1
|
Ma LC, Li M, Chen YM, Chen WY, Chen YW, Cheng ZL, Zhu YZ, Zhang Y, Guo XK, Liu C. Genomic Insight into Zoonotic and Environmental Vibrio vulnificus: Strains with T3SS2 as a Novel Threat to Public Health. Microorganisms 2024; 12:2375. [PMID: 39597763 PMCID: PMC11596471 DOI: 10.3390/microorganisms12112375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Vibrio vulnificus is a significant opportunistic pathogen with the highest fatality rate among foodborne microbes. However, due to a lack of comprehensive surveillance, the characteristics of isolates in China remain poorly understood. This study analyzed 60 strains of V. vulnificus isolated from diverse sources in Shanghai, including shellfish, crabs, shrimps, throat swabs of migratory birds, as well as seafood farming water and seawater. Identification of the genotypes was performed using PCR, and cytotoxicity was determined using an LDH assay. DNA was sequenced using Illumina NovaSeq followed by a bioinformatic analysis. The results demonstrated that a majority of the strains belonged to the 16S rRNA B-vcgC genotype. All strains carried five antibiotic resistance genes (ARGs), with some strains carrying over ten ARGs, mediating resistance to multiple antibiotics. Five strains possessed a highly abundant effector delivery system, which further investigations revealed to be a type III secretion system II (T3SS2), marking the first description of T3SS2 in V. vulnificus. Phylogenetic analysis indicated that it belonged to a different genetic lineage from T3SS2α and T3SS2β of V. parahaemolyticus. Bacteria with T3SS2 sequences were concentrated in coastal areas and mostly within the genus Vibrio in the global prevalence survey. Our study provides essential baseline information for non-clinical V. vulnificus and discovers the existence of T3SS2 in several strains which may be more virulent, thereby posing a new threat to human health.
Collapse
Affiliation(s)
- Ling-Chao Ma
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Yi-Ming Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Ye Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Wen Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zi-Le Cheng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong-Zhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Yan Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Xiao-Kui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Chang Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
Molloy B, Shin DS, Long J, Pellegrin C, Senatori B, Vieira P, Thorpe PJ, Damm A, Ahmad M, Vermeulen K, Derevnina L, Wei S, Sperling A, Reyes Estévez E, Bruty S, de Souza VHM, Kranse OP, Maier T, Baum T, Eves-van den Akker S. The origin, deployment, and evolution of a plant-parasitic nematode effectorome. PLoS Pathog 2024; 20:e1012395. [PMID: 39074142 PMCID: PMC11309470 DOI: 10.1371/journal.ppat.1012395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024] Open
Abstract
Plant-parasitic nematodes constrain global food security. During parasitism, they secrete effectors into the host plant from two types of pharyngeal gland cells. These effectors elicit profound changes in host biology to suppress immunity and establish a unique feeding organ from which the nematode draws nutrition. Despite the importance of effectors in nematode parasitism, there has been no comprehensive identification and characterisation of the effector repertoire of any plant-parasitic nematode. To address this, we advance techniques for gland cell isolation and transcriptional analysis to define a stringent annotation of putative effectors for the cyst nematode Heterodera schachtii at three key life-stages. We define 717 effector gene loci: 269 "known" high-confidence homologs of plant-parasitic nematode effectors, and 448 "novel" effectors with high gland cell expression. In doing so we define the most comprehensive "effectorome" of a plant-parasitic nematode to date. Using this effector definition, we provide the first systems-level understanding of the origin, deployment and evolution of a plant-parasitic nematode effectorome. The robust identification of the effector repertoire of a plant-parasitic nematode will underpin our understanding of nematode pathology, and hence, inform strategies for crop protection.
Collapse
Affiliation(s)
- Beth Molloy
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Dio S. Shin
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Long
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Clement Pellegrin
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Beatrice Senatori
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Paulo Vieira
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture—Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Peter J. Thorpe
- The Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Anika Damm
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Mariam Ahmad
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Kerry Vermeulen
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Lida Derevnina
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Siyuan Wei
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alexis Sperling
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Estefany Reyes Estévez
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Samuel Bruty
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Victor Hugo Moura de Souza
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Olaf Prosper Kranse
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Tom Maier
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Thomas Baum
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | | |
Collapse
|
3
|
Horton KN, Gassmann W. Greater than the sum of their parts: an overview of the AvrRps4 effector family. FRONTIERS IN PLANT SCIENCE 2024; 15:1400659. [PMID: 38799092 PMCID: PMC11116571 DOI: 10.3389/fpls.2024.1400659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Phytopathogenic microbes use secreted effector proteins to increase their virulence in planta. If these effectors or the results of their activity are detected by the plant cell, the plant will mount an immune response which applies evolutionary pressure by reducing growth and success of the pathogen. Bacterial effector proteins in the AvrRps4 family (AvrRps4, HopK1, and XopO) have commonly been used as tools to investigate plant immune components. At the same time, the in planta functions of this family of effectors have yet to be fully characterized. In this minireview we summarize current knowledge about the AvrRps4 effector family with emphasis on properties of the proteins themselves. We hypothesize that the HopK1 C-terminus and the AvrRps4 C-terminus, though unrelated in sequence and structure, are broadly related in functions that counteract plant defense responses.
Collapse
Affiliation(s)
| | - Walter Gassmann
- Division of Plant Science and Technology, Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
Lovelace AH, Dorhmi S, Hulin MT, Li Y, Mansfield JW, Ma W. Effector Identification in Plant Pathogens. PHYTOPATHOLOGY 2023; 113:637-650. [PMID: 37126080 DOI: 10.1094/phyto-09-22-0337-kd] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Effectors play a central role in determining the outcome of plant-pathogen interactions. As key virulence proteins, effectors are collectively indispensable for disease development. By understanding the virulence mechanisms of effectors, fundamental knowledge of microbial pathogenesis and disease resistance have been revealed. Effectors are also considered double-edged swords because some of them activate immunity in disease resistant plants after being recognized by specific immune receptors, which evolved to monitor pathogen presence or activity. Characterization of effector recognition by their cognate immune receptors and the downstream immune signaling pathways is instrumental in implementing resistance. Over the past decades, substantial research effort has focused on effector biology, especially concerning their interactions with virulence targets or immune receptors in plant cells. A foundation of this research is robust identification of the effector repertoire from a given pathogen, which depends heavily on bioinformatic prediction. In this review, we summarize methodologies that have been used for effector mining in various microbial pathogens which use different effector delivery mechanisms. We also discuss current limitations and provide perspectives on how recently developed analytic tools and technologies may facilitate effector identification and hence generation of a more complete vision of host-pathogen interactions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Sara Dorhmi
- The Sainsbury Laboratory, Norwich, NR4 7UH, U.K
- Department of Microbiology and Plant Pathology, University of California Riverside, CA 92521, U.S.A
| | | | - Yufei Li
- The Sainsbury Laboratory, Norwich, NR4 7UH, U.K
| | - John W Mansfield
- Faculty of Natural Sciences, Imperial College London, London, SW7 2BX, U.K
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich, NR4 7UH, U.K
| |
Collapse
|
5
|
Li W, He J, Wang X, Ashline M, Wu Z, Liu F, Fu ZQ, Chang M. PBS3: a versatile player in and beyond salicylic acid biosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:414-422. [PMID: 36263689 DOI: 10.1111/nph.18558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
AVRPPHB SUSCEPTIBLE 3 (PBS3) belongs to the GH3 family of acyl acid amido synthetases, which conjugates amino acids to diverse acyl acid substrates. Recent studies demonstrate that PBS3 in Arabidopsis plays a key role in the biosynthesis of plant defense hormone salicylic acid (SA) by catalyzing the conjugation of glutamate to isochorismate to form isochorismate-9-glutamate, which is then used to produce SA through spontaneous decay or ENHANCED PSEUDOMONAS SUSCEPTIBILITY (EPS1) catalysis. Consistent with its function as an essential enzyme for SA biosynthesis, PBS3 is well known to be a positive regulator of plant immunity in Arabidopsis. Additionally, PBS3 is also involved in the trade-off between abiotic and biotic stress responses in Arabidopsis by suppressing the inhibitory effect of abscisic acid on SA-mediated plant immunity. Besides stress responses, PBS3 also plays a role in plant development. Under long-day conditions, PBS3 influences Arabidopsis flowering time by regulating the expression of flowering regulators FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, PBS3 functions in the signaling network of plant development and responses to biotic and/or abiotic stresses, but the molecular mechanisms underlying its diverse roles remain obscure.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jinyu He
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiuzhuo Wang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Matthew Ashline
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Zirui Wu
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Ming Chang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
6
|
Bundalovic-Torma C, Lonjon F, Desveaux D, Guttman DS. Diversity, Evolution, and Function of Pseudomonas syringae Effectoromes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:211-236. [PMID: 35537470 DOI: 10.1146/annurev-phyto-021621-121935] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pseudomonas syringae is an evolutionarily diverse bacterial species complex and a preeminent model for the study of plant-pathogen interactions due in part to its remarkably broad host range. A critical feature of P. syringae virulence is the employment of suites of type III secreted effector (T3SE) proteins, which vary widely in composition and function. These effectors act on a variety of plant intracellular targets to promote pathogenesis but can also be avirulence factors when detected by host immune complexes. In this review, we survey the phylogenetic diversity (PD) of the P. syringae effectorome, comprising 70 distinct T3SE families identified to date, and highlight how avoidance of host immune detection has shaped effectorome diversity through functional redundancy, diversification, and horizontal transfer. We present emerging avenues for research and novel insights that can be gained via future investigations of plant-pathogen interactions through the fusion of large-scale interaction screens and phylogenomic approaches.
