1
|
Shiimura Y, Kojima M, Sato T. How the ghrelin receptor recognizes the acyl-modified orexigenic hormone. Front Mol Neurosci 2025; 18:1549366. [PMID: 40260011 PMCID: PMC12009760 DOI: 10.3389/fnmol.2025.1549366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/12/2025] [Indexed: 04/23/2025] Open
Abstract
Ghrelin, discovered in 1999 as an endogenous ligand of the growth hormone secretagogue receptor (now known as the ghrelin receptor), is a peptide hormone with diverse physiological activities, such as stimulation of growth hormone release, increased appetite, fat accumulation, thermoregulation, and cardioprotection. As a distinctive feature, ghrelin needs to undergo octanoylation, a specific acyl modification, to exert its biological activities. Although the ghrelin receptor specifically recognizes this modification, the underlying molecular mechanism had remained unclear for decades. Recent advancements in structural biology have facilitated the elucidation of this recognition mechanism 25 years after ghrelin's discovery. This review highlights the structural basis of ghrelin octanoylation, particularly emphasizing the mechanism by which the ghrelin receptor recognizes this acyl-modified hormone.
Collapse
Affiliation(s)
- Yuki Shiimura
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayasu Kojima
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| |
Collapse
|
2
|
You C, Jiang M, Gao T, Zhu Z, He X, Xu Y, Gao Y, Jiang Y, Xu HE. Decoding the structural basis of ligand recognition and biased signaling in the motilin receptor. Cell Rep 2025; 44:115329. [PMID: 39987561 DOI: 10.1016/j.celrep.2025.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/30/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
The motilin receptor (MTLR) is a key target for treating gastrointestinal (GI) disorders like gastroparesis, yet developing effective agonists remains challenging due to drug tolerance and signaling bias. We present cryoelectron microscopy (cryo-EM) structures of MTLR bound to azithromycin, a macrolide antibiotic, and DS-3801b, a non-macrolide agonist. Distinct ligand recognition mechanisms are revealed, with azithromycin binding deeply within the orthosteric pocket and DS-3801b adopting a special clamp-like conformation stabilized by a water molecule. We also highlight the critical role of extracellular loop 2 (ECL2) in ligand specificity and signaling pathway activation, affecting both G-protein and β-arrestin signaling. Additionally, the "D2.60R2.63S3.28" motif and interactions around transmembranes 6/7 (TM6/7) are identified as key drivers of signaling selectivity. These findings offer insights into the structural dynamics of MTLR, laying the groundwork for the rational design of next-generation GI prokinetic drugs with enhanced efficacy and safety.
Collapse
Affiliation(s)
- Chongzhao You
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mengting Jiang
- Lingang Laboratory, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tianyu Gao
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zining Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xinheng He
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwei Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Gao
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - H Eric Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lingang Laboratory, Shanghai 200031, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
3
|
Liu K, Dong H, Li X, Hu C, Cui F, Li S, Zhang X, Du Y, Yang P, Ji W, Sui W, Meng J. L-Arabinose Alleviates Functional Constipation in Mice by Regulating Gut Microbiota and Metabolites. Foods 2025; 14:900. [PMID: 40077603 PMCID: PMC11899279 DOI: 10.3390/foods14050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Functional constipation ranks among the most common disorders impacting human health, which is manifested by difficulty in defecation and a complex etiology. L-Arabinose, a pentose found naturally in fruit rinds and cereal husks, has been reported to regulate glycolipid metabolism, improve glucose homeostasis, and exhibit anti-inflammatory effects. However, the effect and precise mechanism of L-Arabinose on functional constipation remain unclear. In this study, the effect of L-Arabinose in alleviating functional constipation induced by diphenoxylate was evaluated. The model group consisted of functional constipation mice that did not receive any intervention. The positive drug group was treated with 2.0 g/kg lactulose, while the intervention group was given 0.5 g/kg, 0.75 g/kg, 1.0 g/kg, and 2.0 g/kg L-Arabinose, respectively. The data suggested that 20 days of L-Arabinose intervention could shorten the first black stool defecation time, increase fecal water content, and enhance the rate of small intestinal propulsion in mice with functional constipation induced by diphenoxylate. Additionally, L-Arabinose reversed the protein expression of functional constipation-related intestinal factors in the colon, characterized by a decrease in the expression of water channel proteins AQP3 and AQP4, as well as an increase in the expression of tight-junction proteins ZO-1, Claudin-1 and Occludin. Furthermore, L-Arabinose modulated the levels of hormones (MTL, Gas) and neurotransmitters (5-HT, VIP) related to the digestive systems of mice with constipation, resulting in elevated levels of 5-HT, MTL, and Gas and decreasing levels of VIP. Histopathological analysis also revealed that L-Arabinose intervention improved the intestinal inflammatory response. Furthermore, 16S rRNA sequencing and metabolomics of the intestinal microbiota demonstrated that L-Arabinose treatment improved both the intestinal microbiota composition and the metabolite levels. This study suggests that L-Arabinose can serve as a potential functional ingredient to promote intestinal health, enhance gastrointestinal motility and barrier function, regulate osmotic pressure, restore neurotransmitter levels, and effectively relieve functional constipation.
Collapse
Affiliation(s)
- Ke Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Huixuan Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Xinran Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Chaoqun Hu
- Healtang Biotech Co., Ltd., Zhangqiu District, Jinan 250204, China; (C.H.); (W.J.)
| | - Fengya Cui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Shiji Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Xiaolin Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Yushan Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Penghui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| | - Wenna Ji
- Healtang Biotech Co., Ltd., Zhangqiu District, Jinan 250204, China; (C.H.); (W.J.)
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
- Jinan Fruit Research Institute, All-China Federation of Supply & Marketing Co-Operatives, Jinan 250014, China
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (K.L.); (H.D.); (X.L.); (F.C.); (S.L.); (X.Z.); (Y.D.); (P.Y.); (W.S.)
| |
Collapse
|
4
|
Ha NY, Keum CY, Kim J. Pediatric Tuina for the treatment of functional dyspepsia: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2025; 88:103117. [PMID: 39662848 DOI: 10.1016/j.ctim.2024.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Functional dyspepsia (FD) is the most prevalent pediatric gastrointestinal disorder, imposing a significant burden on healthcare services and often persisting into adulthood. Tuina, a traditional manual therapy, is frequently employed in the treatment of FD. This study aimed to systematically evaluate the efficacy and safety of Tuina in treating FD in children. METHODS A comprehensive search of 11 databases was conducted for randomized controlled trials (RCTs) published up to June 2022. Two independent reviewers screened the literature, extracted data, assessed the methodological quality of the RCTs using the Cochrane risk-of-bias tool, and performed meta-analysis using Review Manager software to quantify Tuina's efficacy. RESULTS The review covered ten RCTs with 1336 children. Tuina, alone or with conventional therapy (CT), significantly improved efficacy rates over CT alone (relative risk (RR) = 1.16, 95 % confidence interval (CI) [1.11, 1.21], p < 0.00001). The combined Tuina group demonstrated significantly lower overall dyspeptic symptom scores (standard mean difference (SMD) = -1.18, 95 % CI [-1.46, -0.91], p < 0.00001) and shorter times to resolution of primary symptoms, including abdominal distension (mean difference (MD) = -2.08, 95 % CI [-2.35, -1.81], p < 0.00001), abdominal pain (MD = -1.54, 95 % CI [-1.92, -1.17], p < 0.00001), belching (MD = -1.11, 95 % CI [-1.44, -0.77], p < 0.00001), and anorexia (MD = -1.37, 95 % CI [-1.67, -1.07], p < 0.00001). Additionally, the recurrence rate following treatment was significantly lower (RR = 0.32, 95 % CI [0.14, 0.72], p = 0.006). The levels of serum motilin (MD = 22.93, 95 % CI [13.56, 32.30], p < 0.00001) and urinary excretion of D-xylose (MD = 3.11, 95 % CI [0.31, 5.92], p = 0.03) were also elevated. There were no significant differences between the combined Tuina and CT groups regarding the four individual dyspeptic symptoms or neuropeptide Y levels. No adverse events were reported in the Tuina group. CONCLUSION This systematic review collectively suggest that Tuina effectively and safely improves clinical symptoms in children with FD. However, addressing identified methodological weaknesses is crucial for future studies to ensure robust evidence.
Collapse
Affiliation(s)
- Na-Yeon Ha
- Division of Digestive Diseases, Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Digestive Diseases, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Chang-Yul Keum
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Jinsung Kim
- Division of Digestive Diseases, Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Digestive Diseases, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
5
|
Wang Q, Farhadipour M, Thijs T, Ruilova Sosoranga E, Van der Schueren B, Ceulemans LJ, Deleus E, Lannoo M, Tack J, Depoortere I. Bitter-tasting drugs tune GDF15 and GLP-1 expression via bitter taste or motilin receptors in the intestine of patients with obesity. Mol Metab 2024; 88:102002. [PMID: 39111389 PMCID: PMC11380393 DOI: 10.1016/j.molmet.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
OBJECTIVE Growth differentiation factor 15 (GDF15), a stress related cytokine, was recently identified as a novel satiety signal acting via the GFRAL receptor located in the hindbrain. Bitter compounds are known to induce satiety via the release of glucagon-like peptide 1 (GLP-1) through activation of bitter taste receptors (TAS2Rs, 25 subtypes) on enteroendocrine cells in the gut. This study aimed to investigate whether and how bitter compounds induce a stress response in intestinal epithelial cells to affect GDF15 expression in patients with obesity, thereby facilitating satiety signaling from the gut. METHODS The acute effect of oral intake of the bitter-containing medication Plaquenil (hydroxychloroquine sulfate) on plasma GDF15 levels was evaluated in a placebo-controlled, double-blind, randomized, two-visit crossover study in healthy volunteers. Primary crypts isolated from the jejunal mucosa from patients with obesity were stimulated with vehicle or bitter compounds, and the effect on GDF15 expression was evaluated using RT-qPCR or ELISA. Immunofluorescence colocalization studies were performed between GDF15, epithelial cell type markers and TAS2Rs. The role of TAS2Rs was tested by 1) pretreatment with a TAS2R antagonist, GIV3727; 2) determining TAS2R4/43 polymorphisms that affect taste sensitivity to TAS2R4/43 agonists. RESULTS Acute intake of hydroxychloroquine sulfate increased GDF15 plasma levels, which correlated with reduced hunger scores and plasma ghrelin levels in healthy volunteers. This effect was mimicked in primary jejunal cultures from patients with obesity. GDF15 was expressed in enteroendocrine and goblet cells with higher expression levels in patients with obesity. Various bitter-tasting compounds (medicinal, plant extracts, bacterial) either increased or decreased GDF15 expression, with some also affecting GLP-1. The effect was mediated by specific intestinal TAS2R subtypes and the unfolded protein response pathway. The bitter-induced effect on GDF15/GLP-1 expression was influenced by the existence of TAS2R4 amino acid polymorphisms and TAS2R43 deletion polymorphisms that may predict patient's therapeutic responsiveness. However, the effect of the bitter-tasting antibiotic azithromycin on GDF15 release was mediated via the motilin receptor, possibly explaining some of its aversive side effects. CONCLUSIONS Bitter chemosensory and pharmacological receptors regulate the release of GDF15 from human gut epithelial cells and represent potential targets for modulating metabolic disorders or cachexia.
