1
|
Manzanero-Ortiz S, Franco M, Laxmeesha M, Carmena A. Drosophila p53 tumor suppressor directly activates conserved asymmetric stem cell division regulators. iScience 2024; 27:111118. [PMID: 39524346 PMCID: PMC11546965 DOI: 10.1016/j.isci.2024.111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/08/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
p53 is the most mutated tumor suppressor gene in human cancers. Besides p53 classical functions inducing cell-cycle arrest and apoptosis in stressed cells, additional p53 non-canonical roles in unstressed cells have emerged over the past years, including the mode of stem cell division regulation. However, the mechanisms by which p53 impacts on this process remain elusive. Here, we show that Drosophila p53 controls asymmetric stem cell division (ASCD), a key process in development, cancer and adult tissue homeostasis, by transcriptionally activating Numb, Brat, and Traf4 ASCD regulators. p53 knockout caused failures in their localization in dividing neural stem cells, as well as a significant decrease in their expression levels. Moreover, p53 directly bound numb, brat, and Traf4 regulatory regions. Remarkably, human and mice genes related to Drosophila brat (TRIM32) and Traf4 (TRAF4) were recently identified in a meta-analysis of transcriptomic and ChIP-seq datasets as predicted conserved p53 targets.
Collapse
Affiliation(s)
- Sandra Manzanero-Ortiz
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Maribel Franco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Mahima Laxmeesha
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Ana Carmena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| |
Collapse
|
2
|
Specification of the Drosophila Orcokinin A neurons by combinatorial coding. Cell Tissue Res 2023; 391:269-286. [PMID: 36512054 DOI: 10.1007/s00441-022-03721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
The central nervous system contains a daunting number of different cell types. Understanding how each cell acquires its fate remains a major challenge for neurobiology. The developing embryonic ventral nerve cord (VNC) of Drosophila melanogaster has been a powerful model system for unraveling the basic principles of cell fate specification. This pertains specifically to neuropeptide neurons, which typically are stereotypically generated in discrete subsets, allowing for unambiguous single-cell resolution in different genetic contexts. Here, we study the specification of the OrcoA-LA neurons, characterized by the expression of the neuropeptide Orcokinin A and located laterally in the A1-A5 abdominal segments of the VNC. We identified the progenitor neuroblast (NB; NB5-3) and the temporal window (castor/grainyhead) that generate the OrcoA-LA neurons. We also describe the role of the Ubx, abd-A, and Abd-B Hox genes in the segment-specific generation of these neurons. Additionally, our results indicate that the OrcoA-LA neurons are "Notch Off" cells, and neither programmed cell death nor the BMP pathway appears to be involved in their specification. Finally, we performed a targeted genetic screen of 485 genes known to be expressed in the CNS and identified nab, vg, and tsh as crucial determinists for OrcoA-LA neurons. This work provides a new neuropeptidergic model that will allow for addressing new questions related to neuronal specification mechanisms in the future.
Collapse
|
3
|
Neural specification, targeting, and circuit formation during visual system assembly. Proc Natl Acad Sci U S A 2021; 118:2101823118. [PMID: 34183440 DOI: 10.1073/pnas.2101823118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like other sensory systems, the visual system is topographically organized: Its sensory neurons, the photoreceptors, and their targets maintain point-to-point correspondence in physical space, forming a retinotopic map. The iterative wiring of circuits in the visual system conveniently facilitates the study of its development. Over the past few decades, experiments in Drosophila have shed light on the principles that guide the specification and connectivity of visual system neurons. In this review, we describe the main findings unearthed by the study of the Drosophila visual system and compare them with similar events in mammals. We focus on how temporal and spatial patterning generates diverse cell types, how guidance molecules distribute the axons and dendrites of neurons within the correct target regions, how vertebrates and invertebrates generate their retinotopic map, and the molecules and mechanisms required for neuronal migration. We suggest that basic principles used to wire the fly visual system are broadly applicable to other systems and highlight its importance as a model to study nervous system development.
Collapse
|
4
|
Rossi AM, Jafari S, Desplan C. Integrated Patterning Programs During Drosophila Development Generate the Diversity of Neurons and Control Their Mature Properties. Annu Rev Neurosci 2021; 44:153-172. [PMID: 33556251 DOI: 10.1146/annurev-neuro-102120-014813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During the approximately 5 days of Drosophila neurogenesis (late embryogenesis to the beginning of pupation), a limited number of neural stem cells produce approximately 200,000 neurons comprising hundreds of cell types. To build a functional nervous system, neuronal types need to be produced in the proper places, appropriate numbers, and correct times. We discuss how neural stem cells (neuroblasts) obtain so-called area codes for their positions in the nervous system (spatial patterning) and how they keep time to sequentially produce neurons with unique fates (temporal patterning). We focus on specific examples that demonstrate how a relatively simple patterning system (Notch) can be used reiteratively to generate different neuronal types. We also speculate on how different modes of temporal patterning that operate over short versus long time periods might be linked. We end by discussing how specification programs are integrated and lead to the terminal features of different neuronal types.
Collapse
Affiliation(s)
- Anthony M Rossi
- Department of Biology, New York University, New York, NY 10003, USA; .,Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shadi Jafari
- Department of Biology, New York University, New York, NY 10003, USA;
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA;
| |
Collapse
|
5
|
Crews ST. Drosophila Embryonic CNS Development: Neurogenesis, Gliogenesis, Cell Fate, and Differentiation. Genetics 2019; 213:1111-1144. [PMID: 31796551 PMCID: PMC6893389 DOI: 10.1534/genetics.119.300974] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023] Open
Abstract
The Drosophila embryonic central nervous system (CNS) is a complex organ consisting of ∼15,000 neurons and glia that is generated in ∼1 day of development. For the past 40 years, Drosophila developmental neuroscientists have described each step of CNS development in precise molecular genetic detail. This has led to an understanding of how an intricate nervous system emerges from a single cell. These studies have also provided important, new concepts in developmental biology, and provided an essential model for understanding similar processes in other organisms. In this article, the key genes that guide Drosophila CNS development and how they function is reviewed. Features of CNS development covered in this review are neurogenesis, gliogenesis, cell fate specification, and differentiation.
Collapse
Affiliation(s)
- Stephen T Crews
- Department of Biochemistry and Biophysics, Integrative Program for Biological and Genome Sciences, School of Medicine, The University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
6
|
Abstract
Wnt/Wingless (Wg) signaling controls many aspects of animal development and is deregulated in different human cancers. The transcription factor dTcf/Pangolin (Pan) is the final effector of the Wg pathway in Drosophila and has a dual role in regulating the expression of Wg target genes. In the presence of Wg, dTcf/Pan interacts with β-catenin/Armadillo (Arm) and induces the transcription of Wg targets. In absence of Wg, dTcf/Pan partners with the transcriptional corepressor TLE/Groucho (Gro) and inhibits gene expression. Here, we use the wing imaginal disk of Drosophila as a model to examine the functions that dTcf/Pan plays in a proliferating epithelium. We report a function of dTcf/Pan in growth control and tumorigenesis. Our results show that dTcf/Pan can limit tissue growth in normal development and suppresses tumorigenesis in the context of oncogene up-regulation. We identify the conserved transcription factors Sox box protein 15 (Sox15) and Ftz transcription factor 1 (Ftz-f1) as genes controlled by dTcf/Pan involved in tumor development. In conclusion, this study reports a role for dTcf/Pan as a repressor of normal and oncogenic growth and identifies the genes inducing tumorigenesis downstream of dTcf/Pan.
Collapse
|
7
|
Sen SQ, Chanchani S, Southall TD, Doe CQ. Neuroblast-specific open chromatin allows the temporal transcription factor, Hunchback, to bind neuroblast-specific loci. eLife 2019; 8:44036. [PMID: 30694180 PMCID: PMC6377230 DOI: 10.7554/elife.44036] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Abstract
Spatial and temporal cues are required to specify neuronal diversity, but how these cues are integrated in neural progenitors remains unknown. Drosophila progenitors (neuroblasts) are a good model: they are individually identifiable with relevant spatial and temporal transcription factors known. Here we test whether spatial/temporal factors act independently or sequentially in neuroblasts. We used Targeted DamID to identify genomic binding sites of the Hunchback temporal factor in two neuroblasts (NB5-6 and NB7-4) that make different progeny. Hunchback targets were different in each neuroblast, ruling out the independent specification model. Moreover, each neuroblast had distinct open chromatin domains, which correlated with differential Hb-bound loci in each neuroblast. Importantly, the Gsb/Pax3 spatial factor, expressed in NB5-6 but not NB7-4, had genomic binding sites correlated with open chromatin in NB5-6, but not NB7-4. Our data support a model in which early-acting spatial factors like Gsb establish neuroblast-specific open chromatin domains, leading to neuroblast-specific temporal factor binding and the production of different neurons in each neuroblast lineage. The human brain is considered to be the most complicated object in the universe, but it only takes a handful of stem cells to make one. The process depends on two types of information: signals separated across space and time. Spatial cues tell a stem cell what type of cell it is going to be, while temporal cues work as molecular clocks to generate a sequence of different neurons over time. Together, these cues generate the large array of cell types in the nervous system. Each stem cell occupies its own space in the developing body and receives its own spatial cues, but they all follow the same timeline. For example, proteins called transcription factors act as molecular clocks and interact with specific genes, telling the cell when to turn them on or off. The same series of transcription factors operates in different stem cells, but they have different effects. So far, it has been unclear whether spatial and temporal signals work independently or sequentially to generate new cell types. To find out, Sen et al. studied two distinct, developing stem cells in fruit flies, which receive different spatial signals. Transcription factors only work if they are able to get to their target genes. Cells can open or close access to different genes by changing the structure of the chromatin wrapping that surrounds the genes. In the experiments, a marker was used to reveal the areas of open chromatin in each of the cells. Another marker was used to track the transcription factors. The results showed that the areas of open chromatin varied between stem cells. Moreover, although both cells used the same transcription factor called Hunchback, it targeted different genes in each stem cell. This was due to changes in the chromatin wrapping: Hunchback only acted in areas where the chromatin was open. This suggests that the spatial cues first sculpt the chromatin, making some genes easier to get to than others. Then, the same transcription factors go to the accessible gene, which will differ from one stem cell to another. These findings help us to understand how different types of brain cells develop, which may also aid us in finding a way how to engineer specific cell types. If we could turn stem cells into different types of brain cells, it might help us to treat brain diseases. This may involve giving the right spatial signal before starting the temporal cues.
