1
|
Baskaran SP, Ranganathan G, Sahoo AK, Kumar K, Amaresan J, Ramesh K, Vivek-Ananth RP, Samal A. sCentInDB: a database of essential oil chemical profiles of Indian medicinal plants. Mol Divers 2025:10.1007/s11030-025-11215-5. [PMID: 40343630 DOI: 10.1007/s11030-025-11215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
Abstract
Essential oils are complex mixtures of volatile compounds produced by aromatic plants and widely used in personal care, food flavoring, and pharmaceutical industry due to their odor and therapeutic properties. As a high-value and low-volume organic product, optimizing plant yield and modifying composition by leveraging knowledge on chemical profiles of essential oils can lead to enhanced bioproducts. Additionally, overharvesting of wild medicinal plants, especially in India, threatens biodiversity. Essential oil profiles of such plants can help regulate their exploitation. Here, we present sCentInDB, a manually curated FAIR-compliant DataBase of Essential oil Chemical profiles of Medicinal plants of India, compiled from published literature. sCentInDB contains data on 554 Indian medicinal plants at the plant part level, encompassing 2170 essential oil profiles, 3420 chemicals, 471 plant-part-therapeutic use associations, 120 plant-part-odor associations, and 218 plant-part-color associations. sCentInDB also compiles metadata such as sample location, isolation, and analysis methods. Subsequently, an extensive analysis of the chemical space in sCentInDB was performed. By constructing a chemical similarity network, terpenoids were found to be distributed across the network, indicating greater structural diversity. Moreover, a comparison of the scaffold diversity of chemicals in sCentInDB was performed against three other aroma libraries using cyclic system retrieval curves. Altogether, sCentInDB will serve as a valuable resource for researchers working on plant volatiles and employing genetic engineering to enhance oil yield and composition. Further, sCentInDB will aid in the establishment of quality standards for essential oils and provide vital insights for therapeutic and perfumery applications. sCentInDB is accessible at https://cb.imsc.res.in/scentindb/ .
Collapse
Affiliation(s)
- Shanmuga Priya Baskaran
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | | | - Ajaya Kumar Sahoo
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Kishan Kumar
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
| | | | | | - R P Vivek-Ananth
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India.
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
2
|
Hanamghar S, Mellor SB, Mikkelsen L, Crocoll C, Motawie MS, Russo DA, Jensen PE, Zedler JAZ. Thylakoid Targeting Improves Stability of a Cytochrome P450 in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 2025; 14:867-877. [PMID: 40114516 PMCID: PMC11934225 DOI: 10.1021/acssynbio.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Plants produce a large array of natural products of biotechnological interest. In many cases, these compounds are naturally produced at low titers and involve complex biosynthetic pathways, which often include cytochrome P450 enzymes. P450s are known to be difficult to express in traditional heterotrophic chassis. However, cyanobacteria have shown promise as a sustainable alternative for the heterologous expression of P450s and light-driven product biosynthesis. In this study, we explore strategies for improving plant P450 stability and membrane insertion in cyanobacteria. The widely used model cyanobacterium Synechocystis sp. PCC 6803 was chosen as the host, and the well-studied P450 CYP79A1 from the dhurrin pathway of Sorghum bicolor was chosen as the model enzyme. Combinations of the P450 fused with individual elements (e.g., signal peptide, transmembrane domain) or the full length cyanobacterial, thylakoid-localized, protein PetC1 were designed. All generated CYP79A1 variants led to oxime production. Our data show that strains producing CYP79A1 variants with elements of PetC1 improved thylakoid targeting. In addition, chlorophyll-normalized oxime levels increased, on average, up to 18 times compared to the unmodified CYP79A1. These findings offer promising strategies to improve heterologous P450 expression in cyanobacteria and can ultimately contribute to advancing light-driven biocatalysis in cyanobacterial chassis.
Collapse
Affiliation(s)
- Sayali
S. Hanamghar
- Synthetic
Biology of Photosynthetic Organisms, Matthias Schleiden Institute
for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Silas Busck Mellor
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - Lisbeth Mikkelsen
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - Christoph Crocoll
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - Mohammed Saddik Motawie
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - David A. Russo
- Bioorganic
Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Poul Erik Jensen
- Department
of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Julie A. Z. Zedler
- Synthetic
Biology of Photosynthetic Organisms, Matthias Schleiden Institute
for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
3
|
Kamezaki M, Nishiwaki H. Capsaicin preferentially inhibits slow-inactivation sodium currents in insects. Toxicon 2025; 256:108264. [PMID: 39889891 DOI: 10.1016/j.toxicon.2025.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Capsaicin, a pungent ingredient found in chili peppers, exhibits various pharmacological activities including inhibiting voltage-gated sodium channels (VGSCs) in mammals, suppressing sodium currents. Although capsaicin shows insecticidal activity, its underlying mechanism of action on insect VGSCs remains unclear. Here, we evaluated the effects of capsaicin on insect nerve cords and VGSCs using neurophysiological techniques. Capsaicin injection immediately induced paralysis in American cockroaches (Periplaneta americana). Extracellular recordings of their nerve cords revealed that capsaicin inhibited the allethrin-induced excitation of nerve cord activity. Furthermore, in Xenopus oocytes expressing VGSCs of German cockroaches (Blattella germanica), capsaicin inhibited the steady-state activation of VGSCs, with an IC50 value of 130.6 μM. Capsaicin significantly shifted the half-inactivation potential of the inactivation curve of insect VGSCs in a slow-inactivated state from -44.61 to -48.92 mV. Although the state dependency of sodium current inhibition by capsaicin remains unknown, based on its effective concentration, capsaicin may preferentially inhibit sodium currents by acting on insect VGSCs in a slow-inactivated state. This unique profile may serve as a foundation for the creation of novel insecticides based on capsaicin properties.
Collapse
Affiliation(s)
- Masashi Kamezaki
- The United Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Agro & Life Solutions Research Laboratory, Sumitomo Chemical Co. Ltd., Takarazuka, Hyogo, Japan.
| | - Hisashi Nishiwaki
- The United Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| |
Collapse
|
4
|
Nomura T, Kato Y. Activation of Cryptic Secondary Metabolite Biosynthesis in Tobacco BY-2 Suspension Cells by Epigenetic Modifiers. Appl Biochem Biotechnol 2025; 197:1225-1241. [PMID: 39560887 DOI: 10.1007/s12010-024-05096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cultured plant cells often biosynthesize secondary metabolites to a lesser extent relative to the mother plants. This phenomenon is associated with epigenetic alterations of the biosynthetic gene(s). Here we investigated the effectiveness of epigenetic modifiers, such as inhibitors of histone deacetylase (HDAC) and DNA methyltransferase (DNMT), to activate cryptic secondary metabolite biosynthesis in tobacco (Nicotiana tabacum) BY-2 cells. The BY-2 suspension cells cultured with an HDAC inhibitor, suberoyl bis-hydroxamic acid, exhibited strong biosynthesis of four compounds that were originally present at trace concentrations. The induced compounds were identified as caffeoylputrescine (1), 4-O-β-D-glucopyranosylferulic acid (2), 5-O-caffeoylquinic acid (3), and feruloylputrescine (4). Biosynthetic activation of compounds 1-4 was reproduced by two other HDAC inhibitors. Treatment of the cells with a DNMT inhibitor (zebularine) also activated the biosynthesis of compounds 1-4, but had a limited effectiveness relative to the HDAC inhibitors, indicating that histone acetylation levels are involved more than DNA methylation levels in the epigenetic regulation of the biosynthesis of compounds 1-4 in the BY-2 cells. Following our previous demonstration using cultured cells of a monocotyledonous plant, this study demonstrates the utility of epigenetic modifiers to activate cryptic secondary metabolite biosynthesis in cultured cells of a dicotyledonous plant.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
5
|
Al-Shajrawi OM, Tarawneh IA, Tengku Din TADAADAA, Afolabi HA. The role of microalgal extracts and their combination with tamoxifen in the modulation of breast cancer immunotherapy (Review). Mol Clin Oncol 2025; 22:6. [PMID: 39559458 PMCID: PMC11570877 DOI: 10.3892/mco.2024.2801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 11/20/2024] Open
Abstract
Cancer is one of the deadliest health menaces humans have ever witnessed. It is a leading cause of human mortality. Today, it remains a main leading cause of death globally primarily due to lifestyle changes and population ageing. A total of ~12.7 million cancer cases and 7.6 million cancer deaths were reported in 2008. In developing countries, cancer accounted for 56% of cases and 64% of deaths. Tamoxifen is the most reputable and recommended specific oestrogen receptor modulator drug used for the treatment of breast cancer. In the past decade, algae have demonstrated remarkable potency for advanced life applications. They can remain a focus of interest in the coming decades because they are one of the most diverse organisms in the entire ecosystem with immense bio nutritional benefits. Algae and their extracts play a pivotal role in the pharmaceutical industry as bioactive compounds and new drugs and nutraceutical industry as probiotics and antioxidants. However, a broad range of the health benefits of these organisms remains to be explored. The present review highlights the applications and co-application of microalgal crude extracts with tamoxifen for breast cancer immunotherapy. Given that recent studies have suggested that tamoxifen is an essential and primary treatment for breast cancer, the present review focused on the identification of a new treatment approach involving the co-application of tamoxifen and microalgal extracts to provide promising anticancer activity with few side effects on normal cells. The present review includes a general background and blueprint for the use of microalgal extracts as potential and affordable treatments or adjuncts for breast cancer management.
Collapse
Affiliation(s)
- Omar Mahmoud Al-Shajrawi
- Department of Chemical Pathology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
| | - Ibraheam A.M. Tarawneh
- School of Graduate Studies, Management and Science University, Shah Alam, Selangor 40100, Malaysia
| | | | - Hafeez Abiola Afolabi
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
| |
Collapse
|
6
|
Maharjan A, Vasamsetti BMK, Park JH. A comprehensive review of capsaicin: Biosynthesis, industrial productions, processing to applications, and clinical uses. Heliyon 2024; 10:e39721. [PMID: 39524861 PMCID: PMC11543913 DOI: 10.1016/j.heliyon.2024.e39721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Capsaicin, the main bioactive compound in chili peppers, is widely known for its diverse pharmacological effects, including antioxidant, anti-inflammatory, and anticancer effects. Despite its therapeutic potential, the low yield of natural capsaicin and the challenges in producing it on a large-scale limit broader industrial and clinical applications. This review provides a comprehensive analysis of capsaicin's biosynthesis in plants, chemical and enzymatic synthesis methods, and recent advancements in green production technologies. In addition, innovative applications such as drug delivery systems using nanoencapsulation and micelles are being developed to improve the bioavailability and therapeutic efficacy of capsaicin. Key findings highlight the use of capsaicin in food preservation, packaging, and pharmaceutical formulations. Future research should prioritize the refinement of synthetic routes, innovative delivery technologies, and the development of sustainable industrial processes to fully exploit the therapeutic and commercial potential of capsaicin.
Collapse
Affiliation(s)
- Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Bala Murali Krishna Vasamsetti
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, 55365, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Murthy HN, Joseph KS, Paek KY, Park SY. Bioreactor configurations for adventitious root culture: recent advances toward the commercial production of specialized metabolites. Crit Rev Biotechnol 2024; 44:837-859. [PMID: 37500186 DOI: 10.1080/07388551.2023.2233690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/13/2023] [Accepted: 06/01/2023] [Indexed: 07/29/2023]
Abstract
In vitro plant cell and organ cultures are appealing alternatives to traditional methods of producing valuable specialized metabolites for use as: pharmaceuticals, food additives, cosmetics, perfumes, and agricultural chemicals. Cell cultures have been adopted for the production of specialized metabolites in certain plants. However, in certain other systems, adventitious roots are superior to cell suspension cultures as they are organized structures that accumulate high levels of specialized metabolites. The cultivation of adventitious roots has been investigated in various bioreactor systems, including: mechanically agitated, pneumatically agitated, and modified bioreactors. The main relevance and importance of this work are to develop a long-lasting industrial biotechnological technology as well as to improve the synthesis of these metabolites from the plant in vitro systems. These challenges are exacerbated by: the peculiarities of plant cell metabolism, the complexity of specialized metabolite pathways, the proper selection of bioreactor systems, and bioprocess optimization. This review's major objective is to analyze several bioreactor types for the development of adventitious roots, as well as the advantages and disadvantages of each type of bioreactor, and to describe the strategies used to increase the synthesis of specialized metabolites. This review also emphasizes current advancements in the field, and successful instances of scaled-up cultures and the generation of specialized metabolites for commercial purposes are also covered.