Collapse
Affiliation(s)
| | - Fabien Lonjon
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Metaeffector interactions modulate the type III effector-triggered immunity load of Pseudomonas syringae. PLoS Pathog 2022; 18:e1010541. [PMID: 35576228 PMCID: PMC9135338 DOI: 10.1371/journal.ppat.1010541] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/26/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022] Open
Abstract
The bacterial plant pathogen Pseudomonas syringae requires type III secreted effectors (T3SEs) for pathogenesis. However, a major facet of plant immunity entails the recognition of a subset of P. syringae’s T3SEs by intracellular host receptors in a process called Effector-Triggered Immunity (ETI). Prior work has shown that ETI-eliciting T3SEs are pervasive in the P. syringae species complex raising the question of how P. syringae mitigates its ETI load to become a successful pathogen. While pathogens can evade ETI by T3SE mutation, recombination, or loss, there is increasing evidence that effector-effector (a.k.a., metaeffector) interactions can suppress ETI. To study the ETI-suppression potential of P. syringae T3SE repertoires, we compared the ETI-elicitation profiles of two genetically divergent strains: P. syringae pv. tomato DC3000 (PtoDC3000) and P. syringae pv. maculicola ES4326 (PmaES4326), which are both virulent on Arabidopsis thaliana but harbour largely distinct effector repertoires. Of the 529 T3SE alleles screened on A. thaliana Col-0 from the P. syringae T3SE compendium (PsyTEC), 69 alleles from 21 T3SE families elicited ETI in at least one of the two strain backgrounds, while 50 elicited ETI in both backgrounds, resulting in 19 differential ETI responses including two novel ETI-eliciting families: AvrPto1 and HopT1. Although most of these differences were quantitative, three ETI responses were completely absent in one of the pathogenic backgrounds. We performed ETI suppression screens to test if metaeffector interactions contributed to these ETI differences, and found that HopQ1a suppressed AvrPto1m-mediated ETI, while HopG1c and HopF1g suppressed HopT1b-mediated ETI. Overall, these results show that P. syringae strains leverage metaeffector interactions and ETI suppression to overcome the ETI load associated with their native T3SE repertoires.
Collapse
|
8
|
Rosenthal E, Potnis N, Bull CT. Comparative Genomic Analysis of the Lettuce Bacterial Leaf Spot Pathogen, Xanthomonas hortorum pv. vitians, to Investigate Race Specificity. Front Microbiol 2022; 13:840311. [PMID: 35516433 PMCID: PMC9062649 DOI: 10.3389/fmicb.2022.840311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Bacterial leaf spot (BLS) of lettuce caused by Xanthomonas hortorum pv. vitians (Xhv) was first described over 100 years ago and remains a significant threat to lettuce cultivation today. This study investigated the genetic relatedness of the Xhv strains and the possible genetic sources of this race-specific pathogenicity. Whole genome sequences of eighteen Xhv strains representing the three races, along with eight related Xanthomonas strains, were included in the analysis. A maximum likelihood phylogeny based on concatenated whole genome SNPs confirmed previous results describing two major lineages of Xhv strains. Gene clusters encoding secretion systems, secondary metabolites, and bacteriocins were assessed to identify putative virulence factors that distinguish the Xhv races. Genome sequences were mined for effector genes, which have been shown to be involved in race specificity in other systems. Two effectors identified in this study, xopAQ and the novel variant xopAF2, were revealed as possible mediators of a gene-for-gene interaction between Xhv race 1 and 3 strains and wild lettuce Lactuca serriola ARM-09-161-10-1. Transposase sequence identified downstream of xopAF2 and prophage sequence found nearby within Xhv race 1 and 3 insertion sequences suggest that this gene may have been acquired through phage-mediated gene transfer. No other factors were identified from these analyses that distinguish the Xhv races.
Collapse
Affiliation(s)
- Emma Rosenthal
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
9
|
Jung H, Kim HS, Han G, Park J, Seo YS. Comparative Analyses of Four Complete Genomes in Pseudomonas amygdali Revealed Differential Adaptation to Hostile Environments and Secretion Systems. THE PLANT PATHOLOGY JOURNAL 2022; 38:167-174. [PMID: 35385921 PMCID: PMC9343901 DOI: 10.5423/ppj.nt.11.2021.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Pseudomonas amygdali is a hemibiotrophic phytopathogen that causes disease in woody and herbaceous plants. Complete genomes of four P. amygdali pathovars were comparatively analyzed to decipher the impact of genomic diversity on host colonization. The pan-genome indicated that 3,928 core genes are conserved among pathovars, while 504-1,009 are unique to specific pathovars. The unique genome contained many mobile elements and exhibited a functional distribution different from the core genome. Genes involved in O-antigen biosynthesis and antimicrobial peptide resistance were significantly enriched for adaptation to hostile environments. While the type III secretion system was distributed in the core genome, unique genomes revealed a different organization of secretion systems as follows: type I in pv. tabaci, type II in pv. japonicus, type IV in pv. morsprunorum, and type VI in pv. lachrymans. These findings provide genetic insight into the dynamic interactions of the bacteria with plant hosts.
Collapse
Affiliation(s)
- Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Hong-Seop Kim
- Korea Seed & Variety Service, Pyeongchang 25343, Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
- Environmental Microbiology Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| |
Collapse
|
10
|
O’Malley MR, Anderson JC. Regulation of the Pseudomonas syringae Type III Secretion System by Host Environment Signals. Microorganisms 2021; 9:microorganisms9061227. [PMID: 34198761 PMCID: PMC8228185 DOI: 10.3390/microorganisms9061227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas syringae are Gram-negative, plant pathogenic bacteria that use a type III secretion system (T3SS) to disarm host immune responses and promote bacterial growth within plant tissues. Despite the critical role for type III secretion in promoting virulence, T3SS-encoding genes are not constitutively expressed by P. syringae and must instead be induced during infection. While it has been known for many years that culturing P. syringae in synthetic minimal media can induce the T3SS, relatively little is known about host signals that regulate the deployment of the T3SS during infection. The recent identification of specific plant-derived amino acids and organic acids that induce T3SS-inducing genes in P. syringae has provided new insights into host sensing mechanisms. This review summarizes current knowledge of the regulatory machinery governing T3SS deployment in P. syringae, including master regulators HrpRS and HrpL encoded within the T3SS pathogenicity island, and the environmental factors that modulate the abundance and/or activity of these key regulators. We highlight putative receptors and regulatory networks involved in linking the perception of host signals to the regulation of the core HrpRS–HrpL pathway. Positive and negative regulation of T3SS deployment is also discussed within the context of P. syringae infection, where contributions from distinct host signals and regulatory networks likely enable the fine-tuning of T3SS deployment within host tissues. Last, we propose future research directions necessary to construct a comprehensive model that (a) links the perception of host metabolite signals to T3SS deployment and (b) places these host–pathogen signaling events in the overall context of P. syringae infection.
Collapse
|
11
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
12
|
Ng'ang'a PN, Siukstaite L, Lang AE, Bakker H, Römer W, Aktories K, Schmidt G. Involvement of N-glycans in binding of Photorhabdus luminescens Tc toxin. Cell Microbiol 2021; 23:e13326. [PMID: 33720490 DOI: 10.1111/cmi.13326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Photorhabdus luminescens Tc toxins are large tripartite ABC-type toxin complexes, composed of TcA, TcB and TcC proteins. Tc toxins are widespread and have shown a tropism for a variety of targets including insect, mammalian and human cells. However, their receptors and the specific mechanisms of uptake into target cells remain unknown. Here, we show that the TcA protein TcdA1 interacts with N-glycans, particularly Lewis X/Y antigens. This is confirmed using N-acetylglucosamine transferase I (Mgat1 gene product)-deficient Chinese hamster ovary (CHO) Lec1 cells, which are highly resistant to intoxication by the Tc toxin complex most likely due to the absence of complex N-glycans. Restoring Mgat1 gene activity, and hence complex N-glycan biosynthesis, recapitulated the sensitivity of these cells to the toxin. Exogenous addition of Lewis X trisaccharide partially inhibits intoxication in wild-type cells. Additionally, sialic acid also largely reduced binding of the Tc toxin. Moreover, proteolytic activation of TcdA1 alters glycan-binding and uptake into target cells. The data suggest that TcdA1-binding is most likely multivalent, and carbohydrates probably work cooperatively to facilitate binding and intoxication.
Collapse
Affiliation(s)
- Peter Njenga Ng'ang'a
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alexander E Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans Bakker
- Institut für Klinische Biochemie, Medizinische Hochschule Hannover, MHH, Hannover, Germany
| | - Winfried Römer
- Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS-Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany.,BIOSS-Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Liu J, Yu M, Ge Y, Tian Y, Hu B, Zhao Y. The RsmA RNA-Binding Proteins in Pseudomonas syringae Exhibit Distinct and Overlapping Roles in Modulating Virulence and Survival Under Different Nutritional Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:637595. [PMID: 33719314 PMCID: PMC7952654 DOI: 10.3389/fpls.2021.637595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The post-transcriptional regulator RsmA globally controls gene expression in bacteria. Previous studies showed that RsmA2 and RsmA3 played critical roles in regulating type III secretion system (T3SS), motility, syringafactin, and alginate productions in Pseudomonas syringae pv. tomato strain DC3000 (PstDC3000). In this study, we investigated global gene expression profiles of the wild-type PstDC3000, the rsmA3 mutant, and the rsmA2/A3 double mutant in the hrp-inducing minimum medium (HMM) and King's B (KB) medium. By comparing the rsmA2/A3 and rsmA3 mutants to PstDC3000, a total of 1358 and 1074 differentially expressed genes (DEGs) in HMM, and 870 and 1463 DEGs in KB were uncovered, respectively. When comparing the rsmA2/A3 mutant with the rsmA3 mutant, 277 and 741 DEGs in HMM and KB, respectively, were revealed. Transcriptomic analysis revealed that the rsmY, rsmZ, and rsmX1-5 non-coding small RNAs (ncsRNAs) were positively affected by RsmA2 and RsmA3, while RsmA3 positively regulates the expression of the rsmA2 gene and negatively regulates both rsmA1 and rsmA5 gene expression. Comparative transcriptomic analysis showed that RsmA2 and RsmA3 synergistically influenced the expression of genes involved in T3SS and alginate biosynthesis in HMM and chemotaxis in KB. RsmA2 and RsmA3 inversely affected genes involved in syringafactin production in HMM and ribosomal protein biosynthesis in KB. In addition, RsmA2 played a major role in influencing genes involved in sarcosine and thiamine biosynthesis in HMM and in mannitol and phosphate metabolism in KB. On the other hand, genes involved in fatty acid metabolism, cellulose biosynthesis, signal transduction, and stress responses were mainly impacted by RsmA3 in both HMM and KB; whereas RsmA3 played a major role in controlling genes involved in c-di-GMP, phosphate metabolism, chemotaxis, and capsular polysaccharide in HMM. Furthermore, regulation of syringafactin production and oxidative stress by RsmA2 and RsmA3 was experimentally verified. Our results suggested the potential interplay among the RsmA proteins, which exhibit distinct and overlapping roles in modulating virulence and survival in P. syringae under different nutritional conditions.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yixin Ge
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
14
|
Ratu STN, Teulet A, Miwa H, Masuda S, Nguyen HP, Yasuda M, Sato S, Kaneko T, Hayashi M, Giraud E, Okazaki S. Rhizobia use a pathogenic-like effector to hijack leguminous nodulation signalling. Sci Rep 2021; 11:2034. [PMID: 33479414 PMCID: PMC7820406 DOI: 10.1038/s41598-021-81598-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/06/2021] [Indexed: 01/29/2023] Open
Abstract
Legume plants form a root-nodule symbiosis with rhizobia. This symbiosis establishment generally relies on rhizobium-produced Nod factors (NFs) and their perception by leguminous receptors (NFRs) that trigger nodulation. However, certain rhizobia hijack leguminous nodulation signalling via their type III secretion system, which functions in pathogenic bacteria to deliver effector proteins into host cells. Here, we report that rhizobia use pathogenic-like effectors to hijack legume nodulation signalling. The rhizobial effector Bel2-5 resembles the XopD effector of the plant pathogen Xanthomonas campestris and could induce nitrogen-fixing nodules on soybean nfr mutant. The soybean root transcriptome revealed that Bel2-5 induces expression of cytokinin-related genes, which are important for nodule organogenesis and represses ethylene- and defense-related genes that are deleterious to nodulation. Remarkably, Bel2-5 introduction into a strain unable to nodulate soybean mutant affected in NF perception conferred nodulation ability. Our findings show that rhizobia employ and have customized pathogenic effectors to promote leguminous nodulation signalling.
