1
|
Turton SM, Padgett S, Maisel MT, Johnson CE, Buzinova VA, Barth SE, Kohler K, Spearman HM, Macheda T, Manauis EC, Guo LZ, Whitlock HR, Bachstetter AD, Sunderam S, O'Hara BF, Duncan MJ, Murphy MP. Interactions between daily sleep-wake rhythms, γ-secretase, and amyloid-β peptide pathology point to complex underlying relationships. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167840. [PMID: 40222459 DOI: 10.1016/j.bbadis.2025.167840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Disrupted or insufficient sleep is a well-documented risk factor for Alzheimer's disease (AD) and related dementias. Previous studies in our lab and others have shown that chronic fragmentation of the daily sleep-wake rhythm in mice can accelerate the development of AD-related neuropathology in the brain, including increases in the levels of amyloid-β (Aβ). Although sleep is known to increase clearance of Aβ via the glymphatic system, little is known about the effect of sleep on Aβ production and the role this might play in amyloid deposition. To examine the relationship of Aβ production and its interaction with sleep and sleep dysfunction, we treated mice from an APP × PS1 mutant knock-in line (APPΔNLh/ΔNLh × PS1P264L/P264L) with an inhibitor of γ-secretase (LY-450,139; Semagacestat®) during a protocol of mild sleep fragmentation (SF). Compared to the male mice, the female mice slept less, and had more Aβ pathology. Semagacestat treatment reduced Aβ, but only in the most soluble extractable fraction. Although the female mice showed an increase in the amount of Aβ following SF, this effect was blocked by Semagacestat, an effect that was not seen in the male mice. SF also led to a significant, sex-dependent changes in the relative amounts of C-terminal fragments of the amyloid precursor protein, the immediate substrate of the γ-secretase enzyme. These findings indicate that the relationship between disruption of the daily sleep-wake rhythm and the development of AD-related pathology is complex, and may involve unappreciated interactions with biological sex. Consideration of these factors is necessary for a better understanding of AD risk, especially the elevated risk in women.
Collapse
Affiliation(s)
| | | | | | - Carrie E Johnson
- The Sanders-Brown Center on Aging, USA; Department of Molecular and Cellular Biochemistry, USA
| | - Valeria A Buzinova
- The Sanders-Brown Center on Aging, USA; Department of Molecular and Cellular Biochemistry, USA
| | | | | | | | | | | | | | | | - Adam D Bachstetter
- The Sanders-Brown Center on Aging, USA; The Spinal Cord and Brain Injury Research Center, USA; Department of Neuroscience, USA
| | | | | | | | - M Paul Murphy
- The Sanders-Brown Center on Aging, USA; Department of Molecular and Cellular Biochemistry, USA.
| |
Collapse
|
2
|
Meur S, Mukherjee S, Roy S, Karati D. Role of PIM Kinase Inhibitor in the Treatment of Alzheimer's Disease. Mol Neurobiol 2024; 61:10941-10955. [PMID: 38816674 DOI: 10.1007/s12035-024-04257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is the most prevalent form of senile dementia, causing progressive deterioration of cognition, behavior, and rational skills. Neuropathologically, AD is characterized by two hallmark proteinaceous aggregates: amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) formed of hyperphosphorylated tau. A significant study has been done to understand how Aβ and/or tau accumulation can alter signaling pathways that affect neuronal function. A conserved protein kinase known as the mammalian target of rapamycin (mTOR) is essential for maintaining the proper balance between protein synthesis and degradation. Overwhelming evidence shows mTOR signaling's primary role in age-dependent cognitive decline and the pathogenesis of AD. Postmortem human AD brains consistently show an upregulation of mTOR signaling. Confocal microscopy findings demonstrated a direct connection between mTOR and intraneuronal Aβ42 through molecular processes of PRAS40 phosphorylation. By attaching to the mTORC1 complex, PRAS40 inhibits the activity of mTOR. Furthermore, inhibiting PRAS40 phosphorylation can stop the Aβ-mediated increase in mTOR activity, indicating that the accumulation of Aβ may aid in PRAS40 phosphorylation. Physiologically, PRAS40 is phosphorylated by PIM1 which is a serine/threonine kinase of proto-oncogene PIM kinase family. Pharmacological inhibition of PIM1 activity prevents the Aβ-induced mTOR hyperactivity in vivo by blocking PRAS40 phosphorylation and restores cognitive impairments by enhancing proteasome function. Recently identified small-molecule PIM1 inhibitors have been developed as potential therapeutic to reduce AD-neuropathology. This comprehensive study aims to address the activity of PIM1 inhibitor that has been tested for the treatment of AD, in addition to the pharmacological and structural aspects of PIM1.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
3
|
Johansson C, Thordardottir S, Laffita-Mesa J, Pannee J, Rodriguez-Vieitez E, Zetterberg H, Blennow K, Graff C. Gene-variant specific effects of plasma amyloid-β levels in Swedish autosomal dominant Alzheimer disease. Alzheimers Res Ther 2024; 16:207. [PMID: 39322953 PMCID: PMC11423518 DOI: 10.1186/s13195-024-01574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Several blood-based biomarkers offer the opportunity of in vivo detection of brain pathology and neurodegeneration in Alzheimer disease with high specificity and sensitivity, but the performance of amyloid-β (Aβ) measurements remains under evaluation. Autosomal dominant Alzheimer disease (ADAD) with mutations in PSEN1, PSEN2 and APP can be studied as a model for sporadic Alzheimer disease. However, clarifying the genetic effects on the Aβ-levels in different matrices such as cerebrospinal fluid or plasma is crucial for generalizability and utility of data. We aimed to explore plasma Aβ concentrations over the Alzheimer disease continuum in a longitudinal cohort of genetic Alzheimer disease. METHODS 92 plasma samples were collected from at-risk individuals (n = 47) in a Swedish cohort of ADAD, including 18 mutation carriers (13 APPswe (p.KM670/671NL) MC), 5 PSEN1 (p.H163Y) MC) and 29 non-carriers (NC) as the reference group. Concentrations of Aβ1-38, Aβ1-40 and Aβ1-42 were analyzed in plasma using immunoprecipitation coupled to tandem liquid chromatography mass spectrometry (IP-LC-MS/MS). Cross-sectional and repeated-measures data analyses were investigated family-wise, applying non-parametric tests as well as mixed-effects models. RESULTS Cross-sectional analysis at baseline showed more than a 3-fold increase in all plasma Aβ peptides in APPswe MC, regardless of clinical status, compared to controls (p < 0.01). PSEN1 (p.H163Y) presymptomatic MC had a decrease of plasma Aβ1-38 compared to controls (p < 0.05). There was no difference in Aβ1-42/1-40 ratio between APPswe MC (PMC and SMC), PSEN1 MC (PMC) and controls at baseline. Notably, both cross-sectional data and repeated-measures analysis suggested that APPswe MC have a stable Aβ1-42/1-40 ratio with increasing age, in contrast to the decrease seen with aging in both controls and PSEN1 (p.H163Y) MC. CONCLUSION These data show very strong mutation-specific effects on Aβ profiles in blood, most likely due to a ubiquitous production outside of the CNS. Hence, analyses in an unselected clinical setting might unintentionally disclose genetic status. Furthermore, our findings suggest that the Aβ ratio might be a poor indicator of brain Aβ pathology in selected genetic cases. The very small sample size is a limitation that needs to be considered but reflects the scarcity of longitudinal in vivo data from genetic cohorts.
Collapse
Affiliation(s)
- Charlotte Johansson
- Department NVS, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Visionsgatan 4, Bioclinicum, Solna, J10:20, 171 64, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Steinunn Thordardottir
- Department NVS, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Visionsgatan 4, Bioclinicum, Solna, J10:20, 171 64, Sweden
| | - José Laffita-Mesa
- Department NVS, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Visionsgatan 4, Bioclinicum, Solna, J10:20, 171 64, Sweden
| | - Josef Pannee
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Elena Rodriguez-Vieitez
- Department NVS, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Visionsgatan 4, Bioclinicum, Solna, J10:20, 171 64, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Pitié-Salpêtrière Hospital, Paris Brain Institute, ICM, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Caroline Graff
- Department NVS, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Visionsgatan 4, Bioclinicum, Solna, J10:20, 171 64, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
Zhou C, Zeng F, Yang H, Liang Z, Xu G, Li X, Liu X, Yang J. Near-infrared II theranostic agents for the diagnosis and treatment of Alzheimer's disease. Eur J Nucl Med Mol Imaging 2024; 51:2953-2969. [PMID: 38502215 DOI: 10.1007/s00259-024-06690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Near-infrared II theranostic agents have gained great momentum in the research field of AD owing to the appealing advantages. Recently, an array of activatable NIR-II fluorescence probes has been developed to specifically monitor pathological targets of AD. Furthermore, various NIR-II-mediated nanomaterials with desirable photothermal and photodynamic properties have demonstrated favorable outcomes in the management of AD. METHODS We summerized amounts of references and focused on small-molecule probes, nanomaterials, photothermal therapy, and photodynamic therapy based on NIR-II fluorescent imaging for the diagnosis and treatment in AD. In addition, design strategies for NIR-II-triggered theranostics targeting AD are presented, and some prospects are also addressed. RESULTS NIR-II theranostic agents including small molecular probes and nanoparticles have received the increasing attention for biomedical applications. Meanwhile, most of the theranostic agents exhibited the promising results in animal studies. To our surprise, the multifunctional nanoplatforms also show a great potential in the diagnosis and treatment of AD. CONCLUSIONS Although NIR-II theranostic agents showed the great potential in diagnosis and treatment of AD, there are still many challenges: 1) Faborable NIR-II fluorohpores are still lacking; 2) Biocompatibility, bioseurity and dosage of NIR-II theranostic agents should be further revealed; 3) New equipment and software associated with NIR-II imaging system should be explored.
