1
|
Goel K, Saraogi I. Harnessing RNA-Protein Interactions for Therapeutic Interventions. Chem Asian J 2025; 20:e202401117. [PMID: 39714962 DOI: 10.1002/asia.202401117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Interactions between RNAs and proteins play a crucial role in various diseases, including viral infections and cancer. Hence, understanding and inhibiting these interactions are important for the development of novel therapeutics. However, the identification of drugs targeting RNA-protein interactions with high specificity and affinity is challenged by our limited molecular understanding of these interactions. Recent focus on structural and biochemical characterization, coupled with high-throughput screening technologies and computational modeling, have accelerated the identification of new RBPs and optimization of potential inhibitors. This review discusses key examples of inhibitors developed over the past decade that effectively disrupt pathogenic RNA-protein interactions. We focus on small molecule and peptide-based inhibitors that have shown promise in disrupting crucial RNA-protein interactions in eukaryotes, prokaryotes, and viruses. We also present the challenges and future directions in this field, emphasizing the need to achieve improved specificity and reduce the off-target effects of the inhibitors. This review aims to contribute to ongoing efforts towards the development of novel therapeutic agents targeting RNA-protein interactions by providing an in-depth analysis of significant developments and emerging trends in this rapidly growing field.
Collapse
Affiliation(s)
- Khushboo Goel
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
2
|
Lin J, Chong SY, Oh MW, Lew SQ, Zhu L, Zhang X, Witola WH, Lau GW. Signal recognition particle RNA is critical for genetic competence and virulence of Streptococcus pneumoniae. J Bacteriol 2024; 206:e0000424. [PMID: 39171913 PMCID: PMC11412328 DOI: 10.1128/jb.00004-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Streptococcus pneumoniae (pneumococcus) causes a wide range of important human infectious diseases, including pneumonia, pneumonia-derived sepsis, otitis media, and meningitis. Pneumococcus produces numerous secreted proteins that are critical for normal physiology and pathogenesis. The membrane targeting and translocation of these secreted proteins are partly mediated by the signal recognition particle (SRP) complex, which consists of 4.5S small cytoplasmic RNA (ScRNA), and the Ffh, and FtsY proteins. Here, we report that pneumococcal ∆scRNA, ∆ffh, and ∆ftsY mutants were significantly impaired in competence induction, competence pili production, exogenous DNA uptake, and genetic transformation. Also, the ∆scRNA mutant was significantly attenuated in the mouse models of bacteremia and pneumonia. Interestingly, unlike the ∆scRNA, both ∆ffh and ∆ftsY mutants had growth defects on Todd-Hewitt Agar, which were alleviated by the provision of free amino acids or serum. Differences in nutritional requirements between ∆ffh and ∆ftsY vs ∆scRNA suggest that Ffh and FtsY may be partially functional in the absence of ScRNA. Finally, the insertase YidC2, which could functionally rescue some SRP mutations in other streptococcal species, was not essential for pneumococcal genetic transformation. Collectively, these results indicate that ScRNA is crucial for the successful development of genetic competence and virulence in pneumococcus. IMPORTANCE Streptococcus pneumoniae (pneumococcus) causes multiple important infectious diseases in humans. The signal recognition particle (SRP) complex, which comprised 4.5S small cytoplasmic RNA (ScRNA), and the Ffh and FtsY proteins, mediates membrane targeting and translocation of secreted proteins in all organisms. However, the role of SRP and ScRNA has not been characterized during the induction of the competence system for genetic transformation and virulence in pneumococcus. By using a combination of genetic, biochemical, proteomic, and imaging approaches, we demonstrated that the SRP complex plays a significant role in membrane targeting of competence system-regulated effectors important for genetic transformation, virulence during bacteremia and pneumonia infections, and nutritional acquisition.
Collapse
Affiliation(s)
- Jingjun Lin
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| | - Sook Yin Chong
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| | - Myung Whan Oh
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| | - Shi Qian Lew
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| | - Luchang Zhu
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| | - Xuejin Zhang
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| | - William H. Witola
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| | - Gee W. Lau
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| |
Collapse
|
3
|
Palacios-Pérez M, José MV. A Proposal for the RNAome at the Dawn of the Last Universal Common Ancestor. Genes (Basel) 2024; 15:1195. [PMID: 39336786 PMCID: PMC11431127 DOI: 10.3390/genes15091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
From the most ancient RNAs, which followed an RNY pattern and folded into small hairpins, modern RNA molecules evolved by two different pathways, dubbed Extended Genetic Code 1 and 2, finally conforming to the current standard genetic code. Herein, we describe the evolutionary path of the RNAome based on these evolutionary routes. In general, all the RNA molecules analysed contain portions encoded by both genetic codes, but crucial features seem to be better recovered by Extended 2 triplets. In particular, the whole Peptidyl Transferase Centre, anti-Shine-Dalgarno motif, and a characteristic quadruplet of the RNA moiety of RNAse-P are clearly unveiled. Differences between bacteria and archaea are also detected; in most cases, the biological sequences are more stable than their controls. We then describe an evolutionary trajectory of the RNAome formation, based on two complementary evolutionary routes: one leading to the formation of essentials, while the other complemented the molecules, with the cooperative assembly of their constituents giving rise to modern RNAs.
Collapse
Affiliation(s)
- Miryam Palacios-Pérez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Marco V. José
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
4
|
Saini S, Goel K, Ghosh S, Das A, Saraogi I. Effects of PNA Sequence and Target Site Selection on Function of a 4.5S Non-Coding RNA. Chembiochem 2024:e202400029. [PMID: 38595046 DOI: 10.1002/cbic.202400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Peptide nucleic acid (PNA) based antisense strategy is a promising therapeutic approach to specifically inhibit target gene expression. However, unlike protein coding genes, identification of an ideal PNA binding site for non-coding RNA is not straightforward. Here, we compare the inhibitory activities of PNA molecules that bind a non-coding 4.5S RNA called SRP RNA, a key component of the bacterial signal recognition particle (SRP). A 9-mer PNA (PNA9) complementary to the tetraloop region of the RNA was more potent in inhibiting its interaction with the SRP protein, compared to an 8-mer PNA (PNA8) targeting a stem-loop. PNA9, which contained a homo-pyrimidine sequence could form a triplex with the complementary stretch of RNA in vitro as confirmed using a fluorescent derivative of PNA9 (F-PNA13). The RNA-PNA complex formation resulted in inhibition of SRP function with PNA9 and F-PNA13, but not PNA8 highlighting the importance of target site selection. Surprisingly, F-PNA13 which was more potent in inhibiting SRP function in vitro, showed weaker antibacterial activity compared to PNA9 likely due to poor cell penetration of the longer PNA. Our results underscore the importance of suitable target site selection and optimum PNA length to develop better antisense molecules against non-coding RNA.
Collapse
Affiliation(s)
- Snehlata Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Khushboo Goel
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Sudipta Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Anirban Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
5
|
Gussakovsky D, Black NA, Booy EP, McKenna SA. The role of SRP9/SRP14 in regulating Alu RNA. RNA Biol 2024; 21:1-12. [PMID: 39563162 PMCID: PMC11581171 DOI: 10.1080/15476286.2024.2430817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
SRP9/SRP14 is a protein heterodimer that plays a critical role in the signal recognition particle through its interaction with the scaffolding signal recognition particle RNA (7SL). SRP9/SRP14 binding to 7SL is mediated through a conserved structural motif that is shared with the primate-specific Alu RNA. Alu RNA are transcription products of Alu elements, a retroelement that comprises ~10% of the human genome. Alu RNA are involved in myriad biological processes and are dysregulated in several human disease states. This review focuses on the roles SRP9/SRP14 has in regulating Alu RNA diversification, maturation, and function. The diverse mechanisms through which SRP9/SRP14 regulates Alu RNA exemplify the breadth of protein-mediated regulation of non-coding RNA.
Collapse
Affiliation(s)
| | - Nicole A. Black
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Evan P. Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Badelt S, Lorenz R. A Guide to Computational Cotranscriptional Folding Featuring the SRP RNA. Methods Mol Biol 2024; 2726:315-346. [PMID: 38780737 DOI: 10.1007/978-1-0716-3519-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Although RNA molecules are synthesized via transcription, little is known about the general impact of cotranscriptional folding in vivo. We present different computational approaches for the simulation of changing structure ensembles during transcription, including interpretations with respect to experimental data from literature. Specifically, we analyze different mutations of the E. coli SRP RNA, which has been studied comparatively well in previous literature, yet the details of which specific metastable structures form as well as when they form are still under debate. Here, we combine thermodynamic and kinetic, deterministic, and stochastic models with automated and visual inspection of those systems to derive the most likely scenario of which substructures form at which point during transcription. The simulations do not only provide explanations for present experimental observations but also suggest previously unnoticed conformations that may be verified through future experimental studies.
