1
|
Demircubuk I, Candar E, Sengul G. Anatomical and neurochemical organization of the dorsal, lumbar precerebellar and sacral precerebellar nuclei in the human spinal cord. Ann Anat 2025; 259:152390. [PMID: 39938757 DOI: 10.1016/j.aanat.2025.152390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/19/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND AND PURPOSE The dorsal nucleus (Clarke's nucleus, D), lumbar precerebellar nucleus (LPrCb), and sacral precerebellar nucleus (Stilling's sacral nucleus, SPrCb) are precerebellar nuclei of the spinal cord. This study investigates the cytoarchitecture and neurochemical organization of the D, LPrCb, and SPrCb nuclei in the human spinal cord. MATERIAL AND METHODS Using Nissl staining and immunohistochemistry for markers including calbindin (Cb), calretinin (Cr), parvalbumin (Pv), choline acetyltransferase (ChAT), glutamic acid decarboxylase (GAD 65/67), and vesicular glutamate transporter 1 (VGLUT1), we analyzed sections from T1-T12, L1-L5, and S1-Co1 segments of a human spinal cord. RESULTS Our findings reveal a diverse range of neuron sizes and morphologies within these nuclei, with multipolar neurons being predominant. The immunohistochemical analysis showed distinct neurochemical characteristics, with varying densities of the markers across the D, LPrCb, and SPrCb. CONCLUSION This study provides the first detailed characterization of these nuclei in the human spinal cord, highlighting their intricate organization and suggesting potential functional similarities. The comprehensive understanding of the neurochemical profiles of these nuclei lays the groundwork for future research into their roles in motor coordination and their involvement in neurodegenerative diseases. Our findings underscore the importance of further investigation into the pathological changes occurring within the precerebellar nuclei to advance treatment and prevention strategies for related neurological disorders.
Collapse
Affiliation(s)
- Ibrahim Demircubuk
- Department of Anatomy, Institute of Health Sciences, Ege University, Izmir, Turkiye
| | - Esra Candar
- Department of Neuroscience, Institute of Health Sciences, Ege University, Izmir, Turkiye
| | - Gulgun Sengul
- Department of Anatomy, Institute of Health Sciences, Ege University, Izmir, Turkiye; Department of Anatomy School of Medicine, Ege University, Izmir, Turkiye.
| |
Collapse
|
2
|
Zhao Y, Zhang Y, Feng J, He Z, Li T. Codon Usage Bias: A Potential Factor Affecting VGLUT Developmental Expression and Protein Evolution. Mol Neurobiol 2025; 62:3508-3522. [PMID: 39305444 DOI: 10.1007/s12035-024-04426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 08/05/2024] [Indexed: 02/04/2025]
Abstract
More and more attention has been paid to the role of synonymous substitution in evolution, in which codon usage preference can affect gene expression distribution and protein structure and function. Vesicular glutamate transporter (VGLUT) consists of three isoforms, among which VGLUT3 is significantly different from other VGLUTs in functional importance, expression level, and distribution range, whose reason is still unclear. This study sought to analyze the role of codon preference in VGLUT differentiation. To conduct an evolutionary analysis of the three VGLUTs, this paper uses bioinformatics research methods to analyze the coding sequences of the three VGLUTs in different species and compare the codon usage patterns. Furthermore, the differences among the three VGLUTs were analyzed by combining functional importance, expression level, distribution range, gene structure, protein relationship network, expression at specific developmental stages, and phylogenetic tree, and the influence of codon usage pattern was explored. The results showed that the VGLUT with greater codon preference had less functional importance, lower expression levels, more peripheral distribution away from the CNS, smaller exon density of gene, less conserved and farther away from the CDS region miRNA regulatory sites, simpler and less tight protein interaction networks, delayed developmental expression, and more distant evolutionary relationships. Codon usage preference is a potential factor affecting VGLUT developmental expression and protein evolution.
Collapse
Affiliation(s)
- Yiran Zhao
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Yu Zhang
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Jiaxing Feng
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Zixian He
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Ting Li
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China.
| |
Collapse
|
3
|
Sokhadze G, Govindaiah G, Campbell P, Guido W. Progression of Cortical Layer 6 Input to First-Order Thalamic Nuclei and the Thalamic Reticular Nucleus During Postnatal Development. Eur J Neurosci 2025; 61:e70073. [PMID: 40098316 DOI: 10.1111/ejn.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/31/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
One of the largest excitatory projections to the thalamus arises from Layer 6 (L6) neurons of the neocortex. As corticothalamic (CT) projections descend, they pass through the thalamic reticular nucleus (TRN), forming collateral connections with GABAergic neurons, which provide feedback inhibition onto thalamocortical neurons. This arrangement allows for modulation of thalamocortical signalling in a modality-specific and state-dependent manner. Little is known about how L6 projections make functional connections with neurons in TRN and thalamic nuclei during development. We used an L6-specific mouse line (Ntsr1-Cre) crossed onto Cre-dependent reporters to examine when L6 CT axons innervate and form functional connections in TRN, as well as first-order nuclei including the ventrobasal complex (VB) and dorsal lateral geniculate nucleus (dLGN). In Ntsr1-Cre::Ai9 mice, tdTomato-labelled CT axons were present in TRN and latero-ventral VB at postnatal day (P)2-3. By P7, CT fibers occupied all of VB and began to innervate the ventral half of dLGN and eventually progressed dorsally to encompass dLGN by P12-14. Using optogenetics in acute slice recordings in Ntsr1-Cre::Ai32 mice showed that excitatory postsynaptic responses followed a similar sequence, first appearing in TRN (P7), then in VB (P7-10), and lastly in dLGN (P10-14). Initially, responses were weak and failed to follow low rates of repetitive stimulation. As the incidence of responses increased with age, so did synaptic strength, with responses to stimulus trains showing synaptic facilitation. These studies suggest that L6 cortical innervation of the thalamus is highly coordinated, with connections in TRN maturing prior to those in first-order nuclei.
Collapse
Affiliation(s)
- Guela Sokhadze
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Scintillon Institute, San Diego, California, USA
| | - Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Peter Campbell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, Texas, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
4
|
Biegański M, Szeliga M. Disrupted glutamate homeostasis as a target for glioma therapy. Pharmacol Rep 2024; 76:1305-1317. [PMID: 39259492 PMCID: PMC11582119 DOI: 10.1007/s43440-024-00644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). Gliomas, malignant brain tumors with a dismal prognosis, alter glutamate homeostasis in the brain, which is advantageous for their growth, survival, and invasion. Alterations in glutamate homeostasis result from its excessive production and release to the extracellular space. High glutamate concentration in the tumor microenvironment destroys healthy tissue surrounding the tumor, thus providing space for glioma cells to expand. Moreover, it confers neuron hyperexcitability, leading to epilepsy, a common symptom in glioma patients. This mini-review briefly describes the biochemistry of glutamate production and transport in gliomas as well as the activation of glutamate receptors. It also summarizes the current pre-clinical and clinical studies identifying pharmacotherapeutics targeting glutamate transporters and receptors emerging as potential therapeutic strategies for glioma.
Collapse
Affiliation(s)
- Mikołaj Biegański
- Immunooncology Students' Science Association, Medical University of Warsaw, Żwirki i Wigury 61, Warszawa, 02-091, Poland
| | - Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, Warszawa, 02-106, Poland.
| |
Collapse
|
5
|
Lu MQ, Shi ZG, Shang J, Gao L, Gao L, Gao WJ. ChangPu YuJin Tang improves Tourette disorder symptoms by modulating amino acid neurotransmitters in IDPN model rats. Metab Brain Dis 2024; 39:1543-1558. [PMID: 39312065 DOI: 10.1007/s11011-024-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/09/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Changpu Yujin Tang(CPYJT), a Chinese herbal compound, is an effective therapeutic strategy for pediatric patients with Tourette disorder (TD). Therefore, this work aims to investigate the therapeutic mechanisms of CPYJT. METHODS Behavioral and cellular ultrastructural evaluation of the therapeutic effects of CPYJT in TD model rats. Colorimetric methods, reverse transcription‑quantitative PCR, and Western Blot were used to measure the altered levels of GLU, GABA, and the levels of VGLUT1, GLUD1, GABRA3, and GAD65 in the cortex, striatum, and thalamus of the TD model rats after 7, 14, 21, and 28 days of CPYJT administration. RESULTS CPYJT significantly reduced stereotypic behavior and motor behavior scores in TD model rats. CPYJT ameliorates myelin structural damage in TD model rat neuronal cells. CPYJT decreased GLU content, elevated GABA content, decreased GLUD1 and VGLUT1 levels, and elevated GAD65 and GABRA3 levels in TD model rats' cortex, striatum, and thalamus. CPYJT has different regulatory time points in the cortex, striatum, and thalamus for critical factors of amino acid-based neurotransmission. CONCLUSION CPYJT protects behavioral and structural damage of neuronal cells in multiple brain regions in TD model rats.
Collapse
Affiliation(s)
- Man-Qi Lu
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, shanghai, 200000, China
| | - Zheng-Gang Shi
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China.
| | - Jing Shang
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China
| | - Lü Gao
- Shanxi University Of Chinese Medicine Third Clinical Medical College Pediatric Teaching and Research Department, Taiyuan, 140100, Shanxi, China
| | - Lei Gao
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China
| | - Wei-Jiao Gao
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China
| |
Collapse
|
6
|
Purice MD, Severs LJ, Singhvi A. Glia in Invertebrate Models: Insights from Caenorhabditis elegans. ADVANCES IN NEUROBIOLOGY 2024; 39:19-49. [PMID: 39190070 DOI: 10.1007/978-3-031-64839-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Glial cells modulate brain development, function, and health across all bilaterian animals, and studies in the past two decades have made rapid strides to uncover the underlying molecular mechanisms of glial functions. The nervous system of the invertebrate genetic model Caenorhabditis elegans (C. elegans) has small cell numbers with invariant lineages, mapped connectome, easy genetic manipulation, and a short lifespan, and the animal is also optically transparent. These characteristics are revealing C. elegans to be a powerful experimental platform for studying glial biology. This chapter discusses studies in C. elegans that add to our understanding of how glia modulate adult neural functions, and thereby animal behaviors, as well as emerging evidence of their roles as autonomous sensory cells. The rapid molecular and cellular advancements in understanding C. elegans glia in recent years underscore the utility of this model in studies of glial biology. We conclude with a perspective on future research avenues for C. elegans glia that may readily contribute molecular mechanistic insights into glial functions in the nervous system.