Collapse
Affiliation(s)
- Can Zhou
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fantian Zeng
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Haijun Yang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zeying Liang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guanyu Xu
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Xingdang Liu
- Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Jian Yang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Zhang J, Jiang Y, Dong X, Meng Z, Ji L, Kang Y, Liu M, Zhou W, Song W. Alpha-lipoic acid alleviates cognitive deficits in transgenic APP23/PS45 mice through a mitophagy-mediated increase in ADAM10 α-secretase cleavage of APP. Alzheimers Res Ther 2024; 16:160. [PMID: 39030577 PMCID: PMC11264788 DOI: 10.1186/s13195-024-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Alpha-lipoic acid (ALA) has a neuroprotective effect on neurodegenerative diseases. In the clinic, ALA can improve cognitive impairments in patients with Alzheimer's disease (AD) and other dementias. Animal studies have confirmed the anti-amyloidosis effect of ALA, but its underlying mechanism remains unclear. In particular, the role of ALA in amyloid-β precursor protein (APP) metabolism has not been fully elucidated. OBJECTIVE To investigate whether ALA can reduce the amyloidogenic effect of APP in a transgenic mouse model of AD, and to study the mechanism underlying this effect. METHODS ALA was infused into 2-month-old APP23/PS45 transgenic mice for 4 consecutive months and their cognitive function and AD-like pathology were then evaluated. An ALA drug concentration gradient was applied to 20E2 cells in vitro to evaluate its effect on the expression of APP proteolytic enzymes and metabolites. The mechanism by which ALA affects APP processing was studied using GI254023X, an inhibitor of A Disintegrin and Metalloproteinase 10 (ADAM10), as well as the mitochondrial toxic drug carbonyl cyanide m-chlorophenylhydrazone (CCCP). RESULTS Administration of ALA ameliorated amyloid plaque neuropathology in the brain tissue of APP23/PS45 mice and reduced learning and memory impairment. ALA also increased the expression of ADAM10 in 20E2 cells and the non-amyloidogenic processing of APP to produce the 83 amino acid C-terminal fragment (C83). In addition to activating autophagy, ALA also significantly promoted mitophagy. BNIP3L-knockdown reduced the mat/pro ratio of ADAM10. By using CCCP, ALA was found to regulate BNIP3L-mediated mitophagy, thereby promoting the α-cleavage of APP. CONCLUSIONS The enhanced α-secretase cleavage of APP by ADAM10 is the primary mechanism through which ALA ameliorates the cognitive deficits in APP23/PS45 transgenic mice. BNIP3L-mediated mitophagy contributes to the anti-amyloid properties of ALA by facilitating the maturation of ADAM10. This study provides novel experimental evidence for the treatment of AD with ALA.
Collapse
Affiliation(s)
- Jie Zhang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanshuang Jiang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liangye Ji
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Kang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjing Liu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, China.
| |
Collapse
|
6
|
Wang J, Gleeson PA, Fourriere L. Spatial-Temporal Mapping Reveals the Golgi as the Major Processing Site for the Pathogenic Swedish APP Mutation: Familial APP Mutant Shifts the Major APP Processing Site. Traffic 2024; 25:e12932. [PMID: 38528836 DOI: 10.1111/tra.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Alzheimer's disease is associated with increased levels of amyloid beta (Aβ) generated by sequential intracellular cleavage of amyloid precursor protein (APP) by membrane-bound secretases. However, the spatial and temporal APP cleavage events along the trafficking pathways are poorly defined. Here, we use the Retention Using Selective Hooks (RUSH) to compare in real time the anterograde trafficking and temporal cleavage events of wild-type APP (APPwt) with the pathogenic Swedish APP (APPswe) and the disease-protective Icelandic APP (APPice). The analyses revealed differences in the trafficking profiles and processing between APPwt and the APP familial mutations. While APPwt was predominantly processed by the β-secretase, BACE1, following Golgi transport to the early endosomes, the transit of APPswe through the Golgi was prolonged and associated with enhanced amyloidogenic APP processing and Aβ secretion. A 20°C block in cargo exit from the Golgi confirmed β- and γ-secretase processing of APPswe in the Golgi. Inhibition of the β-secretase, BACE1, restored APPswe anterograde trafficking profile to that of APPwt. APPice was transported rapidly through the Golgi to the early endosomes with low levels of Aβ production. This study has revealed different intracellular locations for the preferential cleavage of APPwt and APPswe and Aβ production, and the Golgi as the major processing site for APPswe, findings relevant to understand the molecular basis of Alzheimer's disease.
Collapse
Affiliation(s)
- Jingqi Wang
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Lou Fourriere
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Reed EG, Keller-Norrell PR. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. Int J Mol Sci 2023; 24:17377. [PMID: 38139206 PMCID: PMC10743742 DOI: 10.3390/ijms242417377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Research into Alzheimer's Disease (AD) describes a link between AD and the resident immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying sex effects, although the mechanisms of these effects are only just beginning to be understood. Many of these insights are the result of policies put in place by funding agencies such as the National Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards precision medicine due to continued lackluster therapeutic options. The purpose of this review is to provide an updated assessment of the current research that summarizes sex differences and the research pertaining to microglia and their varied responses in AD.
Collapse
Affiliation(s)
- Erin G. Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44242, USA
| | | |
Collapse
|
8
|
Song X, Ding Q, Wei W, Zhang J, Sun R, Yin L, Liu S, Pu Y. Peptide-Functionalized Prussian Blue Nanomaterial for Antioxidant Stress and NIR Photothermal Therapy against Alzheimer's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206959. [PMID: 37322406 DOI: 10.1002/smll.202206959] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Excessive accumulations of reactive oxygen species (ROS) and amyloid-β (Aβ) protein are closely associated with the complex pathogenesis of Alzheimer's disease (AD). Therefore, approaches that synergistically exert elimination of ROS and dissociation of Aβ fibrils are effective therapeutic strategies for correcting the AD microenvironment. Herein, a novel near infrared (NIR) responsive Prussian blue-based nanomaterial (PBK NPs) is established with excellent antioxidant activity and photothermal effect. PBK NPs possess similar activities to multiple antioxidant enzymes, including superoxide dismutase, peroxidase, and catalase, which can eliminate massive ROS and relieve oxidative stress. Under the NIR irradiation, PBK NPs can generate local heat to disaggregate Aβ fibrils efficiently. By modifying CKLVFFAED peptide, PBK NPs display obvious targeting ability for blood-brain barrier penetration and Aβ binding. Furthermore, in vivo studies demonstrate that PBK NPs have outstanding ability to decompose Aβ plaques and alleviate neuroinflammation in AD mouse model. Overall, PBK NPs provide evident neuroprotection by reducing ROS levels and regulating Aβ deposition, and may accelerate the development of multifunctional nanomaterials for delaying the progression of AD.
Collapse
Affiliation(s)
- Xiaolei Song
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Qin Ding
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Wei Wei
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
9
|
Bustos LM, Sattler R. The Fault in Our Astrocytes - cause or casualties of proteinopathies of ALS/FTD and other neurodegenerative diseases? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1075805. [PMID: 39165755 PMCID: PMC11334001 DOI: 10.3389/fmmed.2023.1075805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/08/2023] [Indexed: 08/22/2024]
Abstract
Many neurodegenerative diseases fall under the class of diseases known as proteinopathies, whereby the structure and localization of specific proteins become abnormal. These aberrant proteins often aggregate within cells which disrupts vital homeostatic and physiological cellular functions, ultimately contributing to cell death. Although neurodegenerative disease research is typically neurocentric, there is evidence supporting the role of non-neuronal cells in the pathogenesis of these diseases. Specifically, the role of astrocytes in neurodegenerative diseases has been an ever-growing area of research. Astrocytes are one of the most abundant cell types in the central nervous system (CNS) and provide an array of essential homeostatic functions that are disrupted in neurodegenerative diseases. Astrocytes can exhibit a reactive phenotype that is characterized by molecular changes, as well as changes in morphology and function. In neurodegenerative diseases, there is potential for reactive astrocytes to assume a loss-of-function phenotype in homeostatic operations such as synapse maintenance, neuronal metabolic support, and facilitating cell-cell communication between glia and neurons. They are also able to concurrently exhibit gain-of-function phenotypes that can be destructive to neural networks and the astrocytes themselves. Additionally, astrocytes have been shown to internalize disease related proteins and reflect similar or exacerbated pathology that has been observed in neurons. Here, we review several major neurodegenerative disease-specific proteinopathies and what is known about their presence in astrocytes and the potential consequences regarding cell and non-cell autonomous neurodegeneration.
Collapse
Affiliation(s)
- Lynette M. Bustos
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Barrow Neurological Institute, Phoenix, AZ, United States
| | - Rita Sattler
- Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
10
|
ADAMTS4 is involved in the production of the Alzheimer disease amyloid biomarker APP669-711. Mol Psychiatry 2023; 28:1802-1812. [PMID: 36721026 DOI: 10.1038/s41380-023-01946-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 02/02/2023]
Abstract
Amyloid-β (Aβ) deposition in the brain parenchyma is one of the pathological hallmarks of Alzheimer disease (AD). We have previously identified amyloid precursor protein (APP)669-711 (a.k.a. Aβ(-3)-40) in human plasma using immunoprecipitation combined with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (IP-MALDI-MS). Furthermore, we found that the level of a composite biomarker, i.e., a combination of APP669-711/Aβ1-42 ratio and Aβ1-40/Aβ1-42 ratio in human plasma, correlates with the amyloid PET status of AD patients. However, the production mechanism of APP669-711 has remained unclear. Using in vitro and in vivo assays, we identified A Disintegrin and Metalloproteinase with a Thrombospondin type 1 motif, type 4 (ADAMTS4) as a responsible enzyme for APP669-711 production. ADAMTS4 cleaves APP directly to generate the C-terminal stub c102, which is subsequently proteolyzed by γ-secretase to release APP669-711. Genetic knockout of ADAMTS4 reduced the production of endogenous APP669-711 by 30% to 40% in cultured cells as well as mouse plasma, irrespectively of Aβ levels. Finally, we found that the endogenous murine APP669-711/Aβ1-42 ratio was increased in aged AD model mice, which shows Aβ deposition as observed in human patients. These data suggest that ADAMTS4 is involved in the production of APP669-711, and a plasma biomarker determined by IP-MALDI-MS can be used to estimate the level of Aβ deposition in the brain of mouse models.
Collapse
|
11
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Abstract
Probabilistic and parsimony-based arguments regarding available genetics data are used to propose that Hardy and Higgin's amyloid cascade hypothesis is valid but is commonly interpreted too narrowly to support, incorrectly, the primacy of the amyloid-β peptide (Aβ) in driving Alzheimer's disease pathogenesis. Instead, increased activity of the βCTF (C99) fragment of AβPP is the critical pathogenic determinant altered by mutations in the APP gene. This model is consistent with the regulation of APP mRNA translation via its 5' iron responsive element. Similar arguments support that the pathological effects of familial Alzheimer's disease mutations in the genes PSEN1 and PSEN2 are not exerted directly via changes in AβPP cleavage to produce different ratios of Aβ length. Rather, these mutations likely act through effects on presenilin holoprotein conformation and function, and possibly the formation and stability of multimers of presenilin holoprotein and/or of the γ-secretase complex. All fAD mutations in APP, PSEN1, and PSEN2 likely find unity of pathological mechanism in their actions on endolysosomal acidification and mitochondrial function, with detrimental effects on iron homeostasis and promotion of "pseudo-hypoxia" being of central importance. Aβ production is enhanced and distorted by oxidative stress and accumulates due to decreased lysosomal function. It may act as a disease-associated molecular pattern enhancing oxidative stress-driven neuroinflammation during the cognitive phase of the disease.