Collapse
Affiliation(s)
- Stefan Badelt
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.
| | - Ronny Lorenz
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Benton M, Furr M, Govind Kumar V, Polasa A, Gao F, Heyes CD, Suresh Kumar TK, Moradi M. cpSRP43 Is Both Highly Flexible and Stable: Structural Insights Using a Combined Experimental and Computational Approach. J Chem Inf Model 2023. [PMID: 37336508 DOI: 10.1021/acs.jcim.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The novel multidomain protein, cpSRP43, is a unique subunit of the post-translational chloroplast signal recognition particle (cpSRP) targeting pathway in higher plants. The cpSRP pathway is responsible for targeting and insertion of light-harvesting chlorophyll a/b binding proteins (LHCPs) to the thylakoid membrane. Upon emergence into the stroma, LHCPs form a soluble transit complex with the cpSRP heterodimer, which is composed of cpSRP43 and cpSRP54. cpSRP43 is irreplaceable as a chaperone to LHCPs in their translocation to the thylakoid membrane and remarkable in its ability to dissolve aggregates of LHCPs without the need for external energy input. In previous studies, cpSRP43 has demonstrated significant flexibility and interdomain dynamics. In this study, we explore the structural stability and flexibility of cpSRP43 using a combination of computational and experimental techniques and find that this protein is concurrently highly stable and flexible. In addition to microsecond-level unbiased molecular dynamics (MD), biased MD simulations based on system-specific collective variables are used along with biophysical experimentation to explain the basis of the flexibility and stability of cpSRP43, showing that the free and cpSRP54-bound cpSRP43 has substantially different conformations and conformational dynamics.
Collapse
Affiliation(s)
- Mitchell Benton
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mercede Furr
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Vivek Govind Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Feng Gao
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Colin David Heyes
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
8
|
Itskanov S, Park E. Mechanism of Protein Translocation by the Sec61 Translocon Complex. Cold Spring Harb Perspect Biol 2023; 15:a041250. [PMID: 35940906 PMCID: PMC9808579 DOI: 10.1101/cshperspect.a041250] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is a major site for protein synthesis, folding, and maturation in eukaryotic cells, responsible for production of secretory proteins and most integral membrane proteins. The universally conserved protein-conducting channel Sec61 complex mediates core steps in these processes by translocating hydrophilic polypeptide segments of client proteins across the ER membrane and integrating hydrophobic transmembrane segments into the membrane. The Sec61 complex associates with several other molecular machines and enzymes to enable substrate engagement with the channel and coordination of protein translocation with translation, protein folding, and/or post-translational modifications. Recent cryo-electron microscopy and functional studies of these translocon complexes have greatly advanced our mechanistic understanding of Sec61-dependent protein biogenesis at the ER. Here, we will review the current models for how the Sec61 channel performs its functions in coordination with partner complexes.
Collapse
Affiliation(s)
- Samuel Itskanov
- Biophysics Graduate Program
- California Institute for Quantitative Biosciences
| | - Eunyong Park
- California Institute for Quantitative Biosciences
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Rozov SM, Deineko EV. Increasing the Efficiency of the Accumulation of Recombinant Proteins in Plant Cells: The Role of Transport Signal Peptides. PLANTS (BASEL, SWITZERLAND) 2022; 11:2561. [PMID: 36235427 PMCID: PMC9572730 DOI: 10.3390/plants11192561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The problem with increasing the yield of recombinant proteins is resolvable using different approaches, including the transport of a target protein to cell compartments with a low protease activity. In the cell, protein targeting involves short-signal peptide sequences recognized by intracellular protein transport systems. The main systems of the protein transport across membranes of the endoplasmic reticulum and endosymbiotic organelles are reviewed here, as are the major types and structure of the signal sequences targeting proteins to the endoplasmic reticulum and its derivatives, to plastids, and to mitochondria. The role of protein targeting to certain cell organelles depending on specific features of recombinant proteins and the effect of this targeting on the protein yield are discussed, in addition to the main directions of the search for signal sequences based on their primary structure. This knowledge makes it possible not only to predict a protein localization in the cell but also to reveal the most efficient sequences with potential biotechnological utility.
Collapse
|
10
|
Smets D, Smit J, Xu Y, Karamanou S, Economou A. Signal Peptide-rheostat Dynamics Delay Secretory Preprotein Folding. J Mol Biol 2022; 434:167790. [PMID: 35970402 DOI: 10.1016/j.jmb.2022.167790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Sec secretory proteins are distinguished from cytoplasmic ones by N-terminal signal peptides with multiple roles during post-translational translocation. They contribute to preprotein targeting to the translocase by slowing down folding, binding receptors and triggering secretion. While signal peptides get cleaved after translocation, mature domains traffic further and/or fold into functional states. How signal peptides delay folding temporarily, to keep mature domains translocation-competent, remains unclear. We previously reported that the foldon landscape of the periplasmic prolyl-peptidyl isomerase is altered by its signal peptide and mature domain features. Here, we reveal that the dynamics of signal peptides and mature domains crosstalk. This involves the signal peptide's hydrophobic helical core, the short unstructured connector to the mature domain and the flexible rheostat at the mature domain N-terminus. Through this cis mechanism the signal peptide delays the formation of early initial foldons thus altering their hierarchy and delaying mature domain folding. We propose that sequence elements outside a protein's native core exploit their structural dynamics to influence the folding landscape.
Collapse
Affiliation(s)
- Dries Smets
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Jochem Smit
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Ying Xu
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| |
Collapse
|
11
|
Expression and purification of the NG domain from human SRα, a key component of the Signal Recognition Particle (SRP) receptor. Protein Expr Purif 2022; 198:106121. [DOI: 10.1016/j.pep.2022.106121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
|
12
|
Ko S, Yeom E, Chun YL, Mun H, Howard-McGuire M, Millison NT, Jung J, Lee KP, Lee C, Lee KS, Delaney JR, Yoon JH. Profiling of RNA-binding Proteins Interacting With Glucagon and Adipokinetic Hormone mRNAs. J Lipid Atheroscler 2022; 11:55-72. [PMID: 35118022 PMCID: PMC8792818 DOI: 10.12997/jla.2022.11.1.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Glucagon in mammals and its homolog (adipokinetic hormone [AKH] in Drosophila melanogaster) are peptide hormones which regulate lipid metabolism by breaking down triglycerides. Although regulatory mechanisms of glucagon and AKH expression have been widely studied, post-transcriptional gene expression of glucagon has not been investigated thoroughly. In this study, we aimed to profile proteins binding with Gcg messenger RNA (mRNA) in mouse and Akh mRNA in Drosophila. METHODS Drosophila Schneider 2 (S2) and mouse 3T3-L1 cell lysates were utilized for affinity pull down of Akh and Gcg mRNA respectively using biotinylated anti-sense DNA oligoes against target mRNAs. Mass spectrometry and computational network analysis revealed mRNA-interacting proteins residing in functional proximity. RESULTS We observed that 1) 91 proteins interact with Akh mRNA from S2 cell lysates, 2) 34 proteins interact with Gcg mRNA from 3T3-L1 cell lysates. 3) Akh mRNA interactome revealed clusters of ribosomes and known RNA-binding proteins (RBPs). 4) Gcg mRNA interactome revealed mRNA-binding proteins including Plekha7, zinc finger protein, carboxylase, lipase, histone proteins and a cytochrome, Cyp2c44. 5) Levels of Gcg mRNA and its interacting proteins are elevated in skeletal muscles isolated from old mice compared to ones from young mice. CONCLUSION Akh mRNA in S2 cells are under active translation in a complex of RBPs and ribosomes. Gcg mRNA in mouse precursor adipocyte is in a condition distinct from Akh mRNA due to biochemical interactions with a subset of RBPs and histones. We anticipate that our study contributes to investigating regulatory mechanisms of Gcg and Akh mRNA decay, translation, and localization.
Collapse
Affiliation(s)
- Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Eunbyul Yeom
- Neurophysiology and Metabolism Research Group, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Yoo Lim Chun
- Department of Biomedical Science, Graduation School, Kyung Hee University, Seoul, Korea
| | - Hyejin Mun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Marina Howard-McGuire
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Nathan T. Millison
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Kwang-Pyo Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kyu-Sun Lee
- Neurophysiology and Metabolism Research Group, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Joe R. Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
13
|
Hsieh HH, Shan SO. Fidelity of Cotranslational Protein Targeting to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:ijms23010281. [PMID: 35008707 PMCID: PMC8745203 DOI: 10.3390/ijms23010281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/04/2023] Open
Abstract
Fidelity of protein targeting is essential for the proper biogenesis and functioning of organelles. Unlike replication, transcription and translation processes, in which multiple mechanisms to recognize and reject noncognate substrates are established in energetic and molecular detail, the mechanisms by which cells achieve a high fidelity in protein localization remain incompletely understood. Signal recognition particle (SRP), a conserved pathway to mediate the localization of membrane and secretory proteins to the appropriate cellular membrane, provides a paradigm to understand the molecular basis of protein localization in the cell. In this chapter, we review recent progress in deciphering the molecular mechanisms and substrate selection of the mammalian SRP pathway, with an emphasis on the key role of the cotranslational chaperone NAC in preventing protein mistargeting to the ER and in ensuring the organelle specificity of protein localization.
