1
|
Chueh TY, Chen YC, Hung TM. Breaking up sitting enhances neurocognitive function which is associated with improved postprandial glucose regulation in healthy adults: A randomized crossover study. Physiol Behav 2025; 290:114744. [PMID: 39579950 DOI: 10.1016/j.physbeh.2024.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND AND AIMS The glucose-centric hypothesis postulates that glycemic control may influence cognition. While research has examined the effects of breaking up sitting on blood glucose and inhibitory control, few studies have integrated these data and employed event-related potential (ERP) measures to delve into the neuroelectric processes. This study aimed to investigate the effects of breaking up sitting on postprandial blood glucose response, inhibitory control, and P3 component. METHODS Eighteen healthy male participants [25 ± 4 years, 23.5 ± 3.2 kg/m² (mean ± SD)] were subjected to 3.5 h uninterrupted sitting (SIT) or with 3 min walking at 6.4 km/h every 30 min (ACTIVE) trials in a randomized crossover design. The Stroop task was administered to assess inhibitory control before and after SIT and ACTIVE trials, and electroencephalography was employed to derive stimulus-elicited P3 component. Finger prick blood glucose levels were collected at baseline, 0.5 h, 1 h, and 3.5 h during the trials. RESULTS While no significant differences were found in inhibitory control performances between trials, greater P3 amplitude was found in the ACTIVE trial relative to the SIT trial (p = .041). Lower postprandial blood glucose iAUC was found in ACTIVE trial compared to SIT trial (p = .028), and this was correlated with the elevation of P3 amplitude (r = - 0.521, p = .023). CONCLUSION Breaking up sitting acutely facilitates neuroelectric indices of attentional processing, which is associated with the optimal postprandial blood glucose control.
Collapse
Affiliation(s)
- Ting-Yu Chueh
- Master's Program of Transition and Leisure Education for Individuals with Disabilities, University of Taipei, Taiwan
| | - Yung-Chih Chen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan.
| | - Tsung-Min Hung
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan; Institute for Research Excellence and Learning Sciences, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
2
|
Jensen NJ, Porse AJ, Wodschow HZ, Speyer H, Krogh J, Marner L, Gejl M, Gjedde A, Rungby J. Relation of Insulin Resistance to Brain Glucose Metabolism in Fasting and Hyperinsulinemic States: A Systematic Review and Meta-analysis. J Clin Endocrinol Metab 2025; 110:e525-e537. [PMID: 39185744 PMCID: PMC11747694 DOI: 10.1210/clinem/dgae570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/15/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
CONTEXT Abnormal brain glucose metabolism may cause cognitive disease in type 2 diabetes, yet the relation between insulin resistance and brain glucose metabolism has not been systematically described. OBJECTIVE We evaluated the impact of metabolic condition (fasting vs insulin stimulation, eg, from hyperinsulinemic clamp) on the association between insulin resistance of different etiologies and brain glucose metabolism. DATA SOURCES PubMed, Embase, Cochrane Library, and Web of Science were systematically searched from inception until February 2022. STUDY SELECTION Of 656 unique records, we deemed 31 eligible. Criteria were studies assessing brain glucose metabolism (uptake or metabolic rate) by 18F-2-fluoro-2-deoxy-D-glucose-positron emission tomography in individuals characterized by measures of or clinical proxies for insulin resistance (eg, type 2 diabetes and obesity). DATA EXTRACTION Two independent investigators extracted data and assessed study quality. DATA SYNTHESIS We applied random-effects models to pool Hedge's g standardized mean differences. Insulin resistance was associated with decreased brain glucose metabolism during fasting [-0.47 SD, 95% confidence interval (CI): -0.73 to -0.22, P < .001, I2 = 71%] and increased metabolism during insulin stimulation (1.44 SD, 95% CI 0.79 to 2.09, P = .002, I2 = 43%). Contrary to type 2 diabetes and other insulin resistance-related conditions, obesity was not associated with brain hypometabolism in fasting states (0.29 SD, 95% CI -.81 to 1.39). CONCLUSION Metabolic conditions modify associations between insulin resistance and brain glucose metabolism; ie, most individuals with insulin resistance display hypometabolism during fasting and hypermetabolism during insulin stimulation.
Collapse
Affiliation(s)
- Nicole J Jensen
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg, 2400 Copenhagen, Denmark
- Steno Diabetes Neuro Unit, Translational Type 2 Diabetes Research, Clinical Translational Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Ane J Porse
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg, 2400 Copenhagen, Denmark
- Steno Diabetes Neuro Unit, Translational Type 2 Diabetes Research, Clinical Translational Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Helena Z Wodschow
- Steno Diabetes Neuro Unit, Translational Type 2 Diabetes Research, Clinical Translational Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Helene Speyer
- Copenhagen Research Centre for Mental Health—CORE, Mental Health Centre Copenhagen, Faculty of Health Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jesper Krogh
- Steno Diabetes Neuro Unit, Translational Type 2 Diabetes Research, Clinical Translational Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Clinic for Pituitary Disorders, Department of Medicine, Zealand University Hospital, 4600 Køge, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michael Gejl
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Albert Gjedde
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Jørgen Rungby
- Steno Diabetes Neuro Unit, Translational Type 2 Diabetes Research, Clinical Translational Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
3
|
Sifat AE, Nozohouri S, Archie SR, Chowdhury EA, Abbruscato TJ. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int J Mol Sci 2022; 23:ijms23158512. [PMID: 35955647 PMCID: PMC9369264 DOI: 10.3390/ijms23158512] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Proper regulation of energy metabolism in the brain is crucial for maintaining brain activity in physiological and different pathophysiological conditions. Ischemic stroke has a complex pathophysiology which includes perturbations in the brain energy metabolism processes which can contribute to worsening of brain injury and stroke outcome. Smoking and diabetes are common risk factors and comorbid conditions for ischemic stroke which have also been associated with disruptions in brain energy metabolism. Simultaneous presence of these conditions may further alter energy metabolism in the brain leading to a poor clinical prognosis after an ischemic stroke event. In this review, we discuss the possible effects of smoking and/or diabetes on brain glucose utilization and mitochondrial energy metabolism which, when present concurrently, may exacerbate energy metabolism in the ischemic brain. More research is needed to investigate brain glucose utilization and mitochondrial oxidative metabolism in ischemic stroke in the presence of smoking and/or diabetes, which would provide further insights on the pathophysiology of these comorbid conditions and facilitate the development of therapeutic interventions.
Collapse
|
4
|
Sovrani V, Bobermin LD, Schmitz I, Leipnitz G, Quincozes-Santos A. Potential Glioprotective Strategies Against Diabetes-Induced Brain Toxicity. Neurotox Res 2021; 39:1651-1664. [PMID: 34258694 DOI: 10.1007/s12640-021-00393-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Astrocytes are crucial for the maintenance of brain homeostasis by actively participating in the metabolism of glucose, which is the main energy substrate for the central nervous system (CNS), in addition to other supportive functions. More specifically, astrocytes support neurons through the metabolic coupling of synaptic activity and glucose utilization. As such, diabetes mellitus (DM) and consequent glucose metabolism disorders induce astrocyte damage, affecting CNS functionality. Glioprotective molecules can promote protection by improving glial functions and avoiding toxicity in different pathological conditions, including DM. Therefore, this review discusses specific pathomechanisms associated with DM/glucose metabolism disorder-induced gliotoxicity, namely astrocyte metabolism, redox homeostasis/mitochondrial activity, inflammation, and glial signaling pathways. Studies investigating natural products as potential glioprotective strategies against these deleterious effects of DM/glucose metabolism disorders are also reviewed herein. These products include carotenoids, catechins, isoflavones, lipoic acid, polysaccharides, resveratrol, and sulforaphane.
Collapse
Affiliation(s)
- Vanessa Sovrani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação Em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
5
|
Hendrix RD, Ou Y, Davis JE, Odle AK, Groves TR, Allen AR, Childs GV, Barger SW. Alzheimer amyloid-β- peptide disrupts membrane localization of glucose transporter 1 in astrocytes: implications for glucose levels in brain and blood. Neurobiol Aging 2020; 97:73-88. [PMID: 33161213 PMCID: PMC7736209 DOI: 10.1016/j.neurobiolaging.2020.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/25/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is associated with disturbances in blood glucose regulation, and type-2 diabetes elevates the risk for dementia. A role for amyloid-β peptide (Aβ) in linking these age-related conditions has been proposed, tested primarily in transgenic mouse lines that overexpress mutated amyloid precursor protein (APP). Because APP has its own impacts on glucose regulation, we examined the BRI-Aβ42 line (“Aβ42-tg”), which produces extracellular Aβ1–42 in the CNS without elevation of APP. We also looked for interactions with diet-induced obesity (DIO) resulting from a high-fat, high-sucrose (“western”) diet. Aβ42-tg mice were impaired in both spatial memory and glucose tolerance. Although DIO induced insulin resistance, Aβ1–42 accumulation did not, and the impacts of DIO and Aβ on glucose tolerance were merely additive. Aβ42-tg mice exhibited no significant differences from wild-type in insulin production, body weight, lipidemia, appetite, physical activity, respiratory quotient, an-/orexigenic factors, or inflammatory factors. These negative findings suggested that the phenotype in these mice arose from perturbation of glucose excursion in an insulin-independent tissue. To wit, cerebral cortex of Aβ42-tg mice had reduced glucose utilization, similar to human patients with AD. This was associated with insufficient trafficking of glucose transporter 1 to the plasma membrane in parenchymal brain cells, a finding also documented in human AD tissue. Together, the lower cerebral metabolic rate of glucose and diminished function of parenchymal glucose transporter 1 indicate that aberrant regulation of blood glucose in AD likely reflects a central phenomenon, resulting from the effects of Aβ on cerebral parenchyma, rather than a generalized disruption of hypothalamic or peripheral endocrinology. The involvement of a specific glucose transporter in this deficit provides a new target for the design of AD therapies.