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad, India
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - So Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
8
|
Liu J, Zhang W, Jin S, Zhang H, Xu Y, Xiong P, Qin X, Jia B. Plant-derived inducers in tumor differentiation therapy:A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155749. [PMID: 38763009 DOI: 10.1016/j.phymed.2024.155749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Differentiation therapy, a highly regarded treatment method in tumor research, aims to induce tumor cells to differentiate back to normal cells, deviating from the malignant pathway and returning to a benign state. Its development relies on the continuous discovery of efficient and low-toxic differentiation inducers, including plant-derived active components that offer significant biological utilization and therapeutic potential. For this reason, the exploration of plant-derived inducers, particularly in their application in differentiation therapy, holds great promise in advancing cancer treatment strategies toward more effective and safer alternatives. PURPOSE This paper aims to provide a valuable reference for researchers seeking to identify natural, efficient, and low-toxic differentiation inducers from plants and highlights a promising research direction for the application of differentiation therapy in malignant tumor treatment. METHODS For the collection of pertinent information, an extensive search was conducted across diverse literature and electronic databases, including PubMed, ScienceDirect, Wiley, ACS, CNKI, Springer, Taylor & Francis, Web of Science, Google Scholar, and Baidu Scholar. This comprehensive approach aimed to retrieve and include all relevant literature from 1985 to 2023. Primary keywords such as "Natural medicinal plant," "Differentiation therapy," and "Differentiation inducer" were utilized, supplemented by secondary search terms including "Cancer," "Tumor," "Herbal medicine," "Induced differentiation," and "Cancer treatment." RESULTS This study systematically evaluated the application of plant-derived inducers in tumor-induced differentiation therapy. Through extensive literature review, specific plant components with confirmed differentiation-inducing properties were identified. Furthermore, potential molecular mechanisms underlying this process were outlined, shedding light on the future development of differentiation therapy in cancer treatment. CONCLUSION Plant-derived active components exhibit substantial biological utility and therapeutic potential. Delving deeper into the research on these components as differentiation inducers holds promise for the selection of novel cancer drugs and the unveiling of novel pathways for cancer treatment. These results emphasize the importance of continued exploration and in-depth research into natural, efficient, and low-toxic differentiation inducers from plants, which could significantly advance cancer treatment strategies. Moreover, the highlighted research direction underscores the relevance of differentiation therapy in the context of malignant tumor treatment, indicating its potential as a safer and more effective alternative in cancer therapy.
Collapse
Affiliation(s)
- Junyu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Shenrui Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hua Zhang
- Nanbu Hospital of County Chinese Medicine, Nanchong, Sichuan, 637399, China
| | - Yi Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Peiyu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
9
|
Bai Y, Liu X, Baldwin IT. Using Synthetic Biology to Understand the Function of Plant Specialized Metabolites. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:629-653. [PMID: 38424065 DOI: 10.1146/annurev-arplant-060223-013842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Plant specialized metabolites (PSMs) are variably distributed across taxa, tissues, and ecological contexts; this variability has inspired many theories about PSM function, which, to date, remain poorly tested because predictions have outpaced the available data. Advances in mass spectrometry-based metabolomics have enabled unbiased PSM profiling, and molecular biology techniques have produced PSM-free plants; the combination of these methods has accelerated our understanding of the complex ecological roles that PSMs play in plants. Synthetic biology techniques and workflows are producing high-value, structurally complex PSMs in quantities and purities sufficient for both medicinal and functional studies. These workflows enable the reengineering of PSM transport, externalization, structural diversity, and production in novel taxa, facilitating rigorous tests of long-standing theoretical predictions about why plants produce so many different PSMs in particular tissues and ecological contexts. Plants use their chemical prowess to solve ecological challenges, and synthetic biology workflows are accelerating our understanding of these evolved functions.
Collapse
Affiliation(s)
- Yuechen Bai
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China; ,
| | - Xinyu Liu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China; ,
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Jena, Germany;
| |
Collapse
|
10
|
Freymann E, Carvalho S, Garbe LA, Dwi Ghazhelia D, Hobaiter C, Huffman MA, Muhumuza G, Schulz L, Sempebwa D, Wald F, Yikii ER, Zuberbühler K, Schultz F. Pharmacological and behavioral investigation of putative self-medicative plants in Budongo chimpanzee diets. PLoS One 2024; 19:e0305219. [PMID: 38900778 PMCID: PMC11189245 DOI: 10.1371/journal.pone.0305219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/25/2024] [Indexed: 06/22/2024] Open
Abstract
Wild chimpanzees consume a variety of plants to meet their dietary needs and maintain wellbeing. While some plants have obvious value, others are nutritionally poor and/or contain bioactive toxins which make ingestion costly. In some cases, these nutrient-poor resources are speculated to be medicinal, thought to help individuals combat illness. In this study, we observed two habituated chimpanzee communities living in the Budongo Forest, Uganda, and collected 17 botanical samples associated with putative self-medication behaviors (e.g., bark feeding, dead wood eating, and pith-stripping) or events (e.g., when consumer had elevated parasite load, abnormal urinalysis, or injury). In total, we selected plant parts from 13 species (nine trees and four herbaceous plants). Three extracts of different polarities were produced from each sample using n-hexane, ethyl acetate, and methanol/water (9/1, v/v) and introduced to antibacterial and anti-inflammatory in vitro models. Extracts were evaluated for growth inhibition against a panel of multidrug-resistant clinical isolates of bacteria, including ESKAPE strains and cyclooxygenase-2 (COX-2) inhibition activity. Pharmacological results suggest that Budongo chimpanzees consume several species with potent medicinal properties. In the antibacterial library screen, 45 out of 53 extracts (88%) exhibited ≥40% inhibition at a concentration of 256 μg/mL. Of these active extracts, 41 (91%) showed activity at ≤256μg/mL in subsequent dose-response antibacterial experiments. The strongest antibacterial activity was achieved by the n-hexane extract of Alstonia boonei dead wood against Staphylococcus aureus (IC50: 16 μg/mL; MIC: 32 μg/mL) and Enterococcus faecium (IC50: 16 μg/mL; MIC: >256 μg/mL) and by the methanol-water extract of Khaya anthotheca bark and resin against E. faecium (IC50: 16 μg/mL; MIC: 32 μg/mL) and pathogenic Escherichia coli (IC50: 16 μg/mL; MIC: 256 μg/mL). We observed ingestion of both these species by highly parasitized individuals. K. anthotheca bark and resin were also targeted by individuals with indicators of infection and injuries. All plant species negatively affected growth of E. coli. In the anti-inflammatory COX-2 inhibition library screen, 17 out of 51 tested extracts (33%) showed ≥50% COX-2 inhibition at a concentration of 5 μg/mL. Several extracts also exhibited anti-inflammatory effects in COX-2 dose-response experiments. The K. anthotheca bark and resin methanol-water extract showed the most potent effects (IC50: 0.55 μg/mL), followed by the fern Christella parasitica methanol-water extract (IC50: 0.81 μg/mL). This fern species was consumed by an injured individual, a feeding behavior documented only once before in this population. These results, integrated with associated observations from eight months of behavioral data, provide further evidence for the presence of self-medicative resources in wild chimpanzee diets. This study addresses the challenge of distinguishing preventative medicinal food consumption from therapeutic self-medication by integrating pharmacological, observational, and health monitoring data-an essential interdisciplinary approach for advancing the field of zoopharmacognosy.
Collapse
Affiliation(s)
- Elodie Freymann
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, Department of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
| | - Susana Carvalho
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, Department of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
- Gorongosa National Park, Sofala, Mozambique
- Interdisciplinary Centre for Archaeology and the Evolution of Human Behaviour, University of Algarve, Faro, Portugal
| | - Leif A. Garbe
- Ethnopharmacology & Zoopharmacognosy Research Group, Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
- ZELT–Center for Nutrition and Food Technology gGmbH
| | - Dinda Dwi Ghazhelia
- Ethnopharmacology & Zoopharmacognosy Research Group, Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
| | - Catherine Hobaiter
- Wild Minds Lab, School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
- Budongo Conservation Field Station, Masindi, Uganda
| | - Michael A. Huffman
- Wildlife Research Center, Inuyama Campus, Kyoto University, Inuyama, Japan
| | | | - Lena Schulz
- Ethnopharmacology & Zoopharmacognosy Research Group, Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
| | - Daniel Sempebwa
- Budongo Conservation Field Station, Masindi, Uganda
- Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Florian Wald
- Ethnopharmacology & Zoopharmacognosy Research Group, Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
- ZELT–Center for Nutrition and Food Technology gGmbH
| | | | - Klaus Zuberbühler
- Budongo Conservation Field Station, Masindi, Uganda
- Department of Comparative Cognition, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Fabien Schultz
- Ethnopharmacology & Zoopharmacognosy Research Group, Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
- Pharmacognosy and Phytotherapy, School of Pharmacy, University College of London, London, United Kingdom
| |
Collapse
|
11
|
Mahmoudi-Filabadi F, Doosti A. pDNA-tachyplesin treatment stimulates the immune system and increases the probability of apoptosis in MC4-L2 tumor cells. Amino Acids 2024; 56:34. [PMID: 38691208 PMCID: PMC11062983 DOI: 10.1007/s00726-024-03393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Breast cancer is the most common cancer among women worldwide, and marine creatures are the most abundant reservoir of anticancer medicines. Tachyplesin peptides have shown antibacterial capabilities, but their potential to inhibit cancer growth and trigger cancer cell death has not been investigated. A synthetic tachyplesin nucleotide sequence was generated and inserted into the pcDNA3.1( +) Mammalian Expression Vector. PCR analysis and enzyme digesting procedures were used to evaluate the vectors' accuracy. The transfection efficiency of MCF-7 and MCF10-A cells was 57% and 65%, respectively. The proliferation of MCF-7 cancer cells was markedly suppressed. Administration of plasmid DNA (pDNA) combined with tachyplesin to mice with tumors did not cause any discernible morbidity or mortality throughout treatment. The final body weight curves revealed a significant reduction in weight among mice treated with pDNA/tachyplesin and tachyplesin at a dose of 100 µg/ml (18.4 ± 0.24 gr, P < 0.05; 11.4 ± 0.24 gr P < 0.01) compared to the control group treated with PBS (22 ± 0.31 gr). Animals treated with pDNA/tachyplesin and tachyplesin exhibited a higher percentage of CD4 + Foxp3 + Tregs, CD8 + Foxp3 + Tregs, and CD4 + and CD8 + T cell populations expressing CTLA-4 in their lymph nodes and spleen compared to the PBS group. The groups that received pDNA/tachyplesin exhibited a substantial upregulation in the expression levels of caspase-3, caspase-8, BAX, PI3K, STAT3, and JAK genes. The results offer new possibilities for treating cancer by targeting malignancies using pDNA/tachyplesin and activating the mTOR and NFκB signaling pathways.
Collapse
Affiliation(s)
- Fatemeh Mahmoudi-Filabadi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
12
|
Pellegrini C, Travagli RA. Gastrointestinal dysmotility in rodent models of Parkinson's disease. Am J Physiol Gastrointest Liver Physiol 2024; 326:G345-G359. [PMID: 38261717 PMCID: PMC11212145 DOI: 10.1152/ajpgi.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
Multiple studies describe prodromal, nonmotor dysfunctions that affect the quality of life of patients who subsequently develop Parkinson's disease (PD). These prodromal dysfunctions comprise a wide array of autonomic issues, including severe gastrointestinal (GI) motility disorders such as dysphagia, delayed gastric emptying, and chronic constipation. Indeed, strong evidence from studies in humans and animal models suggests that the GI tract and its neural, mainly vagal, connection to the central nervous system (CNS) could have a major role in the etiology of PD. In fact, misfolded α-synuclein aggregates that form Lewy bodies and neurites, i.e., the histological hallmarks of PD, are detected in the enteric nervous system (ENS) before clinical diagnosis of PD. The aim of the present review is to provide novel insights into the pathogenesis of GI dysmotility in PD, focusing our attention on functional, neurochemical, and molecular alterations in animal models.
