1
|
Ismail SD, Sebaa S, Abrahams B, Nason MC, Mumby MJ, Dikeakos JD, Joseph SB, Moeser M, Swanstrom R, Garrett N, Williamson C, Quinn TC, Abrahams MR, Redd AD. The role of Nef in the long-term persistence of the replication-competent HIV reservoir in South African women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621615. [PMID: 39554110 PMCID: PMC11565997 DOI: 10.1101/2024.11.01.621615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
HIV-1 Nef mediates immune evasion and viral pathogenesis in part through downregulation of cell surface cluster of differentiation 4 (CD4) and major histocompatibility complex class I (MHC-I) on infected cells. While Nef function of circulating viral populations found early in infection has been associated with reservoir size in early-treated cohorts, there is limited research on how its activity impacts reservoir size in people initiating treatment during chronic infection. In addition, there is little research on its role in persistence of viral variants during long-term antiretroviral therapy (ART). Phylogenetically distinct nef genes (n=82) with varying estimated times of reservoir entry were selected from viral outgrowth variants stimulated from the reservoir of South African women living with HIV who initiated ART during chronic infection (n=16). These nef genes were synthesized and used in a pseudovirus infection assay that measures CD4 and MHC-I downregulation via flow cytometry. Downregulation measures were compared to the size of the replication-competent viral reservoir (RC-VR), estimated by quantitative viral outgrowth assay (QVOA) at 5 years after treatment initiation, as well as proviral survival time. Maximum Nef-mediated MHC-I downregulation was significantly associated with RC-VR size (p=0.034), but this association was not observed for CD4 downregulation. Conversely, we did not find a consistent association between intraparticipant MHC-I or CD4 downregulation and the variant timing of entry into the reservoir. These data support a role for Nef-mediated MHC-I downregulation in determining RC-VR size, but more work is needed to determine Nef's role in the survival of individual viral variants over time.
Collapse
Affiliation(s)
- Sherazaan D. Ismail
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shorok Sebaa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bianca Abrahams
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Martha C. Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Mitchell J. Mumby
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sarah B. Joseph
- Department of Microbiology & Immunology; University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew Moeser
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Swanstrom
- Department of Microbiology & Immunology; University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, University of Kwazulu-Natal, Durban, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of Kwazulu-Natal, Durban, South Africa
- National Health Laboratory Services of South Africa, Johannesburg, South Africa
| | - Thomas C. Quinn
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa-Rose Abrahams
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andrew D. Redd
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| |
Collapse
|
2
|
Characterization of Macrophage-Tropic HIV-1 Infection of Central Nervous System Cells and the Influence of Inflammation. J Virol 2022; 96:e0095722. [PMID: 35975998 PMCID: PMC9472603 DOI: 10.1128/jvi.00957-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
HIV-1 infection within the central nervous system (CNS) includes evolution of the virus, damaging inflammatory cascades, and the involvement of multiple cell types; however, our understanding of how Env tropism and inflammation can influence CNS infectivity is incomplete. In this study, we utilize macrophage-tropic and T cell-tropic HIV-1 Env proteins to establish accurate infection profiles for multiple CNS cells under basal and interferon alpha (IFN-α) or lipopolysaccharide (LPS)-induced inflammatory states. We found that macrophage-tropic viruses confer entry advantages in primary myeloid cells, including monocyte-derived macrophage, microglia, and induced pluripotent stem cell (iPSC)-derived microglia. However, neither macrophage-tropic or T cell-tropic HIV-1 Env proteins could mediate infection of astrocytes or neurons, and infection was not potentiated by induction of an inflammatory state in these cells. Additionally, we found that IFN-α and LPS restricted replication in myeloid cells, and IFN-α treatment prior to infection with vesicular stomatitis virus G protein (VSV G) Envs resulted in a conserved antiviral response across all CNS cell types. Further, using RNA sequencing (RNA-seq), we found that only myeloid cells express HIV-1 entry receptor/coreceptor transcripts at a significant level and that these transcripts in select cell types responded only modestly to inflammatory signals. We profiled the transcriptional response of multiple CNS cells to inflammation and found 57 IFN-induced genes that were differentially expressed across all cell types. Taken together, these data focus attention on the cells in the CNS that are truly permissive to HIV-1, further highlight the role of HIV-1 Env evolution in mediating infection in the CNS, and point to limitations in using model cell types versus primary cells to explore features of virus-host interaction. IMPORTANCE The major feature of HIV-1 pathogenesis is the induction of an immunodeficient state in the face of an enhanced state of inflammation. However, for many of those infected, there can be an impact on the central nervous system (CNS) resulting in a wide range of neurocognitive defects. Here, we use a highly sensitive and quantitative assay for viral infectivity to explore primary and model cell types of the brain for their susceptibility to infection using viral entry proteins derived from the CNS. In addition, we examine the ability of an inflammatory state to alter infectivity of these cells. We find that myeloid cells are the only cell types in the CNS that can be infected and that induction of an inflammatory state negatively impacts viral infection across all cell types.
Collapse
|
3
|
Al Bitar S, Ballouz T, Doughan S, Gali-Muhtasib H, Rizk N. Potential role of micro ribonucleic acids in screening for anal cancer in human papilloma virus and human immunodeficiency virus related malignancies. World J Gastrointest Pathophysiol 2021; 12:59-83. [PMID: 34354849 PMCID: PMC8316837 DOI: 10.4291/wjgp.v12.i4.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/24/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Despite advances in antiretroviral treatment (ART), human immunodeficiency virus (HIV) continues to be a major global public health issue owing to the increased mortality rates related to the prevalent oncogenic viruses among people living with HIV (PLWH). Human papillomavirus (HPV) is the most common sexually transmitted viral disease in both men and women worldwide. High-risk or oncogenic HPV types are associated with the development of HPV-related malignancies, including cervical, penile, and anal cancer, in addition to oral cancers. The incidence of anal squamous cell cancers is increasing among PLWH, necessitating the need for reliable screening methods in this population at risk. In fact, the currently used screening methods, including the Pap smear, are invasive and are neither sensitive nor specific. Investigators are interested in circulatory and tissue micro ribonucleic acids (miRNAs), as these small non-coding RNAs are ideal biomarkers for early detection and prognosis of cancer. Multiple miRNAs are deregulated during HIV and HPV infection and their deregulation contributes to the pathogenesis of disease. Here, we will review the molecular basis of HIV and HPV co-infections and focus on the pathogenesis and epidemiology of anal cancer in PLWH. The limitations of screening for anal cancer and the need for a reliable screening program that involves specific miRNAs with diagnostic and therapeutic values is also discussed.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Tala Ballouz
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology and Center for Drug Discovery, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nesrine Rizk
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
4
|
Tang Y, Woodward BO, Pastor L, George AM, Petrechko O, Nouvet FJ, Haas DW, Jiang G, Hildreth JEK. Endogenous Retroviral Envelope Syncytin Induces HIV-1 Spreading and Establishes HIV Reservoirs in Placenta. Cell Rep 2021; 30:4528-4539.e4. [PMID: 32234485 DOI: 10.1016/j.celrep.2020.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/16/2020] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
Radical cure of HIV-1 (HIV) is hampered by the establishment of HIV reservoirs and persistent infection in deep tissues despite suppressive antiretroviral therapy (ART). Here, we show that among HIV-positive women receiving suppressive ART, cells from placental tissues including trophoblasts contain HIV RNA and DNA. These viruses can be reactivated by latency reversal agents. We find that syncytin, the envelope glycoprotein of human endogenous retrovirus family W1 expressed on placental trophoblasts, triggers cell fusion with HIV-infected T cells. This results in cell-to-cell spread of HIV to placental trophoblasts. Such cell-to-cell spread of HIV is less sensitive to ART than free virus. Replication in syncytin-expressing cells can also produce syncytin-pseudotyped HIV, further expanding its ability to infect non-CD4 cells. These previously unrecognized mechanisms of HIV entry enable the virus to bypass receptor restriction to infect host barrier cells, thereby facilitating viral transmission and persistent infection in deep tissues.