Collapse
|
14
|
Potteth US, Upadhyay T, Saini S, Saraogi I. Novel Antibacterial Targets in Protein Biogenesis Pathways. Chembiochem 2021; 23:e202100459. [PMID: 34643994 DOI: 10.1002/cbic.202100459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance has emerged as a global threat due to the ability of bacteria to quickly evolve in response to the selection pressure induced by anti-infective drugs. Thus, there is an urgent need to develop new antibiotics against resistant bacteria. In this review, we discuss pathways involving bacterial protein biogenesis as attractive antibacterial targets since many of them are essential for bacterial survival and virulence. We discuss the structural understanding of various components associated with bacterial protein biogenesis, which in turn can be utilized for rational antibiotic design. We highlight efforts made towards developing inhibitors of these pathways with insights into future possibilities and challenges. We also briefly discuss other potential targets related to protein biogenesis.
Collapse
Affiliation(s)
- Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Snehlata Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India.,Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal - 462066, Madhya Pradesh, India
| |
Collapse
|
15
|
Gupta S, Roy M, Dey D, Bhakta K, Bhowmick A, Chattopadhyay D, Ghosh A. Archaeal SRP RNA and SRP19 facilitate the assembly of SRP54-FtsY targeting complex. Biochem Biophys Res Commun 2021; 566:53-58. [PMID: 34116357 DOI: 10.1016/j.bbrc.2021.05.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
The signal recognition particle (SRP) plays an essential role in protein translocation across biological membranes. Stable complexation of two GTPases in the signal recognition particle (SRP) and its receptor (SR) control the delivery of nascent polypeptide to the membrane translocon. In archaea, protein targeting is mediated by the SRP54/SRP19/7S RNA ribonucleoprotein complex (SRP) and the FtsY protein (SR). In the present study, using fluorescence resonance energy transfer (FRET), we demonstrate that archaeal 7S RNA stabilizes the SRP54·FtsY targeting complex (TC). Moreover, we show that archaeal SRP19 further assists 7S RNA in stabilizing the targeting complex (TC). These results suggest that archaeal 7S RNA and SRP19 modulate the conformation of the targeting complex and thereby reinforce TC to execute protein translocation via concomitant GTP hydrolysis.
Collapse
Affiliation(s)
| | - Mousam Roy
- Department of Biochemistry, Bose Institute, Kolkata, India
| | - Dhritiman Dey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Koustav Bhakta
- Department of Biochemistry, Bose Institute, Kolkata, India
| | | | | | | |
Collapse
|
16
|
Faoro C, Ataide SF. Noncanonical Functions and Cellular Dynamics of the Mammalian Signal Recognition Particle Components. Front Mol Biosci 2021; 8:679584. [PMID: 34113652 PMCID: PMC8185352 DOI: 10.3389/fmolb.2021.679584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein complex fundamental for co-translational delivery of proteins to their proper membrane localization and secretory pathways. Literature of the past two decades has suggested new roles for individual SRP components, 7SL RNA and proteins SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72, outside the SRP cycle. These noncanonical functions interconnect SRP with a multitude of cellular and molecular pathways, including virus-host interactions, stress response, transcriptional regulation and modulation of apoptosis in autoimmune diseases. Uncovered novel properties of the SRP components present a new perspective for the mammalian SRP as a biological modulator of multiple cellular processes. As a consequence of these findings, SRP components have been correlated with a growing list of diseases, such as cancer progression, myopathies and bone marrow genetic diseases, suggesting a potential for development of SRP-target therapies of each individual component. For the first time, here we present the current knowledge on the SRP noncanonical functions and raise the need of a deeper understanding of the molecular interactions between SRP and accessory cellular components. We examine diseases associated with SRP components and discuss the development and feasibility of therapeutics targeting individual SRP noncanonical functions.
Collapse
Affiliation(s)
- Camilla Faoro
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sandro F Ataide
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Maity A, Winnerdy FR, Chen G, Phan AT. Duplexes Formed by G 4C 2 Repeats Contain Alternate Slow- and Fast-Flipping G·G Base Pairs. Biochemistry 2021; 60:1097-1107. [PMID: 33750098 DOI: 10.1021/acs.biochem.0c00916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aberrant expansion of the hexanucleotide GGGGCC (or G4C2) repeat in the human C9ORF72 gene is the most common genetic factor found behind amyotrophic lateral sclerosis and frontotemporal dementia. The hypothesized pathways, through which the repeat expansions contribute to the pathology, involve one or more secondary structural forms of the DNA and/or RNA sequences, such as G-quadruplexes, duplexes, and hairpins. Here, we study the structures of DNA and RNA duplexes formed by G4C2 repeats, which contain G(syn)·G(anti) base pairs flanked by either G·C or C·G base pairs. We show that duplexes formed by G4C2 repeats contain alternately two types of G·G pair contexts exhibiting different syn-anti base flipping dynamics (∼100 ms vs ∼2 ms for DNA and ∼50 ms vs ∼20 ms for RNA at 10 °C, respectively) depending on the flanking bases, with the slow-flipping G·G pairs being flanked by a guanine at the 5'-end and the fast-flipping G·G pairs being flanked by a cytosine at the 5'-end. Our findings on the structures and dynamics of G·G base pairs in DNA and RNA duplexes formed by G4C2 repeats provide a foundation for further studies of the functions and targeting of such biologically relevant motifs.
Collapse
Affiliation(s)
- Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Gang Chen
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
18
|
An mRNA-mRNA Interaction Couples Expression of a Virulence Factor and Its Chaperone in Listeria monocytogenes. Cell Rep 2021; 30:4027-4040.e7. [PMID: 32209466 PMCID: PMC8722363 DOI: 10.1016/j.celrep.2020.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/27/2020] [Accepted: 02/28/2020] [Indexed: 01/21/2023] Open
Abstract
Bacterial pathogens often employ RNA regulatory elements located in the 5' untranslated regions (UTRs) to control gene expression. Using a comparative structural analysis, we examine the structure of 5' UTRs at a global scale in the pathogenic bacterium Listeria monocytogenes under different conditions. In addition to discovering an RNA thermoswitch and detecting simultaneous interaction of ribosomes and small RNAs with mRNA, we identify structural changes in the 5' UTR of an mRNA encoding the post-translocation chaperone PrsA2 during infection conditions. We demonstrate that the 5' UTR of the prsA2 mRNA base pairs with the 3' UTR of the full-length hly mRNA encoding listeriolysin O, thus preventing RNase J1-mediated degradation of the prsA2 transcript. Mutants lacking the hly-prsA2 interaction exhibit reduced virulence properties. This work highlights an additional level of RNA regulation, where the mRNA encoding a chaperone is stabilized by the mRNA encoding its substrate.
Collapse
|
19
|
Harris AJ, Goldman AD. The very early evolution of protein translocation across membranes. PLoS Comput Biol 2021; 17:e1008623. [PMID: 33684113 PMCID: PMC7987157 DOI: 10.1371/journal.pcbi.1008623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 03/23/2021] [Accepted: 12/10/2020] [Indexed: 11/18/2022] Open
Abstract
In this study, we used a computational approach to investigate the early evolutionary history of a system of proteins that, together, embed and translocate other proteins across cell membranes. Cell membranes comprise the basis for cellularity, which is an ancient, fundamental organizing principle shared by all organisms and a key innovation in the evolution of life on Earth. Two related requirements for cellularity are that organisms are able to both embed proteins into membranes and translocate proteins across membranes. One system that accomplishes these tasks is the signal recognition particle (SRP) system, in which the core protein components are the paralogs, FtsY and Ffh. Complementary to the SRP system is the Sec translocation channel, in which the primary channel-forming protein is SecY. We performed phylogenetic analyses that strongly supported prior inferences that FtsY, Ffh, and SecY were all present by the time of the last universal common ancestor of life, the LUCA, and that the ancestor of FtsY and Ffh existed before the LUCA. Further, we combined ancestral sequence reconstruction and protein structure and function prediction to show that the LUCA had an SRP system and Sec translocation channel that were similar to those of extant organisms. We also show that the ancestor of Ffh and FtsY that predated the LUCA was more similar to FtsY than Ffh but could still have comprised a rudimentary protein translocation system on its own. Duplication of the ancestor of FtsY and Ffh facilitated the specialization of FtsY as a membrane bound receptor and Ffh as a cytoplasmic protein that could bind nascent proteins with specific membrane-targeting signal sequences. Finally, we analyzed amino acid frequencies in our ancestral sequence reconstructions to infer that the ancestral Ffh/FtsY protein likely arose prior to or just after the completion of the canonical genetic code. Taken together, our results offer a window into the very early evolutionary history of cellularity.