Collapse
Affiliation(s)
- Maria D Purice
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Liza J Severs
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
7
|
Bian X, Zhu J, Jia X, Liang W, Yu S, Li Z, Zhang W, Rao Y. Suggestion of creatine as a new neurotransmitter by approaches ranging from chemical analysis and biochemistry to electrophysiology. eLife 2023; 12:RP89317. [PMID: 38126335 PMCID: PMC10735228 DOI: 10.7554/elife.89317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The discovery of a new neurotransmitter, especially one in the central nervous system, is both important and difficult. We have been searching for new neurotransmitters for 12 y. We detected creatine (Cr) in synaptic vesicles (SVs) at a level lower than glutamate and gamma-aminobutyric acid but higher than acetylcholine and 5-hydroxytryptamine. SV Cr was reduced in mice lacking either arginine:glycine amidinotransferase (a Cr synthetase) or SLC6A8, a Cr transporter with mutations among the most common causes of intellectual disability in men. Calcium-dependent release of Cr was detected after stimulation in brain slices. Cr release was reduced in Slc6a8 and Agat mutants. Cr inhibited neocortical pyramidal neurons. SLC6A8 was necessary for Cr uptake into synaptosomes. Cr was found by us to be taken up into SVs in an ATP-dependent manner. Our biochemical, chemical, genetic, and electrophysiological results are consistent with the possibility of Cr as a neurotransmitter, though not yet reaching the level of proof for the now classic transmitters. Our novel approach to discover neurotransmitters is to begin with analysis of contents in SVs before defining their function and physiology.
Collapse
Affiliation(s)
- Xiling Bian
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Jiemin Zhu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Xiaobo Jia
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Wenjun Liang
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
| | - Sihan Yu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
| | - Zhiqiang Li
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
| | - Wenxia Zhang
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Yi Rao
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
8
|
Kelly L, Brown C, Gibbard AG, Jackson T, Swinny JD. Subunit-specific expression and function of AMPA receptors in the mouse locus coeruleus. J Anat 2023; 243:813-825. [PMID: 37391270 PMCID: PMC10557397 DOI: 10.1111/joa.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
The locus coeruleus (LC) provides the principal supply of noradrenaline (NA) to the brain, thereby modulating an array of brain functions. The release of NA, and therefore its impact on the brain, is governed by LC neuronal excitability. Glutamatergic axons, from various brain regions, topographically innervate different LC sub-domains and directly alter LC excitability. However, it is currently unclear whether glutamate receptor sub-classes, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, are divergently expressed throughout the LC. Immunohistochemistry and confocal microscopy were used to identify and localise individual GluA subunits in the mouse LC. Whole-cell patch clamp electrophysiology and subunit-preferring ligands were used to assess their impact on LC spontaneous firing rate (FR). GluA1 immunoreactive clusters were associated with puncta immunoreactive for VGLUT2 on somata, and VGLUT1 on distal dendrites. GluA4 was associated with these synaptic markers only in the distal dendrites. No specific signal was detected for the GluA2-3 subunits. The GluA1/2 receptor agonist (S)-CPW 399 increased LC FR, whilst the GluA1/3 receptor antagonist philanthotoxin-74 decreased it. 4-[2-(phenylsulfonylamino)ethylthio]-2,6-difluoro-phenoxyacetamide (PEPA), a positive allosteric modulator of GluA3/4 receptors, had no significant effect on spontaneous FR. The data suggest distinct AMPA receptor subunits are targeted to different LC afferent inputs and have contrasting effects on spontaneous neuronal excitability. This precise expression profile could be a mechanism for LC neurons to integrate diverse information contained in various glutamate afferents.
Collapse
Affiliation(s)
- Louise Kelly
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Christopher Brown
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Adina G. Gibbard
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Torquil Jackson
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Jerome D. Swinny
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
9
|
Jia X, Zhu J, Bian X, Liu S, Yu S, Liang W, Jiang L, Mao R, Zhang W, Rao Y. Importance of glutamine in synaptic vesicles revealed by functional studies of SLC6A17 and its mutations pathogenic for intellectual disability. eLife 2023; 12:RP86972. [PMID: 37440432 PMCID: PMC10393021 DOI: 10.7554/elife.86972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Human mutations in the gene encoding the solute carrier (SLC) 6A17 caused intellectual disability (ID). The physiological role of SLC6A17 and pathogenesis of SLC6A17-based-ID were both unclear. Here, we report learning deficits in Slc6a17 knockout and point mutant mice. Biochemistry, proteomic, and electron microscopy (EM) support SLC6A17 protein localization in synaptic vesicles (SVs). Chemical analysis of SVs by liquid chromatography coupled to mass spectrometry (LC-MS) revealed glutamine (Gln) in SVs containing SLC6A17. Virally mediated overexpression of SLC6A17 increased Gln in SVs. Either genetic or virally mediated targeting of Slc6a17 reduced Gln in SVs. One ID mutation caused SLC6A17 mislocalization while the other caused defective Gln transport. Multidisciplinary approaches with seven types of genetically modified mice have shown Gln as an endogenous substrate of SLC6A17, uncovered Gln as a new molecule in SVs, established the necessary and sufficient roles of SLC6A17 in Gln transport into SVs, and suggested SV Gln decrease as the key pathogenetic mechanism in human ID.
Collapse
Affiliation(s)
- Xiaobo Jia
- Chinese Institute for Brain ResearchBeijingChina
- Changping LaboratoryBeijingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Jiemin Zhu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | - Xiling Bian
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | | | - Sihan Yu
- Chinese Institute for Brain ResearchBeijingChina
| | | | - Lifen Jiang
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Renbo Mao
- Chinese Institute for Brain ResearchBeijingChina
| | - Wenxia Zhang
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | - Yi Rao
- Chinese Institute for Brain ResearchBeijingChina
- Changping LaboratoryBeijingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
- Capital Medical UniversityBeijingChina
| |
Collapse
|
10
|
Zhao C, Wang C, Zhang H, Yan W. A mini-review of the role of vesicular glutamate transporters in Parkinson's disease. Front Mol Neurosci 2023; 16:1118078. [PMID: 37251642 PMCID: PMC10211467 DOI: 10.3389/fnmol.2023.1118078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease implicated in multiple interacting neurotransmitter pathways. Glutamate is the central excitatory neurotransmitter in the brain and plays critical influence in the control of neuronal activity. Impaired Glutamate homeostasis has been shown to be closely associated with PD. Glutamate is synthesized in the cytoplasm and stored in synaptic vesicles by vesicular glutamate transporters (VGLUTs). Following its exocytotic release, Glutamate activates Glutamate receptors (GluRs) and mediates excitatory neurotransmission. While Glutamate is quickly removed by excitatory amino acid transporters (EAATs) to maintain its relatively low extracellular concentration and prevent excitotoxicity. The involvement of GluRs and EAATs in the pathophysiology of PD has been widely studied, but little is known about the role of VGLUTs in the PD. In this review, we highlight the role of VGLUTs in neurotransmitter and synaptic communication, as well as the massive alterations in Glutamate transmission and VGLUTs levels in PD. Among them, adaptive changes in the expression level and function of VGLUTs may exert a crucial role in excitatory damage in PD, and VGLUTs are considered as novel potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiqian Yan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Kolen B, Borghans B, Kortzak D, Lugo V, Hannack C, Guzman RE, Ullah G, Fahlke C. Vesicular glutamate transporters are H +-anion exchangers that operate at variable stoichiometry. Nat Commun 2023; 14:2723. [PMID: 37169755 PMCID: PMC10175566 DOI: 10.1038/s41467-023-38340-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
Vesicular glutamate transporters accumulate glutamate in synaptic vesicles, where they also function as a major Cl- efflux pathway. Here we combine heterologous expression and cellular electrophysiology with mathematical modeling to understand the mechanisms underlying this dual function of rat VGLUT1. When glutamate is the main cytoplasmic anion, VGLUT1 functions as H+-glutamate exchanger, with a transport rate of around 600 s-1 at -160 mV. Transport of other large anions, including aspartate, is not stoichiometrically coupled to H+ transport, and Cl- permeates VGLUT1 through an aqueous anion channel with unitary transport rates of 1.5 × 105 s-1 at -160 mV. Mathematical modeling reveals that H+ coupling is sufficient for selective glutamate accumulation in model vesicles and that VGLUT Cl- channel function increases the transport efficiency by accelerating glutamate accumulation and reducing ATP-driven H+ transport. In summary, we provide evidence that VGLUT1 functions as H+-glutamate exchanger that is partially or fully uncoupled by other anions.
Collapse
Affiliation(s)
- Bettina Kolen
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Bart Borghans
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Victor Lugo
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Cora Hannack
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Raul E Guzman
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany.
| |
Collapse
|
12
|
Batarni S, Nayak N, Chang A, Li F, Hareendranath S, Zhou L, Xu H, Stroud R, Eriksen J, Edwards RH. Substrate recognition and proton coupling by a bacterial member of solute carrier family 17. J Biol Chem 2023; 299:104646. [PMID: 36965620 PMCID: PMC10149257 DOI: 10.1016/j.jbc.2023.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
The solute carrier 17 family transports diverse organic anions using two distinct modes of coupling to a source of energy. Transporters that package glutamate and nucleotide into secretory vesicles for regulated release by exocytosis are driven by membrane potential but subject to allosteric regulation by H+ and Cl-. Other solute carrier 17 members including the lysosomal sialic acid exporter couple the flux of organic anion to cotransport of H+. To begin to understand how similar proteins can perform such different functions, we have studied Escherichia coli DgoT, a H+/galactonate cotransporter. A recent structure of DgoT showed many residues contacting D-galactonate, and we now find that they do not tolerate even conservative substitutions. In contrast, the closely related lysosomal H+/sialic acid cotransporter Sialin tolerates similar mutations, consistent with its recognition of diverse substrates with relatively low affinity. We also find that despite coupling to H+, DgoT transports more rapidly but with lower apparent affinity at high pH. Indeed, membrane potential can drive uptake, indicating electrogenic transport and suggesting a H+:galactonate stoichiometry >1. Located in a polar pocket of the N-terminal helical bundle, Asp46 and Glu133 are each required for net flux by DgoT, but the E133Q mutant exhibits robust exchange activity and rescues exchange by D46N, suggesting that these two residues operate in series to translocate protons. E133Q also shifts the pH sensitivity of exchange by DgoT, supporting a central role for the highly conserved TM4 glutamate in H+ coupling by DgoT.
