Guérin and Mycobacterium abscessus, respectively, exposed to different antibiotics. Here, we show how high-speed and high-sensitivity detectors, the nanomotion sensors, can provide a rapid and reliable analysis of different mycobacterial species, obtaining qualitative and quantitative information on their responses to different drugs. This is the first application of the technique to tackle the urgent medical issue of mycobacterial infections, evaluating the dynamic response of bacteria to different antimicrobial families and the role of the replication rate in the resulting nanomotion pattern. In addition to a fast analysis, which could massively benefit patients and the overall health care system, we investigated the real-time responses of the bacteria to extract unique information on the bacterial mechanisms triggered in response to antibacterial pressure, with consequences both at the clinical level and at the microbiological level.
Collapse
Affiliation(s)
| | - L Venturelli
- LPMV-IPHYS, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - S Dinarelli
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - K Brown
- Molecular Immunity Unit, University of Cambridge, Cambridge, United Kingdom
| | - R A Floto
- Molecular Immunity Unit, University of Cambridge, Cambridge, United Kingdom
| | - G Dietler
- LPMV-IPHYS, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | | | - S Kasas
- LPMV-IPHYS, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - M Girasole
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - G Longo
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
23
|
Modified cantilever arrays improve sensitivity and reproducibility of nanomechanical sensing in living cells. Commun Biol 2018; 1:175. [PMID: 30374465 PMCID: PMC6200835 DOI: 10.1038/s42003-018-0179-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 09/27/2018] [Indexed: 12/26/2022] Open
Abstract
Mechanical signaling involved in molecular interactions lies at the heart of materials science and biological systems, but the mechanisms involved are poorly understood. Here we use nanomechanical sensors and intact human cells to provide unique insights into the signaling pathways of connectivity networks, which deliver the ability to probe cells to produce biologically relevant, quantifiable and reproducible signals. We quantify the mechanical signals from malignant cancer cells, with 10 cells per ml in 1000-fold excess of non-neoplastic human epithelial cells. Moreover, we demonstrate that a direct link between cells and molecules creates a continuous connectivity which acts like a percolating network to propagate mechanical forces over both short and long length-scales. The findings provide mechanistic insights into how cancer cells interact with one another and with their microenvironments, enabling them to invade the surrounding tissues. Further, with this system it is possible to understand how cancer clusters are able to co-ordinate their migration through narrow blood capillaries. Samadhan Patil et al. report a new method for improving the sensitivity and reproducibility of mechanobiological measurements in malignant cancer cells. Their findings provide insight into the interaction of cells with each other and the microenvironment and may impact our understanding of metastasis.
Collapse
|
24
|
Li KW, Yen YK. Gentamicin drug monitoring for peritonitis patients by using a CMOS-BioMEMS-based microcantilever sensor. Biosens Bioelectron 2018; 130:420-426. [PMID: 30220446 DOI: 10.1016/j.bios.2018.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 11/24/2022]
Abstract
We developed a Complementary Metal-Oxide-Semiconductor Bio-Microelectromechanical Systems (CMOS-BioMEMS) based piezoresistive microcantilever sensor for detecting gentamicin, a peritonitis therapeutic small-molecule drug. In recent years, the patient-centric concept has been emphasized. In such a trend, therapeutic drug monitoring (TDM) is especially crucial for patients with peritonitis to avoid adverse reactions from a high concentration of gentamicin in the blood. With the aid of a commercialized semiconductor manufacturing process, the microcantilever sensing platform can serve as a portable, low-cost device and offer real-time detection. With chemical surface modification and capture antibody immobilization, the sensor can detect the small-molecule (< 2 kDa) gentamicin directly. We also modified the pH value of the buffer solution and applied an external electric field to promote sensor sensitivity. Comparing the change of the signals in a non-electric field of antibody immobilization and a 60-volt electric field of antibody immobilization showed that the average signal response increased 1.8 times. In the detection of gentamicin with different concentrations of 10-200 μg/mL, the limit of detection (LOD) of the sensor was 9.44 µg/mL. Finally, the detecting result of a microrcantilever sensor was compared with the one measured by a common instrument in hospital, and the high correlation was expressed between them in gentamicin detection. The CMOS-BioMEMS-based piezoresistive microcantilever sensor has been demonstrated to have great potential as a point-of-care (POC) device for real-time drug concentration monitoring.