Collapse
Affiliation(s)
- AJ Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, Oberlin, Ohio, United States of America
| | - Aaron David Goldman
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, Oberlin, Ohio, United States of America
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
| |
Collapse
|
20
|
Yu AM, Gasper PM, Cheng L, Lai LB, Kaur S, Gopalan V, Chen AA, Lucks JB. Computationally reconstructing cotranscriptional RNA folding from experimental data reveals rearrangement of non-native folding intermediates. Mol Cell 2021; 81:870-883.e10. [PMID: 33453165 DOI: 10.1016/j.molcel.2020.12.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022]
Abstract
The series of RNA folding events that occur during transcription can critically influence cellular RNA function. Here, we present reconstructing RNA dynamics from data (R2D2), a method to uncover details of cotranscriptional RNA folding. We model the folding of the Escherichia coli signal recognition particle (SRP) RNA and show that it requires specific local structural fluctuations within a key hairpin to engender efficient cotranscriptional conformational rearrangement into the functional structure. All-atom molecular dynamics simulations suggest that this rearrangement proceeds through an internal toehold-mediated strand-displacement mechanism, which can be disrupted with a point mutation that limits local structural fluctuations and rescued with compensating mutations that restore these fluctuations. Moreover, a cotranscriptional folding intermediate could be cleaved in vitro by recombinant E. coli RNase P, suggesting potential cotranscriptional processing. These results from experiment-guided multi-scale modeling demonstrate that even an RNA with a simple functional structure can undergo complex folding and processing during synthesis.
Collapse
Affiliation(s)
- Angela M Yu
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60201, USA
| | - Paul M Gasper
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Luyi Cheng
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60201, USA
| | - Lien B Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Simi Kaur
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Alan A Chen
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA.
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
21
|
Liu Y, Gong W, Yang Z, Li C. SNB-PSSM: A spatial neighbor-based PSSM used for protein-RNA binding site prediction. J Mol Recognit 2021; 34:e2887. [PMID: 33442949 DOI: 10.1002/jmr.2887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Protein-RNA interactions play essential roles in a wide variety of biological processes. Recognition of RNA-binding residues on proteins has been a challenging problem. Most of methods utilize the position-specific scoring matrix (PSSM). It has been found that considering the evolutionary information of sequence neighboring residues can improve the prediction. In this work, we introduce a novel method SNB-PSSM (spatial neighbor-based PSSM) combined with the structure window scheme where the evolutionary information of spatially neighboring residues is considered. The results show our method consistently outperforms the standard and smoothed PSSM methods. Tested on multiple datasets, this approach shows an encouraging performance compared with RNABindRPlus, BindN+, PPRInt, xypan, Predict_RBP, SpaPF, PRNA, and KYG, although is inferior to RNAProSite, RBscore, and aaRNA. In addition, since our method is not sensitive to protein structure changes, it can be applied well on binding site predictions of modeled structures. Thus, the result also suggests the evolution of binding sites is spatially cooperative. The proposed method as an effective tool of considering evolutionary information can be widely used for the nucleic acid-/protein-binding site prediction and functional motif finding.
Collapse
Affiliation(s)
- Yang Liu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Weikang Gong
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Zhen Yang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| |
Collapse
|
22
|
Han R, Fang J, Jiang J, Gaidamakova EK, Tkavc R, Daly MJ, Contreras LM. Signal Recognition Particle RNA Contributes to Oxidative Stress Response in Deinococcus radiodurans by Modulating Catalase Localization. Front Microbiol 2020; 11:613571. [PMID: 33391243 PMCID: PMC7775534 DOI: 10.3389/fmicb.2020.613571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
The proper functioning of many proteins requires their transport to the correct cellular compartment or their secretion. Signal recognition particle (SRP) is a major protein transport pathway responsible for the co-translational movement of integral membrane proteins as well as periplasmic proteins. Deinococcus radiodurans is a ubiquitous bacterium that expresses a complex phenotype of extreme oxidative stress resistance, which depends on proteins involved in DNA repair, metabolism, gene regulation, and antioxidant defense. These proteins are located extracellularly or subcellularly, but the molecular mechanism of protein localization in D. radiodurans to manage oxidative stress response remains unexplored. In this study, we characterized the SRP complex in D. radiodurans R1 and showed that the knockdown (KD) of the SRP RNA (Qpr6) reduced bacterial survival under hydrogen peroxide and growth under chronic ionizing radiation. Through LC-mass spectrometry (MS/MS) analysis, we detected 162 proteins in the periplasm of wild-type D. radiodurans, of which the transport of 65 of these proteins to the periplasm was significantly reduced in the Qpr6 KD strain. Through Western blotting, we further demonstrated the localization of the catalases in D. radiodurans, DR_1998 (KatE1) and DR_A0259 (KatE2), in both the cytoplasm and periplasm, respectively, and showed that the accumulation of KatE1 and KatE2 in the periplasm was reduced in the SRP-defective strains. Collectively, this study establishes the importance of the SRP pathway in the survival and the transport of antioxidant proteins in D. radiodurans under oxidative stress.
Collapse
Affiliation(s)
- Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Jaden Fang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Jessie Jiang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Elena K Gaidamakova
- Uniformed Services University of the Health Sciences, Department of Pathology, Bethesda, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Rok Tkavc
- Uniformed Services University of the Health Sciences, Department of Pathology, Bethesda, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Uniformed Services University of the Health Sciences, Department of Microbiology and Immunology, Bethesda, MD, United States
| | - Michael J Daly
- Uniformed Services University of the Health Sciences, Department of Pathology, Bethesda, MD, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
23
|
A cDNA analysis disclosed the discordance of genotype-phenotype correlation in a patient with attenuated MPS II and a 76-base deletion in the gene for iduronate-2-sulfatase. Mol Genet Metab Rep 2020; 25:100692. [PMID: 33335838 PMCID: PMC7734304 DOI: 10.1016/j.ymgmr.2020.100692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022] Open
Abstract
We previously showed that the genotype-phenotype correlation in MPS II is well-conserved in Japan (Kosuga et al., 2016). Almost all of our patients with attenuated MPS II have missense variants, which is expected to result in residual activity of iduronate-2-sulfatase. In contrast, our patients with severe MPS II have so-called null-type disease-associated variants, such as nonsense variants, frame-shifts, gene insertions, gene deletions and rearrangement with pseudogene (IDS2), none of which are expected to result in residual activity. However, we recently encountered a patient with attenuated MPS II who had a presumable null-type disease-associated variant and 76-base deletion located in exon 1 that extended into intron 1. To investigate this discordance, we extracted RNA from the leukocytes of the patient and performed reverse transcription polymerase chain reaction. One of the bands of the cDNA analysis was found to include a nucleotide sequence whose transcript was expected to generate an almost full-length IDS mature peptide lacking only part of its signal peptide as well as only one amino acid at the end of the N-terminus. This suggests that an alternative splicing donor site is generated in exon 1 upstream of the deleted region. Based on these observations, we concluded that the phenotype-genotype discordance in this patient with MPS II was due to the decreased amount of IDS protein induced by the low level of the alternatively spliced mRNA, lacking part of the region coding for the signal peptide but including the region coding almost the full mature IDS protein. The first 25 amino acids at the N-terminus of IDS protein are a signal peptide. The alternative splice transcript has only 13 (1 M-13 L) of those 25 amino acids; 14G-25G are missing, suggesting that the exclusively hydrophobic 1 M-13 L of the signal peptide of IDS might have a crucial role in the signal peptide.
Collapse
|
24
|
Lon Protease Removes Excess Signal Recognition Particle Protein in Escherichia coli. J Bacteriol 2020; 202:JB.00161-20. [PMID: 32366590 DOI: 10.1128/jb.00161-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Correct targeting of membrane proteins is essential for membrane integrity, cell physiology, and viability. Cotranslational targeting depends on the universally conserved signal recognition particle (SRP), which is a ribonucleoprotein complex comprised of the protein component Ffh and the 4.5S RNA in Escherichia coli About 25 years ago it was reported that Ffh is an unstable protein, but the underlying mechanism has never been explored. Here, we show that Lon is the primary protease responsible for adjusting the cellular Ffh level. When overproduced, Ffh is particularly prone to degradation during transition from exponential to stationary growth and the cellular Ffh amount is lowest in stationary phase. The Ffh protein consists of two domains, the NG domain, responsible for GTP hydrolysis and docking to the membrane receptor FtsY, and the RNA-binding M domain. We find that the NG domain alone is stable, whereas the isolated M domain is degraded. Consistent with the importance of Lon in this process, the M domain confers synthetic lethality to the lon mutant. The Ffh homolog from the model plant Arabidopsis thaliana, which forms a protein-protein complex rather than a protein-RNA complex, is stable, suggesting that the RNA-binding ability residing in the M domain of E. coli Ffh is important for proteolysis. Our results support a model in which excess Ffh not bound to 4.5S RNA is subjected to proteolysis until an appropriate Ffh concentration is reached. The differential proteolysis adjusts Ffh levels to the cellular demand and maintains cotranslational protein transport and membrane integrity.IMPORTANCE Since one-third of all bacterial proteins reside outside the cytoplasm, protein targeting to the appropriate address is an essential process. Cotranslational targeting to the membrane relies on the signal recognition particle (SRP), which is a protein-RNA complex in bacteria. We report that the protein component Ffh is a substrate of the Lon protease. Regulated proteolysis of Ffh provides a simple mechanism to adjust the concentration of the essential protein to the cellular demand. This is important because elevated or depleted SRP levels negatively impact protein targeting and bacterial fitness.