Collapse
Affiliation(s)
- Qian Wang
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Mona Farhadipour
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Theo Thijs
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | | | - Bart Van der Schueren
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium; Laboratory of Clinical and Experimental Endocrinology, University of Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Leuven Intestinal Failure and Transplantation (LIFT) Center, University Hospitals Leuven, Leuven, Belgium
| | - Ellen Deleus
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Matthias Lannoo
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Inge Depoortere
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Szczupak M, Jankowska M, Jankowski B, Wierzchowska J, Kobak J, Szczupak P, Kosydar-Bochenek J, Krupa-Nurcek S. Prokinetic effect of erythromycin in the management of gastroparesis in critically ill patients-our experience and literature review. Front Med (Lausanne) 2024; 11:1440992. [PMID: 39314225 PMCID: PMC11416996 DOI: 10.3389/fmed.2024.1440992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Gastroparesis is a disorder characterized by impaired gastric emptying and the accumulation of food in the intestines without any clear mechanical cause. Gastroparesis in critical care patients is a prevalent issue in the intensive care unit. The disruption of normal gastrointestinal motility in critically ill patients is linked to a significant risk of intolerance to enteral feeding, colonization of the gastrointestinal tract with pathogenic bacterial strains, increased permeability of the intestinal wall, translocation of the intestinal microbiota, leading to progressive malnutrition, and potential development of bacterial infection. Materials and methods The literature was reviewed to assess the benefits and risks associated with the use of this medication. Aim The aim of the study was to treat the symptoms of gastroparesis and stimulate gastrointestinal motility. Consequently, the aim was to reduce the amount of backed-up food content in the stomach, accelerate gastrointestinal motility, and return to intestinal feeding. Results Gastroparesis is a frequent issue among patients in the intensive care unit. Critical illness can lead to gastrointestinal motility disorders, causing slowed gastric emptying. This increases the risk of problems such as intolerance to enteral feeding, regurgitation, and aspiration of gastrointestinal contents into the respiratory tract, as well as colonization of the gastrointestinal tract by pathogens. Over time, impaired intestinal absorption can result in malnutrition, necessitating the initiation of parenteral nutrition. Conclusion After analysis of the literature and published scientific reports, as well as considering their own research, it is evident that erythromycin, as a prokinetic drug, effectively enhances gastrointestinal motility. This contributes to stimulating gastric emptying in critically ill patients with gastroparesis who are hospitalized in an intensive care unit. The use of erythromycin in combination with metoclopramide and/or itopride hydrochloride allows for a synergistic effect, leading to the quickest possible return to enteral feeding.
Collapse
Affiliation(s)
- Mateusz Szczupak
- Department of Anesthesiology and Intensive Care, Copernicus Hospital, Gdansk, Poland
| | - Magdalena Jankowska
- Department of Anesthesiology and Intensive Care, Copernicus Hospital, Gdansk, Poland
| | - Bartłomiej Jankowski
- Department of Anesthesiology and Intensive Care, Copernicus Hospital, Gdansk, Poland
| | - Jolanta Wierzchowska
- Department of Anesthesiology and Intensive Care, Copernicus Hospital, Gdansk, Poland
| | - Jacek Kobak
- Department of Otolaryngology, Medical University of Gdansk, Gdansk, Poland
| | - Paweł Szczupak
- Department of Electrical Engineering and Computer Science, Rzeszow University of Technology, Rzeszow, Poland
| | - Justyna Kosydar-Bochenek
- Institute of Health Sciences, College of Medical Sciences of the University of Rzeszow, Rzeszow, Poland
| | - Sabina Krupa-Nurcek
- Department of Surgery, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| |
Collapse
|
7
|
Azuma M, Konno N, Sakata I, Koshimizu TA, Kaiya H. Molecular characterization and distribution of motilin and motilin receptor in the Japanese medaka Oryzias latipes. Cell Tissue Res 2024; 397:61-76. [PMID: 38727755 DOI: 10.1007/s00441-024-03896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/30/2024] [Indexed: 07/09/2024]
Abstract
Motilin (MLN) is a peptide hormone originally isolated from the mucosa of the porcine intestine. Its orthologs have been identified in various vertebrates. Although MLN regulates gastrointestinal motility in tetrapods from amphibians to mammals, recent studies indicate that MLN is not involved in the regulation of isolated intestinal motility in zebrafish, at least in vitro. To determine the unknown function of MLN in teleosts, we examined the expression of MLN and the MLN receptor (MLNR) at the cellular level in Japanese medaka (Oryzias latipes). Quantitative PCR revealed that mln mRNA was limitedly expressed in the gut, whereas mlnr mRNA was not detected in the gut but was expressed in the brain and kidney. By in situ hybridization and immunohistochemistry, mlnr mRNA was detected in the dopaminergic neurons of the area postrema in the brain and the noradrenaline-producing cells in the interrenal gland of the kidney. Furthermore, we observed efferent projections of mlnr-expressing dopaminergic neurons in the lobus vagi (XL) and nucleus motorius nervi vagi (NXm) of the medulla oblongata by establishing a transgenic medaka expressing the enhanced green fluorescence protein driven by the mlnr promoter. The expression of dopamine receptor mRNAs in the XL and cholinergic neurons in NXm was confirmed by in situ hybridization. These results indicate novel sites of MLN activity other than the gastrointestinal tract. MLN may exert central and peripheral actions through the regulation of catecholamine release in medaka.
Collapse
Affiliation(s)
- Morio Azuma
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, Japan.
| | - Norifumi Konno
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, 3190, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimookubo, Saitama, Japan
| | - Taka-Aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, Japan
| | - Hiroyuki Kaiya
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, 3190, Japan
- Division of Drug Discovery, Grandsoul Research Institute for Immunology, Inc. 8-1 Utano-Matsui, Uda, Nara, Japan
| |
Collapse
|
8
|
Tang N, Li Y, Li Y, Xu S, Wang M, Wang B, Liu Y, Zhang S, Wu H, Zhang X, Zhou B, Li Z. Motilin, a Novel Orexigenic Factor, Involved in Feeding Regulation in Yangtze Sturgeon ( Acipenser dabryanus). Biomolecules 2024; 14:433. [PMID: 38672450 PMCID: PMC11048545 DOI: 10.3390/biom14040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Motilin is a gastrointestinal hormone that is mainly produced in the duodenum of mammals, and it is responsible for regulating appetite. However, the role and expression of motilin are poorly understood during starvation and the weaning stage, which is of great importance in the seeding cultivation of fish. In this study, the sequences of Yangtze sturgeon (Acipenser dabryanus Motilin (AdMotilin)) motilin receptor (AdMotilinR) were cloned and characterized. The results of tissue expression showed that by contrast with mammals, AdMotilin mRNA was richly expressed in the brain, whereas AdMotilinR was highly expressed in the stomach, duodenum, and brain. Weaning from a natural diet of T. Limnodrilus to commercial feed significantly promoted the expression of AdMotilin in the brain during the period from day 1 to day 10, and after re-feeding with T. Limnodrilus the change in expression of AdMotilin was partially reversed. Similarly, it was revealed that fasting increased the expression of AdMotilin in the brain (3 h, 6 h) and duodenum (3 h), and the expression of AdMotilinR in the brain (1 h) in a time-dependent manner. Furthermore, it was observed that peripheral injection of motilin-NH2 increased food intake and the filling index of the digestive tract in the Yangtze sturgeon, which was accompanied by the changes of AdMotilinR and appetite factors expression in the brain (POMC, CART, AGRP, NPY and CCK) and stomach (CCK). These results indicate that motilin acts as an indicator of nutritional status, and also serves as a novel orexigenic factor that stimulates food intake in Acipenser dabryanus. This study lays a strong foundation for the application of motilin as a biomarker in the estimation of hunger in juvenile Acipenser dabryanu during the weaning phase, and enhances the understanding of the role of motilin as a novel regulator of feeding in fish.
Collapse
Affiliation(s)
- Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Ya Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Yingzi Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Shaoqi Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Mei Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Bin Wang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Yanling Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Shupeng Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Hongwei Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Bo Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| |
Collapse
|
9
|
Cho MS, Park JW, Kim J, Ko SJ. The influence of herbal medicine on serum motilin and its effect on human and animal model: a systematic review. Front Pharmacol 2023; 14:1286333. [PMID: 38161695 PMCID: PMC10755953 DOI: 10.3389/fphar.2023.1286333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Motilin (MLN) is a gastrointestinal (GI) hormone produced in the upper small intestine. Its most well understood function is to participate in Phase III of the migrating myoelectric complex component of GI motility. Changes in MLN availability are associated with GI diseases such as gastroesophageal reflux disease and functional dyspepsia. Furthermore, herbal medicines have been used for several years to treat various GI disorders. We systematically reviewed clinical and animal studies on how herbal medicine affects the modulation of MLN and subsequently brings the therapeutic effects mainly focused on GI function. Methods: We searched the PubMed, Embase, Cochrane, and Web of Science databases to collect all articles published until 30 July 2023, that reported the measurement of plasma MLN levels in human randomized controlled trials and in vivo herbal medicine studies. The collected characteristics of the articles included the name and ingredients of the herbal medicine, physiological and symptomatic changes after administering the herbal medicine, changes in plasma MLN levels, key findings, and mechanisms of action. The frequency patterns (FPs) of botanical drug use and their correlations were investigated using an FP growth algorithm. Results: Nine clinical studies with 1,308 participants and 20 animal studies were included in the final analyses. Herbal medicines in clinical studies have shown therapeutic effects in association with increased levels of MLN, including GI motility regulation and symptom improvement. Herbal medicines have also shown anti-stress, anti-tumor, and anti-inflammatory effects in vivo. Various biochemical markers may correlate with MLN levels. Markers may have a positive correlation with plasma MLN levels included ghrelin, acetylcholine, and secretin, whereas a negative correlation included triglycerides and prostaglandin E2. Markers, such as gastrin and somatostatin, did not show any correlation with plasma MLN levels. Based on the FP growth algorithm, Glycyrrhiza uralensis and Paeonia japonica were the most frequently used species. Conclusion: Herbal medicine may have therapeutic effects mainly on GI symptoms with involvement of MLN regulation and may be considered as an alternative option for the treatment of GI diseases. Further studies with more solid evidence are needed to confirm the efficacy and mechanisms of action of herbal medicines. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=443244, identifier CRD42023443244.
Collapse
Affiliation(s)
- Min-Seok Cho
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Woo Park
- Department of Internal Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinsung Kim
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seok-Jae Ko
- Department of Internal Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Nargund R, Wyvratt M, Lin S, Sebhat I, Greenlee W. Annotated Bibliography of Dr. Arthur A. Patchett. J Med Chem 2023; 66:15567-15575. [PMID: 38032081 DOI: 10.1021/acs.jmedchem.3c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
|
11
|
Zhang S, Kaiya H, Kitazawa T. Does ghrelin regulate intestinal motility in rabbits? An in vitro study using isolated duodenal strips. Gen Comp Endocrinol 2023; 344:114384. [PMID: 37722460 DOI: 10.1016/j.ygcen.2023.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Rabbit duodenum has been used for examining the ability of motilin to cause muscle contraction in vitro. A motilin-related peptide, ghrelin, is known to be involved in the regulation of gastrointestinal (GI) motility in various animals, but its ability to cause rabbit GI contraction have not been well examined. The aim of this study is to clarify the action of rat ghrelin and its interaction with motilin in the rabbit duodenum. The mRNA expression of ghrelin and motilin receptors was also examined using RT-PCR. Rat ghrelin (10-9-10-6 M) did not change the contractile activity of the duodenum measured by the mean muscle tonus and area under the curve of contraction waves. In agreement with this result, the distribution of ghrelin receptor mRNA in the rabbit GI tract varied depending on the GI region from which the samples were taken; the expression level in the duodenum was negligible, but that in the esophagus or stomach was significant. On the other hand, motilin (10-10-10-6 M) caused a concentration-dependent contraction by means of increased mean muscle tonus, and consistently, motilin receptor mRNA was expressed heterogeneously depending on the GI region (esophagus = stomach = colon = rectum < duodenum = jejunum = ileum < cecum). Expression level of motilin receptor was comparable to that of ghrelin receptor in the esophagus and stomach. Pretreatment with ghrelin (10-6 M) prior to motilin did not affect the contractile activity of motilin in the duodenum. In conclusion, ghrelin does not affect muscle contractility or motilin-induced contraction in the rabbit duodenum, which is due to the lack of ghrelin receptors. The present in vitro results suggest that ghrelin might not be a regulator of intestinal motility in rabbits.
Collapse
Affiliation(s)
- Shuangyi Zhang
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan; Faculty of Science, University of Toyama, Toyama, Toyama 933-8555, Japan; Grandsoul Research Institute for Immunology, Inc., Uda, Nara 633-2221, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| |
Collapse
|
12
|
Li HZ, Wang YF, Zheng YS, Liu YL, Xu ZG, Guo ZY. The ghrelin receptor GHSR has two efficient agonists in the lobe-finned fish Latimeria chalumnae. Biochem Biophys Res Commun 2023; 679:110-115. [PMID: 37677979 DOI: 10.1016/j.bbrc.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
The peptide hormone ghrelin (an agonist) and LEAP2 (an antagonist) play important functions in energy metabolism via their receptor GHSR, an A-class G protein-coupled receptor. Ghrelin, LEAP2, and GHSR are widely present from fishes to mammals. However, our recent study suggested that fish GHSRs have different binding properties to ghrelin: a GHSR from the lobe-finned fish Latimeria chalumnae (coelacanth) is efficiently activated by ghrelin, but GHSRs from the ray-finned fish Danio rerio (zebrafish) and Larimichthys crocea (large yellow croaker) have lost binding to ghrelin. Do fish GHSRs use another peptide as their agonist? In the present study we tested to two fish motilins from D. rerio and L. chalumnae because motilin is distantly related to ghrelin. In ligand binding and activation assays, the fish GHSRs from D. rerio and L. crocea displayed no detectable or very low binding to all tested motilins; however, the fish GHSR from L. chalumnae bound to its motilin with high affinity and was efficiently activated by it. Therefore, it seemed that motilin is not a ligand for GHSR in the ray-finned fish D. rerio and L. crocea, but is an efficient agonist for GHSR in the lobe-finned fish L. chalumnae, one of the closest fish relatives of tetrapods. The results of present study suggested that GHSR might have two efficient agonists, ghrelin and motilin, in ancient fishes; however, this feature might be only preserved in some extant fishes with ancient evolutionary origins.
