1
|
Wang S, Feng D, Zheng Y, Lu Y, Shi K, Yang R, Ma W, Li N, Liu M, Wang Y, Hong Y, McClung CR, Zhao J. EARLY FLOWERING 3 alleles affect the temperature responsiveness of the circadian clock in Chinese cabbage. PLANT PHYSIOLOGY 2025; 197:kiae505. [PMID: 39545809 DOI: 10.1093/plphys/kiae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 11/17/2024]
Abstract
Temperature is an environmental cue that entrains the circadian clock, adapting it to local thermal and photoperiodic conditions that characterize different geographic regions. Circadian clock thermal adaptation in leafy vegetables such as Chinese cabbage (Brassica rapa ssp. pekinensis) is poorly understood but essential to sustain and increase vegetable production under changing climates. We investigated circadian rhythmicity in natural Chinese cabbage accessions grown at 14, 20, and 28 °C. The circadian period was significantly shorter at 20 °C than at either 14 or 28 °C, and the responses to increasing temperature and temperature compensation (Q10) were associated with population structure. Genome-wide association studies mapping identified variation responsible for temperature compensation as measured by Q10 value for temperature increase from 20 to 28 °C. Haplotype analysis indicated that B. rapa EARLY FLOWERING 3 H1 Allele (BrELF3H1) conferred a significantly higher Q10 value at 20 to 28 °C than BrELF3H2. Co-segregation analyses of an F2 population derived from a BrELF3H1 × BrELF3H2 cross revealed that variation among BrELF3 alleles determined variation in the circadian period of Chinese cabbage at 20 °C. However, their differential impact on circadian oscillation was attenuated at 28 °C. Transgenic complementation in Arabidopsis thaliana elf3-8 mutants validated the involvement of BrELF3 in the circadian clock response to thermal cues, with BrELF3H1 conferring a higher Q10 value than BrELF3 H2 at 20 to 28 °C. Thus, BrELF3 is critical to the circadian clock response to ambient temperature in Chinese cabbage. These findings have clear implications for breeding new varieties with enhanced resilience to extreme temperatures.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Daling Feng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yakun Zheng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yin Lu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Kailin Shi
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Rui Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yiguo Hong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
2
|
Schmal C, Maier B, Ashwal-Fluss R, Bartok O, Finger AM, Bange T, Koutsouli S, Robles MS, Kadener S, Herzel H, Kramer A. Alternative polyadenylation factor CPSF6 regulates temperature compensation of the mammalian circadian clock. PLoS Biol 2023; 21:e3002164. [PMID: 37379316 DOI: 10.1371/journal.pbio.3002164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
A defining property of circadian clocks is temperature compensation, characterized by the resilience of their near 24-hour free-running periods against changes in environmental temperature within the physiological range. While temperature compensation is evolutionary conserved across different taxa of life and has been studied within many model organisms, its molecular underpinnings remain elusive. Posttranscriptional regulations such as temperature-sensitive alternative splicing or phosphorylation have been described as underlying reactions. Here, we show that knockdown of cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a key regulator of 3'-end cleavage and polyadenylation, significantly alters circadian temperature compensation in human U-2 OS cells. We apply a combination of 3'-end-RNA-seq and mass spectrometry-based proteomics to globally quantify changes in 3' UTR length as well as gene and protein expression between wild-type and CPSF6 knockdown cells and their dependency on temperature. Since changes in temperature compensation behavior should be reflected in alterations of temperature responses within one or all of the 3 regulatory layers, we statistically assess differential responses upon changes in ambient temperature between wild-type and CPSF6 knockdown cells. By this means, we reveal candidate genes underlying circadian temperature compensation, including eukaryotic translation initiation factor 2 subunit 1 (EIF2S1).
Collapse
Affiliation(s)
- Christoph Schmal
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bert Maier
- Laboratory of Chronobiology, Institute for Medical immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Reut Ashwal-Fluss
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Osnat Bartok
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anna-Marie Finger
- Laboratory of Chronobiology, Institute for Medical immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tanja Bange
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilians-Universität München, München, Germany
| | - Stella Koutsouli
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilians-Universität München, München, Germany
| | - Maria S Robles
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilians-Universität München, München, Germany
| | - Sebastian Kadener
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Institute for Medical immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Fortin BM, Mahieu AL, Fellows RC, Pannunzio NR, Masri S. Circadian clocks in health and disease: Dissecting the roles of the biological pacemaker in cancer. F1000Res 2023; 12:116. [PMID: 39282509 PMCID: PMC11399774 DOI: 10.12688/f1000research.128716.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/19/2024] Open
Abstract
In modern society, there is a growing population affected by circadian clock disruption through night shift work, artificial light-at-night exposure, and erratic eating patterns. Concurrently, the rate of cancer incidence in individuals under the age of 50 is increasing at an alarming rate, and though the precise risk factors remain undefined, the potential links between circadian clock deregulation and young-onset cancers is compelling. To explore the complex biological functions of the clock, this review will first provide a framework for the mammalian circadian clock in regulating critical cellular processes including cell cycle control, DNA damage response, DNA repair, and immunity under conditions of physiological homeostasis. Additionally, this review will deconvolute the role of the circadian clock in cancer, citing divergent evidence suggesting tissue-specific roles of the biological pacemaker in cancer types such as breast, lung, colorectal, and hepatocellular carcinoma. Recent evidence has emerged regarding the role of the clock in the intestinal epithelium, as well as new insights into how genetic and environmental disruption of the clock is linked with colorectal cancer, and the molecular underpinnings of these findings will be discussed. To place these findings within a context and framework that can be applied towards human health, a focus on how the circadian clock can be leveraged for cancer prevention and chronomedicine-based therapies will be outlined.
Collapse
Affiliation(s)
- Bridget M. Fortin
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Rachel C. Fellows
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Nicholas R. Pannunzio
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
- Department of Medicine, University of California, Irvine, Irvine, California, 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| |
Collapse
|
4
|
Edwards HE, Gorelick DA. The evolution and structure/function of bHLH-PAS transcription factor family. Biochem Soc Trans 2022; 50:1227-1243. [PMID: 35695677 PMCID: PMC10584024 DOI: 10.1042/bst20211225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
Abstract
Proteins that contain basic helix-loop-helix (bHLH) and Per-Arnt-Sim motifs (PAS) function as transcription factors. bHLH-PAS proteins exhibit essential and diverse functions throughout the body, from cell specification and differentiation in embryonic development to the proper function of organs like the brain and liver in adulthood. bHLH-PAS proteins are divided into two classes, which form heterodimers to regulate transcription. Class I bHLH-PAS proteins are typically activated in response to specific stimuli, while class II proteins are expressed more ubiquitously. Here, we discuss the general structure and functions of bHLH-PAS proteins throughout the animal kingdom, including family members that do not fit neatly into the class I-class II organization. We review heterodimerization between class I and class II bHLH-PAS proteins, binding partner selectivity and functional redundancy. Finally, we discuss the evolution of bHLH-PAS proteins, and why a class I protein essential for cardiovascular development in vertebrates like chicken and fish is absent from mammals.
Collapse
Affiliation(s)
- Hailey E Edwards
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Daniel A Gorelick
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, U.S.A
| |
Collapse
|
5
|
Joshi R, Cai YD, Xia Y, Chiu JC, Emery P. PERIOD Phosphoclusters Control Temperature Compensation of the Drosophila Circadian Clock. Front Physiol 2022; 13:888262. [PMID: 35721569 PMCID: PMC9201207 DOI: 10.3389/fphys.2022.888262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Ambient temperature varies constantly. However, the period of circadian pacemakers is remarkably stable over a wide-range of ecologically- and physiologically-relevant temperatures, even though the kinetics of most biochemical reactions accelerates as temperature rises. This thermal buffering phenomenon, called temperature compensation, is a critical feature of circadian rhythms, but how it is achieved remains elusive. Here, we uncovered the important role played by the Drosophila PERIOD (PER) phosphodegron in temperature compensation. This phosphorylation hotspot is crucial for PER proteasomal degradation and is the functional homolog of mammalian PER2 S478 phosphodegron, which also impacts temperature compensation. Using CRISPR-Cas9, we introduced a series of mutations that altered three Serines of the PER phosphodegron. While all three Serine to Alanine substitutions lengthened period at all temperatures tested, temperature compensation was differentially affected. S44A and S45A substitutions caused undercompensation, while S47A resulted in overcompensation. These results thus reveal unexpected functional heterogeneity of phosphodegron residues in thermal compensation. Furthermore, mutations impairing phosphorylation of the per s phosphocluster showed undercompensation, consistent with its inhibitory role on S47 phosphorylation. We observed that S47A substitution caused increased accumulation of hyper-phosphorylated PER at warmer temperatures. This finding was corroborated by cell culture assays in which S47A slowed down phosphorylation-dependent PER degradation at high temperatures, causing PER degradation to be excessively temperature-compensated. Thus, our results point to a novel role of the PER phosphodegron in temperature compensation through temperature-dependent modulation of the abundance of hyper-phosphorylated PER. Our work reveals interesting mechanistic convergences and differences between mammalian and Drosophila temperature compensation of the circadian clock.