Collapse
Affiliation(s)
- Safirah Tasa Nerves Ratu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Albin Teulet
- Laboratoire Des Symbioses Tropicales Et Méditerranéennes, Institut de Recherche Pour Le Développement, UMR Institut de Recherche Pour Le Développement/SupAgro/Institut National de Recherche Pour L'Agriculture, L'Alimentation Et L'Environnement, Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement, 34398, Montpellier Cedex 5, France
| | - Hiroki Miwa
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Sachiko Masuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Hien P Nguyen
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Michiko Yasuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takakazu Kaneko
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, 603-8555, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Eric Giraud
- Laboratoire Des Symbioses Tropicales Et Méditerranéennes, Institut de Recherche Pour Le Développement, UMR Institut de Recherche Pour Le Développement/SupAgro/Institut National de Recherche Pour L'Agriculture, L'Alimentation Et L'Environnement, Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement, 34398, Montpellier Cedex 5, France
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
15
|
Noh SW, Seo RR, Park HJ, Jung HW. Two Arabidopsis Homologs of Human Lysine-Specific Demethylase Function in Epigenetic Regulation of Plant Defense Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:688003. [PMID: 34194459 PMCID: PMC8236864 DOI: 10.3389/fpls.2021.688003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 05/02/2023]
Abstract
Epigenetic marks such as covalent histone modification and DNA methylation are crucial for mitotically and meiotically inherited cellular memory-based plant immunity. However, the roles of individual players in the epigenetic regulation of plant immunity are not fully understood. Here we reveal the functions of two Arabidopsis thaliana homologs of human lysine-specific demethylase1-like1, LDL1 and LDL2, in the maintenance of methyl groups at lysine 4 of histone H3 and in plant immunity to Pseudomonas syringae infection. The growth of virulent P. syringae strains was reduced in ldl1 and ldl2 single mutants compared to wild-type plants. Local and systemic disease resistance responses, which coincided with the rapid, robust transcription of defense-related genes, were more stably expressed in ldl1 ldl2 double mutants than in the single mutants. At the nucleosome level, mono-methylated histone H3K4 accumulated in ldl1 ldl2 plants genome-wide and in the mainly promoter regions of the defense-related genes examined in this study. Furthermore, in silico comparative analysis of RNA-sequencing and chromatin immunoprecipitation data suggested that several WRKY transcription factors, e.g., WRKY22/40/70, might be partly responsible for the enhanced immunity of ldl1 ldl2. These findings suggest that LDL1 and LDL2 control the transcriptional sensitivity of a group of defense-related genes to establish a primed defense response in Arabidopsis.
Collapse
Affiliation(s)
- Seong Woo Noh
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Ri-Ra Seo
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Hee Jin Park
- Institute of Agricultural Life Science, Dong-A University, Busan, South Korea
- *Correspondence: Hee Jin Park,
| | - Ho Won Jung
- Institute of Agricultural Life Science, Dong-A University, Busan, South Korea
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
- Ho Won Jung,
| |
Collapse
|
16
|
Christian RW, Hewitt SL, Nelson G, Roalson EH, Dhingra A. Plastid transit peptides-where do they come from and where do they all belong? Multi-genome and pan-genomic assessment of chloroplast transit peptide evolution. PeerJ 2020; 8:e9772. [PMID: 32913678 PMCID: PMC7456531 DOI: 10.7717/peerj.9772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/30/2020] [Indexed: 01/22/2023] Open
Abstract
Subcellular relocalization of proteins determines an organism's metabolic repertoire and thereby its survival in unique evolutionary niches. In plants, the plastid and its various morphotypes import a large and varied number of nuclear-encoded proteins to orchestrate vital biochemical reactions in a spatiotemporal context. Recent comparative genomics analysis and high-throughput shotgun proteomics data indicate that there are a large number of plastid-targeted proteins that are either semi-conserved or non-conserved across different lineages. This implies that homologs are differentially targeted across different species, which is feasible only if proteins have gained or lost plastid targeting peptides during evolution. In this study, a broad, multi-genome analysis of 15 phylogenetically diverse genera and in-depth analyses of pangenomes from Arabidopsis and Brachypodium were performed to address the question of how proteins acquire or lose plastid targeting peptides. The analysis revealed that random insertions or deletions were the dominant mechanism by which novel transit peptides are gained by proteins. While gene duplication was not a strict requirement for the acquisition of novel subcellular targeting, 40% of novel plastid-targeted genes were found to be most closely related to a sequence within the same genome, and of these, 30.5% resulted from alternative transcription or translation initiation sites. Interestingly, analysis of the distribution of amino acids in the transit peptides of known and predicted chloroplast-targeted proteins revealed monocot and eudicot-specific preferences in residue distribution.
Collapse
Affiliation(s)
- Ryan W. Christian
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
| | - Seanna L. Hewitt
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
| | - Grant Nelson
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
| | - Eric H. Roalson
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Amit Dhingra
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
- Department of Horticulture, Washington State University, Pullman, WA, USA
| |
Collapse
|
17
|
Zalguizuri A, Caetano-Anollés G, Lepek VC. Phylogenetic profiling, an untapped resource for the prediction of secreted proteins and its complementation with sequence-based classifiers in bacterial type III, IV and VI secretion systems. Brief Bioinform 2020; 20:1395-1402. [PMID: 29394318 DOI: 10.1093/bib/bby009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/15/2018] [Indexed: 12/29/2022] Open
Abstract
In the establishment and maintenance of the interaction between pathogenic or symbiotic bacteria with a eukaryotic organism, protein substrates of specialized bacterial secretion systems called effectors play a critical role once translocated into the host cell. Proteins are also secreted to the extracellular medium by free-living bacteria or directly injected into other competing organisms to hinder or kill. In this work, we explore an approach based on the evolutionary dependence that most of the effectors maintain with their specific secretion system that analyzes the co-occurrence of any orthologous protein group and their corresponding secretion system across multiple genomes. We compared and complemented our methodology with sequence-based machine learning prediction tools for the type III, IV and VI secretion systems. Finally, we provide the predictive results for the three secretion systems in 1606 complete genomes at http://www.iib.unsam.edu.ar/orgsissec/.
Collapse
|
18
|
Cao FY, Khan M, Taniguchi M, Mirmiran A, Moeder W, Lumba S, Yoshioka K, Desveaux D. A host-pathogen interactome uncovers phytopathogenic strategies to manipulate plant ABA responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:187-198. [PMID: 31148337 DOI: 10.1111/tpj.14425] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/05/2018] [Accepted: 05/22/2019] [Indexed: 05/21/2023]
Abstract
The phytopathogen Pseudomonas syringae delivers into host cells type III secreted effectors (T3SEs) that promote virulence. One virulence mechanism employed by T3SEs is to target hormone signaling pathways to perturb hormone homeostasis. The phytohormone abscisic acid (ABA) influences interactions between various phytopathogens and their plant hosts, and has been shown to be a target of P. syringae T3SEs. In order to provide insight into how T3SEs manipulate ABA responses, we generated an ABA-T3SE interactome network (ATIN) between P. syringae T3SEs and Arabidopsis proteins encoded by ABA-regulated genes. ATIN consists of 476 yeast-two-hybrid interactions between 97 Arabidopsis ABA-regulated proteins and 56 T3SEs from four pathovars of P. syringae. We demonstrate that T3SE interacting proteins are significantly enriched for proteins associated with transcription. In particular, the ETHYLENE RESPONSIVE FACTOR (ERF) family of transcription factors is highly represented. We show that ERF105 and ERF8 displayed a role in defense against P. syringae, supporting our overall observation that T3SEs of ATIN converge on proteins that influence plant immunity. In addition, we demonstrate that T3SEs that interact with a large number of ABA-regulated proteins can influence ABA responses. One of these T3SEs, HopF3Pph6 , inhibits the function of ERF8, which influences both ABA-responses and plant immunity. These results provide a potential mechanism for how HopF3Pph6 manipulates ABA-responses to promote P. syringae virulence, and also demonstrate the utility of ATIN as a resource to study the ABA-T3SE interface.
