1
|
Graciano A, Liu A. Protein-derived cofactors: chemical innovations expanding enzyme catalysis. Chem Soc Rev 2025; 54:4502-4530. [PMID: 40151987 PMCID: PMC11951088 DOI: 10.1039/d4cs00981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Indexed: 03/29/2025]
Abstract
Protein-derived cofactors, formed through posttranslational modification of a single amino acid or covalent crosslinking of amino acid side chains, represent a rapidly expanding class of catalytic moieties that redefine enzyme functionality. Once considered rare, these cofactors are recognized across all domains of life, with their repertoire growing from 17 to 38 types in two decades in our survey. Their biosynthesis proceeds via diverse pathways, including oxidation, metal-assisted rearrangements, and enzymatic modifications, yielding intricate motifs that underpin distinctive catalytic strategies. These cofactors span paramagnetic and non-radical states, including both mono-radical and crosslinked radical forms, sometimes accompanied by additional modifications. While their discovery has accelerated, mechanistic understanding lags, as conventional mutagenesis disrupts cofactor assembly. Emerging approaches, such as site-specific incorporation of non-canonical amino acids, now enable precise interrogation of cofactor biogenesis and function, offering a viable and increasingly rigorous means to gain mechanistic insights. Beyond redox chemistry and electron transfer, these cofactors confer enzymes with expanded functionalities. Recent studies have unveiled new paradigms, such as long-range remote catalysis and redox-regulated crosslinks as molecular switches. Advances in structural biology, mass spectrometry, and biophysical spectroscopy continue to elucidate their mechanisms. Moreover, synthetic biology and biomimetic chemistry are increasingly leveraging these natural designs to engineer enzyme-inspired catalysts. This review integrates recent advances in cofactor biogenesis, reactivity, metabolic regulation, and synthetic applications, highlighting the expanding chemical landscape and growing diversity of protein-derived cofactors and their far-reaching implications for enzymology, biocatalysis, and biotechnology.
Collapse
Affiliation(s)
- Angelica Graciano
- Department of Chemistry, The University of Texas at San Antonio, Texas 78249, USA.
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, Texas 78249, USA.
| |
Collapse
|
2
|
Décout JL, Maurel MC. Purine Chemistry in the Early RNA World at the Origins of Life: From RNA and Nucleobases Lesions to Current Key Metabolic Routes. Chembiochem 2025:e2500035. [PMID: 40237374 DOI: 10.1002/cbic.202500035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/25/2025] [Indexed: 04/18/2025]
Abstract
In early life, RNA probably played the central role and, in the corresponding RNA world, the main produced amino acids and small peptides had to react continuously with RNA, ribonucleos(t)ides and nucleobases, especially with purines. A RNA-peptide world and key metabolic pathways have emerged from the corresponding chemical modifications such as the translation process performed by the ribosome. Some interesting reactions of the purine bicycle and of the corresponding ribonucleos(t)ides are performed under plausible prebiotic conditions and described RNA chemical lesions are reviewed with the prospect to highlight their connection with some major steps of the purine and histidine biosynthetic pathways that are, in an intriguingly way, related through two key metabolites, adenosine 5'-triphosphate and the imidazole ribonucleotide 5-aminoimidazole-4-carboxamide ribonucleotide. Ring-opening reactions of purines stand out as efficient accesses to imidazole ribonucleotides and to formamidopyrimidine (Fapy) ribonucleotides suggesting that biosynthetic pathway' first steps have emerged from RNA and ribonucleos(t)ide damages. Also, are summarized the works on the formation and catalytic properties, under plausible prebiotic conditions, of N6-derivatives of the purine base adenine as potential surrogates of histidine in catalysis accordingly to their structural relationship.