Collapse
|
25
|
Xue AY, Yu AM, Lucks JB, Bagheri N. DUETT quantitatively identifies known and novel events in nascent RNA structural dynamics from chemical probing data. Bioinformatics 2019; 35:5103-5112. [PMID: 31389563 PMCID: PMC6954663 DOI: 10.1093/bioinformatics/btz449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/29/2019] [Accepted: 07/19/2019] [Indexed: 01/23/2023] Open
Abstract
MOTIVATION RNA molecules can undergo complex structural dynamics, especially during transcription, which influence their biological functions. Recently developed high-throughput chemical probing experiments that study RNA cotranscriptional folding generate nucleotide-resolution 'reactivities' for each length of a growing nascent RNA that reflect structural dynamics. However, the manual annotation and qualitative interpretation of reactivity across these large datasets can be nuanced, laborious, and difficult for new practitioners. We developed a quantitative and systematic approach to automatically detect RNA folding events from these datasets to reduce human bias/error, standardize event discovery and generate hypotheses about RNA folding trajectories for further analysis and experimental validation. RESULTS Detection of Unknown Events with Tunable Thresholds (DUETT) identifies RNA structural transitions in cotranscriptional RNA chemical probing datasets. DUETT employs a feedback control-inspired method and a linear regression approach and relies on interpretable and independently tunable parameter thresholds to match qualitative user expectations with quantitatively identified folding events. We validate the approach by identifying known RNA structural transitions within the cotranscriptional folding pathways of the Escherichia coli signal recognition particle RNA and the Bacillus cereus crcB fluoride riboswitch. We identify previously overlooked features of these datasets such as heightened reactivity patterns in the signal recognition particle RNA about 12 nt lengths before base-pair rearrangement. We then apply a sensitivity analysis to identify tradeoffs when choosing parameter thresholds. Finally, we show that DUETT is tunable across a wide range of contexts, enabling flexible application to study broad classes of RNA folding mechanisms. AVAILABILITY AND IMPLEMENTATION https://github.com/BagheriLab/DUETT. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Albert Y Xue
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston IL, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA
| | - Angela M Yu
- Center for Synthetic Biology, Northwestern University, Evanston IL, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Julius B Lucks
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Neda Bagheri
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston IL, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
26
|
Wild K, Becker MM, Kempf G, Sinning I. Structure, dynamics and interactions of large SRP variants. Biol Chem 2019; 401:63-80. [DOI: 10.1515/hsz-2019-0282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022]
Abstract
Abstract
Co-translational protein targeting to membranes relies on the signal recognition particle (SRP) system consisting of a cytosolic ribonucleoprotein complex and its membrane-associated receptor. SRP recognizes N-terminal cleavable signals or signal anchor sequences, retards translation, and delivers ribosome-nascent chain complexes (RNCs) to vacant translocation channels in the target membrane. While our mechanistic understanding is well advanced for the small bacterial systems it lags behind for the large bacterial, archaeal and eukaryotic SRP variants including an Alu and an S domain. Here we describe recent advances on structural and functional insights in domain architecture, particle dynamics and interplay with RNCs and translocon and GTP-dependent regulation of co-translational protein targeting stimulated by SRP RNA.
Collapse
Affiliation(s)
- Klemens Wild
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| | - Matthias M.M. Becker
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| | - Georg Kempf
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| |
Collapse
|
27
|
Abstract
KdpD is a four-spanning membrane protein that has two large cytoplasmic domains at the amino- and at the carboxyterminus, respectively. During its biogenesis KdpD binds to the signal recognition particle (SRP) of Escherichia coli that consists of a 48-kDa protein Ffh and a 4.5S RNA. The protein is targeted to the inner membrane surface and is released after contacting the SRP receptor protein FtsY. The information within the KdpD protein that confers SRP interaction was found in the amino-terminal cytoplasmic domain of KdpD, particularly at residues 22–48. Within this sequence a Walker A motif is present at residues 30–38. To determine the actual sequence specificity to SRP, a collection of mutants was constructed. When the KdpD peptides (residues 22–48) were fused to sfGFP the targeting to the membrane was observed by fluorescence microscopy. Further, nascent chains of KdpD bound to ribosomes were purified and their binding to SRP was analysed by microscale thermophoresis. We found that the amino acid residues R22, K24 and K26 are important for SRP interaction, whereas the residues G30, G34 and G36, essential for a functional Walker A motif, can be replaced with alanines without affecting the affinity to SRP-FtsY and membrane targeting.
Collapse
|
28
|
Abstract
Single-molecule studies provide unprecedented details about processes that are difficult to grasp by bulk biochemical assays that yield ensemble-averaged results. One of these processes is the translocation and insertion of proteins across and into the bacterial cytoplasmic membrane. This process is facilitated by the universally conserved secretion (Sec) system, a multi-subunit membrane protein complex that consists of dissociable cytoplasmic targeting components, a molecular motor, a protein-conducting membrane pore, and accessory membrane proteins. Here, we review recent insights into the mechanisms of protein translocation and membrane protein insertion from single-molecule studies.
Collapse
Affiliation(s)
- Anne-Bart Seinen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
- Current affiliation: Biophysics Group, AMOLF, 1098 XG Amsterdam, Netherlands
| | - Arnold J.M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|
29
|
Tan C, Cao J, Chen L, Xi X, Wang S, Zhu Y, Yang L, Ma L, Wang D, Yin J, Zhang T, John Lu Z. Noncoding RNAs Serve as Diagnosis and Prognosis Biomarkers for Hepatocellular Carcinoma. Clin Chem 2019; 65:905-915. [PMID: 30996051 DOI: 10.1373/clinchem.2018.301150] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Reliable noninvasive biomarkers for hepatocellular carcinoma (HCC) diagnosis and prognosis are urgently needed. We explored the potential of not only microRNAs (miRNAs) but other types of noncoding RNAs (ncRNAs) as HCC biomarkers. METHODS Peripheral blood samples were collected from 77 individuals; among them, 57 plasma cell-free RNA transcriptomes and 20 exosomal RNA transcriptomes were profiled. Significantly upregulated ncRNAs and published potential HCC biomarkers were validated with reverse transcription (RT)-qPCR in an independent validation cohort (60-150 samples). We particularly investigated the diagnosis and prognosis performance and biological function for 1 ncRNA biomarker, RN7SL1, and its S fragment. RESULTS We identified certain circulating ncRNAs escaping from RNase degradation, possibly through binding with RNA-binding proteins: 899 ncRNAs were highly upregulated in HCC patients. Among them, 337 genes were fragmented long noncoding RNAs, 252 genes were small nucleolar RNAs, and 134 genes were piwi-interacting RNAs. Forty-eight candidates were selected and validated with RT-qPCR, of which, 16 ncRNAs were verified to be significantly upregulated in HCC, including RN7SL1, SNHG1, ZFAS1, and LINC01359. Particularly, the abundance of RN7SL1 S fragment discriminated HCC samples from negative controls (area under the curve, 0.87; 95% CI, 0.817-0.920). HCC patients with higher concentrations of RN7SL1 S fragment had lower survival rates. Furthermore, RN7SL1 S fragment alone promoted cancer cell proliferation and clonogenic growth. CONCLUSIONS Our results show that various ncRNA species, not only miRNAs, identified in the small RNA sequencing of plasma are also able to serve as noninvasive biomarkers. Particularly, we identified a domain of srpRNA RN7SL1 with reliable clinical performance for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Chang Tan
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jingyi Cao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lu Chen
- Tianjin Medical University Cancer Institute and Hospital, Department of Hepatobiliary Cancer, National Clinical Research for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research for Cancer, Tianjin, China
| | - Xiaochen Xi
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siqi Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yumin Zhu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Liuqing Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Longteng Ma
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Dong Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, China.
| | - Ti Zhang
- Tianjin Medical University Cancer Institute and Hospital, Department of Hepatobiliary Cancer, National Clinical Research for Cancer, Tianjin, China; .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research for Cancer, Tianjin, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China;
| |
Collapse
|
30
|
Ghosh S, Saini S, Saraogi I. Peptide nucleic acid mediated inhibition of the bacterial signal recognition particle. Chem Commun (Camb) 2018; 54:8257-8260. [PMID: 29989112 DOI: 10.1039/c8cc04715d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have identified the bacterial signal recognition particle (SRP) as a novel antibacterial target. As a proof of principle, we used an antisense peptide nucleic acid to target a key SRP RNA. The PNA molecules showed efficient inhibition of SRP function and bacterial cell growth, thereby validating our hypothesis.