Collapse
Affiliation(s)
- Feng Y Cao
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Madiha Khan
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Masatoshi Taniguchi
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Armand Mirmiran
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Wolfgang Moeder
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Keiko Yoshioka
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Hernandez CA, Koskella B. Phage resistance evolution in vitro is not reflective of in vivo outcome in a plant-bacteria-phage system. Evolution 2019; 73:2461-2475. [PMID: 31433508 DOI: 10.1111/evo.13833] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
Abstract
The evolution of resistance to parasites is fundamentally important to disease ecology, yet we remain unable to predict when and how resistance will evolve. This is largely due to the context-dependent nature of host-parasite interactions, as the benefit of resistance will depend on the abiotic and biotic environment. Through experimental evolution of the plant pathogenic bacterium Pseudomonas syringae and two lytic bacteriophages across two different environments (high-nutrient media and the tomato leaf apoplast), we demonstrate that de novo evolution of resistance is negligible in planta despite high levels of resistance evolution in vitro. We find no evidence supporting the evolution of phage-selected resistance in planta despite multiple passaging experiments, multiple assays for resistance, and high multiplicities of infection. Additionally, we find that phage-resistant mutants (evolved in vitro) did not realize a fitness benefit over phage-sensitive cells when grown in planta in the presence of phage, despite reduced growth of sensitive cells, evidence of phage replication in planta, and a large fitness benefit in the presence of phage observed in vitro. Thus, this context-dependent benefit of phage resistance led to different evolutionary outcomes across environments. These results underscore the importance of studying the evolution of parasite resistance in ecologically relevant environments.
Collapse
Affiliation(s)
- Catherine A Hernandez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720
| |
Collapse
|
20
|
Zeng C, Zou L. An account of in silico identification tools of secreted effector proteins in bacteria and future challenges. Brief Bioinform 2019; 20:110-129. [PMID: 28981574 DOI: 10.1093/bib/bbx078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 01/08/2023] Open
Abstract
Bacterial pathogens secrete numerous effector proteins via six secretion systems, type I to type VI secretion systems, to adapt to new environments or to promote virulence by bacterium-host interactions. Many computational approaches have been used in the identification of effector proteins before the subsequent experimental verification because they tolerate laborious biological procedures and are genome scale, automated and highly efficient. Prevalent examples include machine learning methods and statistical techniques. In this article, we summarize the computational progress toward predicting secreted effector proteins in bacteria, with an opening of an introduction of features that are used to discriminate effectors from non-effectors. The mechanism, contribution and deficiency of previous developed detection tools are presented, which are further benchmarked based on a curated testing data set. According to the results of benchmarking, potential improvements of the prediction performance are discussed, which include (1) more informative features for discriminating the effectors from non-effectors; (2) the construction of comprehensive training data set of the machine learning algorithms; (3) the advancement of reliable prediction methods and (4) a better interpretation of the mechanisms behind the molecular processes. The future of in silico identification of bacterial secreted effectors includes both opportunities and challenges.
Collapse
Affiliation(s)
- Cong Zeng
- Bioinformatics Center, Third Military Medical University (TMMU), China
| | | |
Collapse
|
21
|
Stringlis IA, Zamioudis C, Berendsen RL, Bakker PAHM, Pieterse CMJ. Type III Secretion System of Beneficial Rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374. Front Microbiol 2019; 10:1631. [PMID: 31379783 PMCID: PMC6647874 DOI: 10.3389/fmicb.2019.01631] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 11/13/2022] Open
Abstract
Plants roots host myriads of microbes, some of which enhance the defense potential of plants by activating a broad-spectrum immune response in leaves, known as induced systemic resistance (ISR). Nevertheless, establishment of this mutualistic interaction requires active suppression of local root immune responses to allow successful colonization. To facilitate host colonization, phytopathogenic bacteria secrete immune-suppressive effectors into host cells via the type III secretion system (T3SS). Previously, we searched the genomes of the ISR-inducing rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374 for the presence of a T3SS and identified the components for a T3SS in the genomes of WCS417 and WCS374. By performing a phylogenetic and gene cluster alignment analysis we show that the T3SS of WCS417 and WCS374 are grouped in a clade that is enriched for beneficial rhizobacteria. We also found sequences of putative novel effectors in their genomes, which may facilitate future research on the role of T3SS effectors in plant-beneficial microbe interactions in the rhizosphere.
Collapse
Affiliation(s)
- Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Christos Zamioudis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
22
|
Traore SM, Eckshtain‐Levi N, Miao J, Castro Sparks A, Wang Z, Wang K, Li Q, Burdman S, Walcott R, Welbaum GE, Zhao B. Nicotiana species as surrogate host for studying the pathogenicity of Acidovorax citrulli, the causal agent of bacterial fruit blotch of cucurbits. MOLECULAR PLANT PATHOLOGY 2019; 20:800-814. [PMID: 30938096 PMCID: PMC6637898 DOI: 10.1111/mpp.12792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bacterial fruit blotch (BFB) caused by Acidovorax citrulli is one of the most important bacterial diseases of cucurbits worldwide. However, the mechanisms associated with A. citrulli pathogenicity and genetics of host resistance have not been extensively investigated. We idenitfied Nicotiana benthamiana and Nicotiana tabacum as surrogate hosts for studying A. citrulli pathogenicity and non-host resistance triggered by type III secreted (T3S) effectors. Two A. citrulli strains, M6 and AAC00-1, that represent the two major groups amongst A. citrulli populations, induced disease symptoms on N. benthamiana, but triggered a hypersensitive response (HR) on N. tabacum plants. Transient expression of 19 T3S effectors from A. citrulli in N. benthamiana leaves revealed that three effectors, Aave_1548, Aave_2708, and Aave_2166, trigger water-soaking-like cell death in N. benthamiana. Aave_1548 knockout mutants of M6 and AAC00-1 displayed reduced virulence on N. benthamiana and melon (Cucumis melo L.). Transient expression of Aave_1548 and Aave_2166 effectors triggered a non-host HR in N. tabacum, which was dependent on the functionality of the immune signalling component, NtSGT1. Hence, employing Nicotiana species as surrogate hosts for studying A. citrulli pathogenicity may help characterize the function of A. citrulli T3S effectors and facilitate the development of new strategies for BFB management.
Collapse
Affiliation(s)
- Sy M. Traore
- School of Plant and Environmental SciencesVirginia TechBlacksburgVAUSA
| | - Noam Eckshtain‐Levi
- Department of Plant Pathology and MicrobiologyThe Hebrew University of JerusalemRehovotIsrael
| | - Jiamin Miao
- School of Plant and Environmental SciencesVirginia TechBlacksburgVAUSA
| | | | - Zhibo Wang
- School of Plant and Environmental SciencesVirginia TechBlacksburgVAUSA
| | - Kunru Wang
- School of Plant and Environmental SciencesVirginia TechBlacksburgVAUSA
| | - Qi Li
- School of Plant and Environmental SciencesVirginia TechBlacksburgVAUSA
| | - Saul Burdman
- Department of Plant Pathology and MicrobiologyThe Hebrew University of JerusalemRehovotIsrael
| | - Ron Walcott
- Department of Plant PathologyUniversity of GeorgiaAthensGAUSA
| | | | - Bingyu Zhao
- School of Plant and Environmental SciencesVirginia TechBlacksburgVAUSA
| |
Collapse
|
23
|
Noman A, Aqeel M, Lou Y. PRRs and NB-LRRs: From Signal Perception to Activation of Plant Innate Immunity. Int J Mol Sci 2019; 20:ijms20081882. [PMID: 30995767 PMCID: PMC6514886 DOI: 10.3390/ijms20081882] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
To ward off pathogens and pests, plants use a sophisticated immune system. They use pattern-recognition receptors (PRRs), as well as nucleotide-binding and leucine-rich repeat (NB-LRR) domains, for detecting nonindigenous molecular signatures from pathogens. Plant PRRs induce local and systemic immunity. Plasma-membrane-localized PRRs are the main components of multiprotein complexes having additional transmembrane and cytosolic kinases. Topical research involving proteins and their interactive partners, along with transcriptional and posttranscriptional regulation, has extended our understanding of R-gene-mediated plant immunity. The unique LRR domain conformation helps in the best utilization of a surface area and essentially mediates protein–protein interactions. Genome-wide analyses of inter- and intraspecies PRRs and NB-LRRs offer innovative information about their working and evolution. We reviewed plant immune responses with relevance to PRRs and NB-LRRs. This article focuses on the significant functional diversity, pathogen-recognition mechanisms, and subcellular compartmentalization of plant PRRs and NB-LRRs. We highlight the potential biotechnological application of PRRs and NB-LRRs to enhance broad-spectrum disease resistance in crops.
Collapse
Affiliation(s)
- Ali Noman
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China.
- Department of Botany, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, China.