Collapse
Affiliation(s)
- Rachel D Hendrix
- Department of Neurobiology & Developmental Sciences, Little Rock, AR, USA
| | - Yang Ou
- Department of Geriatrics, Little Rock, AR, USA
| | - Jakeira E Davis
- Graduate Program in Interdisciplinary Biomedical Sciences, Little Rock, AR, USA
| | - Angela K Odle
- Department of Neurobiology & Developmental Sciences, Little Rock, AR, USA
| | - Thomas R Groves
- Department of Neurobiology & Developmental Sciences, Little Rock, AR, USA
| | - Antiño R Allen
- Department of Neurobiology & Developmental Sciences, Little Rock, AR, USA; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gwen V Childs
- Department of Neurobiology & Developmental Sciences, Little Rock, AR, USA
| | - Steven W Barger
- Department of Neurobiology & Developmental Sciences, Little Rock, AR, USA; Department of Geriatrics, Little Rock, AR, USA; Geriatric Research, Education & Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| |
Collapse
|
6
|
Hwang JJ, Jiang L, Sanchez Rangel E, Fan X, Ding Y, Lam W, Leventhal J, Dai F, Rothman DL, Mason GF, Sherwin RS. Glycemic Variability and Brain Glucose Levels in Type 1 Diabetes. Diabetes 2019; 68:163-171. [PMID: 30327383 PMCID: PMC6302539 DOI: 10.2337/db18-0722] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
The impact of glycemic variability on brain glucose transport kinetics among individuals with type 1 diabetes mellitus (T1DM) remains unclear. Fourteen individuals with T1DM (age 35 ± 4 years; BMI 26.0 ± 1.4 kg/m2; HbA1c 7.6 ± 0.3) and nine healthy control participants (age 32 ± 4; BMI 23.1 ± 0.8; HbA1c 5.0 ± 0.1) wore a continuous glucose monitor (Dexcom) to measure hypoglycemia, hyperglycemia, and glycemic variability for 5 days followed by 1H MRS scanning in the occipital lobe to measure the change in intracerebral glucose levels during a 2-h glucose clamp (target glucose concentration 220 mg/dL). Hyperglycemic clamps were also performed in a rat model of T1DM to assess regional differences in brain glucose transport and metabolism. Despite a similar change in plasma glucose levels during the hyperglycemic clamp, individuals with T1DM had significantly smaller increments in intracerebral glucose levels (P = 0.0002). Moreover, among individuals with T1DM, the change in brain glucose correlated positively with the lability index (r = 0.67, P = 0.006). Consistent with findings in humans, streptozotocin-treated rats had lower brain glucose levels in the cortex, hippocampus, and striatum compared with control rats. These findings that glycemic variability is associated with brain glucose levels highlight the need for future studies to investigate the impact of glycemic variability on brain glucose kinetics.
Collapse
Affiliation(s)
- Janice J Hwang
- Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Lihong Jiang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | | | - Xiaoning Fan
- Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Yuyan Ding
- Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Wai Lam
- Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | | | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Graeme F Mason
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Robert S Sherwin
- Section of Endocrinology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
7
|
Expression profile of glucose transport-related genes under chronic and acute exposure to growth hormone in zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2018. [DOI: 10.1016/j.cbpa.2018.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Nilsson M, Gjedde A, Brock B, Gejl M, Rungby J. The effects of incretin hormones on cerebral glucose metabolism in health and disease. Neuropharmacology 2017; 136:243-250. [PMID: 29274367 DOI: 10.1016/j.neuropharm.2017.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022]
Abstract
Incretin hormones, notably glucagon-like peptide-1 (GLP-1), are gluco-regulatory hormones with pleiotropic effects also in the central nervous system. Apart from a local production of GLP-1, systemic administration of the hormone has been shown to influence a number of cerebral pathologies, including neuroinflammation. Given the brains massive dependence on glucose as its major fuel, we here review the mechanistics of cerebral glucose transport and metabolism, focusing on the deleterious effects of both hypo- and hyperglycaemia. GLP-1, when administered as long-acting analogues or intravenously, appears to decrease transport of glucose in normoglycaemic conditions, without affecting the total cerebral glucose content. During hypoglycaemia this effect seems abated, whereas during hyperglycaemia GLP-1 regulates cerebral glucose metabolism towards stable levels resembling normoglycaemia. In Alzheimer's disease, a 6-month intervention with GLP-1 maintained cerebral glucose levels at baseline levels, contrasting the decline otherwise seen in Alzheimer's. Kinetic studies suggest blood-brain barrier (BBB) glucose transport as the key player in GLP-1 mediated effects on cerebral glucose metabolism. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Malin Nilsson
- Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Albert Gjedde
- Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark; Departments of Clinical Research, and Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Michael Gejl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Rungby
- Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark.
| |
Collapse
|
9
|
Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in brain health. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2017; 3:291-300. [PMID: 29067335 PMCID: PMC5651418 DOI: 10.1016/j.trci.2017.04.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cognitive decline leading to dementia represents a global health burden. In the absence of targeted pharmacotherapy, lifestyle approaches remain the best option for slowing the onset of dementia. However, older adults spend very little time doing moderate to vigorous exercise and spend a majority of time in sedentary behavior. Sedentary behavior has been linked to poor glycemic control and increased risk of all-cause mortality. Here, we explore a potential link between sedentary behavior and brain health. We highlight the role of glycemic control in maintaining brain function and suggest that reducing and replacing sedentary behavior with intermittent light-intensity physical activity may protect against cognitive decline by reducing glycemic variability. Given that older adults find it difficult to achieve current exercise recommendations, this may be an additional practical strategy. However, more research is needed to understand the impact of poor glycemic control on brain function and whether practical interventions aimed at reducing and replacing sedentary behavior with intermittent light intensity physical activity can help slow cognitive decline.
Collapse
|
10
|
Stoeckel LE, Arvanitakis Z, Gandy S, Small D, Kahn CR, Pascual-Leone A, Pawlyk A, Sherwin R, Smith P. Complex mechanisms linking neurocognitive dysfunction to insulin resistance and other metabolic dysfunction. F1000Res 2016; 5:353. [PMID: 27303627 PMCID: PMC4897751 DOI: 10.12688/f1000research.8300.2] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 01/12/2023] Open
Abstract
Scientific evidence has established several links between metabolic and neurocognitive dysfunction, and epidemiologic evidence has revealed an increased risk of Alzheimer’s disease and vascular dementia in patients with diabetes. In July 2015, the National Institute of Diabetes, Digestive, and Kidney Diseases gathered experts from multiple clinical and scientific disciplines, in a workshop entitled “The Intersection of Metabolic and Neurocognitive Dysfunction”, to clarify the state-of-the-science on the mechanisms linking metabolic dysfunction, and insulin resistance and diabetes in particular, to neurocognitive impairment and dementia. This perspective is intended to serve as a summary of the opinions expressed at this meeting, which focused on identifying gaps and opportunities to advance research in this emerging area with important public health relevance.
Collapse
Affiliation(s)
- Luke E Stoeckel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Sam Gandy
- Icahn School of Medicine and James J. Peters VAMC, New York, NY, USA
| | - Dana Small
- Yale University School of Medicine, New Haven, CT, USA
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aaron Pawlyk
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Philip Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
He XS, Wang ZX, Zhu YZ, Wang N, Hu X, Zhang DR, Zhu DF, Zhou JN. Hyperactivation of working memory-related brain circuits in newly diagnosed middle-aged type 2 diabetics. Acta Diabetol 2015; 52:133-42. [PMID: 24993663 PMCID: PMC4416650 DOI: 10.1007/s00592-014-0618-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/16/2014] [Indexed: 01/21/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is well known for its adverse impacts on brain and cognition, which leads to multidimensional cognitive deficits and wildly spread cerebral structure abnormalities. However, existing literatures are mainly focused on patients with advanced age or extended T2DM duration. Therefore, it remains unclear whether and how brain function would be affected at the initial onset stage of T2DM in relatively younger population. In current study, twelve newly diagnosed middle-aged T2DM patients with no previous diabetic treatment history and twelve matched controls were recruited. Brain activations during a working memory task, the digit n-back paradigm (0-, 1- and 2-back), were obtained with functional magnetic resonance imaging and tested by repeated measures ANOVA. Whereas patients performed the n-back task comparably well as controls, significant load-by-group interactions of brain activation were found in the right dorsolateral prefrontal cortex (DLPFC), left middle/inferior frontal gyrus, and left parietal cortex, where patients exhibited hyperactivation in the 2-back, but not the 0-back or 1-back condition compared to controls. Furthermore, the severity of chronic hyperglycemia, estimated by glycosylated hemoglobin (HbA1c) level, was entered into partial correlational analyses with task-related brain activations, while controlling for the real-time influence of glucose, estimated by instant plasma glucose level measured before scanning. Significant positive correlations were found between HbA1c and brain activations in the anterior cingulate cortex and bilateral DLPFC only in patients. Taken together, these findings suggest there might be a compensatory mechanism due to brain inefficiency related to chronic hyperglycemia at the initial onset stage of T2DM.