Collapse
Affiliation(s)
- Kuan-Wei Li
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Kuang Yen
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei 106, Taiwan.
| |
Collapse
|
25
|
Zhang R, Morton LD, Smith JD, Gallazzi F, White TA, Ulery BD. Instructive Design of Triblock Peptide Amphiphiles for Structurally Complex Micelle Fabrication. ACS Biomater Sci Eng 2018; 4:2330-2339. [DOI: 10.1021/acsbiomaterials.8b00300] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Abstract
Surface stress and surface energy are fundamental quantities which characterize the interface between two materials. Although these quantities are identical for interfaces involving only fluids, the Shuttleworth effect demonstrates that this is not the case for most interfaces involving solids, since their surface energies change with strain. Crystalline materials are known to have strain-dependent surface energies, but in amorphous materials, such as polymeric glasses and elastomers, the strain dependence is debated due to a dearth of direct measurements. Here, we utilize contact angle measurements on strained glassy and elastomeric solids to address this matter. We show conclusively that interfaces involving polymeric glasses exhibit strain-dependent surface energies, and give strong evidence for the absence of such a dependence for incompressible elastomers. The results provide fundamental insight into our understanding of the interfaces of amorphous solids and their interaction with contacting liquids. Whether or not amorphous solids exhibit strain-dependent surface energies, like those of crystalline materials, is still a matter of debate. Here, Schulman et al. monitor the contact angle of droplets on strained polymeric glasses and elastomers, which directly probes energy variation at the interfaces.
Collapse
|
27
|
Stachiv I, Sittner P. Nanocantilevers with Adjustable Static Deflection and Significantly Tunable Spectrum Resonant Frequencies for Applications in Nanomechanical Mass Sensors. NANOMATERIALS 2018; 8:nano8020116. [PMID: 29462996 PMCID: PMC5853747 DOI: 10.3390/nano8020116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 11/16/2022]
Abstract
Nanocantilevers have become key components of nanomechanical sensors that exploit changes in their resonant frequencies or static deflection in response to the environment. It is necessary that they can operate at a given, but adjustable, resonant frequency and/or static deflection ranges. Here we propose a new class of nanocantilevers with a significantly tunable spectrum of the resonant frequencies and changeable static deflection utilizing the unique properties of a phase-transforming NiTi film sputtered on the usual nanotechnology cantilever materials. The reversible frequency tuning and the adjustable static deflection are obtained by intentionally changing the Young's modulus and the interlayer stress of the NiTi film during its phase transformation, while the usual cantilever elastic materials guarantee a high frequency actuation (up to tens of MHz). By incorporating the NiTi phase transformation characteristic into the classical continuum mechanics theory we present theoretical models that account for the nanocantilever frequency shift and variation in static deflection caused by a phase transformation of NiTi film. Due to the practical importance in nanomechanical sensors, we carry out a complete theoretical analysis and evaluate the impact of NiTi film on the cantilever Young's modulus, static deflection, and the resonant frequencies. Moreover, the importance of proposed NiTi nanocantilever is illustrated on the nanomechanical based mass sensors. Our findings will be of value in the development of advanced nanotechnology sensors with intentionally-changeable physical and mechanical properties.
Collapse
Affiliation(s)
- Ivo Stachiv
- School of Sciences, Harbin Institute of Technology-Shenzhen Graduate School, Shenzhen 551800, Guangdong, China.
- Institute of Physics, Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Petr Sittner
- Institute of Physics, Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
28
|
Maruyama S, Hizawa T, Takahashi K, Sawada K. Optical-Interferometry-Based CMOS-MEMS Sensor Transduced by Stress-Induced Nanomechanical Deflection. SENSORS 2018; 18:s18010138. [PMID: 29304011 PMCID: PMC5796276 DOI: 10.3390/s18010138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 11/16/2022]
Abstract
We developed a Fabry-Perot interferometer sensor with a metal-oxide-semiconductor field-effect transistor (MOSFET) circuit for chemical sensing. The novel signal transducing technique was performed in three steps: mechanical deflection, transmittance change, and photocurrent change. A small readout photocurrent was processed by an integrated source follower circuit. The movable film of the sensor was a 350-nm-thick polychloro-para-xylylene membrane with a diameter of 100 µm and an air gap of 300 nm. The linearity of the integrated source follower circuit was obtained. We demonstrated a gas response using 80-ppm ethanol detected by small membrane deformation of 50 nm, which resulted in an output-voltage change with the proposed high-efficiency transduction.
Collapse
Affiliation(s)
- Satoshi Maruyama
- AIST-TUT Advanced Sensor Collaborative Research Laboratory, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan.
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan.
| | - Takeshi Hizawa
- Electronics Inspired-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan.
| | - Kazuhiro Takahashi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan.
- JST Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo 102-0076, Japan.
| | - Kazuaki Sawada
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
29
|
Zakerin M, Novak A, Toda M, Emery Y, Natalio F, Butt HJ, Berger R. Thermal Characterization of Dynamic Silicon Cantilever Array Sensors by Digital Holographic Microscopy. SENSORS 2017; 17:s17061191. [PMID: 28545236 PMCID: PMC5490691 DOI: 10.3390/s17061191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 11/16/2022]
Abstract
In this paper, we apply a digital holographic microscope (DHM) in conjunction with stroboscopic acquisition synchronization. Here, the temperature-dependent decrease of the first resonance frequency (S1(T)) and Young’s elastic modulus (E1(T)) of silicon micromechanical cantilever sensors (MCSs) are measured. To perform these measurements, the MCSs are uniformly heated from T0 = 298 K to T = 450 K while being externally actuated with a piezo-actuator in a certain frequency range close to their first resonance frequencies. At each temperature, the DHM records the time-sequence of the 3D topographies for the given frequency range. Such holographic data allow for the extracting of the out-of-plane vibrations at any relevant area of the MCSs. Next, the Bode and Nyquist diagrams are used to determine the resonant frequencies with a precision of 0.1 Hz. Our results show that the decrease of resonance frequency is a direct consequence of the reduction of the silicon elastic modulus upon heating. The measured temperature dependence of the Young’s modulus is in very good accordance with the previously-reported values, validating the reliability and applicability of this method for micromechanical sensing applications.