Collapse
Affiliation(s)
- Radhika Joshi
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Yao D. Cai
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Yongliang Xia
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Joanna C. Chiu
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
6
|
Xu JW, Li LL, Wang M, Yang HH, Yao WC, Dewer Y, Zhu XY, Zhang YN. Identification and dynamic expression profiling of circadian clock genes in Spodoptera litura provide new insights into the regulation of sex pheromone communication. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:78-90. [PMID: 35225175 DOI: 10.1017/s0007485321000559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spodoptera litura is an important pest that causes significant economic damage to numerous crops worldwide. Sex pheromones (SPs) mediate sexual communication in S. litura and show a characteristic degree of rhythmic activity, occurring mainly during the scotophase; however, the specific regulatory mechanisms remain unclear. Here, we employed a genome-wide analysis to identify eight candidate circadian clock genes in S. litura. Sequence characteristics and expression patterns were analyzed. Our results demonstrated that some circadian clock genes might regulate the biosynthesis and perception of SPs by regulating the rhythmic expression of SP biosynthesis-related genes and SP perception-related genes. Interestingly, all potential genes exhibited peak expression in the scotophase, consistent with the SP could mediate courtship and mating behavior in S. litura. Our findings are helpful in elucidating the molecular mechanism by which circadian clock genes regulate sexual communication in S. litura.
Collapse
Affiliation(s)
- Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Meng Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Hui-Hui Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki12618, Giza, Egypt
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| |
Collapse
|
7
|
Wu Y, Tian T, Wu Y, Yang Y, Zhang Y, Qin X. Systematic Studies of the Circadian Clock Genes Impact on Temperature Compensation and Cell Proliferation Using CRISPR Tools. BIOLOGY 2021; 10:biology10111204. [PMID: 34827197 PMCID: PMC8614980 DOI: 10.3390/biology10111204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary One of the major characteristics of the circadian clock is temperature compensation, and previous studies suggested a single clock gene may determine the temperature compensation. In this study, we report the first full collection of clock gene knockout cell lines using CRISPR/Cas9 tools. Our full collections indicate that the temperature compensation is a complex gene regulation system instead of being regulated by any single gene. Besides, we systematically compared the proliferation rates and circadian periods using our full collections, and we found that the cell growth rate is not dependent on the circadian period. Therefore, complex interaction between clock genes and their protein products may underlie the mechanism of temperature compensation, which needs further investigations. Abstract Mammalian circadian genes are capable of producing a self-sustained, autonomous oscillation whose period is around 24 h. One of the major characteristics of the circadian clock is temperature compensation. However, the mechanism underlying temperature compensation remains elusive. Previous studies indicate that a single clock gene may determine the temperature compensation in several model organisms. In order to understand the influence of each individual clock gene on the temperature compensation, twenty-three well-known mammalian clock genes plus Timeless and Myc genes were knocked out individually, using a powerful gene-editing tool, CRISPR/Cas9. First, Bmal1, Cry1, and Cry2 were knocked out as examples to verify that deleting genes by CRISPR is effective and precise. Cell lines targeting twenty-two genes were successfully edited in mouse fibroblast NIH3T3 cells, and off-target analysis indicated these genes were correctly knocked out. Through measuring the luciferase reporters, the circadian periods of each cell line were recorded under two different temperatures, 32.5 °C and 37 °C. The temperature compensation coefficient Q10 was subsequently calculated for each cell line. Estimations of the Q10 of these cell lines showed that none of the individual cell lines can adversely affect the temperature compensation. Cells with a longer period at lower temperature tend to have a shorter period at higher temperature, while cells with a shorter period at lower temperature tend to be longer at higher temperature. Thus, the temperature compensation is a fundamental property to keep cellular homeostasis. We further conclude that the temperature compensation is a complex gene regulation system instead of being regulated by any single gene. We also estimated the proliferation rates of these cell lines. After systematically comparing the proliferation rates and circadian periods, we found that the cell growth rate is not dependent on the circadian period.
Collapse
Affiliation(s)
- Yue Wu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Tian Tian
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Yin Wu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Yu Yang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Yunfei Zhang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
- Moeden Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Correspondence: (Y.Z.); (X.Q.)
| | - Ximing Qin
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
- Correspondence: (Y.Z.); (X.Q.)
| |
Collapse
|
8
|
|
9
|
Doktór B, Damulewicz M, Pyza E. Effects of MUL1 and PARKIN on the circadian clock, brain and behaviour in Drosophila Parkinson's disease models. BMC Neurosci 2019; 20:24. [PMID: 31138137 PMCID: PMC6540415 DOI: 10.1186/s12868-019-0506-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Mutants which carry mutations in genes encoding mitochondrial ligases MUL1 and PARKIN are convenient Drosophila models of Parkinson’s disease (PD). In several studies it has been shown that in Parkinson’s disease sleep disturbance occurs, which may be the result of a disturbed circadian clock. Results We found that the ROS level was higher, while the anti-oxidant enzyme SOD1 level was lower in mul1A6 and park1 mutants than in the white mutant used as a control. Moreover, mutations of both ligases affected circadian rhythms and the clock. The expression of clock genes per, tim and clock and the level of PER protein were changed in the mutants. Moreover, expression of ATG5, an autophagy protein also involved in circadian rhythm regulation, was decreased in the brain and in PDF-immunoreactive large ventral lateral clock neurons. The observed changes in the molecular clock resulted in a longer period of locomotor activity rhythm, increased total activity and shorter sleep at night. Finally, the lack of both ligases led to decreased longevity and climbing ability of the flies. Conclusions All of the changes observed in the brains of these Drosophila models of PD, in which mitochondrial ligases MUL1 and PARKIN do not function, may explain the mechanisms of some neurological and behavioural symptoms of PD. Electronic supplementary material The online version of this article (10.1186/s12868-019-0506-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bartosz Doktór
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
10
|
Abstract
Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms in organisms from bacteria to animals. These periodic rhythms result from a complex interplay among clock components that are specific to the organism, but share molecular mechanisms across kingdoms. A full understanding of these processes requires detailed knowledge, not only of the biochemical properties of clock proteins and their interactions, but also of the three-dimensional structure of clockwork components. Posttranslational modifications and protein–protein interactions have become a recent focus, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. This review covers the structural aspects of circadian oscillators, and serves as a primer for this exciting realm of structural biology.
Collapse
Affiliation(s)
- Reena Saini
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Seth J Davis
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
11
|
Gil KE, Park CM. Thermal adaptation and plasticity of the plant circadian clock. THE NEW PHYTOLOGIST 2019; 221:1215-1229. [PMID: 30289568 DOI: 10.1111/nph.15518] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/11/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 1215 I. Introduction 1215 II. Molecular organization of the plant circadian clock 1216 III. Temperature compensation 1219 IV. Temperature regulation of circadian behaviors 1220 V. Thermal adaptation of the clock: evolutionary considerations 1223 VI. Light and temperature information for the clock function - synergic or individual? 1224 VII. Concluding remarks and future prospects 1225 Acknowledgements 1225 References 1225 SUMMARY: Plant growth and development is widely affected by diverse temperature conditions. Although studies have been focused mainly on the effects of stressful temperature extremes in recent decades, nonstressful ambient temperatures also influence an array of plant growth and morphogenic aspects, a process termed thermomorphogenesis. Notably, accumulating evidence indicates that both stressful and nonstressful temperatures modulate the functional process of the circadian clock, a molecular timer of biological rhythms in higher eukaryotes and photosynthetic prokaryotes. The circadian clock can sustain robust and precise timing over a range of physiological temperatures. Genes and molecular mechanisms governing the temperature compensation process have been explored in different plant species. In addition, a ZEITLUPE/HSP90-mediated protein quality control mechanism helps plants maintain the thermal stability of the clock under heat stress. The thermal adaptation capability and plasticity of the clock are of particular interest in view of the growing concern about global climate changes. Considering these circumstances in the field, we believe that it is timely to provide a provoking discussion on the current knowledge of temperature regulation of the clock function. The review also will discuss stimulating ideas on this topic along with ecosystem management and future agricultural innovation.
Collapse
Affiliation(s)
- Kyung-Eun Gil
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
12
|
Jiang J, Liu Q, Niu L. Theoretical investigation on models of circadian rhythms based on dimerization and proteolysis of PER and TIM. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2018; 14:1247-1259. [PMID: 29161859 DOI: 10.3934/mbe.2017064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Circadian rhythms of physiology and behavior are widespread\break mechanisms in many organisms. The internal biological rhythms are driven by molecular clocks, which oscillate with a period nearly but not exactly 24 hours. Many classic models of circadian rhythms are based on a time-delayed negative feedback, suggested by the protein products inhibiting transcription of their own genes. In 1999, based on stabilization of PER upon dimerization, Tyson et al. [J. J. Tyson, C. I. Hong, C. D. Thron, B. Novak, Biophys. J. 77 (1999) 2411--2417] proposed a crucial positive feedback to the circadian oscillator. This idea was mathematically expressed in a three-dimensional model. By imposing assumptions that the dimerization reactions were fast and dimeric proteins were in rapid equilibrium, they reduced the model to a pair of nonlinear ordinary differential equations of mRNA and total protein concentrations. Then they used phase plane analysis tools to investigate circadian rhythms. In this paper, the original three-dimensional model is studied. We explore the existence of oscillations and their periods. Much attention is paid to investigate how the periods depend on model parameters. The numerical simulations are in good agreement with their reduced work.
Collapse
Affiliation(s)
- Jifa Jiang
- Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China
| | - Qiang Liu
- Department of Mathematics, University of Science and Technology of China, Hefei 230026, China
| | - Lei Niu
- Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
13
|
Abstract
The 2017 Nobel Prize in Medicine or Physiology has been awarded to Jeffrey Hall, Michael Rosbash, and Michael Young for elucidating molecular mechanisms of the circadian clock. From studies beginning in fruit flies, we now know that circadian regulation pervades most biological processes and has strong ties to human health and disease.