Collapse
Affiliation(s)
- Samir Batarni
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California
| | - Nanda Nayak
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California
| | - Audrey Chang
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California
| | - Fei Li
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California
| | - Surabhi Hareendranath
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California
| | - Lexi Zhou
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California
| | - Hongfei Xu
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California
| | - Robert Stroud
- Department of Biochemistry & Biophysics, UCSF School of Medicine, San Francisco, California
| | - Jacob Eriksen
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California.
| | - Robert H Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California.
| |
Collapse
|
13
|
Mattison KA, Tossing G, Mulroe F, Simmons C, Butler KM, Schreiber A, Alsadah A, Neilson DE, Naess K, Wedell A, Wredenberg A, Sorlin A, McCann E, Burghel GJ, Menendez B, Hoganson GE, Botto LD, Filloux FM, Aledo-Serrano Á, Gil-Nagel A, Tatton-Brown K, Verbeek NE, van der Zwaag B, Aleck KA, Fazenbaker AC, Balciuniene J, Dubbs HA, Marsh ED, Garber K, Ek J, Duno M, Hoei-Hansen CE, Deardorff MA, Raca G, Quindipan C, van Hirtum-Das M, Breckpot J, Hammer TB, Møller RS, Whitney A, Douglas AGL, Kharbanda M, Brunetti-Pierri N, Morleo M, Nigro V, May HJ, Tao JX, Argilli E, Sherr EH, Dobyns WB, Baines RA, Warwicker J, Parker JA, Banka S, Campeau PM, Escayg A. ATP6V0C variants impair V-ATPase function causing a neurodevelopmental disorder often associated with epilepsy. Brain 2023; 146:1357-1372. [PMID: 36074901 PMCID: PMC10319782 DOI: 10.1093/brain/awac330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 11/14/2022] Open
Abstract
The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients. In silico modelling suggested that the patient variants interfere with the interactions between the ATP6V0C and ATP6V0A subunits during ATP hydrolysis. Consistent with decreased vacuolar H+-ATPase activity, functional analyses conducted in Saccharomyces cerevisiae revealed reduced LysoSensor fluorescence and reduced growth in media containing varying concentrations of CaCl2. Knockdown of ATP6V0C in Drosophila resulted in increased duration of seizure-like behaviour, and the expression of selected patient variants in Caenorhabditis elegans led to reduced growth, motor dysfunction and reduced lifespan. In summary, this study establishes ATP6V0C as an important disease gene, describes the clinical features of the associated neurodevelopmental disorder and provides insight into disease mechanisms.
Collapse
Affiliation(s)
- Kari A Mattison
- Genetics and Molecular Biology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Gilles Tossing
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Fred Mulroe
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester, UK
| | - Callum Simmons
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester, UK
| | - Kameryn M Butler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
- Greenwood Genetics Center, Greenwood, SC, USA
| | - Alison Schreiber
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, OH, USA
| | - Adnan Alsadah
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, OH, USA
| | - Derek E Neilson
- Division of Genetics and Metabolism, Department of Child Health, The University of Arizona College of Medicine, Phoenix, AZ, USA
- Department of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix Children’s Medical Group, Phoenix, AZ, USA
| | - Karin Naess
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Anna Wedell
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Deparment of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Anna Wredenberg
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Arthur Sorlin
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Emma McCann
- Liverpool Center for Genomic Medicine, Liverpool Women’s Hospital, Liverpool, UK
| | - George J Burghel
- Genomic Diagnostic Laboratory, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - George E Hoganson
- Division of Genetics, Department of Pediatrics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Francis M Filloux
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ángel Aledo-Serrano
- Genetic Epilepsy Program, Department of Neurology, Ruber International Hospital, Madrid, Spain
| | - Antonio Gil-Nagel
- Genetic Epilepsy Program, Department of Neurology, Ruber International Hospital, Madrid, Spain
| | - Katrina Tatton-Brown
- Medical Genetics, St. George’s University Hospitals NHS Foundation Trust and Institute for Molecular and Cell Sciences, St. George’s, University of London, London, UK
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, Member of the ERN EpiCARE, Utrecht, The Netherlands
| | - Bert van der Zwaag
- Department of Genetics, University Medical Center Utrecht, Member of the ERN EpiCARE, Utrecht, The Netherlands
| | - Kyrieckos A Aleck
- Division of Genetics and Metabolism, Department of Child Health, The University of Arizona College of Medicine, Phoenix, AZ, USA
- Department of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix Children’s Medical Group, Phoenix, AZ, USA
| | - Andrew C Fazenbaker
- Department of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix Children’s Medical Group, Phoenix, AZ, USA
| | - Jorune Balciuniene
- Divison of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- PerkinElmer Genomics, Pittsburgh, PA, USA
| | - Holly A Dubbs
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric D Marsh
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathryn Garber
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jakob Ek
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Morten Duno
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Christina E Hoei-Hansen
- Department of Pediatrics, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Matthew A Deardorff
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Division of Medical Genetics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Catherine Quindipan
- Center for Personalized Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Michele van Hirtum-Das
- Department of Pediatrics, Division of Medical Genetics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Fildelfia, Dianalund, Denmark
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Fildelfia, Dianalund, Denmark
- Insititue for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
| | - Andrea Whitney
- Pediatric Neurology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew G L Douglas
- Wessex Clinical Genetics Service, University of Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mira Kharbanda
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Halie J May
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - James X Tao
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Emanuela Argilli
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Pediatrics Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Elliot H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Pediatrics Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William B Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | | | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester, UK
| | - Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - J Alex Parker
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Siddharth Banka
- Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| |
Collapse
|
14
|
Liu H, Wu JJ, Li R, Wang PZ, Huang JH, Xu Y, Zhao JL, Wu PP, Li SJ, Wu ZX. Disexcitation in the ASH/RIM/ADL negative feedback circuit fine-tunes hyperosmotic sensation and avoidance in Caenorhabditis elegans. Front Mol Neurosci 2023; 16:1101628. [PMID: 37008778 PMCID: PMC10050701 DOI: 10.3389/fnmol.2023.1101628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Sensations, especially nociception, are tightly controlled and regulated by the central and peripheral nervous systems. Osmotic sensation and related physiological and behavioral reactions are essential for animal well-being and survival. In this study, we find that interaction between secondary nociceptive ADL and primary nociceptive ASH neurons upregulates Caenorhabditis elegans avoidance of the mild and medium hyperosmolality of 0.41 and 0.88 Osm but does not affect avoidance of high osmolality of 1.37 and 2.29 Osm. The interaction between ASH and ADL is actualized through a negative feedback circuit consisting of ASH, ADL, and RIM interneurons. In this circuit, hyperosmolality-sensitive ADL augments the ASH hyperosmotic response and animal hyperosmotic avoidance; RIM inhibits ADL and is excited by ASH; thus, ASH exciting RIM reduces ADL augmenting ASH. The neuronal signal integration modality in the circuit is disexcitation. In addition, ASH promotes hyperosmotic avoidance through ASH/RIC/AIY feedforward circuit. Finally, we find that in addition to ASH and ADL, multiple sensory neurons are involved in hyperosmotic sensation and avoidance behavior.
Collapse
|
15
|
Transplanted human induced pluripotent stem cells- derived retinal ganglion cells embed within mouse retinas and are electrophysiologically functional. iScience 2022; 25:105308. [DOI: 10.1016/j.isci.2022.105308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
|
16
|
Roberts RC, McCollum LA, Schoonover KE, Mabry SJ, Roche JK, Lahti AC. Ultrastructural evidence for glutamatergic dysregulation in schizophrenia. Schizophr Res 2022; 249:4-15. [PMID: 32014360 PMCID: PMC7392793 DOI: 10.1016/j.schres.2020.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
The aim of this paper is to summarize ultrastructural evidence for glutamatergic dysregulation in several linked regions in postmortem schizophrenia brain. Following a brief summary of glutamate circuitry and how synapses are identified at the electron microscopic (EM) level, we will review EM pathology in the cortex and basal ganglia. We will include the effects of antipsychotic drugs and the relation of treatment response. We will discuss how these findings support or confirm other postmortem findings as well as imaging results. Briefly, synaptic and mitochondrial density in anterior cingulate cortex was decreased in schizophrenia, versus normal controls (NCs), in a selective layer specific pattern. In dorsal striatum, increases in excitatory synaptic density were detected in caudate matrix, a compartment associated with cognitive and motor function, and in the putamen patches, a region associated with limbic function and in the core of the nucleus accumbens. Patients who were treatment resistant or untreated had significantly elevated numbers of excitatory synapses in limbic striatal areas in comparison to NCs and responders. Protein levels of vGLUT2, found in subcortical glutamatergic neurons, were increased in the nucleus accumbens in schizophrenia. At the EM level, schizophrenia subjects had an increase in density of excitatory synapses in several areas of the basal ganglia. In the substantia nigra, the protein levels of vGLUT2 were elevated in untreated patients compared to NCs. The density of inhibitory synapses was decreased in schizophrenia versus NCs. In schizophrenia, glutamatergic synapses are differentially affected depending on the brain region, treatment status, and treatment response.
Collapse
Affiliation(s)
- Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America.