Collapse
Affiliation(s)
- Marjan Zakerin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Antonin Novak
- Laboratoire d'Acoustique de l'Université du Maine (LAUM, UMR CNRS 6613), 72000 Le Mans, France.
| | - Masaya Toda
- Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza-Aoba, Aoba-ku, 980-8579 Sendai, Japan.
| | - Yves Emery
- Lyncee Tec SA, PSE-A, CH-1015 Lausanne, Switzerland.
| | - Filipe Natalio
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Saale), Germany.
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
30
|
Ndieyira JW, Bailey J, Patil SB, Vögtli M, Cooper MA, Abell C, McKendry RA, Aeppli G. Surface mediated cooperative interactions of drugs enhance mechanical forces for antibiotic action. Sci Rep 2017; 7:41206. [PMID: 28155918 PMCID: PMC5290737 DOI: 10.1038/srep41206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/16/2016] [Indexed: 01/05/2023] Open
Abstract
The alarming increase of pathogenic bacteria that are resistant to multiple antibiotics is now recognized as a major health issue fuelling demand for new drugs. Bacterial resistance is often caused by molecular changes at the bacterial surface, which alter the nature of specific drug-target interactions. Here, we identify a novel mechanism by which drug-target interactions in resistant bacteria can be enhanced. We examined the surface forces generated by four antibiotics; vancomycin, ristomycin, chloroeremomycin and oritavancin against drug-susceptible and drug-resistant targets on a cantilever and demonstrated significant differences in mechanical response when drug-resistant targets are challenged with different antibiotics although no significant differences were observed when using susceptible targets. Remarkably, the binding affinity for oritavancin against drug-resistant targets (70 nM) was found to be 11,000 times stronger than for vancomycin (800 μM), a powerful antibiotic used as the last resort treatment for streptococcal and staphylococcal bacteria including methicillin-resistant Staphylococcus aureus (MRSA). Using an exactly solvable model, which takes into account the solvent and membrane effects, we demonstrate that drug-target interactions are strengthened by pronounced polyvalent interactions catalyzed by the surface itself. These findings further enhance our understanding of antibiotic mode of action and will enable development of more effective therapies.
Collapse
Affiliation(s)
- Joseph W Ndieyira
- Departments of Medicine, UCL Institute for Liver and Digestive Health, Royal Free Hospital, London NW3 2QG, UK.,London Centre for Nanotechnology and Departments of Medicine and Physics, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom.,Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, Po Box 62000, Nairobi, Kenya
| | - Joe Bailey
- London Centre for Nanotechnology and Departments of Medicine and Physics, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom.,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Samadhan B Patil
- Departments of Medicine, UCL Institute for Liver and Digestive Health, Royal Free Hospital, London NW3 2QG, UK
| | - Manuel Vögtli
- Departments of Medicine, UCL Institute for Liver and Digestive Health, Royal Free Hospital, London NW3 2QG, UK
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, 4072, Australia
| | - Chris Abell
- Department of Chemistry, Lensfield Road, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Rachel A McKendry
- Departments of Medicine, UCL Institute for Liver and Digestive Health, Royal Free Hospital, London NW3 2QG, UK
| | - Gabriel Aeppli
- Laboratory for Solid State Physics, ETH Zurich, Zurich, CH-8093, Switzerland.,Institut de Physique, EPF Lausanne, Lausanne, CH-1015, Switzerland.,Photon Science Division, Paul Scherrer Institut, Villigen PSI, CH-5232, Switzerland
| |
Collapse
|
31
|
|
32
|
Haag AL, Schumacher Z, Grutter P. Sensitivity measurement of a cantilever-based surface stress sensor. J Chem Phys 2016; 145:154704. [DOI: 10.1063/1.4964922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Bertolotti F, Dirin DN, Ibáñez M, Krumeich F, Cervellino A, Frison R, Voznyy O, Sargent EH, Kovalenko MV, Guagliardi A, Masciocchi N. Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots. NATURE MATERIALS 2016; 15:987-94. [PMID: 27295101 DOI: 10.1038/nmat4661] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 05/11/2016] [Indexed: 05/21/2023]
Abstract
Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.