Collapse
Affiliation(s)
- Yuyang Tang
- University of North Carolina at Chapel Hill, HIV Cure Center and Institute of Global Health & Infectious Diseases, Chapel Hill, NC 27599, USA; Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Beverly O Woodward
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Lorena Pastor
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Alvin M George
- Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Oksana Petrechko
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Franklin J Nouvet
- Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - David W Haas
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, TN 37240, USA; Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Guochun Jiang
- University of North Carolina at Chapel Hill, HIV Cure Center and Institute of Global Health & Infectious Diseases, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - James E K Hildreth
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA; Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208, USA.
| |
Collapse
|
5
|
Islam S, Moni MA, Urmi UL, Tanaka A, Hoshino H. C-C Chemokine receptor-like 2 (CCRL2) acts as coreceptor for human immunodeficiency virus-2. Brief Bioinform 2020; 22:6012867. [PMID: 33253374 DOI: 10.1093/bib/bbaa333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Most of the typical chemokine receptors (CKRs) have been identified as coreceptors for a variety of human and simian immunodeficiency viruses (HIVs and SIVs). This study evaluated CCRL2 to examine if it was an HIV/SIV coreceptor. METHODS The Human glioma cell line, NP-2, is normally resistant to infection by HIV and SIV. The cell was transduced with amplified cluster of differentiation 4 (CD4) as a receptor and CCR5, CXCR4 and CCRL2 as coreceptor candidates to produce NP-2/CD4/coreceptor cells (). The cells were infected with multiplicity of infection (MOI) 1.0. Infected cells were detected by indirect immunofluorescence assay (IFA). Multinucleated giant cells (MGC) in syncytia were quantified by Giemsa staining. Proviral DNA was detected by polymerase chain reaction (PCR), and reverse transcriptase (RT) activity was measured. RESULTS IFA detected viral antigens of the primary isolates, HIV-1HAN2 and HIV-2MIR in infected NP-2/CD4/CCRL2 cells, indicated CCRL2 as a functional coreceptor. IFA results were confirmed by the detection of proviral DNA and measurement of RT-activity in the spent cell supernatants. Additionally, MGC was detected in HIV-2MIR-infected NP-2/CD4/CCCRL2 cells. HIV-2MIR were found more potent users of CCRL2 than HIV-1HAN2. Moreover, GWAS studies, gene ontology and cell signaling pathways of the HIV-associated genes show interaction of CCRL2 with HIV/SIV envelope protein. CONCLUSIONS In vitro experiments showed CCRL2 to function as a newly identified coreceptor for primary HIV-2 isolates conveniently. The findings contribute additional insights into HIV/SIV transmission and pathogenesis. However, its in vivo relevance still needs to be evaluated. Confirming in vivo relevance, ligands of CCRL2 can be investigated as potential targets for HIV entry-inhibitor drugs.
Collapse
Affiliation(s)
- Salequl Islam
- Department of Microbiology, Jahangirnagar University (JU), Bangladesh
| | | | | | - Atsushi Tanaka
- Research Institute for Microbial Diseases, Osaka University, Japan
| | | |
Collapse
|
6
|
The Conformational States of the HIV-1 Envelope Glycoproteins. Trends Microbiol 2020; 28:655-667. [PMID: 32418859 DOI: 10.1016/j.tim.2020.03.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
During HIV-1 entry into target cells, binding of the virus to host receptors, CD4 and CCR5/CXCR4, triggers serial conformational changes in the envelope glycoprotein (Env) trimer that result in the fusion of the viral and cell membranes. Recent discoveries have refined our knowledge of Env conformational states, allowing characterization of the targets of small-molecule HIV-1 entry inhibitors and neutralizing antibodies, and identifying a novel off-pathway conformation (State 2A). Here, we provide an overview of the current understanding of these conformational states, focusing on (i) the events during HIV-1 entry; (ii) conformational preferences of HIV-1 Env ligands; (iii) evasion of the host antibody response; and (iv) potential implications for therapy and prevention of HIV-1 infection.
Collapse
|
7
|
Matsuura R, Inabe K, Otsuki H, Kurokawa K, Dohmae N, Aida Y. Three YXXL Sequences of a Bovine Leukemia Virus Transmembrane Protein are Independently Required for Fusion Activity by Controlling Expression on the Cell Membrane. Viruses 2019; 11:E1140. [PMID: 31835517 PMCID: PMC6950344 DOI: 10.3390/v11121140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 01/27/2023] Open
Abstract
Bovine leukemia virus (BLV), which is closely related to human T-cell leukemia viruses, is the causative agent of enzootic bovine leukosis, the most common neoplastic disease of cattle. The transmembrane subunit of the BLV envelope glycoprotein, gp30, contains three completely conserved YXXL sequences that fit an endocytic sorting motif. The two N-terminal YXXL sequences are reportedly critical for viral infection. However, their actual function in the viral life cycle remains undetermined. Here, we identified the novel roles of each YXXL sequence. Syncytia formation ability was upregulated by a single mutation of the tyrosine (Tyr) residue in any of the three YXXL sequences, indicating that each YXXL sequence is independently able to regulate the fusion event. The alteration resulted from significantly high expression of gp51 on the cell surface, thereby decreasing the amount of gp51 in early endosomes and further revealing that the three YXXL sequences are independently required for internalization of the envelope (Env) protein, following transport to the cell surface. Moreover, the 2nd and 3rd YXXL sequences contributed to Env protein incorporation into the virion by functionally distinct mechanisms. Our findings provide new insights regarding the three YXXL sequences toward the BLV viral life cycle and for developing new anti-BLV drugs.
Collapse
Affiliation(s)
- Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazunori Inabe
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Otsuki
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nakamura Laboratory, Baton Zone program, Riken Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Abstract
The HIV-1 capsid performs essential functions during early viral replication and is an interesting target for novel antivirals. Thus, understanding molecular and structural details of capsid function will be important for elucidating early HIV-1 (and retroviral in general) replication in relevant target cells and may also aid antiviral development. Here, we show that HIV-1 capsids stay largely intact during transport to the nucleus of infected T cells but appear to uncoat upon entry into the nucleoplasm. These results support the hypothesis that capsids protect the HIV-1 genome from cytoplasmic defense mechanisms and target the genome toward the nucleus. A protective role of the capsid could be a paradigm that also applies to other viruses. Our findings raise the question of how reverse transcription of the HIV-1 genome is accomplished in the context of the capsid structure and whether the process is completed before the capsid is uncoated at the nuclear pore. HIV-1 infects host cells by fusion at the plasma membrane, leading to cytoplasmic entry of the viral capsid encasing the genome and replication machinery. The capsid eventually needs to disassemble, but time and location of uncoating are not fully characterized and may vary depending on the host cell. To study the fate of the capsid by fluorescence and superresolution (STED) microscopy, we established an experimental system that allows discrimination of subviral structures in the cytosol from intact virions at the plasma membrane or in endosomes without genetic modification of the virus. Quantitative microscopy of infected SupT1-R5 cells revealed that the CA signal on cytosolic HIV-1 complexes corresponded to ∼50% of that found in virions at the cell surface, in agreement with dissociation of nonassembled CA molecules from entering capsids after membrane fusion. The relative amount of CA in postfusion complexes remained stable until they reached the nuclear pore complex, while subviral structures in the nucleus of infected cells lacked detectable CA. An HIV-1 variant defective in binding of the host protein cleavage and polyadenylation specificity factor 6 (CPSF6) exhibited accumulation of CA-positive subviral complexes close to the nuclear envelope without loss of infectivity; STED microscopy revealed direct association of these complexes with nuclear pores. These results support previous observations indicating capsid uncoating at the nuclear pore in infected T-cell lines. They suggest that largely intact HIV-1 capsids dock at the nuclear pore in infected SupT1-R5 cells, with CPSF6 being a facilitator of nucleoplasmic entry in this cell type, as has been observed for infected macrophages.
Collapse
|
9
|
Herold N. Overexpression of the Interferon-Inducible Isoform 4 of NCOA7 Dissects the Entry Route of Enveloped Viruses and Demonstrates that HIV Enters Cells via Fusion at the Plasma Membrane. Viruses 2019; 11:v11020121. [PMID: 30700004 PMCID: PMC6410169 DOI: 10.3390/v11020121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 11/16/2022] Open
Abstract
The HIV-1 entry-route is a matter of ongoing controversy, and there is evidence for fusion either at the cell surface or from within endosomes. A recent report demonstrated that isoform 4 of nuclear receptor coactivator 7 (NCOA7iso4) interacts with endolysosomal vacuolar-type H+-ATPase (V-ATPase), increasing lytic activity and thereby severely affecting the entry of vesicular stomatitis virus glycoprotein (VSV-G)-mediated, but not HIV-Env-mediated, entry and infection. As basal expression of NCOA7iso4 is low in the absence of type-1 interferons, its overexpression is a novel tool to study viral entry.
Collapse
Affiliation(s)
- Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden.
- Paediatric Oncology, Theme Women's and Children's Health, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| |
Collapse
|
10
|
Burnie J, Guzzo C. The Incorporation of Host Proteins into the External HIV-1 Envelope. Viruses 2019; 11:v11010085. [PMID: 30669528 PMCID: PMC6356245 DOI: 10.3390/v11010085] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
The incorporation of biologically active host proteins into HIV-1 is a well-established phenomenon, particularly due to the budding mechanism of viral egress in which viruses acquire their external lipid membrane directly from the host cell. While this mechanism might seemingly imply that host protein incorporation is a passive uptake of all cellular antigens associated with the plasma membrane at the site of budding, this is not the case. Herein, we review the evidence indicating that host protein incorporation can be a selective and conserved process. We discuss how HIV-1 virions displaying host proteins on their surface can exhibit a myriad of altered phenotypes, with notable impacts on infectivity, homing, neutralization, and pathogenesis. This review describes the canonical and emerging methods to detect host protein incorporation, highlights the well-established host proteins that have been identified on HIV-1 virions, and reflects on the role of these incorporated proteins in viral pathogenesis and therapeutic targeting. Despite many advances in HIV treatment and prevention, there remains a global effort to develop increasingly effective anti-HIV therapies. Given the broad range of biologically active host proteins acquired on the surface of HIV-1, additional studies on the mechanisms and impacts of these incorporated host proteins may inform the development of novel treatments and vaccine designs.
Collapse
Affiliation(s)
- Jonathan Burnie
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada.
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Christina Guzzo
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada.