Collapse
Affiliation(s)
- Jean-Luc Décout
- Département de Pharmacochimie Moléculaire, UMR 5063, Université Grenoble Alpes, CNRS, Faculté de Pharmacie, 38000, Grenoble, France
| | - Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISyEB), UMR 7205, CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
3
|
Suspène R, Raymond KA, Guardado-Calvo P, Dairou J, Bonhomme F, Bonenfant C, Guyetant S, Lecomte T, Pagès JC, Vartanian JP. Disruption of deoxyribonucleotide triphosphate biosynthesis leads to RAS proto-oncogene activation and perturbation of mitochondrial metabolism. J Biol Chem 2025; 301:108117. [PMID: 39722416 PMCID: PMC11791277 DOI: 10.1016/j.jbc.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Perturbation of the deoxyribonucleotide triphosphate (dNTP) pool is recognized for contributing to the mutagenic processes involved in oncogenesis. The RAS gene family encodes well-characterized oncoproteins whose structure and function are among the most frequently altered in several cancers. In this work, we show that fluctuation of the dNTP pool induces CG → TA mutations across the whole genome, including RAS gene at codons for glycine 12 and 13, known hotspots in cancers. Cell culture addition of the ribonucleotide reductase inhibitor thymidine increases the mutation frequency in nuclear DNA and leads to disruption of mitochondrial metabolism. Interestingly, this effect is counteracted by the addition of deoxycytidine. Finally, screening for the loss of hydrogen bonds detecting CG → TA transition in RAS gene of 135 patients with colorectal cancer confirmed the clinical relevance of this process. All together, these data demonstrate that fluctuation of intracellular dNTP pool alters the nuclear DNA and mitochondrial metabolism.
Collapse
Affiliation(s)
- Rodolphe Suspène
- Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, Paris, France
| | - Kyle A Raymond
- Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, Paris, France; Sorbonne Université, Complexité du Vivant ED515, Paris, France
| | - Pablo Guardado-Calvo
- Structural Biology of Infectious Diseases, Department of Virology, Université Paris Cité, Institut Pasteur, Paris, France
| | - Julien Dairou
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Frédéric Bonhomme
- Epigenetic Chemical Biology Unit, UMR CNRS 3523, Université Paris Cité, Institut Pasteur, Paris, France
| | - Christine Bonenfant
- Pathology Department and Cancer Molecular Genetics Platform, CHRU de Tours Hôpital Trousseau, Tours, France
| | - Serge Guyetant
- Pathology Department and Cancer Molecular Genetics Platform, CHRU de Tours Hôpital Trousseau, Tours, France
| | - Thierry Lecomte
- Inserm UMR 1069, N2COx "Niche, Nutrition, Cancer and Oxidative Metabolism", Université de Tours, Tours, France; Service de gastroentérologie, CHRU de Tours Hôpital Trousseau, Tours, France
| | - Jean-Christophe Pagès
- RESTORE, Université de Toulouse, EFS Occitanie, INP-ENVT, INSERM U1301, UMR CNRS 5070, Toulouse, France; CHU de Toulouse, IFB, Hôpital Purpan, Toulouse, France
| | - Jean-Pierre Vartanian
- Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, Paris, France.
| |
Collapse
|
4
|
Li RN, Chen SL. Recent Insights into the Reaction Mechanisms of Non-Heme Diiron Enzymes Containing Oxoiron(IV) Complexes. Chembiochem 2025; 26:e202400788. [PMID: 39508533 DOI: 10.1002/cbic.202400788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Oxoiron(IV) complexes are key intermediates in the catalytic reactions of some non-heme diiron enzymes. These enzymes, across various subfamilies, activate dioxygen to generate high-valent diiron-oxo species, which, in turn, drive the activation of substrates and mediate a variety of challenging oxidative transformations. In this review, we summarize the structures, formation mechanisms, and functions of high-valent diiron-oxo intermediates in eight representative diiron enzymes (sMMO, RNR, ToMO, MIOX, PhnZ, SCD1, AlkB, and SznF) spanning five subfamilies. We also categorize and analyze the structural and mechanistic differences among these enzymes.