Collapse
Affiliation(s)
- Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
13
|
Mathew A, Balaji E V, Pai SRK, Kishore A, Pai V, Pemmireddy R, K S C. Current Drug Targets in Alzheimer's Associated Memory Impairment: A Comprehensive Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:255-275. [PMID: 35366787 DOI: 10.2174/1871527321666220401124719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia among geriatrics. It is a progressive, degenerative neurologic disorder that causes memory and cognition loss. The accumulation of amyloid fibrils and neurofibrillary tangles in the brain of AD patients is a distinguishing feature of the disease. Therefore, most of the current therapeutic goals are targeting inhibition of beta-amyloid synthesis and aggregation as well as tau phosphorylation and aggregation. There is also a loss of the cholinergic neurons in the basal forebrain, and first-generation therapeutic agents were primarily focused on compensating for this loss of neurons. However, cholinesterase inhibitors can only alleviate cognitive symptoms of AD and cannot reduce the progression of the disease. Understanding the molecular and cellular changes associated with AD pathology has advanced significantly in recent decades. The etiology of AD is complex, with a substantial portion of sporadic AD emerging from unknown reasons and a lesser proportion of early-onset familial AD (FAD) caused by a mutation in several genes, such as the amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2) genes. Hence, efforts are being made to discover novel strategies for these targets for AD therapy. A new generation of AChE and BChE inhibitors is currently being explored and evaluated in human clinical trials for AD symptomatic treatment. Other approaches for slowing the progression of AD include serotonergic modulation, H3 receptor antagonism, phosphodiesterase, COX-2, and MAO-B inhibition. The present review provides an insight into the possible therapeutic strategies and their molecular mechanisms, enlightening the perception of classical and future treatment approaches.
Collapse
Affiliation(s)
- Anna Mathew
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vasudev Pai
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Ramadevi Pemmireddy
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandrashekar K S
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
14
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-Specificity Protein Phosphatase 4 (DUSP4) Overexpression Improves Learning Behavior Selectively in Female 5xFAD Mice, and Reduces β-Amyloid Load in Males and Females. Cells 2022; 11:3880. [PMID: 36497141 PMCID: PMC9737364 DOI: 10.3390/cells11233880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Recent multiscale network analyses of banked brains from subjects who died of late-onset sporadic Alzheimer's disease converged on VGF (non-acronymic) as a key hub or driver. Within this computational VGF network, we identified the dual-specificity protein phosphatase 4 (DUSP4) [also known as mitogen-activated protein kinase (MAPK) phosphatase 2] as an important node. Importantly, DUSP4 gene expression, like that of VGF, is downregulated in postmortem Alzheimer's disease (AD) brains. We investigated the roles that this VGF/DUSP4 network plays in the development of learning behavior impairment and neuropathology in the 5xFAD amyloidopathy mouse model. We found reductions in DUSP4 expression in the hippocampi of male AD subjects, correlating with increased CDR scores, and in 4-month-old female and 12-18-month-old male 5xFAD hippocampi. Adeno-associated virus (AAV5)-mediated overexpression of DUSP4 in 5xFAD mouse dorsal hippocampi (dHc) rescued impaired Barnes maze performance in females but not in males, while amyloid loads were reduced in both females and males. Bulk RNA sequencing of the dHc from 5-month-old mice overexpressing DUSP4, and Ingenuity Pathway and Enrichr analyses of differentially expressed genes (DEGs), revealed that DUSP4 reduced gene expression in female 5xFAD mice in neuroinflammatory, interferon-gamma (IFNγ), programmed cell death protein-ligand 1/programmed cell death protein 1 (PD-L1/PD-1), and extracellular signal-regulated kinase (ERK)/MAPK pathways, via which DUSP4 may modulate AD phenotype with gender-specificity.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
15
|
Hajjo R, Sabbah DA, Abusara OH, Al Bawab AQ. A Review of the Recent Advances in Alzheimer's Disease Research and the Utilization of Network Biology Approaches for Prioritizing Diagnostics and Therapeutics. Diagnostics (Basel) 2022; 12:diagnostics12122975. [PMID: 36552984 PMCID: PMC9777434 DOI: 10.3390/diagnostics12122975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a polygenic multifactorial neurodegenerative disease that, after decades of research and development, is still without a cure. There are some symptomatic treatments to manage the psychological symptoms but none of these drugs can halt disease progression. Additionally, over the last few years, many anti-AD drugs failed in late stages of clinical trials and many hypotheses surfaced to explain these failures, including the lack of clear understanding of disease pathways and processes. Recently, different epigenetic factors have been implicated in AD pathogenesis; thus, they could serve as promising AD diagnostic biomarkers. Additionally, network biology approaches have been suggested as effective tools to study AD on the systems level and discover multi-target-directed ligands as novel treatments for AD. Herein, we provide a comprehensive review on Alzheimer's disease pathophysiology to provide a better understanding of disease pathogenesis hypotheses and decipher the role of genetic and epigenetic factors in disease development and progression. We also provide an overview of disease biomarkers and drug targets and suggest network biology approaches as new tools for identifying novel biomarkers and drugs. We also posit that the application of machine learning and artificial intelligence to mining Alzheimer's disease multi-omics data will facilitate drug and biomarker discovery efforts and lead to effective individualized anti-Alzheimer treatments.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27599, USA
- National Center for Epidemics and Communicable Disease Control, Amman 11118, Jordan
- Correspondence:
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Osama H. Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Abdel Qader Al Bawab
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| |
Collapse
|
16
|
Zhou B, Lu JG, Siddu A, Wernig M, Südhof TC. Synaptogenic effect of APP-Swedish mutation in familial Alzheimer's disease. Sci Transl Med 2022; 14:eabn9380. [PMID: 36260691 PMCID: PMC9894682 DOI: 10.1126/scitranslmed.abn9380] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutations in β-amyloid (Aβ) precursor protein (APP) cause familial Alzheimer's disease (AD) probably by enhancing Aβ peptides production from APP. An antibody targeting Aβ (aducanumab) was approved as an AD treatment; however, some Aβ antibodies have been reported to accelerate, instead of ameliorating, cognitive decline in individuals with AD. Using conditional APP mutations in human neurons for perfect isogenic controls and translational relevance, we found that the APP-Swedish mutation in familial AD increased synapse numbers and synaptic transmission, whereas the APP deletion decreased synapse numbers and synaptic transmission. Inhibition of BACE1, the protease that initiates Aβ production from APP, lowered synapse numbers, suppressed synaptic transmission in wild-type neurons, and occluded the phenotype of APP-Swedish-mutant neurons. Modest elevations of Aβ, conversely, elevated synapse numbers and synaptic transmission. Thus, the familial AD-linked APP-Swedish mutation under physiologically relevant conditions increased synaptic connectivity in human neurons via a modestly enhanced production of Aβ. These data are consistent with the relative inefficacy of BACE1 and anti-Aβ treatments in AD and the chronic nature of AD pathogenesis, suggesting that AD pathogenesis is not simply caused by overproduction of toxic Aβ but rather by a long-term effect of elevated Aβ concentrations.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Jacqueline G. Lu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Alberto Siddu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford 94305, USA
| |
Collapse
|
17
|
Spatial snapshots of amyloid precursor protein intramembrane processing via early endosome proteomics. Nat Commun 2022; 13:6112. [PMID: 36245040 PMCID: PMC9573879 DOI: 10.1038/s41467-022-33881-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Degradation and recycling of plasma membrane proteins occurs via the endolysosomal system, wherein endosomes bud into the cytosol from the plasma membrane and subsequently mature into degradative lysosomal compartments. While methods have been developed for rapid selective capture of lysosomes (Lyso-IP), analogous methods for isolation of early endosome intermediates are lacking. Here, we develop an approach for rapid isolation of early/sorting endosomes through affinity capture of the early endosome-associated protein EEA1 (Endo-IP) and provide proteomic and lipidomic snapshots of EEA1-positive endosomes in action. We identify recycling, regulatory and membrane fusion complexes, as well as candidate cargo, providing a proteomic landscape of early/sorting endosomes. To demonstrate the utility of the method, we combined Endo- and Lyso-IP with multiplexed targeted proteomics to provide a spatial digital snapshot of amyloid precursor protein (APP) processing by β and γ-Secretases, which produce amyloidogenic Aβ species, and quantify small molecule modulation of Secretase action on endosomes. We anticipate that the Endo-IP approach will facilitate systematic interrogation of processes that are coordinated on EEA1-positive endosomes.
Collapse
|
18
|
Theiss EL, Griebsch LV, Lauer AA, Janitschke D, Erhardt VKJ, Haas EC, Kuppler KN, Radermacher J, Walzer O, Portius D, Grimm HS, Hartmann T, Grimm MOW. Vitamin B12 Attenuates Changes in Phospholipid Levels Related to Oxidative Stress in SH-SY5Y Cells. Cells 2022; 11:cells11162574. [PMID: 36010649 PMCID: PMC9406929 DOI: 10.3390/cells11162574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is closely linked to Alzheimer’s disease (AD), and is detected peripherally as well as in AD-vulnerable brain regions. Oxidative stress results from an imbalance between the generation and degradation of reactive oxidative species (ROS), leading to the oxidation of proteins, nucleic acids, and lipids. Extensive lipid changes have been found in post mortem AD brain tissue; these changes include the levels of total phospholipids, sphingomyelin, and ceramide, as well as plasmalogens, which are highly susceptible to oxidation because of their vinyl ether bond at the sn-1 position of the glycerol-backbone. Several lines of evidence indicate that a deficiency in the neurotropic vitamin B12 is linked with AD. In the present study, treatment of the neuroblastoma cell line SH-SY5Y with vitamin B12 resulted in elevated levels of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and plasmalogens. Vitamin B12 also protected plasmalogens from hydrogen peroxide (H2O2)-induced oxidative stress due to an elevated expression of the ROS-degrading enzymes superoxide-dismutase (SOD) and catalase (CAT). Furthermore, vitamin B12 elevates plasmalogen synthesis by increasing the expression of alkylglycerone phosphate synthase (AGPS) and choline phosphotransferase 1 (CHPT1) in SH-SY5Y cells exposed to H2O2-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Oliver Walzer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany
| | | | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Correspondence: or
| |
Collapse
|
19
|
Qin P, Ran Y, Liu Y, Wei C, Luan X, Niu H, Peng J, Sun J, Wu J. Recent advances of small molecule JNK3 inhibitors for Alzheimer's disease. Bioorg Chem 2022; 128:106090. [PMID: 35964505 DOI: 10.1016/j.bioorg.2022.106090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023]
Abstract
C-Jun N-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPKs) family, with three isoforms, JNK1, JNK2 and JNK3. Alzheimer's disease (AD) is a neurological disorder and the most common type of dementia. Two well-established AD pathologies are the deposition of Aβ amyloid plaques and neurofibrillary tangles caused by Tau hyperphosphorylation. JNK3 is involved in forming amyloid Aβ and neurofibrillary tangles, suggesting that JNK3 may represent a target to develop treatments for AD. Therefore, this review will discuss the roles of JNK3 in the pathogenesis and treatment of AD, and the latest progress in the development of JNK3 inhibitors.