Collapse
Affiliation(s)
- Sonia Q Sen
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Sachin Chanchani
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| |
Collapse
|
8
|
Stratmann J, Ekman H, Thor S. Branching gene regulatory network dictating different aspects of a neuronal cell identity. Development 2019; 146:dev.174300. [DOI: 10.1242/dev.174300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
The nervous system displays a daunting cellular diversity. Neuronal sub-types differ from each other in several aspects, including their neurotransmitter expression and axon projection. These aspects can converge, but can also diverge, such that neurons expressing the same neurotransmitter may project axons to different targets. It is not well understood how regulatory programs converge/diverge to associate/dissociate different cell fate features. Studies of the Drosophila Tv1 neurons have identified a regulatory cascade; ladybird early -> collier -> apterous/eyes absent -> dimmed, which specifies Tv1 neurotransmitter expression. Here, we conduct genetic and transcriptome analysis to address how other aspects of Tv1 cell fate is governed. We find that an initiator terminal selector gene triggers a feedforward loop which branches into different subroutines, each of which establishes different features of this one unique neuronal cell fate.
Collapse
Affiliation(s)
- Johannes Stratmann
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Helen Ekman
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linkoping, Sweden
- School of Biomedical Sciences, University of Queensland, St Lucia QLD 4072, Australia
| |
Collapse
|
9
|
Wingless Signaling: A Genetic Journey from Morphogenesis to Metastasis. Genetics 2018; 208:1311-1336. [PMID: 29618590 DOI: 10.1534/genetics.117.300157] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
This FlyBook chapter summarizes the history and the current state of our understanding of the Wingless signaling pathway. Wingless, the fly homolog of the mammalian Wnt oncoproteins, plays a central role in pattern generation during development. Much of what we know about the pathway was learned from genetic and molecular experiments in Drosophila melanogaster, and the core pathway works the same way in vertebrates. Like most growth factor pathways, extracellular Wingless/Wnt binds to a cell surface complex to transduce signal across the plasma membrane, triggering a series of intracellular events that lead to transcriptional changes in the nucleus. Unlike most growth factor pathways, the intracellular events regulate the protein stability of a key effector molecule, in this case Armadillo/β-catenin. A number of mysteries remain about how the "destruction complex" destabilizes β-catenin and how this process is inactivated by the ligand-bound receptor complex, so this review of the field can only serve as a snapshot of the work in progress.
Collapse
|
10
|
Abstract
A small pool of neural progenitors generates the vast diversity of cell types in the CNS. Spatial patterning specifies progenitor identity, followed by temporal patterning within progenitor lineages to expand neural diversity. Recent work has shown that in Drosophila, all neural progenitors (neuroblasts) sequentially express temporal transcription factors (TTFs) that generate molecular and cellular diversity. Embryonic neuroblasts use a lineage-intrinsic cascade of five TTFs that switch nearly every neuroblast cell division; larval optic lobe neuroblasts also use a rapid cascade of five TTFs, but the factors are completely different. In contrast, larval central brain neuroblasts undergo a major molecular transition midway through larval life, and this transition is regulated by a lineage-extrinsic cue (ecdysone hormone signaling). Overall, every neuroblast lineage uses a TTF cascade to generate diversity, illustrating the widespread importance of temporal patterning.
Collapse
Affiliation(s)
- Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, and Howard Hughes Medical Institute (HHMI), University of Oregon, Eugene, Oregon 97403;
| |
Collapse
|
11
|
Walsh KT, Doe CQ. Drosophila embryonic type II neuroblasts: origin, temporal patterning, and contribution to the adult central complex. Development 2017; 144:4552-4562. [PMID: 29158446 DOI: 10.1242/dev.157826] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
Abstract
Drosophila neuroblasts are an excellent model for investigating how neuronal diversity is generated. Most brain neuroblasts generate a series of ganglion mother cells (GMCs) that each make two neurons (type I lineage), but 16 brain neuroblasts generate a series of intermediate neural progenitors (INPs) that each produce 4-6 GMCs and 8-12 neurons (type II lineage). Thus, type II lineages are similar to primate cortical lineages, and may serve as models for understanding cortical expansion. Yet the origin of type II neuroblasts remains mysterious: do they form in the embryo or larva? If they form in the embryo, do their progeny populate the adult central complex, as do the larval type II neuroblast progeny? Here, we present molecular and clonal data showing that all type II neuroblasts form in the embryo, produce INPs and express known temporal transcription factors. Embryonic type II neuroblasts and INPs undergo quiescence, and produce embryonic-born progeny that contribute to the adult central complex. Our results provide a foundation for investigating the development of the central complex, and tools for characterizing early-born neurons in central complex function.
Collapse
Affiliation(s)
- Kathleen T Walsh
- Howard Hughes Medical Institute, Institute of Molecular Biology, and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Chris Q Doe
- Howard Hughes Medical Institute, Institute of Molecular Biology, and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
12
|
Drosophila melanogaster Neuroblasts: A Model for Asymmetric Stem Cell Divisions. Results Probl Cell Differ 2017; 61:183-210. [PMID: 28409305 DOI: 10.1007/978-3-319-53150-2_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asymmetric cell division (ACD) is a fundamental mechanism to generate cell diversity, giving rise to daughter cells with different developmental potentials. ACD is manifested in the asymmetric segregation of proteins or mRNAs, when the two daughter cells differ in size or are endowed with different potentials to differentiate into a particular cell type (Horvitz and Herskowitz, Cell 68:237-255, 1992). Drosophila neuroblasts, the neural stem cells of the developing fly brain, are an ideal system to study ACD since this system encompasses all of these characteristics. Neuroblasts are intrinsically polarized cells, utilizing polarity cues to orient the mitotic spindle, segregate cell fate determinants asymmetrically, and regulate spindle geometry and physical asymmetry. The neuroblast system has contributed significantly to the elucidation of the basic molecular mechanisms underlying ACD. Recent findings also highlight its usefulness to study basic aspects of stem cell biology and tumor formation. In this review, we will focus on what has been learned about the basic mechanisms underlying ACD in fly neuroblasts.
Collapse
|
13
|
Bhat KM. Notch signaling acts before cell division to promote asymmetric cleavage and cell fate of neural precursor cells. Sci Signal 2014; 7:ra101. [PMID: 25336614 DOI: 10.1126/scisignal.2005317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Asymmetric cell divisions in the central nervous system generate neurons of diverse fates. In Drosophila melanogaster, the protein Numb localizes asymmetrically to dividing neural precursor cells such that only one daughter cell inherits Numb. Numb inhibits Notch signaling in this daughter cell, resulting in a different cell fate from the Notch-induced fate in the other-Numb-negative-daughter cell. Precursor cells undergo asymmetric cytokinesis generating daughter cells of different sizes. I found that inactivation of Notch in fly embryonic neural precursor cells disrupted the asymmetric positioning of the cleavage furrow and produced daughter cells of the same size and fate. Moreover, inactivation of Notch at different times altered the degree of asymmetric Numb localization, such that earlier inactivation of Notch caused symmetric distribution of Numb and later inactivation produced incomplete asymmetric localization of Numb. The extent of asymmetrically localized Numb positively correlated with the degree of asymmetric cytokinesis and the size disparity in daughter cells. Loss of Numb or expression of constitutively active Notch led to premature specification of the precursor cells into the fate of one of the daughter cells. Thus, in addition to its role in the specification of daughter cell fate after division, Notch controls Numb localization in the precursor cells to determine the size and fate of daughter cells. Numb also inhibits Notch signaling in precursor cells to prevent Notch-induced differentiation of the precursor cell, forming an autoregulatory loop.