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
11
|
Sakin V, Hanne J, Dunder J, Anders-Össwein M, Laketa V, Nikić I, Kräusslich HG, Lemke EA, Müller B. A Versatile Tool for Live-Cell Imaging and Super-Resolution Nanoscopy Studies of HIV-1 Env Distribution and Mobility. Cell Chem Biol 2017; 24:635-645.e5. [PMID: 28457706 DOI: 10.1016/j.chembiol.2017.04.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/12/2017] [Accepted: 04/06/2017] [Indexed: 12/27/2022]
Abstract
The envelope glycoproteins (Env) of HIV-1 mediate cell entry through fusion of the viral envelope with a target cell membrane. Intramembrane mobility and clustering of Env trimers at the viral budding site are essential for its function. Previous live-cell and super-resolution microscopy studies were limited by lack of a functional fluorescent Env derivative, requiring antibody labeling for detection. Introduction of a bio-orthogonal amino acid by genetic code expansion, combined with click chemistry, offers novel possibilities for site-specific, minimally invasive labeling. Using this approach, we established efficient incorporation of non-canonical amino acids within HIV-1 Env in mammalian cells. The engineered protein retained plasma membrane localization, glycosylation, virion incorporation, and fusogenic activity, and could be rapidly and specifically labeled with synthetic dyes. This strategy allowed us to revisit Env dynamics and nanoscale distribution at the plasma membrane close to its native state, applying fluorescence recovery after photo bleaching and STED nanoscopy, respectively.
Collapse
Affiliation(s)
- Volkan Sakin
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Janina Hanne
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Optical Nanoscopy Division, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Jessica Dunder
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Maria Anders-Össwein
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Vibor Laketa
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Ivana Nikić
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Affiliation(s)
- Alex A. Compton
- Virus & Immunity Unit, Institut Pasteur, Paris, France
- * E-mail: (AAC); (OS)
| | - Olivier Schwartz
- Virus & Immunity Unit, Institut Pasteur, Paris, France
- CNRS-URA 3015, Paris, France
- Vaccine Research Institute, Creteil, France
- * E-mail: (AAC); (OS)
| |
Collapse
|
13
|
Schols D, De Clercq E, Balzarini J, Baba M, Witvrouw M, Hosoya M, Andrei G, Snoeck R, Neyts J, Pauwels R, Nagy M, Györgyi-Edelényi J, Machovich R, Horváth I, Low M, Görög S. Sulphated Polymers are Potent and Selective Inhibitors of Various Enveloped Viruses, Including Herpes Simplex Virus, Cytomegalovirus, Vesicular Stomatitis Virus, Respiratory Syncytial Virus, and Toga-, Arena- and Retroviruses. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029000100402] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The sulphated polymers, such as polyvinylalcohol sulphate (PVAS) and its co-polymer with acrylic acid (PAVAS), have proved to be potent inhibitors for herpes simplex virus, human cytomegalovirus, vesicular stomatitis virus, respiratory syncytial virus, Sindbis virus, Semliki Forest virus, Junin virus, Tacaribe virus, murine sarcoma virus and human immunodeficiency virus. They are not inhibitory to non-enveloped viruses, such as poliovirus and reovirus. The broad-spectrum antiviral effects of these compounds depend on their molecular weight and degree of sulphation. Pharmacokinetic studies in rabbits have indicated that after intravenous bolus injection the serum concentrations of these compounds decay biphasically, with an initial half-life of approximately 90–120 min.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - M. Nagy
- Department of Colloid Science, Eötvös Loránd University, Budapest, Hungary
| | | | - R. Machovich
- 2nd Institute of Biochemistry, Semmelweis University Medical School, Budapest, Hungary
| | - I. Horváth
- 2nd Institute of Biochemistry, Semmelweis University Medical School, Budapest, Hungary
| | - M. Low
- Chemical Works of Gedeon Richter Ltd, Budapest, Hungary
| | - S. Görög
- Chemical Works of Gedeon Richter Ltd, Budapest, Hungary
| |
Collapse
|
14
|
Olofsson S, Datema R. New Virus-Selective Inhibitor of Terminal Glycosylation Increasing Immunological Reactivity of a Viral Glycoprotein. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029000100104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In previous reports we have shown that certain nucleoside analogues may be phosphorylated by herpesvirus-specified thymidine kinases, thereby acquiring an ability to act as virus-selective inhibitors of terminal glycosylation. In the present paper we report that the antiviral nucleoside analogue 5-propyl-2′-deoxyuridine induced a pattern of glycosylation inhibition, which resulted in an increased availability of the HSV-1-specified glycoprotein gC-1 for neutralizing antibodies. This effect, which was absent in cells infected with a thymidine kinase-deficient HSV mutant, was correlated with a decrease in the proportion of highly branched N-linked oligosaccharides associated with gC-1.
Collapse
Affiliation(s)
- S. Olofsson
- Department of Clinical Virology, University of Göteborg, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden
| | - R. Datema
- Department of Virology, Bristol-Myers PRDD, 5 Research Parkway, Wallingford, Connecticut 06492-7660, USA
| |
Collapse
|
15
|
Qi C, Jia X, Lu L, Ma P, Wei M. HEK293T Cells Are Heterozygous for CCR5 Delta 32 Mutation. PLoS One 2016; 11:e0152975. [PMID: 27042825 PMCID: PMC4820142 DOI: 10.1371/journal.pone.0152975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/21/2016] [Indexed: 01/29/2023] Open
Abstract
C-C chemokine receptor 5 (CCR5) is a receptor for chemokines and a co-receptor for HIV-1 entry into the target CD4+ cells. CCR5 delta 32 deletion is a loss-of-function mutation, resistant to HIV-1 infection. We tried to induce the CCR5 delta 32 mutation harnessing the genome editing technique, CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR and CRISPR associated protein 9, Cas9) in the commonly used cell line human embryonic kidney HEK 293T cells. Surprisingly, we found that HEK293T cells are heterozygous for CCR5 delta 32 mutation, in contrast to the wild type CCR5 cells, human acute T cell leukemia cell line Jurkat and human breast adenocarcinoma cell line MDA-MB-231 cells. This finding indicates that at least one human cell line is heterozygous for the CCR5 delta 32 mutation. We also found that in PCR amplification, wild type CCR5 DNA and mutant delta 32 DNA can form mismatched heteroduplex and move slowly in gel electrophoresis.
Collapse
Affiliation(s)
- Chunxia Qi
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaopeng Jia
- School of Medicine, Nankai University, Tianjin, China
| | - Lingling Lu
- School of Medicine, Nankai University, Tianjin, China
| | - Ping Ma
- Department of Infectious Disease, The Tianjin Second People’s Hospital, Tianjin, China
| | - Min Wei
- School of Medicine, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
16
|
Development of therapies for autoimmune disease at Stanford: a tale of multiple shots and one goal. Immunol Res 2015; 58:307-14. [PMID: 24771483 DOI: 10.1007/s12026-014-8509-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The title of this contribution on Immunology at Stanford is purposely ambiguous. One goal is the development of safe and effective therapy for autoimmune diseases. Another definition of goal is to score, and this would ultimately mean the development of an approved drug. Indeed, the efforts in my four decades at Stanford, have included the discovery and subsequent development of a monoclonal antibody to block homing to the inflamed brain, leading to natalizumab, an approved therapeutic for two autoimmune diseases: relapsing-remitting MS and for inflammatory bowel disease. Multiple attempts to develop new therapies for autoimmune disease are described here: The trimolecular complex and the immune synapse serve as one major set of targets, with attempts to inhibit particular major histocompatibility molecules, the variable regions of the T cell receptor, and CD4. Other approaches focusing on antigen-specific tolerance include ongoing attempts with tolerizing DNA vaccines in type 1 diabetes. Finally, the repurposing of popular drugs approved for other indications, including statins and inhibitors of angiotensin converting enzyme is under development and showing promise in the clinic, particularly for secondary progressive multiple sclerosis. The milieu within Stanford Immunology has helped to nurture these efforts to translate discoveries in immunology and to take them from bench to bedside.
Collapse
|
17
|
HIV-1 entry in SupT1-R5, CEM-ss, and primary CD4+ T cells occurs at the plasma membrane and does not require endocytosis. J Virol 2014; 88:13956-70. [PMID: 25253335 DOI: 10.1128/jvi.01543-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Cytoplasmic entry of HIV-1 requires binding of the viral glycoproteins to the cellular receptor and coreceptor, leading to fusion of viral and cellular membranes. Early studies suggested that productive HIV-1 infection occurs by direct fusion at the plasma membrane. Endocytotic uptake of HIV-1 was frequently observed but was considered to constitute an unspecific dead-end pathway. More recent evidence suggested that endocytosis contributes to productive HIV-1 entry and may even represent the predominant or exclusive route of infection. We have analyzed HIV-1 binding, endocytosis, cytoplasmic entry, and infection in T-cell lines and in primary CD4(+) T cells. Efficient cell binding and endocytosis required viral glycoproteins and CD4, but not the coreceptor. The contribution of endocytosis to cytoplasmic entry and infection was assessed by two strategies: (i) expression of dominant negative dynamin-2 was measured and was found to efficiently block HIV-1 endocytosis but to not affect fusion or productive infection. (ii) Making use of the fact that HIV-1 fusion is blocked at temperatures below 23 °C, cells were incubated with HIV-1 at 22 °C for various times, and endocytosis was quantified by parallel analysis of transferrin and fluorescent HIV-1 uptake. Subsequently, entry at the plasma membrane was blocked by high concentrations of the peptidic fusion inhibitor T-20, which does not reach previously endocytosed particles. HIV-1 infection was scored after cells were shifted to 37 °C in the presence of T-20. These experiments revealed that productive HIV-1 entry occurs predominantly at the plasma membrane in SupT1-R5, CEM-ss, and primary CD4(+) T cells, with little, if any, contribution coming from endocytosed virions. IMPORTANCE HIV-1, like all enveloped viruses, reaches the cytoplasm by fusion of the viral and cellular membranes. Many viruses enter the cytoplasm by endosomal uptake and fusion from the endosome, while cell entry can also occur by direct fusion at the plasma membrane in some cases. Conflicting evidence regarding the site of HIV-1 fusion has been reported, with some studies claiming that fusion occurs predominantly at the plasma membrane, while others have suggested predominant or even exclusive fusion from the endosome. We have revisited HIV-1 entry using a T-cell line that exhibits HIV-1 endocytosis dependent on the viral glycoproteins and the cellular CD4 receptor; results with this cell line were confirmed for another T-cell line and primary CD4(+) T cells. Our studies show that fusion and productive entry occur predominantly at the plasma membrane, and we conclude that endocytosis is dispensable for HIV-1 infectivity in these T-cell lines and in primary CD4(+) T cells.