| | - Yonggen Lou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
24
|
Figaj D, Ambroziak P, Przepiora T, Skorko-Glonek J. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2019; 20:ijms20030672. [PMID: 30720762 PMCID: PMC6386880 DOI: 10.3390/ijms20030672] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
A pathogenic lifestyle is inextricably linked with the constant necessity of facing various challenges exerted by the external environment (both within and outside the host). To successfully colonize the host and establish infection, pathogens have evolved sophisticated systems to combat the host defense mechanisms and also to be able to withstand adverse environmental conditions. Proteases, as crucial components of these systems, are involved in a variety of processes associated with infection. In phytopathogenic bacteria, they play important regulatory roles and modulate the expression and functioning of various virulence factors. Secretory proteases directly help avoid recognition by the plant immune systems, and contribute to the deactivation of the defense response pathways. Finally, proteases are important components of protein quality control systems, and thus enable maintaining homeostasis in stressed bacterial cells. In this review, we discuss the known protease functions and protease-regulated signaling processes associated with virulence of plant pathogenic bacteria.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Patrycja Ambroziak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Tomasz Przepiora
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | | |
Collapse
|
25
|
Wang W, Liu N, Gao C, Rui L, Tang D. The Pseudomonas Syringae Effector AvrPtoB Associates With and Ubiquitinates Arabidopsis Exocyst Subunit EXO70B1. FRONTIERS IN PLANT SCIENCE 2019; 10:1027. [PMID: 31555308 PMCID: PMC6726739 DOI: 10.3389/fpls.2019.01027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/23/2019] [Indexed: 05/20/2023]
Abstract
Many bacterial pathogens secret effectors into host cells to disable host defenses and thus promote infection. The exocyst complex functions in the transport and secretion of defense molecules, and loss of function of the EXO70B1 subunit leads to autoimmunity by activation of a truncated Toll/interleukin-1 receptor-nucleotide-binding sequence protein (TIR-NBS2; herein referred to as TN2). Here, we show that EXO70B1 is required for pathogen-associated molecular pattern-triggered immune responses in Arabidopsis thaliana. The effector AvrPtoB, an E3 ligase from Pseudomonas syringae pv. tomato (Pto) strain DC3000, associates with EXO70B1. AvrPtoB ubiquitinates EXO70B1 and mediates EXO70B1 degradation via the host's 26S proteasome in a manner requiring E3 ligase activity. AvrPtoB enhances Pto DC3000 virulence by overcoming EXO70B1-mediated resistance. Moreover, overexpression of AvrPtoB in Arabidopsis leads to autoimmunity, which is partially dependent on TN2. Expression of TN2 in tobacco (Nicotiana tabacum and Nicotiana benthamiana) triggers strong and rapid cell death, which is suppressed by co-expression with EXO70B1 but reoccurs when co-expressed with AvrPtoB. Taken together, our data highlight that AvrPtoB targets the Arabidopsis thaliana EXO70 protein family member EXO70B1 to manipulate the defense molecule secretion machinery or immunity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Na Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Rui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Dingzhong Tang,
| |
Collapse
|
26
|
Nguyen HP, Ratu STN, Yasuda M, Göttfert M, Okazaki S. InnB, a Novel Type III Effector of Bradyrhizobium elkanii USDA61, Controls Symbiosis With Vigna Species. Front Microbiol 2018; 9:3155. [PMID: 30619219 PMCID: PMC6305347 DOI: 10.3389/fmicb.2018.03155] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Bradyrhizobium elkanii USDA61 is incompatible with mung bean (Vigna radiata cv. KPS1) and soybean (Glycine max cv. BARC2) and unable to nodulate either plant. This incompatibility is due to the presence of a functional type III secretion system (T3SS) that translocates effector protein into host cells. We previously identified five genes in B. elkanii that are responsible for its incompatibility with KPS1 plants. Among them, a novel gene designated as innB exhibited some characteristics associated with the T3SS and was found to be responsible for the restriction of nodulation on KPS1. In the present study, we further characterized innB by analysis of gene expression, protein secretion, and symbiotic phenotypes. The innB gene was found to encode a hypothetical protein that is highly conserved among T3SS-harboring rhizobia. Similar to other rhizobial T3SS-associated genes, the expression of innB was dependent on plant flavonoids and a transcriptional regulator TtsI. The InnB protein was secreted via the T3SS and was not essential for secretion of other nodulation outer proteins. In addition, T3SS-dependent translocation of InnB into nodule cells was confirmed by an adenylate cyclase assay. According to inoculation tests using several Vigna species, InnB promoted nodulation of at least one V. mungo cultivar. These results indicate that innB encodes a novel type III effector controlling symbiosis with Vigna species.
Collapse
Affiliation(s)
- Hien P Nguyen
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Safirah T N Ratu
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michael Göttfert
- Institute of Genetics, Technische Universität Dresden, Dresden, Germany
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
27
|
Lu Y, Yao J. Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense. Int J Mol Sci 2018; 19:E3900. [PMID: 30563149 PMCID: PMC6321325 DOI: 10.3390/ijms19123900] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Photosynthesis, pathogen infection, and plant defense are three important biological processes that have been investigated separately for decades. Photosynthesis generates ATP, NADPH, and carbohydrates. These resources are utilized for the synthesis of many important compounds, such as primary metabolites, defense-related hormones abscisic acid, ethylene, jasmonic acid, and salicylic acid, and antimicrobial compounds. In plants and algae, photosynthesis and key steps in the synthesis of defense-related hormones occur in chloroplasts. In addition, chloroplasts are major generators of reactive oxygen species and nitric oxide, and a site for calcium signaling. These signaling molecules are essential to plant defense as well. All plants grown naturally are attacked by pathogens. Bacterial pathogens enter host tissues through natural openings or wounds. Upon invasion, bacterial pathogens utilize a combination of different virulence factors to suppress host defense and promote pathogenicity. On the other hand, plants have developed elaborate defense mechanisms to protect themselves from pathogen infections. This review summarizes recent discoveries on defensive roles of signaling molecules made by plants (primarily in their chloroplasts), counteracting roles of chloroplast-targeted effectors and phytotoxins elicited by bacterial pathogens, and how all these molecules crosstalk and regulate photosynthesis, pathogen infection, and plant defense, using chloroplasts as a major battlefield.
Collapse
Affiliation(s)
- Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| |
Collapse
|
28
|
Prochaska H, Thieme S, Daum S, Grau J, Schmidtke C, Hallensleben M, John P, Bacia K, Bonas U. A conserved motif promotes HpaB-regulated export of type III effectors from Xanthomonas. MOLECULAR PLANT PATHOLOGY 2018; 19:2473-2487. [PMID: 30073738 PMCID: PMC6638074 DOI: 10.1111/mpp.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
The type III secretion (T3S) system, an essential pathogenicity factor in most Gram-negative plant-pathogenic bacteria, injects bacterial effector proteins directly into the plant cell cytosol. Here, the type III effectors (T3Es) manipulate host cell processes to suppress defence and establish appropriate conditions for bacterial multiplication in the intercellular spaces of the plant tissue. T3E export depends on a secretion signal which is also present in 'non-effectors'. The latter are secreted extracellular components of the T3S apparatus, but are not translocated into the plant cell. How the T3S system discriminates between T3Es and non-effectors is still enigmatic. Previously, we have identified a putative translocation motif (TrM) in several T3Es from Xanthomonas campestris pv. vesicatoria (Xcv). Here, we analysed the TrM of the Xcv effector XopB in detail. Mutation studies showed that the proline/arginine-rich motif is required for efficient type III-dependent secretion and translocation of XopB and determines the dependence of XopB transport on the general T3S chaperone HpaB. Similar results were obtained for other effectors from Xcv. As the arginine residues of the TrM mediate specific binding of XopB to cardiolipin, one of the major lipid components in Xanthomonas membranes, we assume that the association of T3Es to the bacterial membrane prior to secretion supports type III-dependent export.
Collapse
Affiliation(s)
- Heike Prochaska
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Sabine Thieme
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Sebastian Daum
- Institute for Chemistry, Department of Biophysical ChemistryMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Jan Grau
- Institute for Informatics, Department of BioinformaticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Cornelius Schmidtke
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Magnus Hallensleben
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Peter John
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Kirsten Bacia
- Institute for Chemistry, Department of Biophysical ChemistryMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Ulla Bonas
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| |
Collapse
|
29
|
Piechocki M, Giska F, Koczyk G, Grynberg M, Krzymowska M. An Engineered Distant Homolog of Pseudomonas syringae TTSS Effector From Physcomitrella patens Can Act as a Bacterial Virulence Factor. Front Microbiol 2018; 9:1060. [PMID: 29973916 PMCID: PMC6019455 DOI: 10.3389/fmicb.2018.01060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/04/2018] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas syringae pv. phaseolicola is the causative agent of halo blight in common bean (Phaseolus vulgaris). Similar to other pathogenic gram-negative bacteria, it secrets a set of type III effectors into host cells to subvert defense mechanisms. HopQ1 (for Hrp outer protein Q) is one of these type III effectors contributing to virulence of bacteria. Upon delivery into a plant cell, HopQ1 undergoes phosphorylation, binds host 14-3-3 proteins and suppresses defense-related signaling. Some plants however, evolved systems to recognize HopQ1 and respond to its presence and thus to prevent infection. HopQ1 shows homology to Nucleoside Hydrolases (NHs), but it contains a modified calcium binding motif not found in the canonical enzymes. CLuster ANalysis of Sequences (CLANS) revealed that HopQ1 and alike proteins make a distinct group of putative NHs located distantly from the classical enzymes. The HopQ1 – like protein (HLP) group comprises sequences from plant pathogenic bacteria, fungi, and lower plants. Our data suggest that the evolution of HopQ1 homologs in bacteria, fungi, and algae was independent. The location of moss HopQ1 homologs inside the fungal clade indicates a possibility of horizontal gene transfer (HGT) between those taxa. We identified a HLP in the moss Physcomitrella patens. Our experiments show that this protein (referred to as PpHLP) extended by a TTSS signal of HopQ1 promoted P. syringae growth in bean and was recognized by Nicotiana benthamiana immune system. Thus, despite the low sequence similarity to HopQ1 the engineered PpHLP acted as a bacterial virulence factor and displayed similar to HopQ1 virulence properties.
Collapse
Affiliation(s)
- Marcin Piechocki
- Institute of Biochemistry and Biophysics (PAS), Laboratory of Plant Pathogenesis, Warsaw, Poland
| | - Fabian Giska
- Institute of Biochemistry and Biophysics (PAS), Laboratory of Plant Pathogenesis, Warsaw, Poland
| | - Grzegorz Koczyk
- Institute of Plant Genetics (PAS), Department of Biometry and Bioinformatics, Poznań, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics (PAS), Department of Biophysics, Warsaw, Poland
| | - Magdalena Krzymowska
- Institute of Biochemistry and Biophysics (PAS), Laboratory of Plant Pathogenesis, Warsaw, Poland
| |
Collapse
|
30
|
Hamdoun S, Gao M, Gill M, Kwon A, Norelli JL, Lu H. Signalling requirements for Erwinia amylovora-induced disease resistance, callose deposition and cell growth in the non-host Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2018; 19:1090-1103. [PMID: 28756640 PMCID: PMC6638093 DOI: 10.1111/mpp.12588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/11/2017] [Accepted: 07/25/2017] [Indexed: 05/11/2023]
Abstract
Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The non-host plant Arabidopsis serves as a powerful system for the dissection of mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found that Arabidopsis activated strong defence signalling mediated by salicylic acid (SA), with kinetics and amplitude similar to that induced by the recognition of the bacterial effector avrRpm1 by the resistance protein RPM1. Genetic analysis further revealed that SA signalling, but not signalling mediated by ethylene (ET) and jasmonic acid (JA), is required for E. amylovora resistance. Erwinia amylovora induces massive callose deposition on infected leaves, which is independent of SA, ET and JA signalling and is necessary for E. amylovora resistance in Arabidopsis. We also observed tumour-like growths on E. amylovora-infected Arabidopsis leaves, which contain enlarged mesophyll cells with increased DNA content and are probably a result of endoreplication. The formation of such growths is largely independent of SA signalling and some E. amylovora effectors. Together, our data reveal signalling requirements for E. amylovora-induced disease resistance, callose deposition and cell fate change in the non-host plant Arabidopsis. Knowledge from this study could facilitate a better understanding of the mechanisms of host defence against E. amylovora and eventually improve host resistance to the pathogen.