Collapse
Affiliation(s)
- Rui-Ning Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
5
|
Elfar G, Aning O, Ngai T, Yeo P, Chan J, Sim S, Goh L, Yuan J, Phua C, Yeo J, Mak S, Goh B, Chow PH, Tam W, Ho Y, Cheok C. p53-dependent crosstalk between DNA replication integrity and redox metabolism mediated through a NRF2-PARP1 axis. Nucleic Acids Res 2024; 52:12351-12377. [PMID: 39315696 PMCID: PMC11551750 DOI: 10.1093/nar/gkae811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Mechanisms underlying p53-mediated protection of the replicating genome remain elusive, despite the quintessential role of p53 in maintaining genomic stability. Here, we uncover an unexpected function of p53 in curbing replication stress by limiting PARP1 activity and preventing the unscheduled degradation of deprotected stalled forks. We searched for p53-dependent factors and elucidated RRM2B as a prime factor. Deficiency in p53/RRM2B results in the activation of an NRF2 antioxidant transcriptional program, with a concomitant elevation in basal PARylation in cells. Dissecting the consequences of p53/RRM2B loss revealed a crosstalk between redox metabolism and genome integrity that is negotiated through a hitherto undescribed NRF2-PARP1 axis, and pinpoint G6PD as a primary oxidative stress-induced NRF2 target and activator of basal PARylation. This study elucidates how loss of p53 could be destabilizing for the replicating genome and, importantly, describes an unanticipated crosstalk between redox metabolism, PARP1 and p53 tumor suppressor pathway that is broadly relevant in cancers and can be leveraged therapeutically.
Collapse
Affiliation(s)
- Gamal Ahmed Elfar
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Obed Aning
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Tsz Wai Ngai
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Pearlyn Yeo
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Joel Wai Kit Chan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shang Hong Sim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Leonard Goh
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Ju Yuan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joanna Zhen Zhen Yeo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shi Ya Mak
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Brian Kim Poh Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore and National Cancer Centre Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore and National Cancer Centre Singapore, Singapore
- Surgery Academic ClinicalProgramme, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chit Fang Cheok
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| |
Collapse
|
6
|
Savin IA, Sen’kova AV, Goncharova EP, Zenkova MA, Markov AV. Novel Core Gene Signature Associated with Inflammation-to-Metaplasia Transition in Influenza A Virus-Infected Lungs. Int J Mol Sci 2024; 25:11958. [PMID: 39596028 PMCID: PMC11594146 DOI: 10.3390/ijms252211958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Respiratory infections caused by RNA viruses are a major contributor to respiratory disease due to their ability to cause annual epidemics with profound public health implications. Influenza A virus (IAV) infection can affect a variety of host signaling pathways that initiate tissue regeneration with hyperplastic and/or dysplastic changes in the lungs. Although these changes are involved in lung recovery after IAV infection, in some cases, they can lead to serious respiratory failure. Despite being ubiquitously observed, there are limited data on the regulation of long-term recovery from IAV infection leading to normal or dysplastic repair represented by inflammation-to-metaplasia transition in mice or humans. To address this knowledge gap, we used integrative bioinformatics analysis with further verification in vivo to elucidate the dynamic molecular changes in IAV-infected murine lung tissue and identified the core genes (Birc5, Cdca3, Plk1, Tpx2, Prc1. Rrm2, Nusap1, Spag5, Top2a, Mcm5) and transcription factors (E2F1, E2F4, NF-YA, NF-YB, NF-YC) involved in persistent lung injury and regeneration processes, which may serve as gene signatures reflecting the long-term effects of IAV proliferation on the lung. Further analysis of the identified core genes revealed their involvement not only in IAV infection but also in COVID-19 and lung neoplasm development, suggesting their potential role as biomarkers of severe lung disease and its complications represented by abnormal epithelial proliferation and oncotransformation.
Collapse
|
7
|
Song DY, Stubbe J, Nocera DG. Protein engineering a PhotoRNR chimera based on a unifying evolutionary apparatus among the natural classes of ribonucleotide reductases. Proc Natl Acad Sci U S A 2024; 121:e2317291121. [PMID: 38648489 PMCID: PMC11067019 DOI: 10.1073/pnas.2317291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Ribonucleotide reductases (RNRs) are essential enzymes that catalyze the de novo transformation of nucleoside 5'-di(tri)phosphates [ND(T)Ps, where N is A, U, C, or G] to their corresponding deoxynucleotides. Despite the diversity of factors required for function and the low sequence conservation across RNRs, a unifying apparatus consolidating RNR activity is explored. We combine aspects of the protein subunit simplicity of class II RNR with a modified version of Escherichia coli class la photoRNRs that initiate radical chemistry with light to engineer a mimic of a class II enzyme. The design of this RNR involves fusing a truncated form of the active site containing α subunit with the functionally important C-terminal tail of the radical-generating β subunit to render a chimeric RNR. Inspired by a recent cryo-EM structure, a [Re] photooxidant is located adjacent to Y356[β], which is an essential component of the radical transport pathway in class I RNRs. Combination of this RNR photochimera with cytidine diphosphate (CDP), adenosine triphosphate (ATP), and light resulted in the generation of Y356• along with production of deoxycytidine diphosphate (dCDP) and cytosine. The photoproducts reflect an active site chemistry consistent with both the consensus mechanism of RNR and chemistry observed when RNR is inactivated by mechanism-based inhibitors in the active site. The enzymatic activity of the RNR photochimera in the absence of any β metallocofactor highlights the adaptability of the 10-stranded αβ barrel finger loop to support deoxynucleotide formation and accommodate the design of engineered RNRs.