Collapse
Affiliation(s)
- Pengxia Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yingying Ran
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Chao Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiaoyi Luan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
20
|
Haass C, Selkoe D. If amyloid drives Alzheimer disease, why have anti-amyloid therapies not yet slowed cognitive decline? PLoS Biol 2022; 20:e3001694. [PMID: 35862308 PMCID: PMC9302755 DOI: 10.1371/journal.pbio.3001694] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Strong genetic evidence supports an imbalance between production and clearance of amyloid β-protein (Aβ) in people with Alzheimer disease (AD). Microglia that are potentially involved in alternative mechanisms are actually integral to the amyloid cascade. Fluid biomarkers and brain imaging place accumulation of Aβ at the beginning of molecular and clinical changes in the disease. So why have clinical trials of anti-amyloid therapies not provided clear-cut benefits to patients with AD? Can anti-amyloid therapies robustly decrease Aβ in the human brain, and if so, could this lowering be too little, too late? These central questions in research on AD are being urgently addressed. Evidence suggests that an imbalance between production and clearance of amyloid-beta is an early, invariant feature of Alzheimer disease that drives its neuronal and glial pathology and precedes cognitive symptoms. So why are we still unable to slow cognitive decline with anti-amyloid therapies?
Collapse
Affiliation(s)
- Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- * E-mail: (CH); (DS)
| | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (CH); (DS)
| |
Collapse
|
21
|
Calabrese G, Molzahn C, Mayor T. Protein interaction networks in neurodegenerative diseases: from physiological function to aggregation. J Biol Chem 2022; 298:102062. [PMID: 35623389 PMCID: PMC9234719 DOI: 10.1016/j.jbc.2022.102062] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The accumulation of protein inclusions is linked to many neurodegenerative diseases that typically develop in older individuals, due to a combination of genetic and environmental factors. In rare familial neurodegenerative disorders, genes encoding for aggregation-prone proteins are often mutated. While the underlying mechanism leading to these diseases still remains to be fully elucidated, efforts in the past 20 years revealed a vast network of protein–protein interactions that play a major role in regulating the aggregation of key proteins associated with neurodegeneration. Misfolded proteins that can oligomerize and form insoluble aggregates associate with molecular chaperones and other elements of the proteolytic machineries that are the frontline workers attempting to protect the cells by promoting clearance and preventing aggregation. Proteins that are normally bound to aggregation-prone proteins can become sequestered and mislocalized in protein inclusions, leading to their loss of function. In contrast, mutations, posttranslational modifications, or misfolding of aggregation-prone proteins can lead to gain of function by inducing novel or altered protein interactions, which in turn can impact numerous essential cellular processes and organelles, such as vesicle trafficking and the mitochondria. This review examines our current knowledge of protein–protein interactions involving several key aggregation-prone proteins that are associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, or amyotrophic lateral sclerosis. We aim to provide an overview of the protein interaction networks that play a central role in driving or mitigating inclusion formation, while highlighting some of the key proteomic studies that helped to uncover the extent of these networks.
Collapse
Affiliation(s)
- Gaetano Calabrese
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| | - Cristen Molzahn
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada
| | - Thibault Mayor
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| |
Collapse
|
22
|
Mouse models of Alzheimer's disease for preclinical research. Neurochem Int 2022; 158:105361. [PMID: 35618239 DOI: 10.1016/j.neuint.2022.105361] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
Most mouse models for preclinical research into Alzheimer's disease (AD) rely on the overexpression paradigm, in which familial AD (FAD)-related genes linked to amyloid precursor protein (APP) and presenilin-1 (PSEN1) are overexpressed. Such mice have been used for over two decades as the first-generation transgenic lines for AD, with animals exhibiting AD pathologies along with additional phenotypes, leading to the serious artifacts. To overcome the intrinsic drawbacks of the overexpression paradigm, we previously developed second-generation mouse models that incorporate humanized amyloid β (Aβ) sequences and several FAD-related mutations on the mouse endogenous App gene. Such models show AD pathologies in an age-dependent manner. In addition, our group recently generated additional lines of mice harboring multiple mutations without gene overexpression; these third-generation models exhibit an accelerated AD pathology compared to earlier generations. In this review, we describe the development and future prospects of AD mouse models in terms of their scientific properties and therapeutic perspectives in the context of the preclinical study of AD.
Collapse
|
23
|
Soudy R, Kimura R, Fu W, Patel A, Jhamandas J. Extracellular vesicles enriched with amylin receptor are cytoprotective against the Aß toxicity in vitro. PLoS One 2022; 17:e0267164. [PMID: 35421203 PMCID: PMC9009604 DOI: 10.1371/journal.pone.0267164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/03/2022] [Indexed: 11/19/2022] Open
Abstract
Extracellular vesicles (EVs) are double membrane structures released by all cell types with identified roles in the generation, transportation, and degradation of amyloid-β protein (Aβ) oligomers in Alzheimer’s disease (AD). EVs are thus increasingly recognized to play a neuroprotective role in AD, through their ability to counteract the neurotoxic effects of Aβ, possibly through interactions with specific receptors on cell membranes. Our previous studies have identified the amylin receptor (AMY), particularly AMY3 subtype, as a mediator of the deleterious actions of Aβ in vitro and in vivo experimental paradigms. In the present study, we demonstrate that AMY3 enriched EVs can bind soluble oligomers of Aß and protect N2a cells against toxic effects of this peptide. The effect was specific to amylin receptor as it was blocked in the presence of amylin receptor antagonist AC253. This notion was supported by reduced Aβ binding to EVs from AMY depleted mice compared to those from wild type (Wt) mice. Finally, application of AMY3, but not Wt derived, EVs to hippocampal brain slices improved Aβ-induced reduction of long-term potentiation, a cellular surrogate of memory. Collectively, our observations support the role of AMY receptors, particularly AMY3, in EVs as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Rania Soudy
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ryoichi Kimura
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Center for Liberal Arts and Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Wen Fu
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Aarti Patel
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jack Jhamandas
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
24
|
Golde TE. Alzheimer’s disease – the journey of a healthy brain into organ failure. Mol Neurodegener 2022; 17:18. [PMID: 35248124 PMCID: PMC8898417 DOI: 10.1186/s13024-022-00523-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
As the most common dementia, Alzheimer’s disease (AD) exacts an immense personal, societal, and economic toll. AD was first described at the neuropathological level in the early 1900s. Today, we have mechanistic insight into select aspects of AD pathogenesis and have the ability to clinically detect and diagnose AD and underlying AD pathologies in living patients. These insights demonstrate that AD is a complex, insidious, degenerative proteinopathy triggered by Aβ aggregate formation. Over time Aβ pathology drives neurofibrillary tangle (NFT) pathology, dysfunction of virtually all cell types in the brain, and ultimately, overt neurodegeneration. Yet, large gaps in our knowledge of AD pathophysiology and huge unmet medical need remain. Though we largely conceptualize AD as a disease of aging, heritable and non-heritable factors impact brain physiology, either continuously or at specific time points during the lifespan, and thereby alter risk for devolvement of AD. Herein, I describe the lifelong journey of a healthy brain from birth to death with AD, while acknowledging the many knowledge gaps that remain regarding our understanding of AD pathogenesis. To ensure the current lexicon surrounding AD changes from inevitable, incurable, and poorly manageable to a lexicon of preventable, curable, and manageable we must address these knowledge gaps, develop therapies that have a bigger impact on clinical symptoms or progression of disease and use these interventions at the appropriate stage of disease.
Collapse
|
25
|
Luo JE, Li YM. Turning the tide on Alzheimer's disease: modulation of γ-secretase. Cell Biosci 2022; 12:2. [PMID: 34983641 PMCID: PMC8725520 DOI: 10.1186/s13578-021-00738-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disorder. Amyloid-beta (Aβ) plaques are integral to the "amyloid hypothesis," which states that the accumulation of Aβ peptides triggers a cascade of pathological events leading to neurodegeneration and ultimately AD. While the FDA approved aducanumab, the first Aβ-targeted therapy, multiple safe and effective treatments will be needed to target the complex pathologies of AD. γ-Secretase is an intramembrane aspartyl protease that is critical for the generation of Aβ peptides. Activity and specificity of γ-secretase are regulated by both obligatory subunits and modulatory proteins. Due to its complex structure and function and early clinical failures with pan inhibitors, γ-secretase has been a challenging drug target for AD. γ-secretase modulators, however, have dramatically shifted the approach to targeting γ-secretase. Here we review γ-secretase and small molecule modulators, from the initial characterization of a subset of NSAIDs to the most recent clinical candidates. We also discuss the chemical biology of γ-secretase, in which small molecule probes enabled structural and functional insights into γ-secretase before the emergence of high-resolution structural studies. Finally, we discuss the recent crystal structures of γ-secretase, which have provided valuable perspectives on substrate recognition and molecular mechanisms of small molecules. We conclude that modulation of γ-secretase will be part of a new wave of AD therapeutics.
Collapse
Affiliation(s)
- Joanna E Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, 10021, USA.