Collapse
Affiliation(s)
- Sudipta Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India.
| | | | | |
Collapse
|
31
|
A comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 2018; 97:422-441. [DOI: 10.1016/j.ejcb.2018.06.003] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
|
32
|
Sun TT, Zhao C, Chen SJ. Predicting Cotranscriptional Folding Kinetics For Riboswitch. J Phys Chem B 2018; 122:7484-7496. [PMID: 29985608 DOI: 10.1021/acs.jpcb.8b04249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
On the basis of a helix-based transition rate model, we developed a new method for sampling cotranscriptional RNA conformational ensemble and the prediction of cotranscriptional folding kinetics. Applications to E. coli. SRP RNA and pbuE riboswitch indicate that the model may provide reliable predictions for the cotranscriptional folding pathways and population kinetics. For E. coli. SRP RNA, the predicted population kinetics and the folding pathway are consistent with the SHAPE profiles in the recent cotranscriptional SHAPE-seq experiments. For the pbuE riboswitch, the model predicts the transcriptional termination efficiency as a function of the force. The theoretical results show (a) a force-induced transition from the aptamer (antiterminator) to the terminator structure and (b) the different folding pathways for the riboswitch with and without the ligand (adenine). More specifically, without adenine, the aptamer structure emerges as a short-lived kinetic transient state instead of a thermodynamically stable intermediate state. Furthermore, from the predicted extension-time curves, the model identifies a series of conformational switches in the pulling process, where the predicted relative residence times for the different structures are in accordance with the experimental data. The model may provide a new tool for quantitative predictions of cotranscriptional folding kinetics, and results can offer useful insights into cotranscriptional folding-related RNA functions such as regulation of gene expression with riboswitches.
Collapse
Affiliation(s)
- Ting-Ting Sun
- Department of Physics , Zhejiang University of Science and Technology , Hangzhou 310023 , P. R. China.,Department of Physics, Department of Biochemistry, and University of Missouri Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| | - Chenhan Zhao
- Department of Physics, Department of Biochemistry, and University of Missouri Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and University of Missouri Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|
33
|
Lin C, Yang L. Long Noncoding RNA in Cancer: Wiring Signaling Circuitry. Trends Cell Biol 2018; 28:287-301. [PMID: 29274663 PMCID: PMC5869122 DOI: 10.1016/j.tcb.2017.11.008] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs), which are encoded by a vast less explored region of the human genome, may hold missing drivers of cancer and have gained attention recently as a potentially crucial layer of cancer cell regulation. lncRNAs are aberrantly expressed in a broad spectrum of cancers, and they play key roles in promoting and maintaining tumor initiation and progression, demonstrating their clinical potential as biomarkers and therapeutic targets. Recent discoveries have revealed that lncRNAs act as key signal transduction mediators in cancer signaling pathways by interacting with proteins, RNA, and lipids. Here, we review the mechanisms by which lncRNAs regulate cellular responses to extracellular signals and discuss their clinical potential as diagnostic indicators, stratification markers, and therapeutic targets of combinatorial treatments.
Collapse
Affiliation(s)
- Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Flores JK, Ataide SF. Structural Changes of RNA in Complex with Proteins in the SRP. Front Mol Biosci 2018; 5:7. [PMID: 29459899 PMCID: PMC5807370 DOI: 10.3389/fmolb.2018.00007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/17/2018] [Indexed: 12/18/2022] Open
Abstract
The structural flexibility of RNA allows it to exist in several shapes and sizes. Thus, RNA is functionally diverse and is known to be involved in processes such as catalysis, ligand binding, and most importantly, protein recognition. RNA can adopt different structures, which can often dictate its functionality. When RNA binds onto protein to form a ribonucleoprotein complex (RNP), multiple interactions and conformational changes occur with the RNA and protein. However, there is the question of whether there is a specific pattern for these changes to occur upon recognition. In particular when RNP complexity increases with the addition of multiple proteins/RNA, it becomes difficult to structurally characterize the overall changes using the current structural determination techniques. Hence, there is a need to use a combination of biochemical, structural and computational modeling to achieve a better understanding of the processes that RNPs are involved. Nevertheless, there are well-characterized systems that are evolutionarily conserved [such as the signal recognition particle (SRP)] that give us important information on the structural changes of RNA and protein upon complex formation.
Collapse
Affiliation(s)
- Janine K Flores
- Ataide Lab, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sandro F Ataide
- Ataide Lab, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
35
|
Mlýnský V, Bussi G. Molecular Dynamics Simulations Reveal an Interplay between SHAPE Reagent Binding and RNA Flexibility. J Phys Chem Lett 2018; 9:313-318. [PMID: 29265824 PMCID: PMC5830694 DOI: 10.1021/acs.jpclett.7b02921] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/21/2017] [Indexed: 05/10/2023]
Abstract
The function of RNA molecules usually depends on their overall fold and on the presence of specific structural motifs. Chemical probing methods are routinely used in combination with nearest-neighbor models to determine RNA secondary structure. Among the available methods, SHAPE is relevant due to its capability to probe all RNA nucleotides and the possibility to be used in vivo. However, the structural determinants for SHAPE reactivity and its mechanism of reaction are still unclear. Here molecular dynamics simulations and enhanced sampling techniques are used to predict the accessibility of nucleotide analogs and larger RNA structural motifs to SHAPE reagents. We show that local RNA reconformations are crucial in allowing reagents to reach the 2'-OH group of a particular nucleotide and that sugar pucker is a major structural factor influencing SHAPE reactivity.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Scuola Internazionale Superiore di
Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di
Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
36
|
Guo H, Sun J, Li X, Xiong Y, Wang H, Shu H, Zhu R, Liu Q, Huang Y, Madley R, Wang Y, Cui J, Arvan P, Liu M. Positive charge in the n-region of the signal peptide contributes to efficient post-translational translocation of small secretory preproteins. J Biol Chem 2017; 293:1899-1907. [PMID: 29229776 DOI: 10.1074/jbc.ra117.000922] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/30/2017] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence indicates that many small secretory preproteins can undergo post-translational translocation across the membrane of the endoplasmic reticulum. Although the cellular machinery involved in post-translational translocation of small secretory preproteins has begun to be elucidated, the intrinsic signals contained within these small secretory preproteins that contribute to their efficient post-translational translocation remain unknown. Here, we analyzed the eukaryotic secretory proteome and discovered the small secretory preproteins tend to have a higher probability to harbor the positive charge in the n-region of the signal peptide (SP). Eliminating the positive charge of the n-region blocked post-translational translocation of newly synthesized preproteins and selectively impaired translocation efficiency of small secretory preproteins. The pathophysiological significance of the positive charge in the n-region of SP was underscored by recently identified preproinsulin SP mutations that impair translocation of preproinsulin and cause maturity onset diabetes of youth (MODY). Remarkably, we have found that slowing the polypeptide elongation rate of small secretory preproteins could alleviate the translocation defect caused by loss of the n-region positive charge of the signal peptide. Together, these data reveal not only a previously unrecognized role of the n-region's positive charge in ensuring efficient post-translational translocation of small secretory preproteins, but they also highlight the molecular contribution of defects in this process to the pathogenesis of genetic disorders such as MODY.
Collapse
Affiliation(s)
- Huan Guo
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China.,the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Jinhong Sun
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China.,the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Xin Li
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Xiong
- the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Heting Wang
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hua Shu
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ruimin Zhu
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qi Liu
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yumeng Huang
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rachel Madley
- the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Yulun Wang
- the Division of Endocrinology, Tianjin People's Hospital, Tianjin 300120, China
| | - Jingqiu Cui
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peter Arvan
- the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Ming Liu
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China, .,the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| |
Collapse
|
37
|
Ziehe D, Dünschede B, Schünemann D. From bacteria to chloroplasts: evolution of the chloroplast SRP system. Biol Chem 2017; 398:653-661. [PMID: 28076289 DOI: 10.1515/hsz-2016-0292] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/04/2017] [Indexed: 02/02/2023]
Abstract
Chloroplasts derive from a prokaryotic symbiont that lost most of its genes during evolution. As a result, the great majority of chloroplast proteins are encoded in the nucleus and are posttranslationally imported into the organelle. The chloroplast genome encodes only a few proteins. These include several multispan thylakoid membrane proteins which are synthesized on thylakoid-bound ribosomes and cotranslationally inserted into the membrane. During evolution, ancient prokaryotic targeting machineries were adapted and combined with novel targeting mechanisms to facilitate post- and cotranslational protein transport in chloroplasts. This review focusses on the chloroplast signal recognition particle (cpSRP) protein transport system, which has been intensively studied in higher plants. The cpSRP system derived from the prokaryotic SRP pathway, which mediates the cotranslational protein transport to the bacterial plasma membrane. Chloroplasts contain homologs of several components of the bacterial SRP system. The function of these conserved components in post- and/or cotranslational protein transport and chloroplast-specific modifications of these transport mechanisms are described. Furthermore, recent studies of cpSRP systems in algae and lower plants are summarized and their impact on understanding the evolution of the cpSRP system are discussed.
Collapse
Affiliation(s)
- Dominik Ziehe
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| |
Collapse
|
38
|
Jomaa A, Fu YHH, Boehringer D, Leibundgut M, Shan SO, Ban N. Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome. Nat Commun 2017; 8:15470. [PMID: 28524878 PMCID: PMC5454536 DOI: 10.1038/ncomms15470] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/29/2017] [Indexed: 01/05/2023] Open
Abstract
During co-translational protein targeting, the signal recognition particle (SRP) binds to the translating ribosome displaying the signal sequence to deliver it to the SRP receptor (SR) on the membrane, where the signal peptide is transferred to the translocon. Using electron cryo-microscopy, we have determined the structure of a quaternary complex of the translating Escherichia coli ribosome, the SRP–SR in the ‘activated' state and the translocon. Our structure, supported by biochemical experiments, reveals that the SRP RNA adopts a kinked and untwisted conformation to allow repositioning of the ‘activated' SRP–SR complex on the ribosome. In addition, we observe the translocon positioned through interactions with the SR in the vicinity of the ribosome exit tunnel where the signal sequence is extending beyond its hydrophobic binding groove of the SRP M domain towards the translocon. Our study provides new insights into the mechanism of signal sequence transfer from the SRP to the translocon. Membrane proteins are inserted co-transnationally through the association between ribosome, the signal recognition particle and its receptor, and the membrane-bound translocon. Here the authors present a cryo-EM reconstruction of this quaternary complex in the activated state and propose a model for signal sequence transfer to the translocon.
