1
|
Tresguerres M, Kwan GT, Weinrauch A. Evolving views of ionic, osmotic and acid-base regulation in aquatic animals. J Exp Biol 2023; 226:jeb245747. [PMID: 37522267 DOI: 10.1242/jeb.245747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The regulation of ionic, osmotic and acid-base (IOAB) conditions in biological fluids is among the most fundamental functions in all organisms; being surrounded by water uniquely shapes the IOAB regulatory strategies of water-breathing animals. Throughout its centennial history, Journal of Experimental Biology has established itself as a premier venue for publication of comparative, environmental and evolutionary studies on IOAB regulation. This Review provides a synopsis of IOAB regulation in aquatic animals, some of the most significant research milestones in the field, and evolving views about the underlying cellular mechanisms and their evolutionary implications. It also identifies promising areas for future research and proposes ideas for enhancing the impact of aquatic IOAB research.
Collapse
Affiliation(s)
- Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
| | - Garfield T Kwan
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Alyssa Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M5, Canada
| |
Collapse
|
2
|
Shih SW, Yan JJ, Tsou YL, Lu SW, Wang MC, Chou MY, Hwang PP. In Vivo Functional Assay in Fish Gills: Exploring Branchial Acid-Excreting Mechanisms in Zebrafish. Int J Mol Sci 2022; 23:ijms23084419. [PMID: 35457237 PMCID: PMC9031880 DOI: 10.3390/ijms23084419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Molecular and physiological analyses in ionoregulatory organs (e.g., adult gills and embryonic skin) are essential for studying fish ion regulation. Recent progress in the molecular physiology of fish ion regulation was mostly obtained in embryonic skin; however, studies of ion regulation in adult gills are still elusive and limited because there are no direct methods for in vivo functional assays in the gills. The present study applied the scanning ion-selective electrode technique (SIET) in adult gills to investigate branchial H+-excreting functions in vivo. We removed the opercula from zebrafish and then performed long-term acid acclimation experiments. The results of Western blot and immunofluorescence showed that the protein expression of H+-ATPase (HA) and the number of H+-ATPase-rich ionocytes were increased under acidic situations. The SIET results proved that the H+ excretion capacity is indeed enhanced in the gills acclimated to acidic water. In addition, both HA and Na+/H+ exchanger (Nhe) inhibitors suppressed the branchial H+ excretion capacity, suggesting that H+ is excreted in association with HA and Nhe in zebrafish gills. These results demonstrate that SIET is effective for in vivo detection in fish gills, representing a breakthrough approach for studying the molecular physiology of fish ion regulation.
Collapse
Affiliation(s)
- Shang-Wu Shih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Jia-Jiun Yan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Yi-Ling Tsou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Shao-Wei Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Min-Chen Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan;
- Correspondence:
| |
Collapse
|
3
|
Nguyen F, Jonz MG. Replacement of mitochondrion-rich cells during regeneration of the gills and opercular epithelium in zebrafish (Danio rerio). Acta Histochem 2021; 123:151738. [PMID: 34091038 DOI: 10.1016/j.acthis.2021.151738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Transport epithelia maintain the volume, ion concentration and acid-base balance of blood and extracellular fluids. In teleost fish, mitochondrion-rich cells (MRCs) are specialized ionocytes that perform this role. These cells are found in epithelia of the gills and buccal surface of the operculum (the bony structure covering the gills). Proliferation of MRCs in response to changes in water salinity and other environmental stressors is well documented, but the cellular mechanisms underlying MRC proliferation are poorly understood. Recently, regeneration and epithelial cell replacement in the gill filaments was demonstrated in the model vertebrate, zebrafish (Danio rerio), raising the question of whether MRCs are replaced during regrowth of transport epithelia. We chose two anatomical sites where MRCs are found-the gills and the opercular epithelium-to investigate whether MRCs were replaced following surgical resection of these structures. In live imaging experiments, we observed gradual replacement of the branchiostegal valve, an extension of the operculum, in zebrafish over a period of 21 days post-resection (dpr). In regenerating epithelia of both the operculum and gills, we detected MRCs by immunohistochemical localization of the α subunit of plasma membrane Na+/K+-ATPase. In both tissues, MRCs appeared soon after resection, and as early as 1 dpr in the gill filaments. We report regeneration of the operculum and proliferation of MRCs in regenerating tissue in adult zebrafish. These studies may contribute to our understanding of how MRC populations are regulated during the regenerative process, which may occur following exposure to environmental stressors, chemical toxicity or disease.
Collapse
|
4
|
Zimmer AM, Goss GG, Glover CN. Reductionist approaches to the study of ionoregulation in fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110597. [PMID: 33781928 DOI: 10.1016/j.cbpb.2021.110597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms underlying ionoregulation in fishes have been studied for nearly a century, and reductionist methods have been applied at all levels of biological organization in this field of research. The complex nature of ionoregulatory systems in fishes makes them ideally suited to reductionist methods and our collective understanding has been dramatically shaped by their use. This review provides an overview of the broad suite of techniques used to elucidate ionoregulatory mechanisms in fishes, from the whole-animal level down to the gene, discussing some of the advantages and disadvantages of these methods. We provide a roadmap for understanding and appreciating the work that has formed the current models of organismal, endocrine, cellular, molecular, and genetic regulation of ion balance in fishes and highlight the contribution that reductionist techniques have made to some of the fundamental leaps forward in the field throughout its history.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, AB T9S 3A3, Canada
| |
Collapse
|
5
|
Larval Zebrafish Use Olfactory Detection of Sodium and Chloride to Avoid Salt Water. Curr Biol 2020; 31:782-793.e3. [PMID: 33338431 DOI: 10.1016/j.cub.2020.11.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Salinity levels constrain the habitable environment of all aquatic organisms. Zebrafish are freshwater fish that cannot tolerate high-salt environments and would therefore benefit from neural mechanisms that enable the navigation of salt gradients to avoid high salinity. Yet zebrafish lack epithelial sodium channels, the primary conduit land animals use to taste sodium. This suggests fish may possess novel, undescribed mechanisms for salt detection. In the present study, we show that zebrafish indeed respond to small temporal increases in salt by reorienting more frequently. Further, we use calcium imaging techniques to identify the olfactory system as the primary sense used for salt detection, and we find that a specific subset of olfactory receptor neurons encodes absolute salinity concentrations by detecting monovalent anions and cations. In summary, our study establishes that zebrafish larvae have the ability to navigate and thus detect salinity gradients and that this is achieved through previously undescribed sensory mechanisms for salt detection.
Collapse
|
6
|
Shaughnessy CA, Breves JP. Molecular mechanisms of Cl
−
transport in fishes: New insights and their evolutionary context. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:207-216. [DOI: 10.1002/jez.2428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Jason P. Breves
- Department of Biology Skidmore College Saratoga Springs New York USA
| |
Collapse
|
7
|
Fraqueza G, Fuentes J, Krivosudský L, Dutta S, Mal SS, Roller A, Giester G, Rompel A, Aureliano M. Inhibition of Na +/K +- and Ca 2+-ATPase activities by phosphotetradecavanadate. J Inorg Biochem 2019; 197:110700. [PMID: 31075720 DOI: 10.1016/j.jinorgbio.2019.110700] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) are promising inorganic inhibitors for P-type ATPases. The experimental models used to study the effects of POMs on these ATPases are usually in vitro models using vesicles from several membrane sources. Very recently, some polyoxotungstates, such as the Dawson anion [P2W18O62]6-, were shown to be potent P-type ATPase inhibitors; being active in vitro as well as in ex-vivo. In the present study we broaden the spectrum of highly active inhibitors of Na+/K+-ATPase from basal membrane of epithelial skin to the bi-capped Keggin-type anion phosphotetradecavanadate Cs5.6H3.4PV14O42 (PV14) and we confront the data with activity of other commonly encountered polyoxovanadates, decavanadate (V10) and monovanadate (V1). The X-ray crystal structure of PV14 was solved and contains two trans-bicapped α-Keggin anions HxPV14O42(9-x)-. The anion is built up from the classical Keggin structure [(PO4)@(V12O36)] capped by two [VO] units. PV14 (10 μM) exhibited higher ex-vivo inhibitory effect on Na+/K+-ATPase (78%) than was observed at the same concentrations of V10 (66%) or V1 (33%). Moreover, PV14 is also a potent in vitro inhibitor of the Ca2+-ATPase activity (IC50 5 μM) exhibiting stronger inhibition than the previously reported activities for V10 (15 μM) and V1 (80 μM). Putting it all together, when compared both P-typye ATPases it is suggested that PV14 exibited a high potential to act as an in vivo inhibitor of the Na+/K+-ATPase associated with chloride secretion.