Collapse
|
18
|
Islam S, Kanbe K, Shimizu N, Ohtsuki T, Jinno-Oue A, Tanaka A, Hoshino H. CKR-L3, a deletion version CCR6-isoform shows coreceptor-activity for limited human and simian immunodeficiency viruses. BMC Infect Dis 2014; 14:354. [PMID: 24980635 PMCID: PMC4089560 DOI: 10.1186/1471-2334-14-354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/26/2014] [Indexed: 11/10/2022] Open
Abstract
Background The chemokine receptors (CKRs), mainly CCR5 and CXCR4 function as major coreceptors in infections caused by human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Approximately 20 G protein-coupled receptors (GPCRs) have been identified as minor coreceptors, alike CCR6 that we reported recently. Since CKR-L3 is indentified as a natural isoform of CCR6, we attempted in this study to explore the coreceptor function of CKR-L3. Methods NP-2 cells transduced with CD4-receptor (NP-2/CD4) normally remain resistant to HIV or SIV infection. However, the introduction of functional coreceptors can make these cells susceptible to these viruses. NP-2/CD4/CKR-L3 cells were produced to examine the coreceptor activity of CKR-L3. Likely, CCR6-isoform and the major coreceptors, CCR5 and CXCR4 were also examined in parallel. Presence of viral antigen in infected NP-2/CD4/coreceptor cells was detected by indirect immunofluorescence assay (IFA). The results were validated by detection of syncytia, proviral DNA and by measuring reverse transcriptase (RT) activities. Results HIV-2MIR and SIVsmE660 were found to infect NP-2/CD4/CKR-L3 cells, indicative of the coreceptor function of CKR-L3. Viral antigens appeared faster in NP-2/CD4/CKR-L3 cells than in NP-2/CD4/CCR6, indicating that CKR-L3 is a more efficient coreceptor. Moreover, syncytia formation was more rapid and RT release evidenced earlier and at higher levels with CKR-L3 than with CCR6. Sequence analysis in the C2-V3 envelope region of HIV-2MIR replicated through CKR-L3 and CCR6 coreceptor showed two and three amino acid substitutions respectively, in the C2 region compared to the CCR5-variant. The SIVsmE660-CKRL3 variant showed three amino acid substitutions in the V1 region, one change in the V2 and two changes in the C2 region. The SIVsmE660-CCR6 variant produced two changes in the V1 region, and three in the C2 region. Conclusions Isoform CKR-L3 exhibited coreceptor activity for limited primary HIV and SIV isolates with better efficiency than the parent CCR6-isoform. Amino acid substitutions in the envelope region of these viruses may confer selective pressure towards CKR-L3-use. CKR-L3 with other minor coreceptors may contribute to HIV and SIV pathogenesis including dissemination, trafficking and latency especially when major coreceptors become compromised. However, further works will be required to determine its clinical significance in HIV and SIV infection.
Collapse
Affiliation(s)
- Salequl Islam
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Schwarzer R, Levental I, Gramatica A, Scolari S, Buschmann V, Veit M, Herrmann A. The cholesterol-binding motif of the HIV-1 glycoprotein gp41 regulates lateral sorting and oligomerization. Cell Microbiol 2014; 16:1565-81. [PMID: 24844300 DOI: 10.1111/cmi.12314] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/24/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
Abstract
Enveloped viruses often use membrane lipid rafts to assemble and bud, augment infection and spread efficiently. However, the molecular bases and functional consequences of the partitioning of viral glycoproteins into microdomains remain intriguing questions in virus biology. Here, we measured Foerster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) to study the role of distinct membrane proximal regions of the human immunodeficiency virus glycoprotein gp41 for lipid raft partitioning in living Chinese hamster ovary cells (CHO-K1). Gp41 was labelled with a fluorescent protein at the exoplasmic face of the membrane, preventing any interference of the fluorophore with the proposed role of the transmembrane and cytoplasmic domains in lateral organization of gp41. Raft localization was deduced from interaction with an established raft marker, a fluorescently tagged glycophosphatidylinositol anchor and the cholesterol recognition amino acid consensus (CRAC) was identified as the crucial lateral sorting determinant in CHO-K1 cells. Interestingly, the raft association of gp41 indicates a substantial cell-to-cell heterogeneity of the plasma membrane microdomains. In complementary fluorescence polarization microscopy, a distinct CRAC requirement was found for the oligomerization of the gp41 variants. Our data provide further insight into the molecular basis and biological implications of the cholesterol dependent lateral sorting of viral glycoproteins for virus assembly at cellular membranes.
Collapse
Affiliation(s)
- Roland Schwarzer
- Department of Biology, Molecular Biophysics, Humboldt University, 10115, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Pan T, Wu S, He X, Luo H, Zhang Y, Fan M, Geng G, Ruiz VC, Zhang J, Mills L, Bai C, Zhang H. Necroptosis takes place in human immunodeficiency virus type-1 (HIV-1)-infected CD4+ T lymphocytes. PLoS One 2014; 9:e93944. [PMID: 24714696 PMCID: PMC3979729 DOI: 10.1371/journal.pone.0093944] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/10/2014] [Indexed: 01/19/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is characterized by progressive depletion of CD4+ T lymphocytes and dysfunction of the immune system. The numbers of CD4+ T lymphocytes in the human body are maintained constantly by homeostatic mechanisms that failed during HIV-1 infection, resulting in progressive loss of CD4+ T cells mainly via apoptosis. Recently, a non-apoptotic form of necrotic programmed cell death, named necroptosis, has been investigated in many biological and pathological processes. We then determine whether HIV-1-infected cells also undergo necroptosis. In this report, we demonstrate that HIV-1 not only induces apoptosis, but also mediates necroptosis in the infected primary CD4+ T lymphocytes and CD4+ T-cell lines. Necroptosis-dependent cytopathic effects are significantly increased in HIV-1-infected Jurkat cells that is lack of Fas-associated protein-containing death domain (FADD), indicating that necroptosis occurs as an alternative cell death mechanism in the absence of apoptosis. Unlike apoptosis, necroptosis mainly occurs in HIV-infected cells and spares bystander damage. Treatment with necrostatin-1(Nec-1), a RIP1 inhibitor that specifically blocks the necroptosis pathway, potently restrains HIV-1-induced cytopathic effect and interestingly, inhibits the formation of HIV-induced syncytia in CD4+ T-cell lines. This suggests that syncytia formation is mediated, at least partially, by necroptosis-related processes. Furthermore, we also found that the HIV-1 infection-augmented tumor necrosis factor-alpha (TNF-α) plays a key role in inducing necroptosis and HIV-1 Envelope and Tat proteins function as its co-factors. Taken together,necroptosis can function as an alternative cell death pathway in lieu of apoptosis during HIV-1 infection, thereby also contributing to HIV-1-induced cytopathic effects. Our results reveal that in addition to apoptosis, necroptosis also plays an important role in HIV-1-induced pathogenesis.