Collapse
Affiliation(s)
- Federica Bertolotti
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab, Università dell'Insubria, via Valleggio 11, I-22100 Como, Italy
| | - Dmitry N Dirin
- Department of Chemistry and Applied Biosciences, ETH, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maria Ibáñez
- Department of Chemistry and Applied Biosciences, ETH, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Frank Krumeich
- Department of Chemistry and Applied Biosciences, ETH, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
| | - Antonio Cervellino
- SLS, Laboratory for Synchrotron Radiation-Condensed Matter, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Ruggero Frison
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Istituto di Cristallografia and To.Sca.Lab, CNR, via Valleggio 11, I-22100 Como, Italy
| | - Oleksandr Voznyy
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Edward H Sargent
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences, ETH, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Antonietta Guagliardi
- Istituto di Cristallografia and To.Sca.Lab, CNR, via Valleggio 11, I-22100 Como, Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab, Università dell'Insubria, via Valleggio 11, I-22100 Como, Italy
| |
Collapse
|
34
|
Xu X, Jagota A, Paretkar D, Hui CY. Surface tension measurement from the indentation of clamped thin films. SOFT MATTER 2016; 12:5121-5126. [PMID: 27189735 DOI: 10.1039/c6sm00584e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We developed an indentation technique to measure the surface tension of relatively stiff solids. In the proposed method, a suspended thin solid film is indented by a rigid sphere and its deflection is measured by optical interferometry. The film deflection is jointly resisted by surface tension, elasticity and residual stress. Using a version of nonlinear von Karman plate theory that includes surface tension, we are able to separate the contribution of elasticity to the total tension in the film. Surface tension is determined by extrapolating the sum of surface tension and residual stress to zero film thickness. We measured the surface tension of polydimethylsiloxane (PDMS) using this technique and obtained a value of 19.5 ± 3.6 mN m(-1), consistent with the surface energy of PDMS reported in the literature.
Collapse
Affiliation(s)
- Xuejuan Xu
- Cornell University, Sibley School of Mechanical and Aerospace Engineering, Kimball Hall, Ithaca, NY 14850, USA
| | | | | | | |
Collapse
|
35
|
Haimov B, Iakovlev A, Glick-Carmi R, Bloch L, Rich BB, Müller M, Pokroy B. Kinetics of Nanoscale Self-Assembly Measured on Liquid Drops by Macroscopic Optical Tensiometry: From Mercury to Water and Fluorocarbons. J Am Chem Soc 2016; 138:2585-91. [DOI: 10.1021/jacs.5b10446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Boris Haimov
- Department
of Materials Science and Engineering, Technion−Israel Institute of Technology, 32000 Haifa, Israel
- Russell
Berrie Nanotechnology Institute, Technion−Israel Institute of Technology, 32000 Haifa, Israel
| | - Anton Iakovlev
- Institut
für Theoretische Physik, Georg-August Universität, 37073 Göttingen, Germany
| | - Rotem Glick-Carmi
- Department
of Materials Science and Engineering, Technion−Israel Institute of Technology, 32000 Haifa, Israel
| | - Leonid Bloch
- Department
of Materials Science and Engineering, Technion−Israel Institute of Technology, 32000 Haifa, Israel
| | - Benjamin B. Rich
- Department
of Materials Science and Engineering, Technion−Israel Institute of Technology, 32000 Haifa, Israel
| | - Marcus Müller
- Institut
für Theoretische Physik, Georg-August Universität, 37073 Göttingen, Germany
| | - Boaz Pokroy
- Department
of Materials Science and Engineering, Technion−Israel Institute of Technology, 32000 Haifa, Israel
- Russell
Berrie Nanotechnology Institute, Technion−Israel Institute of Technology, 32000 Haifa, Israel
| |
Collapse
|
36
|
Shiba K, Imamura G, Yoshikawa G. Nanomechanical Sensors. BIOMATERIALS NANOARCHITECTONICS 2016. [PMCID: PMC7152471 DOI: 10.1016/b978-0-323-37127-8.00011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This chapter introduces nanomechanical sensors and their applications. All molecules have “volume” and “mass.” Direct measurement of these fundamental parameters can realize label-free and real-time measurements. Nanomechanical sensors have been emerging as a key device for such label-free and real-time measurements with their multiple operation modes; static and dynamic modes for detecting volume- and mass-related features, respectively. A cantilever array sensor is a representative example among various geometries, while structural optimization can enhance the scope of nanomechanical sensors in both academic and industrial applications. One of the most advanced sensing platforms is a membrane-type surface stress sensor (MSS), which realizes both high sensitivity and compact system at the same time. The MSS is also expected to contribute to addressing nanomechanical behavior of living cells and their network.
Collapse
|
37
|
Patil SB, Vögtli M, Webb B, Mazza G, Pinzani M, Soh YA, McKendry RA, Ndieyira JW. Decoupling competing surface binding kinetics and reconfiguration of receptor footprint for ultrasensitive stress assays. NATURE NANOTECHNOLOGY 2015; 10:899-907. [PMID: 26280409 DOI: 10.1038/nnano.2015.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 07/06/2015] [Indexed: 05/27/2023]
Abstract
Cantilever arrays have been used to monitor biochemical interactions and their associated stress. However, it is often necessary to passivate the underside of the cantilever to prevent unwanted ligand adsorption, and this process requires tedious optimization. Here, we show a way to immobilize membrane receptors on nanomechanical cantilevers so that they can function without passivating the underlying surface. Using equilibrium theory, we quantitatively describe the mechanical responses of vancomycin, human immunodeficiency virus type 1 antigens and coagulation factor VIII captured on the cantilever in the presence of competing stresses from the top and bottom cantilever surfaces. We show that the area per receptor molecule on the cantilever surface influences ligand-receptor binding and plays an important role on stress. Our results offer a new way to sense biomolecules and will aid in the creation of ultrasensitive biosensors.