Collapse
Affiliation(s)
- Gil Fraqueza
- ISE, University of Algarve, 8005-139 Faro, Portugal; CCMar, University of Algarve, 8005-139 Faro, Portugal
| | - Juan Fuentes
- CCMar, University of Algarve, 8005-139 Faro, Portugal
| | - Lukáš Krivosudský
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstr. 14, 1090 Wien, Austria; Comenius University, Faculty of Natural Sciences, Department of Inorganic Chemistry, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka, Mangalore 575025, Karnataka, India
| | - Sib Sankar Mal
- Department of Chemistry, National Institute of Technology Karnataka, Mangalore 575025, Karnataka, India.
| | - Alexander Roller
- Universität Wien, Fakultät für Chemie, Zentrum für Röntgenstrukturanalyse, 1090 Wien, Austria
| | - Gerald Giester
- Universität Wien, Fakultät für Geowissenschaften, Geographie und Astronomie, Institut für Mineralogie und Kristallographie, 1090 Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstr. 14, 1090 Wien, Austria.
| | - Manuel Aureliano
- CCMar, University of Algarve, 8005-139 Faro, Portugal; FCT, University of Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
8
|
Pelster B, Wood CM. Ionoregulatory and oxidative stress issues associated with the evolution of air-breathing. Acta Histochem 2018; 120:667-679. [PMID: 30177382 DOI: 10.1016/j.acthis.2018.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aquatic areas frequently face hypoxic conditions. In order to get sufficient oxygen to support aerobic metabolism, a number of freshwater fish resort to aerial respiration to supplement gill respiration especially in situations with reduced oxygen availability in the water. In many species a concomitant reduction in gill surface area or in gill perfusion reduces possible loss of aerially acquired oxygen to the water at the gills, but it also compromises the ion regulatory capacity of gill tissue. In consequence, the reduced gill contact area with water requires appropriate compensation to maintain ion and acid-base homeostasis, often with important ramifications for other organs. Associated modifications in the structure and function of the gills themselves, the skin, the gut, the kidney, and the physiology of water exchange and ion-linked acid-base regulation are discussed. In air-breathing fish, the gut may gain particular importance for the uptake of ions. In addition, tissues frequently exposed to environmental air encounter much higher oxygen partial pressures than typically observed in fish tissues. Physostomous fish using the swimbladder for aerial respiration, for example, will encounter aerial oxygen partial pressure at the swimbladder epithelium when frequently gulping air in hypoxic water. Hyperoxic conditions or rapid changes in oxygen partial pressures result in an increase in the production of reactive oxygen species (ROS). Accordingly, in air-breathing fish, strategies of ionoregulation may be greatly modified, and the ROS defense capacity of air-exposed tissues is improved.
Collapse
|
9
|
Maugars G, Manirafasha MC, Grousset E, Boulo V, Lignot JH. The effects of acute transfer to freshwater on ion transporters of the pharyngeal cavity in European seabass (Dicentrarchus labrax). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1393-1408. [PMID: 29923042 DOI: 10.1007/s10695-018-0529-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Gene expression of key ion transporters (the Na+/K+-ATPase NKA, the Na+, K+-2Cl- cotransporter NKCC1, and CFTR) in the gills, opercular inner epithelium, and pseudobranch of European seabass juveniles (Dicentrarchus labrax) were studied after acute transfer up to 4 days from seawater (SW) to freshwater (FW). The functional remodeling of these organs was also studied. Handling stress (SW to SW transfer) rapidly induced a transcript level decrease for the three ion transporters in the gills and operculum. NKA and CFTR relative expression level were stable, but in the pseudobranch, NKCC1 transcript levels increased (up to 2.4-fold). Transfer to FW induced even more organ-specific responses. In the gills, a 1.8-fold increase for NKA transcript levels occurs within 4 days post transfer with also a general decrease for CFTR and NKCC1. In the operculum, transcript levels are only slightly modified. In the pseudobranch, there is a transient NKCC1 increase followed by 0.6-fold decrease and 0.8-fold CFTR decrease. FW transfer also induced a density decrease for the opercular ionocytes and goblet cells. Therefore, gills and operculum display similar trends in SW-fish but have different responses in FW-transferred fish. Also, the pseudobranch presents contrasting response both in SW and in FW, most probably due to the high density of a cell type that is morphologically and functionally different compared to the typical gill-type ionocyte. This pseudobranch-type ionocyte could be involved in blood acid-base regulation masking a minor osmotic regulatory capacity of this organ compared to the gills.
Collapse
Affiliation(s)
- Gersende Maugars
- University of Montpellier, UMR MARBEC, MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Marie-Chanteuse Manirafasha
- University of Montpellier, UMR MARBEC, MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Evelyse Grousset
- University of Montpellier, UMR MARBEC, MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Viviane Boulo
- Ifremer, UR Lagons, Ecosystèmes et Aquaculture Durable, Nouvelle-Calédonie, France
| | - Jehan-Hervé Lignot
- University of Montpellier, UMR MARBEC, MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095, Montpellier Cedex 5, France.
| |
Collapse
|
10
|
Gumerova N, Krivosudský L, Fraqueza G, Breibeck J, Al-Sayed E, Tanuhadi E, Bijelic A, Fuentes J, Aureliano M, Rompel A. The P-type ATPase inhibiting potential of polyoxotungstates. Metallomics 2018; 10:287-295. [PMID: 29313547 PMCID: PMC5824666 DOI: 10.1039/c7mt00279c] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/30/2017] [Indexed: 02/05/2023]
Abstract
Polyoxometalates (POMs) are transition metal complexes that exhibit a broad diversity of structures and properties rendering them promising for biological purposes. POMs are able to inhibit a series of biologically important enzymes, including phosphatases, and thus are able to affect many biochemical processes. In the present study, we analyzed and compared the inhibitory effects of nine different polyoxotungstates (POTs) on two P-type ATPases, Ca2+-ATPase from skeletal muscle and Na+/K+-ATPase from basal membrane of skin epithelia. For Ca2+-ATPase inhibition, an in vitro study was performed and the strongest inhibitors were determined to be the large heteropolytungstate K9(C2H8N)5[H10Se2W29O103] (Se2W29) and the Dawson-type POT K6[α-P2W18O62] (P2W18) exhibiting IC50 values of 0.3 and 0.6 μM, respectively. Promising results were also shown for the Keggin-based POTs K6H2[CoW11TiO40] (CoW11Ti, IC50 = 4 μM) and Na10[α-SiW9O34] (SiW9, IC50 = 16 μM), K14[As2W19O67(H2O)] (As2W19, IC50 = 28 μM) and the lacunary Dawson K12[α-H2P2W12O48] (P2W12, IC50 = 11 μM), whereas low inhibitory potencies were observed for the isopolytungstate Na12[H4W22O74] (W22, IC50 = 68 μM) and the Anderson-type Na6[TeW6O24] (TeW6, IC50 = 200 μM). Regarding the inhibition of Na+/K+-ATPase activity, for the first time an ex vivo study was conducted using the opercular epithelium of killifish in order to investigate the effects of POTs on the epithelial chloride secretion. Interestingly, 1 μM of the most potent Ca2+-ATPase inhibitor, Se2W29, showed only a minor inhibitory effect (14% inhibition) on Na+/K+-ATPase activity, whereas almost total inhibition (99% inhibition) was achieved using P2W18. The remaining POTs exhibited similar inhibition rates on both ATPases. These results reveal the high potential of some POTs to act as P-type ATPase inhibitors, with Se2W29 showing high selectivity towards Ca2+-ATPase.
Collapse
Affiliation(s)
- Nadiia Gumerova
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Lukáš Krivosudský
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Gil Fraqueza
- Centre of Marine Sciences , University of Algarve , 8005-139 Faro , Portugal
- Institute of Engineering , University of Algarve , 8005-139 Faro , Portugal
| | - Joscha Breibeck
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Emir Al-Sayed
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Elias Tanuhadi
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Aleksandar Bijelic
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Juan Fuentes
- Centre of Marine Sciences , University of Algarve , 8005-139 Faro , Portugal
| | - Manuel Aureliano
- Centre of Marine Sciences , University of Algarve , 8005-139 Faro , Portugal
- Faculty of Sciences and Technology , University of Algarve , 8005-139 Faro , Portugal .
| | - Annette Rompel
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| |
Collapse
|
11
|
Juo JJ, Kang CK, Yang WK, Yang SY, Lee TH. A Stenohaline Medaka, Oryzias woworae, Increases Expression of Gill Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-) Cotransporter 1 to Tolerate Osmotic Stress. Zoolog Sci 2017; 33:414-25. [PMID: 27498801 DOI: 10.2108/zs150157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study aimed to evaluate the osmoregulatory mechanism of Daisy's medaka, O. woworae,as well as demonstrate the major factors affecting the hypo-osmoregulatory characteristics of euryhaline and stenohaline medaka. The medaka phylogenetic tree indicates that Daisy's medaka belongs to the celebensis species group. The salinity tolerance of Daisy's medaka was assessed. Our findings revealed that 20‰ (hypertonic) saltwater (SW) was lethal to Daisy's medaka. However, 62.5% of individuals survived 10‰ (isotonic) SW with pre-acclimation to 5‰ SW for one week. This transfer regime, "Experimental (Exp.) 10‰ SW", was used in the following experiments. After 10‰ SW-transfer, the plasma osmolality of Daisy's medaka significantly increased. The protein abundance and distribution of branchial Na(+), K(+)-ATPase (NKA) and Na(+), K(+), 2Cl(-) cotransporter 1 (NKCC1) were also examined after transfer to 10‰ SW for one week. Gill NKA activity increased significantly after transfer to 10‰ SW. Meanwhile, elevation of gill NKA αα-subunit protein-abundance was found in the 10‰ SW-acclimated fish. In gill cross-sections, more and larger NKA-immunoreactive (NKA-IR) cells were observed in the Exp. 10‰ SW medaka. The relative abundance of branchial NKCC1 protein increased significantly after transfer to 10‰ SW. NKCC1 was distributed in the basolateral membrane of NKA-IR cells of the Exp. 10‰ SW group. Furthermore, a higher abundance of NKCC1 protein was found in the gill homogenates of the euryhaline medaka, O. dancena, than in that of the stenohaline medaka, O. woworae.