Collapse
Affiliation(s)
- Ting Pan
- Institute of Human Virology, Sun Yatsen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yatsen University, Guangzhou, China
| | - Shuangxin Wu
- Institute of Human Virology, Sun Yatsen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yatsen University, Guangzhou, China
| | - Xin He
- Institute of Human Virology, Sun Yatsen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yatsen University, Guangzhou, China
| | - Haihua Luo
- Institute of Human Virology, Sun Yatsen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yatsen University, Guangzhou, China
| | - Yijun Zhang
- Institute of Human Virology, Sun Yatsen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yatsen University, Guangzhou, China
| | - Miaomiao Fan
- Institute of Human Virology, Sun Yatsen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yatsen University, Guangzhou, China
| | - Guannan Geng
- Institute of Human Virology, Sun Yatsen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yatsen University, Guangzhou, China
| | - Vivian Clarke Ruiz
- Division of Infectious Diseases, Department of Medicine, Center for Human Virology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Jim Zhang
- Division of Infectious Diseases, Department of Medicine, Center for Human Virology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Lisa Mills
- Division of Infectious Diseases, Department of Medicine, Center for Human Virology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Chuan Bai
- Institute of Human Virology, Sun Yatsen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yatsen University, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Sun Yatsen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yatsen University, Guangzhou, China
| |
Collapse
|
21
|
Haverland NA, Fox HS, Ciborowski P. Quantitative proteomics by SWATH-MS reveals altered expression of nucleic acid binding and regulatory proteins in HIV-1-infected macrophages. J Proteome Res 2014; 13:2109-19. [PMID: 24564501 PMCID: PMC3993959 DOI: 10.1021/pr4012602] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection remains a worldwide epidemic, and innovative therapies to combat the virus are needed. Developing a host-oriented antiviral strategy capable of targeting the biomolecules that are directly or indirectly required for viral replication may provide advantages over traditional virus-centric approaches. We used quantitative proteomics by SWATH-MS in conjunction with bioinformatic analyses to identify host proteins, with an emphasis on nucleic acid binding and regulatory proteins, which could serve as candidates in the development of host-oriented antiretroviral strategies. Using SWATH-MS, we identified and quantified the expression of 3608 proteins in uninfected and HIV-1-infected monocyte-derived macrophages. Of these 3608 proteins, 420 were significantly altered upon HIV-1 infection. Bioinformatic analyses revealed functional enrichment for RNA binding and processing as well as transcription regulation. Our findings highlight a novel subset of proteins and processes that are involved in the host response to HIV-1 infection. In addition, we provide an original and transparent methodology for the analysis of label-free quantitative proteomics data generated by SWATH-MS that can be readily adapted to other biological systems.
Collapse
Affiliation(s)
- Nicole A Haverland
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center , Durham Research Center I, 985800 Nebraska Medical Center Omaha, Nebraska 68198-5800, United States
| | | | | |
Collapse
|
22
|
Engineering a switch-on peptide to ricin A chain for increasing its specificity towards HIV-infected cells. Biochim Biophys Acta Gen Subj 2014; 1840:958-63. [DOI: 10.1016/j.bbagen.2013.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/22/2013] [Accepted: 11/07/2013] [Indexed: 12/11/2022]
|
23
|
Torres-Castro I, Cortés-Rubio CN, Sandoval G, Lamoyi E, Larralde C, Huerta L. Flow cytometry analysis of cell population dynamics and cell cycle during HIV-1 envelope-mediated formation of syncytia in vitro. In Vitro Cell Dev Biol Anim 2014; 50:453-63. [DOI: 10.1007/s11626-013-9724-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/09/2013] [Indexed: 02/01/2023]
|
24
|
Teng Z, Kuang X, Wang J, Zhang X. Real-time cell analysis--a new method for dynamic, quantitative measurement of infectious viruses and antiserum neutralizing activity. J Virol Methods 2013; 193:364-70. [PMID: 23835032 DOI: 10.1016/j.jviromet.2013.06.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/19/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022]
Abstract
A newly developed electronic cell sensor array--the xCELLigence real-time cell analysis (RTCA) system is tested currently for dynamic monitoring of cell attachment, proliferation, damage, and death. In this study, human enterovirus (HEV71) infection of human rhabdomyosarcoma (RD) was used as an in vitro model to validate the application of this novel system as a straightforward and efficient assay for quantitative measurement of infectious viruses based on virus-induced cytopathic effect (CPE). Several experimental tests were performed including the determination of optimal seeding density of the RD cells in 96-well E-plates, RTCA real-time monitoring of the virus induced CPE and virus titer calculation, and viral neutralization test to determine HEV71 antibody titer. Traditional 50% tissue culture infective dose (TCID50) assay was also conducted for methodology comparison and validation, which indicated a consistent result between the two assays. These findings indicate that the xCELLigence RTCA system can be a valuable addition to current viral assays for quantitative measurement of infectious viruses and quantitation of neutralization antibody titer in real-time, warranting for future research and exploration of applications to many other animal and human viruses.
Collapse
Affiliation(s)
- Zheng Teng
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | | | | | | |
Collapse
|
25
|
Lin YT, Yen CH, Chen HL, Liao YJ, Lin IF, Chen M, Lan YC, Chuang SY, Hsieh SL, Chen YMA. The serologic decoy receptor 3 (DcR3) levels are associated with slower disease progression in HIV-1/AIDS patients. J Formos Med Assoc 2013; 114:498-503. [PMID: 26062966 DOI: 10.1016/j.jfma.2013.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND/PURPOSE The decoy receptor 3 (DcR3) is a member of the tumor necrosis factor receptor (TNFR) super-family. It counteracts the biological effects of Fas ligands and inhibits apoptosis. The goals of this study were to understand the associations between serologic DcR3 (sDcR3) levels and different human immunodeficiency virus type 1 (HIV-1) subtypes, as well as the AIDS disease progression. METHODS Serum samples from 61 HIV/AIDS patients, who had been followed up every 6 months for 3 years, were collected. sDcR3 levels were quantified using an enzyme immunoassay (EIA). RESULTS The sDcR3 levels in patients with HIV-1 subtype B were significantly higher than those in patients infected with subtype CRF01_AE (p < 0.001). In addition, multivariable linear mixed model analysis demonstrated that HIV-1 subtype B and slow disease progression were associated with higher levels of sDcR3, adjusting for potential predictors (p = 0.0008 and 0.0455, respectively). CONCLUSION HIV-1-infected cells may gain a survival advantage by activating DcR3, which prevents infected cell detection by the host immune system. These data indicate that the sDcR3 level is a biomarker for AIDS disease progression.
Collapse
Affiliation(s)
- Yu-Ting Lin
- AIDS Prevention and Research Centre, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chia-Hung Yen
- AIDS Prevention and Research Centre, National Yang-Ming University, Taipei 11221, Taiwan
| | - Heng-Li Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Jen Liao
- AIDS Prevention and Research Centre, National Yang-Ming University, Taipei 11221, Taiwan; School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 11031, Taiwan
| | - I-Feng Lin
- Institute of Public Health, National Yang-Ming University, Taipei 11221, Taiwan
| | - Marcelo Chen
- AIDS Prevention and Research Centre, National Yang-Ming University, Taipei 11221, Taiwan; Department of Urology, Mackay Memorial Hospital, Taipei 10449, Taiwan; School of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Yu-Ching Lan
- AIDS Prevention and Research Centre, National Yang-Ming University, Taipei 11221, Taiwan; Department of Health Risk Management, China Medical University, Taichung 40402, Taiwan
| | - Shao-Yuan Chuang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Shie-Liang Hsieh
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan; Department and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan; Infection and Immunity Research Centre, National Yang-Ming University, Taipei 11221, Taiwan; Immunology Centre, Taipei Veterans General Hospital, Taipei 11221, Taiwan
| | - Yi-Ming Arthur Chen
- AIDS Prevention and Research Centre, National Yang-Ming University, Taipei 11221, Taiwan; Department of Microbiology, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
26
|
Anti-retroviral strategies for AIDS and related diseases. Can J Infect Dis 2012; 2:121-8. [PMID: 22529721 DOI: 10.1155/1991/487657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/1990] [Accepted: 01/12/1991] [Indexed: 02/04/2023] Open
Abstract
The replication cycle of human immunodeficiency virus type 1 (HIV-1) and other retroviruses consists of four stages: attachment of the virus to specific receptors on the cell surface; uncoating of the viral nucleic acid and conversion to DNA; production of viral RNA and proteins; and assembly and liberation of progeny virus from the cell. Each of these steps represents a potential target for antiviral chemotherapy. Combinations of drugs which act against different steps in the viral replication cycle might be expected to have synergistic potential. Zidovudine (AZT) is the most widely used drug to date for impeding the replication of HIV-1. Although AZT therapy has been reasonably successful, it has not been free from toxicity. In addition, there have been several reports of isolation of AZT-resistant variants of HIV-1.
Collapse
|
27
|
Differential HIV-1 endocytosis and susceptibility to virus infection in human macrophages correlate with cell activation status. J Virol 2012; 86:10399-407. [PMID: 22787228 DOI: 10.1128/jvi.01051-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HIV-1 is an enveloped virus that enters target cells by fusion either directly at the plasma membrane or at the endosomal membrane. The latter mechanism follows a rapid engulfment of HIV-1 after its receptor engagement at the cell surface, and its scale depends on cellular endocytosis/degradation rates and virus fusion kinetics. HIV-1 has recently been shown to exploit a novel Pak1-dependent macropinocytosis mechanism as a way to productively infect macrophages. However, macrophages are highly heterogeneous cells that can adapt functionally to their changing environment, and their endosomal/lysosomal pathway is highly regulated upon cell activation. These changes might impact the ability of HIV-1 to exploit endocytosis as a way to productively infect macrophages. In this study, we compared HIV-1 endocytosis/degradation rates in nonactivated, M1-activated, and M2a-activated monocyte-derived macrophages (MDMs). We found that the rate of HIV-1 endocytosis was increased in M1-activated but decreased in M2a-activated MDMs. However, both M1 and M2a activations of MDMs led specifically to a greater clathrin-mediated endocytosis of HIV-1, which was independent of CD4 and CCR5 binding. Furthermore, clathrin-mediated endocytosis is unlikely to result in productive HIV-1 infection, given that it leads to increased viral degradation. Therefore, we suggest that viral fusion following endocytosis is restricted in activated macrophages.