| | - Lesley A McCollum
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Kirsten E Schoonover
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Samuel J Mabry
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Joy K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| |
Collapse
|
17
|
Miyazawa D, Lee Y, Tsuchiya M, Tahira T, Mizutani H, Ohara N. Docosahexaenoic Acid Increases Vesicular Glutamate Transporter 2 Protein Levels in Differentiated NG108-15 Cells. Biol Pharm Bull 2022; 45:1385-1388. [DOI: 10.1248/bpb.b22-00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yeonjoo Lee
- College of Pharmacy, Kinjo Gakuin University
| | | | | | | | - Naoki Ohara
- College of Pharmacy, Kinjo Gakuin University
| |
Collapse
|
18
|
Li F, Eriksen J, Finer-Moore J, Stroud RM, Edwards RH. Diversity of function and mechanism in a family of organic anion transporters. Curr Opin Struct Biol 2022; 75:102399. [PMID: 35660266 PMCID: PMC9884543 DOI: 10.1016/j.sbi.2022.102399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
Originally identified as transporters for inorganic phosphate, solute carrier 17 (SLC17) family proteins subserve diverse physiological roles. The vesicular glutamate transporters (VGLUTs) package the principal excitatory neurotransmitter glutamate into synaptic vesicles (SVs). In contrast, the closely related sialic acid transporter sialin mediates the flux of sialic acid in the opposite direction, from lysosomes to the cytoplasm. The two proteins couple in different ways to the H+ electrochemical gradient driving force, and high-resolution structures of the Escherichia coli homolog d-galactonate transporter (DgoT) and more recently rat VGLUT2 now begin to suggest the mechanisms involved as well as the basis for substrate specificity.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry & Biophysics, UCSF School of Medicine, CA, USA,Departments of Neurology and Physiology, UCSF School of Medicine, CA, USA
| | - Jacob Eriksen
- Departments of Neurology and Physiology, UCSF School of Medicine, CA, USA
| | - Janet Finer-Moore
- Department of Biochemistry & Biophysics, UCSF School of Medicine, CA, USA
| | - Robert M. Stroud
- Department of Biochemistry & Biophysics, UCSF School of Medicine, CA, USA
| | - Robert H. Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, CA, USA
| |
Collapse
|
19
|
He A, Zhang C, Ke X, Yi Y, Yu Q, Zhang T, Yu H, Du H, Li H, Tian Q, Zhu LQ, Lu Y. VGLUT3 neurons in median raphe control the efficacy of spatial memory retrieval via ETV4 regulation of VGLUT3 transcription. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1590-1607. [PMID: 35089530 DOI: 10.1007/s11427-021-2047-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The raphe nucleus is critical for feeding, rewarding and memory. However, how the heterogenous raphe neurons are molecularly and structurally organized to engage their divergent functions remains unknown. Here, we genetically target a subset of neurons expressing VGLUT3. VGLUT3 neurons control the efficacy of spatial memory retrieval by synapsing directly with parvalbumin-expressing GABA interneurons (PGIs) in the dentate gyrus. In a mouse model of Alzheimer's disease (AD mice), VGLUT3→PGIs synaptic transmission is impaired by ETV4 inhibition of VGLUT3 transcription. ETV4 binds to a promoter region of VGLUT3 and activates VGLUT3 transcription in VGLUT3 neurons. Strengthening VGLUT3→PGIs synaptic transmission by ETV4 activation of VGLUT3 transcription upscales the efficacy of spatial memory retrieval in AD mice. This study reports a novel circuit and molecular mechanism underlying the efficacy of spatial memory retrieval via ETV4 inhibition of VGLUT3 transcription and hence provides a promising target for therapeutic intervention of the disease progression.
Collapse
Affiliation(s)
- Aodi He
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Ke
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yao Yi
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Quntao Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tongmei Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongyan Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huiyun Du
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing Tian
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling-Qiang Zhu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
20
|
Li H, Datunashvili M, Reyes RC, Voglmaier SM. Inositol hexakisphosphate kinases differentially regulate trafficking of vesicular glutamate transporters 1 and 2. Front Cell Neurosci 2022; 16:926794. [PMID: 35936490 PMCID: PMC9355605 DOI: 10.3389/fncel.2022.926794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Inositol pyrophosphates have been implicated in cellular signaling and membrane trafficking, including synaptic vesicle (SV) recycling. Inositol hexakisphosphate kinases (IP6Ks) and their product, diphosphoinositol pentakisphosphate (PP-IP5 or IP7), directly and indirectly regulate proteins important in vesicle recycling by the activity-dependent bulk endocytosis pathway (ADBE). In the present study, we show that two isoforms, IP6K1 and IP6K3, are expressed in axons. The role of the kinases in SV recycling are investigated using pharmacologic inhibition, shRNA knockdown, and IP6K1 and IP6K3 knockout mice. Live-cell imaging experiments use optical reporters of SV recycling based on vesicular glutamate transporter isoforms, VGLUT1- and VGLUT2-pHluorins (pH), which recycle differently. VGLUT1-pH recycles by classical AP-2 dependent endocytosis under moderate stimulation conditions, while VGLUT2-pH recycles using AP-1 and AP-3 adaptor proteins as well. Using a short stimulus to release the readily releasable pool (RRP), we show that IP6K1 KO increases exocytosis of both VGLUT1-and VGLUT2-pH, while IP6K3 KO decreases the amount of both transporters in the RRP. In electrophysiological experiments we measure glutamate signaling with short stimuli and under the intense stimulation conditions that trigger bulk endocytosis. IP6K1 KO increases synaptic facilitation and IP6K3 KO decreases facilitation compared to wild type in CA1 hippocampal Schaffer collateral synapses. After intense stimulation, the rate of endocytosis of VGLUT2-pH, but not VGLUT1-pH, is increased by knockout, knockdown, and pharmacologic inhibition of IP6Ks. Thus IP6Ks differentially affect the endocytosis of two SV protein cargos that use different endocytic pathways. However, while IP6K1 KO and IP6K3 KO exert similar effects on endocytosis after stimulation, the isoforms exert different effects on exocytosis earlier in the stimulus and on the early phase of glutamate release. Taken together, the data indicate a role for IP6Ks both in exocytosis early in the stimulation period and in endocytosis, particularly under conditions that may utilize AP-1/3 adaptors.
Collapse
|
21
|
Rostamipour K, Talandashti R, Mehrnejad F. Atomistic insight into the luminal allosteric regulation of vesicular glutamate transporter 2 by chloride and protons: An
all‐atom
molecular dynamics simulation study. Proteins 2022; 90:2045-2057. [DOI: 10.1002/prot.26396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Kiana Rostamipour
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies University of Tehran Tehran Iran
| | - Reza Talandashti
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies University of Tehran Tehran Iran
| | - Faramarz Mehrnejad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies University of Tehran Tehran Iran
| |
Collapse
|
22
|
Sinha T, Ikelle L, Makia MS, Crane R, Zhao X, Kakakhel M, Al-Ubaidi MR, Naash MI. Riboflavin deficiency leads to irreversible cellular changes in the RPE and disrupts retinal function through alterations in cellular metabolic homeostasis. Redox Biol 2022; 54:102375. [PMID: 35738087 PMCID: PMC9233280 DOI: 10.1016/j.redox.2022.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/25/2022] Open
Abstract
Ariboflavinosis is a pathological condition occurring as a result of riboflavin deficiency. This condition is treatable if detected early enough, but it lacks timely diagnosis. Critical symptoms of ariboflavinosis include neurological and visual manifestations, yet the effects of flavin deficiency on the retina are not well investigated. Here, using a diet induced mouse model of riboflavin deficiency, we provide the first evidence of how retinal function and metabolism are closely intertwined with riboflavin homeostasis. We find that diet induced riboflavin deficiency causes severe decreases in retinal function accompanied by structural changes in the neural retina and retinal pigment epithelium (RPE). This is preceded by increased signs of cellular oxidative stress and metabolic disorder, in particular dysregulation in lipid metabolism, which is essential for both photoreceptors and the RPE. Though many of these deleterious phenotypes can be ameliorated by riboflavin supplementation, our data suggests that some patients may continue to suffer from multiple pathologies at later ages. These studies provide an essential cellular and mechanistic foundation linking defects in cellular flavin levels with the manifestation of functional deficiencies in the visual system and paves the way for a more in-depth understanding of the cellular consequences of ariboflavinosis.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Larissa Ikelle
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xue Zhao
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
23
|
Huang C, Chu JMT, Liu Y, Kwong VSW, Chang RCC, Wong GTC. Sevoflurane Induces Neurotoxicity in the Animal Model with Alzheimer's Disease Neuropathology via Modulating Glutamate Transporter and Neuronal Apoptosis. Int J Mol Sci 2022; 23:ijms23116250. [PMID: 35682930 PMCID: PMC9181124 DOI: 10.3390/ijms23116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Perioperative neurocognitive disorders are frequently observed in postoperative patients and previous reports have shown that pre-existing mild cognitive impairment with accumulated neuropathology may be a risk factor. Sevoflurane is a general anesthetic agent which is commonly used in clinical practice. However, the effects of sevoflurane in postoperative subjects are still controversial, as both neurotoxic or neuroprotective effects were reported. The purpose of this study is to investigate the effects of sevoflurane in 3 × Tg mice, a specific animal model with pre-existing Alzheimer’s disease neuropathology. 3 × Tg mice and wild-type mice were exposed to 2 h of sevoflurane respectively. Cognitive function, glutamate transporter expression, MAPK kinase pathways, and neuronal apoptosis were accessed on day 7 post-exposure. Our findings indicate that sevoflurane-induced cognitive deterioration in 3 × Tg mice, which was accompanied with the modulation of glutamate transporter, MAPK signaling, and neuronal apoptosis in the cortical and hippocampal regions. Meanwhile, no significant impact was observed in wild-type mice. Our results demonstrated that prolonged inhaled sevoflurane results in the exacerbation of neuronal and cognitive dysfunction which depends on the neuropathology background.
Collapse
Affiliation(s)
- Chunxia Huang
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - John Man Tak Chu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - Yan Liu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - Vivian Suk Wai Kwong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: (R.C.C.C.); (G.T.C.W.)
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
- Correspondence: (R.C.C.C.); (G.T.C.W.)
| |
Collapse
|
24
|
Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 2022; 17:34. [PMID: 35526004 PMCID: PMC9077942 DOI: 10.1186/s13024-022-00538-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
The dietary consumption of cuprizone – a copper chelator – has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action ‘intrinsic cell damage’. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells – neutrophils or T-cells. We term this mode of action ‘extrinsic cellular damage’. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.
Collapse
Affiliation(s)
- Martin Zirngibl
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Peggy Assinck
- Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anastasia Sizov
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Canada
| | - Jason R Plemel
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada. .,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
25
|
Wagner N, Safaei A, Vogt PA, Gammel MR, Dick HB, Schnichels S, Joachim SC. Coculture of ARPE-19 Cells and Porcine Neural Retina as an Ex Vivo Retinal Model. Altern Lab Anim 2022; 50:27-44. [PMID: 35302924 DOI: 10.1177/02611929221082662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neural retinal organ cultures are used to investigate ocular pathomechanisms. However, these cultures lack the essential retinal pigment epithelium (RPE) cells, which are part of the actual in vivo retina. To simulate a more realistic ex vivo model, porcine neural retina explants were cocultured with ARPE-19 cells (ARPE-19 group), which are derived from human RPE. To identify whether the entire cells or just the cell factors are necessary, in a second experimental group, porcine neural retina explants were cultured with medium derived from ARPE-19 cells (medium group). Individually cultured neural retina explants served as controls (control group). After 8 days, all neural retinas were analysed to evaluate retinal thickness, photoreceptors, microglia, complement factors and synapses (n = 6-8 per group). The neural retina thickness in the ARPE-19 group was significantly better preserved than in the control group (p = 0.031). Also, the number of L-cones was higher in the ARPE-19 group, as compared to the control group (p < 0.001). Furthermore, the ARPE-19 group displayed an increased presynaptic glutamate uptake (determined via vGluT1 labelling) and enhanced post-synaptic density (determined via PSD-95 labelling). Combined Iba1 and iNOS detection revealed only minor effects of ARPE-19 cells on microglial activity, with a slight downregulation of total microglia activity apparent in the medium group. Likewise, only minor beneficial effects on photoreceptors and synaptic structure were found in the medium group. This novel system offers the opportunity to investigate interactions between the neural retina and RPE cells, and suggests that the inclusion of a RPE feeder layer has beneficial effects on the ex vivo maintenance of neural retina. By modifying the culture conditions, this coculture model allows a better understanding of photoreceptor death and photoreceptor-RPE cell interactions in retinal diseases.