Collapse
Affiliation(s)
- Xiao-Song He
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Xin Wang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - You-Zhi Zhu
- Department of Radiology, PLA 105 Hospital, Hefei, Anhui, China
| | - Nan Wang
- Department of Endocrinology, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoping Hu
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, USA
| | - Da-Ren Zhang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - De-Fa Zhu
- Department of Endocrinology, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Correspondence to: Dr. De-Fa Zhu (Department of Endocrinology, Anhui Geriatric Institute, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China, 230022. ) or Dr. Jiang-Ning Zhou (CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science & Technology of China, 433 Huangshan Road, Hefei, Anhui, China, 230027. )
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
- Correspondence to: Dr. De-Fa Zhu (Department of Endocrinology, Anhui Geriatric Institute, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China, 230022. ) or Dr. Jiang-Ning Zhou (CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science & Technology of China, 433 Huangshan Road, Hefei, Anhui, China, 230027. )
| |
Collapse
|
12
|
Sickmann HM, Waagepetersen HS. Effects of diabetes on brain metabolism--is brain glycogen a significant player? Metab Brain Dis 2015; 30:335-43. [PMID: 24771109 DOI: 10.1007/s11011-014-9546-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
Brain glycogen, being an intracellular glucose reservoir, contributes to maintain energy and neurotransmitter homeostasis under physiological as well as pathological conditions. Under conditions with a disturbance in systemic glucose metabolism such as in diabetes, the supply of glucose to the brain may be affected and have important impacts on brain metabolism and neurotransmission. This also implies that brain glycogen may serve an essential role in the diabetic state to sustain appropriate brain function. There are two main types of diabetes; type 1 and type 2 diabetes and both types may be associated with brain impairments e.g. cognitive decline and dementia. It is however, not clear how these impairments on brain function are linked to alterations in brain energy and neurotransmitter metabolism. In this review, we will illuminate how rodent diabetes models have contributed to a better understanding of how brain energy and neurotransmitter metabolism is affected in diabetes. There will be a particular focus on the role of brain glycogen to support glycolytic and TCA cycle activity as well as glutamate-glutamine cycle in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Helle M Sickmann
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark,
| | | |
Collapse
|
13
|
Merwin RM, Moskovich AA, Dmitrieva NO, Pieper CF, Honeycutt LK, Zucker NL, Surwit RS, Buhi L. Disinhibited eating and weight-related insulin mismanagement among individuals with type 1 diabetes. Appetite 2014; 81:123-30. [PMID: 24882448 PMCID: PMC4130344 DOI: 10.1016/j.appet.2014.05.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/18/2014] [Accepted: 05/23/2014] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Withholding insulin for weight control is a dangerous practice among individuals with type 1 diabetes; yet little is known about the factors associated with this behavior. Studies of nondiabetic individuals with weight concerns suggest that eating in a disinhibited manner (e.g., binge eating) predicts the use of maladaptive compensatory strategies (e.g., self-induced vomiting). The purpose of this study was to test whether individuals with type 1 diabetes are less restrained in their eating when they think their blood glucose (BG) is low and whether this contributes to insulin omission for weight control purposes and subsequently higher hemoglobin A1c (HbA1c). METHODS Two-hundred and seventy-six individuals with type 1 diabetes completed an online survey of eating behaviors, insulin dosing and most recent HbA1c. We used structural equation modeling to test the hypothesis that disinhibited eating when blood sugar is thought to be low predicts weight-related insulin mismanagement, and this, in turn, predicts higher HbA1c. RESULTS The majority of participants endorsed some degree of disinhibition when they think their blood glucose is low (e.g., eating foods they do not typically allow) and corresponding negative affect (e.g., guilt/shame). The frequency of disinhibited eating was positively associated with weight-related insulin mismanagement. Controlling for age, sex, education, and insulin pump use, the model explained 31.3% of the variance in weight-related insulin mismanagement and 16.8% of the variance in HbA1c. CONCLUSION Addressing antecedents to disinhibited eating that are unique to type 1 diabetes (e.g., perceived BG level) and associated guilt or shame may reduce weight-related insulin omission.
Collapse
Affiliation(s)
- Rhonda M Merwin
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, DUMC Box 3842, Durham, NC 27710.
| | - Ashley A Moskovich
- Duke University, Department of Psychology and Neuroscience, 417 Chapel Drive, Durham, NC 27708
| | - Natalia O Dmitrieva
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, DUMC Box 3842, Durham, NC 27710
| | - Carl F Pieper
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, DUMC Box 3842, Durham, NC 27710
| | - Lisa K Honeycutt
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, DUMC Box 3842, Durham, NC 27710
| | - Nancy L Zucker
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, DUMC Box 3842, Durham, NC 27710; Duke University, Department of Psychology and Neuroscience, 417 Chapel Drive, Durham, NC 27708
| | - Richard S Surwit
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, DUMC Box 3842, Durham, NC 27710; Duke University, Department of Psychology and Neuroscience, 417 Chapel Drive, Durham, NC 27708
| | - Lori Buhi
- Duke University, Department of Psychology and Neuroscience, 417 Chapel Drive, Durham, NC 27708
| |
Collapse
|
14
|
Gejl M, Rungby J, Brock B, Gjedde A. At the centennial of Michaelis and Menten, competing Michaelis-Menten steps explain effect of GLP-1 on blood-brain transfer and metabolism of glucose. Basic Clin Pharmacol Toxicol 2014; 115:162-71. [PMID: 24684709 DOI: 10.1111/bcpt.12240] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/17/2014] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a potent insulinotropic incretin hormone with both pancreatic and extrapancreatic effects. Studies of GLP-1 reveal significant effects in regions of brain tissue that regulate appetite and satiety. GLP-1 mimetics are used for the treatment of type 2 diabetes mellitus. GLP-1 interacts with peripheral functions in which the autonomic nervous system plays an important role, and emerging pre-clinical findings indicate a potential neuroprotective role of the peptide, for example in models of stroke and in neurodegenerative disorders. A century ago, Leonor Michaelis and Maud Menten described the steady-state enzyme kinetics that still apply to the multiple receptors, transporters and enzymes that define the biochemical reactions of the brain, including the glucose-dependent impact of GLP-1 on blood-brain glucose transfer and metabolism. This MiniReview examines the potential of GLP-1 as a molecule of interest for the understanding of brain energy metabolism and with reference to the impact on brain metabolism related to appetite and satiety regulation, stroke and neurodegenerative disorders. These effects can be understood only by reference to the original formulation of the Michaelis-Menten equation as applied to a chain of kinetically controlled steps. Indeed, the effects of GLP-1 receptor activation on blood-brain glucose transfer and brain metabolism of glucose depend on the glucose concentration and relative affinities of the steps both in vitro and in vivo, as in the pancreas.
Collapse
Affiliation(s)
- Michael Gejl
- Department of Biomedicine - Pharmacology, Aarhus University, Aarhus, Denmark; Centre for Advanced Imaging, The University of Queensland, Brisbane, Qld, Australia
| | | | | | | |
Collapse
|
15
|
de Sousa IF, de Souza AP, Andrade IS, Boldarine VT, Nascimento CMO, Oyama LM, Telles MM, Ribeiro EB. Effect of fish oil intake on glucose levels in rat prefrontal cortex, as measured by microdialysis. Lipids Health Dis 2013; 12:188. [PMID: 24369745 PMCID: PMC3880162 DOI: 10.1186/1476-511x-12-188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 12/21/2013] [Indexed: 01/26/2023] Open
Abstract
Background Brain glucose sensing may contribute to energy homeostasis control. The prefrontal cortex (PFC) participates in the hedonic component of feeding control. As high-fat diets may disrupt energy homeostasis, we evaluated in male Wistar rats whether intake of high-fat fish-oil diet modified cortical glucose extracellular levels and the feeding induced by intracerebroventricular glucose or PFC glucoprivation. Methods Glucose levels in PFC microdialysates were measured before and after a 30-min meal. Food intake was measured in animals receiving intracerebroventricular glucose followed, 30-min. later, by 2-deoxy-D-glucose injected into the PFC. Results The fish-oil group showed normal body weight and serum insulin while fat pads weight and glucose levels were increased. Baseline PFC glucose and 30-min. carbohydrates intake were similar between the groups. Feeding-induced PFC glucose levels increased earlier and more pronouncedly in fish-oil than in control rats. Intracerebroventricular glucose inhibited feeding consistently in the control but not in the fish-oil group. Local PFC glucoprivation with 2-DG attenuated glucose-induced hypophagia. Conclusions The present experiments have shown that, following food intake, more glucose reached the prefrontal cortex of the rats fed the high-fat fish-oil diet than of the rats fed the control diet. However, when administered directly into the lateral cerebral ventricle, glucose was able to consistently inhibit feeding only in the control rats. The findings indicate that, an impairment of glucose transport into the brain does not contribute to the disturbances induced by the high-fat fish-oil feeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eliane B Ribeiro
- Departamento de Fisiologia, Universidade Federal de São Paulo (Unifesp), Rua Botucatu, n° 862 - 2° andar, Vila Clementino, São Paulo, SP 04023-062, Brazil.
| |
Collapse
|
16
|
van Golen LW, Huisman MC, Ijzerman RG, Hoetjes NJ, Schwarte LA, Lammertsma AA, Diamant M. Cerebral blood flow and glucose metabolism measured with positron emission tomography are decreased in human type 1 diabetes. Diabetes 2013; 62:2898-904. [PMID: 23530004 PMCID: PMC3717848 DOI: 10.2337/db12-1159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Subclinical systemic microvascular dysfunction exists in asymptomatic patients with type 1 diabetes. We hypothesized that microangiopathy, resulting from long-standing systemic hyperglycemia and hyperinsulinemia, may be generalized to the brain, resulting in changes in cerebral blood flow (CBF) and metabolism in these patients. We performed dynamic [(15)O]H2O and [(18)F]-fluoro-2-deoxy-d-glucose brain positron emission tomography scans to measure CBF and cerebral glucose metabolism (CMRglu), respectively, in 30 type 1 diabetic patients and 12 age-matched healthy controls after an overnight fast. Regions of interest were automatically delineated on coregistered magnetic resonance images and full kinetic analysis was performed. Plasma glucose and insulin levels were higher in patients versus controls. Total gray matter CBF was 9%, whereas CMRglu was 21% lower in type 1 diabetic subjects versus control subjects. We conclude that at real-life fasting glucose and insulin levels, type 1 diabetes is associated with decreased resting cerebral glucose metabolism, which is only partially explained by the decreased CBF. These findings suggest that mechanisms other than generalized microangiopathy account for the altered CMRglu observed in well-controlled type 1 diabetes.