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
26
|
Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A. The Amyloid-β Pathway in Alzheimer's Disease. Mol Psychiatry 2021; 26:5481-5503. [PMID: 34456336 PMCID: PMC8758495 DOI: 10.1038/s41380-021-01249-0] [Citation(s) in RCA: 887] [Impact Index Per Article: 221.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Breakthroughs in molecular medicine have positioned the amyloid-β (Aβ) pathway at the center of Alzheimer's disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the Aβ cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of Aβ science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of Aβ pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct Aβ species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for Aβ-targeting therapeutic strategies in development for the early treatment of AD.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christopher Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea; Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul Aisen
- USC Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Colin L Masters
- Laureate Professor of Dementia Research, Florey Institute and The University of Melbourne, Parkville, VIC, Australia
| | - Min Cho
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA
| | - Lars Lannfelt
- Uppsala University, Department of of Public Health/Geriatrics, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Andrea Vergallo
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| |
Collapse
|
27
|
Bao Y, Yang X, Fu Y, Li Z, Gong R, Lu W. NMDAR-dependent somatic potentiation of synaptic inputs is correlated with β amyloid-mediated neuronal hyperactivity. Transl Neurodegener 2021; 10:34. [PMID: 34496956 PMCID: PMC8424869 DOI: 10.1186/s40035-021-00260-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND β Amyloid (Aβ)-mediated neuronal hyperactivity, a key feature of the early stage of Alzheimer's disease (AD), is recently proposed to be initiated by the suppression of glutamate reuptake. Nevertheless, the underlying mechanism by which the impaired glutamate reuptake causes neuronal hyperactivity remains unclear. Chronic suppression of the glutamate reuptake causes accumulation of ambient glutamate that could diffuse from synaptic sites at the dendrites to the soma to elevate the tonic activation of somatic N-methyl-D-aspartate receptors (NMDARs). However, less attention has been paid to the potential role of tonic activity change in extrasynaptic glutamate receptors (GluRs) located at the neuronal soma on generation of neuronal hyperactivity. METHODS Whole-cell patch-clamp recordings were performed on CA1 pyramidal neurons in acute hippocampal slices exposed to TFB-threo-β-benzyloxyaspartic acid (TBOA) or human Aβ1-42 peptide oligomer. A series of dendritic patch-clamp recordings were made at different distances from the soma to identify the location of the changes in synaptic inputs. Moreover, single-channel recording in the cell-attached mode was performed to investigate the activity changes of single NMDARs at the soma. RESULTS Blocking glutamate uptake with either TBOA or the human Aβ1-42 peptide oligomer elicited potentiation of synaptic inputs in CA1 hippocampal neurons. Strikingly, this potentiation specifically occurred at the soma, depending on the activation of somatic GluN2B-containing NMDARs (GluN2B-NMDARs) and accompanied by a substantial and persistent increment in the open probability of somatic NMDARs. Blocking the activity of GluN2B-NMDARs at the soma completely reversed both the TBOA-induced or the Aβ1-42-induced somatic potentiation and neuronal hyperactivity. CONCLUSIONS The somatic potentiation of synaptic inputs may represent a novel amplification mechanism that elevates cell excitability and thus contributes to neuronal hyperactivity initiated by impaired glutamate reuptake in AD.
Collapse
Affiliation(s)
- Yifei Bao
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Xin Yang
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Yi Fu
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Zhengyan Li
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Ru Gong
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Wei Lu
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China. .,Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Fudan University, Shanghai, 200032, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
28
|
Kurokin I, Lauer AA, Janitschke D, Winkler J, Theiss EL, Griebsch LV, Pilz SM, Matschke V, van der Laan M, Grimm HS, Hartmann T, Grimm MOW. Targeted Lipidomics of Mitochondria in a Cellular Alzheimer's Disease Model. Biomedicines 2021; 9:1062. [PMID: 34440266 PMCID: PMC8393816 DOI: 10.3390/biomedicines9081062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the accumulation of Amyloid-β (Aβ) in senile plaques derived from amyloidogenic processing of a precursor protein (APP). Recently, changes in mitochondrial function have become in the focus of the disease. Whereas a link between AD and lipid-homeostasis exists, little is known about potential alterations in the lipid composition of mitochondria. Here, we investigate potential changes in the main mitochondrial phospholipid classes phosphatidylcholine, phosphatidylethanolamine and the corresponding plasmalogens and lyso-phospholipids of a cellular AD-model (SH-SY5Y APPswedish transfected cells), comparing these results with changes in cell-homogenates. Targeted shotgun-lipidomics revealed lipid alterations to be specific for mitochondria and cannot be predicted from total cell analysis. In particular, lipids containing three and four times unsaturated fatty acids (FA X:4), such as arachidonic-acid, are increased, whereas FA X:6 or X:5, such as eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), are decreased. Additionally, PE plasmalogens are increased in contrast to homogenates. Results were confirmed in another cellular AD model, having a lower affinity to amyloidogenic APP processing. Besides several similarities, differences in particular in PE species exist, demonstrating that differences in APP processing might lead to specific changes in lipid homeostasis in mitochondria. Importantly, the observed lipid alterations are accompanied by changes in the carnitine carrier system, also suggesting an altered mitochondrial functionality.
Collapse
Affiliation(s)
- Irina Kurokin
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Daniel Janitschke
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Jakob Winkler
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Elena Leoni Theiss
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Lea Victoria Griebsch
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Sabrina Melanie Pilz
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, D-44801 Bochum, Germany;
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signaling PZMS, Saarland University Medical School, 66421 Homburg, Germany;
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| |
Collapse
|
29
|
Michno W, Blennow K, Zetterberg H, Brinkmalm G. Refining the amyloid β peptide and oligomer fingerprint ambiguities in Alzheimer's disease: Mass spectrometric molecular characterization in brain, cerebrospinal fluid, blood, and plasma. J Neurochem 2021; 159:234-257. [PMID: 34245565 DOI: 10.1111/jnc.15466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
Since its discovery, amyloid-β (Aβ) has been the principal target of investigation of in Alzheimer's disease (AD). Over the years however, no clear correlation was found between the Aβ plaque burden and location, and AD-associated neurodegeneration and cognitive decline. Instead, diagnostic potential of specific Aβ peptides and/or their ratio, was established. For instance, a selective reduction in the concentration of the aggregation-prone 42 amino acid-long Aβ peptide (Aβ42) in cerebrospinal fluid (CSF) was put forward as reflective of Aβ peptide aggregation in the brain. With time, Aβ oligomers-the proposed toxic Aβ intermediates-have emerged as potential drivers of synaptic dysfunction and neurodegeneration in the disease process. Oligomers are commonly agreed upon to come in different shapes and sizes, and are very poorly characterized when it comes to their composition and their "toxic" properties. The concept of structural polymorphism-a diversity in conformational organization of amyloid aggregates-that depends on the Aβ peptide backbone, makes the characterization of Aβ aggregates and their role in AD progression challenging. In this review, we revisit the history of Aβ discovery and initial characterization and highlight the crucial role mass spectrometry (MS) has played in this process. We critically review the common knowledge gaps in the molecular identity of the Aβ peptide, and how MS is aiding the characterization of higher order Aβ assemblies. Finally, we go on to present recent advances in MS approaches for characterization of Aβ as single peptides and oligomers, and convey our optimism, as to how MS holds a promise for paving the way for progress toward a more comprehensive understanding of Aβ in AD research.
Collapse
Affiliation(s)
- Wojciech Michno
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.,Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
30
|
Habiba U, Merlin S, Lim JKH, Wong VHY, Nguyen CTO, Morley JW, Bui BV, Tayebi M. Age-Specific Retinal and Cerebral Immunodetection of Amyloid-β Plaques and Oligomers in a Rodent Model of Alzheimer's Disease. J Alzheimers Dis 2021; 76:1135-1150. [PMID: 32597800 DOI: 10.3233/jad-191346] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Amyloid-β soluble oligomers (Aβo) are believed to be the cause of the pathophysiology underlying Alzheimer's disease (AD) and are normally detected some two decades before clinical onset of the disease. Retinal pathology associated with AD pathogenesis has previously been reported, including ganglion cell loss, accumulation of Aβ deposits in the retina, and reduction of nerve fiber layer thickness as well as abnormalities of the microvasculature. OBJECTIVE This study's aim is to better understand the relationship between brain and retinal Aβo deposition and in particular to quantify levels of the toxic Aβo as a function of age in the retina of a rodent model of AD. METHODS Retinas and brain tissue from 5×FAD mice were stained with Congo red, Thioflavin-T (Th-T), and Aβ plaque-specific and Aβo-specific antibodies. RESULTS We show that retinas displayed an age-dependent increase of Th-T-specific amyloid fibrils. Staining with anti-Aβ antibody confirmed the presence of the Aβ plaques in all 5×FAD retinas tested. In contrast, staining with anti-Aβo antibody showed an age-dependent decrease of retinal Aβo. Of note, Aβo was observed mainly in the retinal nuclear layers. Finally, we confirmed the localization of Aβo to neurons, typically accumulating in late endosomes, indicating possible impairment of the endocytic pathway. CONCLUSION Our results demonstrate the presence of intraneuronal Aβo in the retina and its accumulation inversely correlated with retinal Aβ plaque deposition, indicating an age-related conversion in this animal model. These results support the development of an early AD diagnostic test targeting Aβo in the eye.
Collapse
Affiliation(s)
- Umma Habiba
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Sam Merlin
- School of Science & Health, Western Sydney University, Campbelltown, NSW, Australia
| | - Jeremiah K H Lim
- Department of Optometry and Vision Sciences, University of Melbourne, Victoria, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Victoria, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Victoria, Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Victoria, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
31
|
Valverde A, Dunys J, Lorivel T, Debayle D, Gay AS, Lacas-Gervais S, Roques BP, Chami M, Checler F. Aminopeptidase A contributes to biochemical, anatomical and cognitive defects in Alzheimer's disease (AD) mouse model and is increased at early stage in sporadic AD brain. Acta Neuropathol 2021; 141:823-839. [PMID: 33881611 PMCID: PMC8113186 DOI: 10.1007/s00401-021-02308-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022]
Abstract
One of the main components of senile plaques in Alzheimer's disease (AD)-affected brain is the Aβ peptide species harboring a pyroglutamate at position three pE3-Aβ. Several studies indicated that pE3-Aβ is toxic, prone to aggregation and serves as a seed of Aβ aggregation. The cyclisation of the glutamate residue is produced by glutaminyl cyclase, the pharmacological and genetic reductions of which significantly alleviate AD-related anatomical lesions and cognitive defects in mice models. The cyclisation of the glutamate in position 3 requires prior removal of the Aβ N-terminal aspartyl residue to allow subsequent biotransformation. The enzyme responsible for this rate-limiting catalytic step and its relevance as a putative trigger of AD pathology remained yet to be established. Here, we identify aminopeptidase A as the main exopeptidase involved in the N-terminal truncation of Aβ and document its key contribution to AD-related anatomical and behavioral defects. First, we show by mass spectrometry that human recombinant aminopeptidase A (APA) truncates synthetic Aβ1-40 to yield Aβ2-40. We demonstrate that the pharmacological blockade of APA with its selective inhibitor RB150 restores the density of mature spines and significantly reduced filopodia-like processes in hippocampal organotypic slices cultures virally transduced with the Swedish mutated Aβ-precursor protein (βAPP). Pharmacological reduction of APA activity and lowering of its expression by shRNA affect pE3-42Aβ- and Aβ1-42-positive plaques and expressions in 3xTg-AD mice brains. Further, we show that both APA inhibitors and shRNA partly alleviate learning and memory deficits observed in 3xTg-AD mice. Importantly, we demonstrate that, concomitantly to the occurrence of pE3-42Aβ-positive plaques, APA activity is augmented at early Braak stages in sporadic AD brains. Overall, our data indicate that APA is a key enzyme involved in Aβ N-terminal truncation and suggest the potential benefit of targeting this proteolytic activity to interfere with AD pathology.