Collapse
Affiliation(s)
- Amita Sehgal
- Chronobiology Program, HHMI, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Millius A, Ueda HR. Systems Biology-Derived Discoveries of Intrinsic Clocks. Front Neurol 2017; 8:25. [PMID: 28220104 PMCID: PMC5292584 DOI: 10.3389/fneur.2017.00025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
A systems approach to studying biology uses a variety of mathematical, computational, and engineering tools to holistically understand and model properties of cells, tissues, and organisms. Building from early biochemical, genetic, and physiological studies, systems biology became established through the development of genome-wide methods, high-throughput procedures, modern computational processing power, and bioinformatics. Here, we highlight a variety of systems approaches to the study of biological rhythms that occur with a 24-h period-circadian rhythms. We review how systems methods have helped to elucidate complex behaviors of the circadian clock including temperature compensation, rhythmicity, and robustness. Finally, we explain the contribution of systems biology to the transcription-translation feedback loop and posttranslational oscillator models of circadian rhythms and describe new technologies and "-omics" approaches to understand circadian timekeeping and neurophysiology.
Collapse
Affiliation(s)
- Arthur Millius
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka, Japan
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Abstract
In considering the impact of the earth’s changing geophysical conditions during the history of life, it is surprising to learn that the earth’s rotational period may have been as short as 4 h, as recently as 1900 million years ago (or 1.9 billion years ago). The implications of such figures for the origin and evolution of clocks are considerable, and the authors speculate on how this short rotational period might have influenced the development of the “protoclock” in early microorganisms, such as the Cyanobacteria, during the geological periodsin which they arose and flourished. They then discuss the subsequent duplication of clock genes that took place around and after the Cambrian period, 543 million years ago, and its consequences. They compare the relative divergences of the canonical clock genes, which reveal the Per family to be the most rapidly evolving. In addition, the authors use a statistical test to predict which residues within the PER and CRY families may have undergone functional specialization.
Collapse
Affiliation(s)
- Eran Tauber
- Department of Genetics, University of Leicester, Leicester, UK
| | | | | | | |
Collapse
|
16
|
Beale AD, Whitmore D, Moran D. Life in a dark biosphere: a review of circadian physiology in "arrhythmic" environments. J Comp Physiol B 2016; 186:947-968. [PMID: 27263116 PMCID: PMC5090016 DOI: 10.1007/s00360-016-1000-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/05/2016] [Accepted: 05/17/2016] [Indexed: 11/25/2022]
Abstract
Most of the life with which humans interact is exposed to highly rhythmic and extremely predictable changes in illumination that occur with the daily events of sunrise and sunset. However, while the influence of the sun feels omnipotent to surface dwellers such as ourselves, life on earth is dominated, in terms of biomass, by organisms isolated from the direct effects of the sun. A limited understanding of what life is like away from the sun can be inferred from our knowledge of physiology and ecology in the light biosphere, but a full understanding can only be gained by studying animals from the dark biosphere, both in the laboratory and in their natural habitats. One of the least understood aspects of life in the dark biosphere is the rhythmicity of physiology and what it means to live in an environment of low or no rhythmicity. Here we describe methods that may be used to understand rhythmic physiology in the dark and summarise some of the studies of rhythmic physiology in "arrhythmic" environments, such as the poles, deep sea and caves. We review what can be understood about the adaptive value of rhythmic physiology on the Earth's surface from studies of animals from arrhythmic environments and what role a circadian clock may play in the dark.
Collapse
Affiliation(s)
- Andrew David Beale
- Department of Cell and Developmental Biology, Centre for Cell and Molecular Dynamics, University College London, 21 University Street, London, WC1E 6BT, UK.
| | - David Whitmore
- Department of Cell and Developmental Biology, Centre for Cell and Molecular Dynamics, University College London, 21 University Street, London, WC1E 6BT, UK
| | - Damian Moran
- Plant and Food Research, Seafood Technologies Group, Nelson, New Zealand.
| |
Collapse
|
17
|
Temperature compensation and temperature sensation in the circadian clock. Proc Natl Acad Sci U S A 2015; 112:E6284-92. [PMID: 26578788 DOI: 10.1073/pnas.1511215112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All known circadian clocks have an endogenous period that is remarkably insensitive to temperature, a property known as temperature compensation, while at the same time being readily entrained by a diurnal temperature oscillation. Although temperature compensation and entrainment are defining features of circadian clocks, their mechanisms remain poorly understood. Most models presume that multiple steps in the circadian cycle are temperature-dependent, thus facilitating temperature entrainment, but then insist that the effect of changes around the cycle sums to zero to enforce temperature compensation. An alternative theory proposes that the circadian oscillator evolved from an adaptive temperature sensor: a gene circuit that responds only to temperature changes. This theory implies that temperature changes should linearly rescale the amplitudes of clock component oscillations but leave phase relationships and shapes unchanged. We show using timeless luciferase reporter measurements and Western blots against TIMELESS protein that this prediction is satisfied by the Drosophila circadian clock. We also review evidence for pathways that couple temperature to the circadian clock, and show previously unidentified evidence for coupling between the Drosophila clock and the heat-shock pathway.
Collapse
|
18
|
Tsuchiya Y, Umemura Y, Minami Y, Koike N, Hosokawa T, Hara M, Ito H, Inokawa H, Yagita K. Effect of Multiple Clock Gene Ablations on the Circadian Period Length and Temperature Compensation in Mammalian Cells. J Biol Rhythms 2015; 31:48-56. [PMID: 26511603 DOI: 10.1177/0748730415613888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Most organisms have cell-autonomous circadian clocks to coordinate their activity and physiology according to 24-h environmental changes. Despite recent progress in circadian studies, it is not fully understood how the period length and the robustness of mammalian circadian rhythms are determined. In this study, we established a series of mouse embryonic stem cell (ESC) lines with single or multiplex clock gene ablations using the CRISPR/Cas9-based genome editing method. ESC-based in vitro circadian clock formation assay shows that the CRISPR-mediated clock gene disruption not only reproduces the intrinsic circadian molecular rhythms of previously reported mice tissues and cells lacking clock genes but also reveals that complexed mutations, such as CKIδ(m/m):CKIε(+/m):Cry2(m/m) mutants, exhibit an additively lengthened circadian period. By using these mutant cells, we also investigated the relation between period length alteration and temperature compensation. Although CKIδ-deficient cells slightly affected the temperature insensitivity of period length, we demonstrated that the temperature compensation property is largely maintained in all mutants. These results show that the ESC-based assay system could offer a more systematic and comprehensive approach to the genotype-chronotype analysis of the intracellular circadian clockwork in mammals.
Collapse
Affiliation(s)
- Yoshiki Tsuchiya
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiro Umemura
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichi Minami
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihiro Hosokawa
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan Department of Orthopedic Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masayuki Hara
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan Department of Nephrology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Ito
- Faculty of Design, Kyushu University, Fukuoka, Japan
| | - Hitoshi Inokawa
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Levy RC, Kozak GM, Wadsworth CB, Coates BS, Dopman EB. Explaining the sawtooth: latitudinal periodicity in a circadian gene correlates with shifts in generation number. J Evol Biol 2014; 28:40-53. [DOI: 10.1111/jeb.12562] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/03/2023]
Affiliation(s)
- R. C. Levy
- Department of Biology; Tufts University; Medford MA USA
| | - G. M. Kozak
- Department of Biology; Tufts University; Medford MA USA
| | | | - B. S. Coates
- USDA-ARS; Corn Insects and Crop Genetics Research Unit; Genetics Laboratory; Iowa State University; Ames IA USA
| | - E. B. Dopman
- Department of Biology; Tufts University; Medford MA USA
| |
Collapse
|
20
|
Varma V, Mukherjee N, Kannan NN, Sharma VK. Strong (type 0) phase resetting of activity-rest rhythm in fruit flies, Drosophila melanogaster, at low temperature. J Biol Rhythms 2013; 28:380-9. [PMID: 24336416 DOI: 10.1177/0748730413508922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Amplitude modulation in limit cycle models of circadian clocks has been previously formulated to explain the phenomenon of temperature compensation. These models propose that invariance of clock period (τ) with changing temperature is a result of the system traversing small or large limit cycles such that despite a decrease or an increase in the linear velocity of the clock owing to slowing down or speeding up of the underlying biochemical reactions, respectively, the angular velocity and, thus, the clock period remain constant. In addition, these models predict that phase resetting behavior of circadian clocks described by limit cycles of different amplitudes at low or high temperatures will be drastically different. More specifically, this class of models predicts that at low temperatures, circadian clocks will respond to perturbations by eliciting larger phase shifts by virtue of their smaller amplitude and vice versa. Here, we present the results of our tests of this prediction: We examined the nature of photic phase response curves (PRCs) and phase transition curves (PTCs) for the circadian clocks of 4 wild-type fruit fly Drosophila melanogaster populations at 3 different ambient temperatures (18, 25, and 29 °C). Interestingly, we observed that at the low temperature of 18 °C, fly clocks respond to light perturbations more strongly, eliciting strong (type 0) PRCs and PTCs, while at moderate (25 °C) and high (29 °C) temperatures the same stimuli evoke weak (type 1) responses. This pattern of strong and weak phase resetting at low and high temperatures, respectively, renders support for the limit cycle amplitude modulation model for temperature compensation of circadian clocks.