Collapse
Affiliation(s)
- Larissa W. van Golen
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, the Netherlands
- Corresponding author: Larissa W. van Golen,
| | - Marc C. Huisman
- Department of Nuclear Medicine and Positron Emission Tomography Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Richard G. Ijzerman
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Nikie J. Hoetjes
- Department of Nuclear Medicine and Positron Emission Tomography Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Lothar A. Schwarte
- Department of Anesthesiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Adriaan A. Lammertsma
- Department of Nuclear Medicine and Positron Emission Tomography Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Michaela Diamant
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Gejl M, Lerche S, Egefjord L, Brock B, Møller N, Vang K, Rodell AB, Bibby BM, Holst JJ, Rungby J, Gjedde A. Glucagon-like peptide-1 (GLP-1) raises blood-brain glucose transfer capacity and hexokinase activity in human brain. FRONTIERS IN NEUROENERGETICS 2013; 5:2. [PMID: 23543638 PMCID: PMC3608902 DOI: 10.3389/fnene.2013.00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/27/2013] [Indexed: 12/31/2022]
Abstract
In hyperglycemia, glucagon-like peptide-1 (GLP-1) lowers brain glucose concentration together with increased net blood-brain clearance and brain metabolism, but it is not known whether this effect depends on the prevailing plasma glucose (PG) concentration. In hypoglycemia, glucose depletion potentially impairs brain function. Here, we test the hypothesis that GLP-1 exacerbates the effect of hypoglycemia. To test the hypothesis, we determined glucose transport and consumption rates in seven healthy men in a randomized, double-blinded placebo-controlled cross-over experimental design. The acute effect of GLP-1 on glucose transfer in the brain was measured by positron emission tomography (PET) during a hypoglycemic clamp (3 mM plasma glucose) with (18)F-fluoro-2-deoxy-glucose (FDG) as tracer of glucose. In addition, we jointly analyzed cerebrometabolic effects of GLP-1 from the present hypoglycemia study and our previous hyperglycemia study to estimate the Michaelis-Menten constants of glucose transport and metabolism. The GLP-1 treatment lowered the vascular volume of brain tissue. Loading data from hypo- to hyperglycemia into the Michaelis-Menten equation, we found increased maximum phosphorylation velocity (V max) in the gray matter regions of cerebral cortex, thalamus, and cerebellum, as well as increased blood-brain glucose transport capacity (T max) in gray matter, white matter, cortex, thalamus, and cerebellum. In hypoglycemia, GLP-1 had no effects on net glucose metabolism, brain glucose concentration, or blood-brain glucose transport. Neither hexokinase nor transporter affinities varied significantly with treatment in any region. We conclude that GLP-1 changes blood-brain glucose transfer and brain glucose metabolic rates in a PG concentration-dependent manner. One consequence is that hypoglycemia eliminates these effects of GLP-1 on brain glucose homeostasis.
Collapse
Affiliation(s)
- Michael Gejl
- Department of Biomedicine - Pharmacology, Aarhus University Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The occurrence of altered brain glucose metabolism has long been suggested in both diabetes and Alzheimer’s diseases. However, the preceding mechanism to altered glucose metabolism has not been well understood. Glucose enters the brain via glucose transporters primarily present at the blood-brain barrier. Any changes in glucose transporter function and expression dramatically affects brain glucose homeostasis and function. In the brains of both diabetic and Alzheimer’s disease patients, changes in glucose transporter function and expression have been observed, but a possible link between the altered glucose transporter function and disease progress is missing. Future recognition of the role of new glucose transporter isoforms in the brain may provide a better understanding of brain glucose metabolism in normal and disease states. Elucidation of clinical pathological mechanisms related to glucose transport and metabolism may provide common links to the etiology of these two diseases. Considering these facts, in this review we provide a current understanding of the vital roles of a variety of glucose transporters in the normal, diabetic and Alzheimer’s disease brain.
Collapse
Affiliation(s)
- Kaushik Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA.
| | | | | |
Collapse
|
19
|
Koranyi L, Bourey RE, James D, Mueckler M, Fiedorek FT, Permutt MA. Glucose transporter gene expression in rat brain: Pretranslational changes associated with chronic insulin-induced hypoglycemia, fasting, and diabetes. Mol Cell Neurosci 2012; 2:244-52. [PMID: 19912805 DOI: 10.1016/1044-7431(91)90051-o] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1991] [Indexed: 11/24/2022] Open
Abstract
Steady-state levels of the major glucose transporter gene (GLUT-1) of the brain were evaluated under three conditions that induced chronic changes in plasma glucose and insulin in adult rats: (i) repeated injection of insulin for 5 days, resulting in plasma glucose levels of 60-70 mg/dl for at least 3 days; (ii) fasting for 3 days; and (iii) moderate streptozotocin-induced diabetes of 1 week duration. Brain GLUT-1 mRNA was measured by dot blot hybridization with a HepG2/erythrocyte (GLUT1) [(32)P]cRNA probe, and GLUT-1 protein by immunoblot analysis with a polyclonal antibody (11493). Insulin injection resulted in hypoglycemia, increased GLUT-1 mRNA (143 +/- 15%, P < 0.05), and increased GLUT-1 protein (141 +/- 6%, P < 0.05). The increase in GLUT-1 mRNA was specific for brain, as no change was observed in liver or kidney. Fasting resulted in mild hypoglycemia, lower plasma insulin, increased GLUT-1 mRNA (131 +/- 17%, P < 0.05 vs control), and no change in GLUT-1 protein (125 +/- 9%, N.S.). Mild streptozotocin diabetes resulted in hyperglycemia, undetectable plasma insulin, decreased GLUT-1 mRNA (65 +/- 6%, P < 0.05 vs control), and no change in GLUT-1 protein (84 +/- 9%, N.S.). A negative correlation (r = -0.61, P < .0001) between GLUT-1 mRNA levels in brain and plasma glucose concentrations was observed among the three experimental groups and control animals, suggesting that the plasma glucose concentration may be at least one determinant of GLUT-1 levels in rat brain. The importance of these results is the finding that GLUT-1 gene expression in rat brain is regulated in vivo by the nutritional and endocrine status of the animal.
Collapse
Affiliation(s)
- L Koranyi
- Department of Internal Medicine, Division of Metabolism, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
20
|
Godoy DA, Di Napoli M, Rabinstein AA. Treating hyperglycemia in neurocritical patients: benefits and perils. Neurocrit Care 2011; 13:425-38. [PMID: 20652767 DOI: 10.1007/s12028-010-9404-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is growing debate over the value of intensive insulin therapy (IIT) in critically ill patients. Available trials have been performed in general medical or surgical intensive care units, and the results may not be directly applicable to patients with severe acute brain disease because these patients may have heightened susceptibility to hyperglycemia (HyperG) and hypoglycemia. Our objective was to review the pathophysiology and effects of HyperG and hypoglycemia in neurocritical patients and to analyze the potential role of IIT in this population. Source data were obtained from a PubMed search of the medical literature combining the terms HyperG, hypoglycemia, insulin, stroke, intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), traumatic brain injury (TBI), spinal cord injury (SCI), and related diagnoses. Brain metabolism is highly dependent on constant supply of glucose. As a consequence, the acutely injured brain is particularly sensitive to hypoglycemia, which can induce a state of energy failure (metabolic crisis). Meanwhile, neurocritical patients have a high prevalence of HyperG, and its occurrence is associated with poor outcome after acute ischemic stroke, ICH, SAH, and TBI. It is unclear whether this association is due to direct detrimental effects exerted by HyperG or simply represents a marker of severe brain injury. Insulin has been shown to have various potentially pleiotropic neuroprotective properties in experimental models. However, the safety and efficacy of IIT in patients with critical brain disease have not been well studied. Available results do not support the use of IIT to maintain strict normoglycemia in this population. Patients with critical brain disease should have frequent glucose monitoring because severe HyperG and even modest hypoglycemia may be detrimental. Careful use of insulin infusion protocols appears advisable, but maintenance of strict normoglycemia cannot be recommended. Rigorous studies must be conducted to assess the value of insulin therapy and to determine the optimal blood glucose targets in patients with the most common acute vascular and traumatic brain insults.