Collapse
Affiliation(s)
- Krishna Moorthi Bhat
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA. E-mail:
| |
Collapse
|
14
|
Yu JL, An ZF, Liu XD. Wingless gene cloning and its role in manipulating the wing dimorphism in the white-backed planthopper, Sogatella furcifera. BMC Mol Biol 2014; 15:20. [PMID: 25266639 PMCID: PMC4183756 DOI: 10.1186/1471-2199-15-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 09/24/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Wingless gene (Wg) plays a fundamental role in regulating the segment polarity and wing imaginal discs of insects. The rice planthoppers have an obvious wing dimorphism, and the long- and short-winged forms exist normally in natural populations. However, the molecular characteristics and functions of Wg in rice planthoppers are poorly understood, and the relationship between expression level of Wg and wing dimorphism has not been clarified. RESULTS In this study, wingless gene (Wg) was cloned from three species of rice planthopper, Sogatella furcifera, Laodelphgax striatellus and Nilaparvata lugens, and its characteristics and role in determining the wing dimorphism of S. furcifera were explored. The results showed that only three different amino acid residuals encoded by Wg were found between S. furcifera and L. striatellus, but more than 10 residuals in N. lugens were different with L. striatellus and S. furcifera. The sequences of amino acids encoded by Wg showed a high degree of identity between these three species of rice planthopper that belong to the same family, Delphacidae. The macropterous and brachypterous lineages of S. furcifera were established by selection experiment. The Wg mRNA expression levels in nymphs were significantly higher in the macropterous lineage than in the brachypterous lineage of S. furcifera. In macropterous adults, the Wg was expressed mainly in wings and legs, and less in body segments. Ingestion of 100 ng/μL double-stranded RNA of Wg from second instar nymphs led to a significant decrease of expression level of Wg during nymphal stage and of body weight of subsequent adults. Moreover, RNAi of Wg resulted in significantly shorter and deformative wings, including shrunken and unfolded wings. CONCLUSION Wg has high degree of identity among three species of rice planthopper. Wg is involved in the development and growth of wings in S. furcifera. Expression level of Wg during the nymphal stage manipulates the size and pattern of wings in S. furcifera.
Collapse
Affiliation(s)
| | | | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Dwivedi SB, Muthusamy B, Kumar P, Kim MS, Nirujogi RS, Getnet D, Ahiakonu P, De G, Nair B, Gowda H, Prasad TSK, Kumar N, Pandey A, Okulate M. Brain proteomics of Anopheles gambiae. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:421-37. [PMID: 24937107 DOI: 10.1089/omi.2014.0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Anopheles gambiae has a well-adapted system for host localization, feeding, and mating behavior, which are all governed by neuronal processes in the brain. However, there are no published reports characterizing the brain proteome to elucidate neuronal signaling mechanisms in the vector. To this end, a large-scale mapping of the brain proteome of An. gambiae was carried out using high resolution tandem mass spectrometry, revealing a repertoire of >1800 proteins, of which 15% could not be assigned any function. A large proportion of the identified proteins were predicted to be involved in diverse biological processes including metabolism, transport, protein synthesis, and olfaction. This study also led to the identification of 10 GPCR classes of proteins, which could govern sensory pathways in mosquitoes. Proteins involved in metabolic and neural processes, chromatin modeling, and synaptic vesicle transport associated with neuronal transmission were predominantly expressed in the brain. Proteogenomic analysis expanded our findings with the identification of 15 novel genes and 71 cases of gene refinements, a subset of which were validated by RT-PCR and sequencing. Overall, our study offers valuable insights into the brain physiology of the vector that could possibly open avenues for intervention strategies for malaria in the future.
Collapse
Affiliation(s)
- Sutopa B Dwivedi
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, Karnataka, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The diverse array of body plans possessed by arthropods is created by generating variations upon a design of repeated segments formed during development, using a relatively small "toolbox" of conserved patterning genes. These attributes make the arthropod body plan a valuable model for elucidating how changes in development create diversity of form. As increasingly specialized segments and appendages evolved in arthropods, the nervous systems of these animals also evolved to control the function of these structures. Although there is a remarkable degree of conservation in neural development both between individual segments in any given species and between the nervous systems of different arthropod groups, the differences that do exist are informative for inferring general principles about the holistic evolution of body plans. This review describes developmental processes controlling neural segmentation and regionalization, highlighting segmentation mechanisms that create both ectodermal and neural segments, as well as recent studies of the role of Hox genes in generating regional specification within the central nervous system. We argue that this system generates a modular design that allows the nervous system to evolve in concert with the body segments and their associated appendages. This information will be useful in future studies of macroevolutionary changes in arthropod body plans, especially in understanding how these transformations can be made in a way that retains the function of appendages during evolutionary transitions in morphology.
Collapse
|
17
|
Xin N, Benchabane H, Tian A, Nguyen K, Klofas L, Ahmed Y. Erect Wing facilitates context-dependent Wnt/Wingless signaling by recruiting the cell-specific Armadillo-TCF adaptor Earthbound to chromatin. Development 2011; 138:4955-67. [PMID: 22028028 DOI: 10.1242/dev.068890] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During metazoan development, the Wnt/Wingless signal transduction pathway is activated repetitively to direct cell proliferation, fate specification, differentiation and apoptosis. Distinct outcomes are elicited by Wnt stimulation in different cellular contexts; however, mechanisms that confer context specificity to Wnt signaling responses remain largely unknown. Starting with an unbiased forward genetic screen in Drosophila, we recently uncovered a novel mechanism by which the cell-specific co-factor Earthbound 1 (Ebd1), and its human homolog jerky, promote interaction between the Wnt pathway transcriptional co-activators β-catenin/Armadillo and TCF to facilitate context-dependent Wnt signaling responses. Here, through the same genetic screen, we find an unanticipated requirement for Erect Wing (Ewg), the fly homolog of the human sequence-specific DNA-binding transcriptional activator nuclear respiratory factor 1 (NRF1), in promoting contextual regulation of Wingless signaling. Ewg and Ebd1 functionally interact with the Armadillo-TCF complex and mediate the same context-dependent Wingless signaling responses. In addition, Ewg and Ebd1 have similar cell-specific expression profiles, bind to each other directly and also associate with chromatin at shared genomic sites. Furthermore, recruitment of Ebd1 to chromatin is abolished in the absence of Ewg. Our findings provide in vivo evidence that recruitment of a cell-specific co-factor complex to specific chromatin sites, coupled with its ability to facilitate Armadillo-TCF interaction and transcriptional activity, promotes contextual regulation of Wnt/Wingless signaling responses.
Collapse
Affiliation(s)
- Nan Xin
- Department of Genetics and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
How a single fertilized cell generates diverse neuronal populations has been a fundamental biological problem since the 19(th) century. Classical histological methods revealed that postmitotic neurons are produced in a precise temporal and spatial order from germinal cells lining the cerebral ventricles. In the 20(th) century, DNA labeling and histo- and immunohistochemistry helped to distinguish the subtypes of dividing cells and delineate their locations in the ventricular and subventricular zones. Recently, genetic and cell biological methods have provided insights into sequential gene expression and molecular and cellular interactions that generate heterogeneous populations of NSCs leading to specific neuronal classes. This precisely regulated developmental process does not tolerate significant in vivo deviation, making replacement of adult neurons by NSCs during pathology a colossal challenge. In contrast, utilizing the trophic factors emanating from the NSC or their derivatives to slow down deterioration or prevent death of degenerating neurons may be a more feasible strategy.
Collapse
Affiliation(s)
- Joshua J. Breunig
- Department of Neurobiology, 2Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Tarik F. Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| | - Pasko Rakic
- Department of Neurobiology, 2Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
19
|
Benchabane H, Xin N, Tian A, Hafler BP, Nguyen K, Ahmed A, Ahmed Y. Jerky/Earthbound facilitates cell-specific Wnt/Wingless signalling by modulating β-catenin-TCF activity. EMBO J 2011; 30:1444-58. [PMID: 21399610 PMCID: PMC3102276 DOI: 10.1038/emboj.2011.67] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/10/2011] [Indexed: 12/29/2022] Open
Abstract
Wnt/Wingless signal transduction directs fundamental developmental processes, and upon hyperactivation triggers colorectal adenoma/carcinoma formation. Responses to Wnt stimulation are cell specific and diverse; yet, how cell context modulates Wnt signalling outcome remains obscure. In a Drosophila genetic screen for components that promote Wingless signalling, we identified Earthbound 1 (Ebd1), a novel member in a protein family containing Centromere Binding Protein B (CENPB)-type DNA binding domains. Ebd1 is expressed in only a subset of Wingless responsive cell types, and is required for only a limited number of Wingless-dependent processes. In addition, Ebd1 shares sequence similarity and can be functionally replaced with the human CENPB domain protein Jerky, previously implicated in juvenile myoclonic epilepsy development. Both Jerky and Ebd1 interact directly with the Wnt/Wingless pathway transcriptional co-activators β-catenin/Armadillo and T-cell factor (TCF). In colon carcinoma cells, Jerky facilitates Wnt signalling by promoting association of β-catenin with TCF and recruitment of β-catenin to chromatin. These findings indicate that tissue-restricted transcriptional co-activators facilitate cell-specific Wnt/Wingless signalling responses by modulating β-catenin-TCF activity.