Collapse
Affiliation(s)
- Vishwanath Varma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | | |
Collapse
|
21
|
Yadav P, Sharma VK. Environmentally-induced modulations of developmental rates do not affect the selection-mediated changes in pre-adult development time of fruit flies Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:729-737. [PMID: 23685003 DOI: 10.1016/j.jinsphys.2013.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
In a previous study we had shown that 55 generations of selection for faster egg-to-adult development in fruit flies Drosophila melanogaster results in shortening of pre-adult duration by ~29-h (~12.5%) and speeding-up of circadian clock period (τ) by ~0.5-h, implying a positive correlation between development time and τ. In Drosophila, change in ambient temperature is known to alter the rate of pre-adult development but not the speed of circadian clocks whereas 12:12-h warm/cold (WC) cycles are likely to alter both pre-adult development rate and τ (via entrainment). To study the effect of overall speeding-up/slowing-down of pre-adult development and circadian clocks on the selection-mediated difference in pre-adult development time, we subjected developing flies to the following conditions: (i) different ambient temperatures (18, 25 and 29°C) under constant darkness (DD) to alter the rate of pre-adult development, or (ii) cyclic WC conditions (WC1-25:18 or WC2-29:25°C) to alter rate of development and τ. The results revealed that the selected (FD) stocks develop faster than controls (BD) by ~52, 28 and 21-h, at 18, 25 and 29°C, respectively, and by 28 and 26-h under WC1 and WC2, respectively. The τ of activity/rest rhythm decreased considerably at 18°C but it did not differ between the FD and BD flies, which suggests a break-down of correlation between development time and τ, seen under their normal rearing conditions (constant darkness--DD at 25°C). While the absolute difference in development time between FD and BD stocks increased or decreased under cooler or warmer conditions, the relative difference in their pre-adult development time remained largely unaltered. These results suggest that manipulations in ambient conditions independently changes development time and τ, resulting in a break-down of the genetic correlation between them.
Collapse
Affiliation(s)
- Pankaj Yadav
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore, Karnataka, India
| | | |
Collapse
|
22
|
King HA, Hoelz A, Crane BR, Young MW. Structure of an enclosed dimer formed by the Drosophila period protein. J Mol Biol 2011; 413:561-72. [PMID: 21907720 DOI: 10.1016/j.jmb.2011.08.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 11/18/2022]
Abstract
Period (PER) is the major transcription inhibitor in metazoan circadian clocks and lies at the center of several feedback loops that regulate gene expression. Dimerization of Drosophila PER influences nuclear translocation, repressor activity, and behavioral rhythms. The structure of a central, 346-residue PER fragment reveals two associated PAS (Per-Arnt-Sim) domains followed by a protruding α-helical extension (αF). A closed, pseudo-symmetric dimer forms from a cross handshake interaction of the N-terminal PAS domain with αF of the opposing subunit. Strikingly, a shift of αF against the PAS β-sheet generates two alternative subunit interfaces in the dimer. Taken together with a previously reported PER structure in which αF extends, these data indicate that αF unlatches to switch association of PER with itself to its partner Timeless. The variable positions of the αF helix provide snapshots of a helix dissociation mechanism that has relevance to other PAS protein systems. Conservation of PER interaction residues among a family of PAS-AB-containing transcription factors suggests that contacts mediating closed PAS-AB dimers serve a general function.
Collapse
Affiliation(s)
- Heather A King
- Laboratory of Genetics, The Rockefeller University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
23
|
Lou P, Xie Q, Xu X, Edwards CE, Brock MT, Weinig C, McClung CR. Genetic architecture of the circadian clock and flowering time in Brassica rapa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:397-409. [PMID: 21505830 DOI: 10.1007/s00122-011-1592-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/31/2011] [Indexed: 05/18/2023]
Abstract
The circadian clock serves to coordinate physiology and behavior with the diurnal cycles derived from the daily rotation of the earth. In plants, circadian rhythms contribute to growth and yield and, hence, to both agricultural productivity and evolutionary fitness. Arabidopsis thaliana has served as a tractable model species in which to dissect clock mechanism and function, but it now becomes important to define the extent to which the Arabidopsis model can be extrapolated to other species, including crops. Accordingly, we have extended our studies to the close Arabidopsis relative and crop species, Brassica rapa. We have investigated natural variation in circadian function and flowering time among multiple B. rapa collections. There is wide variation in clock function, based on a robust rhythm in cotyledon movement, within a collection of B. rapa accessions, wild populations and recombinant inbred lines (RILs) derived from a cross between parents from two distinct subspecies, a rapid cycling Chinese cabbage (ssp. pekinensis) and a Yellow Sarson oilseed (ssp. trilocularis). We further analyzed the RILs to identify the quantitative trait loci (QTL) responsible for this natural variation in clock period and temperature compensation, as well as for flowering time under different temperature and day length settings. Most clock and flowering-time QTL mapped to overlapping chromosomal loci. We have exploited micro-synteny between the Arabidopsis and B. rapa genomes to identify candidate genes for these QTL.
Collapse
Affiliation(s)
- P Lou
- Department of Biological Sciences, 6044 Gilman Laboratories, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Oleksiuk O, Jakovljevic V, Vladimirov N, Carvalho R, Paster E, Ryu WS, Meir Y, Wingreen NS, Kollmann M, Sourjik V. Thermal robustness of signaling in bacterial chemotaxis. Cell 2011; 145:312-21. [PMID: 21496648 PMCID: PMC3098529 DOI: 10.1016/j.cell.2011.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 10/18/2010] [Accepted: 03/08/2011] [Indexed: 11/16/2022]
Abstract
Temperature is a global factor that affects the performance of all intracellular networks. Robustness against temperature variations is thus expected to be an essential network property, particularly in organisms without inherent temperature control. Here, we combine experimental analyses with computational modeling to investigate thermal robustness of signaling in chemotaxis of Escherichia coli, a relatively simple and well-established model for systems biology. We show that steady-state and kinetic pathway parameters that are essential for chemotactic performance are indeed temperature-compensated in the entire physiological range. Thermal robustness of steady-state pathway output is ensured at several levels by mutual compensation of temperature effects on activities of individual pathway components. Moreover, the effect of temperature on adaptation kinetics is counterbalanced by preprogrammed temperature dependence of enzyme synthesis and stability to achieve nearly optimal performance at the growth temperature. Similar compensatory mechanisms are expected to ensure thermal robustness in other systems.
Collapse
Affiliation(s)
- Olga Oleksiuk
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Vladimir Jakovljevic
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Nikita Vladimirov
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Ricardo Carvalho
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Eli Paster
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - William S. Ryu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yigal Meir
- Department of Physics, Ben Gurion University, Beer Sheva 84105, Israel
| | - Ned S. Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | - Markus Kollmann
- Heinrich-Heine-Universität Düsseldorf, Department of Biology, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Victor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| |
Collapse
|
25
|
Portolés S, Más P. The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet 2010; 6:e1001201. [PMID: 21079791 PMCID: PMC2973838 DOI: 10.1371/journal.pgen.1001201] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/07/2010] [Indexed: 01/17/2023] Open
Abstract
Circadian rhythms are daily biological oscillations driven by an endogenous mechanism known as circadian clock. The protein kinase CK2 is one of the few clock components that is evolutionary conserved among different taxonomic groups. CK2 regulates the stability and nuclear localization of essential clock proteins in mammals, fungi, and insects. Two CK2 regulatory subunits, CKB3 and CKB4, have been also linked with the Arabidopsis thaliana circadian system. However, the biological relevance and the precise mechanisms of CK2 function within the plant clockwork are not known. By using ChIP and Double-ChIP experiments together with in vivo luminescence assays at different temperatures, we were able to identify a temperature-dependent function for CK2 modulating circadian period length. Our study uncovers a previously unpredicted mechanism for CK2 antagonizing the key clock regulator CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1). CK2 activity does not alter protein accumulation or subcellular localization but interferes with CCA1 binding affinity to the promoters of the oscillator genes. High temperatures enhance the CCA1 binding activity, which is precisely counterbalanced by the CK2 opposing function. Altering this balance by over-expression, mutation, or pharmacological inhibition affects the temperature compensation profile, providing a mechanism by which plants regulate circadian period at changing temperatures. Therefore, our study establishes a new model demonstrating that two opposing and temperature-dependent activities (CCA1-CK2) are essential for clock temperature compensation in Arabidopsis.
Collapse
Affiliation(s)
- Sergi Portolés
- Consortium CSIC-IRTA-UAB, Centre for Research in Agricultural Genomics (CRAG), Department of Plant Molecular Genetics, Barcelona, Spain
| | - Paloma Más
- Consortium CSIC-IRTA-UAB, Centre for Research in Agricultural Genomics (CRAG), Department of Plant Molecular Genetics, Barcelona, Spain
- * E-mail:
| |
Collapse
|
26
|
Salomé PA, Weigel D, McClung CR. The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. THE PLANT CELL 2010; 22:3650-61. [PMID: 21098730 PMCID: PMC3015110 DOI: 10.1105/tpc.110.079087] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/28/2010] [Accepted: 11/08/2010] [Indexed: 05/20/2023]
Abstract
A defining, yet poorly understood characteristic of the circadian clock is that it is buffered against changes in temperature such that the period length is relatively constant across a range of physiologically relevant temperatures. We describe here the role of PSEUDO RESPONSE REGULATOR7 (PRR7) and PRR9 in temperature compensation. The Arabidopsis thaliana circadian oscillator comprises a series of interlocking feedback loops, and PRR7 and PRR9 function in the morning loop. The prr7 prr9 double mutant displays a unique phenotype that has not been observed before in other Arabidopsis clock mutants. In the prr7 prr9 mutant, the effects of temperature are overcompensated, apparently due to hyperactivation of the transcription factors CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Inactivation of CCA1 and LHY fully suppresses the overcompensation defects of prr7 prr9 mutants and rescues their long period phenotype. Overcompensation in prr7 prr9 mutants does not rely on FLOWERING LOCUS C, a previously identified gene required for temperature compensation. Together, our results reveal a role of PRR7 and PRR9 in regulating CCA1 and LHY activities in response to ambient temperature.