Collapse
Affiliation(s)
- Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
13
|
Alipour Z, Zarezadeh S, Ghotbi-Ravandi AA. The Potential of Anti-coronavirus Plant Secondary Metabolites in COVID-19 Drug Discovery as an Alternative to Repurposed Drugs: A Review. PLANTA MEDICA 2024; 90:172-203. [PMID: 37956978 DOI: 10.1055/a-2209-6357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In early 2020, a global pandemic was announced due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to cause COVID-19. Despite worldwide efforts, there are only limited options regarding antiviral drug treatments for COVID-19. Although vaccines are now available, issues such as declining efficacy against different SARS-CoV-2 variants and the aging of vaccine-induced immunity highlight the importance of finding more antiviral drugs as a second line of defense against the disease. Drug repurposing has been used to rapidly find COVID-19 therapeutic options. Due to the lack of clinical evidence for the therapeutic benefits and certain serious side effects of repurposed antivirals, the search for an antiviral drug against SARS-CoV-2 with fewer side effects continues. In recent years, numerous studies have included antiviral chemicals from a variety of plant species. A better knowledge of the possible antiviral natural products and their mechanism against SARS-CoV-2 will help to develop stronger and more targeted direct-acting antiviral agents. The aim of the present study was to compile the current data on potential plant metabolites that can be investigated in COVID-19 drug discovery and development. This review represents a collection of plant secondary metabolites and their mode of action against SARS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Alipour
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Zarezadeh
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
14
|
Luzhanin VG, Samorodov AV, Whaley AK, Whaley AO, Yakovlev GP, Samylina IA. The Effect of Individual Compounds from <i>Rubus chamaemoruson</i> Hemostasis <i>in vitro</i>. DRUG DEVELOPMENT & REGISTRATION 2024; 13:149-158. [DOI: 10.33380/2305-2066-2024-13-1-1566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Introduction. One of the key tasks of the pharmaceutical industry is the search for new promising compounds – potential drug candidates. Natural objects, especially plants, have long been rich sources of new molecules and are widely used in the global food and pharmaceutical industries. Cloudberry (Rubus chamaemorus L.) is a perennial herb from the Rosaceae family. The fruits and leaves of R. chamaemorus contain a wide variety of polyphenolic secondary metabolites – hydrolysable/condensed tannins and flavonoids. Extracts enriched by polyphenols showed significant antiproliferative activity and inhibition of cell growth, and also induce cell apoptosis. As a result of our previous phytochemical research of R. chamaemorus leaves, five polyphenolic secondary metabolites belonging to the classes of tannins and flavonoids were isolated and characterized.Aim. Screening of previously isolated from R. chamaemorus individual compounds for the hemostasis system in vitro and identification of the most promising compounds for subsequent pharmaceutical development.Materials and methods. Experiments under in vitro conditions were performed on the blood of healthy male donors. The research of the effect on platelet aggregation was carried out according to the Born method on an AT-02 aggregometer (LLC "SPF "Medtech", Russia). Determination of anticoagulant activity was carried out by conventional clotting tests on a Solar CGL 2110 turbidimetric hemocoagulometer (CJSC "SOLAR", Russia). Cytofluorimetric analysis was performed on a NovoCyte instrument (Agilent Technologies, USA).Result and discussion. The influence of the isolated compounds 1–5 on the parameters of activation, platelet aggregation and the coagulation component of hemostasis was studied. At a concentration of 1.0 mg/ml, compounds 1–5 did not affect the fibrinogen concentration and prothrombin time. Compounds 1, 3 and 5 completely suppressed platelet activation at the studied concentrations. Compounds 1 and 3 showed antiaggregation activity comparible to the values of acetylsalicylic acid and are contained in all aqueous and alcoholic extracts of R. сhamaemorus leaves; their quantitative content varies depending on the extraction conditions.Conclusion. Thus, as a result of the screening of individual compounds 1–5 isolated from the leaves of R. chamaemorus their antiaggregating and anticoagulation properties were established. Compounds 1 (4-O-α-L-arabinofuranosylellagic acid) and 3 (quercetin-3-O-β-D-glucuronide) showed antiaggregation activity comparible to that of acetylsalicylic acid, and are the most promising of the studied series of compounds for the subsequent pharmaceutical development of new antiplatelet agents.
Collapse
Affiliation(s)
- V. G. Luzhanin
- Federal State Budgetary Educational Institution of Higher Education “Perm State Pharmaceutical Academy” of the Ministry of Health of the Russian Federation (FSBEI HE PSPA MOH Russia)
| | | | - A. K. Whaley
- Saint-Petersburg State Chemical and Pharmaceutical University
| | - A. O. Whaley
- Saint-Petersburg State Chemical and Pharmaceutical University; Laboratory "Cellular mechanisms of blood homeostasis", Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (IEPhB RAS)
| | - G. P. Yakovlev
- Saint-Petersburg State Chemical and Pharmaceutical University
| | - I. A. Samylina
- I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University)
| |
Collapse
|
15
|
Wang T, Zhu L, Mei L, Kanda H. Extraction and Separation of Natural Products from Microalgae and Other Natural Sources Using Liquefied Dimethyl Ether, a Green Solvent: A Review. Foods 2024; 13:352. [PMID: 38275719 PMCID: PMC10815339 DOI: 10.3390/foods13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Microalgae are a sustainable source for the production of biofuels and bioactive compounds. This review discusses significant research on innovative extraction techniques using dimethyl ether (DME) as a green subcritical fluid. DME, which is characterized by its low boiling point and safety as an organic solvent, exhibits remarkable properties that enable high extraction rates of various active compounds, including lipids and bioactive compounds, from high-water-content microalgae without the need for drying. In this review, the superiority of liquefied DME extraction technology for microalgae over conventional methods is discussed in detail. In addition, we elucidate the extraction mechanism of this technology and address its safety for human health and the environment. This review also covers aspects related to extraction equipment, various applications of different extraction processes, and the estimation and trend analysis of the Hansen solubility parameters. In addition, we anticipate a promising trajectory for the expansion of this technology for the extraction of various resources.
Collapse
Affiliation(s)
| | | | | | - Hideki Kanda
- Department of Chemical Systems Engineering, Nagoya University, Furocho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
16
|
Elmorsy E, Al-Ghafari A, Al Doghaither H, Hashish S, Salama M, Mudyanselage AW, James L, Carter WG. Differential Effects of Paraquat, Rotenone, and MPTP on Cellular Bioenergetics of Undifferentiated and Differentiated Human Neuroblastoma Cells. Brain Sci 2023; 13:1717. [PMID: 38137165 PMCID: PMC10741680 DOI: 10.3390/brainsci13121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Paraquat (PQ), rotenone (RO), and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are neurotoxicants that can damage human health. Exposure to these neurotoxicants has been linked to neurodegeneration, particularly Parkinson's disease. However, their mechanisms of action have not been fully elucidated, nor has the relative vulnerability of neuronal subtypes to their exposures. To address this, the current study investigated the cytotoxic effects of PQ, RO, and MPTP and their relative effects on cellular bioenergetics and oxidative stress on undifferentiated human neuroblastoma (SH-SY5Y) cells and those differentiated to dopaminergic (DA) or cholinergic (CH) phenotypes. The tested neurotoxicants were all cytotoxic to the three cell phenotypes that correlated with both concentration and exposure duration. At half-maximal effective concentrations (EC50s), there were significant reductions in cellular ATP levels and reduced activity of the mitochondrial complexes I and III, with a parallel increase in lactate production. PQ at 10 µM significantly decreased ATP production and mitochondrial complex III activity only in DA cells. RO was the most potent inhibitor of mitochondrial complex 1 and did not inhibit mitochondrial complex III even at concentrations that induced a 50% loss of cell viability. MPTP was the most potent toxicant in undifferentiated cells. All neurotoxicants significantly increased reactive oxygen species, lipid peroxidation, and nuclear expression of Nrf2, with a corresponding inhibition of the antioxidant enzymes catalase and superoxide dismutase. At a 10 µM exposure to PQ or RO, oxidative stress biomarkers were significant in DA cells. Collectively, this study underscores the importance of mitochondrial dysfunction and oxidative stress in PQ, RO, and MPTP-induced cytotoxicity and that neuronal phenotypes display differential vulnerability to these neurotoxicants.
Collapse
Affiliation(s)
- Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Pathology Department, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
| | - Ayat Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.-G.); (H.A.D.)
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Huda Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.-G.); (H.A.D.)
| | - Sara Hashish
- Institute of Global Health and Human Ecology, The American University in Cairo (AUC), Cairo 11385, Egypt; (S.H.); (M.S.)
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, The American University in Cairo (AUC), Cairo 11385, Egypt; (S.H.); (M.S.)
| | - Anusha W. Mudyanselage
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (A.W.M.); (L.J.)
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Lipta James
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (A.W.M.); (L.J.)
| | - Wayne G. Carter
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (A.W.M.); (L.J.)
| |
Collapse
|
17
|
Videlock EJ, Xing T, Yehya AHS, Travagli RA. Experimental models of gut-first Parkinson's disease: A systematic review. Neurogastroenterol Motil 2023; 35:e14604. [PMID: 37125607 PMCID: PMC10524037 DOI: 10.1111/nmo.14604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND There is strong support from studies in humans and in animal models that Parkinson's disease (PD) may begin in the gut. This brings about a unique opportunity for researchers in the field of neurogastroenterology to contribute to advancing the field and making contributions that could lead to the ability to diagnose and treat PD in the premotor stages. Lack of familiarity with some of the aspects of the experimental approaches used in these studies may present a barrier for neurogastroenterology researchers to enter the field. Much remains to be understood about intestinal-specific components of gut-first PD pathogenesis and the field would benefit from contributions of enteric and central nervous system neuroscientists. PURPOSE To address these issues, we have conducted a systematic review of the two most frequently used experimental models of gut-first PD: transneuronal propagation of α-synuclein preformed fibrils and oral exposure to environmental toxins. We have reviewed the details of these studies and present methodological considerations for the use of these models. Our aim is that this review will serve as a framework and useful reference for neuroscientists, gastroenterologists, and neurologists interested in applying their expertise to advancing our understanding of gut-first PD.
Collapse
Affiliation(s)
- Elizabeth J. Videlock
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Tiaosi Xing
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Ashwaq Hamid Salem Yehya
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
18
|
Abdu H, Ergete W, Tadele A, Woldekidan S, Abebe A, Seyoum G. Toxic effects of 70% ethanol extract of Moringa stenopetala leaf (Baker f.) Cufod. (Moringaceae) on fetus and placenta of pregnant Wistar rats. BMC Complement Med Ther 2023; 23:105. [PMID: 37013559 PMCID: PMC10069107 DOI: 10.1186/s12906-023-03937-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Moringa stenopetala leaves (Baker f.) Cufod. (Moringaceae) are used as a staple food and traditional medicine for treating various diseases like malaria, hypertension, stomach pain, diabetes, elevated cholesterol, and removing the retained placenta. Its prenatal toxicity study is minimal. Thus, this study aimed to assess the toxic effects of a 70% ethanol extract of Moringa stenopetala leaf on the fetuses and placentas of pregnant Wistar rats. METHOD Fresh leaves of Moringa stenopetala were collected, dried at room temperature, ground to powder, and extracted using 70% ethanol. For this study, five groups of animals, each containing ten pregnant rats, were used. Groups I-III were experimental groups and treated with 250, 500, and 1000 mg/kg body weight of Moringa stenopetala leaf extract, respectively. Groups IV and V were pair-fed and ad libitum control groups. The extract was given during gestation days 6 to 12. The fetuses were recovered at day 20 of gestation and examined for the presence of developmental delays, gross external malformations, skeletal and visceral defects. Gross and histopathological changes in the placenta were also evaluated. RESULTS Compared to the pair-fed control group, maternal daily food intake and weight gain were reduced in the 1000 mg/kg-treated group during the treatment and post-treatment periods. A significantly higher number of fetal resorptions was also seen in the 1000 mg/kg treatment group. The crown-rump length and fetal and placental weights were all significantly reduced in pregnant rats given 1000 mg/kg. However, there were no visible malformations in the visceral organs as well as external genitalia in all the treatment and control groups. About 40.7% of the fetuses in the 1000 mg/kg treated rats had no proximal hindlimb phalanges. In addition, light microscopic investigations of the placenta in the high-dose treated rats revealed structural changes in the decidual basalis, trophoblastic zone, and labyrinthine zones. CONCLUSION In conclusion, consumption of M. stenopetala leaves at a higher dose may have toxic effects on the development of rat fetuses. At a higher dose, the plant extract increased the number of fetal resorptions, reduced the number of fetuses, decreased the fetal and placental weights, and alter the placental histopathology. Thus, it is recommended to limit the excess feeding of M. stenopetala leaves during gestation.