Collapse
Affiliation(s)
- Hassina Benchabane
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Nan Xin
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Ai Tian
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Brian P Hafler
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Kerrie Nguyen
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Ayah Ahmed
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Yashi Ahmed
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| |
Collapse
|
20
|
Bhat KM, Gaziova I, Katipalla S. Neuralized mediates asymmetric division of neural precursors by two distinct and sequential events: promoting asymmetric localization of Numb and enhancing activation of Notch-signaling. Dev Biol 2011; 351:186-98. [PMID: 21147089 PMCID: PMC3039073 DOI: 10.1016/j.ydbio.2010.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/22/2010] [Accepted: 12/02/2010] [Indexed: 11/19/2022]
Abstract
In the CNS, the evolutionarily conserved Notch pathway regulates asymmetric cell fate specification to daughters of ganglion mother cells (GMCs). The E3 Ubiquitin ligase protein Neuralized (Neur) is thought to activate Notch-signaling by the endocytosis of Delta and the Delta-bound extracellular domain of Notch. The intracellular Notch then initiates Notch-signaling. Numb blocks N-signaling in one of the two daughters of a GMC, allowing that cell to adopt a different identity. Numb is asymmetrically localized in a GMC and is segregated to only one of the two daughter cells. In the typical GMC-1→RP2/sib lineage, we found that loss of Neur activity causes symmetric division of GMC-1 into two RP2s. We further found that Neur asymmetrically localizes in a late GMC-1 to the Numb domain and Neur mediates asymmetric division via two distinct, sequential mechanisms: by promoting the asymmetric localization of Numb in a GMC-1 via down-regulation of the transcription factor Pdm1, followed by enhancing the Notch-signaling via trans-potentiation of Notch in a cell committed to become a sib. In neur mutants the GMC-1 identity is not altered but Numb is non-asymmetrically localized due to an up-regulation of Pdm1. Thus, both its daughters inherit Numb, which prevents Notch from specifying a sib identity. Neur also enhances Notch since in neur; numb double mutants, both sibling cells often adopt a mixed fate as opposed to an RP2 fate observed in Notch; numb double mutants. Furthermore, over-expression of Neur can induce both cells to adopt a sib fate similar to gain of function Notch. Our results tie Numb and Notch-signaling through a single player, Neur, thus giving us a more complete picture of the events surrounding asymmetric division of precursor cells. We also show that Neur and Numb are interdependent for their asymmetric-localizations.
Collapse
Affiliation(s)
- Krishna Moorthi Bhat
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston Texas 77555
| | - Ivana Gaziova
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston Texas 77555
| | - Sumana Katipalla
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston Texas 77555
| |
Collapse
|
21
|
Chu-LaGraff Q, Blanchette C, O'Hern P, Denefrio C. The Batten disease Palmitoyl Protein Thioesterase 1 gene regulates neural specification and axon connectivity during Drosophila embryonic development. PLoS One 2010; 5:e14402. [PMID: 21203506 PMCID: PMC3008717 DOI: 10.1371/journal.pone.0014402] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 11/25/2010] [Indexed: 11/24/2022] Open
Abstract
Palmitoyl Protein Thioesterase 1 (PPT1) is an essential lysosomal protein in the mammalian nervous system whereby defects result in a fatal pediatric disease called Infantile Neuronal Ceroids Lipofuscinosis (INCL). Flies bearing mutations in the Drosophila ortholog Ppt1 exhibit phenotypes similar to the human disease: accumulation of autofluorescence deposits and shortened adult lifespan. Since INCL patients die as young children, early developmental neural defects due to the loss of PPT1 are postulated but have yet to be elucidated. Here we show that Drosophila Ppt1 is required during embryonic neural development. Ppt1 embryos display numerous neural defects ranging from abnormal cell fate specification in a number of identified precursor lineages in the CNS, missing and disorganized neurons, faulty motoneuronal axon trajectory, and discontinuous, misaligned, and incorrect midline crossings of the longitudinal axon bundles of the ventral nerve cord. Defects in the PNS include a decreased number of sensory neurons, disorganized chordotonal neural clusters, and abnormally shaped neurons with aberrant dendritic projections. These results indicate that Ppt1 is essential for proper neuronal cell fates and organization; and to establish the local environment for proper axon guidance and fasciculation. Ppt1 function is well conserved from humans to flies; thus the INCL pathologies may be due, in part, to the accumulation of various embryonic neural defects similar to that of Drosophila. These findings may be relevant for understanding the developmental origin of neural deficiencies in INCL.
Collapse
Affiliation(s)
- Quynh Chu-LaGraff
- Department of Biology, Union College, Schenectady, New York, United States of America.
| | | | | | | |
Collapse
|
22
|
Murat S, Hopfen C, McGregor AP. The function and evolution of Wnt genes in arthropods. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:446-452. [PMID: 20685345 DOI: 10.1016/j.asd.2010.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/19/2010] [Accepted: 05/26/2010] [Indexed: 05/29/2023]
Abstract
Wnt signalling is required for a wide range of developmental processes, from cleavage to patterning and cell migration. There are 13 subfamilies of Wnt ligand genes and this diverse repertoire appeared very early in metazoan evolution. In this review, we first summarise the known Wnt gene repertoire in various arthropods. Insects appear to have lost several Wnt subfamilies, either generally, such as Wnt3, or in lineage specific patterns, for example, the loss of Wnt7 in Anopheles. In Drosophila and Acyrthosiphon, only seven and six Wnt subfamilies are represented, respectively; however, the finding of nine Wnt genes in Tribolium suggests that arthropods had a larger repertoire ancestrally. We then discuss what is currently known about the expression and developmental function of Wnt ligands in Drosophila and other insects in comparison to other arthropods, such as the spiders Achaearanea and Cupiennius. We conclude that studies of Wnt genes have given us much insight into the developmental roles of some of these ligands. However, given the frequent loss of Wnt genes in insects and the derived development of Drosophila, further studies of these important genes are required in a broader range of arthropods to fully understand their developmental function and evolution.
Collapse
Affiliation(s)
- Sophie Murat
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna, Austria
| | | | | |
Collapse
|
23
|
Losada-Pérez M, Gabilondo H, del Saz D, Baumgardt M, Molina I, León Y, Monedero I, Díaz-Benjumea F, Torroja L, Benito-Sipos J. Lineage-unrelated neurons generated in different temporal windows and expressing different combinatorial codes can converge in the activation of the same terminal differentiation gene. Mech Dev 2010; 127:458-71. [DOI: 10.1016/j.mod.2010.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 01/12/2023]
|
24
|
Role of en and novel interactions between msh, ind, and vnd in dorsoventral patterning of the Drosophila brain and ventral nerve cord. Dev Biol 2010; 346:332-45. [PMID: 20673828 DOI: 10.1016/j.ydbio.2010.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/14/2010] [Accepted: 07/17/2010] [Indexed: 12/27/2022]
Abstract
Subdivision of the neuroectoderm into discrete gene expression domains is essential for the correct specification of neural stem cells (neuroblasts) during central nervous system development. Here, we extend our knowledge on dorsoventral (DV) patterning of the Drosophila brain and uncover novel genetic interactions that control expression of the evolutionary conserved homeobox genes ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), and muscle segment homeobox (msh). We show that cross-repression between Ind and Msh stabilizes the border between intermediate and dorsal tritocerebrum and deutocerebrum, and that both transcription factors are competent to inhibit vnd expression. Conversely, Vnd segment-specifically affects ind expression; it represses ind in the tritocerebrum but positively regulates ind in the deutocerebrum by suppressing Msh. These data provide further evidence that in the brain, in contrast to the trunc, the precise boundaries between DV gene expression domains are largely established through mutual inhibition. Moreover, we find that the segment-polarity gene engrailed (en) regulates the expression of vnd, ind, and msh in a segment-specific manner. En represses msh and ind but maintains vnd expression in the deutocerebrum, is required for down-regulation of Msh in the tritocerebrum to allow activation of ind, and is necessary for maintenance of Ind in truncal segments. These results indicate that input from the anteroposterior patterning system is needed for the spatially restricted expression of DV genes in the brain and ventral nerve cord.