Collapse
Affiliation(s)
- Jiun-Jang Juo
- 1 Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.,† JJJ, CKK, and WKY contributed equally to this paper
| | - Chao-Kai Kang
- 2 Tainan Hydraulics Laboratory, National Cheng Kung University, Tainan 709, Taiwan.,† JJJ, CKK, and WKY contributed equally to this paper
| | - Wen-Kai Yang
- 1 Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.,† JJJ, CKK, and WKY contributed equally to this paper
| | - Shu-Yuan Yang
- 1 Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsung-Han Lee
- 1 Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.,3 Department of Biological Science and Technology, China Medical University,Taichung 404, Taiwan
| |
Collapse
|
12
|
The potential role of polyamines in gill epithelial remodeling during extreme hypoosmotic challenges in the Gulf killifish, Fundulus grandis. Comp Biochem Physiol B Biochem Mol Biol 2016; 194-195:39-50. [DOI: 10.1016/j.cbpb.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 02/04/2023]
|
13
|
Lai KP, Li JW, Gu J, Chan TF, Tse WKF, Wong CKC. Transcriptomic analysis reveals specific osmoregulatory adaptive responses in gill mitochondria-rich cells and pavement cells of the Japanese eel. BMC Genomics 2015; 16:1072. [PMID: 26678671 PMCID: PMC4683740 DOI: 10.1186/s12864-015-2271-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homeostasis of ions and water is important for the maintenance of cellular functions. The regulation of the homeostasis is particularly important in euryhaline fish that migrate between freshwater (FW) and seawater (SW) environments. The fish gill, the major tissue that forms an interface separating the extracellular fluids and external water environment, has an effective transport system to maintain and regulate a constant body osmolality. In fish gills, the two major epithelial cells, pavement cells (PVCs) and mitochondria-rich cells (MRCs), are known to play key and complementary roles in ion transport at the interface. Discovering the robust mechanisms underlying the two cell types' response to osmotic stress would benefit our understanding of the fundamental mechanism allowing PVCs and MRCs to handle osmotic stress. Owing to the limited genomic data available on estuarine species, existing knowledge in this area is slim. In this study, transcriptome analyses were conducted using PVCs and MRCs isolated from Japanese eels adapted to FW or SW environments to provide a genome-wide molecular study to unravel the fundamental processes at work. RESULTS The study identified more than 12,000 transcripts in the gill cells. Interestingly, remarkable differential expressed genes (DEGs) were identified in PVCs (970 transcripts) instead of MRCs (400 transcripts) in gills of fish adapted to FW or SW. Since PVCs cover more than 90 % of the gill epithelial surface, the greater change in gene expression patterns in PVCs in response to external osmolality is anticipated. In the integrity pathway analysis, 19 common biological functions were identified in PVCs and MRCs. In the enriched signaling pathways analysis, most pathways differed between PVCs and MRCs; 14 enriched pathways were identified in PVCs and 12 in MRCs. The results suggest that the osmoregulatory responses in PVCs and MRCs are cell-type specific, which supports the complementary functions of the cells in osmoregulation. CONCLUSIONS This is the first study to provide transcriptomic analysis of PVCs and MRCs in gills of eels adapted to FW or SW environments. It describes the cell-type specific transcriptomic network in different tonicity. The findings consolidate the known osmoregulatory pathways and provide molecular insight in osmoregulation. The presented data will be useful for researchers to select their targets for further studies.
Collapse
Affiliation(s)
- Keng Po Lai
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Jing-Woei Li
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Je Gu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ting-Fung Chan
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - William Ka Fai Tse
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Chris Kong Chu Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong. .,Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Pok Fu Lam, Hong Kong.
| |
Collapse
|
14
|
Abstract
ABSTRACT
Salinity represents a critical environmental factor for all aquatic organisms, including fishes. Environments of stable salinity are inhabited by stenohaline fishes having narrow salinity tolerance ranges. Environments of variable salinity are inhabited by euryhaline fishes having wide salinity tolerance ranges. Euryhaline fishes harbor mechanisms that control dynamic changes in osmoregulatory strategy from active salt absorption to salt secretion and from water excretion to water retention. These mechanisms of dynamic control of osmoregulatory strategy include the ability to perceive changes in environmental salinity that perturb body water and salt homeostasis (osmosensing), signaling networks that encode information about the direction and magnitude of salinity change, and epithelial transport and permeability effectors. These mechanisms of euryhalinity likely arose by mosaic evolution involving ancestral and derived protein functions. Most proteins necessary for euryhalinity are also critical for other biological functions and are preserved even in stenohaline fish. Only a few proteins have evolved functions specific to euryhaline fish and they may vary in different fish taxa because of multiple independent phylogenetic origins of euryhalinity in fish. Moreover, proteins involved in combinatorial osmosensing are likely interchangeable. Most euryhaline fishes have an upper salinity tolerance limit of approximately 2× seawater (60 g kg−1). However, some species tolerate up to 130 g kg−1 salinity and they may be able to do so by switching their adaptive strategy when the salinity exceeds 60 g kg−1. The superior salinity stress tolerance of euryhaline fishes represents an evolutionary advantage favoring their expansion and adaptive radiation in a climate of rapidly changing and pulsatory fluctuating salinity. Because such a climate scenario has been predicted, it is intriguing to mechanistically understand euryhalinity and how this complex physiological phenotype evolves under high selection pressure.
Collapse
|
15
|
Wood CM, Grosell M. Electrical aspects of the osmorespiratory compromise: TEP responses to hypoxia in the euryhaline killifish (Fundulus heteroclitus) in freshwater and seawater. ACTA ACUST UNITED AC 2015; 218:2152-5. [PMID: 26026034 DOI: 10.1242/jeb.122176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/13/2015] [Indexed: 11/20/2022]
Abstract
The osmorespiratory compromise, the trade-off between the requirements for respiratory and ionoregulatory homeostasis at the gills, becomes more intense during environmental hypoxia. One aspect that has been previously overlooked is possible change in transepithelial potential (TEP) caused by hypoxia, which will influence branchial ionic fluxes. Using the euryhaline killifish, we show that acute hypoxia reduces the TEP across the gills by approximately 10 mV in animals acclimated to both freshwater (FW) and seawater (SW), with a higher PO2 threshold in the former. TEP becomes negative in FW, and less positive in SW. The effects are immediate, stable for at least 3 h, and reverse immediately upon return to normoxia. Hypoxia also blocks the normal increase in TEP that occurs upon transfer from FW to SW, but does not reduce the fall in TEP that occurs with transfer in the opposite direction. These effects may be beneficial in FW but not in SW.
Collapse
Affiliation(s)
- Chris M Wood
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL 33149, USA Department of Zoology, University of British Columbia, 4200 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4 Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1
| | - Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL 33149, USA
| |
Collapse
|
16
|
Martos-Sitcha JA, MartínezRodríguez G, Mancera JM, Fuentes J. AVT and IT regulate ion transport across the opercular epithelium of killifish ( Fundulus heteroclitus ) and gilthead sea bream ( Sparus aurata ). Comp Biochem Physiol A Mol Integr Physiol 2015; 182:93-101. [DOI: 10.1016/j.cbpa.2014.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/28/2023]
|
17
|
Di Giulio RT, Clark BW. The Elizabeth River Story: A Case Study in Evolutionary Toxicology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:259-98. [PMID: 26505693 PMCID: PMC4733656 DOI: 10.1080/15320383.2015.1074841] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Elizabeth River system is an estuary in southeastern Virginia, surrounded by the towns of Chesapeake, Norfolk, Portsmouth, and Virginia Beach. The river has played important roles in U.S. history and has been the location of various military and industrial activities. These activities have been the source of chemical contamination in this aquatic system. Important industries, until the 1990s, included wood treatment plants that used creosote, an oil-derived product that is rich in polycyclic aromatic hydrocarbons (PAH). These plants left a legacy of PAH pollution in the river, and in particular Atlantic Wood Industries is a designated Superfund site now undergoing remediation. Numerous studies examined the distribution of PAH in the river and impacts on resident fauna. This review focuses on how a small estuarine fish with a limited home range, Fundulus heteroclitus (Atlantic killifish or mummichog), has responded to this pollution. While in certain areas of the river this species has clearly been impacted, as evidenced by elevated rates of liver cancer, some subpopulations, notably the one associated with the Atlantic Wood Industries site, displayed a remarkable ability to resist the marked effects PAH have on the embryonic development of fish. This review provides evidence of how pollutants have acted as evolutionary agents, causing changes in ecosystems potentially lasting longer than the pollutants themselves. Mechanisms underlying this evolved resistance, as well as mechanisms underlying the effects of PAH on embryonic development, are also described. The review concludes with a description of ongoing and promising efforts to restore this historic American river.
Collapse
Affiliation(s)
- Richard T. Di Giulio
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Address correspondence to Richard T. Di Giulio, Nicholas School of the Environment, Duke University, Durham, NC27708-0328, USA. E-mail:
| | - Bryan W. Clark
- U.S. Environmental Protection Agency, Atlantic Ecology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, Narragansett, Rhode Island, USA
| |
Collapse
|
18
|
The inner opercular membrane of the euryhaline teleost: a useful surrogate model for comparisons of different characteristics of ionocytes between seawater- and freshwater-acclimated medaka. Histochem Cell Biol 2014; 143:69-81. [PMID: 25163555 DOI: 10.1007/s00418-014-1266-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
The inner opercular membranes of the brackish medaka, Oryzias dancena, have numerous ionocytes, similar to the gill epithelia. By histological observation, this study demonstrated that it is possible to investigate the cellular morphology and function of ionocytes in the opercular membrane. The mitochondria-rich ionocytes in the opercular membranes were traced using rhodamine 123 and a cytochrome c oxidase IV antibody in vital and fixed situations, respectively. To validate different morphologies of seawater (SW)-type and freshwater (FW)-type ionocytes of the opercular membrane of euryhaline brackish medaka, a method of dual observation including immunofluorescence staining and subsequent scanning electron microscopy was used. The apical morphologies of SW- and FW-type ionocytes were hole and flat opening, respectively. In addition, the microvilli were found on the apical surface of the FW-type ionocytes. The SW-type ionocytes exhibited basolateral Na(+), K(+), 2Cl(-) cotransporter and the apical cystic fibrosis transmembrane conductance regulator. In contrast, in the apical region of FW-type ionocytes, Na(+), Cl(-) cotransporter and villin 1-like protein were expressed. In addition, histochemical staining of AgCl precipitation counterstained with a Na(+), K(+)-ATPase α-subunit antibody on the opercular membrane illustrated the role of Cl(-) secretion in the SW-type ionocytes of the brackish medaka. A combination of different observations in this study indicated that the opercular membrane could be a useful surrogate model for histological and functional studies on the epithelial ionocytes of fish gills.