Collapse
Affiliation(s)
- Hussen Abdu
- Department of Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Wondwosen Ergete
- Department of Pathology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenif Tadele
- Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Samuel Woldekidan
- Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abiy Abebe
- Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girma Seyoum
- Department of Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
19
|
A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. Int J Mol Sci 2023; 24:ijms24043266. [PMID: 36834673 PMCID: PMC9959544 DOI: 10.3390/ijms24043266] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Natural products are compounds produced by living organisms and can be divided into two main categories: primary (PMs) and secondary metabolites (SMs). Plant PMs are crucial for plant growth and reproduction since they are directly involved in living cell processes, whereas plant SMs are organic substances directly involved in plant defense and resistance. SMs are divided into three main groups: terpenoids, phenolics and nitrogen-containing compounds. The SMs contain a variety of biological capabilities that can be used as flavoring agents, food additives, plant-disease control, strengthen plant defenses against herbivores and, additionally, it can help plant cells to be better adapted to the physiological stress response. The current review is mainly focusing on certain key elements related to the significance, biosynthesis, classification, biochemical characterization and medical/pharmaceutical uses of the major categories of plant SMs. In addition, the usefulness of SMs in controlling plant diseases, boosting plant resistance and as potential natural, safe, eco-friendly substitutes for chemosynthetic pesticides were also reported in this review.
Collapse
|
20
|
Jayasundar R, Ghatak S, Kumar D, Singh A, Bhosle P. No ambiguity: Chemosensory-based ayurvedic classification of medicinal plants can be fingerprinted using E-tongue coupled with multivariate statistical analysis. Front Pharmacol 2022; 13:1025591. [DOI: 10.3389/fphar.2022.1025591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Ayurveda, the indigenous medical system of India, has chemosensory property (rasa) as one of its major pharmacological metric. Medicinal plants have been classified in Ayurveda under six rasas/tastes—sweet, sour, saline, pungent, bitter and astringent. This study has explored for the first time, the use of Electronic tongue for studies of rasa-based classification of medicinal plants.Methods: Seventy-eight medicinal plants, belonging to five taste categories (sweet, sour, pungent, bitter, astringent) were studied along with the reference taste standards (citric acid, hydrochloric acid, caffeine, quinine, L-alanine, glycine, β-glucose, sucrose, D-galactose, cellobiose, arabinose, maltose, mannose, lactose, xylose). The studies were carried out with the potentiometry-based Electronic tongue and the data was analysed using Principle Component Analysis, Discriminant Function Analysis, Taste Discrimination Analysis and Soft Independent Modeling of Class Analogy.Results: Chemosensory similarities were observed between taste standards and the plant samples–citric acid with sour group plants, sweet category plants with sucrose, glycine, β-glucose and D-galactose. The multivariate analyses could discriminate the sweet and sour, sweet and bitter, sweet and pungent, sour and pungent plant groups. Chemosensory category of plant (classified as unknown) could also be identified.Conclusion: This preliminary study has indicated the possibility of fingerprinting the chemosensory-based ayurvedic classification of medicinal plants using E-tongue coupled with multivariate statistical analysis.
Collapse
|
21
|
Bahmani K, Robinson A, Majumder S, LaVardera A, Dowell JA, Goolsby EW, Mason CM. Broad diversity in monoterpene-sesquiterpene balance across wild sunflowers: Implications of leaf and floral volatiles for biotic interactions. AMERICAN JOURNAL OF BOTANY 2022; 109:2051-2067. [PMID: 36317693 DOI: 10.1002/ajb2.16093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
PREMISE As plant lineages diversify across environmental gradients, species are predicted to encounter divergent biotic pressures. This study investigated the evolution of volatile secondary metabolism across species of Helianthus. METHODS Leaves and petals of 40 species of wild Helianthus were analyzed via gas chromatography-mass spectrometry to determine volatile secondary metabolite profiles. RESULTS Across all species, 500 compounds were identified; 40% were sesquiterpenes, 18% monoterpenes, 3% diterpenes, 4% fatty acid derivatives, and 35% other compounds such as phenolics and small organic molecules. Qualitatively, annuals and species from more arid western climates had leaf compositions with a higher proportion of total monoterpenes, while erect perennials and species from more mesic eastern habitats contained a higher proportion of total sesquiterpenes. Among species, mass-based leaf monoterpene and sesquiterpene abundance were identified as largely orthogonal axes of variation by principal component analysis. Profiles for leaves were not strongly correlated with those of petals. CONCLUSIONS Volatile metabolites were highly diverse among wild Helianthus, indicating the value of this genus as a model system and rich genetic resource. The independence of leaf and petal volatile profiles indicates a low level of phenotypic integration between vegetative and reproductive structures, implying vegetative defense and reproductive defense or pollinator attraction functions mediated by terpene profiles in these two organs can evolve without major trade-offs. The major biosynthetic pathways for the major terpenes in wild Helianthus are already well described, providing a road map to deeper inquiry into the drivers of this diversity.
Collapse
Affiliation(s)
- Keivan Bahmani
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | | | - Sambadi Majumder
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | | | - Jordan A Dowell
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
22
|
Stefi AL, Papaioannou V, Nikou T, Halabalaki M, Vassilacopoulou D, Christodoulakis NS. Heat and Cold-Stressed Individuals of Pistacia lentiscus (Mastic Tree) Do Modify Their Secreting Profile. PLANTS (BASEL, SWITZERLAND) 2022; 11:3290. [PMID: 36501332 PMCID: PMC9736404 DOI: 10.3390/plants11233290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Seedlings from the germinated seeds of Pistacia lentiscus were cultured in plant growth chambers for three months. Then, the plants were separated into three groups. Each group was cultured under different conditions. The first group was left to grow under normal Mediterranean conditions, as those recorded in spring. The other group was subjected to a ten-day heat stress while the last one also suffered a cold stress for ten days. The anatomical features of the leaves (leaf thickness, epidermal cell thickness, number of palisade layers, and development) between these three groups differed. The stressed plants accumulated large amounts of phenolics within their mesophyll cells. The biomass of the cold-stressed plants was minor, while it was high for the control plants. The oxidative stress was hardly detectable in the leaves of the control plants, while their heat-stressed counterparts suffered the highest concentration of reactive oxygen species. Differences concerning the absorption spectra of the three groups of leaves were not significant. An interesting incompatibility between the three groups concerned the expression of L-Dopa Decarboxylase, which climbed significantly in the heat-stressed plants. Finally, an interesting variation was observed concerning the concentrations of some biogenic amines/amino acids. This variation can be correlated to the other stress-induced reactions of the plants and, in some cases, was impressive. In conclusion, environmental stress can shift Pistacia lentiscus' metabolism to synthesize different biogenic products, which can be considered as exploitable for the pharmaceutical or food industry.
Collapse
Affiliation(s)
- Aikaterina L. Stefi
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Varvara Papaioannou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Theodora Nikou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Nikolaos S. Christodoulakis
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
23
|
Aboelhadid SM, Abdel-Baki AAS, Hassan KM, Arafa WM, Abdel-Tawab H, Al-Quraishy S, Hassan AO, Moawad UK, Ahmed O, Kamel AA. Role of antioxidant activity of essential oils in their acaricidal activities against Rhipicephalus annulatus. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 88:209-224. [PMID: 36348156 DOI: 10.1007/s10493-022-00742-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Essential oils of Origanum majorana and Satureja thymbra as well as carvacrol are natural products that are known to have potent antioxidant activities. The current study was designed to investigate the role of the antioxidant properties of these natural products in their acaricidal activities against Rhipicephalus annulatus larvae. The synergistic and/or antagonistic effects of the addition of vitamins E and C and hydrogen peroxide (H2O2) to these natural products were also evaluated. Larval packet tests were used to evaluate the acaricidal activities against the larvae of R. annulatus. The antioxidant effectiveness of these products was determined by a DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay. The addition of vitamin E at 100 mg/mL to O. majorana and S. thymbra decreased the concentrations required to achieve the death of half of the larvae (LC50) to 0.44 and 0.47%, respectively. The combination of O. majorana and S. thymbra attained the LC50 at 1.54% which was decreased to 0.69% after addition of vitamin E. Also, the addition of vitamin E to carvacrol reduced the LC50 to 0.27%. The total antioxidant activity of these natural products increased significantly in presence of vitamin E. The addition of H2O2 inhibited the acaricidal activity of all tested materials, especially at low concentrations. All treatments induced an increase in lipid peroxidation, whereas carvacrol-treated larvae revealed the lowest values for the superoxide dismutase. Glutathione peroxidase and catalase activity decreased in larvae treated with S. thymbra combined with vitamin E. In conclusion, the addition of vitamins E and C increased the acaricidal activities of the tested compounds, whereas the addition of H2O2 decreased these activities. The antioxidant activities of essential oils and their active components may play an important role in mediating their acaricidal activities.
Collapse
Affiliation(s)
- Shawky M Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Beni-Suef, Egypt.
| | | | - Khaled M Hassan
- Department of Parasitology, Beni-Suef Laboratory, Animal Health Research Institute (AHRI), Agriculture Research center (ARC), Beni-Suef, Egypt
| | - Waleed M Arafa
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Heba Abdel-Tawab
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, 63110, St. Louis, MO, USA
| | - Usama K Moawad
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Osama Ahmed
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Asmaa A Kamel
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Beni-Suef, Egypt
| |
Collapse
|
24
|
Pisk J, Agustin D. Molybdenum, Vanadium, and Tungsten-Based Catalysts for Sustainable (ep)Oxidation. Molecules 2022; 27:6011. [PMID: 36144747 PMCID: PMC9504910 DOI: 10.3390/molecules27186011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
This article gives an overview of the research activity of the LAC2 team at LCC developed at Castres in the field of sustainable chemistry with an emphasis on the collaboration with a research team from the University of Zagreb, Faculty of Science, Croatia. The work is situated within the context of sustainable chemistry for the development of catalytic processes. Those processes imply molecular complexes containing oxido-molybdenum, -vanadium, -tungsten or simple polyoxometalates (POMs) as catalysts for organic solvent-free epoxidation. The studies considered first the influence of the nature of complexes (and related ligands) on the reactivity (assessing mechanisms through DFT calculations) with model substrates. From those model processes, the work has been enlarged to the valorization of biomass resources. A part concerns the activity on vanadium chemistry and the final part concerns the use of POMs as catalysts, from molecular to grafted catalysts, (ep)oxidizing substrates from fossil and biomass resources.