Collapse
Affiliation(s)
- Daniel A Godoy
- Neurointensive Care Unit, Sanatorio Pasteur, Catamarca, Argentina
| | | | | |
Collapse
|
21
|
Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis. J Cereb Blood Flow Metab 2010; 30:1527-37. [PMID: 20424632 PMCID: PMC2949239 DOI: 10.1038/jcbfm.2010.61] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity and type 2 diabetes have reached epidemic proportions; however, scarce information about how these metabolic syndromes influence brain energy and neurotransmitter homeostasis exist. The objective of this study was to elucidate how brain glycogen and neurotransmitter homeostasis are affected by these conditions. [1-(13)C]glucose was administered to Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rats. Sprague-Dawley (SprD), Zucker lean (ZL), and ZDF lean rats were used as controls. Several brain regions were analyzed for glycogen levels along with (13)C-labeling and content of glutamate, glutamine, GABA, aspartate, and alanine. Blood glucose concentrations and (13)C enrichment were determined. (13)C-labeling in glutamate was lower in ZO and ZDF rats in comparison with the controls. The molecular carbon labeling (MCL) ratio between alanine and glutamate was higher in the ZDF rats. The MCL ratios of glutamine and glutamate were decreased in the cerebellum of the ZO and the ZDF rats. Glycogen levels were also lower in this region. These results suggest that the obese and type 2 diabetic models were associated with lower brain glucose metabolism. Glucose metabolism through the TCA cycle was more decreased than glycolytic activity. Furthermore, reduced glutamate-glutamine cycling was also observed in the obese and type 2 diabetic states.
Collapse
|
22
|
|
23
|
Gaohua L, Kimura H. A mathematical model of brain glucose homeostasis. Theor Biol Med Model 2009; 6:26. [PMID: 19943948 PMCID: PMC2801528 DOI: 10.1186/1742-4682-6-26] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 11/27/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The physiological fact that a stable level of brain glucose is more important than that of blood glucose suggests that the ultimate goal of the glucose-insulin-glucagon (GIG) regulatory system may be homeostasis of glucose concentration in the brain rather than in the circulation. METHODS In order to demonstrate the relationship between brain glucose homeostasis and blood hyperglycemia in diabetes, a brain-oriented mathematical model was developed by considering the brain as the controlled object while the remaining body as the actuator. After approximating the body compartmentally, the concentration dynamics of glucose, as well as those of insulin and glucagon, are described in each compartment. The brain-endocrine crosstalk, which regulates blood glucose level for brain glucose homeostasis together with the peripheral interactions among glucose, insulin and glucagon, is modeled as a proportional feedback control of brain glucose. Correlated to the brain, long-term effects of psychological stress and effects of blood-brain-barrier (BBB) adaptation to dysglycemia on the generation of hyperglycemia are also taken into account in the model. RESULTS It is shown that simulation profiles obtained from the model are qualitatively or partially quantitatively consistent with clinical data, concerning the GIG regulatory system responses to bolus glucose, stepwise and continuous glucose infusion. Simulations also revealed that both stress and BBB adaptation contribute to the generation of hyperglycemia. CONCLUSION Simulations of the model of a healthy person under long-term severe stress demonstrated that feedback control of brain glucose concentration results in elevation of blood glucose level. In this paper, we try to suggest that hyperglycemia in diabetes may be a normal outcome of brain glucose homeostasis.
Collapse
Affiliation(s)
- Lu Gaohua
- Brain Science Institute, the Institute of Physical and Chemical Research (RIKEN) 2271-130 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-0003, Japan
| | - Hidenori Kimura
- Brain Science Institute, the Institute of Physical and Chemical Research (RIKEN) 2271-130 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-0003, Japan
| |
Collapse
|
24
|
Insulin resistance in an energy-centered perspective. Physiol Behav 2008; 94:198-205. [DOI: 10.1016/j.physbeh.2007.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/29/2007] [Accepted: 11/05/2007] [Indexed: 01/22/2023]
|
25
|
Lerche S, Brock B, Rungby J, Bøtker HE, Møller N, Rodell A, Bibby BM, Holst JJ, Schmitz O, Gjedde A. Glucagon-like peptide-1 inhibits blood-brain glucose transfer in humans. Diabetes 2008; 57:325-31. [PMID: 17991759 DOI: 10.2337/db07-1162] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) has many effects on glucose homeostasis, and GLP-1 receptors are broadly represented in many tissues including the brain. Recent research in rodents suggests a protective effect of GLP-1 on brain tissue. The mechanism is unknown. We therefore tested whether these neuroprotective effects could relate to changes of glucose transport and consumption. RESEARCH DESIGN AND METHODS We studied 10 healthy men in a randomized, double-blinded, placebo-controlled cross-over experiment. We used positron emission tomography to determine the acute insulin-independent effect of GLP-1 on unidirectional glucose transport into the brain during a pituitary-pancreatic normoglycemic (plasma glucose approximately 4.5 mmol/l) clamp with 18-fluoro-deoxy-glucose as tracer. RESULTS On average, GLP-1 reduced cerebral glucose transport by 27% in total cerebral gray matter (P = 0.05) and by 25-30% in individual gray matter regions (P = 0.02-0.06). The same regions revealed a uniform trend toward similarly reduced cerebral glucose metabolism. Consequently, the intracerebral glucose concentration remained constant in all regions, with and without GLP-1. CONCLUSIONS We have demonstrated that a hormone involved in postprandial glucose regulation also limits glucose delivery to brain tissue and hence provides a possible regulatory mechanism for the link between plasma glucose and brain glucose. Because GLP-1 reduces glucose uptake across the intact blood-brain barrier at normal glycemia, GLP-1 may also protect the brain by limiting intracerebral glucose fluctuation when plasma glucose is increased.
Collapse
Affiliation(s)
- Susanne Lerche
- Institute of Pharmacology, University of Aarhus, The Bartholin Building, University Park 1240, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huber JD, VanGilder RL, Houser KA. Streptozotocin-induced diabetes progressively increases blood-brain barrier permeability in specific brain regions in rats. Am J Physiol Heart Circ Physiol 2006; 291:H2660-8. [PMID: 16951046 DOI: 10.1152/ajpheart.00489.2006] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study investigated the effects of streptozotocin-induced diabetes on the functional integrity of the blood-brain barrier in the rat at 7, 28, 56, and 90 days, using vascular space markers ranging in size from 342 to 65,000 Da. We also examined the effect of insulin treatment of diabetes on the formation and progression of cerebral microvascular damage and determined whether observed functional changes occurred globally throughout the brain or within specific brain regions. Results demonstrate that streptozotocin-induced diabetes produced a progressive increase in blood-brain barrier permeability to small molecules from 28 to 90 days and these changes in blood-brain barrier permeability were region specific, with the midbrain most susceptible to diabetes-induced microvascular damage. In addition, results showed that insulin treatment of diabetes attenuated blood-brain barrier disruption, especially during the first few weeks; however, as diabetes progressed, it was evident that microvascular damage occurred even when hyperglycemia was controlled. Overall, results of this study suggest that diabetes-induced perturbations to cerebral microvessels may disrupt homeostasis and contribute to long-term cognitive and functional deficits of the central nervous system.
Collapse
Affiliation(s)
- Jason D Huber
- Dept. of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA.
| | | | | |
Collapse
|
27
|
Abstract
Hypoglycemia represents the most frequent endocrinologic emergency situation in prehospital patient care. As the patients are usually unconscious on arrival of emergency medical personnel, often the only way to establish a diagnosis is by determination of the blood glucose concentration. However, even normoglycemic or hyperglycemic levels cannot definitively exclude the diagnosis of a previous hypoglycemia as the cause of the acute cerebral deficiency. Therefore, and especially in the case of insulin-dependent diabetes mellitus, a differential diagnosis should be considered. We report a case of emergency treatment of a hypoglycemic episode in a female patient with prolonged neuroglycopenia together with cerebrovascular dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- G Erdös
- Klinik für Anästhesiologie, Johannes Gutenberg-Universität, Mainz.
| | | | | | | |
Collapse
|
28
|
Abstract
Neurovascular and neurometabolic coupling help the brain to maintain an appropriate energy flow to the neural tissue under conditions of increased neuronal activity. Both coupling phenomena provide us, in addition, with two macroscopically measurable parameters, blood flow and intermediate metabolite fluxes, that are used to dynamically image the functioning brain. The main energy substrate for the brain is glucose, which is metabolized by glycolysis and oxidative breakdown in both astrocytes and neurons. Neuronal activation triggers increased glucose consumption and glucose demand, with new glucose being brought in by stimulated blood flow and glucose transport over the blood-brain barrier. Glucose is shuttled over the barrier by the GLUT-1 transporter, which, like all transporter proteins, has a ceiling above which no further stimulation of the transport is possible. Blood-brain barrier glucose transport is generally accepted as a nonrate-limiting step but to prevent it from becoming rate-limiting under conditions of neuronal activation, it might be necessary for the transport parameters to be adapted to the increased glucose demand. It is proposed that the blood-brain barrier glucose transport parameters are dynamically adapted to the increased glucose needs of the neural tissue after activation according to a neurobarrier coupling scheme. This review presents neurobarrier coupling within the current knowledge on neurovascular and neurometabolic coupling, and considers arguments and evidence in support of this hypothesis.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Physiology and Pathophysiology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
29
|
Abstract
The memory-improving action of glucose has now been studied for almost 20 years and the study of this phenomenon has led to a number of important developments in the understanding of memory, brain physiology and pathological consequences of impaired glucose tolerance. Glucose improvement of memory appears to involve two optimal doses in animals (100 mg/kg and 2 g/kg) that may correspond to two physiological mechanisms underlying glucose effects on memory. In humans, there have been few dose-response studies so the existence of more than one effective dose in humans is uncertain. Many tasks are facilitated by glucose in humans but tasks that are difficult to master or involve divided attention are improved more readily that easier tasks. There are a number of hypotheses about the physiological bases of the memory-improving action of glucose. Peripheral glucose injections could alleviate localized deficits in extracellular glucose in the hippocampus. These localized deficits may be due to changes in glucose transporters in that structure. Because certain neurotransmitters such as acetylcholine are directly dependent on the glucose supply for their synthesis, glucose is thought to facilitate neurotransmitter synthesis under certain circumstances. However, these hypotheses cannot account for the specificity of the dose-response effect of glucose. A number of peripheral mechanisms have been proposed, including the possibility that glucose-sensitive neurons in the brain or in the periphery may serve as glucose sensors and eventually produce neural changes that would facilitate memory processing. These latter results could be of importance because the mechanisms they suggest appear to be dose-dependent, a crucial characteristic to explain the dose-dependent effects of glucose. There may be an advantage to develop hypotheses that include both peripheral and central actions of glucose. There is evidence that impaired glucose regulation is associated with impaired cognition, particularly episodic memory. This impairment is minimal in young people but increases in older people (65 years and over) where it may compound other aging processes leading to reduced brain function. A small number of studies showed that glucose improvement of memory is associated with poor glucose regulation although this may not be the case for diabetic patients. Results of a few studies also suggest that drug treatments that improve glucose regulation also produce cognitive improvement in diabetic patients.