Collapse
Affiliation(s)
- Safae Hamdoun
- Department of Biological SciencesUniversity of Maryland Baltimore County1000 Hilltop CircleBaltimore, MD 21250USA
| | - Min Gao
- Department of Biological SciencesUniversity of Maryland Baltimore County1000 Hilltop CircleBaltimore, MD 21250USA
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F UniversityYangling 712100ShaanxiChina
| | - Manroop Gill
- Department of Biological SciencesUniversity of Maryland Baltimore County1000 Hilltop CircleBaltimore, MD 21250USA
| | - Ashley Kwon
- Department of Biological SciencesUniversity of Maryland Baltimore County1000 Hilltop CircleBaltimore, MD 21250USA
| | - John L. Norelli
- United States Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station2217 Wiltshire RoadKearneysville, WV 25430USA
| | - Hua Lu
- Department of Biological SciencesUniversity of Maryland Baltimore County1000 Hilltop CircleBaltimore, MD 21250USA
| |
Collapse
|
31
|
Zhang L, Jiang Z, Fang S, Huang Y, Yang D, Wang Q, Zhang Y, Liu Q. Systematic Identification of Intracellular-Translocated Candidate Effectors in Edwardsiella piscicida. Front Cell Infect Microbiol 2018; 8:37. [PMID: 29503811 PMCID: PMC5820615 DOI: 10.3389/fcimb.2018.00037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/29/2018] [Indexed: 12/31/2022] Open
Abstract
Many bacterial pathogens inject effectors directly into host cells to target a variety of host cellular processes and promote bacterial dissemination and survival. Identifying the bacterial effectors and elucidating their functions are central to understanding the molecular pathogenesis of these pathogens. Edwardsiella piscicida is a pathogen with a wide host range, and very few of its effectors have been identified to date. Here, based on the genes significantly regulated by macrophage infection, we identified 25 intracellular translocation-positive candidate effectors, including all five previously reported effectors, namely EseG, EseJ, EseH, EseK, and EvpP. A subsequent secretion analysis revealed diverse secretion patterns for the 25 effector candidates, suggesting that multiple transport pathways were involved in the internalization of these candidate effectors. Further, we identified two novel type VI secretion system (T6SS) putative effectors and three outer membrane vesicles (OMV)-dependent putative effectors among the candidate effectors described above, and further analyzed their contribution to bacterial virulence in a zebrafish model. This work demonstrates an effective approach for screening bacterial effectors and expands the effectors repertoire in E. piscicida.
Collapse
Affiliation(s)
- Lingzhi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhiwei Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shan Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yajun Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.,Shanghai Collaborative Innovation Center for Bio-Manufacturing Technology, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.,Shanghai Collaborative Innovation Center for Bio-Manufacturing Technology, Shanghai, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.,Shanghai Collaborative Innovation Center for Bio-Manufacturing Technology, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
32
|
Castiblanco LF, Triplett LR, Sundin GW. Regulation of Effector Delivery by Type III Secretion Chaperone Proteins in Erwinia amylovora. Front Microbiol 2018; 9:146. [PMID: 29472907 PMCID: PMC5809446 DOI: 10.3389/fmicb.2018.00146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/23/2018] [Indexed: 11/16/2022] Open
Abstract
Type III secretion (TTS) chaperones are critical for the delivery of many effector proteins from Gram-negative bacterial pathogens into host cells, functioning in the stabilization and hierarchical delivery of the effectors to the type III secretion system (TTSS). The plant pathogen Erwinia amylovora secretes at least four TTS effector proteins: DspE, Eop1, Eop3, and Eop4. DspE specifically interacts with the TTS chaperone protein DspF, which stabilizes the effector protein in the cytoplasm and promotes its efficient translocation through the TTSS. However, the role of E. amylovora chaperones in regulating the delivery of other secreted effectors is unknown. In this study, we identified functional interactions between the effector proteins DspE, Eop1, and Eop3 with the TTS chaperones DspF, Esc1 and Esc3 in yeast. Using site-directed mutagenesis, secretion, and translocation assays, we demonstrated that the three TTS chaperones have additive roles for the secretion and translocation of DspE into plant cells whereas DspF negatively affects the translocation of Eop1 and Eop3. Collectively, these results indicate that TTS chaperone proteins exhibit a cooperative behavior to orchestrate the effector secretion and translocation dynamics in E. amylovora.
Collapse
Affiliation(s)
- Luisa F Castiblanco
- Department of Plant, Soil and Microbial Sciences, Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI, United States
| | - Lindsay R Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
33
|
Nissan G, Gershovits M, Morozov M, Chalupowicz L, Sessa G, Manulis‐Sasson S, Barash I, Pupko T. Revealing the inventory of type III effectors in Pantoea agglomerans gall-forming pathovars using draft genome sequences and a machine-learning approach. MOLECULAR PLANT PATHOLOGY 2018; 19:381-392. [PMID: 28019708 PMCID: PMC6638007 DOI: 10.1111/mpp.12528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/06/2016] [Accepted: 12/14/2016] [Indexed: 05/03/2023]
Abstract
Pantoea agglomerans, a widespread epiphytic bacterium, has evolved into a hypersensitive response and pathogenicity (hrp)-dependent and host-specific gall-forming pathogen by the acquisition of a pathogenicity plasmid containing a type III secretion system (T3SS) and its effectors (T3Es). Pantoea agglomerans pv. betae (Pab) elicits galls on beet (Beta vulgaris) and gypsophila (Gypsophila paniculata), whereas P. agglomerans pv. gypsophilae (Pag) incites galls on gypsophila and a hypersensitive response (HR) on beet. Draft genome sequences were generated and employed in combination with a machine-learning approach and a translocation assay into beet roots to identify the pools of T3Es in the two pathovars. The genomes of the sequenced Pab4188 and Pag824-1 strains have a similar size (∼5 MB) and GC content (∼55%). Mutational analysis revealed that, in Pab4188, eight T3Es (HsvB, HsvG, PseB, DspA/E, HopAY1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on beet and gypsophila. In Pag824-1, nine T3Es (HsvG, HsvB, PthG, DspA/E, HopAY1, HopD1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on gypsophila, whereas the PthG effector triggers HR on beet. HsvB, HsvG, PthG and PseB appear to endow pathovar specificities to Pab and Pag, and no homologous T3Es were identified for these proteins in other phytopathogenic bacteria. Conversely, the remaining T3Es contribute to the virulence of both pathovars, and homologous T3Es were found in other phytopathogenic bacteria. Remarkably, HsvG and HsvB, which act as host-specific transcription factors, displayed the largest contribution to disease development.
Collapse
Affiliation(s)
- Gal Nissan
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterRishonLeZion7528809Israel
| | - Michael Gershovits
- Department of Cell Research and Immunology, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
| | - Michael Morozov
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterRishonLeZion7528809Israel
| | - Laura Chalupowicz
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterRishonLeZion7528809Israel
| | - Guido Sessa
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
| | - Shulamit Manulis‐Sasson
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterRishonLeZion7528809Israel
| | - Isaac Barash
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
| |
Collapse
|
34
|
Scheibner F, Hartmann N, Hausner J, Lorenz C, Hoffmeister AK, Büttner D. The Type III Secretion Chaperone HpaB Controls the Translocation of Effector and Noneffector Proteins From Xanthomonas campestris pv. vesicatoria. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:61-74. [PMID: 28771395 DOI: 10.1094/mpmi-06-17-0138-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pathogenicity of the gram-negative bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system, which translocates effector proteins into plant cells. Effector proteins contain N-terminal T3S and translocation signals and interact with the T3S chaperone HpaB, which presumably escorts effectors to the secretion apparatus. The molecular mechanisms underlying the recognition of effectors by the T3S system are not yet understood. In the present study, we analyzed T3S and translocation signals in the type III effectors XopE2 and XopJ from X. campestris pv. vesicatoria. Both effectors contain minimal translocation signals, which are only recognized in the absence of HpaB. Additional N-terminal signals promote translocation of XopE2 and XopJ in the wild-type strain. The results of translocation and interaction studies revealed that the interaction of XopE2 and XopJ with HpaB and a predicted cytoplasmic substrate docking site of the T3S system is not sufficient for translocation. In agreement with this finding, we show that the presence of an artificial HpaB-binding site does not promote translocation of the noneffector XopA in the wild-type strain. Our data, therefore, suggest that the T3S chaperone HpaB not only acts as an escort protein but also controls the recognition of translocation signals.
Collapse
Affiliation(s)
- Felix Scheibner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Nadine Hartmann
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Jens Hausner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Christian Lorenz
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Anne-Katrin Hoffmeister
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| |
Collapse
|
35
|
Scheibner F, Marillonnet S, Büttner D. The TAL Effector AvrBs3 from Xanthomonas campestris pv. vesicatoria Contains Multiple Export Signals and Can Enter Plant Cells in the Absence of the Type III Secretion Translocon. Front Microbiol 2017; 8:2180. [PMID: 29170655 PMCID: PMC5684485 DOI: 10.3389/fmicb.2017.02180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/24/2017] [Indexed: 12/27/2022] Open
Abstract
Pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells. Effector protein delivery is controlled by the T3S chaperone HpaB, which presumably escorts effector proteins to the secretion apparatus. One intensively studied effector is the transcription activator-like (TAL) effector AvrBs3, which binds to promoter sequences of plant target genes and activates plant gene expression. It was previously reported that type III-dependent delivery of AvrBs3 depends on the N-terminal protein region. The signals that control T3S and translocation of AvrBs3, however, have not yet been characterized. In the present study, we show that T3S and translocation of AvrBs3 depend on the N-terminal 10 and 50 amino acids, respectively. Furthermore, we provide experimental evidence that additional signals in the N-terminal 30 amino acids and the region between amino acids 64 and 152 promote translocation of AvrBs3 in the absence of HpaB. Unexpectedly, in vivo translocation assays revealed that AvrBs3 is delivered into plant cells even in the absence of HrpF, which is the predicted channel-forming component of the T3S translocon in the plant plasma membrane. The presence of HpaB- and HrpF-independent transport routes suggests that the delivery of AvrBs3 is initiated during early stages of the infection process, presumably before the activation of HpaB or the insertion of the translocon into the plant plasma membrane.