Collapse
Affiliation(s)
- Jana Pisk
- LCC-CNRS, Université de Toulouse, CNRS, UPS, CEDEX 4, F-31077 Toulouse, France
- Department of Chemistry, Institut Universitaire de Technologie Paul Sabatier, University of Toulouse, Av. G. Pompidou, BP20258, CEDEX, F-81104 Castres, France
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Dominique Agustin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, CEDEX 4, F-31077 Toulouse, France
- Department of Chemistry, Institut Universitaire de Technologie Paul Sabatier, University of Toulouse, Av. G. Pompidou, BP20258, CEDEX, F-81104 Castres, France
| |
Collapse
|
25
|
Metwally RA, Azab HS, Al-Shannaf HM, Rabie GH. Prospective of mycorrhiza and Beauvaria bassiana silica nanoparticles on Gossypium hirsutum L. plants as biocontrol agent against cotton leafworm, Spodoptera littoralis. BMC PLANT BIOLOGY 2022; 22:409. [PMID: 35987628 PMCID: PMC9392270 DOI: 10.1186/s12870-022-03763-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 07/14/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Plant-herbivorous insects are a severe danger to the world's agricultural production of various crops. Insecticides used indiscriminately resulted in habitat destruction due to their high toxicity, as well as disease resistance. In this respect, the development of a sustainable approach to supreme crop production with the least damage is a crucially prerequisite. As a result, the current study was carried out to understand the potential effect of arbuscular mycorrhizal (AM) fungi along with Beauvaria bassiana silica nanoparticles (Si NPs) as a new approach to increase cotton (Gossypium hirsutum L. Merr.) defense against an insect herbivore, Spodoptera littoralis. AM and non-AM cotton plants were infested with S. littoralis and then sprayed with a biopesticide [B. bassiana Si NPs] or a chemical insecticide (Chlorpyrifos). RESULTS The gas chromatography-mass spectrometry (GC-MS) analysis of B. bassiana Si NPs fungal extract showed that the major constituents identified were Oleyl alcohol, trifluoroacetate, 11-Dodecen-1-AL and 13-Octadecenal, (Z)-(CAS). Besides, results revealed a highly significant decrease in growth parameters in S. littoralis infested plants, however, with AM fungal inoculation a substantial improvement in growth traits and biochemical parameters such as protein and carbohydrates contents was observed. In addition, stimulation in proline and antioxidant enzymes activity and a decrease in malondialdehyde content were observed after AM inoculation. CONCLUSION AM fungi mitigate the harmful effects of herbivorous insects by strengthening the cotton plant's health via enhancing both morphological and biochemical traits that can partially or completely replace the application of chemical insecticides.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
| | - Hala Sh Azab
- Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt
| | - Hatem M Al-Shannaf
- Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt
| | - Gamal H Rabie
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
Rezig L, Martine L, Nury T, Msaada K, Mahfoudhi N, Ghzaiel I, Prost-Camus E, Durand P, Midaoui AE, Acar N, Latruffe N, Vejux A, Lizard G. Profiles of Fatty Acids, Polyphenols, Sterols, and Tocopherols and Scavenging Property of Mediterranean Oils: New Sources of Dietary Nutrients for the Prevention of Age-related Diseases. J Oleo Sci 2022; 71:1117-1133. [PMID: 35922928 DOI: 10.5650/jos.ess22110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study provides the fatty acid, tocopherol, phytosterol, and polyphenol profiles of some Mediterranean oils extracted from pumpkin, melon, and black cumin seed oils and those of dietary argan seed oil. Gas chromatography analysis revealed that oleic and linoleic acids were the most abundant fatty acids. Argan and melon seed oils exhibited the highest levels of oleic acid (47.32±0.02%) and linoleic acid (58.35±0.26%), respectively. In terms of tocopherols, melon seed oil showed the highest amount (652.1±3.26 mg/kg) with a predominance of γ-tocopherol (633.1±18.81 mg/kg). The phytosterol content varied between 2237.00±37.55 µg/g for argan oil to 6995.55±224.01 µg/g for melon seed oil. High Performance Liquid Chromatography analysis also revealed the presence of several polyphenols: vanillin (0.59 mg equivalents Quercetin/100 g) for melon seed oil, and p-hydroxycinnamic acid (0.04 mg equivalents Quercetin/100 g), coumarine (0.05 mg equivalents Quercetin/100 g), and thymoquinone (1.2 mg equivalents Quercetin/100 g) for black cumin seed oil. The "Kit Radicaux Libres" (KRL) assay used to evaluate the scavenging properties of the oils showed that black cumin seed oil was the most efficient. On the light of the richness of all Mediterranean oil samples in bioactive compounds, the seed oils studied can be considered as important sources of nutrients endowed with cytoprotective properties which benefits in preventing age-related diseases which are characterized by an enhanced oxidative stress.
Collapse
Affiliation(s)
- Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules'.,University of Carthage, High Institute of Food Industries
| | - Lucy Martine
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, University of Bourgogne Franche-Comté, Eye and Nutrition Research Group
| | - Thomas Nury
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270) / University of Bourgogne / Inserm
| | - Kamel Msaada
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center in Borj-Cedria Technopole
| | - Nesrine Mahfoudhi
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center in Borj-Cedria Technopole.,University of Kairouan, Faculty of Science and Technology of Sidi Bouzid, Department of Biotechnology
| | - Imen Ghzaiel
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270) / University of Bourgogne / Inserm.,University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health'.,University Tunis-El Manar, Faculty of Sciences of Tunis
| | | | | | - Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal.,Department of Biology, FST Errachidia, Moulay Ismail University
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, University of Bourgogne Franche-Comté, Eye and Nutrition Research Group
| | - Norbert Latruffe
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270) / University of Bourgogne / Inserm
| | - Anne Vejux
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270) / University of Bourgogne / Inserm
| | - Gérard Lizard
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270) / University of Bourgogne / Inserm
| |
Collapse
|
27
|
Ali S, Khan N, Tang Y. Epigenetic marks for mitigating abiotic stresses in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153740. [PMID: 35716656 DOI: 10.1016/j.jplph.2022.153740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/02/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stressors are one of the major factors affecting agricultural output. Plants have evolved adaptive systems to respond appropriately to various environmental cues. These responses can be accomplished by modulating or fine-tuning genetic and epigenetic regulatory mechanisms. Understanding the response of plants' molecular features to abiotic stress is a priority in the current period of continued environmental changes. Epigenetic modifications are necessary that control gene expression by changing chromatin status and recruiting various transcription regulators. The present study summarized the current knowledge on epigenetic modifications concerning plant responses to various environmental stressors. The functional relevance of epigenetic marks in regulating stress tolerance has been revealed, and epigenetic changes impact the effector genes. This study looks at the epigenetic mechanisms that govern plant abiotic stress responses, especially DNA methylation, histone methylation/acetylation, chromatin remodeling, and various metabolites. Plant breeders will benefit from a thorough understanding of these processes to create alternative crop improvement approaches. Genome editing with clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) provides genetic tools to make agricultural genetic engineering more sustainable and publicly acceptable.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, FL, 32611, USA
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
28
|
Que Y, Huang D, Gong S, Zhang X, Yuan B, Xue M, Shi W, Zeng F, Liu M, Chen T, Yu D, Yan X, Wang Z, Yang L, Xiang L. Indole-3-Carboxylic Acid From the Endophytic Fungus Lasiodiplodia pseudotheobromae LPS-1 as a Synergist Enhancing the Antagonism of Jasmonic Acid Against Blumeria graminis on Wheat. Front Cell Infect Microbiol 2022; 12:898500. [PMID: 35860382 PMCID: PMC9289256 DOI: 10.3389/fcimb.2022.898500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of natural bioactive compounds from endophytes or medicinal plants against plant diseases is an attractive option for reducing the use of chemical fungicides. In this study, three compounds, indole-3-carbaldehyde, indole-3-carboxylic acid (3-ICA), and jasmonic acid (JA), were isolated from the EtOAc extract of the culture filtrate of the endophytic fungus Lasiodiplodia pseudotheobromae LPS-1, which was previously isolated from the medicinal plant, Ilex cornuta. Some experiments were conducted to further determine the antifungal activity of these compounds on wheat powdery mildew. The results showed that JA was much more bioactive than indole-3-carbaldehyde and 3-ICA against Blumeria graminis, and the disease severity caused by B. graminis decreased significantly with the concentration increase of JA treatment. The assay of the interaction of 3-ICA and JA indicated that there was a significant synergistic effect between the two compounds on B. graminis in each of the ratios of 3-ICA to JA (3-ICA:JA) ranging from 1:9 to 9:1. When the compound ratio of 3-ICA to JA was 2:8, the synergistic coefficient was the highest as 22.95. Meanwhile, a histological investigation indicated that, under the treatment of JA at 500 μg/ml or 3-ICA:JA (2:8) at 40 μg/ml, the appressorium development and haustorium formation of B. graminis were significantly inhibited. Taken together, we concluded that JA plays an important role in the infection process of B. graminis and that 3-ICA as a synergist of JA enhances the antagonism against wheat powdery mildew.
Collapse
Affiliation(s)
- Yawei Que
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Donghai Huang
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Shuangjun Gong
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xuejiang Zhang
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Bin Yuan
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Minfeng Xue
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenqi Shi
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fansong Zeng
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Meilin Liu
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Tingting Chen
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dazhao Yu
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xia Yan
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Zhengyi Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lijun Yang
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Libo Xiang, ; Lijun Yang,
| | - Libo Xiang
- Key Laboratory of Integrated Pest Management of Crop in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Libo Xiang, ; Lijun Yang,
| |
Collapse
|
29
|
Mazumder K, Aktar A, Roy P, Biswas B, Hossain ME, Sarkar KK, Bachar SC, Ahmed F, Monjur-Al-Hossain ASM, Fukase K. A Review on Mechanistic Insight of Plant Derived Anticancer Bioactive Phytocompounds and Their Structure Activity Relationship. Molecules 2022; 27:3036. [PMID: 35566385 PMCID: PMC9102595 DOI: 10.3390/molecules27093036] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a disorder that rigorously affects the human population worldwide. There is a steady demand for new remedies to both treat and prevent this life-threatening sickness due to toxicities, drug resistance and therapeutic failures in current conventional therapies. Researchers around the world are drawing their attention towards compounds of natural origin. For decades, human beings have been using the flora of the world as a source of cancer chemotherapeutic agents. Currently, clinically approved anticancer compounds are vincristine, vinblastine, taxanes, and podophyllotoxin, all of which come from natural sources. With the triumph of these compounds that have been developed into staple drug products for most cancer therapies, new technologies are now appearing to search for novel biomolecules with anticancer activities. Ellipticine, camptothecin, combretastatin, curcumin, homoharringtonine and others are plant derived bioactive phytocompounds with potential anticancer properties. Researchers have improved the field further through the use of advanced analytical chemistry and computational tools of analysis. The investigation of new strategies for administration such as nanotechnology may enable the development of the phytocompounds as drug products. These technologies have enhanced the anticancer potential of plant-derived drugs with the aim of site-directed drug delivery, enhanced bioavailability, and reduced toxicity. This review discusses mechanistic insights into anticancer compounds of natural origins and their structural activity relationships that make them targets for anticancer treatments.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Priyanka Roy
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Biswajit Biswas
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Md. Emran Hossain
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Kishore Kumar Sarkar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Sitesh Chandra Bachar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh; (S.C.B.); (F.A.)
| | - Firoj Ahmed
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh; (S.C.B.); (F.A.)
| | - A. S. M. Monjur-Al-Hossain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh;
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
30
|
Iqbal T, Das D. Biochemical Investigation of Membrane-Bound Cytochrome b5 and the Catalytic Domain of Cytochrome b5 Reductase from Arabidopsis thaliana. Biochemistry 2022; 61:909-921. [PMID: 35475372 DOI: 10.1021/acs.biochem.2c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endoplasmic reticulum (ER) membrane of plant cells contains several enzymes responsible for the biosynthesis of a diverse range of molecules essential for plant growth and holds potential for industrial applications. Many of these enzymes are dependent on electron transfer proteins to sustain their catalytic cycles. In plants, two crucial ER-bound electron transfer proteins are cytochrome b5 and cytochrome b5 reductase, which catalyze the stepwise transfer of electrons from NADH to redox enzymes such as fatty acid desaturases, cytochrome P450s, and plant aldehyde decarbonylase. Despite the high significance of plant cytochrome b5 and cytochrome b5 reductase, they have eluded detailed characterization to date. Here, we overexpressed the full-length membrane-bound cytochrome b5 isoform B from the model plant Arabidopsis thaliana in Escherichia coli, purified the protein employing detergents as well as styrene-maleic acid (SMA) copolymers, and biochemically characterized the protein. The SMA-encapsulated cytochrome b5 exhibits a discoidal shape and the characteristic features of the active heme-bound state. We also overexpressed and purified the soluble domain of cytochrome b5 reductase from A. thaliana, establishing its activity, stability, and kinetic parameters. Further, we demonstrated that the plant cytochrome b5, purified in detergents and styrene maleic acid lipid particles (SMALPs), readily accepts electrons from the cognate plant cytochrome b5 reductase and distant electron mediators such as plant NADPH-cytochrome P450 oxidoreductase and cyanobacterial NADPH-ferredoxin reductase. We also measured the kinetic parameters of cytochrome b5 reductase for cytochrome b5. Our studies are the first to report the purification and detailed biochemical characterization of the plant cytochrome b5 and cytochrome b5 reductase from the bacterial overexpression system.