Collapse
Affiliation(s)
- Claude Messier
- School of Psychology, University of Ottawa, 145 Jean-Jacques Lussier Room 352, Ottawa, Ontario, Canada K1N 6N5.
| |
Collapse
|
30
|
Watson GS, Craft S. Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer's disease. Eur J Pharmacol 2004; 490:97-113. [PMID: 15094077 DOI: 10.1016/j.ejphar.2004.02.048] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2004] [Indexed: 12/20/2022]
Abstract
Converging evidence has identified a potential association among Alzheimer's disease, glucose metabolism, insulin activity, and memory. Notably, type 2 diabetes, which is characterized by insulin resistance, may modulate the risk of Alzheimer's disease, and patients with Alzheimer's disease may have a greater risk for glucoregulatory impairments than do healthy older adults. In animal studies, it has been shown that raising blood glucose levels acutely can facilitate memory, in part, by increasing cholinergic activity, which is greatly diminished in patients with Alzheimer's disease. Other studies have confirmed that glucose administration can facilitate memory in healthy humans and in patients with Alzheimer's disease. Interestingly, glucose effects on memory appear to be modulated by insulin sensitivity (efficiency of insulin-mediated glucose disposal). Of course, the acute effects of glucose administration should be distinguished from the effects of chronic hyperglycemia (diabetes), which has been associated with cognitive impairments, at least in older adults. The relationship of insulin and memory has been more difficult to characterize. In animals, systemic insulin administration has been associated with memory deficits, likely due, in part, to hypoglycemia that occurs when exogenous insulin is not supplemented with glucose to maintain euglycemia. In healthy adults and patients with Alzheimer's disease, raising plasma insulin levels while maintaining euglycemia can improve memory; however, raising plasma glucose while suppressing endogenous insulin secretion may not improve memory, suggesting that adequate levels of insulin and glucose are necessary for memory facilitation. Clinical studies have corroborated findings that patients with Alzheimer's disease are more likely than healthy older adults to have reduced insulin sensitivity, and further suggest that apolipoprotein E genotype may modulate the effects of insulin on glucose disposal, memory facilitation, and amyloid precursor protein processing. Collectively, these findings support an association among Alzheimer's disease, impaired glucose metabolism, and reduced insulin sensitivity.
Collapse
Affiliation(s)
- G Stennis Watson
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Medical Center, 1660 South Columbian Way, Seattle, WA 98108, USA
| | | |
Collapse
|
31
|
Abstract
The brain uses glucose as its primary fuel. Cerebral metabolism of glucose requires transport through the blood-brain barrier, glycolytic conversion to pyruvate, metabolism via the tricarboxylic acid cycle and ultimately oxidation to carbon dioxide and water for full provision of adenosine triphosphate (ATP) and its high-energy equivalents. When deprived of glucose, the brain becomes dysfunctional or can be even permanently damaged. Glucose is stored as glycogen within astrocytes with potential importance for tolerance of hypoglycemia. Glycogen may also be important for the metabolic response to somatosensory stimulation and coupling of blood flow and cellular metabolism. Uncontrolled diabetes has a variety of adverse effects upon brain metabolism and function. Many aspects of function that affect the brain may be indirectly linked to cerebral glucose metabolism. Neurotransmitter metabolism, cerebral blood flow, blood-brain barrier and microvascular function may all be affected to varying degrees by either hypoglycemia or uncontrolled diabetes mellitus.
Collapse
Affiliation(s)
- Anthony L McCall
- Division of Endocrinology, Department of Internal Medicine, Diabetes and Hormone Center of Excellence, University of Virginia School of Medicine, 450 Ray C. Hunt Drive, Charlottesville, VA 22908, USA.
| |
Collapse
|
32
|
Knudsen GM, Rostrup E, Hasselbalch SG. Quantitative PET for assessment of cerebral blood flow and glucose consumption under varying physiological conditions. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ics.2004.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Izumi Y, Yamada KA, Matsukawa M, Zorumski CF. Effects of insulin on long-term potentiation in hippocampal slices from diabetic rats. Diabetologia 2003; 46:1007-12. [PMID: 12827244 DOI: 10.1007/s00125-003-1144-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Revised: 01/02/2003] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS Cognitive deficits occur commonly in diabetic patients. It is unclear whether these impairments result from hypoglycaemia during intensive insulin therapy, or from the diabetes itself. The aim of this study was to examine if impaired energy utilization resulting from insulin deficiency contributes to impaired long-term potentiation (reflecting impaired synaptic plasticity). As long-term potentiation is considered a candidate cellular mechanism underlying learning and memory, understanding how diabetes alters long-term potentiation may provide insight into mechanisms producing cognitive deficits in diabetes. METHODS Electrophysiologic recordings were used to study long-term potentiation in the CA1 region of hippocampal slices from healthy rats and rats with streptozotocin-induced diabetes. RESULTS Long-term potentiation was difficult to induce in slices from diabetic rats in standard recording buffer (contains 10 mmol/l glucose). In slices from diabetic rats, increasing extracellular glucose failed to recover long-term potentiation induction, but 10 mmol/l pyruvate added to standard buffer enabled long-term potentiation induction. Moreover, incubation of slices from diabetic rats with insulin enabled long-term potentiation induction in standard buffer. Acute administration of streptozotocin alone did not impair long-term potentiation in slices from healthy animals, and changing extracellular glucose concentrations over the range of 5 mmol/l to 30 mmol/l did not alter long-term potentiation in slices from control rats. CONCLUSIONS/INTERPRETATION These observations suggest that impaired energy utilization from insulin deficiency, rather than the accompanying hyperglycaemia, impair long-term potentiation in diabetes. Impaired hippocampal synaptic plasticity could contribute to learning and cognitive impairment in diabetic patients.
Collapse
Affiliation(s)
- Y Izumi
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Avenue, Box 8134, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
34
|
Shimizu Y, Yamazaki M, Nakanishi K, Sakurai M, Sanada A, Takewaki T, Tonosaki K. Enhanced responses of the chorda tympani nerve to sugars in the ventromedial hypothalamic obese rat. J Neurophysiol 2003; 90:128-33. [PMID: 12634283 DOI: 10.1152/jn.01170.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sweet taste sensitivity in obese rats with lesions of the ventromedial hypothalamus (VMH) was studied by examining chorda tympani nerve responses to various taste stimuli including sugars. In the early progressive phase of obesity (2 wk after creating VMH lesions), there was no significant difference in the nerve responses to any taste stimulus between sham-operated and VMH-lesioned rats. In contrast, in the late phase of obesity (15-18 wk after VMH lesions), the magnitude of responses to sugars (except for fructose) was prominently greater than that in age-matched controls. High-fat diet-induced obese rats and streptozotocin-diabetic rats also showed greater chorda tympani nerve responses to sugars as was observed in VMH-lesioned obese rats, indicating that VMH lesions might not be specifically related to the enhanced gustatory neural responses to sugars. Although it has been demonstrated that the enhanced responses of the chorda tympani nerve to sugars in genetically diabetic db/db mice is largely attributable to the lack of the direct suppressive effect of leptin on the taste receptor cells, plasma leptin levels were not correlated with the changes in chorda tympani responsiveness to sugars in these models of obesity and diabetes. Accordingly, our results suggest that some chronic factors, including high blood glucose, inefficiency of insulin action, or leptin resistance may be related to the enhancement of chorda tympani nerve responses to sugars.
Collapse
Affiliation(s)
- Yasutake Shimizu
- Department of Veterinary Physiology, Faculty of Agriculture, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Dwyer DS, Vannucci SJ, Simpson IA. Expression, regulation, and functional role of glucose transporters (GLUTs) in brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:159-88. [PMID: 12420359 DOI: 10.1016/s0074-7742(02)51005-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Donard S Dwyer
- Departments of Psychiatry and Pharmacology, LSU Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
36
|
Reagan LP. Glucose, stress, and hippocampal neuronal vulnerability. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:289-324. [PMID: 12420363 DOI: 10.1016/s0074-7742(02)51009-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Lawrence P Reagan
- Laboratory of Neuroendocrinology, Rockefeller University, New York 10021, USA
| |
Collapse
|
37
|
Mann GE, Yudilevich DL, Sobrevia L. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev 2003; 83:183-252. [PMID: 12506130 DOI: 10.1152/physrev.00022.2002] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
While transport processes for amino acids and glucose have long been known to be expressed in the luminal and abluminal membranes of the endothelium comprising the blood-brain and blood-retinal barriers, it is only within the last decades that endothelial and smooth muscle cells derived from peripheral vascular beds have been recognized to rapidly transport and metabolize these nutrients. This review focuses principally on the mechanisms regulating amino acid and glucose transporters in vascular endothelial cells, although we also summarize recent advances in the understanding of the mechanisms controlling membrane transport activity and expression in vascular smooth muscle cells. We compare the specificity, ionic dependence, and kinetic properties of amino acid and glucose transport systems identified in endothelial cells derived from cerebral, retinal, and peripheral vascular beds and review the regulation of transport by vasoactive agonists, nitric oxide (NO), substrate deprivation, hypoxia, hyperglycemia, diabetes, insulin, steroid hormones, and development. In view of the importance of NO as a modulator of vascular tone under basal conditions and in disease and chronic inflammation, we critically review the evidence that transport of L-arginine and glucose in endothelial and smooth muscle cells is modulated by bacterial endotoxin, proinflammatory cytokines, and atherogenic lipids. The recent colocalization of the cationic amino acid transporter CAT-1 (system y(+)), nitric oxide synthase (eNOS), and caveolin-1 in endothelial plasmalemmal caveolae provides a novel mechanism for the regulation of NO production by L-arginine delivery and circulating hormones such insulin and 17beta-estradiol.