Collapse
Affiliation(s)
- Felix Scheibner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Daniela Büttner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
36
|
Gochez AM, Shantharaj D, Potnis N, Zhou X, Minsavage GV, White FF, Wang N, Hurlbert JC, Jones JB. Molecular characterization of XopAG effector AvrGf2 from Xanthomonas fuscans ssp. aurantifolii in grapefruit. MOLECULAR PLANT PATHOLOGY 2017; 18:405-419. [PMID: 27030294 PMCID: PMC6638233 DOI: 10.1111/mpp.12408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 05/20/2023]
Abstract
Xanthomonas fuscans ssp. aurantifolii group C strains exhibit host specificity on different citrus species. The strains possess a type III effector, AvrGf2, belonging to the XopAG effector gene family, which restricts host range on citrus. We dissected the modular nature and mode of action of AvrGf2 in grapefruit resistance. XopAG effectors possess characteristic features, such as a chloroplast localization signal, a cyclophilin-binding domain characteristic amino acid sequence motif (GPLL) and a C-terminal domain-containing CLNAxYD. Mutation of GPLL to AASL in AvrGf2 abolished the elicitation of the hypersensitive response (HR), whereas mutation of only the first amino acid to SPLL delayed the HR in grapefruit. Yeast two-hybrid experiments showed strong interaction of AvrGf2 with grapefruit cyclophilin (GfCyp), whereas AvrGf2-SPLL and AvrGf2-AASL mutants showed weak and no interaction, respectively. Molecular modelling and in silico docking studies for the cyclophilin-AvrGf2 interaction predicted the binding of citrus cyclophilins (CsCyp, GfCyp) to hexameric peptides spanning the cyclophilin-binding domain of AvrGf2 and AvrGf2 mutants (VAGPLL, VASPLL and VAAASL) with affinities equivalent to or better than a positive control peptide (YSPSA) previously demonstrated to bind CsCyp. In addition, the C-terminal domain of XopAG family effectors contains a highly conserved motif, CLNAxYD, which was identified to be crucial for the induction of HR based on site-directed mutagenesis (CLNAxYD to CASAxYD). Our results suggest a model in which grapefruit cyclophilin promotes a conformational change in AvrGf2, thereby triggering the resistance response.
Collapse
Affiliation(s)
- Alberto M. Gochez
- Citrus Pathology, EEA INTA Bella VistaCC5 Bella VistaCorrientesArgentina 3432
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA 32611
| | - Deepak Shantharaj
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA 32611
| | - Neha Potnis
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA 32611
| | - Xiaofeng Zhou
- Department of Microbiology and Cell ScienceUniversity of FloridaLake AlfredFLUSA 33850
| | | | - Frank F. White
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA 32611
| | - Nian Wang
- Department of Microbiology and Cell ScienceUniversity of FloridaLake AlfredFLUSA 33850
| | - Jason C. Hurlbert
- Department of Chemistry, Physics and GeologyCitrus Research and Education Center, Winthrop UniversityRock HillSCUSA 29733
| | - Jeffrey B. Jones
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA 32611
| |
Collapse
|
37
|
Slack SM, Zeng Q, Outwater CA, Sundin GW. Microbiological Examination of Erwinia amylovora Exopolysaccharide Ooze. PHYTOPATHOLOGY 2017; 107:403-411. [PMID: 28045342 DOI: 10.1094/phyto-09-16-0352-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fire blight, caused by the pathogen Erwinia amylovora, is the most devastating bacterial disease of pome fruit in North America and worldwide. The primary method of dispersal for E. amylovora is through ooze, a mass of exopolysaccharides and bacterial cells that is exuded as droplets from infected host tissue. During the 2013 and 2014 field seasons, 317 ooze droplets were collected from field-inoculated apple trees. Populations of E. amylovora in ooze droplets were 108 CFU/μl on average. Ooze droplets harboring larger (>108 CFU/μl) cell populations were typically smaller in total volume and had darker coloring, such as orange, red, or dark red hues. Examination of apple host tissue at the site of emergence of ooze droplets using scanning electron microscopy revealed that ooze was not exuding through natural openings; instead, it was found on erumpent mounds and small (10-μm) tears in tissue. These observations suggested that E. amylovora-induced wounds in tissue provided the exit holes for ooze extrusion from the host. Analyses of E. amylovora populations in ooze droplets and within the stems from which ooze droplets emerged indicated that approximately 9% of the total bacterial population from infected stems is diverted to ooze. Gene expression analyses indicated that E. amylovora cells in stem sections located above ooze droplets and in ooze droplets were actively expressing critical pathogenicity genes such as hrpL, dspE, and amsK. Thus, our study identified ooze as a source of large, concentrated populations of E. amylovora that emerged from the host by rupturing host tissue. Because the cells in ooze droplets are expressing genes required for pathogenesis, they are already primed for infection should they be dispersed from ooze to new infection courts.
Collapse
Affiliation(s)
- Suzanne M Slack
- All authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824; and second author: Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven 06504
| | - Quan Zeng
- All authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824; and second author: Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven 06504
| | - Cory A Outwater
- All authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824; and second author: Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven 06504
| | - George W Sundin
- All authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824; and second author: Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven 06504
| |
Collapse
|
38
|
Valueva TA, Zaichik BT, Kudryavtseva NN. Role of proteolytic enzymes in the interaction of phytopathogenic microorganisms with plants. BIOCHEMISTRY (MOSCOW) 2017; 81:1709-1718. [DOI: 10.1134/s0006297916130083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Luo Q, Liu WW, Pan KD, Peng YL, Fan J. Genetic Interaction between Arabidopsis Qpm3.1 Locus and Bacterial Effector Gene hopW1-1 Underlies Natural Variation in Quantitative Disease Resistance to Pseudomonas Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:695. [PMID: 28523008 PMCID: PMC5415610 DOI: 10.3389/fpls.2017.00695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 05/10/2023]
Abstract
Wide quantitative variation in plant disease resistance across Arabidopsis wild populations has been documented and the underlying mechanisms remain largely unknown. To investigate the genetic and molecular basis of this variation, Arabidopsis recombinant inbred lines (RILs) derived from Aa-0 × Col-0 and Gie-0 × Col-0 crosses were constructed and used for inoculation with Pseudomonas syringae pathovars maculicola ES4326 (ES4326) and tomato DC3000 (DC3000). Bacterial growth assays revealed continuous distribution across the large differences between the most and the least susceptible lines in the RILs. Quantitative trait locus (QTL) mapping analyses identified a number of QTLs underpinning the variance in disease resistance, among which Qpm3.1, a major QTL on chromosome III from both Aa-0 and Gie-0 accessions, preferentially restricted the growth of ES4326. A genetic screen for the ES4326 gene selectively leading to bacterial growth inhibition on accession Aa-0 uncovered the effector gene hopW1-1. Further QTL analysis of disease in RILs inoculated with DC3000 carrying hopW1-1 showed that the genetic interaction between Qpm3.1 and hopW1-1 determined Arabidopsis resistance to bacterial infection. These findings illustrate the complexity of Arabidopsis-Pseudomonas interaction and highlight the importance of pathogen effectors in delineating genetic architectures of quantitative variation in plant disease resistance.
Collapse
Affiliation(s)
- Qi Luo
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China
| | - Wei-Wei Liu
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
| | - Ke-Di Pan
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
| | - You-Liang Peng
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China
| | - Jun Fan
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
- *Correspondence: Jun Fan,
| |
Collapse
|
40
|
Goldberg T, Rost B, Bromberg Y. Computational prediction shines light on type III secretion origins. Sci Rep 2016; 6:34516. [PMID: 27713481 PMCID: PMC5054392 DOI: 10.1038/srep34516] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/15/2016] [Indexed: 01/27/2023] Open
Abstract
Type III secretion system is a key bacterial symbiosis and pathogenicity mechanism responsible for a variety of infectious diseases, ranging from food-borne illnesses to the bubonic plague. In many Gram-negative bacteria, the type III secretion system transports effector proteins into host cells, converting resources to bacterial advantage. Here we introduce a computational method that identifies type III effectors by combining homology-based inference with de novo predictions, reaching up to 3-fold higher performance than existing tools. Our work reveals that signals for recognition and transport of effectors are distributed over the entire protein sequence instead of being confined to the N-terminus, as was previously thought. Our scan of hundreds of prokaryotic genomes identified previously unknown effectors, suggesting that type III secretion may have evolved prior to the archaea/bacteria split. Crucially, our method performs well for short sequence fragments, facilitating evaluation of microbial communities and rapid identification of bacterial pathogenicity – no genome assembly required. pEffect and its data sets are available at http://services.bromberglab.org/peffect.
Collapse
Affiliation(s)
- Tatyana Goldberg
- Department of Informatics, Bioinformatics &Computational Biology - I12, TUM, Garching, Germany.,Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), TUM, Garching, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics &Computational Biology - I12, TUM, Garching, Germany.,Institute for Advanced Study (TUM-IAS), Garching, Germany.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yana Bromberg
- Institute for Advanced Study (TUM-IAS), Garching, Germany.,Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
41
|
Serrano I, Audran C, Rivas S. Chloroplasts at work during plant innate immunity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3845-54. [PMID: 26994477 DOI: 10.1093/jxb/erw088] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The major role played by chloroplasts during light harvesting, energy production, redox homeostasis, and retrograde signalling processes has been extensively characterized. Beyond the obvious link between chloroplast functions in primary metabolism and as providers of photosynthesis-derived carbon sources and energy, a growing body of evidence supports a central role for chloroplasts as integrators of environmental signals and, more particularly, as key defence organelles. Here, we review the importance of these organelles as primary sites for the biosynthesis and transmission of pro-defence signals during plant immune responses. In addition, we highlight interorganellar communication as a crucial process for amplification of the immune response. Finally, molecular strategies used by microbes to manipulate, directly or indirectly, the production/function of defence-related signalling molecules and subvert chloroplast-based defences are also discussed.