Collapse
Affiliation(s)
- Patrice A. Salomé
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany
| | - C. Robertson McClung
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
- Address correspondence to
| |
Collapse
|
27
|
Sánchez JA, Madrid JA, Sánchez-Vázquez FJ. Molecular cloning, tissue distribution, and daily rhythms of expression of per1 gene in European sea bass (Dicentrarchus labrax). Chronobiol Int 2010; 27:19-33. [PMID: 20205555 DOI: 10.3109/07420520903398633] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Circadian rhythms are controlled by interlocked autoregulatory feedback loops consisting of interactions of a group of circadian clock genes and their proteins. The Period family is a group of genes that are essential components of the molecular clock. In the present study, we cloned a period gene (per1) of the European sea bass, a marine teleost of chronobiological interest. The cloned sequence encoded a protein consisting of 1436 amino acids that homology and phylogenic analyses showed to be related with fish PER1 proteins possessing very high identity with Oryzias latipes (Medaka) per1. Polymerase chain reaction screening of per1 expression showed that this gene is expressed in all the tissues analyzed (brain, heart, liver, gill, muscle, digestive tract, adipose tissue, spleen, and retina). In addition, a daily expression rhythm, with an acrophase (peak time) approximately ZT0 (lights-on), was found in the two tissue types investigated: neural (brain) and peripheral (liver and heart). In conclusion, identification and characterization of the gene encoding sea bass per1 provide valuable information for understanding the circadian mechanism at the molecular level in this species, although further research is needed to clarify the exact role that per1 plays in the circadian oscillator and the dual behavior of European sea bass.
Collapse
Affiliation(s)
- Jose Antonio Sánchez
- Department of Physiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| | | | | |
Collapse
|
28
|
CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc Natl Acad Sci U S A 2009; 106:15744-9. [PMID: 19805222 DOI: 10.1073/pnas.0908733106] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A striking feature of the circadian clock is its flexible yet robust response to various environmental conditions. To analyze the biochemical processes underlying this flexible-yet-robust characteristic, we examined the effects of 1,260 pharmacologically active compounds in mouse and human clock cell lines. Compounds that markedly (>10 s.d.) lengthened the period in both cell lines, also lengthened it in central clock tissues and peripheral clock cells. Most compounds inhibited casein kinase Iepsilon (CKIepsilon) or CKIdelta phosphorylation of the PER2 protein. Manipulation of CKIepsilon/delta-dependent phosphorylation by these compounds lengthened the period of the mammalian clock from circadian (24 h) to circabidian (48 h), revealing its high sensitivity to chemical perturbation. The degradation rate of PER2, which is regulated by CKIepsilon/delta-dependent phosphorylation, was temperature-insensitive in living clock cells, yet sensitive to chemical perturbations. This temperature-insensitivity was preserved in the CKIepsilon/delta-dependent phosphorylation of a synthetic peptide in vitro. Thus, CKIepsilon/delta-dependent phosphorylation is likely a temperature-insensitive period-determining process in the mammalian circadian clock.
Collapse
|
29
|
MEHRA A, SHI M, BAKER CL, COLOT HV, LOROS JJ, DUNLAP JC. CK2 and temperature compensation inNeurospora. Sleep Biol Rhythms 2009. [DOI: 10.1111/j.1479-8425.2009.00406.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Hennig S, Strauss HM, Vanselow K, Yildiz Ö, Schulze S, Arens J, Kramer A, Wolf E. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLoS Biol 2009; 7:e94. [PMID: 19402751 PMCID: PMC2671562 DOI: 10.1371/journal.pbio.1000094] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 03/13/2009] [Indexed: 01/17/2023] Open
Abstract
PERIOD proteins are central components of the Drosophila and mammalian circadian clocks. The crystal structure of a Drosophila PERIOD (dPER) fragment comprising two PER-ARNT-SIM (PAS) domains (PAS-A and PAS-B) and two additional C-terminal α-helices (αE and αF) has revealed a homodimer mediated by intermolecular interactions of PAS-A with tryptophane 482 in PAS-B and helix αF. Here we present the crystal structure of a monomeric PAS domain fragment of dPER lacking the αF helix. Moreover, we have solved the crystal structure of a PAS domain fragment of the mouse PERIOD homologue mPER2. The mPER2 structure shows a different dimer interface than dPER, which is stabilized by interactions of the PAS-B β-sheet surface including tryptophane 419 (equivalent to Trp482dPER). We have validated and quantitatively analysed the homodimer interactions of dPER and mPER2 by site-directed mutagenesis using analytical gel filtration, analytical ultracentrifugation, and co-immunoprecipitation experiments. Furthermore we show, by yeast-two-hybrid experiments, that the PAS-B β-sheet surface of dPER mediates interactions with TIMELESS (dTIM). Our study reveals quantitative and qualitative differences between the homodimeric PAS domain interactions of dPER and its mammalian homologue mPER2. In addition, we identify the PAS-B β-sheet surface as a versatile interaction site mediating mPER2 homodimerization in the mammalian system and dPER-dTIM heterodimer formation in the Drosophila system. Most organisms have daily activity cycles (circadian rhythms), which are generated by circadian clocks. Circadian periodicity is produced by specific clock protein interactions and posttranslational modifications as well as changes in their cellular localization, expression, and stability. To learn more about the molecular processes underlying circadian clock operation in fruit flies and mouse, we analysed the homo- and heterodimeric interactions of the clock proteins Drosophila PERIOD (dPER) and mouse PERIOD2 (mPER2). We show that dPER and mPER2 use different interaction surfaces for homodimer formation, which are associated with different dimerization affinities. In addition, we present a structure-based biochemical analysis of the heterodimeric interaction of dPER with its partner Drosophila TIMELESS (dTIM). We identify a versatile molecular surface of the PERIOD proteins, which mediates homodimer formation of mPER2 but is used for dPER-dTIM heterodimer formation in Drosophila. Our results reveal quantitative and qualitative differences in the molecular interactions of PERIOD clock proteins in flies and mammals, allowing them to adjust to their different binding partners and regulatory functions in these different organisms. Crystal structures and structure-based biochemical studies ofDrosophila PERIOD and mouse PERIOD2 circadian clock proteins reveal different homodimer interactions and identify a versatile molecular surface that mediates homodimerization of mouse PERIOD2 but is involved in heterodimeric interactions ofDrosophila PERIOD with TIMELESS.
Collapse
Affiliation(s)
- Sven Hennig
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Holger M Strauss
- Max Planck Institute for Colloids and Interfaces, Potsdam, Germany
| | - Katja Vanselow
- Laboratory of Chronobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Özkan Yildiz
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Sabrina Schulze
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Julia Arens
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Wolf
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
A role for the PERIOD:PERIOD homodimer in the Drosophila circadian clock. PLoS Biol 2009; 7:e3. [PMID: 19402744 PMCID: PMC2671555 DOI: 10.1371/journal.pbio.1000003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 11/12/2008] [Indexed: 01/13/2023] Open
Abstract
Circadian clocks in eukaryotes rely on transcriptional feedback loops, in which clock genes repress their own transcription resulting in molecular oscillations with a period of ∼24 h. In Drosophila, the clock proteins Period (PER) and Timeless (TIM) operate in such a feedback loop, whereby they first accumulate in the cytoplasm of clock cells as a heterodimer. Nuclear translocation of the complex or the individual PER and TIM proteins is followed by repression of per and tim transcription, whereby PER seems to act as the prime repressor. We found that in addition to PER:TIM complexes, functional PER:PER homodimers exist in flies. Specific disruption of PER homodimers results in drastically impaired behavioral and molecular rhythmicity, pointing the biological importance of this clock protein complex. Analysis of PER subcellular distribution and repressor competence in the PER dimer mutant revealed defects in PER nuclear translocation and a disruption of rhythmic period transcription. The striking similarity of these phenotypes with that of reduced CKII activity suggests that the formation or function of the PER dimer is closely linked to this kinase. Our results confirm a previous structural model for PER and provide strong evidence that PER homodimers are important for circadian clock function. The current models of circadian clocks in flies and mammals involve the formation of complexes between clock proteins in the cytoplasm. These complexes are usually heterodimers (that is, made up of two different clock proteins) and appear to enter the nucleus at certain times of the circadian day in order to shut down their own gene expression by deactivating specific transcription factors. After progressive phosphorylation the repressor proteins eventually are degraded so that a new cycle of transcription can begin. Here we present evidence that in addition to heterodimeric complexes, the clock protein PERIOD (PER) also forms homodimers (pairs of identical proteins). Based on a structural model a PER mutant was designed, which is not able to form homodimers but can still bind to its partner TIMELESS (TIM). Flies expressing this mutant PER protein show abnormal clock function in regard to PER nuclear translocation, repressor activity, and behavioral rhythms. The circadian clock model in flies therefore needs to be extended by adding the PER:PER homodimer as a functional unit. Recent structural studies with mammalian PER proteins suggest that homodimers between clock proteins are an important general feature of eukaryotic clocks. The circadian molecular clock model needs to be extended by adding the PERIOD:PERIOD homodimer as a functional unit in rhythm generation in Drosophila. Blocking this dimerization leads to faulty nuclear localization, reduced repressor activity, and impaired behavioral rhythms.