Collapse
Affiliation(s)
- Tabish Iqbal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debasis Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
31
|
Chbani M, El Harkaoui S, Willenberg I, Matthäus B. Review: Analytical Extraction Methods, Physicochemical Properties and Chemical Composition of Cactus (Opuntia ficus-indica) Seed Oil and Its Biological Activity. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2027437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Malika Chbani
- Department of Safety and Quality of Cereals, Max Rubner-Institut (MRI) - Federal Research Institute of Food and Nutrition, Detmold, Germany
| | - Said El Harkaoui
- Department of Safety and Quality of Cereals, Max Rubner-Institut (MRI) - Federal Research Institute of Food and Nutrition, Detmold, Germany
| | - Ina Willenberg
- Department of Safety and Quality of Cereals, Max Rubner-Institut (MRI) - Federal Research Institute of Food and Nutrition, Detmold, Germany
| | - Bertrand Matthäus
- Department of Safety and Quality of Cereals, Max Rubner-Institut (MRI) - Federal Research Institute of Food and Nutrition, Detmold, Germany
| |
Collapse
|
32
|
Stability Enhancement and Skin Permeation Application of Nicotine by Forming Inclusion Complex with β-Cyclodextrin and Methyl-β-Cyclodextrin. Sci Pharm 2021. [DOI: 10.3390/scipharm89040043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nicotine is widely used in pharmaceutical industries, especially for smoking cessation in the form of transdermal patches. Nicotine gel in the patches has limitations from nicotine instability and high volatility. Thus, a nicotine preservation technique is needed. In this study, a nicotine encapsulation process using methyl-β-cyclodextrin (MβCD) is investigated and compared with β-cyclodextrin (βCD) to evaluate the preservation and skin permeation of nicotine. The M06-2X/6-31G(d,p) density functional theory calculations indicate a 1:1 host–guest molar ratio for the inclusion complex of nicotine with βCD and MβCD, which have been validated by experimental studies. The encapsulation efficiencies of βCD and MβCD to encapsulate nicotine are 59.96% and 63.76%, respectively. The preservation study of the inclusion complexes compared to pure nicotine shows a stability improvement of nicotine after being encapsulated. After 21 days, the percentages of the nicotine/βCD and nicotine/MβCD inclusion complexes that remain are 89.32% and 76.22%, while only 65.56% of pure nicotine remains. Besides the one-hour skin permeation tests, the amounts of nicotine permeated through pig skin from the nicotine/βCD and nicotine/MβCD inclusion complex gels are 14 and 10 times as much as the pure nicotine gel, respectively. Therefore, the encapsulation of nicotine with βCD and MβCD can be used to enhance the stability and skin permeation application of nicotine-containing products.
Collapse
|
33
|
Activation of Cryptic Secondary Metabolite Biosynthesis in Bamboo Suspension Cells by a Histone Deacetylase Inhibitor. Appl Biochem Biotechnol 2021; 193:3496-3511. [PMID: 34287751 DOI: 10.1007/s12010-021-03629-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Plants have evolved a diverse array of secondary metabolite biosynthetic pathways. Undifferentiated plant cells, however, tend to biosynthesize secondary metabolites to a lesser extent and sometimes not at all. This phenomenon in cultured cells is associated with the transcriptional suppression of biosynthetic genes due to epigenetic alterations, such as low histone acetylation levels and/or high DNA methylation levels. Here, using cultured cells of bamboo (Bambusa multiplex; Bm) as a model system, we investigated the effect of histone deacetylase (HDAC) inhibitors on the activation of cryptic secondary metabolite biosynthesis. The Bm suspension cells cultured in the presence of an HDAC inhibitor, suberoyl bis-hydroxamic acid (SBHA), exhibited strong biosynthesis of some compounds that are inherently present at very low levels in Bm cells. Two major compounds induced by SBHA were isolated and were identified as 3-O-p-coumaroylquinic acid (1) and 3-O-feruloylquinic acid (2). Their productivities depended on the type of basal culture medium, initial cell density, and culture period, as well as the SBHA concentration. The biosynthesis of these two compounds was also induced by another HDAC inhibitor, trichostatin A. These results demonstrate the usefulness of HDAC inhibitors to activate cryptic secondary metabolite biosynthesis in cultured plant cells.
Collapse
|
34
|
Sivaguru M, Saw JJ, Wilson EM, Lieske JC, Krambeck AE, Williams JC, Romero MF, Fouke KW, Curtis MW, Kear-Scott JL, Chia N, Fouke BW. Human kidney stones: a natural record of universal biomineralization. Nat Rev Urol 2021; 18:404-432. [PMID: 34031587 DOI: 10.1038/s41585-021-00469-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/04/2023]
Abstract
GeoBioMed - a new transdisciplinary approach that integrates the fields of geology, biology and medicine - reveals that kidney stones composed of calcium-rich minerals precipitate from a continuum of repeated events of crystallization, dissolution and recrystallization that result from the same fundamental natural processes that have governed billions of years of biomineralization on Earth. This contextual change in our understanding of renal stone formation opens fundamentally new avenues of human kidney stone investigation that include analyses of crystalline structure and stratigraphy, diagenetic phase transitions, and paragenetic sequences across broad length scales from hundreds of nanometres to centimetres (five Powers of 10). This paradigm shift has also enabled the development of a new kidney stone classification scheme according to thermodynamic energetics and crystalline architecture. Evidence suggests that ≥50% of the total volume of individual stones have undergone repeated in vivo dissolution and recrystallization. Amorphous calcium phosphate and hydroxyapatite spherules coalesce to form planar concentric zoning and sector zones that indicate disequilibrium precipitation. In addition, calcium oxalate dihydrate and calcium oxalate monohydrate crystal aggregates exhibit high-frequency organic-matter-rich and mineral-rich nanolayering that is orders of magnitude higher than layering observed in analogous coral reef, Roman aqueduct, cave, deep subsurface and hot-spring deposits. This higher frequency nanolayering represents the unique microenvironment of the kidney in which potent crystallization promoters and inhibitors are working in opposition. These GeoBioMed insights identify previously unexplored strategies for development and testing of new clinical therapies for the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Mayandi Sivaguru
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carl Zeiss Labs@Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Jessica J Saw
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Elena M Wilson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Amy E Krambeck
- Department of Urology, Mayo Clinic, Rochester, MN, USA.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James C Williams
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael F Romero
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kyle W Fouke
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - Matthew W Curtis
- Carl Zeiss Microscopy LLC, One North Broadway, White Plains, NY, USA
| | | | - Nicholas Chia
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bruce W Fouke
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carl Zeiss Labs@Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
35
|
Li C, Wang M. Application of Hairy Root Culture for Bioactive Compounds Production in Medicinal Plants. Curr Pharm Biotechnol 2021; 22:592-608. [PMID: 32416672 DOI: 10.2174/1389201021666200516155146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
Medicinal plants are rich sources of natural bioactive compounds used to treat many diseases. With the development of the health industry, the market demands for Chinese medicine have been rapidly increasing in recent years. However, over-utilization of herbal plants would cause serious ecological problems. Therefore, an effective approach should be developed to produce the pharmaceutically important natural drugs. Hairy root culture induced by Agrobacterium rhizogenes has been considered to be an effective tool to produce secondary metabolites that are originally biosynthesized in the roots or even in the aerial organs of mature plants. This review aims to summarize current progress on medicinal plant hairy root culture for bioactive compounds production. It presents the stimulating effects of various biotic and abiotic elicitors on the accumulation of secondary metabolites. Synergetic effects by combination of different elicitors or with other strategies are also included. Besides, the transgenic system has promising prospects to increase bioactive compounds content by introducing their biosynthetic or regulatory genes into medicinal plant hairy root. It offers great potential to further increase secondary metabolites yield by the integration of manipulating pathway genes with elicitors and other strategies. Then advances on two valuable pharmaceuticals production in the hairy root cultures are illustrated in detail. Finally, successful production of bioactive compounds by hairy root culture in bioreactors are introduced.
Collapse
Affiliation(s)
- Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
36
|
Jahangeer M, Fatima R, Ashiq M, Basharat A, Qamar SA, Bilal M, Iqbal HM. Therapeutic and Biomedical Potentialities of Terpenoids – A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021; 15:471-483. [DOI: 10.22207/jpam.15.2.04] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Terpenoids are the most diverse and largest class of chemicals of the innumerable plant-based compounds. Plants carry out a number of essential growth and production functions using terpenoid metabolites. In contrast, most terpenoids are used in the abiotic and biotic systems for complex chemical interactions and defense. Terpenoids derived from plants mostly used humans for pharmaceutical, food, and chemical industries in the past. However, recently biofuel products have been developed by terpenoids. The metabolism of high-quality terpenoids in plants and microbes is facilitated in synthetic biology by genomic resources and emerging tools. Further focus has been given to the ecological value of terpenoids for establishing effective pesticide control approaches and abiotic stress protection. The awareness of the diverse metabolic and molecular regulatory networks for terpenoid biosynthesis needs to be increased continuously in all these efforts. This review gives an overview and highlights current improvements in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and discusses the prominent therapeutic roles of terpenoids. This review provides an overview and highlights recent literature in our understanding about the biomedical and therapeutic importance of terpenoids, regulation as well as the diversion of core and specialized metabolized terpenoid pathways.
Collapse
|
37
|
Hammouda S, Ghzaiel I, Picón-Pagès P, Meddeb W, Khamlaoui W, Hammami S, Muñoz FJ, Hammami M, Zarrouk A. Nigella and Milk Thistle Seed Oils: Potential Cytoprotective Effects against 7β-Hydroxycholesterol-Induced Toxicity on SH-SY5Y Cells. Biomolecules 2021; 11:797. [PMID: 34071950 PMCID: PMC8229989 DOI: 10.3390/biom11060797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 01/23/2023] Open
Abstract
Oxysterols are assumed to be the driving force behind numerous neurodegenerative diseases. In this work, we aimed to study the ability of 7β-hydroxycholesterol (7β-OHC) to trigger oxidative stress and cell death in human neuroblastoma cells (SH-SY5Y) then the capacity of Nigella sativa and Milk thistle seed oils (NSO and MTSO, respectively) to oppose 7β-OHC-induced side effects. The impact of 7β-OHC, associated or not with NSO or MTSO, was studied on different criteria: cell viability; redox status, and apoptosis. Oxidative stress was assessed through the intracellular reactive oxygen species (ROS) production, levels of enzymatic and non-enzymatic antioxidants, lipid, and protein oxidation products. Our results indicate that 7β-OHC (40 µg/mL) exhibit pr-oxidative and pro-apoptotic activities shown by a decrease of the antioxidant enzymatic activities and an increase of ROS production, lipid, and protein oxidation end products as well as nitrotyrosine formation and caspase 3 activation. However, under the pre-treatment with NSO, and especially with MTSO (100 µg/mL), a marked attenuation of oxidative damages was observed. Our study suggests harmful effects of 7β-OHC consisting of pro-oxidative, anti-proliferative, and pro-apoptotic activities that may contribute to neurodegeneration. NSO and especially MTSO showed potential cytoprotection against the cytotoxicity of 7β-OHC.
Collapse
Affiliation(s)
- Souha Hammouda
- Biochemistry Laboratory, LR12ES05 Nutrition-Functional Foods and Vascular Health, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia; (S.H.); (I.G.); (W.K.); (S.H.); (M.H.)
| | - Imen Ghzaiel
- Biochemistry Laboratory, LR12ES05 Nutrition-Functional Foods and Vascular Health, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia; (S.H.); (I.G.); (W.K.); (S.H.); (M.H.)
| | - Pol Picón-Pagès
- Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (P.P.-P.); (F.J.M.)
| | - Wiem Meddeb
- Faculty of Sciences, University of Carthage, Bizerte 7021, Tunisia;
| | - Wided Khamlaoui
- Biochemistry Laboratory, LR12ES05 Nutrition-Functional Foods and Vascular Health, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia; (S.H.); (I.G.); (W.K.); (S.H.); (M.H.)
| | - Sonia Hammami
- Biochemistry Laboratory, LR12ES05 Nutrition-Functional Foods and Vascular Health, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia; (S.H.); (I.G.); (W.K.); (S.H.); (M.H.)
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (P.P.-P.); (F.J.M.)
| | - Mohamed Hammami
- Biochemistry Laboratory, LR12ES05 Nutrition-Functional Foods and Vascular Health, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia; (S.H.); (I.G.); (W.K.); (S.H.); (M.H.)
| | - Amira Zarrouk
- Biochemistry Laboratory, LR12ES05 Nutrition-Functional Foods and Vascular Health, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia; (S.H.); (I.G.); (W.K.); (S.H.); (M.H.)
- Faculty of Medicine, Sousse, University of Sousse, Sousse 4000, Tunisia
| |
Collapse
|
38
|
Krakowska-Sieprawska A, Rafińska K, Walczak-Skierska J, Kiełbasa A, Buszewski B. Promising Green Technology in Obtaining Functional Plant Preparations: Combined Enzyme-Assisted Supercritical Fluid Extraction of Flavonoids Isolation from Medicago Sativa Leaves. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2724. [PMID: 34064166 PMCID: PMC8196795 DOI: 10.3390/ma14112724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022]
Abstract
To elaborate a complete extraction protocol for the enhanced release of biologically active compounds from plant cells, this study aimed to optimize together the parameters of the supercritical fluid extraction (SFE) process (temperature, pressure, and percentage of cosolvent) and enzymatic treatment of plant material (pH, enzyme concentration, time, and temperature) by response surface methodology (RSM). Medicago sativa L. was selected as a plant material due to its richness in phenolics and flavonoids. HPLC-MS/MS analysis allowed evaluating the content of individual bioactive compounds in obtained extracts. The total content of polyphenolic compounds in the extract obtained after two-step optimization was much higher (546 ± 21 µg/g) than in the extract obtained from non-hydrolyzed material (275 ± 23 µg/g) and in the extract obtained by maceration (162 ± 20 µg/g). Furthermore, it was evidenced that extract with the highest content of polyphenolic compounds can support the cellular antioxidant system both as a free radical scavenger and by stimulating the antioxidant enzyme system.