Collapse
Affiliation(s)
- Audrey Valverde
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Julie Dunys
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Thomas Lorivel
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Delphine Debayle
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Anne-Sophie Gay
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | | | - Bernard P Roques
- Faculté de Pharmacie, Université Paris-Descartes, 75006, Paris, France
| | - Mounia Chami
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Frédéric Checler
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France.
| |
Collapse
|
32
|
Yakupova EI, Bobyleva LG, Shumeyko SA, Vikhlyantsev IM, Bobylev AG. Amyloids: The History of Toxicity and Functionality. BIOLOGY 2021; 10:biology10050394. [PMID: 34062910 PMCID: PMC8147320 DOI: 10.3390/biology10050394] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Proteins can perform their specific function due to their molecular structure. Partial or complete unfolding of the polypeptide chain may lead to the misfolding and aggregation of proteins in turn, resulting in the formation of different structures such as amyloid aggregates. Amyloids are rigid protein aggregates with the cross-β structure, resistant to most solvents and proteases. Because of their resistance to proteolysis, amyloid aggregates formed in the organism accumulate in tissues, promoting the development of various diseases called amyloidosis, for instance Alzheimer's diseases (AD). According to the main hypothesis, it is considered that the cause of AD is the formation and accumulation of amyloid plaques of Aβ. That is why Aβ-amyloid is the most studied representative of amyloids. Therefore, in this review, special attention is paid to the history of Aβ-amyloid toxicity. We note the main problems with anti-amyloid therapy and write about new views on amyloids that can play positive roles in the different organisms including humans.
Collapse
Affiliation(s)
- Elmira I. Yakupova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-(985)687-77-27
| | - Liya G. Bobyleva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Sergey A. Shumeyko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Ivan M. Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| |
Collapse
|
33
|
Exposure of Mesenchymal Stem Cells to an Alzheimer's Disease Environment Enhances Therapeutic Effects. Stem Cells Int 2021; 2021:6660186. [PMID: 33815510 PMCID: PMC7988745 DOI: 10.1155/2021/6660186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 02/19/2021] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising tool for the treatment of Alzheimer's disease (AD). Previous studies suggested that the coculture of human MSCs with AD in an in vitro model reduced the expression of amyloid-beta 42 (Aβ42) in the medium as well as the overexpression of amyloid-beta- (Aβ-) degrading enzymes such as neprilysin (NEP). We focused on the role of primed MSCs (human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) exposed to an AD cell line via a coculture system) in reducing the levels of Aβ and inhibiting cell death. We demonstrated that mouse groups treated with naïve MSCs and primed MSCs showed significant reductions in cell death, ubiquitin conjugate levels, and Aβ levels, but the effects were greater in primed MSCs. Also, mRNA sequencing data analysis indicated that high levels of TGF-β induced primed-MSCs. Furthermore, treatment with TGF-β reduced Aβ expression in an AD transgenic mouse model. These results highlighted AD environmental preconditioning is a promising strategy to reduce cell death and ubiquitin conjugate levels and maintain the stemness of MSCs. Further, these data suggest that human WJ-MSCs exposed to an AD environment may represent a promising and novel therapy for AD.
Collapse
|
34
|
Vidal C, Zhang L. An Analysis of the Neurological and Molecular Alterations Underlying the Pathogenesis of Alzheimer's Disease. Cells 2021; 10:cells10030546. [PMID: 33806317 PMCID: PMC7998384 DOI: 10.3390/cells10030546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by amyloid beta (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Unfortunately, despite decades of studies being performed on these histological alterations, there is no effective treatment or cure for AD. Identifying the molecular characteristics of the disease is imperative to understanding the pathogenesis of AD. Furthermore, uncovering the key causative alterations of AD can be valuable in developing models for AD treatment. Several alterations have been implicated in driving this disease, including blood–brain barrier dysfunction, hypoxia, mitochondrial dysfunction, oxidative stress, glucose hypometabolism, and altered heme homeostasis. Although these alterations have all been associated with the progression of AD, the root cause of AD has not been identified. Intriguingly, recent studies have pinpointed dysfunctional heme metabolism as a culprit of the development of AD. Heme has been shown to be central in neuronal function, mitochondrial respiration, and oxidative stress. Therefore, dysregulation of heme homeostasis may play a pivotal role in the manifestation of AD and its various alterations. This review will discuss the most common neurological and molecular alterations associated with AD and point out the critical role heme plays in the development of this disease.
Collapse
Affiliation(s)
| | - Li Zhang
- Correspondence: ; Tel.: +1-972-883-5757
| |
Collapse
|
35
|
Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J Biol Chem 2021; 296:100489. [PMID: 33662398 PMCID: PMC8027268 DOI: 10.1016/j.jbc.2021.100489] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic, biochemical, and anatomical grounds led to the proposal of the amyloid cascade hypothesis centered on the accumulation of amyloid beta peptides (Aβ) to explain Alzheimer's disease (AD) etiology. In this context, a bulk of efforts have aimed at developing therapeutic strategies seeking to reduce Aβ levels, either by blocking its production (γ- and β-secretase inhibitors) or by neutralizing it once formed (Aβ-directed immunotherapies). However, so far the vast majority of, if not all, clinical trials based on these strategies have failed, since they have not been able to restore cognitive function in AD patients, and even in many cases, they have worsened the clinical picture. We here propose that AD could be more complex than a simple Aβ-linked pathology and discuss the possibility that a way to reconcile undoubted genetic evidences linking processing of APP to AD and a consistent failure of Aβ-based clinical trials could be to envision the pathological contribution of the direct precursor of Aβ, the β-secretase-derived C-terminal fragment of APP, βCTF, also referred to as C99. In this review, we summarize scientific evidences pointing to C99 as an early contributor to AD and postulate that γ-secretase should be considered as not only an Aβ-generating protease, but also a beneficial C99-inactivating enzyme. In that sense, we discuss the limitations of molecules targeting γ-secretase and propose alternative strategies seeking to reduce C99 levels by other means and notably by enhancing its lysosomal degradation.
Collapse
|
36
|
Enzlein T, Cordes J, Munteanu B, Michno W, Serneels L, De Strooper B, Hanrieder J, Wolf I, Chávez-Gutiérrez L, Hopf C. Computational Analysis of Alzheimer Amyloid Plaque Composition in 2D- and Elastically Reconstructed 3D-MALDI MS Images. Anal Chem 2020; 92:14484-14493. [PMID: 33138378 DOI: 10.1021/acs.analchem.0c02585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MALDI mass spectrometry imaging (MSI) enables label-free, spatially resolved analysis of a wide range of analytes in tissue sections. Quantitative analysis of MSI datasets is typically performed on single pixels or manually assigned regions of interest (ROIs). However, many sparse, small objects such as Alzheimer's disease (AD) brain deposits of amyloid peptides called plaques are neither single pixels nor ROIs. Here, we propose a new approach to facilitate the comparative computational evaluation of amyloid plaque-like objects by MSI: a fast PLAQUE PICKER tool that enables a statistical evaluation of heterogeneous amyloid peptide composition. Comparing two AD mouse models, APP NL-G-F and APP PS1, we identified distinct heterogeneous plaque populations in the NL-G-F model but only one class of plaques in the PS1 model. We propose quantitative metrics for the comparison of technical and biological MSI replicates. Furthermore, we reconstructed a high-accuracy 3D-model of amyloid plaques in a fully automated fashion, employing rigid and elastic MSI image registration using structured and plaque-unrelated reference ion images. Statistical single-plaque analysis in reconstructed 3D-MSI objects revealed the Aβ1-42Arc peptide to be located either in the core of larger plaques or in small plaques without colocalization of other Aβ isoforms. In 3D, a substantially larger number of small plaques were observed than that indicated by the 2D-MSI data, suggesting that quantitative analysis of molecularly diverse sparsely-distributed features may benefit from 3D-reconstruction. Data are available via ProteomeXchange with identifier PXD020824.
Collapse
Affiliation(s)
- Thomas Enzlein
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, Mannheim 68163, Germany.,KU Leuven-VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium.,Department of Neurosciences, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium
| | - Jonas Cordes
- Faculty of Computer Science, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, Mannheim 68163, Germany
| | - Bogdan Munteanu
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, Mannheim 68163, Germany
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, Mölndal 43180, Sweden.,Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Lutgarde Serneels
- KU Leuven-VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium.,Department of Neurosciences, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium
| | - Bart De Strooper
- KU Leuven-VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium.,Department of Neurosciences, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium.,UK Dementia Research Institute at UCL, University College London, London WC1E 6BT U.K
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, Mölndal 43180, Sweden.,Department of Neurodegenerative Diseases, University College London Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Ivo Wolf
- Faculty of Computer Science, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, Mannheim 68163, Germany
| | - Lucía Chávez-Gutiérrez
- KU Leuven-VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium.,Department of Neurosciences, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, Mannheim 68163, Germany
| |
Collapse
|
37
|
Jia G, Yang H, Diao Z, Liu Y, Sun C. Neural stem cell conditioned medium alleviates Aβ 25-35 damage to SH-SY5Y cells through the PCMT1/MST1 pathway. Eur J Histochem 2020; 64:3135. [PMID: 32705859 PMCID: PMC7388643 DOI: 10.4081/ejh.2020.3135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/29/2020] [Indexed: 11/27/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease. Accumulating evidence suggests that protein isoaspartate methyltransferase 1 (PCMT1) is highly expressed in brain tissue (substantia nigra, blue plaque, paraventricular nucleus). In this study, we investigated the effect of neural stem cell conditioned medium alleviates Aβ25-35 damage to SH-SY5Y cells by PCMT1/MST1 pathway. Results demonstrated that Aβ25-35 significantly decreased the cell viability in time and dose dependent manner. However, Neural stem cell-complete medium (NSC-CPM) or NSC-CDM had inhibitory effect on toxicity when fibrillation of Aβ25-35 occurred in their presence and NSC-CDM had a better inhibitor result. An increase of the PCMT1 expression levels was found in Aβ25-35 + NSC-CDM group. sh-PCMT1 significantly reduced the PCMT1, the cell viability and inhibited the protective effect; induced apoptosis and increased the expression of p-MST1. Overexpression of PCMT1 group reversed the effect of Aβ25-35 inhibited the cell viability and Aβ25-35 induced the apoptosis. In conclusion, NSC-CDM corrects the damage of Aβ25-35 to cells by increasing PCMT1, reducing MST phosphorylation.