Collapse
|
25
|
Gaziova I, Bhat KM. Ancestry-independent fate specification and plasticity in the developmental timing of a typical Drosophila neuronal lineage. Development 2008; 136:263-74. [PMID: 19088087 DOI: 10.1242/dev.027854] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the Drosophila CNS, combinatorial, interdependent, sequential genetic programs in neuroectodermal (NE) cells, prior to the formation of neuroblasts (NBs), determine the initial identity of NBs. Temporal factors are then sequentially expressed to change the temporal identity. It is unclear at what levels this positional and temporal information integrates to determine progeny cell identity. One idea is that this is a top-down linear process: the identity of a NB determines the identity of its daughter, the ganglion mother cell (GMC), the asymmetric division of the GMC and the fate specification of daughter cells of the GMC. Our results with midline (mid), which encodes a T-box protein, in a typical lineage, NB4-2-->GMC-1-->RP2/sib, suggest that at least part of the process operates in GMCs. That is, a GMC or a neuronal identity need not be determined at the NB or NE level. This is demonstrated by showing that Mid is expressed in a row 5 GMC (M-GMC), but not in its parent NB or NE cell. In mid mutants, M-GMC changes into GMC-1 and generates an RP2 and a sib without affecting the expression of key genes at the NE/NB levels. Expression of Mid in the M-GMC in mid mutants rescues the fate change, indicating that Mid specifies neurons at the GMC level. Moreover, we found a significant plasticity in the temporal window in which a neuronal lineage can develop. Although the extra GMC-1 in mid mutants is born approximately 2 hours later than the bona fide GMC-1, it follows the same developmental pattern as the bona fide GMC-1. Thus, a GMC identity can be independent of parental identity and GMC formation and elaboration need not be strictly time-bound.
Collapse
Affiliation(s)
- Ivana Gaziova
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
| | | |
Collapse
|
26
|
Abstract
Neurogenesis in Drosophila and mammals requires the precise integration of spatial and temporal cues. In Drosophila, embryonic neural progenitors (neuroblasts) sequentially express the transcription factors Hunchback, Kruppel, Pdm1/Pdm2 (Pdm) and Castor as they generate a stereotyped sequence of neuronal and glial progeny. Hunchback and Kruppel specify early temporal identity in two posterior neuroblast lineages (NB7-1 and NB7-3), whereas Pdm and Castor specify late neuronal identity in the NB7-1 lineage. Because Pdm and Castor have only been assayed in one lineage, it is unknown whether their function is restricted to neuronal identity in the NB7-1 lineage, or whether they function more broadly as late temporal identity genes in all neuroblast lineages. Here, we identify neuronal birth-order and molecular markers within the NB3-1 cell lineage, and then use this lineage to assay Pdm and Castor function. We show that Hunchback and Kruppel specify first and second temporal identities, respectively. Surprisingly, Pdm does not specify the third temporal identity, but instead acts as a timing factor to close the second temporal identity window. Similarly, Castor closes the third temporal identity window. We conclude that Hunchback and Kruppel specify the first and second temporal identities, an unknown factor specifies the third temporal identity, and Pdm and Castor are timing factors that close the second and third temporal identity windows in the NB3-1 lineage. Our results provide a new neuroblast lineage for investigating temporal identity and reveal the importance of Pdm and Cas as timing factors that close temporal identity windows.
Collapse
Affiliation(s)
- Khoa D. Tran
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Chris Q. Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
27
|
Bhat KM. Wingless activity in the precursor cells specifies neuronal migratory behavior in the Drosophila nerve cord. Dev Biol 2007; 311:613-22. [PMID: 17936746 PMCID: PMC2175177 DOI: 10.1016/j.ydbio.2007.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/29/2007] [Accepted: 09/06/2007] [Indexed: 01/18/2023]
Abstract
Neurons and their precursor cells are formed in different regions within the developing CNS, but they migrate and occupy very specific sites in the mature CNS. The ultimate position of neurons is crucial for establishing proper synaptic connectivity in the brain. In Drosophila, despite its extensive use as a model system to study neurogenesis, we know almost nothing about neuronal migration or its regulation. In this paper, I show that one of the most studied neuronal pairs in the Drosophila nerve cord, RP2/sib, has a complicated migratory route. Based on my studies on Wingless (Wg) signaling, I report that the neuronal migratory pattern is determined at the precursor cell stage level. The results show that Wg activity in the precursor neuroectodermal and neuroblast levels specify neuronal migratory pattern two divisions later, thus, well ahead of the actual migratory event. Moreover, at least two downstream genes, Cut and Zfh1, are involved in this process but their role is at the downstream neuronal level. The functional importance of normal neuronal migration and the requirement of Wg signaling for the process are indicated by the finding that mislocated RP2 neurons in embryos mutant for Wg-signaling fail to properly send out their axon projection.
Collapse
Affiliation(s)
- Krishna Moorthi Bhat
- Department of Neuroscience and Cell Biology, University of Texas Medical School Galveston, Texas 77555 Tel: 409−747−2214 Fax: 409−747−2187
| |
Collapse
|
28
|
Chao AT, Jones WM, Bejsovec A. The HMG-box transcription factor SoxNeuro acts with Tcf to control Wg/Wnt signaling activity. Development 2007; 134:989-97. [PMID: 17267442 DOI: 10.1242/dev.02796] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Wnt signaling specifies cell fates in many tissues during vertebrate and invertebrate embryogenesis. To understand better how Wnt signaling is regulated during development, we have performed genetic screens to isolate mutations that suppress or enhance mutations in the fly Wnt homolog, wingless (wg). We find that loss-of-function mutations in the neural determinant SoxNeuro (also known as Sox-neuro, SoxN) partially suppress wg mutant pattern defects. SoxN encodes a HMG-box-containing protein related to the vertebrate Sox1, Sox2 and Sox3 proteins, which have been implicated in patterning events in the early mouse embryo. In Drosophila, SoxN has previously been shown to specify neural progenitors in the embryonic central nervous system. Here, we show that SoxN negatively regulates Wg pathway activity in the embryonic epidermis. Loss of SoxN function hyperactivates the Wg pathway, whereas its overexpression represses pathway activity. Epistasis analysis with other components of the Wg pathway places SoxN at the level of the transcription factor Pan (also known as Lef, Tcf) in regulating target gene expression. In human cell culture assays, SoxN represses Tcf-responsive reporter expression, indicating that the fly gene product can interact with mammalian Wnt pathway components. In both flies and in human cells, SoxN repression is potentiated by adding ectopic Tcf, suggesting that SoxN interacts with the repressor form of Tcf to influence Wg/Wnt target gene transcription.
Collapse
Affiliation(s)
- Anna T Chao
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
29
|
Liu Z, Yang X, Dong Y, Friedrich M. Tracking down the "head blob": comparative analysis of wingless expression in the developing insect procephalon reveals progressive reduction of embryonic visual system patterning in higher insects. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:341-356. [PMID: 18089080 DOI: 10.1016/j.asd.2006.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 07/05/2006] [Indexed: 05/25/2023]
Abstract
The evolution of larval head morphology in holometabolous insects is characterized by reduction of antennal appendages and the visual system components. Little insight has been gained into molecular developmental changes underlying this morphological diversification. Here we compare the expression of the segment polarity gene wingless (wg) in the pregnathal head of fruit fly, flour beetle and grasshopper embryos. We provide evidence that wg activity contributes to segment border formation, and, subsequently, the separation of the visual system and protocerebrum anlagen in the anterior procephalon. In directly developing insects like grasshopper, seven expression domains are formed during this process. The activation of four of these, which correspond to polar expression pairs in the optic lobe anlagen and the protocerebral ectoderm, has shifted to postembryonic stages in flour beetle and Drosophila. The remaining three domains map to the protocerebral neuroectoderm, and form by disintegration of a large precursor domain in flour beetle and grasshopper. In Drosophila, the precursor domain remains intact, constituting the previously described "head blob". These data document major changes in the expression of an early patterning gene correlated with the dramatic evolution of embryonic visual system development in the Holometabola.
Collapse
Affiliation(s)
- Zhenyi Liu
- Department of Molecular Biology and Pharmacology, Washington University in St Louis School of Medicine, 3600 Cancer Research Building, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
30
|
Kiger JA, Natzle JE, Kimbrell DA, Paddy MR, Kleinhesselink K, Green MM. Tissue remodeling during maturation of the Drosophila wing. Dev Biol 2006; 301:178-91. [PMID: 16962574 PMCID: PMC1828914 DOI: 10.1016/j.ydbio.2006.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 08/01/2006] [Accepted: 08/04/2006] [Indexed: 01/10/2023]
Abstract
The final step in morphogenesis of the adult fly is wing maturation, a process not well understood at the cellular level due to the impermeable and refractive nature of cuticle synthesized some 30 h prior to eclosion from the pupal case. Advances in GFP technology now make it possible to visualize cells using fluorescence after cuticle synthesis is complete. We find that, between eclosion and wing expansion, the epithelia within the folded wing begin to delaminate from the cuticle and that delamination is complete when the wing has fully expanded. After expansion, epithelial cells lose contact with each other, adherens junctions are disrupted, and nuclei become pycnotic. The cells then change shape, elongate, and migrate from the wing into the thorax. During wing maturation, the Timp gene product, tissue inhibitor of metalloproteinases, and probably other components of an extracellular matrix are expressed that bond the dorsal and ventral cuticular surfaces of the wing following migration of the cells. These steps are dissected using the batone and Timp genes and ectopic expression of alphaPS integrin, inhibitors of Armadillo/beta-catenin nuclear activity and baculovirus caspase inhibitor p35. We conclude that an epithelial-mesenchymal transition is responsible for epithelial delamination and dissolution.