Collapse
Affiliation(s)
- Samadhan B Patil
- London Centre for Nanotechnology and Departments of Medicine and Physics, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Manuel Vögtli
- London Centre for Nanotechnology and Departments of Medicine and Physics, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Benjamin Webb
- London Centre for Nanotechnology and Departments of Medicine and Physics, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
- Division of Infection &Immunity, University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK
| | - Giuseppe Mazza
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London NW3 2QG, UK
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London NW3 2QG, UK
| | - Yeong-Ah Soh
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Rachel A McKendry
- London Centre for Nanotechnology and Departments of Medicine and Physics, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Joseph W Ndieyira
- London Centre for Nanotechnology and Departments of Medicine and Physics, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
- Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, PO Box 62000, Nairobi, Kenya
| |
Collapse
|
38
|
Abstract
The generation of mechanical forces are central to a wide range of vital biological processes, including the function of the cytoskeleton. Although the forces emerging from the polymerization of native proteins have been studied in detail, the potential for force generation by aberrant protein polymerization has not yet been explored. Here, we show that the growth of amyloid fibrils, archetypical aberrant protein polymers, is capable of unleashing mechanical forces on the piconewton scale for individual filaments. We apply microfluidic techniques to measure the forces released by amyloid growth for two systems: insulin and lysozyme. The level of force measured for amyloid growth in both systems is comparable to that observed for actin and tubulin, systems that have evolved to generate force during their native functions and, unlike amyloid growth, rely on the input of external energy in the form of nucleotide hydrolysis for maximum force generation. Furthermore, we find that the power density released from growing amyloid fibrils is comparable to that of high-performance synthetic polymer actuators. These findings highlight the potential of amyloid structures as active materials and shed light on the criteria for regulation and reversibility that guide molecular evolution of functional polymers.
Collapse
|
39
|
Pandya HJ, Park K, Desai JP. Design and fabrication of a flexible MEMS-based electromechanical sensor array for breast cancer diagnosis. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2015; 25:075025. [PMID: 26526747 PMCID: PMC4624460 DOI: 10.1088/0960-1317/25/7/075025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The use of flexible micro-electro-mechanical systems (MEMS) based device provides a unique opportunity in bio-medical robotics such as characterization of normal and malignant tissues. This paper reports on design and development of a flexible MEMS-based sensor array integrating mechanical and electrical sensors on the same platform to enable the study of the change in electro-mechanical properties of the benign and cancerous breast tissues. In this work, we present the analysis for the electrical characterization of the tissue specimens and also demonstrate the feasibility of using the sensor for mechanical characterization of the tissue specimens. Eight strain gauges acting as mechanical sensors were fabricated using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) conducting polymer on poly(dimethylsiloxane) (PDMS) as the substrate material. Eight electrical sensors were fabricated using SU-8 pillars on gold (Au) pads which were patterned on the strain gauges separated by a thin insulator (SiO2 1.0μm). These pillars were coated with gold to make it conducting. The electromechanical sensors are integrated on the same substrate. The sensor array covers 180μm × 180μm area and the size of the complete device is 20mm in diameter. The diameter of each breast tissue core used in the present study was 1mm and the thickness was 8μm. The region of interest was 200μm × 200μm. Microindentation technique was used to characterize the mechanical properties of the breast tissues. The sensor is integrated with conducting SU-8 pillars to study the electrical property of the tissue. Through electro-mechanical characterization studies using this MEMS-based sensor, we were able to measure the accuracy of the fabricated device and ascertain the difference between benign and cancer breast tissue specimens.
Collapse
Affiliation(s)
- Hardik J. Pandya
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Kihan Park
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jaydev P. Desai
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
40
|
DeVetter BM, Mukherjee P, Murphy CJ, Bhargava R. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy. NANOSCALE 2015; 7:8766-75. [PMID: 25905515 PMCID: PMC4429204 DOI: 10.1039/c5nr01006c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min(-1). This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.