Collapse
|
19
|
The skin of fish as a transport epithelium: a review. J Comp Physiol B 2013; 183:877-91. [DOI: 10.1007/s00360-013-0761-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/23/2013] [Indexed: 01/17/2023]
|
20
|
Chasiotis H, Kolosov D, Bui P, Kelly SP. Tight junctions, tight junction proteins and paracellular permeability across the gill epithelium of fishes: A review. Respir Physiol Neurobiol 2012; 184:269-81. [DOI: 10.1016/j.resp.2012.05.020] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/18/2012] [Accepted: 05/20/2012] [Indexed: 10/28/2022]
|
21
|
|
22
|
Evans DH, Hyndman KA, Cornwell E, Buchanan P. Urotensin II and its receptor in the killifish gill: regulators of NaCl extrusion. J Exp Biol 2011; 214:3985-91. [DOI: 10.1242/jeb.065243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARY
The peptide urotensin II (UII) and its receptor (UT) mediate cardiovascular and renal effects in both mammals and fishes. In both groups, vasopressor and diuretic responses predominate, although, in mammals, some secondary vasodilatation is found, mediated by secondary release of nitric oxide or prostacyclin. In fishes, gill extrusion of NaCl is inhibited by UII, but a single study has determined that UT is expressed in gill vasculature, not on the epithelium that mediates the transport. To begin to clarify the pathways involved in UII inhibition of gill transport, we have cloned the cDNA encoding UII and UT from the euryhaline killifish (Fundulus heteroclitus L.) gill and spinal cord, quantified UT mRNA expression in various tissues and measured relative expression in gill tissue from fish acclimated to seawater (SW) vs fresh water (FW). We have also localized UT in the gill epithelium, and measured the effect of UII on ion transport across the opercular epithelium. We found that both UII and UT are synthesized in the gill of F. heteroclitus and that gill UT mRNA levels are ∼80% higher in SW- vs FW-acclimated individuals. In addition, UII inhibits NaCl transport across the opercular epithelium in a concentration-dependent manner, and this inhibition is at least partially mediated by both nitric oxide and a prostanoid.
Collapse
Affiliation(s)
- David H. Evans
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Kelly A. Hyndman
- Experimental Medicine Section, Department of Medicine, Georgia Health Sciences University, Augusta, GA 30912, USA
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Emily Cornwell
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Patrick Buchanan
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| |
Collapse
|
23
|
Genz J, Grosell M. Fundulus heteroclitus acutely transferred from seawater to high salinity require few adjustments to intestinal transport associated with osmoregulation. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:156-65. [DOI: 10.1016/j.cbpa.2011.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
|
24
|
Bartels H, Fazekas U, Youson JH, Potter IC. Changes in the cellular composition of the gill epithelium during the life cycle of a nonparasitic lamprey: functional and evolutionary implications. CAN J ZOOL 2011. [DOI: 10.1139/z11-019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several lamprey species form pairs, comprising an anadromous parasitic species and a derivative nonparasitic species that neither leaves fresh water nor feeds as an adult. This paper provides the first description of the radical changes undergone by the cellular composition of the gill epithelium during the major phases in the life cycle of a nonparasitic lamprey (American brook lamprey, Lethenteron appendix (DeKay, 1842) (= Lampetra appendix (DeKay, 1842)) and discusses their potential functional and evolutionary significance. The gill epithelium of the larva of L. appendix contains ammocoete mitochondrion-rich cells (AMRCs), intercalated mitochondrion-rich cells, and pavement cells, as does that of the larva of anadromous parasitic species which likewise lives in fresh water. By the completion of metamorphosis, the AMRCs have disappeared and well-developed chloride cells have been produced, the latter cell type being essential for osmoregulation by its closely related anadromous species in hypertonic environments. By the attainment of sexual maturity, the chloride cells have been lost. Such changes in the timing of chloride cell representation could help account for the ability of some metamorphosing, but not mature individuals of another nonparasitic species ( Lampetra planeri (Bloch, 1784)), to osmoregulate in up to 70% of seawater. The well-developed chloride cells in the nonparasitic L. appendix represent the retention of an ancestral character.
Collapse
Affiliation(s)
- Helmut Bartels
- Anatomische Anstalt, Ludwig-Maximilians-Universität, Pettenkoferstraße 11, 80336 München, Germany
| | - Ursula Fazekas
- Anatomische Anstalt, Ludwig-Maximilians-Universität, Pettenkoferstraße 11, 80336 München, Germany
| | - John H. Youson
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Ian C. Potter
- Centre for Fish and Fisheries Research, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch 6150, Western Australia
| |
Collapse
|
25
|
Jeon J, Lim HK, Kannan K, Kim SD. Effect of perfluorooctanesulfonate on osmoregulation in marine fish, Sebastes schlegeli, under different salinities. CHEMOSPHERE 2010; 81:228-234. [PMID: 20605044 DOI: 10.1016/j.chemosphere.2010.06.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/04/2010] [Accepted: 06/08/2010] [Indexed: 05/29/2023]
Abstract
Effect of potassium salt of perfluorooctane sulfonic acid (PFOS) on the osmoregulation of marine teleost (blackrock fish), Sebastes schlegeli, was investigated under varying salinities, by monitoring serum osmolality, Na(+), K(+), Cl(-), Ca(2+) and Mg(2+) concentrations in serum, serum glucose, and gill Na(+)-K(+) ATPase (NKA) activity. The fish was acclimatized to four salinity levels (10, 17.5, 25, and 34 psu) for 2 weeks before a 6-d exposure to 100 or 1000 microg L(-1) of PFOS. Six fish from each exposure group were sampled at 24, 48, and 144 h after exposures, and serum, liver and gills were collected for analysis. NKA activity decreased by 34% and 31% relative to control at salinity levels of 25 and 34 psu, respectively, following exposure to 1000 microg L(-1) PFOS. PFOS did not affect serum osmolality, Na(+), Cl(-), Ca(2+) and Mg(2+) concentrations; however, serum K(+) concentration increased during initial exposure period and then decreased after 144 h. Serum glucose levels decreased with increasing PFOS concentrations, implying high energy demand in response to exposure. Overall, PFOS exposure impaired NKA activity, altered potassium ion concentrations in serum, and reduced serum glucose levels while no other effects on serum concentrations of ionic salts were observed.
Collapse
Affiliation(s)
- Junho Jeon
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea
| | | | | | | |
Collapse
|
26
|
Effects of environmental salinity on gill endothelin receptor expression in the killifish, Fundulus heteroclitus. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:58-65. [DOI: 10.1016/j.cbpa.2008.08.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 08/27/2008] [Accepted: 08/27/2008] [Indexed: 11/22/2022]
|
27
|
Scott GR, Baker DW, Schulte PM, Wood CM. Physiological and molecular mechanisms of osmoregulatory plasticity in killifish after seawater transfer. ACTA ACUST UNITED AC 2008; 211:2450-9. [PMID: 18626079 DOI: 10.1242/jeb.017947] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have explored the molecular and physiological responses of the euryhaline killifish Fundulus heteroclitus to transfer from brackish water (10% seawater) to 100% seawater for 12 h, 3 days or 7 days. Plasma [Na+] and [Cl-] were unchanged after transfer, and plasma cortisol underwent a transient increase. Na+/K+-ATPase activity increased 1.5-fold in the gills and opercular epithelium at 7 days (significant in gills only), responses that were preceded by three- to fourfold increases in Na+/K+-ATPase alpha(1a) mRNA expression. Expression of Na+/K+/2Cl- cotransporter 1, cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, Na+/H+-exchanger 3 (significant in opercular epithelium only) and carbonic anhydrase II mRNA also increased two- to fourfold after transfer. Drinking rate increased over twofold after 12 h and remained elevated for at least 7 days. Surprisingly, net rates of water and ion absorption measured in vitro across isolated intestines decreased approximately 50%, possibly due to reduced salt demands from the diet in seawater, but water absorption capacity still exceeded the drinking rate. Changes in bulk water absorption were well correlated with net ion absorption, and indicated that slightly hyperosmotic solutions (>or=298 mmol l(-1)) were transported. There were no reductions in unidirectional influx of Na+ from luminal to serosal fluid or intestinal Na+/K+-ATPase activity after transfer. Overall, our results indicate that gill and opercular epithelia function similarly at a molecular level in seawater, in contrast to their divergent function in freshwater, and reveal unexpected changes in intestinal function. As such they provide further insight into the mechanisms of euryhalinity in killifish.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Zoology, University of British Columbia, Vancouver BC, Canada V6T 1Z4.