Collapse
Affiliation(s)
- John A Kiger
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Technau GM, Berger C, Urbach R. Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila. Dev Dyn 2006; 235:861-9. [PMID: 16222713 DOI: 10.1002/dvdy.20566] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Development of the central nervous system (CNS) involves the transformation of a two-dimensional epithelial sheet of uniform ectodermal cells, the neuroectoderm, into a highly complex three-dimensional structure consisting of a huge variety of different neural cell types. Characteristic numbers of each cell type become arranged in reproducible spatial patterns, which is a prerequisite for the establishment of specific functional contacts. The fruitfly Drosophila is a suitable model to approach the mechanisms controlling the generation of cell diversity and pattern in the developing CNS, as it allows linking of gene function to individually identifiable cells. This review addresses aspects of the formation and specification of neural stem cells (neuroblasts) in Drosophila in the light of recent studies on their segmental diversification.
Collapse
Affiliation(s)
- Gerhard M Technau
- Institute of Genetics, University of Mainz, Saarstrasse 21, 55122 Mainz, Germany.
| | | | | |
Collapse
|
32
|
Wheeler SR, Kearney JB, Guardiola AR, Crews ST. Single-cell mapping of neural and glial gene expression in the developing Drosophila CNS midline cells. Dev Biol 2006; 294:509-24. [PMID: 16631157 PMCID: PMC2718739 DOI: 10.1016/j.ydbio.2006.03.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 03/01/2006] [Accepted: 03/13/2006] [Indexed: 11/29/2022]
Abstract
Understanding the generation of neuronal and glial diversity is one of the major goals of developmental neuroscience. The Drosophila CNS midline cells constitute a simple neurogenomic system to study neurogenesis, cell fate acquisition, and neuronal function. Previously, we identified and determined the developmental expression profiles of 224 midline-expressed genes. Here, the expression of 59 transcription factors, signaling proteins, and neural function genes was analyzed using multi-label confocal imaging, and their expression patterns mapped at the single-cell level at multiple stages of CNS development. These maps uniquely identify individual cells and predict potential regulatory events and combinatorial protein interactions that may occur in each midline cell type during their development. Analysis of neural function genes, including those encoding peptide neurotransmitters, neurotransmitter biosynthetic enzymes, transporters, and neurotransmitter receptors, allows functional characterization of each neuronal cell type. This work is essential for a comprehensive genetic analysis of midline cell development that will likely have widespread significance given the high degree of evolutionary conservation of the genes analyzed.
Collapse
Affiliation(s)
| | | | - Amaris R. Guardiola
- Program in Molecular Biology and Biotechnology, Department of Biochemistry and Biophysics, CB#3280 Fordham Hall, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Stephen T. Crews
- Program in Molecular Biology and Biotechnology, Department of Biochemistry and Biophysics, CB#3280 Fordham Hall, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
33
|
Buescher M, Tio M, Tear G, Overton PM, Brook WJ, Chia W. Functions of the segment polarity genes midline and H15 in Drosophila melanogaster neurogenesis. Dev Biol 2006; 292:418-29. [PMID: 16499900 DOI: 10.1016/j.ydbio.2006.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/16/2006] [Accepted: 01/18/2006] [Indexed: 01/29/2023]
Abstract
The Drosophila melanogaster ventral nerve cord derives from neural progenitor cells called neuroblasts. Individual neuroblasts have unique gene expression profiles and give rise to distinct clones of neurons and glia. The specification of neuroblast identity provides a cell intrinsic mechanism which ultimately results in the generation of progeny which are different from each other. Segment polarity genes have a dual function in early neurogenesis: within distinct regions of the neuroectoderm, they are required both for neuroblast formation and for the specification of neuroblast identity. Previous studies of segment polarity gene function largely focused on neuroblasts that arise within the posterior part of the segment. Here we show that the segment polarity gene midline is required for neuroblast formation in the anterior-most part of the segment. Moreover, midline contributes to the specification of anterior neuroblast identity by negatively regulating the expression of Wingless and positively regulating the expression of Mirror. In the posterior-most part of the segment, midline and its paralog, H15, have partially redundant functions in the regulation of the NB marker Eagle. Hence, the segment polarity genes midline and H15 play an important role in the development of the ventral nerve cord in the anterior- and posterior-most part of the segment.
Collapse
Affiliation(s)
- Marita Buescher
- Medical Research Council Centre for Developmental Neurobiology, King's College London, 4th Floor New Hunt's House, Guy's Hospital Campus, London SE1 1UL, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Cox VT, Beckett K, Baylies MK. Delivery of wingless to the ventral mesoderm by the developing central nervous system ensures proper patterning of individual slouch-positive muscle progenitors. Dev Biol 2005; 287:403-15. [PMID: 16226242 DOI: 10.1016/j.ydbio.2005.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 09/02/2005] [Accepted: 09/13/2005] [Indexed: 11/27/2022]
Abstract
During the development of any organism, care must be given to properly pattern gene expression in temporally and spatially regulated manners. This process becomes more complex when the signals that regulate a target tissue are produced in an adjacent tissue and must travel to the target tissue to affect gene expression. We have used the developing somatic mesoderm in Drosophila as a system in which to examine this problem. Our investigation uncovered a novel mechanism by which Wingless (Wg) can travel from its source in the ectoderm to regulate the expression of the somatic muscle founder identity gene, slouch, in the ventral mesoderm. Delivery of Wg to the mesoderm by the developing Central Nervous System (CNS) exploits the stereotypic formation of this tissue to provide high Wg levels to Slouch founder cell cluster II in a temporally specific manner. Coordinated development of these tissues provides a reliable mechanism for delivering high Wg levels to a subset of mesodermal cells. It also provides a means for one signaling pathway to be used reiteratively throughout development to impart unique positional and character information within a target field.
Collapse
Affiliation(s)
- Virginia T Cox
- Program in Developmental Biology, Weill Graduate School of Medical Sciences at Cornell University and Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
35
|
Merianda TT, Botta V, Bhat KM. Patched regulation of axon guidance is by specifying neural identity in the Drosophila nerve cord. Dev Genes Evol 2005; 215:285-96. [PMID: 15754211 DOI: 10.1007/s00427-005-0475-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 01/27/2005] [Indexed: 12/17/2022]
Abstract
Within an axon bundle, one or two are pioneering axons and the rest are follower axons. Pioneering axons are projected first and the follower axons are projected later but follow a pioneering axon(s) pathway. It is not clear whether the pioneering axons have a guidance role for follower axons. In this paper, we have investigated the role of Patched (Ptc) in regulating the guidance of medial tract, one of the longitudinal tracts in the nerve cord. In patched mutants the medial longitudinal tract fails to fasciculate on its own side along the nerve cord, instead it abnormally crosses the midline and fasciculates with the contralateral tract. Interestingly, the medial tracts cross the midline ignoring the axon-repellant Slit on the midline and Roundabout on growth cones. The medial tract is pioneered by neurons pCC and vMP2. Our results show that guidance defects of this tract are due to loss and mis-specification of vMP2, which results in the projection from pCC to either stall or project outward near the location of vMP2. Thus, both pioneering neurons are necessary for the proper guidance of pioneering and follower axons. We also show that the loss of Ptc activity in the neuroectoderm prior to the formation of S1 and S2 neuroblasts causes the majority of axon guidance defects. These results provide insight into how mis-specification and loss of neurons can non-autonomously contribute to defects in axon pathfinding.
Collapse
Affiliation(s)
- Tanuja T Merianda
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
36
|
Fradkin LG, van Schie M, Wouda RR, de Jong A, Kamphorst JT, Radjkoemar-Bansraj M, Noordermeer JN. The Drosophila Wnt5 protein mediates selective axon fasciculation in the embryonic central nervous system. Dev Biol 2004; 272:362-75. [PMID: 15282154 DOI: 10.1016/j.ydbio.2004.04.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Revised: 03/25/2004] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
The decision of whether and where to cross the midline, an evolutionarily conserved line of bilateral symmetry in the central nervous system, is the first task for many newly extending axons. We show that Wnt5, a member of the conserved Wnt secreted glycoprotein family, is required for the formation of the anterior of the two midline-crossing commissures present in each Drosophila hemisegment. Initial path finding of pioneering neurons across the midline in both commissures is normal in wnt5 mutant embryos; however, the subsequent separation of the early midline-crossing axons into two distinct commissures does not occur. The majority of the follower axons that normally cross the midline in the anterior commissure fail to do so, remaining tightly associated near their cell bodies, or projecting inappropriately across the midline in between the commissures. The lateral and intermediate longitudinal pathways also fail to form correctly, similarly reflecting earlier failures in pathway defasciculation. Panneural expression of Wnt5 in a wnt5 mutant background rescues both the commissural and longitudinal defects. We show that the Wnt5 protein is predominantly present on posterior commissural axons and at a low level on the anterior commissure and longitudinal projections. Finally, we demonstrate that transcriptional repression of wnt5 in AC neurons by the recently described Wnt5 receptor, Derailed, contributes to this largely posterior commissural localization of Wnt5 protein.