Collapse
Affiliation(s)
- Brent M DeVetter
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
41
|
Haag AL, Nagai Y, Lennox RB, Grütter P. Characterization of a gold coated cantilever surface for biosensing applications. EPJ TECHNIQUES AND INSTRUMENTATION 2015; 2:1. [PMID: 26146600 PMCID: PMC4480947 DOI: 10.1140/epjti/s40485-014-0011-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Cantilever based sensors are a promising tool for a very diverse spectrum of biological sensors. They have been used for the detection of proteins, DNA, antigens, bacteria viruses and many other biologically relevant targets. Although cantilever sensing has been described for over 20 years, there are still no viable commercial cantilever-based sensing products on the market. Several reasons can be found for this - a lack of detailed understanding of the origin of signals being an important one. As a consequence application-relevant issues such as shelf life and robust protocols distinguishing targets from false responses have received very little attention. Here, we will discuss a cantilever sensing platform combined with an electrochemical system. The detected surface stress signal is modulated by applying a square wave potential to a gold coated cantilever. The square wave potential induces adsorption and desorption onto the gold electrode surface as well as possible structural changes of the target and probe molecules on the cantilever surface resulting in a measurable surface stress change. What sets this approach apart from regular cantilever sensing is that the quantification and identification of observed signals due to target-probe interactions are not only a function of stress value (i.e. amplitude), but also of the temporal evolution of the stress response as a function of the rate and magnitude of the applied potential change, and the limits of the potential change. This paper will discuss three issues that play an important role in future successful applications of cantilever-based sensing. First, we will discuss what is required to achieve a large surface stress signal to improve sensitivity. Second, a mechanism to achieve an optimal probe density is described that improves the signal-to-noise ratio and response times of the sensor. Lastly, lifetime and long term measurements are discussed.
Collapse
Affiliation(s)
- Ann-Lauriene Haag
- />Department of Physics, McGill University, 3600 Rue University, Montreal, QC H3A 2T8 Canada
| | - Yoshihiko Nagai
- />Research Institute of the McGill University Health Centre, 2155 Guy Street, Montreal, QC H3H 2R9 Canada
| | - R Bruce Lennox
- />Department of Chemistry and FQRNT Centre for Self Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 2K6 Canada
| | - Peter Grütter
- />Department of Physics, McGill University, 3600 Rue University, Montreal, QC H3A 2T8 Canada
| |
Collapse
|
42
|
Pandya HJ, Roy R, Chen W, Chekmareva MA, Foran DJ, Desai JP. Accurate characterization of benign and cancerous breast tissues: aspecific patient studies using piezoresistive microcantilevers. Biosens Bioelectron 2015; 63:414-424. [PMID: 25128621 PMCID: PMC4167594 DOI: 10.1016/j.bios.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/05/2014] [Accepted: 08/01/2014] [Indexed: 11/30/2022]
Abstract
Breast cancer is the largest detected cancer amongst women in the US. In this work, our team reports on the development of piezoresistive microcantilevers (PMCs) to investigate their potential use in the accurate detection and characterization of benign and diseased breast tissues by performing indentations on the micro-scale tissue specimens. The PMCs used in these experiments have been fabricated using laboratory-made silicon-on-insulator (SOI) substrate, which significantly reduces the fabrication costs. The PMCs are 260 μm long, 35 μm wide and 2 μm thick with resistivity of order 1.316×10(-3) Ω cm obtained by using boron diffusion technique. For indenting the tissue, we utilized 8 μm thick cylindrical SU-8 tip. The PMC was calibrated against a known AFM probe. Breast tissue cores from seven different specimens were indented using PMC to identify benign and cancerous tissue cores. Furthermore, field emission scanning electron microscopy (FE-SEM) of benign and cancerous specimens showed marked differences in the tissue morphology, which further validates our observed experimental data with the PMCs. While these patient aspecific feasibility studies clearly demonstrate the ability to discriminate between benign and cancerous breast tissues, further investigation is necessary to perform automated mechano-phenotyping (classification) of breast cancer: from onset to disease progression.
Collapse
Affiliation(s)
- Hardik J Pandya
- Department of Mechanical Engineering, Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA.
| | - Rajarshi Roy
- Department of Mechanical Engineering, Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Wenjin Chen
- Center for Biomedical Imaging & Informatics, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Marina A Chekmareva
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - David J Foran
- Center for Biomedical Imaging & Informatics, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jaydev P Desai
- Department of Mechanical Engineering, Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
43
|
Hui CY, Jagota A, Nadermann N, Xu X. Deformation of a Solid Film with Surface Tension by a Liquid Drop. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.piutam.2014.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Pandya HJ, Park K, Chen W, Chekmareva MA, Foran DJ, Desai JP. Simultaneous MEMS-based electro-mechanical phenotyping of breast cancer. LAB ON A CHIP 2015; 15:3695-706. [PMID: 26224116 PMCID: PMC4550491 DOI: 10.1039/c5lc00491h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Carcinomas are the most commonly diagnosed cancers originating in the skin, lungs, breasts, pancreas, and other organs and glands. In most of the cases, the microenvironment within the tissue changes with the progression of disease. A key challenge is to develop a device capable of providing quantitative indicators in diagnosing cancer by measuring alteration in electrical and mechanical property of the tissues from the onset of malignancy. We demonstrate micro-electro-mechanical-systems (MEMS) based flexible polymer microsensor array capable of simultaneously measuring electro-mechanical properties of the breast tissues cores (1 mm in diameter and 10 μm in thickness) from onset through progression of the cancer. The electrical and mechanical signatures obtained from the tissue cores shows the capability of the device to clearly demarcate the specific stages of cancer in epithelial and stromal regions providing quantitative indicators facilitating the diagnosis of breast cancer. The present study shows that electro-mechanical properties of the breast tissue core at the micro-level are different than those at the macro-level.