Collapse
|
32
|
Mehra A, Shi M, Baker CL, Colot HV, Loros JJ, Dunlap JC. A role for casein kinase 2 in the mechanism underlying circadian temperature compensation. Cell 2009; 137:749-60. [PMID: 19450520 PMCID: PMC2718715 DOI: 10.1016/j.cell.2009.03.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 01/19/2009] [Accepted: 03/12/2009] [Indexed: 11/28/2022]
Abstract
Temperature compensation of circadian clocks is an unsolved problem with relevance to the general phenomenon of biological compensation. We identify casein kinase 2 (CK2) as a key regulator of temperature compensation of the Neurospora clock by determining that two long-standing clock mutants, chrono and period-3, displaying distinctive alterations in compensation encode the beta1 and alpha subunits of CK2, respectively. Reducing the dose of these subunits, particularly beta1, significantly alters temperature compensation without altering the enzyme's Q(10). By contrast, other kinases and phosphatases implicated in clock function do not play appreciable roles in temperature compensation. CK2 exerts its effects on the clock by directly phosphorylating FREQUENCY (FRQ), and this phosphorylation is compromised in CK2 hypomorphs. Finally, mutation of certain putative CK2 phosphosites on FRQ, shown to be phosphorylated in vivo, predictably alters temperature compensation profiles effectively phenocopying CK2 mutants.
Collapse
Affiliation(s)
- Arun Mehra
- Department of Genetics, Dartmouth Medical School, Hanover NH 03755
| | - Mi Shi
- Department of Genetics, Dartmouth Medical School, Hanover NH 03755
| | | | - Hildur V. Colot
- Department of Genetics, Dartmouth Medical School, Hanover NH 03755
| | - Jennifer J. Loros
- Department of Genetics, Dartmouth Medical School, Hanover NH 03755
- Department of Biochemistry, Dartmouth Medical School, Hanover NH 03755
| | - Jay C. Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover NH 03755
- Department of Biochemistry, Dartmouth Medical School, Hanover NH 03755
| |
Collapse
|
33
|
Minimum criteria for DNA damage-induced phase advances in circadian rhythms. PLoS Comput Biol 2009; 5:e1000384. [PMID: 19424508 PMCID: PMC2677641 DOI: 10.1371/journal.pcbi.1000384] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 04/07/2009] [Indexed: 12/11/2022] Open
Abstract
Robust oscillatory behaviors are common features of circadian and cell cycle rhythms. These cyclic processes, however, behave distinctively in terms of their periods and phases in response to external influences such as light, temperature, nutrients, etc. Nevertheless, several links have been found between these two oscillators. Cell division cycles gated by the circadian clock have been observed since the late 1950s. On the other hand, ionizing radiation (IR) treatments cause cells to undergo a DNA damage response, which leads to phase shifts (mostly advances) in circadian rhythms. Circadian gating of the cell cycle can be attributed to the cell cycle inhibitor kinase Wee1 (which is regulated by the heterodimeric circadian clock transcription factor, BMAL1/CLK), and possibly in conjunction with other cell cycle components that are known to be regulated by the circadian clock (i.e., c-Myc and cyclin D1). It has also been shown that DNA damage-induced activation of the cell cycle regulator, Chk2, leads to phosphorylation and destruction of a circadian clock component (i.e., PER1 in Mus or FRQ in Neurospora crassa). However, the molecular mechanism underlying how DNA damage causes predominantly phase advances in the circadian clock remains unknown. In order to address this question, we employ mathematical modeling to simulate different phase response curves (PRCs) from either dexamethasone (Dex) or IR treatment experiments. Dex is known to synchronize circadian rhythms in cell culture and may generate both phase advances and delays. We observe unique phase responses with minimum delays of the circadian clock upon DNA damage when two criteria are met: (1) existence of an autocatalytic positive feedback mechanism in addition to the time-delayed negative feedback loop in the clock system and (2) Chk2-dependent phosphorylation and degradation of PERs that are not bound to BMAL1/CLK. Molecular components and mechanisms that connect cell cycle and circadian rhythms are important for the well-being of an organism. Cell cycle machinery regulates the progress of cell growth and division while the circadian rhythm network generates an ∼24 h time-keeping mechanism that regulates the daily processes of an organism (i.e. metabolism, bowel movements, body temperature, etc.). It is observed that cell divisions usually occur during a certain time window of a day, which indicated that there are circadian-gated cell divisions. Moreover, it's been shown that mice are more prone to develop cancer when certain clock genes are mutated resulting in an arrhythmic clock. Recently, a cell cycle checkpoint regulator, Chk2, was identified as a component that influences a core clock component and creates mostly phase advances (i.e., jet lags due to traveling east) in circadian rhythms upon DNA damage. This phase response with minimum delays is an unexpected result, and the molecular mechanism behind this phenomenon remains unknown. Our computational analyses of a mathematical model reveal two molecular criteria that account for the experimentally observed phase responses of the circadian clock upon DNA damage. These results demonstrate how circadian clock regulation by cell cycle checkpoint controllers provides another layer of complexity for efficient DNA damage responses.
Collapse
|
34
|
Ukaegbu UE, Rosenzweig AC. Structure of the redox sensor domain of Methylococcus capsulatus (Bath) MmoS. Biochemistry 2009; 48:2207-15. [PMID: 19271777 PMCID: PMC2707821 DOI: 10.1021/bi8019614] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MmoS from Methylococcus capsulatus (Bath) is the multidomain sensor protein of a two-component signaling system proposed to play a role in the copper-mediated regulation of soluble methane monooxygenase (sMMO). MmoS binds an FAD cofactor within its N-terminal tandem Per-Arnt-Sim (PAS) domains, suggesting that it functions as a redox sensor. The crystal structure of the MmoS tandem PAS domains, designated PAS-A and PAS-B, has been determined to 2.34 A resolution. Both domains adopt the typical PAS domain alpha/beta topology and are structurally similar. The two domains are linked by a long alpha helix and do not interact with one another. The FAD cofactor is housed solely within PAS-A and is stabilized by an extended hydrogen bonding network. The overall fold of PAS-A is similar to those of other flavin-containing PAS domains, but homodimeric interactions in other structures are not observed in the MmoS sensor, which crystallized as a monomer. The structure both provides new insight into the architecture of tandem PAS domains and suggests specific residues that may play a role in MmoS FAD redox chemistry and subsequent signal transduction.
Collapse
Affiliation(s)
- Uchechi E. Ukaegbu
- Departments of Biochemistry, Molecular Biology and Cell Biology and of Chemistry, Northwestern University, Evanston, IL 60208
| | - Amy C. Rosenzweig
- Departments of Biochemistry, Molecular Biology and Cell Biology and of Chemistry, Northwestern University, Evanston, IL 60208
| |
Collapse
|
35
|
Tyson JJ, Hong CI, Thron CD, Novak B. A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. Biophys J 2008; 77:2411-7. [PMID: 20540926 DOI: 10.1016/s0006-3495(99)77078-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1999] [Accepted: 08/10/1999] [Indexed: 11/30/2022] Open
Abstract
Many organisms display rhythms of physiology and behavior that are entrained to the 24-h cycle of light and darkness prevailing on Earth. Under constant conditions of illumination and temperature, these internal biological rhythms persist with a period close to 1 day ("circadian"), but it is usually not exactly 24h. Recent discoveries have uncovered stunning similarities among the molecular circuitries of circadian clocks in mice, fruit flies, and bread molds. A consensus picture is coming into focus around two proteins (called PER and TIM in fruit flies), which dimerize and then inhibit transcription of their own genes. Although this picture seems to confirm a venerable model of circadian rhythms based on time-delayed negative feedback, we suggest that just as crucial to the circadian oscillator is a positive feedback loop based on stabilization of PER upon dimerization. These ideas can be expressed in simple mathematical form (phase plane portraits), and the model accounts naturally for several hallmarks of circadian rhythms, including temperature compensation and the per(L) mutant phenotype. In addition, the model suggests how an endogenous circadian oscillator could have evolved from a more primitive, light-activated switch.
Collapse
Affiliation(s)
- J J Tyson
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
36
|
Glaser FT, Stanewsky R. Synchronization of the Drosophila circadian clock by temperature cycles. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:233-42. [PMID: 18419280 DOI: 10.1101/sqb.2007.72.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The natural light/dark and temperature cycles are considered to be the most prominent factors that synchronize circadian clocks with the environment. Understanding the principles of temperature entrainment significantly lags behind our current knowledge of light entrainment in any organism subject to circadian research. Nevertheless, several effects of temperature on circadian clocks are well understood, and similarities as well as differences to the light-entrainment pathways start to emerge. This chapter provides an overview of the temperature effects on the Drosophila circadian clock with special emphasis on synchronization by temperature cycles. As in other organisms, such temperature cycles can serve as powerful time cues to synchronize the clock. Mutants that specifically interfere with aspects of temperature entrainment have been isolated and will likely help to reveal the underlying mechanisms. These mechanisms involve transcriptional and posttranscriptional regulation of clock genes. For synchronization of fly behavior by temperature cycles, the generation of a whole organism or systemic signal seems to be required, even though individual fly tissues can be synchronized under isolated culture conditions. If true, the requirement for such a signal would reveal a fundamental difference to the light-entrainment mechanism.