| | | | | | | |
Collapse
|
28
|
Evans DH. Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 2008; 295:R704-13. [PMID: 18525009 DOI: 10.1152/ajpregu.90337.2008] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the 1930s, August Krogh, Homer Smith, and Ancel Keys knew that teleost fishes were hyperosmotic to fresh water and hyposmotic to seawater, and, therefore, they were potentially salt depleted and dehydrated, respectively. Their seminal studies demonstrated that freshwater teleosts extract NaCl from the environment, while marine teleosts ingest seawater, absorb intestinal water by absorbing NaCl, and excrete the excess salt via gill transport mechanisms. During the past 70 years, their research descendents have used chemical, radioisotopic, pharmacological, cellular, and molecular techniques to further characterize the gill transport mechanisms and begin to study the signaling molecules that modulate these processes. The cellular site for these transport pathways was first described by Keys and is now known as the mitochondrion-rich cell (MRC). The model for NaCl secretion by the marine MRC is well supported, but the model for NaCl uptake by freshwater MRC is more unsettled. Importantly, these ionic uptake mechanisms also appear to be expressed in the marine gill MRC, for acid-base regulation. A large suite of potential endocrine control mechanisms have been identified, and recent evidence suggests that paracrines such as endothelin, nitric oxide, and prostaglandins might also control MRC function.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
29
|
Hyndman KA, Evans DH. Endothelin and endothelin converting enzyme-1 in the fish gill:evolutionary and physiological perspectives. J Exp Biol 2007; 210:4286-97. [DOI: 10.1242/jeb.009969] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY
In euryhaline fishes like the killifish (Fundulus heteroclitus)that experience daily fluctuations in environmental salinity, endothelin 1(EDN1) may be an important regulator molecule necessary to maintain ion homeostasis. The purpose of this study was to determine if EDN1 and the endothelin converting enzyme (ECE1; the enzyme necessary for cleaving the precursor proendothelin-1 to EDN1) are present in the killifish, to determine if environmental salinity regulates their expression, and to examine the phylogenetic relationships among the EDNs and among the ECEs. We sequenced killifish gill cDNA for two EDN1 orthologues, EDN1A and EDN1B, and also sequenced a portion of ECE1 cDNA. EDN1A and ECE1 mRNA are expressed ubiquitously in the killifish while EDN1B mRNA has little expression in the killifish opercular epithelium or gill. Using in situ hybridization and immunohistochemistry, EDN1 was localized to large round cells adjacent to the mitochondrion-rich cells of the killifish gill, and to lamellar pillar cells. In the gill, EDN1A and EDN1B mRNA levels did not differ with acute (<24 h) or chronic (30 days) acclimation to seawater (SW); however, EDN1B levels increased threefold post SW to freshwater (FW) transfer,and ECE1 mRNA levels significantly increased twofold over this period. ECE1 mRNA levels also increased sixfold over 24 h post FW to SW transfer. Chronic exposure to SW or FW had little effect on ECE1mRNA levels. Based upon our cellular localization studies, we modeled EDN1 expression in the fish gill and conclude that it is positioned to act as a paracrine regulator of gill functions in euryhaline fishes. It also may function as an autocrine on pillar cells, where it is hypothesized to regulate local blood flow in the lamellae. From our phylogenetic analyses, ECE is predicted to have an ancient origin and may be a generalist endoprotease in non-vertebrate organisms, while EDNs are vertebrate-specific peptides and may be key characters in vertebrate evolution.
Collapse
Affiliation(s)
- Kelly A. Hyndman
- Department of Zoology, University of Florida, 221 Bartram Hall,Gainesville, FL 32608, USA and Mount Desert Island Biological Laboratory,Salisbury Cove, ME 04672, USA
| | - David H. Evans
- Department of Zoology, University of Florida, 221 Bartram Hall,Gainesville, FL 32608, USA and Mount Desert Island Biological Laboratory,Salisbury Cove, ME 04672, USA
| |
Collapse
|
30
|
Hoffmann EK, Schettino T, Marshall WS. The role of volume-sensitive ion transport systems in regulation of epithelial transport. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:29-43. [PMID: 17289411 DOI: 10.1016/j.cbpa.2006.11.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 11/08/2006] [Accepted: 11/23/2006] [Indexed: 11/25/2022]
Abstract
This review focuses on using the knowledge on volume-sensitive transport systems in Ehrlich ascites tumour cells and NIH-3T3 cells to elucidate osmotic regulation of salt transport in epithelia. Using the intestine of the European eel (Anguilla anguilla) (an absorptive epithelium of the type described in the renal cortex thick ascending limb (cTAL)) we have focused on the role of swelling-activated K+- and anion-conductive pathways in response to hypotonicity, and on the role of the apical (luminal) Na+-K+-2Cl- cotransporter (NKCC2) in the response to hypertonicity. The shrinkage-induced activation of NKCC2 involves an interaction between the cytoskeleton and protein phosphorylation events via PKC and myosin light chain kinase (MLCK). Killifish (Fundulus heteroclitus) opercular epithelium is a Cl(-)-secreting epithelium of the type described in exocrine glands, having a CFTR channel on the apical side and the Na+/K+ ATPase, NKCC1 and a K+ channel on the basolateral side. Osmotic control of Cl- secretion across the operculum epithelium includes: (i) hyperosmotic shrinkage activation of NKCC1 via PKC, MLCK, p38, OSR1 and SPAK; (ii) deactivation of NKCC by hypotonic cell swelling and a protein phosphatase, and (iii) a protein tyrosine kinase acting on the focal adhesion kinase (FAK) to set levels of NKCC activity.
Collapse
Affiliation(s)
- E K Hoffmann
- Department of Molecular Biology, The August Krogh Building, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
31
|
Choe KP, Havird J, Rose R, Hyndman K, Piermarini P, Evans DH. COX2 in a euryhaline teleost, Fundulus heteroclitus: primary sequence, distribution, localization, and potential function in gills during salinity acclimation. J Exp Biol 2006; 209:1696-708. [PMID: 16621950 DOI: 10.1242/jeb.02198] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In the kidneys of mammals, cyclooxygenase type 2 (COX2) is expressed in medullary interstitial cells, the macula densa and epithelial cells of the cortical thick ascending limb where it generates prostaglandins that regulate hormone secretion, inhibit ion transport, and support cell survival during salt loading and dehydration. In teleosts, the gills are in direct contact with an aquatic environment and are the dominant site of osmoregulation. During transfers between salinities, specialized cells in the gills (chloride cells) rapidly regulate NaCl secretion for systemic osmoregulation while they simultaneously are exposed to acute osmotic shock. This study was conducted to determine if COX2 is expressed in the gills, and if so, to evaluate its function in cellular and systemic osmoregulation. Degenerate primers, reverse transcription–PCR and rapid amplification of cDNA ends were used to deduce the complete cDNA sequence of a putative COX2 enzyme from the gills of the euryhaline killifish (Fundulus heteroclitus). The 2738 base pair cDNA includes a coding region for a 610 amino acid protein that is over 70%identical to mammalian COX2. A purified antibody generated against a conserved region of mouse COX2 labeled chloride cells, suggesting that the enzyme may control NaCl secretion as an autocrine agent. Real-time PCR was then used to demonstrate that mRNA expression of the COX2 homologue was threefold greater in gills from chronic seawater killifish than in gills from chronic freshwater killifish. Expression of Na+/K+/2Cl–cotransporter and the cystic fibrosis transmembrane conductance regulator were also greater in seawater, suggesting that chronic COX2 expression in the gills is regulated in parallel to the key ion transporters that mediate NaCl secretion. Real-time PCR was also used to demonstrate that acute transfer from seawater to freshwater and from freshwater to seawater led to rapid, transient inductions of COX2 expression. Together with previous physiological evidence,the present molecular and immunological data suggest that constitutive branchial COX2 expression is enhanced in seawater, where prostaglandins can regulate NaCl secretion in chloride cells. Our data also suggest that branchial COX2 expression may play a role in cell survival during acute osmotic shock.
Collapse
Affiliation(s)
- Keith P Choe
- Department of Zoology, University of Florida, Gainesville, 32611, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Hiroi J, Miyazaki H, Katoh F, Ohtani-Kaneko R, Kaneko T. Chloride turnover and ion-transporting activities of yolk-sac preparations (yolk balls) separated from Mozambique tilapia embryos and incubated in freshwater and seawater. ACTA ACUST UNITED AC 2006; 208:3851-8. [PMID: 16215213 DOI: 10.1242/jeb.01848] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have recently established a unique in vitro experimental model for mitochondrion-rich cell (MRC) research, a ;yolk-ball' incubation system, in which the yolk sac is separated from the embryonic body of Mozambique tilapia embryos and subjected to in vitro incubation. To evaluate the ion-transporting property of the yolk balls, we examined Cl- content and turnover in yolk balls incubated in freshwater and seawater for 48 h, and distribution patterns of three ion transporters, Na+/K+-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR), in MRCs in the yolk-sac membrane. The Cl- turnover rate measured by whole-body influx of 36Cl- was about 60 times higher in yolk balls in seawater than in freshwater, while there was no essential difference in Cl- content between them. Na+/K+-ATPase-immunoreactive MRCs were larger in yolk balls from seawater than yolk balls from freshwater. Distribution patterns of ion-transporting proteins allowed us to classify MRCs in freshwater yolk balls into three types: cells showing only basolateral Na+/K+-ATPase, cells showing basolateral Na+/K+-ATPase and apical NKCC, and cells showing basolateral Na+/K+-ATPase and basolateral NKCC. The seawater yolk balls, on the other hand, were characterized by the appearance of MRCs possessing basolateral Na+/K+-ATPase, basolateral NKCC and apical CFTR. Those seawater-type MRCs were considered to secrete Cl- through the CFTR-positive apical opening to cope with diffusional Cl- influx. These findings indicate that the yolk balls preserve the Cl- transporting property of intact embryos, ensuring the propriety of the yolk ball as an in vitro experimental model for the yolk-sac membrane that contains MRCs.
Collapse
Affiliation(s)
- Junya Hiroi
- Department of Anatomy, St Marianna University School of Medicine, Miyamae, Kawasaki 216-8511, Japan.
| | | | | | | | | |
Collapse
|
33
|
Stanton CR, Thibodeau R, Lankowski A, Shaw JR, Hamilton JW, Stanton BA. Arsenic Inhibits CFTR-Mediated Chloride Secretion by Killifish (Fundulus heteroclitus) Opercular Membrane. Cell Physiol Biochem 2006; 17:269-78. [PMID: 16791002 DOI: 10.1159/000094139] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Killifish are euryhaline teleosts that normally experience rapid changes in the salinity of the swim water. Acclimation to seawater is mediated by cortisol, which by activating glucocorticoid receptors, upregulates CFTR mediated Cl- secretion in the gill and operculum. Arsenic, a toxic metalloid that naturally occurs in the aquatic environment, has been shown to disrupt glucocorticoid hormone-mediated regulation of genes. Because little is known about the effects of environmentally relevant levels of arsenic on ion channels and salt homeostasis, studies were conducted to examine the effects of arsenic on the ability of killifish to acclimate to increased salinity. Arsenic in the swim water or administered by intraperitoneal injection prevented acclimation. To determine if arsenic blocked acclimation by inhibiting CFTR mediated Cl- secretion (Isc), opercular membranes were isolated and mounted in Ussing chambers and the effects of arsenic on Isc were measured. Arsenic (24 hr exposure) reduced Isc in opercular membranes isolated from salt water acclimated killifish. In addition, arsenic acutely (5-10 minutes) and reversibly inhibited Isc with an IC50 = 4.1 microM (305 ppb) when applied to the apical (seawater) side of the operculum, but not when added to the basolateral side of the operculum. Arsenic (4 microM for 60 minutes) also reduced mitochondrial respiration. Thus, environmentally relevant levels of arsenic block acclimation to seawater in killifish by reversibly inhibiting CFTR-mediated Cl- secretion by the opercular membrane, in part by inhibiting mitochondrial respiration.