Collapse
Affiliation(s)
- Giovanni E Mann
- Centre for Cardiovascular Biology and Medicine, Guy's, King's, and St. Thomas' School of Biomedical Sciences, King's College London, London, United Kingdom.
| | | | | |
Collapse
|
38
|
Fouyas IP, Kelly PAT, Ritchie IM, Lammie GA, Whittle IR. Cerebrovascular responses to pathophysiological insult in diabetic rats. J Clin Neurosci 2003; 10:88-91. [PMID: 12464531 DOI: 10.1016/s0967-5868(02)00247-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diabetes mellitus is associated with altered cerebrovascular responsiveness and this could contribute to the pathology of stroke in diabetic patients. In these studies, we used a model of haemorrhagic stroke (intrastriatal injection of 50 microl blood) to examine subacute perilesional perfusion and blood-brain barrier (BBB) integrity in spontaneously diabetic rats. Volumes of striatal oligaemia (blood flow < 35 ml 100 g(-1) min(-1)) were significantly increased (>300%) in diabetic rats with intrastriatal blood, compared to either non-diabetic rats with blood or control diabetic rats with striatal injection of silicon oil. However, the increase in BBB permeability was both qualitatively and quantitatively similar in diabetic and control rats. Poorer outcomes following haemorrhagic stroke in diabetic patients may thus result from dysfunctional cerebrovascular control, and particularly decreased dilatatory reserve.
Collapse
Affiliation(s)
- I P Fouyas
- Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Hasselbalch SG, Knudsen GM, Capaldo B, Postiglione A, Paulson OB. Blood-brain barrier transport and brain metabolism of glucose during acute hyperglycemia in humans. J Clin Endocrinol Metab 2001; 86:1986-90. [PMID: 11344196 DOI: 10.1210/jcem.86.5.7490] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is controversial whether transport adaptation takes place in chronic or acute hyperglycemia. Blood-brain barrier glucose permeability and regional brain glucose metabolism (CMR(glc)) was studied in acute hyperglycemia in six normal human subjects (mean age, 23 yr) using the double indicator method and positron emission tomography and [(18)F]fluorodeoxyglucose as tracer. The Kety-Schmidt technique was used for measurement of cerebral blood flow (CBF). After 2 h of hyperglycemia (15.7 +/- 0.7 mmol/L), the glucose permeability-surface area product from blood to brain remained unchanged (0.050 +/- 0.008 vs. 0.059 +/- 0.031 mL/100 g.min). The unidirectional clearance of [(18)F]fluorodeoxyglucose (K(1)*) was reduced from 0.108 +/- 0.011 to 0.061 +/- 0.005 mL/100 g.min (P < 0.0004). During hyperglycemia, global CMR(glc) remained constant (21.4 +/- 1.2 vs. 23.1 +/- 2.2 micromol/100 g.min, normo- and hyperglycemia, respectively). Except for a significant increase in white matter CMR(glc), no regional difference in CMR(glc) was found. Likewise, CBF remained unchanged. The reduction in K(1)* was compatible with Michaelis-Menten kinetics for facilitated transport. Our findings indicate no major adaptational changes in the maximal transport velocity or affinity to the blood-brain barrier glucose transporter. Finally, hyperglycemia did not change global CBF or CMR(glc).
Collapse
Affiliation(s)
- S G Hasselbalch
- Neurobiology Research Unit, Department of Neurology, and the PET and Cyclotron Unit, University Hospital, Rigshospitalet,Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
41
|
Magariños AM, McEwen BS. Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc Natl Acad Sci U S A 2000; 97:11056-61. [PMID: 11005876 PMCID: PMC27147 DOI: 10.1073/pnas.97.20.11056] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2000] [Indexed: 11/18/2022] Open
Abstract
We report that 9 d of uncontrolled experimental diabetes induced by streptozotocin (STZ) in rats is an endogenous chronic stressor that produces retraction and simplification of apical dendrites of hippocampal CA3 pyramidal neurons, an effect also observed in nondiabetic rats after 21 d of repeated restraint stress or chronic corticosterone (Cort) treatment. Diabetes also induces morphological changes in the presynaptic mossy fiber terminals (MFT) that form excitatory synaptic contacts with the proximal CA3 apical dendrites. One effect, synaptic vesicle depletion, occurs in diabetes as well as after repeated stress and Cort treatment. However, diabetes produced other MFT structural changes that differ qualitatively and quantitatively from other treatments. Furthermore, whereas 7 d of repeated stress was insufficient to produce dendritic or synaptic remodeling in nondiabetic rats, it potentiated both dendritic atrophy and MFT synaptic vesicle depletion in STZ rats. These changes occurred in concert with adrenal hypertrophy and elevated basal Cort release as well as hypersensitivity and defective shutoff of Cort secretion after stress. Thus, as an endogenous stressor, STZ diabetes not only accelerates the effects of exogenous stress to alter hippocampal morphology; it also produces structural changes that overlap only partially with those produced by stress and Cort in the nondiabetic state.
Collapse
Affiliation(s)
- A M Magariños
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
42
|
DeBrouwere R. Con: tight intraoperative glucose control does not improve outcome in cardiovascular surgery. J Cardiothorac Vasc Anesth 2000; 14:479-81. [PMID: 10972621 DOI: 10.1053/jcan.2000.7971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- R DeBrouwere
- Department of Anesthesiology, University of Manitoba, Health Science Center, Winnipeg, Canada
| |
Collapse
|
43
|
Reagan LP, Magariños AM, Yee DK, Swzeda LI, Van Bueren A, McCall AL, McEwen BS. Oxidative stress and HNE conjugation of GLUT3 are increased in the hippocampus of diabetic rats subjected to stress. Brain Res 2000; 862:292-300. [PMID: 10799703 DOI: 10.1016/s0006-8993(00)02212-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent studies demonstrate that cellular, molecular and morphological changes induced by stress in rats are accelerated when there is a pre-existing strain upon their already compromised adaptive responses to internal or external stimuli, such as may occur with uncontrolled diabetes mellitus. The deleterious actions of diabetes and stress may increase oxidative stress in the brain, leading to increases in neuronal vulnerability. In an attempt to determine if stress, diabetes or stress+diabetes increases oxidative stress in the hippocampus, radioimmunocytochemistry was performed using polyclonal antisera that recognize proteins conjugated by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE). Radioimmunocytochemistry revealed that HNE protein conjugation is increased in all subregions of the hippocampus of streptozotocin (STZ) diabetic rats, rats subjected to restraint stress and STZ diabetic rats subjected to stress. Such increases were not significant in the cortex. Because increases in oxidative stress may contribute to stress- and diabetes-mediated decreases in hippocampal neuronal glucose utilization, we examined the stress/diabetes mediated HNE protein conjugation of the neuron specific glucose transporter, GLUT3. GLUT3 immunoprecipitated from hippocampal membranes of diabetic rats subjected to stress exhibited significant increases in HNE immunolabeling compared to control rats, suggesting that HNE protein conjugation of GLUT3 contributes to decreases in neuronal glucose utilization observed during diabetes and exposure to stress. Collectively, these results demonstrate that the hippocampus is vulnerable to increases in oxidative stress produced by diabetes and stress. In addition, increases in HNE protein conjugation of GLUT3 provide a potential mechanism for stress- and diabetes-mediated decreases in hippocampal neuronal glucose utilization.
Collapse
Affiliation(s)
- L P Reagan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, Box 165, 1230 York Avenue, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Severe neurological sequelae may occur after symptomatic neonatal hypoglycemia. New neuroimaging techniques allow both structural and functional detection of these disturbances. The new diagnostic modalities have shown also transient structural findings associated with neonatal hypoglycemia. The prognostic value of these techniques remains still obscure.
Collapse
Affiliation(s)
- A Kinnala
- Department of Pediatrics, University of Turku, Finland
| | | | | |
Collapse
|
45
|
Janigro D. Blood-brain barrier, ion homeostatis and epilepsy: possible implications towards the understanding of ketogenic diet mechanisms. Epilepsy Res 1999; 37:223-32. [PMID: 10584972 DOI: 10.1016/s0920-1211(99)00074-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The finding that epileptic seizures alter blood-brain barrier (BBB) properties has stimulated interest into the possibility that phenotypic changes in brain endothelium may constitute a pathological initiator leading to seizures. Recent evidence obtained from epileptic patients undergoing cortical resection, demonstrated abnormal expression of glucose transporter molecules (GLUT1), while [18F]deoxyglucose PET studies demonstrated regions of decreased glucose uptake and hypometabolism in seizure foci. The properties of other 'nonexcitable CNS cells' are also altered in epileptic tissue, and glial cells from epileptic brain displayed diminished capacity for ionic homeostasis; voltage-dependent mechanisms were primarily affected, increasing reliance on energy-dependent mechanisms. Diminished ion homeostasis together with increased metabolic demand of hyperactive neurons may further aggravate the neuropathological consequences of BBB loss of glucose uptake mechanisms. Since ketone bodies can provide an alternative to glucose to support brain energy requirements, it is hypothesized that one of the mechanisms of the ketogenic diet in epilepsy may relate to increased availability of beta-hydroxybutyrate, a ketone body readily transported at the BBB. This hypothesis is supported by the fact that the ketogenic diet is the treatment of choice for the glucose transporter protein syndrome and pyruvate dehydrogenase deficiency, both associated with cerebral energy failure and seizures.