Collapse
Affiliation(s)
- Hardik J Pandya
- Department of Mechanical Engineering, Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Song CK, Luck KA, Zhou N, Zeng L, Heitzer HM, Manley EF, Goldman S, Chen LX, Ratner MA, Bedzyk MJ, Chang RPH, Hersam MC, Marks TJ. “Supersaturated” Self-Assembled Charge-Selective Interfacial Layers for Organic Solar Cells. J Am Chem Soc 2014; 136:17762-73. [DOI: 10.1021/ja508453n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Charles Kiseok Song
- Department
of Chemistry and the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kyle A. Luck
- Department
of Materials Science and Engineering and the Argonne-Northwestern
Solar Energy Research Center, Northwestern University, 2220 Campus
Drive, Evanston, Illinois 60208, United States
| | - Nanjia Zhou
- Department
of Materials Science and Engineering and the Argonne-Northwestern
Solar Energy Research Center, Northwestern University, 2220 Campus
Drive, Evanston, Illinois 60208, United States
| | - Li Zeng
- Graduate
Program in Applied Physics, Northwestern University, 2220 Campus
Drive, Evanston, Illinois 60208, United States
| | - Henry M. Heitzer
- Department
of Chemistry and the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Eric F. Manley
- Department
of Chemistry and the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Samuel Goldman
- Weinberg
College of Arts and Science, Northwestern University, 1918 Sheridan
Road, Evanston, Illinois 60208, United States
| | - Lin X. Chen
- Department
of Chemistry and the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Mark A. Ratner
- Department
of Chemistry and the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering and the Argonne-Northwestern
Solar Energy Research Center, Northwestern University, 2220 Campus
Drive, Evanston, Illinois 60208, United States
| | - Michael J. Bedzyk
- Department
of Materials Science and Engineering and the Argonne-Northwestern
Solar Energy Research Center, Northwestern University, 2220 Campus
Drive, Evanston, Illinois 60208, United States
- Graduate
Program in Applied Physics, Northwestern University, 2220 Campus
Drive, Evanston, Illinois 60208, United States
| | - Robert P. H. Chang
- Department
of Materials Science and Engineering and the Argonne-Northwestern
Solar Energy Research Center, Northwestern University, 2220 Campus
Drive, Evanston, Illinois 60208, United States
| | - Mark C. Hersam
- Department
of Chemistry and the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering and the Argonne-Northwestern
Solar Energy Research Center, Northwestern University, 2220 Campus
Drive, Evanston, Illinois 60208, United States
| | - Tobin J. Marks
- Department
of Chemistry and the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering and the Argonne-Northwestern
Solar Energy Research Center, Northwestern University, 2220 Campus
Drive, Evanston, Illinois 60208, United States
| |
Collapse
|
46
|
Pandya HJ, Chen W, Goodell LA, Foran DJ, Desai JP. Mechanical phenotyping of breast cancer using MEMS: a method to demarcate benign and cancerous breast tissues. LAB ON A CHIP 2014; 14:4523-32. [PMID: 25267099 PMCID: PMC4224189 DOI: 10.1039/c4lc00594e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mechanical properties of tissue change significantly during the progression from healthy to malignant. Quantifying the mechanical properties of breast tissue within the tumor microenvironment can help to delineate benign from cancerous stages. In this work, we study high-grade invasive ductal carcinoma in comparison with their matched tumor adjacent areas, which exhibit benign morphology. Such paired tissue cores obtained from eight patients were indented using a MEMS-based piezoresistive microcantilever, which was positioned within pre-designated epithelial and stromal areas of the specimen. Field emission scanning electron microscopy studies on breast tissue cores were performed to understand the microstructural changes from benign to malignant. The normal epithelial tissues appeared compact and organized. The appearance of cancer regions, in comparison, not only revealed increased cellularity but also showed disorganization and increased fenestration. Using this technique, reliable discrimination between epithelial and stromal regions throughout both benign and cancerous breast tissue cores was obtained. The mechanical profiling generated using this method has the potential to be an objective, reproducible, and quantitative indicator for detecting and characterizing breast cancer.