Collapse
Affiliation(s)
- Hao-Zheng Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Fen Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yong-Shan Zheng
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
13
|
Zhou X, Mao B, Tang X, Zhang Q, Zhao J, Zhang H, Cui S. Exploring the Dose–Effect Relationship of Bifidobacterium longum in Relieving Loperamide Hydrochloride-Induced Constipation in Rats through Colon-Released Capsules. Int J Mol Sci 2023; 24:ijms24076585. [PMID: 37047557 PMCID: PMC10095166 DOI: 10.3390/ijms24076585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Constipation is a common disease affecting humans. Bifidobacterium longum is reportedly effective in relieving constipation. Current studies generally focus on the dose–response relationship of oral doses; however, the dose–effect relationship of B. longum in the colon, which is the primary site where B. longum exerts constipation-relieving effects, to treat constipation has not been studied. Herein, three strains of B. longum (FGSZY6M4, FJSWXJ10M2, and FSDJN6M3) were packaged in colon-released capsules to explore the dose–effect relationship in the colon. For each strain, three groups of capsules (104, 106, and 108 CFU/capsule, respectively) and one group of free probiotics (108 CFU/mL) were used to explore the colonic dose effect of B. longum. The results showed that the three strains of B. longum improved fecal water content and promoted intestinal motility by regulating gastrointestinal peptide (MTL, GAS, and VIP), aquaporin-3, and 5-hydroxytryptamine levels while promoting gastrointestinal motility and relieving constipation by regulating the intestinal flora composition of constipated rats and changing their metabolite content (short-chain fatty acids). Among the three free bacterial solution groups (108 CFU/mL), FGSZY6M4 was the most effective in relieving constipation caused by loperamide hydrochloride in rats. The optimal effective dose of each strain was 6M4 (104 CFU/day), 10M2 (106 CFU/day), and S3 (108 CFU/day) of the colon-released capsules. Therefore, for some effective strains, the dose of oral probiotics can be reduced by colon-released capsules, and constipation can be relieved without administering a great number of bacterial solutions. Therefore, investigating the most effective dose of B. longum at the colon site can help to improve the efficiency of relieving constipation.
Collapse
Affiliation(s)
- Xin Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
You C, Zhang Y, Xu Y, Xu P, Li Z, Li H, Huang S, Chen Z, Li J, Xu HE, Jiang Y. Structural basis for motilin and erythromycin recognition by motilin receptor. SCIENCE ADVANCES 2023; 9:eade9020. [PMID: 36921049 PMCID: PMC10017046 DOI: 10.1126/sciadv.ade9020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Motilin is an endogenous peptide hormone almost exclusively expressed in the human gastrointestinal (GI) tract. It activates the motilin receptor (MTLR), a class A G protein-coupled receptor (GPCR), and stimulates GI motility. To our knowledge, MTLR is the first GPCR reported to be activated by macrolide antibiotics, such as erythromycin. It has attracted extensive attention as a potential drug target for GI disorders. We report two structures of Gq-coupled human MTLR bound to motilin and erythromycin. Our structures reveal the recognition mechanism of both ligands and explain the specificity of motilin and ghrelin, a related gut peptide hormone, for their respective receptors. These structures also provide the basis for understanding the different recognition modes of erythromycin by MTLR and ribosome. These findings provide a framework for understanding the physiological regulation of MTLR and guiding drug design targeting MTLR for the treatment of GI motility disorders.
Collapse
Affiliation(s)
- Chongzhao You
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peiyu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhen Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huadong Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Sijie Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zecai Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingru Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - H. Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Lingang Laboratory, Shanghai 200031, China
| | - Yi Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
| |
Collapse
|
15
|
Mori H, Verbeure W, Tanemoto R, Sosoranga ER, Jan Tack. Physiological functions and potential clinical applications of motilin. Peptides 2023; 160:170905. [PMID: 36436612 DOI: 10.1016/j.peptides.2022.170905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
Motilin is a gastrointestinal hormone secreted by the duodenum. This peptide regulates a characteristic gastrointestinal contraction pattern, called the migrating motor complex, during the fasting state. Motilin also affects the pressure of the lower esophageal sphincter, gastric motility and gastric accommodation in the gastrointestinal tract. Furthermore, motilin induces bile discharge into the duodenum by promoting gallbladder contraction, pepsin secretion in the stomach, pancreatic juice and insulin secretion from the pancreas. In recent years, it has been shown that motilin is associated with appetite, and clinical applications are expected for diseases affected by food intake, e.g. obesity, by regulating motilin levels. Gastric acid and bile are the two major physiological regulators for motilin release. Caloric foods have varying effects on motilin levels, depending on their composition. Among non-caloric foods, bitter substances reduce motilin levels and are therefore expected to have an appetite-suppressing effect. Various motilin receptor agonists and antagonists have been developed but have yet to reach clinical use.
Collapse
Affiliation(s)
- Hideki Mori
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Japan
| | - Wout Verbeure
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Rina Tanemoto
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | | | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Zhang S, Kaiya H, Kitazawa T. Motilin is a regulator of gastric contraction in Japanese fire belly newts (Cynops pyrrhogaster), in vitro studies using isolated gastrointestinal strips of newts, rabbits, and chickens. Gen Comp Endocrinol 2023; 330:114140. [PMID: 36228737 DOI: 10.1016/j.ygcen.2022.114140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
The effects of newt motilin on the contractility of the isolated gastrointestinal (GI) tract from Japanese fire belly newts (newt) were examined to clarify whether motilin regulates GI motility in urodele amphibians. In addition, contractile responsiveness to motilins from seven species of vertebrates (human, chicken, turtle, alligator, axolotol, newt and zebrafish) were compared in GI preparations from three different animals (rabbit duodenum, chicken ileum and newt stomach) to determine the species-specific action of motilin. Newt motilin (10-10 M - 10-6 M) caused a contraction of cognate gastric strips, while the upper, middle, and lower intestinal strips were insensitive. The rank order of motilins for contractile activity in newt gastric strips was newt > alligator > axolotol > chicken > turtle > human ≫ zebrafish. On the other hand, newt motilin caused a weak contraction in the rabbit duodenum (human > alligator = chicken > turtle > newt ≧ axolotol > zebrafish), and it was ineffective in the chicken ileum (chicken > turtle > alligator > human ≫ newt, axolotol and zebrafish). This study demonstrates that motilin induces contraction in the GI tract of a urodele amphibian, the newt, in a region (stomach)-specific manner and further indicates that a ligand-receptor interaction of the motilin system is a species-specific manner probably due to differences in the amino acid sequence of motilin.
Collapse
Affiliation(s)
- Shuangyi Zhang
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan; Faculty of Science, University of Toyama, Toyama 933-8555, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| |
Collapse
|
17
|
Functions of the Zinc-Sensing Receptor GPR39 in Regulating Intestinal Health in Animals. Int J Mol Sci 2022; 23:ijms232012133. [PMID: 36292986 PMCID: PMC9602648 DOI: 10.3390/ijms232012133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
G protein-coupled receptor 39 (GPR39) is a zinc-sensing receptor (ZnR) that can sense changes in extracellular Zn2+, mediate Zn2+ signal transmission, and participate in the regulation of numerous physiological activities in living organisms. For example, GPR39 activates the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and phosphatidylinositol3-kinase/protein kinase B (PI3K/AKT) signaling pathways upon Zn2+ stimulation, enhances the proliferation and differentiation of colonic cells, and regulates ion transport, as well as exerting other functions. In recent years, with the increased attention to animal gut health issues and the intensive research on GPR39, GPR39 has become a potential target for regulating animal intestinal health. On the one hand, GPR39 is involved in regulating ion transport in the animal intestine, mediating the Cl− efflux by activating the K+/Cl− synergistic protein transporter, and relieving diarrhea symptoms. On the other hand, GPR39 can maintain the homeostasis of the animal intestine, promoting pH restoration in colonic cells, regulating gastric acid secretion, and facilitating nutrient absorption. In addition, GPR39 can affect the expression of tight junction proteins in intestinal epithelial cells, improving the barrier function of the animal intestinal mucosa, and maintaining the integrity of the intestine. This review summarizes the structure and signaling transduction processes involving GPR39 and the effect of GPR39 on the regulation of intestinal health in animals, with the aim of further highlighting the role of GPR39 in regulating animal intestinal health and providing new directions and ideas for studying the prevention and treatment of animal intestinal diseases.
Collapse
|
18
|
Ringuet MT, Furness JB, Furness SGB. G protein-coupled receptor interactions and modification of signalling involving the ghrelin receptor, GHSR1a. J Neuroendocrinol 2022; 34:e13077. [PMID: 34931385 DOI: 10.1111/jne.13077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/05/2021] [Indexed: 12/28/2022]
Abstract
The growth hormone secretagogue receptor 1a (GHSR1a) is intriguing because of its potential as a therapeutic target and its diverse molecular interactions. Initial studies of the receptor focused on the potential therapeutic ability for growth hormone (GH) release to reduce wasting in aging individuals, as well as food intake regulation for treatment of cachexia. Known roles of GHSR1a now extend to regulation of neurogenesis, learning and memory, gastrointestinal motility, glucose/lipid metabolism, the cardiovascular system, neuronal protection, motivational salience, and hedonic feeding. Ghrelin, the endogenous agonist of GHSR1a, is primarily located in the stomach and is absent from the central nervous system (CNS), including the spinal cord. However, ghrelin in the circulation does have access to a small number of CNS sites, including the arcuate nucleus, which is important in feeding control. At some sites, such as at somatotrophs, GHSR1a has high constitutive activity. Typically, ghrelin-dependent and constitutive GHSR1a activation occurs via Gαq/11 pathways. In vitro and in vivo data suggest that GHSR1a heterodimerises with multiple G protein-coupled receptors (GPCRs), including dopamine D1 and D2, serotonin 2C, orexin, oxytocin and melanocortin 3 receptors (MCR3), as well as the MCR3 accessory protein, MRAP2, providing possible mechanisms for its many physiological effects. In all cases, the receptor interaction changes downstream signalling and the responses to receptor agonists. This review discusses the signalling mechanisms of GHSR1a alone and in combination with other GPCRs, and explores the physiological consequences of GHSR1a coupling with other GPCRs.
Collapse
Affiliation(s)
- Mitchell Ty Ringuet
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - John Barton Furness
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | |
Collapse
|
19
|
Matsumoto M, Takemi S, Sakai T, Sakata I. Identification of motilin in Japanese fire bellied newt. Gen Comp Endocrinol 2022; 323-324:114031. [PMID: 35331740 DOI: 10.1016/j.ygcen.2022.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/30/2022]
Abstract
Motilin, a peptide hormone consisting of 22 amino acid residues, was identified in the duodenum of pigs in the 1970s. It is known to induce gastrointestinal contractions during the interdigestive state in mammals. Although the motilin gene has been identified in various animal species, it has not been studied in amphibians. Here, we identified the motilin gene in the Japanese fire bellied newt (Cynops pyrrhogaster), and conducted an analysis of tissue distribution, morphological observations, and physiological experiments. The deduced mature newt motilin comprises 22 amino acid residues, like in mammals and birds. The C-terminus of the newt motilin showed high homology with motilin from other species compared to the N-terminus region, which is considered the bioactive site. Motilin mRNA expression in newts was abundant in the upper small intestine, with notably high motilin mRNA expression found in the pancreas. Motilin-producing cells were found in the mucosal layer of the upper small intestine and existed as two cell types: open-and closed-type cells. Motilin-producing cells in the pancreas were also found to produce insulin but not glucagon. Newt motilin stimulated gastric contractions but not in other parts of the intestines in vitro, and motilin-induced gastric contraction was significantly inhibited by treatment with atropine, a muscarinic acetylcholine receptor antagonist. These results indicate that motilin is also present in amphibians, and that its gastrointestinal contractile effects are conserved in mammals, birds, and amphibians. Additionally, we demonstrated for the first time the existence of pancreatic motilin, suggesting that newt motilin has an additional unknown physiological role.