Collapse
Affiliation(s)
- Guoyong Jia
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan.
| | - Hongna Yang
- Department of Critical-care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan.
| | - Zengyan Diao
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan.
| | - Ying Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan.
| | - Congcong Sun
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan.
| |
Collapse
|
38
|
Chávez-Gutiérrez L, Szaruga M. Mechanisms of neurodegeneration - Insights from familial Alzheimer's disease. Semin Cell Dev Biol 2020; 105:75-85. [PMID: 32418657 DOI: 10.1016/j.semcdb.2020.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
The rising prevalence of Alzheimer's disease (AD), together with the lack of effective treatments, portray it as one of the major health challenges of our times. Untangling AD implies advancing the knowledge of the biology that gets disrupted during the disease while deciphering the molecular and cellular mechanisms leading to AD-related neurodegeneration. In fact, a solid mechanistic understanding of the disease processes stands as an essential prerequisite for the development of safe and effective treatments. Genetics has provided invaluable clues to the genesis of the disease by revealing deterministic genes - Presenilins (PSENs) and the Amyloid Precursor Protein (APP) - that, when affected, lead in an autosomal dominant manner to early-onset, familial AD (FAD). PSEN is the catalytic subunit of the membrane-embedded γ-secretase complexes, which act as proteolytic switches regulating key cell signalling cascades. Importantly, these intramembrane proteases are responsible for the production of Amyloid β (Aβ) peptides from APP. The convergence of pathogenic mutations on one functional pathway, the amyloidogenic cleavage of APP, strongly supports the significance of this process in AD pathogenesis. Here, we review and discuss the state-of-the-art knowledge of the molecular mechanisms underlying FAD, their implications for the sporadic form of the disease and for the development of safe AD therapeutics.
Collapse
Affiliation(s)
- Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium.
| | - Maria Szaruga
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Raman S, Brookhouser N, Brafman DA. Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer's disease (AD) risk. Neurobiol Dis 2020; 138:104788. [PMID: 32032733 PMCID: PMC7098264 DOI: 10.1016/j.nbd.2020.104788] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 01/02/2023] Open
Abstract
Although the biochemical and pathological hallmarks of Alzheimer's disease (AD), such as axonal transport defects, synaptic loss, and selective neuronal death, are well characterized, the underlying mechanisms that cause AD are largely unknown, thereby making it difficult to design effective therapeutic interventions. Genome-wide association studies (GWAS) studies have identified several factors associated with increased AD risk. Of these genetic factors, polymorphisms in the Apolipoprotein E (APOE) gene are the strongest and most prevalent. While it has been established that the ApoE protein modulates the formation of amyloid plaques and neurofibrillary tangles, the precise molecular mechanisms by which various ApoE isoforms enhance or mitigate AD onset and progression in aging adults are yet to be elucidated. Advances in cellular reprogramming to generate disease-in-a-dish models now provide a simplified and accessible system that complements animal and primary cell models to study ApoE in the context of AD. In this review, we will describe the use and manipulation of human induced pluripotent stem cells (hiPSCs) in dissecting the interaction between ApoE and AD. First, we will provide an overview of the proposed roles that ApoE plays in modulating pathophysiology of AD. Next, we will summarize the recent studies that have employed hiPSCs to model familial and sporadic AD. Lastly, we will speculate on how current advances in genome editing technologies and organoid culture systems can be used to improve hiPSC-based tools to investigate ApoE-dependent modulation of AD onset and progression.
Collapse
Affiliation(s)
- Sreedevi Raman
- School of Biological and Health Systems Engineering, Arizona State University, United States of America
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, United States of America; Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, United States of America
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, United States of America.
| |
Collapse
|
40
|
Alam J, Sharma L. Potential Enzymatic Targets in Alzheimer's: A Comprehensive Review. Curr Drug Targets 2020; 20:316-339. [PMID: 30124150 DOI: 10.2174/1389450119666180820104723] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/23/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's, a degenerative cause of the brain cells, is called as a progressive neurodegenerative disease and appears to have a heterogeneous etiology with main emphasis on amyloid-cascade and hyperphosphorylated tau-cascade hypotheses, that are directly linked with macromolecules called enzymes such as β- & γ-secretases, colinesterases, transglutaminases, and glycogen synthase kinase (GSK-3), cyclin-dependent kinase (cdk-5), microtubule affinity-regulating kinase (MARK). The catalytic activity of the above enzymes is the result of cognitive deficits, memory impairment and synaptic dysfunction and loss, and ultimately neuronal death. However, some other enzymes also lead to these dysfunctional events when reduced to their normal activities and levels in the brain, such as α- secretase, protein kinase C, phosphatases etc; metabolized to neurotransmitters, enzymes like monoamine oxidase (MAO), catechol-O-methyltransferase (COMT) etc. or these abnormalities can occur when enzymes act by other mechanisms such as phosphodiesterase reduces brain nucleotides (cGMP and cAMP) levels, phospholipase A2: PLA2 is associated with reactive oxygen species (ROS) production etc. On therapeutic fronts, several significant clinical trials are underway by targeting different enzymes for development of new therapeutics to treat Alzheimer's, such as inhibitors for β-secretase, GSK-3, MAO, phosphodiesterase, PLA2, cholinesterases etc, modulators of α- & γ-secretase activities and activators for protein kinase C, sirtuins etc. The last decades have perceived an increasing focus on findings and search for new putative and novel enzymatic targets for Alzheimer's. Here, we review the functions, pathological roles, and worth of almost all the Alzheimer's associated enzymes that address to therapeutic strategies and preventive approaches for treatment of Alzheimer's.
Collapse
Affiliation(s)
- Jahangir Alam
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| |
Collapse
|
41
|
Conformational Characterization of Native and L17A/F19A-Substituted Dutch-Type β-Amyloid Peptides. Int J Mol Sci 2020; 21:ijms21072571. [PMID: 32272787 PMCID: PMC7177254 DOI: 10.3390/ijms21072571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 01/26/2023] Open
Abstract
Some mutations which occur in the α/β-discordant region (resides 15 to 23) of β-amyloid peptide (Aβ) lead to familial Alzheimer’s disease (FAD). In vitro studies have shown that these genetic mutations could accelerate Aβ aggregation. We recently showed that mutations in this region could alter the structural propensity, resulting in a different aggregative propensity of Aβ. Whether these genetic mutations display similar effects remains largely unknown. Here, we characterized the structural propensity and aggregation kinetics of Dutch-type Aβ40 (Aβ40(E22Q)) and its L17A/F19A-substituted mutant (Aβ40(L17A/F19A/E22Q)) using circular dichroism spectroscopy, nuclear magnetic spectroscopy, and thioflavin T fluorescence assay. In comparison with wild-type Aβ40, we found that Dutch-type mutation, unlike Artic-type mutation (E22G), does not reduce the α-helical propensity of the α/β-discordant region in sodium dodecyl sulfate micellar solution. Moreover, we found that Aβ40(L17A/F19A/E22Q) displays a higher α-helical propensity of the α/β-discordant region and a slower aggregation rate than Aβ40(E22Q), suggesting that the inhibition of aggregation might be via increasing the α-helical propensity of the α/β-discordant region, similar to that observed in wild-type and Artic-type Aβ40. Taken together, Dutch-type and Artic-type mutations adopt different mechanisms to promote Aβ aggregation, however, the L17A/F19A mutation could increase the α-helical propensities of both Dutch-type and Artic-type Aβ40 and inhibit their aggregation.
Collapse
|
42
|
Li X, Lu J, Xu Y, Wang J, Qiu X, Fan L, Li B, Liu W, Mao F, Zhu J, Shen X, Li J. Discovery of nitazoxanide-based derivatives as autophagy activators for the treatment of Alzheimer's disease. Acta Pharm Sin B 2020; 10:646-666. [PMID: 32322468 PMCID: PMC7161708 DOI: 10.1016/j.apsb.2019.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022] Open
Abstract
Drug repurposing is an efficient strategy for new drug discovery. Our latest study found that nitazoxanide (NTZ), an approved anti-parasite drug, was an autophagy activator and could alleviate the symptom of Alzheimer's disease (AD). In order to further improve the efficacy and discover new chemical entities, a series of NTZ-based derivatives were designed, synthesized, and evaluated as autophagy activator against AD. All compounds were screened by the inhibition of phosphorylation of p70S6K, which was the direct substrate of mammalian target of rapamycin (mTOR) and its phosphorylation level could reflect the mTOR-dependent autophagy level. Among these analogs, compound 22 exhibited excellent potency in promoting β-amyloid (Aβ) clearance, inhibiting tau phosphorylation, as well as stimulating autophagy both in vitro and in vivo. What's more, 22 could effectively improve the memory and cognitive impairments in APP/PS1 transgenic AD model mice. These results demonstrated that 22 was a potential candidate for the treatment of AD.