Collapse
Affiliation(s)
- David Y. Song
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - JoAnne Stubbe
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
8
|
Zuo Z, Zhou Z, Chang Y, Liu Y, Shen Y, Li Q, Zhang L. Ribonucleotide reductase M2 (RRM2): Regulation, function and targeting strategy in human cancer. Genes Dis 2024; 11:218-233. [PMID: 37588202 PMCID: PMC10425756 DOI: 10.1016/j.gendis.2022.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Ribonucleotide reductase M2 (RRM2) is a small subunit in ribonucleotide reductases, which participate in nucleotide metabolism and catalyze the conversion of nucleotides to deoxynucleotides, maintaining the dNTP pools for DNA biosynthesis, repair, and replication. RRM2 performs a critical role in the malignant biological behaviors of cancers. The structure, regulation, and function of RRM2 and its inhibitors were discussed. RRM2 gene can produce two transcripts encoding the same ORF. RRM2 expression is regulated at multiple levels during the processes from transcription to translation. Moreover, this gene is associated with resistance, regulated cell death, and tumor immunity. In order to develop and design inhibitors of RRM2, appropriate strategies can be adopted based on different mechanisms. Thus, a greater appreciation of the characteristics of RRM2 is a benefit for understanding tumorigenesis, resistance in cancer, and tumor microenvironment. Moreover, RRM2-targeted therapy will be more attention in future therapeutic approaches for enhancement of treatment effects and amelioration of the dismal prognosis.
Collapse
Affiliation(s)
- Zanwen Zuo
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zerong Zhou
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yuzhou Chang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Shen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lei Zhang
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
9
|
Razvi E, DiFrancesco BR, Wasney GA, Morrison ZA, Tam J, Auger A, Baker P, Alnabelseya N, Rich JD, Sivarajah P, Whitfield GB, Harrison JJ, Melnyk RA, Nitz M, Howell PL. Small Molecule Inhibition of an Exopolysaccharide Modification Enzyme is a Viable Strategy To Block Pseudomonas aeruginosa Pel Biofilm Formation. Microbiol Spectr 2023; 11:e0029623. [PMID: 37098898 PMCID: PMC10269871 DOI: 10.1128/spectrum.00296-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023] Open
Abstract
Biosynthesis of the Pel exopolysaccharide in Pseudomonas aeruginosa requires all seven genes of the pelABCDEFG operon. The periplasmic modification enzyme PelA contains a C-terminal deacetylase domain that is necessary for Pel-dependent biofilm formation. Herein, we show that extracellular Pel is not produced by a P. aeruginosa PelA deacetylase mutant. This positions PelA deacetylase activity as an attractive target to prevent Pel-dependent biofilm formation. Using a high-throughput screen (n = 69,360), we identified 56 compounds that potentially inhibit PelA esterase activity, the first enzymatic step in the deacetylase reaction. A secondary biofilm inhibition assay identified methyl 2-(2-pyridinylmethylene) hydrazinecarbodithioate (SK-017154-O) as a specific Pel-dependent biofilm inhibitor. Structure-activity relationship studies identified the thiocarbazate as a necessary functional group and that the pyridyl ring could be replaced with a phenyl substituent (compound 1). Both SK-017154-O and compound 1 inhibit Pel-dependent biofilm formation in Bacillus cereus ATCC 10987, which has a predicted extracellular PelA deacetylase in its pel operon. Michaelis-Menten kinetics determined SK-017154-O to be a noncompetitive inhibitor of PelA, while compound 1 did not directly inhibit PelA esterase activity. Cytotoxicity assays using human lung fibroblast cells showed that compound 1 is less cytotoxic than SK-017154-O. This work provides proof of concept that biofilm exopolysaccharide modification enzymes are important for biofilm formation and can serve as useful antibiofilm targets. IMPORTANCE Present in more than 500 diverse Gram-negative and 900 Gram-positive organisms, the Pel polysaccharide is one of the most phylogenetically widespread biofilm matrix determinants found to date. Partial de-N-acetylation of this α-1,4 linked N-acetylgalactosamine polymer by the carbohydrate modification enzyme PelA is required for Pel-dependent biofilm formation in Pseudomonas aeruginosa and Bacillus cereus. Given this and our observation that extracellular Pel is not produced by a P. aeruginosa PelA deactylase mutant, we developed an enzyme-based high-throughput screen and identified methyl 2-(2-pyridinylmethylene) hydrazinecarbodithioate (SK-017154-O) and its phenyl derivative as specific Pel-dependent biofilm inhibitors. Michaelis-Menten kinetics revealed SK-017154-O is a noncompetitive inhibitor and that its noncytotoxic, phenyl derivative does not directly inhibit P. aeruginosa PelA esterase activity. We provide proof of concept that exopolysaccharide modification enzymes can be targeted with small molecule inhibitors to block Pel-dependent biofilm development in both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Erum Razvi