Collapse
Affiliation(s)
- Lee G Fradkin
- Department of Molecular and Cell Biology, Leiden University Medical Center, 2333 AL Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
37
|
De Graeve F, Jagla T, Daponte JP, Rickert C, Dastugue B, Urban J, Jagla K. The ladybird homeobox genes are essential for the specification of a subpopulation of neural cells. Dev Biol 2004; 270:122-34. [PMID: 15136145 DOI: 10.1016/j.ydbio.2004.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 02/06/2004] [Accepted: 02/09/2004] [Indexed: 11/26/2022]
Abstract
In Drosophila, neurons and glial cells are produced by neural precursor cells called neuroblasts (NBs), which can be individually identified. Each NB generates a characteristic cell lineage specified by a precise spatiotemporal control of gene expression within the NB and its progeny. Here we show that the homeobox genes ladybird early and ladybird late are expressed in subsets of cells deriving from neuroblasts NB 5-3 and NB 5-6 and are essential for their correct development. Our analysis revealed that ladybird in Drosophila, like their vertebrate orthologous Lbx1 genes, play an important role in cell fate specification processes. Among those cells that express ladybird are NB 5-6-derived glial cells. In ladybird loss-of-function mutants, the NB 5-6-derived exit glial cells are absent while overexpression of these genes leads to supernumerary glial cells of this type. Furthermore, aberrant glial cell positioning and aberrant spacing of axonal fascicles in the nerve roots observed in embryos with altered ladybird function suggest that the ladybird genes might also control directed cell movements and cell-cell interactions within the developing Drosophila ventral nerve cord.
Collapse
|
38
|
Matthies HJG, Broadie K. Techniques to dissect cellular and subcellular function in the Drosophila nervous system. Methods Cell Biol 2004; 71:195-265. [PMID: 12884693 DOI: 10.1016/s0091-679x(03)01011-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Heinrich J G Matthies
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
39
|
Landgraf M, Jeffrey V, Fujioka M, Jaynes JB, Bate M. Embryonic origins of a motor system: motor dendrites form a myotopic map in Drosophila. PLoS Biol 2003; 1:E41. [PMID: 14624243 PMCID: PMC261881 DOI: 10.1371/journal.pbio.0000041] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 08/25/2003] [Indexed: 11/19/2022] Open
Abstract
The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning) competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units.
Collapse
Affiliation(s)
- Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
40
|
Orme MH, Giannini AL, Vivanco MD, Kypta RM. Glycogen synthase kinase-3 and Axin function in a β-catenin-independent pathway that regulates neurite outgrowth in neuroblastoma cells. Mol Cell Neurosci 2003; 24:673-86. [PMID: 14664817 DOI: 10.1016/s1044-7431(03)00229-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have sought to determine the roles of beta-catenin and the Wnt signaling pathway in neurite outgrowth using a model cell system, the Neuro-2a neuroblastoma cell line. Activation of the Wnt signaling pathway disrupts a multiprotein complex that includes beta-catenin, Axin, and glycogen synthase kinase-3 (GSK-3), which would otherwise promote the phosphorylation and degradation of beta-catenin. Stabilized beta-catenin accumulates in the cytosol and in the nucleus; in the nucleus it binds to TCF family transcription factors, forming a bipartite transcriptional activator of Wnt target genes. These events can be mimicked by lithium (Li(+)), which inhibits GSK-3 activity. Both Li(+) and the GSK-3 inhibitor SB415286 induced neurite outgrowth of Neuro-2a cells. Li(+)-induced neurite outgrowth did not require beta-catenin-/TCF-dependent transcription, and increasing levels of beta-catenin either by transfection or using Wnt-3A was not sufficient to induce neurite outgrowth. Interestingly, Axin, which is also a substrate for GSK-3, was destabilized by Li(+) and ectopic expression of Axin inhibited Li(+)-induced neurite outgrowth. Deletion analysis of Axin indicated that this inhibition required the GSK-3 binding site, but not the beta-catenin binding site. Our results suggest that a signaling pathway involving Axin and GSK-3, but not beta-catenin, regulates Li(+)-induced neurite outgrowth in Neuro-2a cells.
Collapse
Affiliation(s)
- M H Orme
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | | | | | | |
Collapse
|
41
|
Stollewerk A, Tautz D, Weller M. Neurogenesis in the spider: new insights from comparative analysis of morphological processes and gene expression patterns. ARTHROPOD STRUCTURE & DEVELOPMENT 2003; 32:5-16. [PMID: 18088993 DOI: 10.1016/s1467-8039(03)00041-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2002] [Accepted: 05/07/2003] [Indexed: 05/25/2023]
Abstract
While there is a detailed understanding of neurogenesis in insects and partially also in crustaceans, little is known about neurogenesis in chelicerates. In the spider Cupiennius salei Keyserling, 1877 (Chelicerata, Arachnida, Araneae) invaginating cell groups arise sequentially and in a stereotyped pattern comparable to the formation of neuroblasts in Drosophila melanogaster Meigen, 1830 (Insecta, Diptera, Cyclorrhapha, Drosophilidae). In addition, functional analysis revealed that in the spider homologues of the D. melanogaster proneural and neurogenic genes control the recruitment and singling out of neural precursors like in D. melanogaster. Although groups of cells, rather than individual cells, are singled out from the spider neuroectoderm which can thus not be homologized with the insect neuroblasts, similar genes seem to confer neural identity to the neural precursor cells of the spider. We show here that the pan-neural genes snail and the neural identity gene Krüppel are expressed in neural precursors in a heterogenous spatio-temporal pattern that is comparable to the pattern in D. melanogaster. Our data suggest that the early genetic network involved in recruitment and specification of neural precursors is conserved among insects and chelicerates.
Collapse
Affiliation(s)
- Angelika Stollewerk
- Abteilung fuer Evolutionsgenetik, Institut fuer Genetik, Universitaet zu Koeln, Weyertal 121, 50931 Koeln, Germany
| | | | | |
Collapse
|
42
|
Urbach R, Technau GM. Segment polarity and DV patterning gene expression reveals segmental organization of the Drosophila brain. Development 2003; 130:3607-20. [PMID: 12835379 DOI: 10.1242/dev.00532] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The insect brain is traditionally subdivided into the trito-, deuto- and protocerebrum. However, both the neuromeric status and the course of the borders between these regions are unclear. The Drosophila embryonic brain develops from the procephalic neurogenic region of the ectoderm, which gives rise to a bilaterally symmetrical array of about 100 neuronal precursor cells, called neuroblasts. Based on a detailed description of the spatiotemporal development of the entire population of embryonic brain neuroblasts, we carried out a comprehensive analysis of the expression of segment polarity genes (engrailed, wingless, hedgehog, gooseberry distal, mirror) and DV patterning genes (muscle segment homeobox, intermediate neuroblast defective, ventral nervous system defective) in the procephalic neuroectoderm and the neuroblast layer (until stage 11, when all neuroblasts are formed). The data provide new insight into the segmental organization of the procephalic neuroectodem and evolving brain. The expression patterns allow the drawing of clear demarcations between trito-, deuto- and protocerebrum at the level of identified neuroblasts. Furthermore, we provide evidence indicating that the protocerebrum (most anterior part of the brain) is composed of two neuromeres that belong to the ocular and labral segment, respectively. These protocerebral neuromeres are much more derived compared with the trito- and deutocerebrum. The labral neuromere is confined to the posterior segmental compartment. Finally, similarities in the expression of DV patterning genes between the Drosophila and vertebrate brains are discussed.
Collapse
Affiliation(s)
- Rolf Urbach
- Institut für Genetik, Universität Mainz, D-55099 Mainz, Germany
| | | |
Collapse
|
43
|
Affiliation(s)
- Stephen W Paddock
- Howard Hughes Medical Institute, Department of Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
44
|
Schweizer L, Nellen D, Basler K. Requirement for Pangolin/dTCF in Drosophila Wingless signaling. Proc Natl Acad Sci U S A 2003; 100:5846-51. [PMID: 12730381 PMCID: PMC156289 DOI: 10.1073/pnas.1037533100] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Wingless (Wg) protein is a secreted glycoprotein involved in intercellular signaling. On activation of the Wg signaling pathway, Armadillo is stabilized, causing target genes to be activated by the transcription factor Pangolin (Pan). This study investigated the roles of Pan in the developing wing of Drosophila by clonal analysis. Three different aspects of wing development were examined: cell proliferation, wing margin specification, and wg self-refinement. Our results indicate that Pan function is critically required for all three of these processes. Consequently, lack of pan causes a severe reduction in the activity of the Wg target genes Distalless and vestigial within their normal domain of expression. Loss of pan function does not, however, lead to a derepression of these genes outside this domain. Thus, although Pan is positively required for the induction of Wg targets in the wing imaginal disk, it does not appear to play a default repressor function in the absence of Wg input. In contrast, lack of zygotic pan function causes a milder phenotype than that caused by the lack of wg function in the embryo. We show that this difference cannot be attributed to maternally provided pan product, indicating that a Pan repressor function usually prevents the expression of embryonic Wg targets. Together, our results suggest that for embryonic patterning the activator as well as repressor forms of Pan play important roles, while for wing development Pan operates primarily in the activator mode.