Collapse
|
28
|
Février M, Dorgham K, Rebollo A. CD4+ T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis. Viruses 2011; 3:586-612. [PMID: 21994747 PMCID: PMC3185763 DOI: 10.3390/v3050586] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection is principally a mucosal disease and the gastrointestinal (GI) tract is the major site of HIV replication. Loss of CD4+ T cells and systemic immune hyperactivation are the hallmarks of HIV infection. The end of acute infection is associated with the emergence of specific CD4+ and CD8+ T cell responses and the establishment of a chronic phase of infection. Abnormal levels of immune activation and inflammation persist despite a low steady state level of viremia. Although the causes of persistent immune hyperactivation remain incompletely characterized, physiological alterations of gastrointestinal tract probably play a major role. Failure to restore Th17 cells in gut-associated lymphoid tissues (GALT) might impair the recovery of the gut mucosal barrier. This review discusses recent advances on understanding the contribution of CD4+ T cell depletion to HIV pathogenesis.
Collapse
Affiliation(s)
- Michèle Février
- Unité Génomique Virale et Vaccination, CNRS URA3015, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.
| | | | | |
Collapse
|
29
|
Lang TU, Khalbuss WE, Monaco SE, Michelow P, Pantanowitz L. Review of HIV-Related Cytopathology. PATHOLOGY RESEARCH INTERNATIONAL 2011; 2011:256083. [PMID: 21559199 PMCID: PMC3090088 DOI: 10.4061/2011/256083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/15/2011] [Indexed: 11/28/2022]
Abstract
Exfoliative and aspiration cytologies play a major role in the management of patients with human immunodeficiency virus infection. Common cytology samples include cervicovaginal and anal Papanicolaou tests, fine needle aspirations, respiratory specimens, body fluids, Tzanck preparations, and touch preparations from brain specimens. While the cytopathologists need to be aware of specific infections and neoplasms likely to be encountered in this setting, they should be aware of the current shift in the pattern of human immunodeficiency virus-related diseases, as human immunodeficiency virus patients are living longer with highly active antiretroviral therapy and suffering fewer opportunistic infections with better antimicrobial prophylaxis. There is a rise in nonhuman immunodeficiency virus-defining cancers (e.g., anal cancer, Hodgkin's lymphoma) and entities (e.g., gynecomastia) from drug-related side effects. Given that fine needle aspiration is a valuable, noninvasive, and cost-effective tool, it is frequently employed in the evaluation and diagnosis of human immunodeficiency virus-related diseases. Anal Papanicolaou tests are also increasing as a result of enhanced screening of human immunodeficiency virus-positive patients for cancer. This paper covers the broad spectrum of disease entities likely to be encountered with human immunodeficiency virus-related cytopathology.
Collapse
Affiliation(s)
- Tee U. Lang
- Department of Pathology, University of Pittsburgh Medical Center Cancer Pavilion, 5150 Centre Avenue, Suite 201, Pittsburgh, PA 15232, USA
| | - Walid E. Khalbuss
- Department of Pathology, University of Pittsburgh Medical Center Cancer Pavilion, 5150 Centre Avenue, Suite 201, Pittsburgh, PA 15232, USA
| | - Sara E. Monaco
- Department of Pathology, University of Pittsburgh Medical Center Cancer Pavilion, 5150 Centre Avenue, Suite 201, Pittsburgh, PA 15232, USA
| | - Pam Michelow
- Cytology Unit, Department of Anatomical Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2192, South Africa
| | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh Medical Center Cancer Pavilion, 5150 Centre Avenue, Suite 201, Pittsburgh, PA 15232, USA
| |
Collapse
|
30
|
Quantitative and phenotypic analyses of lymphocyte–monocyte heterokaryons induced by the HIV envelope proteins: Significant loss of lymphoid markers. Exp Mol Pathol 2011; 90:157-66. [DOI: 10.1016/j.yexmp.2010.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/05/2010] [Indexed: 11/21/2022]
|
31
|
Grivel JC, Shattock RJ, Margolis LB. Selective transmission of R5 HIV-1 variants: where is the gatekeeper? J Transl Med 2011; 9 Suppl 1:S6. [PMID: 21284905 PMCID: PMC3105506 DOI: 10.1186/1479-5876-9-s1-s6] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To enter target cells HIV-1 uses CD4 and a coreceptor. In vivo the coreceptor function is provided either by CCR5 (for R5) or CXCR4 (for X4 HIV-1). Although both R5 and X4 HIV-1 variants are present in body fluids (semen, blood, cervicovaginal and rectal secretions), R5 HIV-1 appears to transmit infection and dominates early stages of HIV disease. Moreover, recent sequence analysis of virus in acute infection shows that, in the majority of cases of transmission, infection is initiated by a single virus. Therefore, the existence of a "gatekeeper" that selects R5 over X4 HIV-1 and that operates among R5 HIV-1 variants has been suggested. In the present review we consider various routes of HIV-transmission and discuss potential gatekeeping mechanisms associated with each of these routes. Although many mechanisms have been identified none of them explains the almost perfect selection of R5 over X4 in HIV-1 transmission. We suggest that instead of one strong gatekeeper there are multiple functional gatekeepers and that their superimposition is sufficient to protect against X4 HIV-1 infection and potentially select among R5 HIV-1 variants. In conclusion, we propose that the principle of multiple barriers is more general and not restricted to protection against X4 HIV-1 but rather can be applied to other phenomena when one factor has a selective advantage over the other(s). In the case of gatekeepers for HIV-1 transmission, the task is to identify them and to decipher their molecular mechanisms. Knowledge of the gatekeepers' localization and function may enable us to enhance existing barriers against R5 transmission and to erect the new ones against all HIV-1 variants.
Collapse
Affiliation(s)
- Jean-Charles Grivel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | | | | |
Collapse
|
32
|
Carter GC, Bernstone L, Baskaran D, James W. HIV-1 infects macrophages by exploiting an endocytic route dependent on dynamin, Rac1 and Pak1. Virology 2011; 409:234-50. [DOI: 10.1016/j.virol.2010.10.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 10/04/2010] [Accepted: 10/13/2010] [Indexed: 01/12/2023]
|
33
|
|
34
|
Decreased CD4 and wide-ranging expression of other immune receptors after HIV-envelope-mediated formation of syncytia in vitro. Arch Virol 2010; 155:1205-16. [PMID: 20508956 DOI: 10.1007/s00705-010-0704-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Abstract
In human HIV infection, multinucleated cells (syncytia) are formed by fusion of HIV-infected cells with CD4+ cells. In order to examine possible functional implications of syncytia formation for the immune response, the expression of important surface molecules by T-cell syncytia and surrounding cells that remain unfused (bystander cells) was analyzed in cocultures of HIV-Env- and CD4-expressing E6 Jurkat T cells. Fusion partners were differentially labeled with lipophilic probes, and syncytia and bystander cells were identified by flow cytometry. The cellular phenotype and response to activation stimulus after fusion were analyzed with antibodies coupled to third-party fluorochromes. Cocultured unfused E6 cells showed a marked decrease in CD4 expression, suggesting the selective recruitment of cells strongly expressing CD4 into syncytia. However, the incorporated CD4 was not detected in the syncytia, whereas the range of expression of CD28, ICAM-1, CXCR4 and CD3 was wider than that of unfused cells. Limited expression of CD4 in the bystander unfused population, as well as in the newly formed syncytia, would result in limitation of further viral entry and a failure to identify these cells, and it could partially contribute to functional impairment and a decrease in the number of CD4+ T cells in AIDS. Most of the syncytia were viable and expressed CD25 and IL-2 in response to activation by phorbol myristate acetate (PMA) and ionomicyn. Thus, syncytia populations harboring widely heterogeneous levels of receptors would constitute a potential source of anomalous immune function.
Collapse
|
35
|
Vérollet C, Zhang YM, Le Cabec V, Mazzolini J, Charrière G, Labrousse A, Bouchet J, Medina I, Biessen E, Niedergang F, Bénichou S, Maridonneau-Parini I. HIV-1 Nef Triggers Macrophage Fusion in a p61Hck- and Protease-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2010; 184:7030-9. [DOI: 10.4049/jimmunol.0903345] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
HIV-1 viral genes and mitochondrial apoptosis. Apoptosis 2008; 13:1088-99. [PMID: 18622704 DOI: 10.1007/s10495-008-0239-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 06/27/2008] [Indexed: 02/07/2023]
Abstract
The mitochondrion is an organelle that regulates various cellular functions including the production of energy and programmed cell death. Aberrant mitochondrial function is often concomitant with various cytopathies and medical disorders. The mitochondrial membrane plays a key role in the induction of cellular apoptosis, and its destabilization, as triggered by both intracellular and extracellular stimuli, results in the release of proapoptotic factors into the cytosol. Not surprisingly, proteins from the human immunodeficiency virus type 1 (HIV) have been implicated in exploiting this organelle to promote the targeted depletion of key immune cells, which assists in viral evasion of the immune system and contributes to the characteristic global immunodeficiency observed during progression of disease. Here we review the mechanisms by which HIV affects the mitochondrion, and suggest that various viral-associated genes may directly regulate apoptotic cell death.