Collapse
Affiliation(s)
- Mio Matsumoto
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Takafumi Sakai
- Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
| |
Collapse
|
20
|
Sanger GJ. Why is motilin active in some studies with mice, rats, and guinea pigs, but not in others? Implications for functional variability among rodents. Pharmacol Res Perspect 2022; 10:e00900. [PMID: 35191209 PMCID: PMC8860775 DOI: 10.1002/prp2.900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
The gastrointestinal (GI) hormone motilin helps control human stomach movements during hunger and promotes hunger. Although widely present among mammals, it is generally accepted that in rodents the genes for motilin and/or its receptor have undergone pseudonymization, so exogenous motilin cannot function. However, several publications describe functions of low concentrations of motilin, usually within the GI tract and CNS of mice, rats, and guinea pigs. These animals were from institute-held stocks, simply described with stock names (e.g., "Sprague-Dawley") or were inbred strains. It is speculated that variation in source/type of animal introduces genetic variations to promote motilin-sensitive pathways. Perhaps, in some populations, motilin receptors exist, or a different functionally-active receptor has a good affinity for motilin (indicating evolutionary pressures to retain motilin functions). The ghrelin receptor has the closest sequence homology, yet in non-rodents the receptors have a poor affinity for each other's cognate ligand. In rodents, ghrelin may substitute for certain GI functions of motilin, but no good evidence suggests rodent ghrelin receptors are highly responsive to motilin. It remains unknown if motilin has functional relationships with additional bioactive molecules formed from the ghrelin and motilin genes, or if a 5-TM motilin receptor has influence in rodents (e.g., to dimerize with GPCRs and create different pharmacological profiles). Is the absence/presence of responses to motilin in rodents' characteristic for systems undergoing gene pseudonymization? What are the consequences of rodent supplier-dependent variations in motilin sensitivity (or other ligands for receptors undergoing pseudonymization) on gross physiological functions? These are important questions for understanding animal variation.
Collapse
Affiliation(s)
- Gareth J. Sanger
- Blizard Institute and the National Centre for Bowel ResearchBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
21
|
Yang L, Wan Y, Li W, Liu C, Li HF, Dong Z, Zhu K, Jiang S, Shang E, Qian D, Duan J. Targeting intestinal flora and its metabolism to explore the laxative effects of rhubarb. Appl Microbiol Biotechnol 2022; 106:1615-1631. [PMID: 35129656 DOI: 10.1007/s00253-022-11813-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/17/2022]
Abstract
Rhubarb, a traditional herb, has been used in clinical practice for hundreds of years to cure constipation, but its mechanism is still not clear enough. Currently, growing evidence suggests that intestinal flora might be a potential target for the treatment of constipation. Thus, the aim of this study was to clarify the laxative effect of rhubarb via systematically analyzing the metagenome and metabolome of the gut microbiota. In this study, the laxative effects of rhubarb were investigated by loperamide-induced constipation in rats. The gut microbiota was determined by high-throughput sequencing of 16S rRNA gene. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used for fecal metabolomics analysis. The data showed that rhubarb could significantly shorten gastrointestinal transit time, increase fecal water content and defecation frequency, improve gastrointestinal hormone disruption, and protect the colon mucus layer. Analysis of 16S rRNA gene sequencing indicated that rhubarb could improve the disorder of intestinal microbiota in constipated rats. For example, beneficial bacteria such as Ligilactobacillus, Limosilalactobacillus, and Prevotellaceae UCG-001 were remarkably increased, and pathogens such as Escherichia-Shigella were significantly decreased after rhubarb treatment. Additionally, the fecal metabolic profiles of constipated rats were improved by rhubarb. After rhubarb treatment, metabolites such as chenodeoxycholic acid, cholic acid, prostaglandin F2α, and α-linolenic acid were markedly increased in constipation rats; in contrast, the metabolites such as lithocholic acid, calcidiol, and 10-hydroxystearic acid were notably reduced in constipation rats. Moreover, correlation analysis indicated a close relationship between intestinal flora, fecal metabolites, and biochemical indices associated with constipation. In conclusion, the amelioration of rhubarb in constipation might modulate the intestinal microflora and its metabolism. Moreover, the application of fecal metabolomics could provide a new strategy to uncover the mechanism of herbal medicines.Key points• Rhubarb could significantly improve gut microbiota disorder in constipation rats.• Rhubarb could markedly modulate the fecal metabolite profile of constipated rats.
Collapse
Affiliation(s)
- Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Wenwen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Hui-Fang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Zhiling Dong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Ke Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
22
|
Huang J, Lin B, Zhang Y, Xie Z, Zheng Y, Wang Q, Xiao H. Bamboo shavings derived O-acetylated xylan alleviates loperamide-induced constipation in mice. Carbohydr Polym 2022; 276:118761. [PMID: 34823784 DOI: 10.1016/j.carbpol.2021.118761] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 09/15/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
BSH-1 is an O-acetylated xylan obtained from bamboo shavings. This study determined the protective effects of BSH-1 against loperamide (Lop)-induced constipation in mice. Mice received BSH-1 by gavage daily for 14 days. In constipated mice, BSH-1 significantly shortened the defecation time and raised the gastrointestinal (GI) transit rate, stool production, and cecal concentration of short-chain fatty acids (SCFAs). BSH-1 regulated the serum levels of gut hormones and neurotransmitters. BSH-1 also significantly altered the cecal microbiota of the constipated mice by increasing the abundance of potentially beneficial bacteria (e.g., Lactobacillus, Roseburia, and Bacteroidales_S24-7) and decreasing potentially pathogenic bacteria (e.g., Alloprevotella and Staphylococcus). Furthermore, colonic transcriptome analysis revealed that BSH-1 significantly reversed the expression changes of genes related to intestinal motility, water and ion transport, inflammation and cancer in constipated mice. Our findings indicated that BSH-1 effectively relieved Lop-induced constipation in mice and could be potentially used for constipation treatment.
Collapse
Affiliation(s)
- Juqing Huang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou 350003, PR China; Department of Food Science, University of Massachusetts Amherst, Amherst, USA
| | - Bin Lin
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou 350003, PR China
| | - Ying Zhang
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zhenglu Xie
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yi Zheng
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou 350003, PR China
| | - Qi Wang
- Department of Food Science, University of Massachusetts Amherst, Amherst, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, USA.
| |
Collapse
|
23
|
Toda N, Shida T, Takano R, Katagiri T, Hirouchi M, Abe M, Soma K, Nakagami Y, Yamazaki M. Discovery of DS-3801b, a non-macrolide GPR38 agonist with N-methylanilide structure. Bioorg Med Chem Lett 2022; 59:128554. [DOI: 10.1016/j.bmcl.2022.128554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
|
24
|
Zhang S, Kaiya H, Teraoka H, Kitazawa T. Pheasant motilin, its distribution and gastrointestinal contractility-stimulating action in the pheasant. Gen Comp Endocrinol 2021; 314:113897. [PMID: 34506789 DOI: 10.1016/j.ygcen.2021.113897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Previously, pheasant motilin was identified as a 22-amino acid peptide with a sequence of FVPFFTQSDI QKMQEKERIK GQ. In the present study, the distribution of pheasant motilin mRNA was determined and compared with that of ghrelin, a motilin-related peptide. The effects of pheasant motilin on the cognate gastrointestinal (GI) muscle strips were also examined in an in vitro contraction study. The expression of pheasant motilin mRNA was highest in the small intestine (duodenum, jejunum and ileum), moderate in the colon and very low in the brain, lung, heart, pancreas, esophagus, proventriculus, gizzard and caecum, and this distribution was in contrast with that of ghrelin mRNA. Pheasant motilin caused contraction of the cognate GI tract in a region-dependent manner, similar to chicken motilin. The contraction in the small intestine was large and was not affected by atropine. In contrast, contraction in the proventriculus was small and was decreased by atropine. The crop and colon were insensitive to pheasant motilin. Neither GM109 nor MA2029, mammalian motilin receptor antagonists inhibited the contractions of pheasant motilin. Erythromycin was ineffective in the pheasant ileum, although it caused contraction of the rabbit duodenum. These results indicate that pheasant motilin caused contraction through an action on smooth muscles in the small intestine and an action on enteric cholinergic nerves in the proventriculus. This high responsiveness of the small intestine suggests that motilin is a regulator of small intestinal motility in avians, and the characteristic of the motilin receptor in the pheasant might be different from that in mammals, as is that in chickens.
Collapse
Affiliation(s)
- Shuangyi Zhang
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| |
Collapse
|
25
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
26
|
Infantile hypertrophic pyloric stenosis in Bosnia and Herzegovina: A retrospective cohort study from the largest tertiary care facility. Asian J Surg 2021; 45:1694-1697. [PMID: 34801371 DOI: 10.1016/j.asjsur.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Infantile hypertrophic pyloric stenosis (IHPS) is the most common condition requiring surgery in infancy, but the etiology of IHPS is still unclear. The study aimed to analyze the epidemiological and clinical features of the infants with IHPS in our setting and determine the yearly trends in IHPS incidence in the Sarajevo Canton between 2007 and 2016. METHODS We retrospectively analyzed epidemiologic, clinical, and operative data of all infants undergoing pyloromyotomy for IHPS over ten years in the largest tertiary care facility in Bosnia and Herzegovina. RESULTS Fifty-three IHPS patients were diagnosed, yielding an overall incidence of 1.17 per 1000 live births (1.25 and 1.09 cases in 2007-2011 and 2012-2016, respectively). IHPS was more prevalent among male infants (ratio 6.6:1, p < 0.001). The mean age at onset of symptoms was 39.6 days (range, 17-107 days). The estimated median time from symptoms onset to hospitalization was 11 days (range, 1-17 days). The mean age at diagnosis was significantly longer in premature infants compared with term infants (p = 0.003). Both first-born rank and bottle-feeding were significantly associated with IHPS (p = 0.001 and p = 0.04, respectively). No seasonal variation associated with IHPS was detected (p = 0.25). No evidence was found of differences in the incidence of IHPS related to maternal age (p = 0.24) and smoking (p = 0.59). CONCLUSION Our data indicate a declining trend and provide insights into the clinical characteristics of IHPS in Bosnia and Herzegovina. Most of the obtained results are in line with the published data and could improve the quality of local pediatric services.
Collapse
|
27
|
Li H, Yang L, Jin Y, Jin C. Roles of Endothelial Motilin Receptor and Its Signal Transduction Pathway in Motilin-Induced Left Gastric Artery Relaxation in Dogs. Front Physiol 2021; 12:770430. [PMID: 34777026 PMCID: PMC8581264 DOI: 10.3389/fphys.2021.770430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Motilin increases left gastric artery (LGA) blood flow in dogs via the endothelial motilin receptor (MLNR). This article investigates the signaling pathways of endothelial MLNR. Methods: Motilin-induced relaxation of LGA rings was assessed using wire myography. Nitric oxide (NO), and cyclic guanosine monophosphate (cGMP) levels were measured using an NO assay kit and cGMP ELISA kit, respectively. Results: Motilin concentration-dependently (EC50=9.1±1.2×10−8M) relaxed LGA rings precontracted with U46619 (thromboxane A2 receptor agonist). GM-109 (MLNR antagonist) significantly inhibited motilin-induced LGA relaxation and the production of NO and cGMP. N-ethylmaleimide (NEM; G-protein antagonist), U73122 [phospholipase C (PLC) inhibitor], and 2-aminoethyl diphenylborinate [2-APB; inositol trisphosphate (IP3) blocker] partially or completely blocked vasorelaxation. In contrast, chelerythrine [protein kinase C (PKC) inhibitor] and H89 [protein kinase A (PKA) inhibitor] had no such effect. Low-calcium or calcium-free Krebs solutions also reduced vasorelaxation. N-nitro-L-arginine methyl ester [L-NAME; nitric oxide synthase (NOS) inhibitor] and ODQ [soluble guanylyl cyclase (sGC) inhibitor] completely abolished vasodilation and synthesis of NO and cGMP. Indomethacin (cyclooxygenase inhibitor), 18α-glycyrrhetinic acid [18α-GA; myoendothelial gap junction (MEGJ) inhibitor], and K+ channel inhibition through high K+ concentrations or tetraethylammonium (TEA-Cl; KCa channel blocker) partially decreased vasorelaxation, whereas glibenclamide (KATP channel blocker) had no such effect. Conclusion: The current study suggests that motilin-induced LGA relaxation is dependent on endothelial MLNR through the G protein-PLC-IP3 pathway and Ca2+ influx. The NOS-NO-sGC-cGMP pathway, prostacyclin, MEGJ, and K+ channels (especially KCa) are involved in endothelial-dependent relaxation of vascular smooth muscle (VSM) cells.