Collapse
Affiliation(s)
- F T Glaser
- Institute of Zoology, University of Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
37
|
Nagao R, Epstein IR, Gonzalez ER, Varela H. Temperature (Over)Compensation in an Oscillatory Surface Reaction. J Phys Chem A 2008; 112:4617-24. [PMID: 18433166 DOI: 10.1021/jp801361j] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raphael Nagao
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos - SP, Brasil, and Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Irving R. Epstein
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos - SP, Brasil, and Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Ernesto R. Gonzalez
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos - SP, Brasil, and Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Hamilton Varela
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos - SP, Brasil, and Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
38
|
Rajan K, Abbott LF. Temperature-compensated chemical reactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:022902. [PMID: 17358384 DOI: 10.1103/physreve.75.022902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Indexed: 05/14/2023]
Abstract
Circadian rhythms are daily oscillations in behaviors that persist in constant light/dark conditions with periods close to 24 h. A striking feature of these rhythms is that their periods remain fairly constant over a wide range of physiological temperatures, a feature called temperature compensation. Although circadian rhythms have been associated with periodic oscillations in mRNA and protein levels, the question of how to construct a network of chemical reactions that is temperature compensated remains unanswered. We discuss a general framework for building such a network.
Collapse
Affiliation(s)
- Kanaka Rajan
- Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, New York 10032-2695, USA
| | | |
Collapse
|
39
|
Collins B, Blau J. Even a stopped clock tells the right time twice a day: circadian timekeeping in Drosophila. Pflugers Arch 2007; 454:857-67. [PMID: 17226053 DOI: 10.1007/s00424-006-0188-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 11/03/2006] [Indexed: 11/30/2022]
Abstract
"Even a stopped clock tells the right time twice a day, and for once I'm inclined to believe Withnail is right. We are indeed drifting into the arena of the unwell... What we need is harmony. Fresh air. Stuff like that" "Bruce Robinson (1986, ref. 1)". Although a stopped Drosophila clock probably does not tell the right time even once a day, recent findings have demonstrated that accurate circadian time-keeping is dependent on harmony between groups of clock neurons within the brain. Furthermore, when harmony between the environment and the endogenous clock is lost, as during jet lag, we definitely feel unwell. In this review, we provide an overview of the current understanding of circadian rhythms in Drosophila, focussing on recent discoveries that demonstrate how approximately 100 neurons within the Drosophila brain control the behaviour of the whole fly, and how these rhythms respond to the environment.
Collapse
MESH Headings
- Adaptation, Biological/genetics
- Adaptation, Biological/physiology
- Adaptation, Biological/radiation effects
- Animals
- Biological Clocks/physiology
- Biological Clocks/radiation effects
- Circadian Rhythm/physiology
- Circadian Rhythm/radiation effects
- Drosophila/anatomy & histology
- Drosophila/physiology
- Drosophila Proteins/physiology
- Drosophila Proteins/radiation effects
- Feedback, Physiological
- Genes, Insect/physiology
- Light
- Models, Neurological
- Mutagenesis, Site-Directed
- Nerve Net/physiology
- Nerve Net/radiation effects
- Photoreceptor Cells, Invertebrate/cytology
- Photoreceptor Cells, Invertebrate/physiology
- Photoreceptor Cells, Invertebrate/radiation effects
- Thermosensing/genetics
- Thermosensing/physiology
Collapse
Affiliation(s)
- Ben Collins
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | |
Collapse
|
40
|
Ruoff P, Christensen MK, Sharma VK. PER/TIM-mediated amplification, gene dosage effects and temperature compensation in an interlocking-feedback loop model of the Drosophila circadian clock. J Theor Biol 2005; 237:41-57. [PMID: 15935389 DOI: 10.1016/j.jtbi.2005.03.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 02/28/2005] [Accepted: 03/29/2005] [Indexed: 10/25/2022]
Abstract
We have analysed a first-order kinetic representation of a interlocking-feedback loop model for the Drosophila circadian clock. In this model, the transcription factor Drosophila CLOCK (dCLK) which activates the clock genes period (per) and timeless (tim) is subjected to positive and negative regulations by the proteins 'PAR Domain Protein 1' (PDP1) and VRILLE (VRI), whose transcription is activated by dCLK. The PER/TIM complex binds to dCLK and in this way reduces the activity of dCLK. The results of our simulations suggest that the positive and negative feedback loops of Pdp1 and vri are essential for the overall oscillations. Although self sustained oscillations can be obtained without per/tim, the model shows that the PER/TIM complex plays an important role in amplification and stabilization of the oscillations generated by the Pdp1/vri positive/negative feedback loops. We further show that in contrast to a single (per/tim) negative feedback loop oscillator, the interlocking-feedback loop model can readily account for the effect of gene dosages of per, vri, and Pdp1 on the period length. Calculations of phase resetting on a temperature compensated version of the model shows good agreement with experimental phase response curves for high and low temperature pulses. Also, the partial losses of temperature compensation in perS and perL mutants can be described, which are related to decreased stabilities of the PER/TIM complex in perS and the stronger/more stable inhibitory complex between dCLK and PER/TIM in perL, respectively. The model shows (somewhat surprisingly) poor entrainment properties, especially under extended light/dark (L/D) cycles, which suggests that parts of the L/D tracking or sensing system are not well represented.
Collapse
Affiliation(s)
- Peter Ruoff
- Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway.
| | | | | |
Collapse
|
41
|
Schöning JC, Staiger D. At the pulse of time: protein interactions determine the pace of circadian clocks. FEBS Lett 2005; 579:3246-52. [PMID: 15943968 DOI: 10.1016/j.febslet.2005.03.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2005] [Indexed: 11/27/2022]
Abstract
Circadian clocks, internal timekeepers that generate a daily rhythmicity, help organisms to be prepared for periodic environmental changes of light and temperature. These molecular clocks are transcriptional feedback loops that generate 24-h oscillations in the abundance of clock proteins. For the maintenance of this rhythm inside the core clockwork and for its transmission to downstream genes the clock proteins additionally rely on post-transcriptional and post-translational mechanisms. Thus clock proteins engage in a variety of interactions with DNA, RNA and other proteins. Based on the model organisms Drosophila melanogaster and Arabidopsis thaliana molecular principles of circadian clocks are discussed in this review.
Collapse
Affiliation(s)
- Jan C Schöning
- Molekulare Zellphysiologie, Fakultät für Biologie, Universität Bielefeld, D-33615 Bielefeld, Germany.
| | | |
Collapse
|
42
|
Yildiz O, Doi M, Yujnovsky I, Cardone L, Berndt A, Hennig S, Schulze S, Urbanke C, Sassone-Corsi P, Wolf E. Crystal Structure and Interactions of the PAS Repeat Region of the Drosophila Clock Protein PERIOD. Mol Cell 2005; 17:69-82. [PMID: 15629718 DOI: 10.1016/j.molcel.2004.11.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 09/20/2004] [Accepted: 10/29/2004] [Indexed: 10/26/2022]
Abstract
PERIOD proteins are central components of the Drosophila and mammalian circadian clock. Their function is controlled by daily changes in synthesis, cellular localization, phosphorylation, degradation, as well as specific interactions with other clock components. Here we present the crystal structure of a Drosophila PERIOD (dPER) fragment comprising two tandemly organized PAS (PER-ARNT-SIM) domains (PAS-A and PAS-B) and two additional C-terminal alpha helices (alphaE and alphaF). Our analysis reveals a noncrystallographic dPER dimer mediated by intermolecular interactions of PAS-A with PAS-B and helix alphaF. We show that alphaF is essential for dPER homodimerization and that the PAS-A-alphaF interaction plays a crucial role in dPER clock function, as it is affected by the 29 hr long-period perL mutation.
Collapse
Affiliation(s)
- Ozkan Yildiz
- Department of Structural Biology, Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Smolen P, Hardin PE, Lo BS, Baxter DA, Byrne JH. Simulation of Drosophila circadian oscillations, mutations, and light responses by a model with VRI, PDP-1, and CLK. Biophys J 2004; 86:2786-802. [PMID: 15111397 PMCID: PMC1304149 DOI: 10.1016/s0006-3495(04)74332-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A model of Drosophila circadian rhythm generation was developed to represent feedback loops based on transcriptional regulation of per, Clk (dclock), Pdp-1, and vri (vrille). The model postulates that histone acetylation kinetics make transcriptional activation a nonlinear function of [CLK]. Such a nonlinearity is essential to simulate robust circadian oscillations of transcription in our model and in previous models. Simulations suggest that two positive feedback loops involving Clk are not essential for oscillations, because oscillations of [PER] were preserved when Clk, vri, or Pdp-1 expression was fixed. However, eliminating positive feedback by fixing vri expression altered the oscillation period. Eliminating the negative feedback loop in which PER represses per expression abolished oscillations. Simulations of per or Clk null mutations, of per overexpression, and of vri, Clk, or Pdp-1 heterozygous null mutations altered model behavior in ways similar to experimental data. The model simulated a photic phase-response curve resembling experimental curves, and oscillations entrained to simulated light-dark cycles. Temperature compensation of oscillation period could be simulated if temperature elevation slowed PER nuclear entry or PER phosphorylation. The model makes experimental predictions, some of which could be tested in transgenic Drosophila.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W M Keck Center for the Neurobiology of Learning and Memory, The University of Texas-Houston Medical School, Houston, Texas 77225, USA
| | | | | | | | | |
Collapse
|
44
|
Sharma VK. [Hypothesis] On the genetic basis of temperature compensation of circadian clocks. J Genet 2004; 83:9-11. [PMID: 15240903 DOI: 10.1007/bf02715823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Vijay Kumar Sharma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, P.O. Box 6436, Jakkur, Bangalore 560 064, India.