Collapse
Affiliation(s)
- Caitlin R Stanton
- Department of Physiology, Dartmouth Medical School, Hanover, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Scott GR, Claiborne JB, Edwards SL, Schulte PM, Wood CM. Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport. ACTA ACUST UNITED AC 2005; 208:2719-29. [PMID: 16000541 DOI: 10.1242/jeb.01688] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have explored the molecular basis for differences in physiological function between the gills and opercular epithelium of the euryhaline killifish Fundulus heteroclitus. These tissues are functionally similar in seawater, but in freshwater the gills actively absorb Na+ but not Cl-, whereas the opercular epithelium actively absorbs Cl- but not Na+. These differences in freshwater physiology are likely due to differences in absolute levels of gene expression (measured using real-time PCR), as several proteins important for Na+ transport, namely Na+,H+-exchanger 2 (NHE2), carbonic anhydrase 2 (CA2), Na+,HCO3- cotransporter 1, and V-type H+-ATPase, were expressed at 3- to over 30-fold higher absolute levels in the gills. In gills, transfer from 10% seawater to freshwater increased the activity of Na+,K+-ATPase by twofold (from 12 h to 7 days), increased the expression of NHE2 (at 12 h) and CA2 (from 12 h to 7 days), and decreased the expression of NHE3 (from 12 h to 3 days). In opercular epithelium, NHE2 was not expressed; furthermore, Na+,K+-ATPase activity was unchanged after transfer to freshwater, CA2 mRNA levels decreased, and NHE3 levels increased. Consistent with their functional similarities in seawater, killifish gills and opercular epithelium expressed Na+,K+-ATPase alpha 1a, Na+,K+,2Cl- cotransporter 1 (NKCC1), cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel and the signalling protein 14-3-3a at similar absolute levels. Furthermore, NKCC1 and CFTR were suppressed equally in each tissue after freshwater transfer, and 14-3-3a mRNA increased in both. These results provide insight into the mechanisms of ion transport by killifish gills and opercular epithelia, and demonstrate a potential molecular basis for the differences in physiological function between these two organs.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Zoology, University of British Columbia, Vancouver BC, Canada V6T 1Z4.
| | | | | | | | | |
Collapse
|
35
|
Evans DH, Piermarini PM, Choe KP. The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. Physiol Rev 2005; 85:97-177. [PMID: 15618479 DOI: 10.1152/physrev.00050.2003] [Citation(s) in RCA: 1665] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes. Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates. Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself. The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system. Nevertheless, substantial questions about the evolution of these mechanisms and control remain.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville 32611, USA.
| | | | | |
Collapse
|
36
|
Bartels H, Potter IC. Cellular composition and ultrastructure of the gill epithelium of larval and adult lampreys. J Exp Biol 2004; 207:3447-62. [PMID: 15339941 DOI: 10.1242/jeb.01157] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYLampreys, one of the only two surviving groups of agnathan (jawless)vertebrates, contain several anadromous species that, during their life cycle,thus migrate from fresh to seawater and back to freshwater. Lampreys have independently evolved the same overall osmoregulatory mechanisms as the gnathostomatous (jawed) and distantly related teleost fishes. Lamprey gills thus likewise play a central role in taking up and secreting monovalent ions. However, the ultrastructural characteristics and distribution of their epithelial cell types [ammocoete mitochondria-rich (MR) cell, intercalated MR cell, chloride cell and pavement cell] differ in several respects from those of teleosts. The ultrastructural characteristics of these cells are distinctive and closely resemble those of certain ion-transporting epithelia in other vertebrates, for which the function has been determined. The data on each cell type, together with the stage in the life cycle at which it is found, i.e. whether in fresh or seawater, enable the following proposals to be made regarding the ways in which lampreys use their gill epithelial cells for osmoregulating in hypo- and hypertonic environments. In freshwater, the intercalated MR cell takes up Cl– and secretes H+,thereby facilitating the uptake of Na+ through pavement cells. In seawater, the chloride cell uses a secondarily active transcellular transport of Cl– to provide the driving force for the passive movement of Na+ through leaky paracellular pathways between these cells.
Collapse
Affiliation(s)
- Helmut Bartels
- Anatomische Anstalt, Ludwig-Maximilians-Universität München, Pettenkoferstr. 11, 80336 München, Germany.
| | | |
Collapse
|
37
|
Wood CM, Laurent P. Na+ versus Cl- transport in the intact killifish after rapid salinity transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1618:106-19. [PMID: 14729148 DOI: 10.1016/j.bbamem.2003.08.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Much of the early research elucidating the general mechanisms of euryhalinity was performed on the common killifish. More recently, its opercular epithelium with abundant mitochondria-rich cells has proven to be a powerful model for analyzing the mechanisms of active NaCl transport under Ussing conditions in vitro (i.e., with isotonic saline on both surfaces, at short-circuit). However, it is unclear whether this preparation duplicates the gill under real world conditions-i.e., at open-circuit, with real seawater (SW) or freshwater (FW) on the mucosal surface. There have been only limited studies, mostly about 35 years ago, on ion transport in the intact killifish. Therefore, using radioisotopes (22Na, 36Cl), we developed and evaluated methods for the independent measurement of unidirectional Na(+) and Cl(-) influx and efflux rates and internal pools in intact killifish acclimated to 10% SW and abruptly transferred to either 100% SW or FW. Internal Na(+) pools were disturbed less than internal Cl(-) pools by transfer, and were corrected after 3 days in 100% SW or 7 days in FW. Influx and efflux rates in 10% SW were about 3000 micromol kg(-1) h(-1) and increased to 15,000-18,000 micromol kg(-1) h(-1) after transfer to 100% SW, remaining approximately equal and equimolar for Na(+) and Cl(-), and stable from 0.5 to 7 days post-transfer. After transfer to FW, Na(+) influx and efflux rates dropped to 1000-1500 micromol kg(-1) h(-1), with efflux slightly exceeding influx, and remained approximately stable from 0.5 to 7 days. However, while Cl(-) efflux responded similarly, Cl(-) influx rate dropped immediately to negligible values (20-50 micromol kg(-1) h(-1)) without recovery through 7 days. These results differ from early ion transport data in 100% SW, and demonstrate that fluxes stabilize quickly after salinity transfer. They also show that the intact animal responds more quickly than the epithelium, provide qualitative but not quantitative support for the opercular epithelium as a model for the gill under real world SW conditions, and no support for its use as a gill model under real world FW conditions, where branchial Cl(-) uptake is negligible.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.
| | | |
Collapse
|
38
|
Evans DH, Rose RE, Roeser JM, Stidham JD. NaCl transport across the opercular epithelium ofFundulus heteroclitusis inhibited by an endothelin to NO, superoxide, and prostanoid signaling axis. Am J Physiol Regul Integr Comp Physiol 2004; 286:R560-8. [PMID: 14630622 DOI: 10.1152/ajpregu.00281.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence suggests that paracrine signaling agents, such as endothelin (ET), nitric oxide (NO), superoxide (O2-), and prostanoids can modulate mammalian renal function by affecting both hemodynamic and epithelial ionic transport pathways. Since these signaling pathways have been described in fish blood vessels, we hypothesized that they may control salt transport across the gill epithelium—the primary site of ion excretion in marine teleost fishes. We found that ET, the NO donors sodium nitroprusside and spermine NONOate, and the prostanoid PGE2each can produce a concentration-dependent reduction in the short circuit current ( Isc) across the isolated opercular epithelium of the killifish ( Fundulus heteroclitus), the generally accepted model for the marine teleost gill epithelium. Sarafotoxin S6c was equipotent to ET-1, suggesting that ETBreceptors are involved. Incubation with NG-nitro-l-arginine methyl ester (l-NAME) or indomethacin reduced the effect of subsequent addition of SRXS6c by 17 and 89%, respectively, suggesting the presence of an ET to NO and PGE axis. The effects of l-NAME and indomethacin were not additive, but the superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL) reduced the effect of SRXS6c by 34% and preincubation with l-NAME, indomethacin, and TEMPOL reduced the SRXS6c response to zero. This suggests a direct role for O2-in this axis. COX-2 appears to be the major enzyme involved in this axis because the specific COX-2 inhibitor NS-398 was twice as effective as the COX-1 inhibitor SC560 in inhibiting the SRXS6c effect. The Iscwas stimulated by the EP2agonist butaprost and inhibited by the EP1,3agonist sulprostone, suggesting both stimulatory and inhibitory PGE receptors in this tissue. Carbaprostacyclin (PGI2analog), thromboxane A2, PGF2α, and PGD2did not affect the Isc. Our data are the first to suggest the importance of an ET-stimulated and NO-, O2--, and PGE2-mediated signaling axis that can modify active extrusion of NaCl across the killifish opercular epithelium and, by inference, the marine teleost gill epithelium.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | |
Collapse
|
39
|
Kelly SP, Wood CM. Dilute culture media as an environmental or physiological simulant in cultured gill epithelia from freshwater rainbow trout. In Vitro Cell Dev Biol Anim 2003; 39:21-8. [PMID: 12892523 DOI: 10.1290/1543-706x(2003)039<0021:dcmaae>2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The electrophysiological and ion-transporting properties of cultured gill epithelia from freshwater (FW) rainbow trout were examined in the presence of dilute cell culture media as an environmental or physiological simulant. Gill epithelia were cultured on cell culture inserts under symmetrical conditions (L15 apical-L15 basolateral) for 6-7 d. The following experiments were then conducted. (1) To mimic a gradual lowering of environmental salinity, apical L15 medium was progressively diluted with FW (first to 2/3 L15 for 8 h and then to 1/3 L15 for 6 h) before the introduction of apical FW (FW apical-L15 basolateral, analogous to a fish in a natural FW environment). Dilute apical media had no significant effect on the electrophysiological properties of preparations compared with symmetrical culture conditions, and no evidence for active Na(+) or Cl(-) transport was observed. Preparations subsequently exposed to apical FW exhibited a negative transepithelial potential and evidence of active Cl(-) uptake and slight Na(+) extrusion. (2) To mimic the extracellular fluid dilution that occurs in euryhaline fish after abrupt transfer from saline to FW, the osmolality or ionic strength (or both) of basolateral media was reduced by 20-40% (using either FW or FW + mannitol) while simultaneously replacing apical media with FW. Under these conditions, Na(+) and Cl(-) influx rates were low compared with efflux rates, while the Ussing flux ratio analysis generally indicated active Cl(-) uptake and Na(+) extrusion. The Na(+)-K(+) adenosine triphosphatase activity was not affected by alterations in basolateral osmolality. Our studies indicate that cultured trout gill epithelia are tolerant of media dilution from both the apical and the basolateral direction; however, neither treatment alone appeared to increase ion influx rates or stimulate active Na(+) uptake in cultured trout gill epithelia.