Collapse
|
37
|
Preferential cytolysis of peripheral memory CD4+ T cells by in vitro X4-tropic human immunodeficiency virus type 1 infection before the completion of reverse transcription. J Virol 2008; 82:9154-63. [PMID: 18596085 DOI: 10.1128/jvi.00773-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CD4+ T-cell depletion is the hallmark of AIDS pathogenesis. Multiple mechanisms may contribute to the death of productively infected CD4+ T cells and innocent-bystander cells. In this study, we characterize a novel mechanism in which human immunodeficiency virus type 1 (HIV-1) infection preferentially depletes peripheral memory CD4+ T cells before the completion of reverse transcription. Using a recombinant HIV-1 carrying the green fluorescent protein reporter gene, we demonstrate that memory CD4+ T cells were susceptible to infection-induced cell death at a low multiplicity of infection. Infected memory CD4+ T cells underwent rapid necrotic cell death. Killing of host cells was dependent on X4 envelope-mediated viral fusion, but not on virion-associated Vpr or Nef. In contrast to peripheral resting CD4+ T cells, CD4+ T cells stimulated by mitogen or certain cytokines were resistant to HIV-1-induced early cell death. These results demonstrate that early steps in HIV-1 infection have a detrimental effect on certain subsets of CD4+ T cells. The early cell death may serve as a selective disadvantage for X4-tropic HIV-1 in acute infection but may play a role in accelerated disease progression, which is associated with the emergence of X4-tropic HIV-1 in the late stage of AIDS.
Collapse
|
38
|
The possible contribution of HIV-1-induced syncytia to the generation of intersubtype recombinants in vitro. AIDS 2008; 22:1009-17. [PMID: 18520344 DOI: 10.1097/qad.0b013e3282f82b6c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To develop a method for single syncytia isolation and delineate the possible contribution of syncytia to intersubtype recombination. DESIGN We dually infected whole peripheral mononuclear blood cells with subtype A and D viruses and studied syncytia in vitro and developed a method to isolate individual syncytia to further study HIV variants/dual infections, viral isolation, proviral copies in single syncytia and possible intersubtype recombination in dual cultures containing syncytia using real time PCR. METHODS Cell culture-based single syncytia isolation, PCR and cloning to determine the nature of HIV variants and real-time PCR to determine proviral copies per individual syncytium and intersubtype recombination in dual cultures. Viral coculture from single syncytia and p24 antigen determination for assessing viral replication in vitro. RESULTS Our results show the feasibility that not only can single syncytia be successfully isolated, but the viruses from individual syncytia can also be grown in vitro. They also demonstrate the ability of single syncytia to bring diverse HIV-1 subtypes together along with the possible contribution to intersubtype recombination in vitro. Up to 40% of single syncytia harbored both input HIV-1 subtypes and single syncytium could harbor as many as 2000 proviral DNA copies, which exceeds the limit seen in a single cell. CONCLUSION These analyses are unique in experimentally confirming the previously held belief that single syncytia can harbor multiple HIV strains and that they can serve as a breeding ground for heterozygous virions and this may contribute toward viral diversity and intersubtype recombination.
Collapse
|
39
|
ROSATI ALESSANDRA, LEONE ARTURO, VALLE LUISDEL, AMINI SHOHREH, KHALILI KAMEL, TURCO MARIACATERINA. Evidence for BAG3 modulation of HIV-1 gene transcription. J Cell Physiol 2007; 210:676-83. [PMID: 17187345 PMCID: PMC2670777 DOI: 10.1002/jcp.20865] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A family of co-chaperone proteins that share the Bcl-2-associated athanogene (BAG) domain are involved in a number of cellular processes, including proliferation and apoptosis. Among these proteins, BAG3 has received increased attention due to its high levels in several disease models and ability to associate with Hsp70 and a number of other molecular partners. BAG3 expression is stimulated during cell response to stressful conditions, such as exposure to high temperature, heavy metals, and certain drugs. Here, we demonstrate that BAG3 expression is elevated upon HIV-1 infection of human lymphocytes and fetal microglial cells. Furthermore, BAG3 protein was detectable in the cytoplasm of reactive astrocytes in HIV-1-associated encephalopathy biopsies, suggesting that induction of BAG3 is part of the host cell response to viral infection. To assess the impact of BAG3 upregulation on HIV-1 gene expression, we performed transcription assays and demonstrated that BAG3 can suppress transcription of the HIV-1 long terminal repeat (LTR) in microglial cells. This activity was mapped to the kappaB motif of the HIV-1 LTR. Results from in vitro and in vivo binding assays revealed that BAG3 suppresses interaction of the p65 subunit of NF-kappaB with the kappaB DNA motif of the LTR. Results from binding and transcriptional assay identified the C-terminus of BAG3 as a potential domain involved in the observed inhibitory effect of BAG3 on p65 activity. These observations reveal a previously unrecognized cell response, that is, an increase in BAG3, elicited by HIV-1 infection, and may provide a new avenue for the suppression of HIV-1 gene expression.
Collapse
Affiliation(s)
- ALESSANDRA ROSATI
- Department of Pharmaceutical Sciences (DiFarma), University of Salerno, Salerno, Italy
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - ARTURO LEONE
- Department of Pharmaceutical Sciences (DiFarma), University of Salerno, Salerno, Italy
| | - LUIS DEL VALLE
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - SHOHREH AMINI
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - KAMEL KHALILI
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
- Correspondence to: Kamel Khalili, 1900 North 12th Street, 015-96, Room 203, Philadelphia, PA 19122. E-mail:
| | - MARIA CATERINA TURCO
- Department of Pharmaceutical Sciences (DiFarma), University of Salerno, Salerno, Italy
| |
Collapse
|
40
|
Abstract
Highly active antiretroviral therapy (HAART) has significantly improved the prognosis of patients with HIV infection; however, the use of protease inhibitors has been associated with increased cardiovascular events and worsening of multiple coronary heart disease risk factors including dyslipidemia, insulin resistance, and endothelial dysfunction. Endothelial dysfunction may be caused by the infection itself, the immunologic responses due to the HIV virus, and also by the effects of HAART through their effects on both lipid and glucose metabolism. The study of endothelial function in HIV infection and its modifications by HAART is an exciting new field in clinical research, limited by multiple factors such as viral factors, immunologic conditions, and metabolic drug effects that could affect the interpretation of endothelial impairment. Further studies are still needed to understand the significance of endothelial dysfunction in the cardiovascular risk assessment of patients with HIV infection.
Collapse
Affiliation(s)
- Bruno R Cotter
- University of California San Diego Medical Center, 200 West Arbor Street, San Diego, CA 92103-8411, USA.
| |
Collapse
|
41
|
Lee JB, Hayashi K, Hirata M, Kuroda E, Suzuki E, Kubo Y, Hayashi T. Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biol Pharm Bull 2006; 29:2135-9. [PMID: 17015966 DOI: 10.1248/bpb.29.2135] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A sulfated polysaccharide named naviculan was isolated from a diatom, Navicula directa (W. SMITH) RALFS, collected in deep sea water from Toyama Bay. The polysaccharide consisted of fucose, xylose, galactose, mannose, rhamnose and sulfate with an apparent molecular weight of 220000. It showed antiviral activities against herpes simplex viruses type 1 and 2, and influenza A virus with selectivity indices (CC50/IC50) of 270, 510 and 32, respectively. Naviculan also showed an inhibitory effect on cell-cell fusion between CD4-expressing and human immunodeficiency virus (HIV) gp160-expressing cells that was used as a model system of infection with HIV.
Collapse
Affiliation(s)
- Jung-Bum Lee
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Sahu GK, Lee K, Ji J, Braciale V, Baron S, Cloyd MW. A novel in vitro system to generate and study latently HIV-infected long-lived normal CD4+ T-lymphocytes. Virology 2006; 355:127-37. [PMID: 16919704 DOI: 10.1016/j.virol.2006.07.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/13/2006] [Accepted: 07/11/2006] [Indexed: 11/30/2022]
Abstract
Studies of mechanisms of HIV-latency and its reactivation in long-lived resting CD4+ T-lymphocytes in patients have been limited due to the very low frequency of these cells ( approximately 1-10 cells per 10(6) CD4+ T-cells). To circumvent this obstacle, an in vitro culture system for post-activation long-term survival of normal CD4+ T-cells in a quiescent (non-cycling) state was developed and used to generate latently infected, long-lived quiescent CD4+ T-cells from HIV-infected, activated normal CD4+ T-lymphocytes. This yielded a frequency of approximately 5x10(4) latently infected cells per 10(6) cells in culture, which is approximately 10(3)- to 10(4)-fold higher than that available from patients. Moreover, 5-10% of long-term surviving non-cycling T-cells were found to make infectious HIV continuously at low levels, showing that HIV production from infected T-cells does not require full cellular activation. This model system should facilitate studies of long-lived, latently infected and persistently HIV-producing quiescent normal CD4+ T-lymphocytes.