Collapse
Affiliation(s)
- HongYu Li
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - LanLan Yang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - ChunXiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Yang L, Li H, Jin Y, He Y, Mei L, Jin C. Differential expression of motilin receptors on the endothelium of dog gastrointestinal arteries and motilin-induced motilin receptor dependent relaxation of corresponding arteries. Peptides 2021; 143:170574. [PMID: 34082070 DOI: 10.1016/j.peptides.2021.170574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Motilin's role in the regulation of vascular tone and hemodynamic besides gastrointestinal motility is concerned. This study aimed to investigate the expression of motilin receptors in gastrointestinal arteries and motilin-induced relaxation. MATERIAL AND METHODS The expression of motilin receptors in the left gastric artery (LGA), superior mesenteric artery (SMA), and inferior mesenteric artery (IMA) of adult dogs (1.5-5 years old) were analyzed by immunochemistry, RT-PCR, and western blotting. Motilin's effects on the gastrointestinal arteries were evaluated in a multi-wire myograph system. RESULTS Immunohistochemical staining showed that motilin receptor was expressed on the membranes of endothelial cells with the fluorescence intensity LGA > SMA > IMA (P < 0.01). The motilin receptor's mRNA and protein expression levels shared the same distribution patterns as it in fluorescence intensity (P < 0.01). In isolated LGA preparations precontracted with U46619 (a thromboxaneA2 analog), motilin induced a concentration-dependent relaxation, and the EC50 was 8.8 × 10-8 ± 0.9 × 10-8 M. Motilin-induced relaxation on the three arteries also shared the same pattern as it in fluorescence intensity (P < 0.01) and inhibited by denuded-endothelium and GM-109 (a motilin receptor antagonist) but not by atropine (a muscarinic receptor antagonist). CONCLUSIONS Motilin receptors are expressed differentially on the membranes of endothelial cells in dog gastrointestinal arteries with a significantly high expression in the LGA. Motilin-induced relaxation is endothelium- and motilin receptor-dependent. The motilin receptor expressed on the endothelial cell membrane of the LGA is the molecular basis for motilin regulating gastric blood flow under physiological conditions in dogs.
Collapse
Affiliation(s)
- Lanlan Yang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China; Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu Li
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China; Department of Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yu He
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li Mei
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China; Department of Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Chunxiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
29
|
Kitazawa T, Kaiya H. Motilin Comparative Study: Structure, Distribution, Receptors, and Gastrointestinal Motility. Front Endocrinol (Lausanne) 2021; 12:700884. [PMID: 34497583 PMCID: PMC8419268 DOI: 10.3389/fendo.2021.700884] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Motilin, produced in endocrine cells in the mucosa of the upper intestine, is an important regulator of gastrointestinal (GI) motility and mediates the phase III of interdigestive migrating motor complex (MMC) in the stomach of humans, dogs and house musk shrews through the specific motilin receptor (MLN-R). Motilin-induced MMC contributes to the maintenance of normal GI functions and transmits a hunger signal from the stomach to the brain. Motilin has been identified in various mammals, but the physiological roles of motilin in regulating GI motility in these mammals are well not understood due to inconsistencies between studies conducted on different species using a range of experimental conditions. Motilin orthologs have been identified in non-mammalian vertebrates, and the sequence of avian motilin is relatively close to that of mammals, but reptile, amphibian and fish motilins show distinctive different sequences. The MLN-R has also been identified in mammals and non-mammalian vertebrates, and can be divided into two main groups: mammal/bird/reptile/amphibian clade and fish clade. Almost 50 years have passed since discovery of motilin, here we reviewed the structure, distribution, receptor and the GI motility regulatory function of motilin in vertebrates from fish to mammals.
Collapse
Affiliation(s)
- Takio Kitazawa
- Comparative Animal Pharmacology, Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
30
|
Chai M, Wang L, Li X, Zhao J, Zhang H, Wang G, Chen W. Different Bifidobacterium bifidum strains change the intestinal flora composition of mice via different mechanisms to alleviate loperamide-induced constipation. Food Funct 2021; 12:6058-6069. [PMID: 34038494 DOI: 10.1039/d1fo00559f] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Constipation is a condition with a high prevalence rate worldwide and may occur in men and women of any age. Bifidobacterium bifidum has been shown to have a relieving effect on constipation, but the underlying mechanism is still unknown. This study explored the effects of gavage of three strains of B. bifidum (CCFM668, FHNFQ25M12 and FXJCJ32M2) from different sources in mice with loperamide-induced constipation. After 38 days of intervention, B. bifidum CCFM668, FHNFQ25M12 and FXJCJ32M2 showed the ability to modify the levels of gastrointestinal active peptides and promote the expression of 5-hydroxytryptamine (5-HT or serotonin) receptor 4 (5-HT4R), thereby promoting small intestinal peristalsis. The strains could also effectively increase the thickness of the colonic mucosa. However, what was different from previous studies was that these results were independent of the levels of short-chain fatty acids (SCFAs) and 5-HT. Further analysis of the intestinal flora revealed that the relative abundances of the genera Faecalibaculum and Ruminococcaceae_UCG_014 in the constipated mice increased significantly, whereas that of Erysipelatoclostridium decreased. A correlation analysis between the intestinal flora and evaluated gastrointestinal indicators demonstrated that the relative abundances of the genera Anaerotruncus, Angelakisella, Erysipelatoclostridium and Ruminococcaceae_UCG_014 were negatively correlated with the levels of gastrointestinal active peptides. B. bifidum FXJCJ32M2 can increase the relative abundances of Turicibacter and Dubosiella, and this was positively correlated with the expression of aquaporin 8 and vasoactive intestinal peptide receptor 1 but could not effectively alleviate faecal dryness or promote colonic motility. These findings suggest that B. bifidum shows significant intraspecific differences in the remission mechanism and provides a theoretical basis for subsequent population experiments and personalised treatment for constipation.
Collapse
Affiliation(s)
- Mao Chai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xinping Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
31
|
Liu W, Zhi A. The potential of Quercetin to protect against loperamide-induced constipation in rats. Food Sci Nutr 2021; 9:3297-3307. [PMID: 34136194 PMCID: PMC8194749 DOI: 10.1002/fsn3.2296] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 12/16/2022] Open
Abstract
Constipation is the most common gastrointestinal complaint all over the world, and it is a risk factor of colorectal cancer. In this study, the protective of Quercetin against loperamide-induced constipation and its potential mechanism in a rat model were investigated. Results showed that Quercetin at 25 mg/kg and 50 mg/kg could significantly (p < .05) increase the intestinal transit rate, motilin, gastrin, substance P levels, and concentration of short-chain fatty acids (SCFAs), reduce the somatostatin levels, and improve the gastrointestinal peristalsis of rats. In addition, the expression levels of enteric nerve-related factors, glial cell line-derived neurotrophic factor (GDNF), transient receptor potential vanilloid 1 (TRPV1), nitric oxide synthase (NOS), c-Kit, stem cell factor (SCF), and aquaporin 3 (AQP3) were examined by RT-qPCR and/or Western blot analysis. The results suggest that Quercetin relieves loperamide-induced constipation by increasing the levels of interstitial cells of Cajal markers (c-Kit and SCF), as well as AQP3. In conclusion, the present study suggested that Quercetin exerted a protective effect against loperamide-induced constipation, which may be associated with its role in regulation of multiple signal pathways.
Collapse
Affiliation(s)
- Wenhui Liu
- Fujian Fengjiu Biotechnology Co., Ltd.ZhangzhouChina
| | - Aimin Zhi
- Fujian Fengjiu Biotechnology Co., Ltd.ZhangzhouChina
| |
Collapse
|
32
|
Liu Y, Xia J, McKay J, Tsavachidis S, Xiao X, Spitz MR, Cheng C, Byun J, Hong W, Li Y, Zhu D, Song Z, Rosenberg SM, Scheurer ME, Kheradmand F, Pikielny CW, Lusk CM, Schwartz AG, Wistuba II, Cho MH, Silverman EK, Bailey-Wilson J, Pinney SM, Anderson M, Kupert E, Gaba C, Mandal D, You M, de Andrade M, Yang P, Liloglou T, Davies MPA, Lissowska J, Swiatkowska B, Zaridze D, Mukeria A, Janout V, Holcatova I, Mates D, Stojsic J, Scelo G, Brennan P, Liu G, Field JK, Hung RJ, Christiani DC, Amos CI. Rare deleterious germline variants and risk of lung cancer. NPJ Precis Oncol 2021; 5:12. [PMID: 33594163 PMCID: PMC7887261 DOI: 10.1038/s41698-021-00146-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/11/2020] [Indexed: 01/19/2023] Open
Abstract
Recent studies suggest that rare variants exhibit stronger effect sizes and might play a crucial role in the etiology of lung cancers (LC). Whole exome plus targeted sequencing of germline DNA was performed on 1045 LC cases and 885 controls in the discovery set. To unveil the inherited causal variants, we focused on rare and predicted deleterious variants and small indels enriched in cases or controls. Promising candidates were further validated in a series of 26,803 LCs and 555,107 controls. During discovery, we identified 25 rare deleterious variants associated with LC susceptibility, including 13 reported in ClinVar. Of the five validated candidates, we discovered two pathogenic variants in known LC susceptibility loci, ATM p.V2716A (Odds Ratio [OR] 19.55, 95%CI 5.04-75.6) and MPZL2 p.I24M frameshift deletion (OR 3.88, 95%CI 1.71-8.8); and three in novel LC susceptibility genes, POMC c.*28delT at 3' UTR (OR 4.33, 95%CI 2.03-9.24), STAU2 p.N364M frameshift deletion (OR 4.48, 95%CI 1.73-11.55), and MLNR p.Q334V frameshift deletion (OR 2.69, 95%CI 1.33-5.43). The potential cancer-promoting role of selected candidate genes and variants was further supported by endogenous DNA damage assays. Our analyses led to the identification of new rare deleterious variants with LC susceptibility. However, in-depth mechanistic studies are still needed to evaluate the pathogenic effects of these specific alleles.
Collapse
Grants
- R01 CA060691 NCI NIH HHS
- U19 CA203654 NCI NIH HHS
- R01 CA084354 NCI NIH HHS
- R01 HL110883 NHLBI NIH HHS
- U01 CA076293 NCI NIH HHS
- R01 CA080127 NCI NIH HHS
- R01 CA141769 NCI NIH HHS
- P30 ES006096 NIEHS NIH HHS
- P50 CA090578 NCI NIH HHS
- P30 CA022453 NCI NIH HHS
- S10 RR024574 NCRR NIH HHS
- HHSN261201300011C NCI NIH HHS
- R01 CA134682 NCI NIH HHS
- R01 CA134433 NCI NIH HHS
- R01 HL113264 NHLBI NIH HHS
- R01 HL082487 NHLBI NIH HHS
- R01 CA250905 NCI NIH HHS
- U19 CA148127 NCI NIH HHS
- P20 GM103534 NIGMS NIH HHS
- R01 CA092824 NCI NIH HHS
- R01 CA087895 NCI NIH HHS
- U01 HL089897 NHLBI NIH HHS
- K07 CA181480 NCI NIH HHS
- HHSN268201100011I NHLBI NIH HHS
- HHSN268201100011C NHLBI NIH HHS
- R01 CA127219 NCI NIH HHS
- R01 CA074386 NCI NIH HHS
- P30 CA023108 NCI NIH HHS
- U01 HL089856 NHLBI NIH HHS
- P30 ES030285 NIEHS NIH HHS
- P30 CA125123 NCI NIH HHS
- DP1 AG072751 NIA NIH HHS
- U01 CA243483 NCI NIH HHS
- HHSN268200782096C NHLBI NIH HHS
- HHSN268201200007C NHLBI NIH HHS
- N01HG65404 NHGRI NIH HHS
- R35 GM122598 NIGMS NIH HHS
- U01 CA209414 NCI NIH HHS
- R03 CA077118 NCI NIH HHS
- 001 World Health Organization
- DP1 CA174424 NCI NIH HHS
- This work was supported by grants from the National Institutes of Health (R01CA127219, R01CA141769, R01CA060691, R01CA87895, R01CA80127, R01CA84354, R01CA134682, R01CA134433, R01CA074386, R01CA092824, R01CA250905, R01HL113264, R01HL082487, R01HL110883, R03CA77118, P20GM103534, P30CA125123, P30CA023108, P30CA022453, P30ES006096, P50CA090578, U01CA243483, U01HL089856, U01HL089897, U01CA76293, U19CA148127, U01CA209414, K07CA181480, N01-HG-65404, HHSN268200782096C, HHSN261201300011I, HHSN268201100011, HHSN268201 200007C, DP1-CA174424, DP1-AG072751, CA125123, RR024574, Intramural Research Program of the National Human Genome Research Institute (JEB-W), and Herrick Foundation. Dr. Amos is an Established Research Scholar of the Cancer Prevention Research Institute of Texas (RR170048). We also want to acknowledge the Cytometry and Cell Sorting Core support by the Cancer Prevention and Research Institute of Texas Core Facility (RP180672). At Toronto, the study is supported by The Canadian Cancer Society Research Institute (# 020214) to R. H., Ontario Institute for Cancer Research to R. H, and the Alan Brown Chair to G. L. and Lusi Wong Programs at the Princess Margaret Hospital Foundation. The Liverpool Lung Project is supported by Roy Castle Lung Cancer Foundation.