Collapse
Affiliation(s)
- Natalie Wagner
- Experimental Eye Research Institute, University Eye Hospital, 9142Ruhr-University Bochum, Germany
| | - Armin Safaei
- Experimental Eye Research Institute, University Eye Hospital, 9142Ruhr-University Bochum, Germany
| | - Pia A Vogt
- Experimental Eye Research Institute, University Eye Hospital, 9142Ruhr-University Bochum, Germany
| | - Maurice R Gammel
- Experimental Eye Research Institute, University Eye Hospital, 9142Ruhr-University Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, 9142Ruhr-University Bochum, Germany
| | - Sven Schnichels
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, 9142Ruhr-University Bochum, Germany
| |
Collapse
|
26
|
Hori T, Takamori S. Physiological Perspectives on Molecular Mechanisms and Regulation of Vesicular Glutamate Transport: Lessons From Calyx of Held Synapses. Front Cell Neurosci 2022; 15:811892. [PMID: 35095427 PMCID: PMC8793065 DOI: 10.3389/fncel.2021.811892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Accumulation of glutamate, the primary excitatory neurotransmitter in the mammalian central nervous system, into presynaptic synaptic vesicles (SVs) depends upon three vesicular glutamate transporters (VGLUTs). Since VGLUTs are driven by a proton electrochemical gradient across the SV membrane generated by vacuolar-type H+-ATPases (V-ATPases), the rate of glutamate transport into SVs, as well as the amount of glutamate in SVs at equilibrium, are influenced by activities of both VGLUTs and V-ATPase. Despite emerging evidence that suggests various factors influencing glutamate transport by VGLUTs in vitro, little has been reported in physiological or pathological contexts to date. Historically, this was partially due to a lack of appropriate methods to monitor glutamate loading into SVs in living synapses. Furthermore, whether or not glutamate refilling of SVs can be rate-limiting for synaptic transmission is not well understood, primarily due to a lack of knowledge concerning the time required for vesicle reuse and refilling during repetitive stimulation. In this review, we first introduce a unique electrophysiological method to monitor glutamate refilling by VGLUTs in a giant model synapse from the calyx of Held in rodent brainstem slices, and we discuss the advantages and limitations of the method. We then introduce the current understanding of factors that potentially alter the amount and rate of glutamate refilling of SVs in this synapse, and discuss open questions from physiological viewpoints.
Collapse
Affiliation(s)
- Tetsuya Hori
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- *Correspondence: Tetsuya Hori Shigeo Takamori
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
- *Correspondence: Tetsuya Hori Shigeo Takamori
| |
Collapse
|
27
|
Chang R, Edwards RH. Whole Endosome Recording of Vesicular Neurotransmitter Transporter Currents. Methods Mol Biol 2022; 2417:29-44. [PMID: 35099789 DOI: 10.1007/978-1-0716-1916-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The analysis of organellar membrane transporters presents many technical problems. In general, their activity depends on a H+ electrochemical driving force (ΔμH+). However, transport itself influences the expression of ΔμH+ in standard radiotracer flux assays, making it difficult to disentangle the role of the chemical component ΔpH and the membrane potential Δψ. Whole endosome recording in voltage clamp circumvents many of these problems, controlling ionic conditions as well as membrane potential inside and outside the organelle . This approach has been used primarily to study the properties of endolysosomal channels, which generate substantial currents (Saito et al., J Biol Chem 282(37):27327-27333, 2007; Cang et al., Nat Chem Biol 10(6):463-469, 2014; Cang et al., Cell 152(4):778-790, 2013; Chen et al., Nat Protoc 12(8):1639-1658, 2017; Samie et al., Dev Cell 26(5):511-524, 2013; Wang et al., Cell 151(2):372-383, 2012). Electrogenic transport produces much smaller currents, but we have recently reported the detection of transport currents and an uncoupled Cl- conductance associated with the vesicular glutamate transporters (VGLUTs) that fill synaptic vesicles with glutamate (Chang et al., eLife 7:e34896, 2018). In this protocol, we will focus on the measurement of transport currents on enlarged endosomes of heterologous mammalian cells.
Collapse
Affiliation(s)
- Roger Chang
- Department of Physiology, UCSF School of Medicine, San Francisco, CA, USA
- Department of Neurology, UCSF School of Medicine, San Francisco, CA, USA
- Graduate Program in Biomedical Sciences, UCSF School of Medicine, San Francisco, CA, USA
| | - Robert H Edwards
- Department of Physiology, UCSF School of Medicine, San Francisco, CA, USA.
- Department of Neurology, UCSF School of Medicine, San Francisco, CA, USA.
- Graduate Program in Biomedical Sciences, UCSF School of Medicine, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, UCSF School of Medicine, San Francisco, CA, USA.
- Weill Institute for Neurosciences, UCSF School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
28
|
Opponent vesicular transporters regulate the strength of glutamatergic neurotransmission in a C. elegans sensory circuit. Nat Commun 2021; 12:6334. [PMID: 34732711 PMCID: PMC8566550 DOI: 10.1038/s41467-021-26575-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
At chemical synapses, neurotransmitters are packaged into synaptic vesicles that release their contents in response to depolarization. Despite its central role in synaptic function, regulation of the machinery that loads vesicles with neurotransmitters remains poorly understood. We find that synaptic glutamate signaling in a C. elegans chemosensory circuit is regulated by antagonistic interactions between the canonical vesicular glutamate transporter EAT-4/VGLUT and another vesicular transporter, VST-1. Loss of VST-1 strongly potentiates glutamate release from chemosensory BAG neurons and disrupts chemotaxis behavior. Analysis of the circuitry downstream of BAG neurons shows that excess glutamate release disrupts behavior by inappropriately recruiting RIA interneurons to the BAG-associated chemotaxis circuit. Our data indicate that in vivo the strength of glutamatergic synapses is controlled by regulation of neurotransmitter packaging into synaptic vesicles via functional coupling of VGLUT and VST-1. The authors describe a vesicular transporter, VST-1, that is required in glutamatergic chemosensory neurons for chemotactic avoidance behavior in C. elegans. VST-1 antagonizes VGLUT-dependent packaging of glutamate into synaptic vesicles and determines the strength of synaptic glutamate signaling.
Collapse
|
29
|
Togo K, Fukusumi H, Shofuda T, Ohnishi H, Yamazaki H, Hayashi MK, Kawasaki N, Takei N, Nakazawa T, Saito Y, Baba K, Hashimoto H, Sekino Y, Shirao T, Mochizuki H, Kanemura Y. Postsynaptic structure formation of human iPS cell-derived neurons takes longer than presynaptic formation during neural differentiation in vitro. Mol Brain 2021; 14:149. [PMID: 34629097 PMCID: PMC8504131 DOI: 10.1186/s13041-021-00851-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/04/2021] [Indexed: 11/10/2022] Open
Abstract
The generation of mature synaptic structures using neurons differentiated from human-induced pluripotent stem cells (hiPSC-neurons) is expected to be applied to physiological studies of synapses in human cells and to pathological studies of diseases that cause abnormal synaptic function. Although it has been reported that synapses themselves change from an immature to a mature state as neurons mature, there are few reports that clearly show when and how human stem cell-derived neurons change to mature synaptic structures. This study was designed to elucidate the synapse formation process of hiPSC-neurons. We propagated hiPSC-derived neural progenitor cells (hiPSC-NPCs) that expressed localized markers of the ventral hindbrain as neurospheres by dual SMAD inhibition and then differentiated them into hiPSC-neurons in vitro. After 49 days of in vitro differentiation, hiPSC-neurons significantly expressed pre- and postsynaptic markers at both the transcript and protein levels. However, the expression of postsynaptic markers was lower than in normal human or normal rat brain tissues, and immunostaining analysis showed that it was relatively modest and was lower than that of presynaptic markers and that its localization in synaptic structures was insufficient. Neurophysiological analysis using a microelectrode array also revealed that no synaptic activity was generated on hiPSC-neurons at 49 days of differentiation. Analysis of subtype markers by immunostaining revealed that most hiPSC-neurons expressed vesicular glutamate transporter 2 (VGLUT2). The presence or absence of NGF, which is required for the survival of cholinergic neurons, had no effect on their cell fractionation. These results suggest that during the synaptogenesis of hiPSC-neurons, the formation of presynaptic structures is not the only requirement for the formation of postsynaptic structures and that the mRNA expression of postsynaptic markers does not correlate with the formation of their mature structures. Technically, we also confirmed a certain level of robustness and reproducibility of our neuronal differentiation method in a multicenter setting, which will be helpful for future research. Synapse formation with mature postsynaptic structures will remain an interesting issue for stem cell-derived neurons, and the present method can be used to obtain early and stable quality neuronal cultures from hiPSC-NPCs.
Collapse
Affiliation(s)
- Kazuyuki Togo
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Osaka, 540-0006, Japan
| | - Hayato Fukusumi
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Osaka, 540-0006, Japan
| | - Tomoko Shofuda
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Osaka, 540-0006, Japan
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, 371-8514, Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.,Faculty of Social Welfare, Gunma University of Health and Welfare, Maebashi, Gunma, 371-0823, Japan
| | - Mariko Kato Hayashi
- School of Medicine, International University of Health and Welfare, Narita, Chiba, 286-8686, Japan.,Department of Food Science and Nutrition, Faculty of Food and Health Sciences, Showa Women's University, Setagaya-ku, Tokyo, 154-8533, Japan
| | - Nana Kawasaki
- Laboratory of Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Nobuyuki Takei
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, 565-0871, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan.,Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.,Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell-Based Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka, Osaka, 540-0006, Japan. .,Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Osaka, 540-0006, Japan.
| |
Collapse
|
30
|
Zhang X, Liu Y, Hong X, Li X, Meshul CK, Moore C, Yang Y, Han Y, Li WG, Qi X, Lou H, Duan S, Xu TL, Tong X. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety. Nat Commun 2021; 12:5740. [PMID: 34593806 PMCID: PMC8484468 DOI: 10.1038/s41467-021-25956-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 11/08/2022] Open
Abstract
NG2 glia, also known as oligodendrocyte precursor cells (OPCs), play an important role in proliferation and give rise to myelinating oligodendrocytes during early brain development. In contrast to other glial cell types, the most intriguing aspect of NG2 glia is their ability to directly sense synaptic inputs from neurons. However, whether this synaptic interaction is bidirectional or unidirectional, or its physiological relevance has not yet been clarified. Here, we report that NG2 glia form synaptic complexes with hippocampal interneurons and that selective photostimulation of NG2 glia (expressing channelrhodopsin-2) functionally drives GABA release and enhances inhibitory synaptic transmission onto proximal interneurons in a microcircuit. The mechanism involves GAD67 biosynthesis and VAMP-2 containing vesicular exocytosis. Further, behavioral assays demonstrate that NG2 glia photoactivation triggers anxiety-like behavior in vivo and contributes to chronic social defeat stress.