Collapse
Affiliation(s)
- Gautam K Sahu
- Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Blvd, BSB #3.132, Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
43
|
Cloyd MW, Ji J, Smith M, Braciale V. HIV may deplete most CD4 lymphocytes by a mechanism involving signaling through its receptors on non-permissive resting lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 584:229-43. [PMID: 16802611 DOI: 10.1007/0-387-34132-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Miles W Cloyd
- Department of Pathology, University of Texas Medical Branch, Galveston 77555, USA
| | | | | | | |
Collapse
|
44
|
Schambach A, Galla M, Modlich U, Will E, Chandra S, Reeves L, Colbert M, Williams DA, von Kalle C, Baum C. Lentiviral vectors pseudotyped with murine ecotropic envelope: increased biosafety and convenience in preclinical research. Exp Hematol 2006; 34:588-92. [PMID: 16647564 DOI: 10.1016/j.exphem.2006.02.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 02/06/2006] [Accepted: 02/06/2006] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Lentiviral vectors are increasingly used for preclinical models of gene therapy and other forms of experimental transgenesis. Due to the broad tropism and the ability for concentration by ultracentrifugation, most lentiviral vector preparations are produced using the vesicular stomatitis virus glycoprotein (VSV-g) protein as envelope. Recently, Hanawa and colleagues have demonstrated that the ecotropic envelope protein of murine leukemia viruses allows efficient pseudotyping of HIV-1-derived vector particles. However, this method has found little acceptance, despite potential advantages. MATERIALS AND METHODS We produced lentiviral vectors pseudotyped with murine ecotropic envelope using a four-plasmid transient transfection system and evaluated their performance in murine fibroblasts and hematopoietic cells. RESULTS Titers of lentiviral "ecotropic" supernatants were only slightly lower than those produced with VSV-g, could be concentrated by overnight centrifugation (13,000g), and efficiently transduced murine fibroblasts and hematopoietic cells but not human cells. Our Institutional Biosafety Committee agreed on the production and use of replication-defective lentiviral vectors pseudotyped with murine ecotropic envelope under biosafety level 1 (BL1) conditions with additional BL2 practices. We also obtained useful guidelines for the work with human infectious lentiviral vectors. CONCLUSIONS For the researcher, "ecotropic" lentiviral vectors significantly improve the convenience of daily work, compared to the conditions required for lentiviral pseudotypes that are capable of infecting human cells. High efficiency and superior biosafety in combination with convenient handling will certainly boost the potential applicability of this important vector system.
Collapse
Affiliation(s)
- Axel Schambach
- Department of Hematology, Hemostaseology and Oncology, Hannover Medical School, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- M-L Gougeon
- Antiviral Immunity, Biotherapy and Vaccine Unit, Department of Molecular Medicine, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
46
|
Perfettini JL, Castedo M, Roumier T, Andreau K, Nardacci R, Piacentini M, Kroemer G. Mechanisms of apoptosis induction by the HIV-1 envelope. Cell Death Differ 2006; 12 Suppl 1:916-23. [PMID: 15719026 DOI: 10.1038/sj.cdd.4401584] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The envelope glycoprotein complex (Env) of human immunodeficiency virus-1 (HIV-1) can induce apoptosis by a cornucopia of distinct mechanisms. A soluble Env derivative, gp120, can kill cells through signals that are transmitted by chemokine receptors such as CXCR4. Cell surface-bound Env (gp120/gp41), as present on the plasma membrane of HIV-1-infected cells, can kill uninfected bystander cells expressing CD4 and CXCR4 (or similar chemokine receptors, depending on the Env variant) by at least three different mechanisms. First, a transient interaction involving the exchange of lipids between the two interacting cells ('the kiss of death') may lead to the selective death of single CD4-expressing target cells. Second, fusion of the interacting cells may lead to the formation of syncytia which then succumb to apoptosis in a complex pathway involving the activation of several kinases (cyclin-dependent kinase-1, Cdk1; checkpoint kinase-2, Chk2; mammalian target of rapamycin, mTOR; p38 mitogen-activated protein kinase, p38 MAPK; inhibitor of NF-kappaB kinase, IKK), as well as the activation of several transcription factors (NF-kappaB, p53), finally resulting in the activation of the mitochondrial pathway of apoptosis. Third, if the Env-expressing cell is at an early stage of imminent apoptosis, its fusion with a CD4-expressing target cell can precipitate the death of both cells, through a process that may be considered as contagious apoptosis and which does not involve Cdk1, mTOR, p38 nor p53, yet does involve mitochondria. Activation of some of the above- mentioned lethal signal transducers have been detected in patients' tissues, suggesting that HIV-1 may indeed trigger apoptosis through molecules whose implication in Env-induced killing has initially been discovered in vitro.
Collapse
Affiliation(s)
- J-L Perfettini
- CNRS-UMR8125, Institut Gustave Roussy, 39 rue Camille-Desmoulins, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Hurtrel B, Petit F, Arnoult D, Müller-Trutwin M, Silvestri G, Estaquier J. Apoptosis in SIV infection. Cell Death Differ 2006; 12 Suppl 1:979-90. [PMID: 15818408 DOI: 10.1038/sj.cdd.4401600] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pathogenic human immunodeficiency virus (HIV)/Simian immunodeficiency virus (SIV) infection is associated with increased T-cell apoptosis. In marked contrast to HIV infection in humans and SIV infection in macaques, the SIV infection of natural host species is typically nonpathogenic despite high levels of viral replication. In these nonpathogenic primate models, no observation of T-cell apoptosis was observed, suggesting that either SIV is less capable of directly inducing apoptosis in natural hosts (likely as a result of coevolution/coadaptation with the host) or, alternatively, that the indirect T-cell apoptosis plays the key role in determining the HIV-associated T-cell depletion and progression to acquired immune deficiency syndrome (AIDS). Understanding the molecular and cellular mechanisms responsible for the disease-free equilibrium in natural hosts for SIV infection, including those determining the absence of high levels of T-cell apoptosis, is likely to provide important clues regarding the mechanisms of AIDS pathogenesis in humans.
Collapse
Affiliation(s)
- B Hurtrel
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, cedex 15, France
| | | | | | | | | | | |
Collapse
|
48
|
AMENDOLA ALESSANDRA, RODOLFO CARLO, CARO ANTONINO, CICCOSANTI FABIOLA, FALASCA LAURA, PIACENTINI MAURO. “Tissue” Transglutaminase Expression in HIV‐Infected Cells. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2001.tb03906.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- ALESSANDRA AMENDOLA
- Laboratory of Virology, “Lazzaro Spallanzani”—IRCCS, Rome, Italy
- Laboratory of Cell Biology and Electronic Microscopy, “Lazzaro Spallanzani”—IRCCS, Rome, Italy
| | - CARLO RODOLFO
- Department of Biology, University of Rome “Tor Vergata,” Rome, Italy
| | - ANTONINO CARO
- Laboratory of Virology, “Lazzaro Spallanzani”—IRCCS, Rome, Italy
| | - FABIOLA CICCOSANTI
- Laboratory of Cell Biology and Electronic Microscopy, “Lazzaro Spallanzani”—IRCCS, Rome, Italy
| | - LAURA FALASCA
- Laboratory of Cell Biology and Electronic Microscopy, “Lazzaro Spallanzani”—IRCCS, Rome, Italy
| | - MAURO PIACENTINI
- Laboratory of Cell Biology and Electronic Microscopy, “Lazzaro Spallanzani”—IRCCS, Rome, Italy
- Department of Biology, University of Rome “Tor Vergata,” Rome, Italy
| |
Collapse
|
49
|
Velilla PA, Hoyos A, Rojas M, Patiño PJ, Vélez LA, Rugeles MT. Apoptosis as a mechanism of natural resistance to HIV-1 infection in an exposed but uninfected population. J Clin Virol 2005; 32:329-35. [PMID: 15780814 DOI: 10.1016/j.jcv.2004.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 08/10/2004] [Accepted: 08/30/2004] [Indexed: 11/20/2022]
Abstract
BACKGROUND Apoptosis, also known as programmed cell death, has been reported not only as a pathogenic mechanism, but also as a mechanism of resistance and control of a variety of infections. Particularly during HIV-1 infection, apoptosis is the main mechanism by which infected and uninfected CD4+ lymphocytes are eliminated. However, apoptosis as a mechanism of natural resistance to HIV infection has this far not been explored. OBJECTIVE To determine whether apoptosis could explain, at least in part, the natural resistance to HIV infection observed in some exposed but uninfected individuals (ESN). RESULTS Our data shows that peripheral blood monocytes in the ESN group has a predisposition to undergo spontaneous apoptosis, as well as apoptosis induced by HIV infection in vitro, compared with monocyte population from the control group at low risk of HIV infection. CONCLUSIONS These findings suggest that, in some ESN individuals, monocytes could play an important role in the control of HIV infection by undergoing apoptosis. However, since the variability among individuals is large, studies with larger cohorts focusing in monocyte apoptosis as pathogenic mechanisms are required.
Collapse
Affiliation(s)
- P A Velilla
- Grupo de Inmunovirología, Corporación Biogénesis, Universidad de Antioquia, A.A. 1226, Medellín, Colombia
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Apoptosis has been suggested to cause severe CD4+ T cell depletion in patients infected with HIV. This review focuses on the biological events involved in death ligand-induced apoptosis during HIV infection. Among these ligands, TRAIL appears critical in HIV-infection. Death ligand-induced apoptosis might be a major pathogenic event in many virus-induced diseases including AIDS and the clarification of its mechanism will aid in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Yoshiharu Miura
- Laboratory of Viral Pathogenesis, Research Center for AIDS, Institute for Virus Research, Kyoto University, Japan.
| | | |
Collapse
|