Collapse
Affiliation(s)
- Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH, Zurich CH-8093, Switzerland
| | - Yu-Hsien Hwang Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH, Zurich CH-8093, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH, Zurich CH-8093, Switzerland
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH, Zurich CH-8093, Switzerland
| |
Collapse
|
39
|
Abstract
The insertion and assembly of proteins into the inner membrane of bacteria are crucial for many cellular processes, including cellular respiration, signal transduction, and ion and pH homeostasis. This process requires efficient membrane targeting and insertion of proteins into the lipid bilayer in their correct orientation and proper conformation. Playing center stage in these events are the targeting components, signal recognition particle (SRP) and the SRP receptor FtsY, as well as the insertion components, the Sec translocon and the YidC insertase. Here, we will discuss new insights provided from the recent high-resolution structures of these proteins. In addition, we will review the mechanism by which a variety of proteins with different topologies are inserted into the inner membrane of Gram-negative bacteria. Finally, we report on the energetics of this process and provide information on how membrane insertion occurs in Gram-positive bacteria and Archaea. It should be noted that most of what we know about membrane protein assembly in bacteria is based on studies conducted in Escherichia coli.
Collapse
Affiliation(s)
- Andreas Kuhn
- Institute for Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Ross E Dalbey
- Department of Chemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
40
|
Lin A, Hu Q, Li C, Xing Z, Ma G, Wang C, Li J, Ye Y, Yao J, Liang K, Wang S, Park PK, Marks JR, Zhou Y, Zhou J, Hung MC, Liang H, Hu Z, Shen H, Hawke DH, Han L, Zhou Y, Lin C, Yang L. The LINK-A lncRNA interacts with PtdIns(3,4,5)P 3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol 2017; 19:238-251. [PMID: 28218907 PMCID: PMC5332298 DOI: 10.1038/ncb3473] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022]
Abstract
Phosphatidylinositol-3,4,5-trisphosphate (PIP3) mediates signaling pathways as a second messenger in response to extracellular signals. Although primordial functions of phospholipids and RNAs have been hypothesized in the “RNA world”, physiological RNA-phospholipid interactions and their involvement in essential cellular processes has remained a mystery. We explicate the contribution of lipid-binding long non-coding RNAs (lncRNAs) in cancer cells. Among them, Long Intergenic Noncoding RNA for Kinase Activation (LINK-A) directly interacts with AKT pleckstrin homology domain and PIP3 at the single nucleotide level, facilitating AKT-PIP3 interaction and consequent enzymatic activation. LINK-A-dependent AKT hyperactivation leads to tumorigenesis and resistance to AKT inhibitors. Genomic deletions of the LINK-A PIP3-binding motif dramatically sensitized breast cancer cells to AKT inhibitors. Furthermore, meta-analysis showed the correlation between LINK-A expression and incidence of a SNP (rs12095274: A>G), AKT phosphorylation status, and poor outcomes for breast and lung cancer patients. PIP3-binding lncRNA modulates AKT activation with broad clinical implications.
Collapse
Affiliation(s)
- Aifu Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chunlai Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhen Xing
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Cheng Wang
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yin Ye
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Peter K Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jeffrey R Marks
- Department of Surgery, Division of Surgical Science, Duke University, School of Medicine, Durham, North Carolina 27710, USA
| | - Yan Zhou
- Department of Oncology, Yixing People's Hospital, Yixing 214200, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - David H Hawke
- Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
41
|
Watters KE, Strobel EJ, Yu AM, Lis JT, Lucks JB. Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat Struct Mol Biol 2016; 23:1124-1131. [PMID: 27798597 PMCID: PMC5497173 DOI: 10.1038/nsmb.3316] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
RNAs can begin to fold immediately as they emerge from RNA polymerase. During cotranscriptional folding, interactions between nascent RNAs and ligands are able to direct the formation of alternative RNA structures, a feature exploited by noncoding RNAs called riboswitches to make gene-regulatory decisions. Despite their importance, cotranscriptional folding pathways have yet to be uncovered with sufficient resolution to reveal how cotranscriptional folding governs RNA structure and function. To access cotranscriptional folding at nucleotide resolution, we extended selective 2'-hydroxyl acylation analyzed by primer-extension sequencing (SHAPE-seq) to measure structural information of nascent RNAs during transcription. Using cotranscriptional SHAPE-seq, we determined how the cotranscriptional folding pathway of the Bacillus cereus crcB fluoride riboswitch undergoes a ligand-dependent bifurcation that delays or promotes terminator formation via a series of coordinated structural transitions. Our results directly link cotranscriptional RNA folding to a genetic decision and establish a framework for cotranscriptional analysis of RNA structure at nucleotide resolution.
Collapse
Affiliation(s)
- Kyle E. Watters
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY
| | - Eric J. Strobel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY
| | - Angela M Yu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY
- Tri-Institutional Training Program in Computational Biology and Medicine, Cornell University, Ithaca, NY, Weill Cornell Medical College, New York, NY, Memorial Sloan-Kettering Cancer Center, New York, NY
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - John T. Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Julius B. Lucks
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| |
Collapse
|
42
|
Gupta S, Roy M, Ghosh A. The Archaeal Signal Recognition Particle: Present Understanding and Future Perspective. Curr Microbiol 2016; 74:284-297. [DOI: 10.1007/s00284-016-1167-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
43
|
Ziehe D, Dünschede B, Zenker M, Funke S, Nowaczyk MM, Schünemann D. The Chloroplast SRP Systems of Chaetosphaeridium globosum and Physcomitrella patens as Intermediates in the Evolution of SRP-Dependent Protein Transport in Higher Plants. PLoS One 2016; 11:e0166818. [PMID: 27861610 PMCID: PMC5115805 DOI: 10.1371/journal.pone.0166818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/05/2016] [Indexed: 11/19/2022] Open
Abstract
The bacterial signal recognition particle (SRP) mediates the cotranslational targeting of membrane proteins and is a high affinity complex consisting of a SRP54 protein subunit (Ffh) and an SRP RNA. The chloroplast SRP (cpSRP) pathway has adapted throughout evolution to enable the posttranslational targeting of the light harvesting chlorophyll a/b binding proteins (LHCPs) to the thylakoid membrane. In spermatophytes (seed plants), the cpSRP lacks the SRP RNA and is instead formed by a high affinity interaction of the conserved 54-kD subunit (cpSRP54) with the chloroplast-specific cpSRP43 protein. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane. However, in contrast to spermatophytes, plastid SRP RNAs were identified within all streptophyte lineages and in all chlorophyte branches. Furthermore, it was shown that cpSRP43 does not interact with cpSRP54 in chlorophytes (e.g., Chlamydomonas reinhardtii). In this study, we biochemically characterized the cpSRP system of the charophyte Chaetosphaeridium globosum and the bryophyte Physcomitrella patens. Interaction studies demonstrate low affinity binding of cpSRP54 to cpSRP43 (Kd ~10 μM) in Chaetosphaeridium globosum and Physcomitrella patens as well as relatively low affinity binding of cpSRP54 to cpSRP RNA (Kd ~1 μM) in Physcomitrella patens. CpSRP54/cpSRP43 complex formation in charophytes is supported by the finding that specific alterations in the second chromodomain of cpSRP43, that are conserved within charophytes and absent in land plants, do not interfere with cpSRP54 binding. Furthermore, our data show that the elongated apical loop structure of the Physcomitrella patens cpSRP RNA contributes to the low binding affinity between cpSRP54 and the cpSRP RNA.
Collapse
Affiliation(s)
- Dominik Ziehe
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Mira Zenker
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Silke Funke
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Marc M. Nowaczyk
- Cyanobacterial Membrane Protein Complexes, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| |
Collapse
|
44
|
ATPase and GTPase Tangos Drive Intracellular Protein Transport. Trends Biochem Sci 2016; 41:1050-1060. [PMID: 27658684 DOI: 10.1016/j.tibs.2016.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 11/24/2022]
Abstract
The GTPase superfamily of proteins provides molecular switches to regulate numerous cellular processes. The 'GTPase switch' paradigm, in which external regulatory factors control the switch of a GTPase between 'on' and 'off' states, has been used to interpret the regulatory mechanism of many GTPases. However, recent work unveiled a class of nucleotide hydrolases that do not adhere to this classical paradigm. Instead, they use nucleotide-dependent dimerization cycles to regulate key cellular processes. In this review article, recent studies of dimeric GTPases and ATPases involved in intracellular protein targeting are summarized. It is suggested that these proteins can use the conformational plasticity at their dimer interface to generate multiple points of regulation, thereby providing the driving force and spatiotemporal coordination of complex cellular pathways.