Collapse
Affiliation(s)
- Aneta Krakowska-Sieprawska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St., PL-87100 Torun, Poland; (A.K.-S.); (K.R.); (A.K.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wilenska 4 St., PL-87100 Torun, Poland;
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St., PL-87100 Torun, Poland; (A.K.-S.); (K.R.); (A.K.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wilenska 4 St., PL-87100 Torun, Poland;
| | - Justyna Walczak-Skierska
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wilenska 4 St., PL-87100 Torun, Poland;
| | - Anna Kiełbasa
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St., PL-87100 Torun, Poland; (A.K.-S.); (K.R.); (A.K.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St., PL-87100 Torun, Poland; (A.K.-S.); (K.R.); (A.K.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wilenska 4 St., PL-87100 Torun, Poland;
| |
Collapse
|
39
|
Elmhalli F, Garboui SS, Karlson AKB, Mozūraitis R, Baldauf SL, Grandi G. Acaricidal activity against Ixodes ricinus nymphs of essential oils from the Libyan plants Artemisia herba alba, Origanum majorana and Juniperus phoenicea. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2021; 24:100575. [PMID: 34024391 DOI: 10.1016/j.vprsr.2021.100575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/17/2021] [Accepted: 04/05/2021] [Indexed: 11/27/2022]
Abstract
Ixodes ricinus (L.) (Acari: Ixodidae) is a major vector for the transmission of several important human pathogens. The aim of the present study was to evaluate the in vitro efficacy of different concentrations of essential oils (Eos) on I. ricinus tick nymphs. Oils were obtained from the leaves of three plants native to Libya: white wormwood (Artemisia herba alba Asso), marjoram (Origanum majorana L.) and Arâr (Juniperus phoenicea L., English common name Phoenician juniper). Assays were done using the "open filter paper method". Two concentrations from each oil, 0.5 and 1 μl/cm, were tested. The acaricidal effect was measured in terms of the lethal concentrations (LC50, LC95) and lethal time (LT50, LT95). Mortality rates were obtained by counting the surviving nymphs every 30 min for the first five hours and then at 24, 48 and 72 h. A mortality of 100% was recorded at the higher concentration of oils (1 μl/cm2) from A. herba alba and J. phoenicea at the first 2 h of exposure. Exposure to O. majorana led to 100% mortality on the third day (72 h), and this effect decreased noticeably with 0.5 μl/cm2 oil at the same exposure time. However, 50% of ticks showed a paralysis effect and less movement after 2 h. The LC50 of mortality was reached within the first 24 h of exposure time at 0.5 μl/cm2 of O. majorana, which produced 60% tick's mortality. Chemical composition of the essential oils was elucidated by gas chromatography-mass spectrometry analyses. These results suggest that essential oils deserve further investigation as components of alternative approaches for I. ricinus tick control.
Collapse
Affiliation(s)
- Fawzeia Elmhalli
- Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 755 36 Uppsala, Sweden; Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya.
| | - Samira S Garboui
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya
| | - Anna Karin Borg Karlson
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Drottning Kristinas väg 4, 114 28 Stockholm, Sweden.
| | - Raimondas Mozūraitis
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 114 18 Stockholm, Sweden.
| | - Sandra L Baldauf
- Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 755 36 Uppsala, Sweden.
| | - Giulio Grandi
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7036, Ulls väg 26, 756 51 Uppsala, Sweden; Department of Microbiology, National Veterinary Institute (SVA), Ulls väg 2B, 756 51 Uppsala, Sweden.
| |
Collapse
|
40
|
Chopra B, Dhingra AK. Natural products: A lead for drug discovery and development. Phytother Res 2021; 35:4660-4702. [PMID: 33847440 DOI: 10.1002/ptr.7099] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
Natural products are used since ancient times in folklore for the treatment of various ailments. Plant-derived products have been recognized for many years as a source of therapeutic agents and structural diversity. A literature survey has been carried out to determine the utility of natural molecules and their modified analogs or derivatives as pharmacological active entities. This review presents a study on the importance of natural products in terms of drug discovery and development. It describes how the natural components can be utilized after small modifications in new perspectives. Various new modifications in structure offer a unique opportunity to establish a new molecular entity with better pharmacological potential. It was concluded that in this current era, new attempts are taken to utilize the compounds derived from natural sources as novel drug candidates, with a focus to find and discover new effective molecules that were referred to as "new entities of natural product drug discovery."
Collapse
Affiliation(s)
- Bhawna Chopra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Ashwani Kumar Dhingra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| |
Collapse
|
41
|
El-Gamal M, Salama M, Collins-Praino LE, Baetu I, Fathalla AM, Soliman AM, Mohamed W, Moustafa AA. Neurotoxin-Induced Rodent Models of Parkinson's Disease: Benefits and Drawbacks. Neurotox Res 2021; 39:897-923. [PMID: 33765237 DOI: 10.1007/s12640-021-00356-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by cardinal motor impairments, including akinesia and tremor, as well as by a host of non-motor symptoms, including both autonomic and cognitive dysfunction. PD is associated with a death of nigral dopaminergic neurons, as well as the pathological spread of Lewy bodies, consisting predominantly of the misfolded protein alpha-synuclein. To date, only symptomatic treatments, such as levodopa, are available, and trials aiming to cure the disease, or at least halt its progression, have not been successful. Wong et al. (2019) suggested that the lack of effective therapy against neurodegeneration in PD might be attributed to the fact that the molecular mechanisms standing behind the dopaminergic neuronal vulnerability are still a major scientific challenge. Understanding these molecular mechanisms is critical for developing effective therapy. Thirty-five years ago, Calne and William Langston (1983) raised the question of whether biological or environmental factors precipitate the development of PD. In spite of great advances in technology and medicine, this question still lacks a clear answer. Only 5-15% of PD cases are attributed to a genetic mutation, with the majority of cases classified as idiopathic, which could be linked to exposure to environmental contaminants. Rodent models play a crucial role in understanding the risk factors and pathogenesis of PD. Additionally, well-validated rodent models are critical for driving the preclinical development of clinically translatable treatment options. In this review, we discuss the mechanisms, similarities and differences, as well as advantages and limitations of different neurotoxin-induced rat models of PD. In the second part of this review, we will discuss the potential future of neurotoxin-induced models of PD. Finally, we will briefly demonstrate the crucial role of gene-environment interactions in PD and discuss fusion or dual PD models. We argue that these models have the potential to significantly further our understanding of PD.
Collapse
Affiliation(s)
- Mohamed El-Gamal
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt. .,Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Mohamed Salama
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Ireland
| | | | | | - Ahmed M Fathalla
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amira M Soliman
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Wael Mohamed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Mansoura, Egypt.,Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University, Kuantan, Pahang, Malaysia
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology and Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, NSW, Australia.,Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
42
|
Effects of Abiotic Elicitors on Expression and Accumulation of Three Candidate Benzophenanthridine Alkaloids in Cultured Greater Celandine Cells. Molecules 2021; 26:molecules26051395. [PMID: 33807597 PMCID: PMC7962051 DOI: 10.3390/molecules26051395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/13/2023] Open
Abstract
Efforts to develop the necessary biotechnologies in Greater Celandine (Chelidonium majus L.), a leading plant resource for the development of plant-derived medicines, have been hampered by the lack of knowledge about transcriptome and metabolome regulations of its medicinal components. Therefore, this study aimed to examine the effect of abiotic elicitors, methyl jasmonate (MJ) and salicylic acid (SA), at different time courses (12, 24, 48, and 72 h), on expression and metabolome of key benzophenanthridine alkaloids (BPAs) in an optimized in vitro culture. Gene expression analysis indicated the upregulation of CFS (cheilanthifoline synthase) to 2.62, 4.85, and 7.28 times higher than the control at 12, 24, and 48 h respectively, under MJ elicitation. Besides, MJ upregulated the expression of TNMT (tetrahydroprotoberberine N-methyltransferase) to 2.79, 4.75, and 7.21 times at 12, 24, and 48 h respectively, compared to the control. Investigation of BPAs revealed a significant enhancement in the chelidonine content (9.86 µg/mg) after 72 h of MJ elicitation. Additionally, sanguinarine content increased to its highest level (3.42 µg/mg) after 24 h of MJ elicitation; however, no significant enhancement was detected in its content in shorter elicitation time courses. Generally, higher gene expression and BPAs’ level was observed through longer elicitation courses (48 and 72 h). Our findings take part in improving the understanding of transcription and metabolic regulation of BPAs in cultured Greater Celandine cells.
Collapse
|
43
|
Fu X, Zhang F, Ma Y, Hassani D, Peng B, Pan Q, Zhang Y, Deng Z, Liu W, Zhang J, Han L, Chen D, Zhao J, Li L, Sun X, Tang K. High-Level Patchoulol Biosynthesis in Artemisia annua L. Front Bioeng Biotechnol 2021; 8:621127. [PMID: 33614607 PMCID: PMC7890116 DOI: 10.3389/fbioe.2020.621127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Terpenes constitute the largest class of secondary metabolites in plants. Some terpenes are essential for plant growth and development, membrane components, and photosynthesis. Terpenes are also economically useful for industry, agriculture, and pharmaceuticals. However, there is very low content of most terpenes in microbes and plants. Chemical or microbial synthesis of terpenes are often costly. Plants have the elaborate and economic biosynthetic way of producing high-value terpenes through photosynthesis. Here we engineered the heterogenous sesquiterpenoid patchoulol production in A. annua. When using a strong promoter such as 35S to over express the avian farnesyl diphosphate synthase gene and patchoulol synthase gene, the highest content of patchoulol was 52.58 μg/g DW in transgenic plants. When altering the subcellular location of the introduced sesquiterpene synthetase via a signal peptide, the accumulation of patchoulol was observably increased to 273 μg/g DW. This case demonstrates that A. annua plant with glandular trichomes is a useful platform for synthetic biology studies.
Collapse
Affiliation(s)
- Xueqing Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fangyuan Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Southwest University-Tibet Agriculture and Animal Husbandry College (SWU-TAAHC) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Yanan Ma
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danial Hassani
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Peng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qifang Pan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhua Zhang
- Corporate R&D Division, Firmenich Aromatics (China) Co. Ltd., Shanghai, China
| | - Zhongxiang Deng
- Corporate R&D Division, Firmenich Aromatics (China) Co. Ltd., Shanghai, China
| | - Wenbo Liu
- Corporate R&D Division, Firmenich Aromatics (China) Co. Ltd., Shanghai, China
| | - Jixiu Zhang
- Corporate R&D Division, Firmenich Aromatics (China) Co. Ltd., Shanghai, China
| | - Lei Han
- Corporate R&D Division, Firmenich Aromatics (China) Co. Ltd., Shanghai, China
| | - Dongfang Chen
- Corporate R&D Division, Firmenich Aromatics (China) Co. Ltd., Shanghai, China
| | - Jingya Zhao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofen Sun
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
44
|
Stefi AL, Nikou T, Vassilacopoulou D, Skaltsounis LA, Halabalaki M, Christodoulakis NS. Structure and organization of the secretion apparatus of the mastic tree (Pistacia lentiscus L.) and LC-HRMS analysis of leaf extracts. PLANTA 2021; 253:70. [PMID: 33604730 DOI: 10.1007/s00425-021-03588-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
The quantitative profile of the biochemicals secreted by summer and winter leaves, present noticeable differences and appear to be qualitatively different from the biochemical profile of the commercially valuable mastic. The anatomy of the root and the primary and secondary shoot as well as that of the summer and winter leaves of P. lentiscus was thoroughly investigated. The secreting network was tracked throughout the plant axis, from the root to the leaves, and the active secreting cells of the duct epithelium were localized, while the secondary metabolites produced within the cells of the summer and winter leaf tissues were identified histochemically. Numerous phytochemicals were identified in the leaf extracts with UHPLC-qTOF MS analysis. The analyzed extracts from summer and winter leaves displayed similar qualitative profile, although quantitative differences were evident, since, during the summer, the leaves tend to synthesize the more complex amongst the identified compounds. The phytochemical profile of the leaf extracts turns to be completely different compared to that of the valuable mastic harvested from the injured trunks. Many of the compounds common in mastic were not detected in the analyzed leaves samples. The numerous secreting ducts either fail to form a unified network, so composition of the secreted material varies in the different organs of the plant or they compose a continuous network, but the biochemical profile of the secreted material differs along the plant axis. Such a detailed investigation of the secretion network of the mastic tree may assist the improvement of the yield and promote the production of valuable phytochemicals through in vitro cultures.