Collapse
Key Words
- AChEIs, acetylcholinesterase inhibitors
- AD, Alzheimer's disease
- APP, amyloid precursor protein
- Alzheimer's disease
- Autophagy
- Aβ, β-amyloid
- BBB, blood–brain barrier
- CNS, central nervous system
- MWM, Morris Water Maze
- NCEs, new chemical entities
- NFTs, neurofibrillary tangles
- NMDA, N-methyl-d-aspartate
- NTZ, nitazoxanide
- Nitazoxanide
- PAMPA, parallel artificial membrane permeation assay
- PBL, porcine brain lipid
- SPs, senile plaques
- Tau protein
- WORT, wortmannin
- mTOR, mammalian target of rapamycin
- β-amyloid
Collapse
|
43
|
Andrejew R, Glaser T, Oliveira-Giacomelli Á, Ribeiro D, Godoy M, Granato A, Ulrich H. Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:275-353. [PMID: 31898792 DOI: 10.1007/978-3-030-31206-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular purines exert several functions in physiological and pathophysiological mechanisms. ATP acts through P2 receptors as a neurotransmitter and neuromodulator and modulates heart contractility, while adenosine participates in neurotransmission, blood pressure, and many other mechanisms. Because of their capability to differentiate into mature cell types, they provide a unique therapeutic strategy for regenerating damaged tissue, such as in cardiovascular and neurodegenerative diseases. Purinergic signaling is pivotal for controlling stem cell differentiation and phenotype determination. Proliferation, differentiation, and apoptosis of stem cells of various origins are regulated by purinergic receptors. In this chapter, we selected neurodegenerative and cardiovascular diseases with clinical trials using cell therapy and purinergic receptor targeting. We discuss these approaches as therapeutic alternatives to neurodegenerative and cardiovascular diseases. For instance, promising results were demonstrated in the utilization of mesenchymal stem cells and bone marrow mononuclear cells in vascular regeneration. Regarding neurodegenerative diseases, in general, P2X7 and A2A receptors mostly worsen the degenerative state. Stem cell-based therapy, mainly through mesenchymal and hematopoietic stem cells, showed promising results in improving symptoms caused by neurodegeneration. We propose that purinergic receptor activity regulation combined with stem cells could enhance proliferative and differentiation rates as well as cell engraftment.
Collapse
Affiliation(s)
- Roberta Andrejew
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Ágatha Oliveira-Giacomelli
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Ribeiro
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Godoy
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurodegenerative Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Granato
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
44
|
Lučiūnaitė A, McManus RM, Jankunec M, Rácz I, Dansokho C, Dalgėdienė I, Schwartz S, Brosseron F, Heneka MT. Soluble Aβ oligomers and protofibrils induce NLRP3 inflammasome activation in microglia. J Neurochem 2020; 155:650-661. [DOI: 10.1111/jnc.14945] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Asta Lučiūnaitė
- Institute of Biotechnology, Life Sciences Center Vilnius University Vilnius Lithuania
- Department of Neurodegenerative Disease and Geriatric PsychiatryBonn Germany
- German Center for Neurodegenerative Disease (DZNE) Bonn Germany
| | - Róisín M. McManus
- Department of Neurodegenerative Disease and Geriatric PsychiatryBonn Germany
- German Center for Neurodegenerative Disease (DZNE) Bonn Germany
| | - Marija Jankunec
- Institute of Biochemistry, Life Sciences Center Vilnius University Vilnius Lithuania
| | - Ildikó Rácz
- Department of Neurodegenerative Disease and Geriatric PsychiatryBonn Germany
| | - Cira Dansokho
- Department of Neurodegenerative Disease and Geriatric PsychiatryBonn Germany
- German Center for Neurodegenerative Disease (DZNE) Bonn Germany
| | - Indrė Dalgėdienė
- Institute of Biotechnology, Life Sciences Center Vilnius University Vilnius Lithuania
| | - Stephanie Schwartz
- Department of Neurodegenerative Disease and Geriatric PsychiatryBonn Germany
| | | | - Michael T. Heneka
- Department of Neurodegenerative Disease and Geriatric PsychiatryBonn Germany
| |
Collapse
|
45
|
Wirths O, Zampar S. Emerging roles of N- and C-terminally truncated Aβ species in Alzheimer’s disease. Expert Opin Ther Targets 2019; 23:991-1004. [DOI: 10.1080/14728222.2019.1702972] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Oliver Wirths
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
46
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Castro MA, Hadziselimovic A, Sanders CR. The vexing complexity of the amyloidogenic pathway. Protein Sci 2019; 28:1177-1193. [PMID: 30897251 PMCID: PMC6566549 DOI: 10.1002/pro.3606] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
The role of the amyloidogenic pathway in the etiology of Alzheimer's disease (AD), particularly the common sporadic late onset forms of the disease, is controversial. To some degree, this is a consequence of the failure of drug and therapeutic antibody trials based either on targeting the proteases in this pathway or its amyloid end products. Here, we explore the formidable complexity of the biochemistry and cell biology associated with this pathway. For example, we review evidence that the immediate precursor of amyloid-β, the C99 domain of the amyloid precursor protein (APP), may itself be toxic. We also review important new results that appear to finally establish a direct genetic link between mutations in APP and the sporadic forms of AD. Based on the complexity of amyloidogenesis, it seems possible that a major contributor to the failure of related drug trials is that we have an incomplete understanding of this pathway and how it is linked to Alzheimer's pathogenesis. If so, this highlights a need for further characterization of this pathway, not its abandonment.
Collapse
Affiliation(s)
- Manuel A. Castro
- Departments of Biochemistry and MedicineVanderbilt University School of MedicineNashvilleTennessee 37240
| | - Arina Hadziselimovic
- Departments of Biochemistry and MedicineVanderbilt University School of MedicineNashvilleTennessee 37240
| | - Charles R. Sanders
- Departments of Biochemistry and MedicineVanderbilt University School of MedicineNashvilleTennessee 37240
| |
Collapse
|
48
|
Yuan NN, Cai CZ, Wu MY, Su HX, Li M, Lu JH. Neuroprotective effects of berberine in animal models of Alzheimer's disease: a systematic review of pre-clinical studies. Altern Ther Health Med 2019; 19:109. [PMID: 31122236 PMCID: PMC6533761 DOI: 10.1186/s12906-019-2510-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/18/2019] [Indexed: 02/08/2023]
Abstract
Background Berberine is an isoquinoline alkaloid extracted from various Berberis species which is widely used in East Asia for a wide range of symptoms. Recently, neuroprotective effects of berberine in Alzheimer’s disease (AD) animal models are being extensively reported. So far, no clinical trial has been carried out on the neuroprotective effects of berberine. However, a review of the experimental data is needed before choosing berberine as a candidate drug for clinical experiments. We conducted a systematic review on AD rodent models to analyze the drug effects with minimal selection bias. Methods Five online literature databases were searched to find publications reporting studies of the effect of berberine treatment on animal models of AD. Up to March 2018, 15 papers were identified to describe the efficacy of berberine. Results The included 15 articles met our inclusion criteria with different quality ranging from 3 to 5. We analyzed data extracted from full texts with regard to pharmacological effects and potential anti-Alzheimer’s properties. Our analysis revealed that in multiple memory defects animal models, berberine showed significant memory-improving activities with multiple mechanisms, such as anti-inflammation, anti-oxidative stress, cholinesterase (ChE) inhibition and anti-amyloid effects. Conclusion AD is likely to be a complex disease driven by multiple factors. Yet, many therapeutic strategies based on lowering β-amyloid have failed in clinical trials. This suggest that the threapy should not base on a single cause of Alzheimer’s disease but rather a number of different pathways that lead to the disease. Overall we think that berberine can be a promising multipotent agent to combat Alzheimer’s disease.
Collapse
|
49
|
Electroacupuncture Mitigates Hippocampal Cognitive Impairments by Reducing BACE1 Deposition and Activating PKA in APP/PS1 Double Transgenic Mice. Neural Plast 2019; 2019:2823679. [PMID: 31223308 PMCID: PMC6541940 DOI: 10.1155/2019/2823679] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
Increased amyloid-β (Aβ) plaque deposition is thought to be the main cause of Alzheimer's disease (AD). β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) is the key protein involved in Aβ peptide generation. Excessive expression of BACE1 might cause overproduction of neurotoxins in the central nervous system. Previous studies indicated that BACE1 initially cleaves the amyloid precursor protein (APP) and may subsequently interfere with physiological functions of proteins such as PKA, which is recognized to be closely associated with long-term potentiation (LTP) level and can effectively ameliorate cognitive impairments. Therefore, revealing the underlying mechanism of BACE1 in the pathogenesis of AD might have a significant impact on the future development of therapeutic agents targeting dementia. This study examined the effects of electroacupuncture (EA) stimulation on BACE1, APP, and p-PKA protein levels in hippocampal tissue samples. Memory and learning abilities were assessed using the Morris water maze test after EA intervention. Immunofluorescence, immunohistochemistry, and western blot were employed to assess the distribution patterns and expression levels of BACE1, APP, and p-PKA, respectively. The results showed the downregulation of BACE1 and APP and the activation of PKA by EA. In summary, EA treatment might reduce BACE1 deposition in APP/PS1 transgenic mice and regulate PKA and its associated substrates, such as LTP to change memory and learning abilities.
Collapse
|
50
|
Expression of AHI1 Rescues Amyloidogenic Pathology in Alzheimer's Disease Model Cells. Mol Neurobiol 2019; 56:7572-7582. [PMID: 31062249 DOI: 10.1007/s12035-019-1587-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/27/2019] [Indexed: 01/03/2023]
Abstract
A hallmark of Alzheimer's disease (AD) pathogenesis is the accumulation of extracellular plaques mainly composed of amyloid-β (Aβ) derived from amyloid precursor protein (APP) cleavage. Recent reports suggest that transport of APP in vesicles with huntingtin-associated protein-1 (HAP1) negatively regulates Aβ production. In neurons, HAP1 forms a stable complex with Abelson helper integration site-1 (AHI1), in which mutations cause neurodevelopmental and psychiatric disorders. HAP1 and AHI1 interact with tropomyosin receptor kinases (Trks), which are also associated with APP and mediate neurotrophic signaling. In this study, we hypothesize that AHI1 participates in APP trafficking and processing to rescue AD pathology. Indeed, AHI1 was significantly reduced in mouse neuroblastoma N2a cells expressing human Swedish and Indiana APP (designed as AD model cells) and in 3xTg-AD mouse brain. The AD model cells as well as Ahi1-knockdown cells expressing wild-type APP-695 exhibited a significant reduction in viability. In addition, the AD model cells were reduced in neurite outgrowth. APP C-terminal fragment-β (CTFβ) and Aβ42 were increased in the AD cell lysates and the culture media, respectively. To investigate the mechanism how AHI1 alters APP activities, we overexpressed human AHI1 in the AD model cells. The results showed that AHI1 interacted with APP physically in mouse brain and transfected N2a cells despite APP genotypes. AHI1 expression facilitated intracellular translocation of APP and inhibited APP amyloidogenic process to reduce the level of APP-CTFβ in the total lysates of AD model cells as well as Aβ in the culture media. Consequently, AHI1-APP interactions enhanced neurotrophic signaling through Erk activation and led to restored cell survival and differentiation.
Collapse
|