Collapse
Affiliation(s)
- Liang Schweizer
- Institut für Molekularbiologie, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | |
Collapse
|
45
|
Abstract
The Drosophila ventral nerve cord has been a central model system for studying the molecular genetic mechanisms that control CNS development. Studies show that the generation of neural diversity is a multistep process initiated by the patterning and segmentation of the neuroectoderm. These events act together with the process of lateral inhibition to generate precursor cells (neuroblasts) with specific identities, distinguished by the expression of unique combinations of regulatory genes. The expression of these genes in a given neuroblast restricts the fate of its progeny, by activating specific combinations of downstream genes. These genes in turn specify the identity of any given postmitotic cell, which is evident by its cellular morphology and choice of neurotransmitter.
Collapse
Affiliation(s)
- James B Skeath
- Department of Genetics, Washington University School of Medicine, 4566 Scott Avenue, St Louis, MO 63110, USA.
| | | |
Collapse
|
46
|
Lobo MVT, Alonso FJM, Redondo C, López-Toledano MA, Caso E, Herranz AS, Paíno CL, Reimers D, Bazán E. Cellular characterization of epidermal growth factor-expanded free-floating neurospheres. J Histochem Cytochem 2003; 51:89-103. [PMID: 12502758 DOI: 10.1177/002215540305100111] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neural stem cells proliferate in liquid culture as cell clusters (neurospheres). This study was undertaken to characterize the epidermal growth factor (EGF)-expanded free-floating neurospheres derived from rat fetal striatum. We examined the ultrastructural and antigenic characteristics of these spheres. They consisted of two cell types, electron-dense and electron-lucent cells. Lucent cells were immunopositive to actin, vimentin, and nestin, whereas dense cells were immunopositive to actin, weakly positive to vimentin, and nestin-negative. Neurospheres contained healthy, apoptotic, and necrotic cells. Healthy cells were attached to each other by adherens junctions. They showed many pseudopodia and occasionally a single cilium. Sphere cells showed phagocytic capability because healthy cells phagocytosed the cell debris derived from dead cells in a particular process that involves the engulfment of dying cells by cell processes from healthy cells. Sphere cells showed a cytoplasmic and a nuclear pool of fibroblast growth factor (FGF) receptors. They expressed E- and N-cadherin, alpha- and beta-catenin, EGF receptor, and a specific subset of FGF receptors. Because sphere cells expressed this factor in the absence of exogenous FGF-2, we propose that they are able to synthesize FGF-2.
Collapse
Affiliation(s)
- Maria V T Lobo
- Departamento de Investigación, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Oh CT, Kwon SH, Jeon KJ, Han PL, Kim SH, Jeon SH. Local inhibition of Drosophila homeobox-containing neural dorsoventral patterning genes by Dpp. FEBS Lett 2002; 531:427-31. [PMID: 12435587 DOI: 10.1016/s0014-5793(02)03573-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An important step in Drosophila neurogenesis is to establish the neural dorsoventral (DV) patterning. Here we describe how dpp loss-of- and gain-of-function mutation affects the homeobox-containing neural DV patterning genes expressed in the ventral neuroectoderm. Ventral nervous system defective (vnd), intermediate neuroblast defective (ind), muscle-specific homeobox (msh), and orthodenticle (otd) genes participate in development of the central nervous system and peripheral nervous system, and encode homeodomain proteins. otd and msh genes were ectopically expressed in dpp loss-of-function mutation, but vnd and ind were not affected. However, when dpp was ectopically expressed in the ventral neuroectoderm by rho-GAL4/UAS-dpp system, it caused the repression of vnd, and msh expressions in ventral and dorsal columns of the neuroectoderm, respectively, but not that of ind. The later expression pattern of otd was also restricted by Dpp. The expression pattern of msh, vnd and otd in dpp loss-of-function and gain-of-function mutation indicates that Dpp activity does not reach to the ventral midline and it works locally to establish the dorsal boundary of the ventral neuroectoderm.
Collapse
Affiliation(s)
- Chun Taek Oh
- Department of Biological Sciences, Konkuk University, 1 Hwayang-Dong, Kwangjin-Gu, 143-701, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
48
|
Packard M, Koo ES, Gorczyca M, Sharpe J, Cumberledge S, Budnik V. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 2002; 111:319-30. [PMID: 12419243 PMCID: PMC3499980 DOI: 10.1016/s0092-8674(02)01047-4] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
At vertebrate neuromuscular junctions (NMJs), Agrin plays pivotal roles in synapse development, but molecules that activate synapse formation at central synapses are largely unknown. Members of the Wnt family are well established as morphogens, yet recently they have also been implicated in synapse maturation. Here we demonstrate that the Drosophila Wnt, Wingless (Wg), is essential for synapse development. We show that Wg and its receptor are expressed at glutamatergic NMJs, and that Wg is secreted by synaptic boutons. Loss of Wg leads to dramatic reductions in target-dependent synapse formation, and new boutons either fail to develop active zones and postsynaptic specializations or these are strikingly aberrant. We suggest that Wg signals the coordinated development of pre- and postsynaptic compartments.
Collapse
Affiliation(s)
- Mary Packard
- Department of Biology, Cell, Molecular, and Developmental Biology Program, University of Massachusetts, Amherst, Massachusetts 01003
| | - Ellen Sumin Koo
- Department of Biochemistry and Molecular Biology, Cell, Molecular, and Developmental Biology Program, University of Massachusetts, Amherst, Massachusetts 01003
| | - Michael Gorczyca
- Department of Biology, Cell, Molecular, and Developmental Biology Program, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jade Sharpe
- Department of Biology, Cell, Molecular, and Developmental Biology Program, University of Massachusetts, Amherst, Massachusetts 01003
| | - Susan Cumberledge
- Department of Biochemistry and Molecular Biology, Cell, Molecular, and Developmental Biology Program, University of Massachusetts, Amherst, Massachusetts 01003
| | - Vivian Budnik
- Department of Biology, Cell, Molecular, and Developmental Biology Program, University of Massachusetts, Amherst, Massachusetts 01003
- Correspondence:
| |
Collapse
|
49
|
Belenkaya TY, Han C, Standley HJ, Lin X, Houston DW, Heasman J, Lin X. pygopusencodes a nuclear protein essential for Wingless/Wnt signaling. Development 2002; 129:4089-101. [PMID: 12163411 DOI: 10.1242/dev.129.17.4089] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Wingless (Wg)/Wnt signal transduction pathway regulates many developmental processes through a complex of Armadillo(Arm)/β-catenin and the HMG-box transcription factors of the Tcf family. We report the identification of a new component, Pygopus (Pygo), that plays an essential role in the Wg/Wnt signal transduction pathway. We show that Wg signaling is diminished during embryogenesis and imaginal disc development in the absence of pygo activity. Pygo acts downstream or in parallel with Arm to regulate the nuclear function of Arm protein. pygo encodes a novel and evolutionarily conserved nuclear protein bearing a PHD finger that is essential for its activity. We further show that Pygo can form a complex with Arm in vivo and possesses a transcription activation domain(s). Finally, we have isolated a Xenopus homolog of pygo (Xpygo). Depletion of maternal Xpygo by antisense deoxyoligonucleotides leads to ventralized embryonic defects and a reduction of the expression of Wnt target genes. Together, these findings demonstrate that Pygo is an essential component in the Wg/Wnt signal transduction pathway and is likely to act as a transcription co-activator required for the nuclear function of Arm/β-catenin.
Collapse
Affiliation(s)
- Tatyana Y Belenkaya
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Parker DS, Jemison J, Cadigan KM. Pygopus, a nuclear PHD-finger protein required for Wingless signaling inDrosophila. Development 2002; 129:2565-76. [PMID: 12015286 DOI: 10.1242/dev.129.11.2565] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The secreted glycoprotein Wingless (Wg) acts through a conserved signaling pathway to regulate target gene expression. Wg signaling causes nuclear translocation of Armadillo, the fly β-catenin, which then complexes with the DNA-binding protein TCF, enabling it to activate transcription. Though many nuclear factors have been implicated in modulating TCF/Armadillo activity, their importance remains poorly understood. This work describes a ubiquitously expressed protein, called Pygopus, which is required for Wg signaling throughout Drosophila development. Pygopus contains a PHD finger at its C terminus, a motif often found in chromatin remodeling factors. Overexpression of pygopus also blocks the pathway, consistent with the protein acting in a complex. The pygopus mutant phenotype is highly, though not exclusively, specific for Wg signaling. Epistasis experiments indicate that Pygopus acts downstream of Armadillo nuclear import, consistent with the nuclear location of heterologously expressed protein. Our data argue strongly that Pygopus is a new core component of the Wg signaling pathway that acts downstream or at the level of TCF.
Collapse
Affiliation(s)
- David S Parker
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor 48109, USA
| | | | | |
Collapse
|