Collapse
Affiliation(s)
- Yanhong Liu
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jun Xia
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - James McKay
- International Agency for Research on Cancer, Lyon, France
| | - Spiridon Tsavachidis
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiangjun Xiao
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Margaret R Spitz
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Chao Cheng
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jinyoung Byun
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Wei Hong
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Yafang Li
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Dakai Zhu
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Zhuoyi Song
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Michael E Scheurer
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Farrah Kheradmand
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Claudio W Pikielny
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Christine M Lusk
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Ann G Schwartz
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Susan M Pinney
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Elena Kupert
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Colette Gaba
- The University of Toledo College of Medicine, Toledo, OH, USA
| | - Diptasri Mandal
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Ming You
- Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Ping Yang
- Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Triantafillos Liloglou
- Roy Castle Lung Cancer Research Programme, The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK
| | - Michael P A Davies
- Roy Castle Lung Cancer Research Programme, The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK
| | - Jolanta Lissowska
- M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Beata Swiatkowska
- Nofer Institute of Occupational Medicine, Department of Environmental Epidemiology, Lodz, Poland
| | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Anush Mukeria
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Vladimir Janout
- Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic
| | - Ivana Holcatova
- Institute of Public Health and Preventive Medicine, Charles University, 2nd Faculty of Medicine, Prague, Czech Republic
| | - Dana Mates
- National Institute of Public Health, Bucharest, Romania
| | - Jelena Stojsic
- Department of Thoracopulmonary Pathology, Service of Pathology, Clinical Center of Serbia, Belgrade, Serbia
| | | | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Geoffrey Liu
- Princess Margaret Cancer Center, Toronto, ON, Canada
| | - John K Field
- Roy Castle Lung Cancer Research Programme, The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | | | - Christopher I Amos
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
33
|
Zhang L, Song J, Zang Z, Tang H, Li W, Lai S, Deng C. Adaptive evolution of GPR39 in diverse directions in vertebrates. Gen Comp Endocrinol 2020; 299:113610. [PMID: 32916170 DOI: 10.1016/j.ygcen.2020.113610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023]
Abstract
G protein-coupled receptors (GPCRs) play an important role in physiology and disease and represent productive drug targets. Orphan GPCRs, which have unknown endogenous ligands, are considered drug targets and consequently have attracted great interest in identifying their endogenous cognate ligands for deorphanization. However, additional studies have shown that GPCRs, including many orphan GPCRs, can constitutively activate G protein signaling in a ligand-independent manner. GPR39 is such an orphan GPCR with constitutive activity. Here, we performed a phylogenetic and selection analysis of GPR39 in vertebrates, and we found that GPR39 underwent positive selection in different branches of vertebrates. Using luciferase reporter assays, we demonstrated that human, frog and chicken GPR39 can constitutively activate Gq and G12 signaling pathways in a ligand-independent manner. Zebrafish GPR39 can constitutively activate Gs, Gq and G12 signaling pathways in a ligand-independent manner. We further found that the zebrafish-H2967.35 site is crucial for the activity of the Gs signaling pathway. In addition, our mutagenesis studies indicated that the positive selection sites of GPR39 from different species had important effects on the constitutive activity of the receptor. Our results revealed the adaptive evolution of GPR39 in diverse directions, which led to differences in constitutive activity.
Collapse
Affiliation(s)
- Lina Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingjing Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhuqing Zang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Huihao Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- Department of Dermatovenereology, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang Street, Chengdu, Sichuan 610041, China
| | - Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
34
|
Jiang H, Dong J, Jiang S, Liang Q, Zhang Y, Liu Z, Ma C, Wang J, Kang W. Effect of Durio zibethinus rind polysaccharide on functional constipation and intestinal microbiota in rats. Food Res Int 2020; 136:109316. [PMID: 32846524 DOI: 10.1016/j.foodres.2020.109316] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 01/03/2023]
Abstract
The prevalence of constipation increases rapidly with the increased pressure of some people's life, which seriously affects the quality of life in related patients. In this study, the improvement of functional constipation by Durio zibethinus Murr rind polysaccharide (DZMP) and the effects of DZMP on intestinal microbiota were investigated in a constipation model of Sprague-Dawley (SD) rats established by loperamide hydrochloride. Results showed that DZMP at 200 mg/kg could significantly (P < 0.05) increase the intestinal transit rate, motilin, gastrin, substance P levels and concentration of short-chain fatty acids (SCFAs), reduce the somatostatin levels and improve the gastrointestinal peristalsis of rats. Sequencing showed that the Lachnospiraceae-NK4A136-group in the rats given 200 mg/kg DZMP (16.07%) was significantly higher than that of the model group (10.13%), while the Desulfovibrio was lower (2.99%) than that of the model group (4.19%). Principal co-ordinates analysis (PcoA) revealed a significant difference in intestinal microbiota composition between the model group and the high-dose DZMP group (200 mg/kg). The results demonstrated that DZMP has a regulatory effect of treating functional constipation and regulating intestinal flora in rats.
Collapse
Affiliation(s)
- Huimin Jiang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Jing Dong
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Shengjun Jiang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Qiongxin Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng 475004, China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| | - Zhenhua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng 475004, China
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| |
Collapse
|
35
|
Singaram K, Gold-Smith FD, Petrov MS. Motilin: a panoply of communications between the gut, brain, and pancreas. Expert Rev Gastroenterol Hepatol 2020; 14:103-111. [PMID: 31996050 DOI: 10.1080/17474124.2020.1718492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Motilin was first alluded to nearly a century ago. But it remains a rather abstruse peptide, in the shadow of its younger but more lucid 'cousin' ghrelin.Areas covered: The review aimed to bring to the fore multifarious aspects of motilin research with a view to aiding prioritization of future studies on this gastrointestinal peptide.Expert opinion: Growing evidence indicates that rodents (mice, rats, guinea pigs) do not have functional motilin system and, hence, studies in these species are likely to have a minimal translational impact. Both the active peptide and motilin receptor were initially localized to the upper gastrointestinal tract only but more recently - also to the brain (in both humans and other mammals with functional motilin system). Motilin is now indisputably implicated in interdigestive contractile activity of the gastrointestinal tract (in particular, gastric phase III of the migrating motor complex). Beyond this role, evidence is building that there is a cross-talk between motilin system and the brain-pancreas axis, suggesting that motilin exerts not only contractile but also orexigenic and insulin secretagogue actions.
Collapse
Affiliation(s)
| | | | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Zhang S, Okuhara Y, Iijima M, Takemi S, Sakata I, Kaiya H, Teraoka H, Kitazawa T. Identification of pheasant ghrelin and motilin and their actions on contractility of the isolated gastrointestinal tract. Gen Comp Endocrinol 2020; 285:113294. [PMID: 31585115 DOI: 10.1016/j.ygcen.2019.113294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/02/2019] [Accepted: 09/29/2019] [Indexed: 12/11/2022]
Abstract
Motilin and ghrelin were identified in the pheasant by molecular cloning, and the actions of both peptides on the contractility of gastrointestinal (GI) strips were examined in vitro. Molecular cloning indicated that the deduced amino acid sequences of the pheasant motilin and ghrelin were a 22-amino acid peptide, FVPFFTQSDIQKMQEKERIKGQ, and a 26-amino acid peptide, GSSFLSPAYKNIQQQKDTRKPTGRLH, respectively. In in vitro studies using pheasant GI strips, chicken motilin caused contraction of the proventriculus and small intestine, whereas the crop and colon were insensitive. Human motilin, but not erythromycin, caused contraction of small intestine. Chicken motilin-induced contractions in the proventriculus and ileum were not inhibited by a mammalian motilin receptor antagonist, GM109. Neither atropine (a cholinergic receptor antagonist) nor tetrodotoxin (a neuron blocker) inhibited the responses of chicken motilin in the ileum but both drugs decreased the responses to motilin in the proventriculus, suggesting that the contractile mechanisms of motilin in the proventriculus was neurogenic, different from that of the small intestine (myogenic). On the other hand, chicken and quail ghrelin did not cause contraction in any regions of pheasant GI tract. Since interaction of ghrelin and motilin has been reported in the house musk shrew, interaction of two peptides was examined. The chicken motilin-induced contractions were not modified by ghrelin, and ghrelin also did not cause any contraction under the presence of motilin, suggesting the absence of interaction in both peptides. In conclusion, both the motilin system and ghrelin system are present in the pheasant. Regulation of GI motility by motilin might be common in avian species. However, absence of ghrelin actions in any GI regions suggests the avian species-related difference in regulation of GI contractility by ghrelin.
Collapse
Affiliation(s)
- Shuangyi Zhang
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan; School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Yuji Okuhara
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Mio Iijima
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Takio Kitazawa
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| |
Collapse
|
37
|
Abstract
This review covers the epidemiology, pathophysiology, clinical features, diagnosis, and management of diabetic gastroparesis, and more broadly diabetic gastroenteropathy, which encompasses all the gastrointestinal manifestations of diabetes mellitus. Up to 50% of patients with type 1 and type 2 DM and suboptimal glycemic control have delayed gastric emptying (GE), which can be documented with scintigraphy, 13C breath tests, or a wireless motility capsule; the remainder have normal or rapid GE. Many patients with delayed GE are asymptomatic; others have dyspepsia (i.e., mild to moderate indigestion, with or without a mild delay in GE) or gastroparesis, which is a syndrome characterized by moderate to severe upper gastrointestinal symptoms and delayed GE that suggest, but are not accompanied by, gastric outlet obstruction. Gastroparesis can markedly impair quality of life, and up to 50% of patients have significant anxiety and/or depression. Often the distinction between dyspepsia and gastroparesis is based on clinical judgement rather than established criteria. Hyperglycemia, autonomic neuropathy, and enteric neuromuscular inflammation and injury are implicated in the pathogenesis of delayed GE. Alternatively, there are limited data to suggest that delayed GE may affect glycemic control. The management of diabetic gastroparesis is guided by the severity of symptoms, the magnitude of delayed GE, and the nutritional status. Initial options include dietary modifications, supplemental oral nutrition, and antiemetic and prokinetic medications. Patients with more severe symptoms may require a venting gastrostomy or jejunostomy and/or gastric electrical stimulation. Promising newer therapeutic approaches include ghrelin receptor agonists and selective 5-hydroxytryptamine receptor agonists.
Collapse
Affiliation(s)
- Adil E Bharucha
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Yogish C Kudva
- Division of Endocrinology. Mayo Clinic, Rochester, Minnesota
| | - David O Prichard
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
38
|
Liu D, Han R, Wang X, Li W, Tang S, Li W, Wang Y, Jiang R, Yan F, Wang C, Liu X, Kang X, Li Z. A novel 86-bp indel of the motilin receptor gene is significantly associated with growth and carcass traits in Gushi-Anka F 2 reciprocal cross chickens. Br Poult Sci 2019; 60:649-658. [PMID: 31469320 DOI: 10.1080/00071668.2019.1655710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1. A previous whole-genome association analysis has identified the motilin receptor gene (MLNR), which regulates gastrointestinal motility and gastric emptying, as a candidate gene related to chicken growth.2. MLNR mRNA was expressed in all tissues tested, and the expression level in digestive tissues was greater than in other tissues. Expression levels in the pancreas, duodenum and glandular stomach at day old and one, two and three weeks of age indicated a possible correlation with the digestive system. This suggested that the MLNR gene plays a central role in gastrointestinal tract function and affects the growth and development of chickens. Moreover, there was a significant difference in expression in the glandular stomach tissue between Ross 308 and Gushi chickens at six weeks of age.3. Re-sequencing revealed an 86-bp insertion/deletion polymorphism in the downstream region of the MLNR gene. The mutation locus was genotyped in 2,261 individuals from nine different chicken breeds. MLNR expression levels in the glandular stomach of chickens with DD genotypes were greater than those in chickens with the ID and II genotypes. The DD genotype was the most dominant genotype in commercial broiler's (Ross 308 and Arbor Acres broilers), and the D allele frequency in these breeds exceeded 91%. The deletion mutation tended towards fixation in commercial broilers.4. Association with growth and carcass traits analysed in a Gushi-Anka F2 intercrossed population, showed that the DD genotype was significantly associated with the greatest growth and carcass trait values, whereas values associated with the II genotype were the lowest in the F2 reciprocal cross chickens.5. The results suggest that the mutation is strongly associated with growth related traits and it is likely to be useful for marker-assisted selection of chickens.