Collapse
Affiliation(s)
- Xiao Zhang
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Liu
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqi Hong
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Charles K Meshul
- Research Services, VA Medical Center, Portland, OR, USA
- Department of Behavioral Neuroscience and Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Cynthia Moore
- Research Services, VA Medical Center, Portland, OR, USA
| | - Yabing Yang
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Han
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Guang Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Qi
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Lou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shumin Duan
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tian-Le Xu
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
| |
Collapse
|
31
|
Green JL, Dos Santos WF, Fontana ACK. Role of glutamate excitotoxicity and glutamate transporter EAAT2 in epilepsy: Opportunities for novel therapeutics development. Biochem Pharmacol 2021; 193:114786. [PMID: 34571003 DOI: 10.1016/j.bcp.2021.114786] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022]
Abstract
Epilepsy is a complex neurological syndrome characterized by seizures resulting from neuronal hyperexcitability and sudden and synchronized bursts of electrical discharges. Impaired astrocyte function that results in glutamate excitotoxicity has been recognized to play a key role in the pathogenesis of epilepsy. While there are 26 drugs marketed as anti-epileptic drugs no current treatments are disease modifying as they only suppress seizures rather than the development and progression of epilepsy. Excitatory amino acid transporters (EAATs) are critical for maintaining low extracellular glutamate concentrations and preventing excitotoxicity. When extracellular glutamate concentrations rise to abnormal levels, glutamate receptor overactivation and the subsequent excessive influx of calcium into the post-synaptic neuron can trigger cell death pathways. In this review we discuss targeting EAAT2, the predominant glutamate transporter in the CNS, as a promising approach for developing therapies for epilepsy. EAAT2 upregulation via transcriptional and translational regulation has proven successful in vivo in reducing spontaneous recurrent seizures and offering neuroprotective effects. Another approach to regulate EAAT2 activity is through positive allosteric modulation (PAM). Novel PAMs of EAAT2 have recently been identified and are under development, representing a promising approach for the advance of novel therapeutics for epilepsy.
Collapse
Affiliation(s)
- Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, United States
| | | | | |
Collapse
|
32
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
33
|
Eriksen J, Li F, Stroud RM, Edwards RH. Allosteric Inhibition of a Vesicular Glutamate Transporter by an Isoform-Specific Antibody. Biochemistry 2021; 60:2463-2470. [PMID: 34319067 DOI: 10.1021/acs.biochem.1c00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of glutamate in excitatory neurotransmission depends on its transport into synaptic vesicles by the vesicular glutamate transporters (VGLUTs). The three VGLUT isoforms exhibit a complementary distribution in the nervous system, and the knockout of each produces severe, pleiotropic neurological effects. However, the available pharmacology lacks sensitivity and specificity, limiting the analysis of both transport mechanism and physiological role. To develop new molecular probes for the VGLUTs, we raised six mouse monoclonal antibodies to VGLUT2. All six bind to a structured region of VGLUT2, five to the luminal face, and one to the cytosolic. Two are specific to VGLUT2, whereas the other four bind to both VGLUT1 and 2; none detect VGLUT3. Antibody 8E11 recognizes an epitope spanning the three extracellular loops in the C-domain that explains the recognition of both VGLUT1 and 2 but not VGLUT3. 8E11 also inhibits both glutamate transport and the VGLUT-associated chloride conductance. Since the antibody binds outside the substrate recognition site, it acts allosterically to inhibit function, presumably by restricting conformational changes. The isoform specificity also shows that allosteric inhibition provides a mechanism to distinguish between closely related transporters.
Collapse
Affiliation(s)
- Jacob Eriksen
- Departments of Neurology and Physiology, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| | - Fei Li
- Departments of Neurology and Physiology, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States.,Department of Biochemistry and Biophysics, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| | - Robert H Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| |
Collapse
|
34
|
Lindström SH, Sundberg SC, Larsson M, Andersson FK, Broman J, Granseth B. VGluT1 Deficiency Impairs Visual Attention and Reduces the Dynamic Range of Short-Term Plasticity at Corticothalamic Synapses. Cereb Cortex 2021; 30:1813-1829. [PMID: 31711131 PMCID: PMC7132919 DOI: 10.1093/cercor/bhz204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
The most common excitatory neurotransmitter in the central nervous system, glutamate, is loaded into synaptic vesicles by vesicular glutamate transporters (VGluTs). The primary isoforms, VGluT1 and 2, are expressed in complementary patterns throughout the brain and correlate with short-term synaptic plasticity. VGluT1 deficiency is observed in certain neurological disorders, and hemizygous (VGluT1+/−) mice display increased anxiety and depression, altered sensorimotor gating, and impairments in learning and memory. The synaptic mechanisms underlying these behavioral deficits are unknown. Here, we show that VGluT1+/− mice had decreased visual processing speeds during a sustained visual-spatial attention task. Furthermore, in vitro recordings of corticothalamic (CT) synapses revealed dramatic reductions in short-term facilitation, increased initial release probability, and earlier synaptic depression in VGluT1+/− mice. Our electron microscopy results show that VGluT1 concentration is reduced at CT synapses of hemizygous mice, but other features (such as vesicle number and active zone size) are unchanged. We conclude that VGluT1-haploinsuficiency decreases the dynamic range of gain modulation provided by CT feedback to the thalamus, and this deficiency contributes to the observed attentional processing deficit. We further hypothesize that VGluT1 concentration regulates release probability by applying a “brake” to an unidentified presynaptic protein that typically acts as a positive regulator of release.
Collapse
Affiliation(s)
- Sarah H Lindström
- Department of Clinical and Experimental Medicine, Division of Neurobiology, Linköping University, Linköping, 58185, Sweden
| | - Sofie C Sundberg
- Department of Clinical and Experimental Medicine, Division of Neurobiology, Linköping University, Linköping, 58185, Sweden
| | - Max Larsson
- Department of Clinical and Experimental Medicine, Division of Neurobiology, Linköping University, Linköping, 58185, Sweden
| | - Fredrik K Andersson
- Department of Clinical and Experimental Medicine, Division of Neurobiology, Linköping University, Linköping, 58185, Sweden
| | - Jonas Broman
- Department of Clinical and Experimental Medicine, Division of Neurobiology, Linköping University, Linköping, 58185, Sweden
| | - Björn Granseth
- Department of Clinical and Experimental Medicine, Division of Neurobiology, Linköping University, Linköping, 58185, Sweden
| |
Collapse
|
35
|
De Pace R, Britt DJ, Mercurio J, Foster AM, Djavaherian L, Hoffmann V, Abebe D, Bonifacino JS. Synaptic Vesicle Precursors and Lysosomes Are Transported by Different Mechanisms in the Axon of Mammalian Neurons. Cell Rep 2021; 31:107775. [PMID: 32553155 PMCID: PMC7478246 DOI: 10.1016/j.celrep.2020.107775] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
BORC is a multisubunit complex previously shown to promote coupling of mammalian lysosomes and C. elegans synaptic vesicle (SV) precursors (SVPs) to kinesins for anterograde transport of these organelles along microtubule tracks. We attempted to meld these observations into a unified model for axonal transport in mammalian neurons by testing two alternative hypotheses: (1) that SV and lysosomal proteins are co-transported within a single type of “lysosome-related vesicle” and (2) that SVPs and lysosomes are distinct organelles, but both depend on BORC for axonal transport. Analyses of various types of neurons from wild-type rats and mice, as well as from BORC-deficient mice, show that neither hypothesis is correct. We find that SVPs and lysosomes are transported separately, but only lysosomes depend on BORC for axonal transport in these neurons. These findings demonstrate that SVPs and lysosomes are distinct organelles that rely on different machineries for axonal transport in mammalian neurons. De Pace et al. show that lysosomes and synaptic vesicle precursors (SVPs) are distinct organelles that move separately from the soma to the axon in rat and mouse neurons. Moreover, they demonstrate that the BLOC-1-related complex (BORC) is required for the transport of lysosomes but not SVPs in mouse neurons.
Collapse
Affiliation(s)
- Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dylan J Britt
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey Mercurio
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arianne M Foster
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucas Djavaherian
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victoria Hoffmann
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Abebe
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Liu J, Kashima T, Morikawa S, Noguchi A, Ikegaya Y, Matsumoto N. Molecular Characterization of Superficial Layers of the Presubiculum During Development. Front Neuroanat 2021; 15:662724. [PMID: 34234650 PMCID: PMC8256428 DOI: 10.3389/fnana.2021.662724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The presubiculum, a subarea of the parahippocampal region, plays a critical role in spatial navigation and spatial representation. An outstanding aspect of presubicular spatial codes is head-direction selectivity of the firing of excitatory neurons, called head-direction cells. Head-direction selectivity emerges before eye-opening in rodents and is maintained in adulthood through neurophysiological interactions between excitatory and inhibitory neurons. Although the presubiculum has been physiologically profiled in terms of spatial representation during development, the histological characteristics of the developing presubiculum are poorly understood. We found that the expression of vesicular glutamate transporter 2 (VGluT2) could be used to delimit the superficial layers of the presubiculum, which was identified using an anterograde tracer injected into the anterior thalamic nucleus (ATN). Thus, we immunostained slices from mice ranging in age from neonates to adults using an antibody against VGluT2 to evaluate the VGluT2-positive area, which was identified as the superficial layers of the presubiculum, during development. We also immunostained the slices using antibodies against parvalbumin (PV) and somatostatin (SOM) and found that in the presubicular superficial layers, PV-positive neurons progressively increased in number during development, whereas SOM-positive neurons exhibited no increasing trend. In addition, we observed repeating patch structures in presubicular layer III from postnatal days 12. The abundant expression of VGluT2 suggests that the presubicular superficial layers are regulated primarily by VGluT2-mediated excitatory neurotransmission. Moreover, developmental changes in the densities of PV- and SOM-positive interneurons and the emergence of the VGluT2-positive patch structures during adolescence may be associated with the functional development of spatial codes in the superficial layers of the presubiculum.