Collapse
Affiliation(s)
- Aikaterina L Stefi
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Theodora Nikou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Dido Vassilacopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Leandros-Alexios Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Nikolaos S Christodoulakis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 15701, Athens, Greece.
| |
Collapse
|
45
|
Arbutin alleviates diabetic symptoms by attenuating oxidative stress in a mouse model of type 1 diabetes. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-00920-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
46
|
Alqethami A, Aldhebiani AY. Medicinal plants used in Jeddah, Saudi Arabia: Phytochemical screening. Saudi J Biol Sci 2021; 28:805-812. [PMID: 33424370 PMCID: PMC7783804 DOI: 10.1016/j.sjbs.2020.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023] Open
Abstract
Ethnobotanical and phytochemical studies are useful to discover new drugs. Phytochemical screening is an important step in the detection of the bioactive components existing in medicinal plants that are used in traditional medicine. Very few phytochemical studies investigating medicinal plants used in traditional medicine exist in Saudi Arabia. Eighty-five medicinal plants used in traditional medicine in Jeddah, Saudi Arabia are investigated here for the first time. This research aims to screen of 85 medicinal plants used in traditional medicine in Jeddah for the presence of secondary metabolites, and to answer the following question: Is the ethnomedicinal importance of medicinal plants used in Jeddah conform to their secondary metabolite content. Ethnobotanical fieldwork took place in Jeddah from August 2018 to September 2019. Eighty-five different plant species belonging to 37 families were identified. Screening of 85 medicinal plants was performed for the presence of alkaloids, glycosides, flavonoids, tannins, saponins and resins using standard methods. The most commonly distributed phytochemical compounds among medicinal plants used were glycosides (82%; 70 species), tannins (68%; 58 species), alkaloids (56%; 48 species), saponins (52%, 44 species) and flavonoids (35%; 30 species). On the other hand, the least commonly distributed compounds were resins (31%; 26 species). All the six groups of secondary metabolites were found in seeds of Cuminum cyminum L., Pimpinella anisum L. and Trigonella foenum-graecum L. It can be said that the ethnomedicinal importance of these 85 medicinal plants used in Jeddah conform to their secondary metabolite content. More research should be carried out on the quantitative analysis of phytochemicals in these 85 medicinal plants used in traditional medicine in Jeddah. Furthermore, there is a need to focus phytochemical screening on ethnobotanical studies to complete research into traditional medicine which leads to the discovery of new drugs.
Collapse
Affiliation(s)
- Afnan Alqethami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia.,Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amal Y Aldhebiani
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Doctor Najla Bint Saudi Al Saud Distinguished Research Center for Biotechnology, King Abdulaziz University, Saudi Arabia
| |
Collapse
|
47
|
Cheng J, Chen J, Liu X, Li X, Zhang W, Dai Z, Lu L, Zhou X, Cai J, Zhang X, Jiang H, Ma Y. The origin and evolution of the diosgenin biosynthetic pathway in yam. PLANT COMMUNICATIONS 2021; 2:100079. [PMID: 33511341 PMCID: PMC7816074 DOI: 10.1016/j.xplc.2020.100079] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 05/21/2023]
Abstract
Diosgenin, mainly produced by Dioscorea species, is a traditional precursor of most hormonal drugs in the pharmaceutical industry. The mechanisms that underlie the origin and evolution of diosgenin biosynthesis in plants remain unclear. After sequencing the whole genome of Dioscorea zingiberensis, we revealed the evolutionary trajectory of the diosgenin biosynthetic pathway in Dioscorea and demonstrated the de novo biosynthesis of diosgenin in a yeast cell factory. First, we found that P450 gene duplication and neo-functionalization, driven by positive selection, played important roles in the origin of the diosgenin biosynthetic pathway. Subsequently, we found that the enrichment of diosgenin in the yam lineage was regulated by CpG islands, which evolved to regulate gene expression in the diosgenin pathway and balance the carbon flux between the biosynthesis of diosgenin and starch. Finally, by integrating genes from plants, animals, and yeast, we heterologously synthesized diosgenin to 10 mg/l in genetically-engineered yeast. Our study not only reveals the origin and evolutionary mechanisms of the diosgenin biosynthetic pathway in Dioscorea, but also introduces an alternative approach for the production of diosgenin through synthetic biology.
Collapse
Affiliation(s)
- Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jing Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiangchen Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weixiong Zhang
- Research Center for Ecology and Environmental Sciences, Northwestern Polytechnical University, Xian, China
| | - Zhubo Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lina Lu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiang Zhou
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Jing Cai
- Research Center for Ecology and Environmental Sciences, Northwestern Polytechnical University, Xian, China
- Corresponding author
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Corresponding author
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Corresponding author
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
48
|
Bioactive Lipids of Marine Microalga Chlorococcum sp. SABC 012504 with Anti-Inflammatory and Anti-Thrombotic Activities. Mar Drugs 2021; 19:md19010028. [PMID: 33435162 PMCID: PMC7827044 DOI: 10.3390/md19010028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Microalgae are at the start of the food chain, and many are known producers of a significant amount of lipids with essential fatty acids. However, the bioactivity of microalgal lipids for anti-inflammatory and antithrombotic activities have rarely been investigated. Therefore, for a sustainable source of the above bioactive lipids, the present study was undertaken. The total lipids of microalga Chlorococcum sp., isolated from the Irish coast, were fractionated into neutral-, glyco-, and phospho-lipids, and were tested in vitro for their anti-inflammatory and antithrombotic activities. All tested lipid fractions showed strong anti-platelet-activating factor (PAF) and antithrombin activities in human platelets (half maximal inhibitory concentration (IC50) values ranging ~25–200 μg of lipid) with the highest activities in glyco- and phospho-lipid fractions. The structural analysis of the bioactive lipid fraction-2 revealed the presence of specific sulfoquinovosyl diacylglycerols (SQDG) bioactive molecules and the HexCer-t36:2 (t18:1/18:1 and 18:2/18:0) cerebrosides with a phytosphingosine (4-hydrosphinganine) base, while fraction-3 contained bioactive phosphatidylcholine (PC) and phosphatidylethanolamine (PE) molecules. These novel bioactive lipids of Chlorococcum sp. with putative health benefits may indicate that marine microalgae can be a sustainable alternative source for bioactive lipids production for food supplements and nutraceutical applications. However, further studies are required towards the commercial technology pathways development and biosafety analysis for the use of the microalga.
Collapse
|
49
|
Bai C, Yang J, Cao B, Xue Y, Gao P, Liang H, Li G. Growth years and post-harvest processing methods have critical roles on the contents of medicinal active ingredients of Scutellaria baicalensis. INDUSTRIAL CROPS AND PRODUCTS 2020; 158:112985. [PMID: 33162677 PMCID: PMC7604031 DOI: 10.1016/j.indcrop.2020.112985] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/10/2020] [Accepted: 09/29/2020] [Indexed: 05/26/2023]
Abstract
Optimizing the processing technology is an effective way to improve the yield of active ingredients for the industrial production of medicinal crops. Baikal Skullcap (Scutellaria baicalensis Georgi) is a perennial herb in the Lamiaceae family and its dried root is used as a famous traditional Chinese medicine (TCM). Modern pharmacological studies have shown that the active ingredients of S. baicalensis have important pharmacological effects including anti-oxidation, anti-bacterial, anti-viral, anti-tumor, and anti-inflammation. Specifically, it is recently found that S. baicalensis has significant curative effects on the treatment of corona virus disease 2019 (COVID-19). In recent years, the market demand for the medicinal products of S. baicalensis is increasing because of its great medicinal values. However, the annual yield of active ingredients originated from the root of S. baicalensis is limited due to that little progress has been made on the traditional processing technology used in the extraction process. A pressing issue faced by both herbalists and scientists is how to improve the processing efficiency, thereby obtaining the maximum yield of products for S. baicalensis. In this study, a systematic analysis on the effects of growth years and post-harvest processing on the contents of medicinal active ingredients of S. baicalensis was conducted. The contents of eight active ingredients (baicalin, wogonoside, baicalein, wogonin, scutellarin, scutellarein, apigenin, and chrysin) in roots of S. baicalensis of different growth years (ranging from 1 year to 15 years) were estimated using high performance liquid chromatography (HPLC) and further analyzed to determine the optimal harvest period. In particular, the contents of six active ingredients in different parts (cortex and stele) of the root of S. baicalensis were estimated and compared. Meanwhile, the dynamic changes of the contents of active ingredients in fresh-crush and fresh-cut roots of S. baicalensis at room temperature were compared and analyzed to reveal the influence of post-harvest treatment on the contents of active ingredients. In addition, the effects of six different post-harvest treatments on the contents of active ingredients were systematically designed and compared to determine the best primary processing technology. The results showed that the best harvesting period for S. baicalensis should be determined as 2-3 years based on comprehensive evaluation of active ingredient content, annual yield increment, and land use efficiency. The contents of active ingredients including baicalin, wogonoside, baicalein, and wogonin in cortex were significantly higher than those in stele (P ≤ 0.05). The contents of baicalin, wogonoside, and scutellarin in fresh roots of S. baicalensis significantly reduced as the storage time increased, but the reduction of fresh-cutting was significantly lower than that of fresh-crushing. For the effects of different processing treatments, the contents of four main active ingredients (baicalin, wogonoside, baicalein, and wogonin) under drying (D) and cutting-drying (C-D) treatments were significantly higher than those of the other four treatments (P ≤ 0.05). Collectively, the above results will not only provide novel processing methods that will improve the yield of active ingredients for S. baicalensis, but also shed light on the optimization of processing technology for the industrial production of medicinal crops.
Collapse
Affiliation(s)
- Chengke Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Jingjing Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Bo Cao
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Ying Xue
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Pufan Gao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Hui Liang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Guishuang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
50
|
Berretta AA, Silveira MAD, Cóndor Capcha JM, De Jong D. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: Running title: Propolis against SARS-CoV-2 infection and COVID-19. Biomed Pharmacother 2020; 131:110622. [PMID: 32890967 PMCID: PMC7430291 DOI: 10.1016/j.biopha.2020.110622] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Propolis, a resinous material produced by honey bees from plant exudates, has long been used in traditional herbal medicine and is widely consumed as a health aid and immune system booster. The COVID-19 pandemic has renewed interest in propolis products worldwide; fortunately, various aspects of the SARS-CoV-2 infection mechanism are potential targets for propolis compounds. SARS-CoV-2 entry into host cells is characterized by viral spike protein interaction with cellular angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2. This mechanism involves PAK1 overexpression, which is a kinase that mediates coronavirus-induced lung inflammation, fibrosis, and immune system suppression. Propolis components have inhibitory effects on the ACE2, TMPRSS2 and PAK1 signaling pathways; in addition, antiviral activity has been proven in vitro and in vivo. In pre-clinical studies, propolis promoted immunoregulation of pro-inflammatory cytokines, including reduction in IL-6, IL-1 beta and TNF-α. This immunoregulation involves monocytes and macrophages, as well as Jak2/STAT3, NF-kB, and inflammasome pathways, reducing the risk of cytokine storm syndrome, a major mortality factor in advanced COVID-19 disease. Propolis has also shown promise as an aid in the treatment of various of the comorbidities that are particularly dangerous in COVID-19 patients, including respiratory diseases, hypertension, diabetes, and cancer. Standardized propolis products with consistent bioactive properties are now available. Given the current emergency caused by the COVID-19 pandemic and limited therapeutic options, propolis is presented as a promising and relevant therapeutic option that is safe, easy to administrate orally and is readily available as a natural supplement and functional food.
Collapse
Affiliation(s)
- Andresa Aparecida Berretta
- Research, Development and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, São Paulo, Brazil.
| | | | - José Manuel Cóndor Capcha
- Interdisciplinary Stem Cell Institute at Miller School of Medicine, University of Miami, Miami, Florida, United States.
| | - David De Jong
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|