Collapse
Affiliation(s)
- D Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - R Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - X Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - W Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - S Tang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - W Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - Y Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - R Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - F Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - C Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - X Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - X Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - Z Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| |
Collapse
|
39
|
Kim JN, Kim BJ. The Mechanism of Action of Ghrelin and Motilin in the Pacemaker Potentials of Interstitial Cells of Cajal from the Murine Small Intestine. Mol Cells 2019; 42:470-479. [PMID: 31250620 PMCID: PMC6602145 DOI: 10.14348/molcells.2019.0028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Interstitial cells of Cajal (ICCs) are pacemaker cells that exhibit periodic spontaneous depolarization in the gastrointestinal (GI) tract and generate pacemaker potentials. In this study, we investigated the effects of ghrelin and motilin on the pacemaker potentials of ICCs isolated from the mouse small intestine. Using the whole-cell patch-clamp configuration, we demonstrated that ghrelin depolarized pacemaker potentials of cultured ICCs in a dose-dependent manner. The ghrelin receptor antagonist [D-Lys] GHRP-6 completely inhibited this ghrelin-induced depolarization. Intracellular guanosine 5'-diphosphate-β-S and pre-treatment with Ca2+free solution or thapsigargin also blocked the ghrelin-induced depolarization. To investigate the involvement of inositol triphosphate (IP3), Rho kinase, and protein kinase C (PKC) in ghrelin-mediated pacemaker potential depolarization of ICCs, we used the IP3 receptor inhibitors 2-aminoethoxydiphenyl borate and xestospongin C, the Rho kinase inhibitor Y-27632, and the PKC inhibitors staurosporine, Go6976, and rottlerin. All inhibitors except rottlerin blocked the ghrelin-induced pacemaker potential depolarization of ICCs. In addition, motilin depolarized the pacemaker potentials of ICCs in a similar dose-dependent manner as ghrelin, and this was also completely inhibited by [D-Lys] GHRP-6. These results suggest that ghrelin induced the pacemaker potential depolarization through the ghrelin receptor in a G protein-, IP3-, Rho kinase-, and PKC-dependent manner via intracellular and extracellular Ca2+ regulation. In addition, motilin was able to depolarize the pacemaker potentials of ICCs through the ghrelin receptor. Therefore, ghrelin and its receptor may modulate GI motility by acting on ICCs in the murine small intestine.
Collapse
Affiliation(s)
- Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612,
Korea
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612,
Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612,
Korea
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612,
Korea
| |
Collapse
|
40
|
Liu B, Xiao X, Zhou X, Zhou J, Lan L, Long X, Pan Y, Du M, Zhao X. Effects of Lactobacillus plantarum CQPC01-fermented soybean milk on activated carbon-induced constipation through its antioxidant activity in mice. Food Sci Nutr 2019; 7:2068-2082. [PMID: 31289655 PMCID: PMC6593386 DOI: 10.1002/fsn3.1048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 01/30/2023] Open
Abstract
A newly found strain, Lactobacillus plantarum CQPC01 (LP-CQPC01), was used for soybean milk fermentation, and its effects against constipation were determined. LP-CQPC01-FSM (LP-CQPC01-fermented soybean milk) was found to have six kinds of soybean isoflavones; the isoflavones of LP-CQPC01-FSM were more than those of Lactobacillus bulgaricus-fermented soybean milk (LB-FSM) and unfermented soybean milk (U-FSM). Animal experiment showed that the MTL, Gas, ET, AchE, SP, VIP, and GSH levels in the constipated mice were increased; however, the SS, MPO, NO, and MDA levels in the constipated mice were reduced by soybean milk treatment. Further, LP-CQPC01-FSM increased the mRNA and protein expression of Cu/Zn-SOD, Mn-SOD, CAT, c-Kit, SCF, and GDNF and reduced the expression of TRPV1 and NOS relative to those of the mice with untreated constipation. LP-CQPC01 could be used as a new starter to produce high-quality soybean milk, which might be used as a functional drink.
Collapse
Affiliation(s)
- Bihui Liu
- Chongqing Collaborative Innovation Center for Functional Food Chongqing University of Education Chongqing China
- Chongqing Engineering Research Center of Functional Food Chongqing University of Education Chongqing China
- Chongqing Engineering Laboratory for Research and Development of Functional Food Chongqing University of Education Chongqing China
- College of Biological and Chemical Engineering Chongqing University of Education Chongqing China
| | - Xiao Xiao
- Department of Gastroenterology Emergency Medical Center of Chongqing The Affiliated Central Hospital of Chongqing University Chongqing China
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food Chongqing University of Education Chongqing China
- College of Food Science Southwest University Chongqing China
| | - Jie Zhou
- College of Food Science Southwest University Chongqing China
| | - Lingxia Lan
- College of Food Science Southwest University Chongqing China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food Chongqing University of Education Chongqing China
- Department of Food Science and Biotechnology Cha University Seongnam Korea
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food Chongqing University of Education Chongqing China
- Department of Food Science and Biotechnology Cha University Seongnam Korea
| | - Muying Du
- College of Food Science Southwest University Chongqing China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food Chongqing University of Education Chongqing China
- Chongqing Engineering Research Center of Functional Food Chongqing University of Education Chongqing China
- Chongqing Engineering Laboratory for Research and Development of Functional Food Chongqing University of Education Chongqing China
| |
Collapse
|
41
|
Zhou Y, Qi X, Wen H, Zhang K, Zhang X, Li J, Li Y, Fan H. Identification, expression analysis, and functional characterization of motilin and its receptor in spotted sea bass (Lateolabrax maculatus). Gen Comp Endocrinol 2019; 277:38-48. [PMID: 30771290 DOI: 10.1016/j.ygcen.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/08/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022]
Abstract
Motilin (MLN), an interdigestive hormone secreted by endocrine cells of the intestinal mucosa, binds to a G protein-coupled receptor to exert its biological function of regulating gastrointestinal motility. In the present study, we identified the prepromotilin and mln receptor (mlnr) from the spotted sea bass, Lateolabrax maculatus. Mln consisted of an ORF of 336 nucleotides encoding 111 amino acids. The precursor protein contained a 17-amino-acid mature peptide. Mlnr had an ORF of 1089 bp encoding a protein of 362 amino acids. Seven transmembrane domains were predicted with TMHMM analysis. The phylogenetic analysis of mln and mlnr showed that they fell into the same clade with respective counterpart of selected fishes before clustering with other detected vertebrates. Both mln and mlnr genes were highly expressed in intestine of spotted sea bass using quantitative real-time PCR. In situ hybridization indicated that mln and mlnr mRNA were both localized in the lamina propria and the epithelial cell of intestinal villus. The expressions of both genes were regulated under short-term starvation in a time-dependent manner. In vitro experiments indicated that the expressions of ghrelin (ghrl), gastrin (gas) and cholecystokinin (cck) were enhanced by MLN after 3-h treatment, but the effect was absent after 6 or 12-h incubation. Taken together, the MLN and its receptor might play important roles in regulating intestinal motility in spotted sea bass.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Bass/genetics
- Cloning, Molecular
- Fasting
- Gene Expression Profiling
- Gene Expression Regulation
- Intestines/cytology
- Molecular Docking Simulation
- Motilin/chemistry
- Motilin/genetics
- Motilin/metabolism
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Yangyang Zhou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Xiaoyan Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Jin Li
- Ji'nan Aquatic Technology Extension Station, Ji'nan 250021, China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China.
| | - Hongying Fan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China.
| |
Collapse
|
42
|
Deloose E, Verbeure W, Depoortere I, Tack J. Motilin: from gastric motility stimulation to hunger signalling. Nat Rev Endocrinol 2019; 15:238-250. [PMID: 30675023 DOI: 10.1038/s41574-019-0155-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
After the discovery of motilin in 1972, motilin and the motilin receptor were studied intensely for their role in the control of gastrointestinal motility and as targets for treating hypomotility disorders. The genetic revolution - with the use of knockout models - sparked novel insights into the role of multiple peptides but contributed to a decline in interest in motilin, as this peptide and its receptor exist only as pseudogenes in rodents. The past 5 years have seen a major surge in interest in motilin, as a series of studies have shown its relevance in the control of hunger and regulation of food intake in humans in both health and disease. Luminal stimuli, such as bitter tastants, have been identified as modulators of motilin release, with effects on hunger and food intake. The current state of knowledge and potential implications for therapy are summarized in this Review.
Collapse
Affiliation(s)
- Eveline Deloose
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Wout Verbeure
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium.
| |
Collapse
|
43
|
Kitazawa T, Harada R, Sakata I, Sakai T, Kaiya H. A verification study of gastrointestinal motility-stimulating action of guinea-pig motilin using isolated gastrointestinal strips from rabbits and guinea-pigs. Gen Comp Endocrinol 2019; 274:106-112. [PMID: 30677392 DOI: 10.1016/j.ygcen.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Abstract
Motilin (MLN), a 22-amino-acid peptide hormone, is generally present in the mucosa of the upper gastrointestinal (GI) tract, mainly the duodenum of mammals, and it regulates GI motility, especially that related to interdigestive migrating contraction. However, MLN and its receptor are absent in mice and rats, and MLN does not cause any mechanical responses in the rat and mouse GI tracts. The guinea-pig is also a rodent, but expression of the MLN gene in the guinea-pig has been reported. In the present study, two guinea-pig MLNs, FIPIFTYSELRRTQEREQNKGL found in the Ensemble Genome Database (gpMLN-1) and FVPIFTYSELRRTQEREQNKRL reported by Xu et al. (2001) (gpMLN-2), were synthesized, and their biological activities were evaluated in the rabbit duodenum and guinea-pig GI tract in vitro. Both gpMLNs showed contractile activity in longitudinal muscle strips of the rabbit duodenum. The EC50 values of gpMLN-1 and gpMLN-2 were slightly higher than that of human MLN (hMLN), but the maximum contractions were as same as that of hMLN. Treatment with GM109 and hMLN-induced receptor desensitization decreased the contractile activity of both gpMLNs, indicating that the two gpMLN candidates are able to activate the MLN receptor (MLN-R) of the rabbit duodenum. In guinea-pig GI preparations, hMLN and gpMLNs did not show any mechanical responses in circular muscle strips from the gastric antrum or in longitudinal strips of the duodenum, ileum and colon although acetylcholine and 1,1-dimethyl-4-phenylpiperazinium (DMPP) caused definite mechanical responses. The DMPP-induced neural responses in the gastric circular muscle and ileal longitudinal muscles were not modified by gpMLN-1. Even in the gastric and ileal strips with intact mucosa, no mechanical responses were seen with either of the gpMLNs. Furthermore, RT-PCR using various primer sets failed to amplify the gpMLN-2 mRNA. In conclusion, gpMLNs including one that was already reported and the other that was newly found in a database were effective to the rabbit MLN-R, whereas they did not cause any contractions or modification of neural responses in the guinea-pig GI tract, indicating that the MLN system is vestigial and not functional in regulation of GI motility in the guinea-pig as well as in other rodents such as rats and mice.