Collapse
Affiliation(s)
- Scott P Kelly
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 1S1.
| | | |
Collapse
|
40
|
Cutler CP, Cramb G. Two isoforms of the Na+/K+/2Cl- cotransporter are expressed in the European eel (Anguilla anguilla). BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1566:92-103. [PMID: 12421541 DOI: 10.1016/s0005-2736(02)00596-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two cDNA isoforms of the NKCC1 secretory cotransporter have been isolated from the European eel. The NKCC1a isoform exhibited mRNA expression in a wide range of tissues in a similar fashion to mammals, whereas NKCC1b was expressed primarily in the brain. The effect of freshwater (FW) to seawater (SW) transfer on NKCC1a expression was dependent on the developmental stage. In non-migratory yellow eels, NKCC1a mRNA expression in the gill was transiently up-regulated 4.3-fold after 2 days but also subsequently by 2.5-6-fold 3 weeks after SW transfer. Gill NKCC1a expression was localised mainly in branchial chloride cells of SW acclimated yellow eels. In contrast to yellow eels, NKCC1a mRNA abundance was not significantly different following SW acclimation in silver eel gill. NKCC1a mRNA abundance decreased in the kidney following SW acclimation and this may correlate with lower tubular ion/fluid secretion and urine flow rates in SW teleosts. Kidney NKCC1a mRNA expression in silver eels was also significantly lower than in yellow eels, suggesting some pre-acclimation of mRNA levels. NKCC1a mRNA was expressed at similar low levels in the middle intestine of FW- and SW-acclimated yellow or silver eels, suggesting the presence of an ion secretory mechanism in this gut segment.
Collapse
Affiliation(s)
- Christopher P Cutler
- School of Biology, Bute Medical Buildings, University of St. Andrews, Fife, Scotland, St. Andrews, UK.
| | | |
Collapse
|
41
|
Hoffmann EK, Hoffmann E, Lang F, Zadunaisky JA. Control of Cl- transport in the operculum epithelium of Fundulus heteroclitus: long- and short-term salinity adaptation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1566:129-39. [PMID: 12421544 DOI: 10.1016/s0005-2736(02)00587-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The eurohaline fish, Fundulus heteroclitus, adapts rapidly to enhanced salinity by increasing the ion secretion by gill chloride cells. An increase of approximately 70 mOsm in plasma osmolarity was previously found during the transition. To mimic this in vitro, isolated opercular epithelia of seawater-adapted Fundulus mounted in a modified Ussing chamber were exposed to an increase in NaCl and/or osmolarity on the basolateral side, which immediately increased I(SC). Various Cl(-) channel blockers as well as the K(+) channel blocker Ba(2+) added to the basolateral side all inhibited the steady-state as well as the hypertonic stimulation of I(SC). The exists -agonist isoproterenol stimulates I(SC) in standard Ringer solutions. In contrast, when cell volume was kept at the larger value by simultaneous addition of water, the stimulation with isoproterenol was abolished, suggesting that the key process for activation of the Na(+), K(+), 2Cl(-) cotransporter is cell shrinkage. The protein kinase C (PKC) inhibitor chelerythrine and the myosin light chain kinase (MLCK) inhibitor ML-7 had strong inhibitory effects on the mannitol activation of I(SC), thus both MLCK and PKC are involved. The two specific protein kinase A (PKA) inhibitors H-89 and KT 5720 had no effect after mannitol addition whereas isoproterenol stimulation was completely blocked by H-89. This indicates that PKA is involved in the activation of the apical Cl(-) channel via c-AMP whereas the shrinkage activation of the Na(+), K(+), 2Cl(-) cotransporter is independent of PKA activation. The steady-state Cl(-) secretion was stimulated by an inhibitor of serine/threonine phosphatases of the PP-1 and PP-2A type and inhibited by a PKC inhibitor but not by a PKA inhibitor. Thus, it seems to be determined by continuous phosphorylation and dephosphorylation involving PKC but not PKA. The steady-state Cl(-) secretion and the maximal obtainable Cl(-) secretion were measured in freshwater-adapted fish and in fish retransferred to saltwater. No I(SC) could be measured in freshwater-adapted fish or in the fish within the first 18 h after transfer to saltwater. As evidenced from Western blot analysis using antiserine-antibodies, a heavily serine phosphorylated protein of about 190 kDa was consistently observed in the saltwater-acclimated fish, but was only weakly present in freshwater-acclimated fish. This observation indicates that acclimatization to saltwater stimulates the expression of this 190-kDa protein and/or a serine/threonine kinase, which subsequently phosphorylates the protein.
Collapse
Affiliation(s)
- E K Hoffmann
- August Krogh Institute Biochemical Department, University of Copenhagen, 13 Universitetsparken, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
42
|
Wood CM, Kelly SP, Zhou B, Fletcher M, O'Donnell M, Eletti B, Pärt P. Cultured gill epithelia as models for the freshwater fish gill. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1566:72-83. [PMID: 12421539 DOI: 10.1016/s0005-2736(02)00595-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We review recent progress in the development of models for the freshwater teleost gill based on reconstructed flat epithelia grown on permeable filter supports in primary culture. Methods are available for single-seeded insert (SSI) preparations consisting of pavement cells (PVCs) only from trout and tilapia, and double-seeded insert (DSI) preparations from trout, containing both PVCs (85%) and mitochondria-rich cells (MRCs, 15%), as in the intact gill. While there are some quantitative differences, both SSI and DSI epithelia manifest electrical and passive permeability characteristics typical of intact gills and representative of very tight epithelia. Both preparations withstand apical freshwater exposure, exhibiting large increases in transepithelial resistance (TER), negative transepithelial potential (TEP), and low rates of ion loss, but there is only a small active apical-to-basolateral "influx" of Cl(-) (and not of Na(+)). Responses to various hormonal treatments are described (thyroid hormone T3, prolactin, and cortisol). Cortisol has the most marked effects, stimulating Na(+),K(+)-ATPase activity and promoting active Na(+) and Cl(-) influxes in DSI preparations, and raising TER and reducing passive ion effluxes in both epithelia via reductions in paracellular permeability. Experiments using DSI epithelia lacking Na(+) uptake demonstrate that both NH(3) and NH(4)(+) diffusion occur, but are not large enough to account for normal rates of branchial ammonia excretion, suggesting that Na(+)-linked carrier-mediated processes are important for ammonia excretion in vivo. Future research goals are suggested.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
43
|
Kelly SP, Wood CM. Prolactin effects on cultured pavement cell epithelia and pavement cell plus mitochondria-rich cell epithelia from freshwater rainbow trout gills. Gen Comp Endocrinol 2002; 128:44-56. [PMID: 12270787 DOI: 10.1016/s0016-6480(02)00048-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physiological effects of ovine prolactin (oPRL) and recombinant rainbow trout prolactin (rbtPRL) on cultured gill epithelia derived from freshwater rainbow trout were assessed. Epithelia composed of either pavement cells only (single seeded inserts, SSI) or both pavement and mitochondria-rich cells (double seeded inserts, DSI) were cultured in media, supplemented with doses of oPRL ranging from 10 to 100 ng/ml. Under symmetrical culture conditions (L15 media apical/L15 media basolateral), oPRL had no effect on transepithelial resistance, paracellular permeability (assessed with PEG-4000), or Na(+) and Cl(-) transport across both preparations of cultured gill epithelia. Under asymmetrical conditions (freshwater apical/L15 media basolateral), SSI epithelia treated with oPRL (10 and 50 ng/ml), in comparison to comparably treated epithelia receiving no oPRL, exhibited a greater increase in the transepithelial resistance, particularly during the first 12h of freshwater exposure, no difference in paracellular permeability and Na(+)-K(+)-ATPase activity, and lowered net Na(+) flux rates (i.e., reduced basolateral to apical loss rates). These reflected reduced unidirectional efflux rates. The PRL effect appeared to be mainly a reduction in transcellular permeability. SSI epithelia treated with rbtPRL (10 ng/ml) exhibited similar patterns of response to those treated with oPRL. Na(+)-K(+)-ATPase activity increased in DSI epithelia treated with oPRL; however, oPRL did not stimulate ion uptake across either SSI or DSI epithelial preparations. The data demonstrated that, as the sole hormone supplement for cultured gill epithelia, PRL did not promote active ion uptake. However, the observed PRL-induced alterations in cultured gill epithelial physiology were consistent with the in vivo actions of PRL on the gills of freshwater teleost fish.