Collapse
Affiliation(s)
- D Janigro
- Cerebravascular Research, Cleveland Clinic Foundation, OH 44195, USA.
| |
Collapse
|
46
|
Abstract
Neural tissue is entirely dependent on glucose for normal metabolic activity. Since glucose stores in the brain and retina are negligible compared to glucose demand, metabolism in these tissues is dependent upon adequate glucose delivery from the systemic circulation. In the brain, the critical interface for glucose transport is at the brain capillary endothelial cells which comprise the blood-brain barrier (BBB). In the retina, transport occurs across the retinal capillary endothelial cells of the inner blood-retinal barrier (BRB) and the retinal pigment epithelium of the outer BRB. Because glucose transport across these barriers is mediated exclusively by the sodium-independent glucose transporter GLUT1, changes in endothelial glucose transport and GLUT1 abundance in the barriers of the brain and retina may have profound consequences on glucose delivery to these tissues and major implications in the development of two major diabetic complications, namely insulin-induced hypoglycemia and diabetic retinopathy. This review discusses the regulation of brain and retinal glucose transport and glucose transporter expression and considers the role of changes in glucose transporter expression in the development of two of the most devastating complications of long-standing diabetes mellitus and its management.
Collapse
Affiliation(s)
- A K Kumagai
- Department of Internal Medicine, Michigan Diabetes Research and Training Center, University of Michigan Medical School, Ann Arbor, MI 48109-0678, USA.
| |
Collapse
|
47
|
Viñals F, Gross A, Testar X, Palacín M, Rösen P, Zorzano A. High glucose concentrations inhibit glucose phosphorylation, but not glucose transport, in human endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1450:119-29. [PMID: 10354504 DOI: 10.1016/s0167-4889(99)00035-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glucose uptake is autoregulated in a variety of cell types and it is thought that glucose transport is the major step that is subjected to control by sugar availability. Here, we examined the effect of high glucose concentrations on the rate of glucose uptake by human ECV-304 umbilical vein-derived endothelial cells. A rise in the glucose concentration in the medium led a dose-dependent decrease in the rate of 2-deoxyglucose uptake. The effect of high glucose was independent of protein synthesis and the time-course analysis indicated that it was relatively slow. The effect was not due to inhibition of glucose transport since neither the expression nor the subcellular distribution of the major glucose transporter GLUT1, nor the rate of 3-O-methylglucose uptake was affected. The total in vitro assayed hexokinase activity and the expression of hexokinase-I were similar in cells treated or not with high concentrations of glucose. In contrast, exposure of cells to a high glucose concentration caused a marked decrease in phosphorylated 2-deoxyglucose/free 2-deoxyglucose ratio. This suggests the existence of alterations in the rate of in vivo glucose phosphorylation in response to high glucose. In summary, we conclude that ECV304 human endothelial cells reduce glucose utilization in response to enhanced levels of glucose in the medium by inhibiting the rate of glucose phosphorylation, rather than by blocking glucose transport. This suggests a novel metabolic effect of high glucose on cellular glucose utilization.
Collapse
Affiliation(s)
- F Viñals
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
AIMS We set out to examine the evidence for an association between cognitive impairment or dementia and the presence of Type 2 diabetes mellitus (DM). We also sought evidence of potential mechanisms for such an association. METHODS A literature search of three databases was performed and the reference lists of the papers so identified were examined, using English language papers only. RESULTS We found evidence of cross-sectional and prospective associations between Type 2 DM and cognitive impairment, probably both for memory and executive function. There is also evidence for an elevated risk of both vascular dementia and Alzheimer's disease in Type 2 DM albeit with strong interaction of other factors such as hypertension, dyslipidaemia and apolipoprotein E phenotype. Both vascular and non-vascular factors are likely to play a role in dementia in diabetes. CONCLUSIONS Current classification structures for dementia may not be adequate in diabetes, where mixed pathogenesis is likely. Further research into the mechanisms of cognitive impairment in Type 2 DM may allow us to challenge the concept of dementia, at least in these patients, as an irremediable disease.
Collapse
Affiliation(s)
- R Stewart
- Section of Old Age Psychiatry, Institute of Psychiatry, London, UK
| | | |
Collapse
|
49
|
Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, Koehler-Stec EM, Vannucci SJ, Smith QR. Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem 1999; 72:238-47. [PMID: 9886075 DOI: 10.1046/j.1471-4159.1999.0720238.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transport of glucose across the blood-brain barrier (BBB) is mediated by the high molecular mass (55-kDa) isoform of the GLUT1 glucose transporter protein. In this study we have utilized the tritiated, impermeant photolabel 2-N-[4-(1 -azi-2,2,2-trifluoroethyl)[2-3H]propyl]-1,3-bis(D-mannose-4-ylo xy)-2-propylamine to develop a technique to specifically measure the concentration of GLUT1 glucose transporters on the luminal surface of the endothelial cells of the BBB. We have combined this methodology with measurements of BBB glucose transport and immunoblot analysis of isolated brain microvessels for labeled luminal GLUT1 and total GLUT1 to reevaluate the effects of chronic hypoglycemia and diabetic hyperglycemia on transendothelial glucose transport in the rat. Hypoglycemia was induced with continuous-release insulin pellets (6 U/day) for a 12- to 14-day duration; diabetes was induced by streptozotocin (65 mg/kg i.p.) for a 14- to 21-day duration. Hypoglycemia resulted in 25-45% increases in regional BBB permeability-surface area (PA) values for D-[14C]glucose uptake, when measured at identical glucose concentration using the in situ brain perfusion technique. Similarly, there was a 23+/-4% increase in total GLUT1/mg of microvessel protein and a 52+/-13% increase in luminal GLUT1 in hypoglycemic animals, suggesting that both increased GLUT1 synthesis and a redistribution to favor luminal transporters account for the enhanced uptake. A corresponding (twofold) increase in cortical GLUT1 mRNA was observed by in situ hybridization. In contrast, no significant changes were observed in regional brain glucose uptake PA, total microvessel 55-kDa GLUT1, or luminal GLUT1 concentrations in hyperglycemic rats. There was, however, a 30-40% increase in total cortical GLUT1 mRNA expression, with a 96% increase in the microvessels. Neither condition altered the levels of GLUT3 mRNA or protein expression. These results show that hypoglycemia, but not hyperglycemia, alters glucose transport activity at the BBB and that these changes in transport activity result from both an overall increase in total BBB GLUT1 and an increased transporter concentration at the luminal surface.
Collapse
Affiliation(s)
- I A Simpson
- Experimental Diabetes, Metabolism, and Nutrition Section, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bomhard E, Bischoff H, Mager H, Krötlinger F, Schilde B. D-glucose combined chronic toxicity and carcinogenicity studies in Sprague-Dawley rats and Syrian golden hamsters. Drug Chem Toxicol 1998; 21:329-53. [PMID: 9706465 DOI: 10.3109/01480549809002209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
After an initial period of 16 weeks with increasing concentrations, D-glucose was administered at 30% in the diet to 50 male and 50 female Sprague-Dawley rats from the 17th to the 112th study week. Additional 10 male and 10 female animals were treated for 14 months and then sacrificed for interim examination. Groups of 60 male and 60 female Syrian golden hamsters received D-glucose in the form of 20% solution in tap water for a period of 80 weeks. In each case, groups consisting of an equal number of untreated animals served as controls. General behavior and mortality were not affected by the treatment. The rats and hamsters treated with glucose showed significantly higher body weights of up to a maximum of 16% in male and 26% in female rats, or 15% in male and female hamsters. In rats, the increase was evident by week 14, and in the hamsters by week 10. Glucose-dosed rats displayed a slightly increased feed intake and a reduced water intake. Both parameters, however, were not influenced in hamsters. Hematological and histopathological examination showed no pertinent changes in hematopoetic tissue. Sharply increased blood glucose and renal glucose excretion values were present in rats beginning with 18 months and were indicative of the development of non-insulin-dependent diabetes mellitus (NIDDM). The insulin concentrations in peripheral blood were not appreciably affected, although there was a trend to higher values in males at all evaluation times and in females only at 3 months. Pathological evaluation did not show any compound related non-neoplastic lesions. The incidences of islet cell adenomas in the pancreas of male rats were significantly increased and the cortical adenomas in the adrenals of females were decreased. In addition, the mammary gland adenomas (in females) and the Leydig cell tumors of the testes were decreased. In hamsters, the incidence of adrenocortical adenomas were increased in the females. No other pertinent neoplastic changes were observed. In conclusion, the increases and decreases in benign neoplasms of hormone-sensitive tissues, appear to be the result of nutritionally/metabolism-induced modulation of the homeostasis in these 4 tissues in both species, and not the result of chronic glucose administration.
Collapse
Affiliation(s)
- E Bomhard
- BAYER AG, Institute of Toxicology, Wuppertal, Germany
| | | | | | | | | |
Collapse
|