Collapse
Affiliation(s)
- Takio Kitazawa
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | - Rio Harada
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| |
Collapse
|
44
|
Kawamura T, Matsuura B, Miyake T, Abe M, Ikeda Y, Hiasa Y. Effects of Motilin Receptor Agonists and Ghrelin in Human motilin receptor Transgenic Mice. Int J Mol Sci 2019; 20:ijms20071521. [PMID: 30934667 PMCID: PMC6479874 DOI: 10.3390/ijms20071521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/23/2019] [Accepted: 03/24/2019] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal motility is regulated by neural factors and humoral factors. Both motilin and ghrelin improve gastrointestinal motility, but many issues remain unclear. We prepared human motilin receptor transgenic (Tg) mice and performed experiments evaluating the effects of motilin, erythromycin (EM), and ghrelin. EM and ghrelin promoted gastric emptying (GE) when administered either peripherally or centrally to Tg mice. Atropine (a muscarinic receptor antagonist) counteracted GE induced by centrally administered EM, but not that induced by peripherally administered EM. The administration of EM in this model promoted the effect of mosapride (a selective serotonin 5-hydroxytryptamine 4 (5-HT4) receptor agonist), and improved loperamide (a μ-opioid receptor agonist)-induced gastroparesis. The level of acyl-ghrelin was significantly attenuated by EM administration. Thus, we have established an animal model appropriate for the evaluation of motilin receptor agonists. These data and the model are expected to facilitate the identification of novel compounds with clinical potential for relieving symptoms of dyspepsia and gastroparesis.
Collapse
MESH Headings
- Animals
- Benzamides/pharmacology
- Erythromycin/administration & dosage
- Erythromycin/pharmacology
- Gastric Emptying/drug effects
- Gastroparesis/blood
- Gastroparesis/chemically induced
- Gastroparesis/drug therapy
- Gastroparesis/physiopathology
- Ghrelin/blood
- Ghrelin/pharmacology
- Humans
- Loperamide/adverse effects
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Morpholines/pharmacology
- Postprandial Period
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Gastrointestinal Hormone/agonists
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Ghrelin/genetics
- Receptors, Ghrelin/metabolism
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Stomach/drug effects
- Stomach/pathology
- Stomach/physiopathology
- Vagus Nerve/drug effects
- Vagus Nerve/physiology
Collapse
Affiliation(s)
- Tomoe Kawamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City 791-0295, Japan.
| | - Bunzo Matsuura
- Department of Lifestyle-related Medicine and Endocrinology, Ehime University Graduate School of Medicine, Toon City 791-0295, Japan.
| | - Teruki Miyake
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City 791-0295, Japan.
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City 791-0295, Japan.
| | - Yoshiou Ikeda
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City 791-0295, Japan.
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City 791-0295, Japan.
| |
Collapse
|
45
|
Erythromycin acts through the ghrelin receptor to attenuate inflammatory responses in chondrocytes and maintain joint integrity. Biochem Pharmacol 2019; 165:79-90. [PMID: 30862504 DOI: 10.1016/j.bcp.2019.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a prevalent disease characterized by chronic joint degeneration and low-grade localized inflammation. There is no available treatment to delay OA progression. We report that in human primary articular chondrocytes, erythromycin, a well-known macrolide antibiotic, had the ability to inhibit pro-inflammatory cytokine Interleukin 1β (IL-1β)-induced catabolic gene expression and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Furthermore, erythromycin inhibited monosodium iodoacetate (MIA)-induced joint inflammation and cartilage matrix destruction in mice, an arthritis model that reflects the inflammatory and cartilage matrix loss aspects of OA. EM900, an erythromycin-derivative lacking antibiotic function, had the same activity as erythromycin in vitro and in vivo, indicating distinct anti-inflammatory and antibiotic properties. Using an antibody against erythromycin, we found erythromycin was present on chondrocytes in a dose-dependent manner. The association of erythromycin with chondrocytes was diminished in ghrelin receptor null chondrocytes, and administration of the ghrelin ligand prevented the association of erythromycin with chondrocytes. Importantly, the anti-inflammatory activity of erythromycin was diminished in ghrelin receptor null chondrocytes. Moreover, erythromycin could not exert its chondroprotective effect in ghrelin receptor null mice, and the loss of ghrelin receptor further augmented joint damage upon MIA-injection. Therefore, our study identified a novel pharmacological mechanism for how erythromycin exerts its chondroprotective effect. This mechanism entails ghrelin receptor signaling, which is necessary for alleviating inflammation and joint destruction.
Collapse
|
46
|
Kato S, Takahashi A, Shindo M, Yoshida A, Kawamura T, Matsumoto K, Matsuura B. Characterization of the gastric motility response to human motilin and erythromycin in human motilin receptor-expressing transgenic mice. PLoS One 2019; 14:e0205939. [PMID: 30789939 PMCID: PMC6383879 DOI: 10.1371/journal.pone.0205939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/06/2019] [Indexed: 12/27/2022] Open
Abstract
Motilin is a gastrointestinal peptide hormone that stimulates gastrointestinal motility. Motilin is produced primarily in the duodenum and jejunum. Motilin receptors (MTLRs) are G protein-coupled receptors that may represent a clinically useful pharmacological target as they can be activated by erythromycin. The functions of motilin are highly species-dependent and remain poorly understood. As a functional motilin system is absent in rodents such as rats and mice, these species are not commonly used for basic studies. In this study, we examine the usefulness of human MTLR-overexpressing transgenic (hMTLR-Tg) mice by identifying the mechanisms of the gastric motor response to human motilin and erythromycin. The distribution of hMTLR was examined immunohistochemically in male wild-type (WT) and hMTLR-Tg mice. The contractile response of gastric strips was measured isometrically in an organ bath, while gastric emptying was determined using phenol red. hMTLR expression was abundant in the gastric smooth muscle layer. Interestingly, higher levels of hMTLR expression were observed in the myenteric plexus of hMTLR-Tg mice but not WT mice. hMTLR was not co-localized with vesicular acetylcholine transporter, a marker of cholinergic neurons in the myenteric plexus. Treatment with human motilin and erythromycin caused concentration-dependent contraction of gastric strips obtained from hMTLR-Tg mice but not from WT mice. The contractile response to human motilin and erythromycin in hMTLR-Tg mice was affected by neither atropine nor tetrodotoxin and was totally absent in Ca2+-free conditions. Furthermore, intraperitoneal injection of erythromycin significantly promoted gastric emptying in hMTLR-Tg mice but not in WT mice. Human motilin and erythromycin stimulate gastric smooth muscle contraction in hMTLR-Tg mice. This action is mediated by direct contraction of smooth muscle via the influx of extracellular Ca2+. Thus, hMTLR-Tg mice may be useful for the evaluation of MTLR agonists as gastric prokinetic agents.
Collapse
Affiliation(s)
- Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto, Japan
- * E-mail:
| | - Aoi Takahashi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto, Japan
| | - Mai Shindo
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto, Japan
| | - Ayano Yoshida
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto, Japan
| | - Tomoe Kawamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto, Japan
| | - Bunzo Matsuura
- Department of Lifestyle-related Medicine and Endocrinology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
47
|
Kitazawa T, Kaiya H. Regulation of Gastrointestinal Motility by Motilin and Ghrelin in Vertebrates. Front Endocrinol (Lausanne) 2019; 10:278. [PMID: 31156548 PMCID: PMC6533539 DOI: 10.3389/fendo.2019.00278] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
The energy balance of vertebrates is regulated by the difference in energy input and energy expenditure. Generally, most vertebrates obtain their energy from nutrients of foods through the gastrointestinal (GI) tract. Therefore, food intake and following food digestion, including motility of the GI tract, secretion and absorption, are crucial physiological events for energy homeostasis. GI motility changes depending on feeding, and GI motility is divided into fasting (interdigestive) and postprandial (digestive) contraction patterns. GI motility is controlled by contractility of smooth muscles of the GI tract, extrinsic and intrinsic neurons (motor and sensory) and some hormones. In mammals, ghrelin (GHRL) and motilin (MLN) stimulate appetite and GI motility and contribute to the regulation of energy homeostasis. GHRL and MLN are produced in the mucosal layer of the stomach and upper small intestine, respectively. GHRL is a multifunctional peptide and is involved in glucose metabolism, endocrine/exocrine functions and cardiovascular and reproductive functions, in addition to feeding and GI motility in mammals. On the other hand, the action of MLN is restricted and species such as rodentia, including mice and rats, lack MLN peptide and its receptor. From a phylogenetic point of view, GHRL and its receptor GHS-R1a have been identified in various vertebrates, and their structural features and various physiological functions have been revealed. On the other hand, MLN or MLN-like peptide (MLN-LP) and its receptors have been found only in some fish, birds and mammals. Here, we review the actions of GHRL and MLN with a focus on contractility of the GI tract of species from fish to mammals.
Collapse
Affiliation(s)
- Takio Kitazawa
- Comparative Animal Pharmacology, Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Japan
- *Correspondence: Takio Kitazawa
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
48
|
Niu Y, Wang J, Wang P, Guo X, Wang J, Kang W. Effect of Malus halliana Koehne Polysaccharides on Functional Constipation. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe effects of Malus halliana Koehne polysaccharides on functional constipation was investigated in this study. The rats were divided into six groups: normal group, model group, positive control group, M. halliana polysaccharides high dose groups 1200 mg/ kg, medium dose groups 1000 mg/ kg and low dose groups 800 mg/kg. The model of constipation was established by loperamide hydrochloride. Feces weight at 6 and 24 hours after treatment, Colon moisture content, in addition the levels of motilin (MTL), gastrin (Gas), somatostatin (SS), substance P (SP) in serum were used to evaluate the preventive effects of M. halliana polysaccharides on constipation. Compared with the model group, the positive control group, M. halliana polysaccharide high, medium and low dose group 6 h weight of feces, colon moisture content, the levels of motilin (MTL), gastrin (GAS) and substance P(SP) significantly (p <0.01) increased, the levels of somatostatin (SS) significantly decreased. The results indicated that the high, middle and low dosage of M. halliana polysaccharide could effectively improve functional constipation. Amongst these doses, the low dose group was better than others.
Collapse
Affiliation(s)
- Yingying Niu
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng475004, China
| | - Junya Wang
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng475004, China
| | - Pengyu Wang
- Institute of Chinese Materia Medica, Henan University, Kaifeng475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng475004, China
| | - Xiuchun Guo
- Institute of Chinese Materia Medica, Henan University, Kaifeng475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng475004, China
| | - Jinmei Wang
- Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng475004, China
| | - Wenyi Kang
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng475004, China; Institute of Chinese Materia Medica, Henan University, Kaifeng475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng475004, China
| |
Collapse
|
49
|
Pseudo-obstruction intestinale chronique de l’adulte. Rev Med Interne 2018; 39:792-799. [DOI: 10.1016/j.revmed.2018.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/06/2018] [Accepted: 03/03/2018] [Indexed: 12/17/2022]
|
50
|
Zhao X, Yi R, Qian Y, Park KY. Lactobacillus plantarum YS-3 Prevents Activated Carbon-Induced Constipation in Mice. J Med Food 2018; 21:575-584. [PMID: 29757072 DOI: 10.1089/jmf.2017.4109] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The aim of this study was to determine the effects of Lactobacillus plantarum YS-3 (LP-YS3) on activated carbon-induced constipation in Kunming mice. The results of the experiment show that the antigastric acid activity and bile salt tolerance of LP-YS3 were stronger than those of Lactobacillus bulgaricus (LB). LP-YS3 inhibited loss of body weight caused by constipation and further reductions in fecal weight, particle number, and water content in mice. Moreover, LP-YS3 elevated the gastrointestinal transit rate and reduced the time required for initial black stool defecation. LP-YS3 also elevated motilin (MTL), endothelin (ET), acetylcholinesterase (AChE), substance P (SP), and VIP serum levels and reduced somatostatin (SS) levels in constipated mice. Hematoxylin-eosin (H&E) staining revealed that high concentration of LP-YS3 reduced the incidence of injuries to small intestine villi and the intestinal wall compared to carbon-induced constipation groups. Reverse transcription-polymerase chain reaction and western blot experiments demonstrated that LP-YS3 upregulated c-Kit, stem cell factor, and glial cell line-derived neurotrophic factor mRNA and protein expression and downregulated transient receptor potential vanilloid 1 and nitric oxide synthase expression in small intestine tissue from constipated mice. In conclusion, high concentrations of LP-YS3 had stronger and more beneficial effects than LB. Based on these results, we conclude that LP-YS3 can effectively inhibit constipation.
Collapse
Affiliation(s)
- Xin Zhao
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU) , Beijing, China
- 2 Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education , Chongqing, China
| | - Ruokun Yi
- 2 Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education , Chongqing, China
| | - Yu Qian
- 2 Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education , Chongqing, China
| | - Kun-Young Park
- 2 Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education , Chongqing, China
- 3 Department of Food Science and Biotechnology, Cha University , Seongnam, Gyeongghi-do, Korea
| |
Collapse
|