Collapse
Affiliation(s)
- Scott P Kelly
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1.
| | | |
Collapse
|
44
|
Evans DH. Cell signaling and ion transport across the fish gill epithelium. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 293:336-47. [PMID: 12115905 DOI: 10.1002/jez.10128] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A large array of circulating and local signaling agents modulate transport of ions across the gill epithelium of fishes by either affecting transport directly or by altering the size and distribution of transporting cells in the epithelium. In some cases, these transport effects are in addition to cardiovascular effects of the same agents, which may affect the perfusion pathways in the gill vasculature and, in turn, affect epithelial transport indirectly. Prolactin is generally considered to function in freshwater, because it is the only agent that allows survival of some hypophysectomized fish species in freshwater. It appears to function by either reducing branchial permeability, Na,K-activated ATPase activity, or reducing the density of chloride cells. Cortisol was initially considered to produce virtually opposite effects (e.g., stimulation of Na,K-activated ATPase and of chloride cell size and density), but more recent studies have found that this steroid stimulates ionic uptake in freshwater fishes, as well as the activity of H-ATPase, an enzyme thought to be central to ionic uptake. Thus, cortisol may function in both high and low salinities. Growth hormone and insulin-like growth factor appear to act synergistically to affect ion regulation in seawater fishes, stimulating both Na,K-activated ATPase and Na-K-2Cl co-transporter activity, and chloride cell size, independent of their effects on growth. Some of the effects of the GH-IGF axis may be via stimulation of the number of cortisol receptors. Thyroid hormones appear to affect seawater ion regulation indirectly, by stimulating the GH-IGF axis. Natriuretic peptides were initially thought to stimulate gill ionic extrusion, but recent studies have not corroborated this finding, so it appears that the major mode of action of these peptides may be reduction of salt loading by inhibition of oral ingestion and intestinal ionic uptake. Receptors for both arginine vasotocin and angiotensin have been described in the gill epithelium, but their respective roles and importance in fish ion regulation remains unknown. The gill epithelium may be affected by both circulating and local adrenergic agents, and a variety of studies have demonstrated that stimulation of alpha-adrenergic versus beta-adrenergic receptors produces inhibition or stimulation of active salt extrusion, respectively. Local effectors, such as prostaglandins, nitric oxide, and endothelin, may affect active salt extrusion as well as gill perfusion. Recent studies have suggested that the endothelin inhibition of salt extrusion is actually mediated by the release of both NO and prostaglandins. It is hoped that modern molecular techniques, combined with physiological measurements, will allow the dissection of the relative roles in ion transport across the fish gill epithelium of this surprisingly large array of putative signaling agents.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
45
|
Kelly SP, Wood CM. Effect of cortisol on the physiology of cultured pavement cell epithelia from freshwater trout gills. Am J Physiol Regul Integr Comp Physiol 2001; 281:R811-20. [PMID: 11506996 DOI: 10.1152/ajpregu.2001.281.3.r811] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cortisol had dose-dependent effects on the electrophysiological, permeability, and ion-transporting properties of cultured pavement cell epithelia derived from freshwater rainbow trout gills and grown on cell culture filter supports. Under both symmetrical (L15 media apical/L15 media basolateral) and asymmetrical (freshwater apical/L15 media basolateral) culture conditions, cortisol treatment elevated transepithelial resistance, whereas permeability of epithelia to a paracellular permeability marker (polyethylene glycol-4000) decreased. Cortisol did not alter the Na(+)-K(+)-ATPase activity or the total protein content of the cultured preparations. During 24-h exposure to asymmetrical conditions, the net loss rates of both Na(+) and Cl(-) to the water decreased with increasing cortisol dose, an important adaptation to dilute media. Unidirectional Na(+) and Cl(-) flux measurements and the application of the Ussing flux-ratio criterion revealed cortisol-induced active uptake of both Na(+) and Cl(-) under symmetrical culture conditions together with an increase in transepithelial potential (positive on the basolateral side). Under asymmetrical conditions, cortisol did not promote active ion transport across the epithelium. These experiments provide evidence for the direct action of cortisol on cultured pavement cell epithelia and, in particular, emphasize the importance of cortisol for limiting epithelial permeability.
Collapse
Affiliation(s)
- S P Kelly
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | |
Collapse
|
46
|
Pelis RM, Zydlewski J, McCormick SD. Gill Na+-K+-2Cl−cotransporter abundance and location in Atlantic salmon: effects of seawater and smolting. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1844-52. [PMID: 11353691 DOI: 10.1152/ajpregu.2001.280.6.r1844] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na+-K+-2Cl−cotransporter abundance and location was examined in the gills of Atlantic salmon ( Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na+-K+-2Cl−cotransporter was colocalized with Na+-K+-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 parts per thousand seawater had increased gill Na+-K+-2Cl− cotransporter abundance, large and numerous Na+-K+-2Cl− cotransporter immunoreactive chloride cells on the primary filament, and reduced numbers on the secondary lamellae. Gill Na+-K+-2Cl− cotransporter levels were low in presmolts (February) and increased 3.3-fold in smolts (May), coincident with elevated seawater tolerance. Cotransporter levels decreased below presmolt values in postsmolts in freshwater (June). The size and number of immunoreactive chloride cells on the primary filament increased threefold during smolting and decreased in postsmolts. Gill Na+-K+-ATPase activity and Na+-K+-2Cl− cotransporter abundance increased in parallel during both seawater acclimation and smolting. These data indicate a direct role of the Na+-K+-2Cl− cotransporter in salt secretion by gill chloride cells of teleost fish.
Collapse
Affiliation(s)
- R M Pelis
- Conte Anadromous Fish Research Center, Biological Resources Division, United States Geological Survey, Turners Falls, MA 01376, USA
| | | | | |
Collapse
|
47
|
Burgess D, Marshall W, Wood C. Ionic transport by the opercular epithelia of freshwater acclimated tilapia (Oreochromis niloticus) and killifish (Fundulus heteroclitus). Comp Biochem Physiol A Mol Integr Physiol 1998. [DOI: 10.1016/s1095-6433(98)10117-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Gilmour KM, Pärt P, Prunet P, Pisam M, McDonald DG, Wood CM. Permeability and morphology of a cultured branchial epithelium from the rainbow trout during prolonged apical exposure to fresh water. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-010x(19980815)281:6<531::aid-jez1>3.0.co;2-o] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Singer TD, Tucker SJ, Marshall WS, Higgins CF. A divergent CFTR homologue: highly regulated salt transport in the euryhaline teleost F. heteroclitus. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C715-23. [PMID: 9530103 DOI: 10.1152/ajpcell.1998.274.3.c715] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The killifish, Fundulus heteroclitus, is a euryhaline teleost fish capable of adapting rapidly to transfer from freshwater (FW) to four times seawater (SW). To investigate osmoregulation at a molecular level, a 5.7-kilobase cDNA homologous to human cystic fibrosis transmembrane conductance regulator (hCFTR) was isolated from a gill cDNA library from SW-adapted killifish. This cDNA encodes a protein product (kfCFTR) that is 59% identical to hCFTR, the most divergent form of CFTR characterized to date. Expression of kfCFTR in Xenopus oocytes generated adenosine 3',5'-cyclic monophosphate-activated, Cl(-)-selective currents similar to those generated by hCFTR. In SW-adapted killifish, kfCFTR was expressed at high levels in the gill, opercular epithelium, and intestine. After abrupt exposure of FW-adapted killifish to SW, kfCFTR expression in the gill increased severalfold, suggesting a role for kfCFTR in salinity adaptation. Under similar conditions, plasma Na+ levels rose significantly after 8 h and then fell, although it is not known whether these changes are directly responsible for the changes in kfCFTR expression. The killifish provides a unique opportunity to understand teleost osmoregulation and the role of CFTR.
Collapse
Affiliation(s)
- T D Singer
- Nuffield Department of Clinical Biochemistry, John Radcliffe Hospital, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
50
|
Wood CM, Gilmour KM, Pärt P. Passive and active transport properties of a gill model, the cultured branchial epithelium of the freshwater rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 1998; 119:87-96. [PMID: 11253822 DOI: 10.1016/s1095-6433(97)00403-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Branchial epithelia of freshwater rainbow trout were cultured on permeable supports, polyethylene terephthalate membranes ("filter inserts"), starting from dispersed gill epithelial cells in primary culture. Leibowitz L-15 media plus foetal bovine serum and glutamine, with an ionic composition similar to trout extracellular fluid, was used. After 6 days of growth on the filter insert with L-15 present on both apical and basolateral surfaces, the cultured preparations exhibited stable transepithelial resistances (generally 1000-5000 ohms cm2) typical of an electrically tight epithelium. Under these symmetrical conditions, transepithelial potential was zero, and unidirectional fluxes of Na+ and Cl- across the epithelium and permeability to the paracellular marker polyethylene glycol-4000 (PEG) were equal in both directions. Na+ and Cl- fluxes were similar to one another and linearly related to conductance (inversely related to resistance) in a manner indicative of fully conductive passive transport. Upon exposure to apical fresh water, transepithelial resistance increased greatly and a basolateral-negative transepithelial potential developed. At the same time, however, PEG permeability and unidirectional effluxes of Na+ and Cl- increased. Thus, total conductance fell, and ionic fluxes and paracellular permeability per unit conductance all increased greatly, consistent with a scenario whereby transcellular conductance decreases but paracellular permeability increases upon dilution of the apical medium. In apical fresh water, there was a net loss of ions from the basolateral to apical surfaces as effluxes greatly exceeded influxes. However, application of the Ussing flux ratio criterion, in two separate series involving different methods for measuring unidirectional fluxes, revealed active influx of Cl- against the electrochemical gradient but passive movement of Na+. The finding is surprising because the cultured epithelium appears to consist entirely of pavement-type cells.
Collapse
Affiliation(s)
- C M Wood
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|