| |
Collapse
|
45
|
Hall JC. Genetics and molecular biology of rhythms in Drosophila and other insects. ADVANCES IN GENETICS 2003; 48:1-280. [PMID: 12593455 DOI: 10.1016/s0065-2660(03)48000-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Application of generic variants (Sections II-IV, VI, and IX) and molecular manipulations of rhythm-related genes (Sections V-X) have been used extensively to investigate features of insect chronobiology that might not have been experimentally accessible otherwise. Most such tests of mutants and molecular-genetic xperiments have been performed in Drosophila melanogaster. Results from applying visual-system variants have revealed that environmental inputs to the circadian clock in adult flies are mediated by external photoreceptive structures (Section II) and also by direct light reception chat occurs in certain brain neurons (Section IX). The relevant light-absorbing molecuLes are rhodopsins and "blue-receptive" cryptochrome (Sections II and IX). Variations in temperature are another clock input (Section IV), as has been analyzed in part by use of molecular techniques and transgenes involving factors functioning near the heart of the circadian clock (Section VIII). At that location within the fly's chronobiological system, approximately a half-dozen-perhaps up to as many as 10-clock genes encode functions that act and interact to form the circadian pacemaker (Sections III and V). This entity functions in part by transcriptional control of certain clock genes' expressions, which result in the production of key proteins that feed back negatively to regulate their own mRNA production. This occurs in part by interactions of such proteins with others that function as transcriptional activators (Section V). The implied feedback loop operates such that there are daily variations in the abundances of products put out by about one-half of the core clock genes. Thus, the normal expression of these genes defines circadian rhythms of their own, paralleling the effects of mutations at the corresponding genetic loci (Section III), which are to disrupt or apparently eliminate clock functioning. The fluctuations in the abundance of gene products are controlled transciptionally and posttranscriptionally. These clock mechanisms are being analyzed in ways that are increasingly complex and occasionally obscure; not all panels of this picture are comprehensive or clear, including problems revolving round the biological meaning or a given features of all this molecular cycling (Section V). Among the complexities and puzzles that have recently arisen, phenomena that stand out are posttranslational modifications of certain proteins that are circadianly regulated and regulating; these biochemical events form an ancillary component of the clock mechanism, as revealed in part by genetic identification of Factors (Section III) that turned out to encode protein kinases whose substrates include other pacemaking polypeptides (Section V). Outputs from insect circadian clocks have been long defined on formalistic and in some cases concrete criteria, related to revealed rhythms such as periodic eclosion and daily fluctuations of locomotion (Sections II and III). Based on the reasoning that if clock genes can regulate circadian cyclings of their own products, they can do the same for genes that function along output pathways; thus clock-regulated genes have been identified in part by virtue of their products' oscillations (Section X). Those studied most intensively have their expression influenced by circadian-pacemaker mutations. The clock-regulated genes discovered on molecular criteria have in some instances been analyzed further in their mutant forms and found to affect certain features of overt whole-organismal rhythmicity (Sections IV and X). Insect chronogenetics touches in part on naturally occurring gene variations that affect biological rhythmicity or (in some cases) have otherwise informed investigators about certain features of the organism's rhythm system (Section VII). Such animals include at least a dozen insect species other than D. melanogaster in which rhythm variants have been encountered (although usually not looked for systematically). The chronobiological "system" in the fruit fly might better be graced with a plural appellation because there is a myriad of temporally related phenomena that have come under the sway of one kind of putative rhythm variant or the other (Section IV). These phenotypes, which range well beyond the bedrock eclosion and locomotor circadian rhythms, unfortunately lead to the creation of a laundry list of underanalyzed or occult phenomena that may or may not be inherently real, whether or not they might be meaningfully defective under the influence of a given chronogenetic variant. However, such mutants seem to lend themselves to the interrogation of a wide variety of time-based attributes-those that fall within the experimental confines of conventionally appreciated circadian rhythms (Sections II, III, VI, and X); and others that consist of 24-hr or nondaily cycles defined by many kinds of biological, physiological, or biochemical parameters (Section IV).
Collapse
Affiliation(s)
- Jeffrey C Hall
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
46
|
Constance CM, Green CB, Tei H, Block GD. Bulla gouldiana period exhibits unique regulation at the mRNA and protein levels. J Biol Rhythms 2002; 17:413-27. [PMID: 12375618 DOI: 10.1177/074873002237136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors cloned the period (per) gene from the marine mollusk Bulla gouldiana, a well-characterized circadian model system. This allowed them to examine the characteristics of the per gene in a new phylum, and to make comparisons with the conserved PER domains previously characterized in insects and vertebrates. Only one copy of the per gene is present in the Bulla genome, and it is most similar to PER in two insects: the cockroach, Periplaneta americana, and silkmoth, Antheraea pernyi. Comparison with Drosophila PER (dPER) and murine PER 1 (mPER1) sequence reveals that there is greater sequence homology between Bulla PER (bPER) and dPER in the regions of dPER shown to be important to heterodimerization between dPER and Drosophila timeless. Although the structure suggests conservation between dPER and bPER, expression patterns differ. In all cells and tissues examined that are peripheral to the clock neurons in Bulla, bPer mRNA and protein are expressed constitutively in light:dark (LD) cycles. In the identified clock neurons, the basal retinal neurons (BRNs), a rhythm in bPer expression could be detected in LD cycles with a peak at zeitgeber time (ZT) 5 and trough expression at ZT 13. This temporal profile of expression more closely resembles that of mPER1 than that of dPER. bPer rhythms in the BRNs were not detected in continuous darkness. These analyses suggest that clock genes may be uniquely regulated in different circadian systems, but lead to similar control of rhythms at the cellular, tissue, and organismal levels.
Collapse
Affiliation(s)
- Cara M Constance
- National Science Foundation Center for Biological Timing, Department of Biology, University of Virginia, Charlottesville 22903-2477, USA
| | | | | | | |
Collapse
|
47
|
Houslay MD. PDE4 cAMP-specific phosphodiesterases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 69:249-315. [PMID: 11550796 DOI: 10.1016/s0079-6603(01)69049-4] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M D Houslay
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, United Kingdom.
| |
Collapse
|
48
|
Salomon M, Eisenreich W, Dürr H, Schleicher E, Knieb E, Massey V, Rüdiger W, Müller F, Bacher A, Richter G. An optomechanical transducer in the blue light receptor phototropin from Avena sativa. Proc Natl Acad Sci U S A 2001; 98:12357-61. [PMID: 11606742 PMCID: PMC60058 DOI: 10.1073/pnas.221455298] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2001] [Indexed: 01/08/2023] Open
Abstract
The PHOT1 (NPH1) gene from Avena sativa specifies the blue light receptor for phototropism, phototropin, which comprises two FMN-binding LOV domains and a serine/threonine protein kinase domain. Light exposure is conducive to autophosphorylation of the protein kinase domain. We have reconstituted a recombinant LOV2 domain of A. sativa phototropin with various (13)C/(15)N-labeled isotopomers of the cofactor, FMN. The reconstituted protein samples were analyzed by NMR spectroscopy under dark and light conditions. Blue light irradiation is shown to result in the addition of a thiol group (cysteine 450) to the 4a position of the FMN chromophore. The adduct reverts spontaneously in the dark by elimination. The light-driven flavin adduct formation results in conformational modification, which was diagnosed by (1)H and (31)P NMR spectroscopy. This conformational change is proposed to initiate the transmission of the light signal via conformational modulation of the protein kinase domain conducive to autophosphorylation of NPH1.
Collapse
Affiliation(s)
- M Salomon
- Lehrstuhl für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rosato E, Codd V, Mazzotta G, Piccin A, Zordan M, Costa R, Kyriacou CP. Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY. Curr Biol 2001; 11:909-17. [PMID: 11448767 DOI: 10.1016/s0960-9822(01)00259-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND The biological clock synchronizes the organism with the environment, responding to changes in light and temperature. Drosophila CRYPTOCHROME (CRY), a putative circadian photoreceptor, has previously been reported to interact with the clock protein TIMELESS (TIM) in a light-dependent manner. Although TIM dimerizes with PERIOD (PER), no association between CRY and PER has previously been revealed, and aspects of the light dependence of the TIM/CRY interaction are still unclear. RESULTS Behavioral analysis of double mutants of per and cry suggested a genetic interaction between the two loci. To investigate whether this was reflected in a physical interaction, we employed a yeast-two-hybrid system that revealed a dimerization between PER and CRY. This was further supported by a coimmunoprecipitation assay in tissue culture cells. We also show that the light-dependent nuclear interactions of PER and TIM with CRY require the C terminus of CRY and may involve a trans-acting repressor. CONCLUSIONS This study shows that, as in mammals, Drosophila CRY interacts with PER, and, as in plants, the C terminus of CRY is involved in mediating light responses. A model for the light dependence of CRY is discussed.
Collapse
Affiliation(s)
- E Rosato
- Department of Biology, University of Leicester, University Road, LE1 7RH, Leicester, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Much of our current understanding of how circadian rhythms are generated is based on work done with Drosophila melanogaster. Molecular mechanisms used to assemble an endogenous clock in this organism are now known to underlie circadian rhythms in many other species, including mammals. The genetic amenability of Drosophila has led to the identification of some genes that encode components of the clock (so-called clock genes) and others that either link the clock to the environment or act downstream of it. The clock provides time-of-day cues by regulating levels of specific gene products such that they oscillate with a circadian rhythm. The mechanisms that synchronize these oscillations to light are understood to some extent. However, there are still large gaps in our knowledge, in particular with respect to the mechanisms used by the clock to control overt rhythms. It has, however, become clear that in addition to the brain clock, autonomous or semi-autonomous clocks occur in peripheral tissues where they confer circadian regulation on specific functions.
Collapse
Affiliation(s)
- J A Williams
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|