Collapse
|
45
|
Jomaa A, Boehringer D, Leibundgut M, Ban N. Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nat Commun 2016; 7:10471. [PMID: 26804923 PMCID: PMC4737761 DOI: 10.1038/ncomms10471] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022] Open
Abstract
Co-translational protein targeting to membranes is a universally conserved process. Central steps include cargo recognition by the signal recognition particle and handover to the Sec translocon. Here we present snapshots of key co-translational-targeting complexes solved by cryo-electron microscopy at near-atomic resolution, establishing the molecular contacts between the Escherichia coli translating ribosome, the signal recognition particle and the translocon. Our results reveal the conformational changes that regulate the latching of the signal sequence, the release of the heterodimeric domains of the signal recognition particle and its receptor, and the handover of the signal sequence to the translocon. We also observe that the signal recognition particle and the translocon insert-specific structural elements into the ribosomal tunnel to remodel it, possibly to sense nascent chains. Our work provides structural evidence for a conformational state of the signal recognition particle and its receptor primed for translocon binding to the ribosome-nascent chain complex.
Collapse
Affiliation(s)
- Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich CH-8093, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich CH-8093, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich CH-8093, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich CH-8093, Switzerland
| |
Collapse
|
46
|
Abstract
Metal ions are essential cofactors for the structure and functions of nucleic acids. Yet, the early discovery in the 70s of the crucial role of Mg(2+) in stabilizing tRNA structures has occulted for a long time the importance of monovalent cations. Renewed interest in these ions was brought in the late 90s by the discovery of specific potassium metal ions in the core of a group I intron. Their importance in nucleic acid folding and catalytic activity is now well established. However, detection of K(+) and Na(+) ions is notoriously problematic and the question about their specificity is recurrent. Here we review the different methods that can be used to detect K(+) and Na(+) ions in nucleic acid structures such as X-ray crystallography, nuclear magnetic resonance or molecular dynamics simulations. We also discuss specific versus non-specific binding to different structures through various examples.
Collapse
Affiliation(s)
- Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| |
Collapse
|
47
|
Abstract
More than one third of the cellular proteome is destined for incorporation into cell membranes or export from the cell. In all domains of life, the signal recognition particle (SRP) delivers these proteins to the membrane and protein traffic falls apart without SRP logistics. With the aid of a topogenic transport signal, SRP retrieves its cargo right at the ribosome, from where they are sorted to the translocation channel. Mammalian SRP is a ribonucleoprotein complex consisting of an SRP RNA of 300 nucleotides and 6 proteins bound to it. Assembly occurs in a hierarchical manner mainly in the nucleolus and only SRP54, which recognizes the signal sequence and regulates the targeting process, is added as the last component in the cytosol. Here we present an update on recent insights in the structure, function and dynamics of SRP RNA in SRP assembly with focus on the S domain, and present SRP as an example for the complex biogenesis of a rather small ribonucleoprotein particle.
Collapse
Affiliation(s)
- Klemens Wild
- a Heidelberg University Biochemistry Center (BZH) ; Heidelberg , Germany
| | | |
Collapse
|
48
|
Plagens A, Daume M, Wiegel J, Randau L. Circularization restores signal recognition particle RNA functionality in Thermoproteus. eLife 2015; 4. [PMID: 26499493 PMCID: PMC4731332 DOI: 10.7554/elife.11623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/23/2015] [Indexed: 11/15/2022] Open
Abstract
Signal recognition particles (SRPs) are universal ribonucleoprotein complexes found in all three domains of life that direct the cellular traffic and secretion of proteins. These complexes consist of SRP proteins and a single, highly structured SRP RNA. Canonical SRP RNA genes have not been identified for some Thermoproteus species even though they contain SRP19 and SRP54 proteins. Here, we show that genome rearrangement events in Thermoproteus tenax created a permuted SRP RNA gene. The 5'- and 3'-termini of this SRP RNA are located close to a functionally important loop present in all known SRP RNAs. RNA-Seq analyses revealed that these termini are ligated together to generate circular SRP RNA molecules that can bind to SRP19 and SRP54. The circularization site is processed by the tRNA splicing endonuclease. This moonlighting activity of the tRNA splicing machinery permits the permutation of the SRP RNA and creates highly stable and functional circular RNA molecules. DOI:http://dx.doi.org/10.7554/eLife.11623.001 Cells make many proteins that are eventually released outside the cell or inserted into the cell’s membrane. As these proteins are still being made, they are captured by a “signal recognition particle” (or SRP); this molecular machine then guides the newly forming protein to the cell’s membrane. SRPs are found in all living organisms on Earth and contain several different proteins and a short RNA molecule. However, a few species belonging to the archaeal domain of life did not seem to contain an identifiable gene for the RNA component of the SRP. Now Plagens et al. have sought to solve the mystery of the “missing” component of this essential protein-targeting machine. This involved searching through the RNAs that are produced by an archaeon called Thermoproteus tenax, a single-celled microbe which grows in the absence of oxygen and at temperatures of up to 95°C. Plagens et al. discovered that the “missing” SRP RNA gene had not yet been identified because rearrangements in this archaeon’s genome had swapped the left and right portions of the SRP RNA gene. Further experiments revealed that the correct sequence order is restored in mature SRP RNA molecules by the two ends of the molecule being linked to form a circle. These RNA circles are made by the cellular machinery that normally removes the unneeded sections from other RNA molecules (called transfer RNAs). Circular RNA is much more stable at high temperatures and does not degrade easily, and Plagens et al. suggest that this particular arrangement is therefore especially advantageous for this species. Future work will now aim to work out which selective pressures favor the evolution of such fragmented RNAs. DOI:http://dx.doi.org/10.7554/eLife.11623.002
Collapse
Affiliation(s)
- André Plagens
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Michael Daume
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Julia Wiegel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lennart Randau
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Synmikro, Marburg, Germany
| |
Collapse
|
49
|
Translational arrest by a prokaryotic signal recognition particle is mediated by RNA interactions. Nat Struct Mol Biol 2015; 22:767-73. [PMID: 26344568 DOI: 10.1038/nsmb.3086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 08/13/2015] [Indexed: 12/25/2022]
Abstract
The signal recognition particle (SRP) recognizes signal sequences of nascent polypeptides and targets ribosome-nascent chain complexes to membrane translocation sites. In eukaryotes, translating ribosomes are slowed down by the Alu domain of SRP to allow efficient targeting. In prokaryotes, however, little is known about the structure and function of Alu domain-containing SRPs. Here, we report a complete molecular model of SRP from the Gram-positive bacterium Bacillus subtilis, based on cryo-EM. The SRP comprises two subunits, 6S RNA and SRP54 or Ffh, and it facilitates elongation slowdown similarly to its eukaryotic counterpart. However, protein contacts with the small ribosomal subunit observed for the mammalian Alu domain are substituted in bacteria by RNA-RNA interactions of 6S RNA with the α-sarcin-ricin loop and helices H43 and H44 of 23S rRNA. Our findings provide a structural basis for cotranslational targeting and RNA-driven elongation arrest in prokaryotes.
Collapse
|
50
|
Dumesic PA, Rosenblad MA, Samuelsson T, Nguyen T, Moresco JJ, Yates JR, Madhani HD. Noncanoncial signal recognition particle RNAs in a major eukaryotic phylum revealed by purification of SRP from the human pathogen Cryptococcus neoformans. Nucleic Acids Res 2015; 43:9017-27. [PMID: 26275773 PMCID: PMC4605306 DOI: 10.1093/nar/gkv819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/01/2015] [Indexed: 12/21/2022] Open
Abstract
Despite conservation of the signal recognition particle (SRP) from bacteria to man, computational approaches have failed to identify SRP components from genomes of many lower eukaryotes, raising the possibility that they have been lost or altered in those lineages. We report purification and analysis of SRP in the human pathogen Cryptococcus neoformans, providing the first description of SRP in basidiomycetous yeast. The C. neoformans SRP RNA displays a predicted structure in which the universally conserved helix 8 contains an unprecedented stem-loop insertion. Guided by this sequence, we computationally identified 152 SRP RNAs throughout the phylum Basidiomycota. This analysis revealed additional helix 8 alterations including single and double stem-loop insertions as well as loop diminutions affecting RNA structural elements that are otherwise conserved from bacteria to man. Strikingly, these SRP RNA features in Basidiomycota are accompanied by phylum-specific alterations in the RNA-binding domain of Srp54, the SRP protein subunit that directly interacts with helix 8. Our findings reveal unexpected fungal SRP diversity and suggest coevolution of the two most conserved SRP features-SRP RNA helix 8 and Srp54-in basidiomycetes. Because members of this phylum include important human and plant pathogens, these noncanonical features provide new targets for antifungal compound development.
Collapse
Affiliation(s)
- Phillip A Dumesic
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Magnus A Rosenblad
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Tore Samuelsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Tiffany Nguyen
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - James J Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|