Collapse
Affiliation(s)
- Hardik J Pandya
- Department of Mechanical Engineering, Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | |
Collapse
|
47
|
Huang LS, Pheanpanitporn Y, Yen YK, Chang KF, Lin LY, Lai DM. Detection of the antiepileptic drug phenytoin using a single free-standing piezoresistive microcantilever for therapeutic drug monitoring. Biosens Bioelectron 2014; 59:233-8. [DOI: 10.1016/j.bios.2014.03.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 11/27/2022]
|
48
|
Lim YC, Kouzani AZ, Kaynak A, Dai XJ, Littlefair G, Duan W. Theoretical modeling and experimental validation of surface stress in thrombin aptasensor. IEEE Trans Nanobioscience 2014; 13:384-91. [PMID: 25122838 DOI: 10.1109/tnb.2014.2337517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adsorption of target molecules on the immobilized microcantilever surface produced beam displacement due to the differential surface stress generated between the immobilized and non-immobilized surface. Surface stress is caused by the intermolecular forces between the molecules. Van der Waals, electrostatic forces, hydrogen bonding, hydrophobic effect and steric hindrance are some of the intermolecular forces involved. A theoretical framework describing the adsorption-induced microcantilever displacement is derived in this paper. Experimental displacement of thrombin aptamer-thrombin interactions was carried out. The relation between the electrostatic interactions involved between adsorbates (thrombin) as well as adsorbates and substrates (thrombin aptamer) and the microcantilever beam displacement utilizing the proposed mathematical model was quantified and compared to the experimental value. This exercise is important to aid the designers in microcantilever sensing performance optimization.
Collapse
|
49
|
Alonso-Sarduy L, De Los Rios P, Benedetti F, Vobornik D, Dietler G, Kasas S, Longo G. Real-time monitoring of protein conformational changes using a nano-mechanical sensor. PLoS One 2014; 9:e103674. [PMID: 25077809 PMCID: PMC4117498 DOI: 10.1371/journal.pone.0103674] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/01/2014] [Indexed: 11/24/2022] Open
Abstract
Proteins can switch between different conformations in response to stimuli, such as pH or temperature variations, or to the binding of ligands. Such plasticity and its kinetics can have a crucial functional role, and their characterization has taken center stage in protein research. As an example, Topoisomerases are particularly interesting enzymes capable of managing tangled and supercoiled double-stranded DNA, thus facilitating many physiological processes. In this work, we describe the use of a cantilever-based nanomotion sensor to characterize the dynamics of human topoisomerase II (Topo II) enzymes and their response to different kinds of ligands, such as ATP, which enhance the conformational dynamics. The sensitivity and time resolution of this sensor allow determining quantitatively the correlation between the ATP concentration and the rate of Topo II conformational changes. Furthermore, we show how to rationalize the experimental results in a comprehensive model that takes into account both the physics of the cantilever and the dynamics of the ATPase cycle of the enzyme, shedding light on the kinetics of the process. Finally, we study the effect of aclarubicin, an anticancer drug, demonstrating that it affects directly the Topo II molecule inhibiting its conformational changes. These results pave the way to a new way of studying the intrinsic dynamics of proteins and of protein complexes allowing new applications ranging from fundamental proteomics to drug discovery and development and possibly to clinical practice.
Collapse
Affiliation(s)
- Livan Alonso-Sarduy
- Laboratory of Physics of Living Matter, Institute of Physics of Biological Systems, School of Basic Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Paolo De Los Rios
- Laboratory of Statistical Biophysics, Institute of Theoretical Physics, School of Basic Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Fabrizio Benedetti
- Laboratory of Physics of Living Matter, Institute of Physics of Biological Systems, School of Basic Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Dusan Vobornik
- Laboratory of Physics of Living Matter, Institute of Physics of Biological Systems, School of Basic Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter, Institute of Physics of Biological Systems, School of Basic Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Sandor Kasas
- Laboratory of Physics of Living Matter, Institute of Physics of Biological Systems, School of Basic Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, Department of Fundamental Neurosciences, Lausanne University, Lausanne, Switzerland
| | - Giovanni Longo
- Laboratory of Physics of Living Matter, Institute of Physics of Biological Systems, School of Basic Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
- Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
50
|
First-principles surface stress calculations and multiscale deformation analysis of a self-assembled monolayer adsorbed on a micro-cantilever. SENSORS 2014; 14:7435-50. [PMID: 24763217 PMCID: PMC4029703 DOI: 10.3390/s140407435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 02/26/2014] [Accepted: 04/18/2014] [Indexed: 12/03/2022]
Abstract
Micro-cantilever sensors are widely used to detect biomolecules, chemical gases, and ionic species. However, the theoretical descriptions and predictive modeling of these devices are not well developed, and lag behind advances in fabrication and applications. In this paper, we present a novel multiscale simulation framework for nanomechanical sensors. This framework, combining density functional theory (DFT) calculations and finite element method (FEM) analysis, is capable of analyzing molecular adsorption-induced deformation and stress fields in the sensors from the molecular scale to the device scale. Adsorption of alkanethiolate self-assembled monolayer (SAM) on the Au(111) surface of the micro-cantilever sensor is studied in detail to demonstrate the applicability of this framework. DFT calculations are employed to investigate the molecular adsorption-induced surface stress upon the gold surface. The 3D shell elements with initial stresses obtained from the DFT calculations serve as SAM domains in the adsorption layer, while FEM is employed to analyze the deformation and stress of the sensor devices. We find that the micro-cantilever tip deflection has a linear relationship with the coverage of the SAM domains. With full coverage, the tip deflection decreases as the molecular chain length increases. The multiscale simulation framework provides a quantitative analysis of the displacement and stress fields, and can be used to predict the response of nanomechanical sensors subjected to complex molecular adsorption.
Collapse
|