Collapse
Affiliation(s)
- Jiayan Liu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuhiko Kashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shota Morikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Suita City, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Abstract
The chronification of pain can be attributed to changes in membrane receptors and channels underlying neuronal plasticity and signal transduction largely within nociceptive neurons that initiate and maintain pathological pain states. These proteins are subject to dynamic modification by posttranslational modifications, creating a code that controls protein function in time and space. Phosphorylation is an important posttranslational modification that affects ∼30% of proteins in vivo. Increased phosphorylation of various nociceptive ion channels and of their modulators underlies sensitization of different pain states. Cyclin-dependent kinases are proline-directed serine/threonine kinases that impact various biological and cellular systems. Cyclin-dependent kinase 5 (Cdk5), one member of this kinase family, and its activators p35 and p39 are expressed in spinal nerves, dorsal root ganglia, and the dorsal horn of the spinal cord. In neuropathic pain conditions, expression and/or activity of Cdk5 is increased, implicating Cdk5 in nociception. Experimental evidence suggests that Cdk5 is regulated through its own phosphorylation, through increasing p35's interaction with Cdk5, and through cleavage of p35 into p25. This narrative review discusses the molecular mechanisms of Cdk5-mediated regulation of target proteins involved in neuropathic pain. We focus on Cdk5 substrates that have been linked to nociceptive pathways, including channels (eg, transient receptor potential cation channel and voltage-gated calcium channel), proteins involved in neurotransmitter release (eg, synaptophysin and collapsin response mediator protein 2), and receptors (eg, glutamate, purinergic, and opioid). By altering the phosphoregulatory "set point" of proteins involved in pain signaling, Cdk5 thus appears to be an attractive target for treating neuropathic pain conditions.
Collapse
|
38
|
Rodríguez-Campuzano AG, Ortega A. Glutamate transporters: Critical components of glutamatergic transmission. Neuropharmacology 2021; 192:108602. [PMID: 33991564 DOI: 10.1016/j.neuropharm.2021.108602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Once released, it binds to specific membrane receptors and transporters activating a wide variety of signal transduction cascades, as well as its removal from the synaptic cleft in order to avoid its extracellular accumulation and the overstimulation of extra-synaptic receptors that might result in neuronal death through a process known as excitotoxicity. Although neurodegenerative diseases are heterogenous in clinical phenotypes and genetic etiologies, a fundamental mechanism involved in neuronal degeneration is excitotoxicity. Glutamate homeostasis is critical for brain physiology and Glutamate transporters are key players in maintaining low extracellular Glutamate levels. Therefore, the characterization of Glutamate transporters has been an active area of glutamatergic research for the last 40 years. Transporter activity its regulated at different levels: transcriptional and translational control, transporter protein trafficking and membrane mobility, and through extensive post-translational modifications. The elucidation of these mechanisms has emerged as an important piece to shape our current understanding of glutamate actions in the nervous system.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
39
|
Schinzel F, Seyfer H, Ebbers L, Nothwang HG. The Lbx1 lineage differentially contributes to inhibitory cell types of the dorsal cochlear nucleus, a cerebellum-like structure, and the cerebellum. J Comp Neurol 2021; 529:3032-3045. [PMID: 33786818 DOI: 10.1002/cne.25147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022]
Abstract
The dorsal cochlear nucleus (DCN) is a mammalian-specific nucleus of the auditory system. Anatomically, it is classified as a cerebellum-like structure. These structures are proposed to share genetic programs with the cerebellum. Previous analyses demonstrated that inhibitory serial sister cell types (SCTs) of the DCN and cerebellum are derived from the pancreatic transcription factor 1a (Ptf1a) lineage. Postmitotic neurons of the Ptf1a lineage often express the transcription factor Ladybird homeobox protein homolog 1 (Lbx1) which is involved in neuronal cell fate determination. Lbx1 is therefore an attractive candidate for a further component of the genetic program shared between the DCN and cerebellum. Here, we used cell-type specific marker analysis in combination with an Lbx1 reporter mouse line to analyze in both tissues which cell types of the Ptf1a lineage express Lbx1. In the DCN, stellate cells and Purkinje-like cartwheel cells were part of the Lbx1 lineage and Golgi cells were not, as determined by cell counts. In contrast, in the cerebellum, stellate cells and Golgi cells were part of the Lbx1 lineage and Purkinje cells were not. Hence, two out of three phenotypically similar cell types differed with respect to their Lbx1 expression. Our study demonstrates that Lbx1 is differentially recruited to the developmental genetic program of inhibitory neurons both within a given tissue and between the DCN and cerebellum. The differential expression of Lbx1 within the DCN and the cerebellum might contribute to the genetic individuation of the inhibitory SCTs to adapt to circuit specific tasks.
Collapse
Affiliation(s)
- Friedrich Schinzel
- Division of Neurogenetics and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Hannah Seyfer
- Division of Neurogenetics and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Lena Ebbers
- Division of Neurogenetics and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Hans Gerd Nothwang
- Division of Neurogenetics and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
40
|
Resilience of network activity in preconditioned neurons exposed to 'stroke-in-a-dish' insults. Neurochem Int 2021; 146:105035. [PMID: 33798645 DOI: 10.1016/j.neuint.2021.105035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
Exposing cultured cortical neurons to stimulatory agents - the K+ channel blocker 4-aminopyridine (4-ap), and the GABAA receptor antagonist bicuculline (bic) - for 48 h induces down-regulated synaptic scaling, and preconditions neurons to withstand subsequent otherwise lethal 'stroke-in-a-dish' insults; however, the degree to which usual neuronal function remains is unknown. As a result, multi-electrode array and patch-clamp electrophysiological techniques were employed to characterize hallmarks of spontaneous synaptic activity over a 12-day preconditioning/insult experiment. Spiking frequency increased 8-fold immediately upon 4-ap/bic treatment but declined within the 48 h treatment window to sub-baseline levels that persisted long after washout. Preconditioning resulted in key markers of network activity - spiking frequency, bursting and avalanches - being impervious to an insult. Surprisingly, preconditioning resulted in higher peak NMDA mEPSC amplitudes, resulting in a decrease in the ratio of AMPA:NMDA mEPSC currents, suggesting a relative increase in synaptic NMDA receptors. An investigation of a broad mRNA panel of excitatory and inhibitory signaling mediators indicated preconditioning rapidly up-regulated GABA synthesis (GAD67) and BDNF, followed by up-regulation of neuronal activity-regulated pentraxin and down-regulation of presynaptic glutamate release (VGLUT1). Preconditioning also enhanced surface expression of GLT-1, which persisted following an insult. Overall, preconditioning resulted in a reduced spiking frequency which was impervious to subsequent exposure to 'stroke-in-a-dish' insults, a phenotype initiated predominantly by up-regulation of inhibitory neurotransmission, a lower neuronal postsynaptic AMPA: NMDA receptor ratio, and trafficking of GLT-1 to astrocyte plasma membranes.
Collapse
|
41
|
Leveraging VGLUT3 Functions to Untangle Brain Dysfunctions. Trends Pharmacol Sci 2021; 42:475-490. [PMID: 33775453 DOI: 10.1016/j.tips.2021.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) were long thought to be specific markers of glutamatergic excitatory transmission. The discovery, two decades ago, of the atypical VGLUT3 has thoroughly modified this oversimplified view. VGLUT3 is strategically expressed in discrete populations of glutamatergic, cholinergic, serotonergic, and even GABAergic neurons. Recent reports show the subtle, but critical, implications of VGLUT3-dependent glutamate co-transmission and its roles in the regulation of diverse brain functions and dysfunctions. Progress in the neuropharmacology of VGLUT3 could lead to decisive breakthroughs in the treatment of Parkinson's disease (PD), addiction, eating disorders, anxiety, presbycusis, or pain. This review summarizes recent findings on VGLUT3 and its vesicular underpinnings as well as on possible ways to target this atypical transporter for future therapeutic strategies.
Collapse
|
42
|
Hoftman GD, Bazmi HH, Ciesielski AJ, Dinka LA, Chen K, Lewis DA. Postnatal Development of Glutamate and GABA Transcript Expression in Monkey Visual, Parietal, and Prefrontal Cortices. Cereb Cortex 2021; 31:2026-2037. [PMID: 33279960 PMCID: PMC8248841 DOI: 10.1093/cercor/bhaa342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 11/14/2022] Open
Abstract
Visuospatial working memory (vsWM) requires information transfer among multiple cortical regions, from primary visual (V1) to prefrontal (PFC) cortices. This information is conveyed via layer 3 glutamatergic neurons whose activity is regulated by gamma-aminobutyric acid (GABA)ergic interneurons. In layer 3 of adult human neocortex, molecular markers of glutamate neurotransmission were lowest in V1 and highest in PFC, whereas GABA markers had the reverse pattern. Here, we asked if these opposite V1-visual association cortex (V2)-posterior parietal cortex (PPC)-PFC gradients across the vsWM network are present in layer 3 of monkey neocortex, when they are established during postnatal development, and if they are specific to this layer. We quantified transcript levels of glutamate and GABA markers in layers 3 and 6 of four vsWM cortical regions in a postnatal developmental series of 30 macaque monkeys. In adult monkeys, glutamate transcript levels in layer 3 increased across V1-V2-PPC-PFC regions, whereas GABA transcripts showed the opposite V1-V2-PPC-PFC gradient. Glutamate transcripts established adult-like expression patterns earlier during postnatal development than GABA transcripts. These V1-V2-PPC-PFC gradients and developmental patterns were less evident in layer 6. These findings demonstrate that expression of glutamate and GABA transcripts differs across cortical regions and layers during postnatal development, revealing potential molecular substrates for vsWM functional maturation.
Collapse
Affiliation(s)
- Gil D Hoftman
- Department of Psychiatry, University of California, Los Angeles, CA 90095, USA
| | - H Holly Bazmi
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andrew J Ciesielski
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Liban A Dinka
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kehui Chen
- Department of Statistics, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A Lewis
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
43
|
Park D, Wu Y, Lee SE, Kim G, Jeong S, Milovanovic D, De Camilli P, Chang S. Cooperative function of synaptophysin and synapsin in the generation of synaptic vesicle-like clusters in non-neuronal cells. Nat Commun 2021; 12:263. [PMID: 33431828 PMCID: PMC7801664 DOI: 10.1038/s41467-020-20462-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/02/2020] [Indexed: 02/01/2023] Open
Abstract
Clusters of tightly packed synaptic vesicles (SVs) are a defining feature of nerve terminals. While SVs are mobile within the clusters, the clusters have no boundaries consistent with a liquid phase. We previously found that purified synapsin, a peripheral SV protein, can assemble into liquid condensates and trap liposomes into them. How this finding relates to the physiological formation of SV clusters in living cells remains unclear. Here, we report that synapsin alone, when expressed in fibroblasts, has a diffuse cytosolic distribution. However, when expressed together with synaptophysin, an integral SV membrane protein previously shown to be localized on small synaptic-like microvesicles when expressed in non-neuronal cells, is sufficient to organize such vesicles in clusters highly reminiscent of SV clusters and with liquid-like properties. This minimal reconstitution system can be a powerful model to gain mechanistic insight into the assembly of structures which are of fundamental importance in synaptic transmission. Synaptic vesicle clusters were proposed to represent phase separated condensates. Here, the authors show that only two proteins, synapsin and synaptophysin, are sufficient to make vesicle clusters in fibroblasts which are similar to those found at synapses in morphology and liquid-like properties.