Collapse
Affiliation(s)
- Irene Serrano
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Corinne Audran
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
42
|
Hurley B, Subramaniam R, Guttman DS, Desveaux D. Proteomics of effector-triggered immunity (ETI) in plants. Virulence 2015; 5:752-60. [PMID: 25513776 PMCID: PMC4189881 DOI: 10.4161/viru.36329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Effector-triggered immunity (ETI) was originally termed gene-for-gene resistance and dates back to fundamental observations of flax resistance to rust fungi by Harold Henry Flor in the 1940s. Since then, genetic and biochemical approaches have defined our current understanding of how plant “resistance” proteins recognize microbial effectors. More recently, proteomic approaches have expanded our view of the protein landscape during ETI and contributed significant advances to our mechanistic understanding of ETI signaling. Here we provide an overview of proteomic techniques that have been used to study plant ETI including both global and targeted approaches. We discuss the challenges associated with ETI proteomics and highlight specific examples from the literature, which demonstrate how proteomics is advancing the ETI research field.
Collapse
Affiliation(s)
- Brenden Hurley
- a Department of Cell & Systems Biology; University of Toronto; Toronto, ON Canada
| | | | | | | |
Collapse
|
43
|
Berendsen RL, van Verk MC, Stringlis IA, Zamioudis C, Tommassen J, Pieterse CMJ, Bakker PAHM. Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics 2015. [PMID: 26198432 PMCID: PMC4509608 DOI: 10.1186/s12864-015-1632-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Plant growth-promoting rhizobacteria (PGPR) can protect plants against pathogenic microbes through a diversity of mechanisms including competition for nutrients, production of antibiotics, and stimulation of the host immune system, a phenomenon called induced systemic resistance (ISR). In the past 30 years, the Pseudomonas spp. PGPR strains WCS358, WCS374 and WCS417 of the Willie Commelin Scholten (WCS) collection have been studied in detail in pioneering papers on the molecular basis of PGPR-mediated ISR and mechanisms of biological control of soil-borne pathogens via siderophore-mediated competition for iron. Results The genomes of the model WCS PGPR strains were sequenced and analyzed to unearth genetic cues related to biological questions that surfaced during the past 30 years of functional studies on these plant-beneficial microbes. Whole genome comparisons revealed important novel insights into iron acquisition strategies with consequences for both bacterial ecology and plant protection, specifics of bacterial determinants involved in plant-PGPR recognition, and diversity of protein secretion systems involved in microbe-microbe and microbe-plant communication. Furthermore, multi-locus sequence alignment and whole genome comparison revealed the taxonomic position of the WCS model strains within the Pseudomonas genus. Despite the enormous diversity of Pseudomonas spp. in soils, several plant-associated Pseudomonas spp. strains that have been isolated from different hosts at different geographic regions appear to be nearly isogenic to WCS358, WCS374, or WCS417. Interestingly, all these WCS look-a-likes have been selected because of their plant protective or plant growth-promoting properties. Conclusions The genome sequences of the model WCS strains revealed that they can be considered representatives of universally-present plant-beneficial Pseudomonas spp. With their well-characterized functions in the promotion of plant growth and health, the fully sequenced genomes of the WCS strains provide a genetic framework that allows for detailed analysis of the biological mechanisms of the plant-beneficial traits of these PGPR. Considering the increasing focus on the role of the root microbiome in plant health, functional genomics of the WCS strains will enhance our understanding of the diversity of functions of the root microbiome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1632-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Marcel C van Verk
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands. .,Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Christos Zamioudis
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Jan Tommassen
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
44
|
Muehe EM, Weigold P, Adaktylou IJ, Planer-Friedrich B, Kraemer U, Kappler A, Behrens S. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri. Appl Environ Microbiol 2015; 81:2173-81. [PMID: 25595759 PMCID: PMC4345380 DOI: 10.1128/aem.03359-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/08/2015] [Indexed: 12/07/2022] Open
Abstract
The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy.
Collapse
Affiliation(s)
- E Marie Muehe
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Pascal Weigold
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Irini J Adaktylou
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Ute Kraemer
- Department of Plant Physiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Sebastian Behrens
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
45
|
Mesarich CH, Bowen JK, Hamiaux C, Templeton MD. Repeat-containing protein effectors of plant-associated organisms. FRONTIERS IN PLANT SCIENCE 2015; 6:872. [PMID: 26557126 PMCID: PMC4617103 DOI: 10.3389/fpls.2015.00872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/01/2015] [Indexed: 05/10/2023]
Abstract
Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.
Collapse
Affiliation(s)
- Carl H. Mesarich
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
- *Correspondence: Carl H. Mesarich
| | - Joanna K. Bowen
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
| | - Cyril Hamiaux
- Human Responses, The New Zealand Institute for Plant & Food Research LimitedAuckland, New Zealand
| | - Matthew D. Templeton
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
| |
Collapse
|
46
|
Piquerez SJM, Harvey SE, Beynon JL, Ntoukakis V. Improving crop disease resistance: lessons from research on Arabidopsis and tomato. FRONTIERS IN PLANT SCIENCE 2014; 5:671. [PMID: 25520730 PMCID: PMC4253662 DOI: 10.3389/fpls.2014.00671] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/10/2014] [Indexed: 05/04/2023]
Abstract
One of the great challenges for food security in the 21st century is to improve yield stability through the development of disease-resistant crops. Crop research is often hindered by the lack of molecular tools, growth logistics, generation time and detailed genetic annotations, hence the power of model plant species. Our knowledge of plant immunity today has been largely shaped by the use of models, specifically through the use of mutants. We examine the importance of Arabidopsis and tomato as models in the study of plant immunity and how they help us in revealing a detailed and deep understanding of the various layers contributing to the immune system. Here we describe examples of how knowledge from models can be transferred to economically important crops resulting in new tools to enable and accelerate classical plant breeding. We will also discuss how models, and specifically transcriptomics and effectoromics approaches, have contributed to the identification of core components of the defense response which will be key to future engineering of durable and sustainable disease resistance in plants.
Collapse
Affiliation(s)
| | | | - Jim L. Beynon
- School of Life Sciences, University of WarwickCoventry, UK
| | | |
Collapse
|
47
|
Microbial genome-enabled insights into plant–microorganism interactions. Nat Rev Genet 2014; 15:797-813. [DOI: 10.1038/nrg3748] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Simon NC, Aktories K, Barbieri JT. Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol 2014; 12:599-611. [PMID: 25023120 PMCID: PMC5846498 DOI: 10.1038/nrmicro3310] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial ADP-ribosyltransferase toxins (bARTTs) transfer ADP-ribose to eukaryotic proteins to promote bacterial pathogenesis. In this Review, we use prototype bARTTs, such as diphtheria toxin and pertussis toxin, as references for the characterization of several new bARTTs from human, insect and plant pathogens, which were recently identified by bioinformatic analyses. Several of these toxins, including cholix toxin (ChxA) from Vibrio cholerae, SpyA from Streptococcus pyogenes, HopU1 from Pseudomonas syringae and the Tcc toxins from Photorhabdus luminescens, ADP-ribosylate novel substrates and have unique organizations, which distinguish them from the reference toxins. The characterization of these toxins increases our appreciation of the range of structural and functional properties that are possessed by bARTTs and their roles in bacterial pathogenesis.
Collapse
Affiliation(s)
- Nathan C. Simon
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, WI, USA
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology; Albert-Ludwigs-University Freiburg; Freiburg, Germany
| | - Joseph T. Barbieri
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, WI, USA
| |
Collapse
|
49
|
Hockett KL, Nishimura MT, Karlsrud E, Dougherty K, Baltrus DA. Pseudomonas syringae CC1557: a highly virulent strain with an unusually small type III effector repertoire that includes a novel effector. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:923-32. [PMID: 24835253 DOI: 10.1094/mpmi-11-13-0354-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Both type III effector proteins and nonribosomal peptide toxins play important roles for Pseudomonas syringae pathogenicity in host plants, but whether and how these pathways interact to promote infection remains unclear. Genomic evidence from one clade of P. syringae suggests a tradeoff between the total number of type III effector proteins and presence of syringomycin, syringopeptin, and syringolin A toxins. Here, we report the complete genome sequence from P. syringae CC1557, which contains the lowest number of known type III effectors to date and has also acquired genes similar to sequences encoding syringomycin pathways from other strains. We demonstrate that this strain is pathogenic on Nicotiana benthamiana and that both the type III secretion system and a new type III effector, hopBJ1, contribute to pathogenicity. We further demonstrate that activity of HopBJ1 is dependent on residues structurally similar to the catalytic site of Escherichia coli CNF1 toxin. Taken together, our results provide additional support for a negative correlation between type III effector repertoires and the potential to produce syringomycin-like toxins while also highlighting how genomic synteny and bioinformatics can be used to identify and characterize novel virulence proteins.
Collapse
|
50
|
Lam HN, Chakravarthy S, Wei HL, BuiNguyen H, Stodghill PV, Collmer A, Swingle BM, Cartinhour SW. Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions. PLoS One 2014; 9:e106115. [PMID: 25170934 PMCID: PMC4149516 DOI: 10.1371/journal.pone.0106115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
The type III secretion system (T3SS) is required for virulence in the gram-negative plant pathogen Pseudomonas syringae pv. tomato DC3000. The alternative sigma factor HrpL directly regulates expression of T3SS genes via a promoter sequence, often designated as the "hrp promoter." Although the HrpL regulon has been extensively investigated in DC3000, it is not known whether additional regulon members remain to be found. To systematically search for HrpL-regulated genes, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) and bulk mRNA sequencing (RNA-Seq) to identify HrpL-binding sites and likely hrp promoters. The analysis recovered 73 sites of interest, including 20 sites that represent new hrp promoters. The new promoters lie upstream of a diverse set of genes encoding potential regulators, enzymes and hypothetical proteins. PSPTO_5633 is the only new HrpL regulon member that is potentially an effector and is now designated HopBM1. Deletions in several other new regulon members, including PSPTO_5633, PSPTO_0371, PSPTO_2130, PSPTO_2691, PSPTO_2696, PSPTO_3331, and PSPTO_5240, in either DC3000 or ΔhopQ1-1 backgrounds, do not affect the hypersensitive response or in planta growth of the resulting strains. Many new HrpL regulon members appear to be unrelated to the T3SS, and orthologs for some of these can be identified in numerous non-pathogenic bacteria. With the identification of 20 new hrp promoters, the list of HrpL regulon members is approaching saturation and most likely includes all DC3000 effectors.
Collapse
Affiliation(s)
- Hanh N. Lam
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Suma Chakravarthy
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Hai-Lei Wei
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - HoangChuong BuiNguyen
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Paul V. Stodghill
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Alan Collmer
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Bryan M. Swingle
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Samuel W. Cartinhour
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| |
Collapse
|