Collapse
Affiliation(s)
- Daehun Park
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yumei Wu
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sang-Eun Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Goeun Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seonyoung Jeong
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Dragomir Milovanovic
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.,Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117, Berlin, Germany
| | - Pietro De Camilli
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
44
|
Cheret C, Ganzella M, Preobraschenski J, Jahn R, Ahnert-Hilger G. Vesicular Glutamate Transporters (SLCA17 A6, 7, 8) Control Synaptic Phosphate Levels. Cell Rep 2021; 34:108623. [PMID: 33440152 PMCID: PMC7809625 DOI: 10.1016/j.celrep.2020.108623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/28/2020] [Accepted: 12/17/2020] [Indexed: 10/27/2022] Open
Abstract
Vesicular glutamate transporters (VGLUTs) fill synaptic vesicles with glutamate. VGLUTs were originally identified as sodium-dependent transporters of inorganic phosphate (Pi), but the physiological relevance of this activity remains unclear. Heterologous expression of all three VGLUTs greatly augments intracellular Pi levels. Using neuronal models, we show that translocation of VGLUTs to the plasma membrane during exocytosis results in highly increased Pi uptake. VGLUT-mediated Pi influx is counteracted by Pi efflux. Synaptosomes prepared from perinatal VGLUT2-/- mice that are virtually free of VGLUTs show drastically reduced cytosolic Pi levels and fail to import Pi. Glutamate partially competes with sodium (Na+)/Pi (NaPi)-uptake mediated by VGLUTs but does not appear to be transported. A nanobody that blocks glutamate transport by binding to the cytoplasmic domain of VGLUT1 abolishes Pi transport when co-expressed with VGLUT1. We conclude that VGLUTs have a dual function that is essential for both vesicular glutamate loading and Pi restoration in neurons.
Collapse
Affiliation(s)
- Cyril Cheret
- Institute for Integrative Neuroanatomy, Charité, Medical University of Berlin, 10115 Berlin, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, and University of Göttingen, 37077 Göttingen, Germany
| | - Julia Preobraschenski
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, and University of Göttingen, 37077 Göttingen, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, and University of Göttingen, 37077 Göttingen, Germany.
| | - Gudrun Ahnert-Hilger
- Institute for Integrative Neuroanatomy, Charité, Medical University of Berlin, 10115 Berlin, Germany; Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, and University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
45
|
Todd AC, Hardingham GE. The Regulation of Astrocytic Glutamate Transporters in Health and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E9607. [PMID: 33348528 PMCID: PMC7766851 DOI: 10.3390/ijms21249607] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
The astrocytic glutamate transporters excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2) play a key role in nervous system function to maintain extracellular glutamate levels at low levels. In physiology, this is essential for the rapid uptake of synaptically released glutamate, maintaining the temporal fidelity of synaptic transmission. However, EAAT1/2 hypo-expression or hypo-function are implicated in several disorders, including epilepsy and neurodegenerative diseases, as well as being observed naturally with aging. This not only disrupts synaptic information transmission, but in extremis leads to extracellular glutamate accumulation and excitotoxicity. A key facet of EAAT1/2 expression in astrocytes is a requirement for signals from other brain cell types in order to maintain their expression. Recent evidence has shown a prominent role for contact-dependent neuron-to-astrocyte and/or endothelial cell-to-astrocyte Notch signalling for inducing and maintaining the expression of these astrocytic glutamate transporters. The relevance of this non-cell-autonomous dependence to age- and neurodegenerative disease-associated decline in astrocytic EAAT expression is discussed, plus the implications for disease progression and putative therapeutic strategies.
Collapse
Affiliation(s)
- Alison C. Todd
- UK Dementia Research Institute at the University of Edinburgh, Chancellor’s Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK;
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute at the University of Edinburgh, Chancellor’s Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK;
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
46
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
47
|
Signal Decoding for Glutamate Modulating Egg Laying Oppositely in Caenorhabditis elegans under Varied Environmental Conditions. iScience 2020; 23:101588. [PMID: 33089099 PMCID: PMC7567941 DOI: 10.1016/j.isci.2020.101588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 11/24/2022] Open
Abstract
Animals' ability to sense environmental cues and to integrate this information to control fecundity is vital for continuing the species lineage. In this study, we observed that the sensory neurons Amphid neuron (ASHs and ADLs) differentially regulate egg-laying behavior in Caenorhabditis elegans under varied environmental conditions via distinct neuronal circuits. Under standard culture conditions, ASHs tonically release a small amount of glutamate and inhibit Hermaphrodite specific motor neuron (HSN) activities and egg laying via a highly sensitive Glutamate receptor (GLR)-5 receptor. In contrast, under Cu2+ stimulation, ASHs and ADLs may release a large amount of glutamate and inhibit Amphid interneuron (AIA) interneurons via low-sensitivity Glutamate-gated chloride channel (GLC)-3 receptor, thus removing the inhibitory roles of AIAs on HSN activity and egg laying. However, directly measuring the amount of glutamate released by sensory neurons under different conditions and assaying the binding kinetics of receptors with the neurotransmitter are still required to support this study directly. Short-term exposure of CuSO4 evokes hyperactive egg laying ASHs inhibit HSNs and egg laying via GLR-5 receptor under no Cu2+ treatment AIA interneurons suppress HSNs and thus egg laying through ACR-14 signaling Under noxious Cu2+ treatment, ASHs and ADLs suppress AIAs and augment egg laying
Collapse
|
48
|
Zheng YQ, Jin MF, Suo GH, Wu YJ, Sun YX, Ni H. Proteomics for Studying the Effects of Ketogenic Diet Against Lithium Chloride/Pilocarpine Induced Epilepsy in Rats. Front Neurosci 2020; 14:562853. [PMID: 33132826 PMCID: PMC7550537 DOI: 10.3389/fnins.2020.562853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
The ketogenic diet (KD) demonstrates antiepileptogenic and neuroprotective efficacy, but the precise mechanisms are unclear. Here we explored the mechanism through systematic proteomics analysis of the lithium chloride-pilocarpine rat model. Sprague-Dawley rats (postnatal day 21, P21) were randomly divided into control (Ctr), seizure (SE), and KD treatment after seizure (SE + KD) groups. Tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectroscopy (LC-MS/MS) were utilized to assess changes in protein abundance in the hippocampus. A total of 5,564 proteins were identified, of which 110 showed a significant change in abundance between the SE and Ctr groups (18 upregulated and 92 downregulated), 278 between SE + KD and SE groups (218 upregulated and 60 downregulated), and 180 between Ctr and SE + KD groups (121 upregulated and 59 downregulated) (all p < 0.05). Seventy-nine proteins showing a significant change in abundance between SE and Ctr groups were reciprocally regulated in the SD + KD group compared to the SE group (i.e., the seizure-induced change was reversed by KD). Of these, five (dystrobrevin, centromere protein V, oxysterol-binding protein, tetraspanin-2, and progesterone receptor membrane component 2) were verified by parallel reaction monitoring. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that proteins of the synaptic vesicle cycle pathway were enriched both among proteins differing in abundance between SE and Ctr groups as well as between SE + KD and SE groups. This comprehensive proteomics analyze of KD-treated epilepsy by quantitative proteomics revealed novel molecular mechanisms of KD antiepileptogenic efficacy and potential treatment targets.
Collapse
Affiliation(s)
- Yu-Qin Zheng
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Mei-Fang Jin
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Gui-Hai Suo
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - You-Jia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu-Xiao Sun
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
49
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
50
|
Fructuoso M, Gu YC, Kassis N, de Lagran MM, Dierssen M, Janel N. Ethanol-Induced Changes in Brain of Transgenic Mice Overexpressing DYRK1A. Mol Neurobiol 2020; 57:3195-3205. [PMID: 32504418 DOI: 10.1007/s12035-020-01967-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/29/2020] [Indexed: 12/01/2022]
Abstract
Alcoholism is a chronic relapsing disorder defined by loss of control over excessive consumption of ethanol despite damaging effects on the liver and brain. We previously showed that the overexpression in mice of Dyrk1A (TgDyrk1A, for dual-specificity tyrosine (Y) phosphorylation-regulated kinase 1A) reduces the severity of alcohol mediated liver injury. Ethanol consumption has also been associated with increased brain glutamate concentration that led to therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission. Interestingly, mice overexpressing Dyrk1A (TgDyrk1A mice) present a reduction of glutamatergic brain transmission, which we propose could be protective against alcohol intake. To answer this question, we investigated the ethanol preference in TgDyrk1A mice using a two-bottle choice paradigm. TgDyrk1A mice showed a non-significant decrease of voluntary ethanol intake and ethanol preference compared with wild-type mice. At the peripheral level, mice overexpressing Dyrk1A show lower ethanol plasma levels, indicating a faster ethanol metabolism. At the end of the protocol, lasting 21 days, brains were extracted for protein analysis. Ethanol reduced levels of the synaptic protein PSD-95 and increased the glutamate decarboxylase GAD65, specifically in the cortex of TgDyrk1A mice. Our results suggest that overexpression of DYRK1A may cause different ethanol-induced changes in the brain.
Collapse
Affiliation(s)
- Marta Fructuoso
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Pompeu Fabra University (Universitat Pompeu Fabra, UPF), 08003, Barcelona, Spain
- Institut du Cerveau et la Moelle épinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
| | - Yu Chen Gu
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Nadim Kassis
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Maria Martinez de Lagran
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Pompeu Fabra University (Universitat Pompeu Fabra, UPF), 08003, Barcelona, Spain
| | - Mara Dierssen
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Pompeu Fabra University (Universitat Pompeu Fabra, UPF), 08003, Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya BarcelonaTech, Barcelona, Spain
| | - Nathalie Janel
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France.
| |
Collapse
|