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Gregory A. Wasney
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Structural & Biophysical Core Facility, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - John Tam
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anick Auger
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- SPARC BioCentre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Perrin Baker
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Noor Alnabelseya
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jacquelyn D. Rich
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Piyanka Sivarajah
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory B. Whitfield
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Joe J. Harrison
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Roman A. Melnyk
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - P. Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Zhou X, Wang M, Li H, Ye S, Tang W. Widely targeted metabolomics reveals the antioxidant and anticancer activities of different colors of Dianthus caryophyllus. Front Nutr 2023; 10:1166375. [PMID: 37275648 PMCID: PMC10235515 DOI: 10.3389/fnut.2023.1166375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Carnation is edible flower that has potent antioxidant properties and is used in traditional Chinese medicinal system and food industry. The phytochemicals responsible for these various proprieties, however, are not fully understood. Thus, in order to recognize metabolite diversity and variability in carnation flowers of different colors and to discover key metabolites that contribute to the differences in antioxidant and anticancer activities, widely targeted LC-MS/MS-based metabolomics analysis was conducted on purple, green, yellow, and white carnation flowers. We identified and chemically categorized 932 metabolites. Metabolic compounds varied significantly with flower color. Several flavonoids, organic acids, phenolic acids, and nucleotides and their derivatives were found to be specific differential metabolites in purple flowers. A total of 128 key differential metabolites were screened. The purple flowers were found to have the highest antioxidant and anticancer activities compared to the other colored flowers. Correlation analysis revealed that the 6-hydroxykaempferol-3,6-O-diglucoside, 6-hydroxykaempferol-7-O-glucoside, quercetin-3-O-sophoroside, and 2'-deoxyguanosine were found to be the major constituents of the antioxidant and anticancer activities. 2'-Deoxyguanosine has effective antiproliferative activity against A549 and U2OS cells for the first report. At the same time, the combination of 2'-deoxyguanosine with 6-hydroxykaempferol-3, 6-O-diglucoside, or quercetin-3-O-sophoroside have also been found to increase the antitumor activity of 2'-deoxyguanosine. These discoveries enrich information on the phytochemical composition of carnation of different colors and provide resources for the overall use and improvement of carnation flowers quality.
Collapse
Affiliation(s)
- Xuhong Zhou
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, China
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, China
| | - Miaomaio Wang
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, China
| | - Hong Li
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, China
| | - Shilong Ye
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, China
| | - Wenru Tang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
11
|
Wozniak K, Brzezinski K. Biological Catalysis and Information Storage Have Relied on N-Glycosyl Derivatives of β-D-Ribofuranose since the Origins of Life. Biomolecules 2023; 13:biom13050782. [PMID: 37238652 DOI: 10.3390/biom13050782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Most naturally occurring nucleotides and nucleosides are N-glycosyl derivatives of β-d-ribose. These N-ribosides are involved in most metabolic processes that occur in cells. They are essential components of nucleic acids, forming the basis for genetic information storage and flow. Moreover, these compounds are involved in numerous catalytic processes, including chemical energy production and storage, in which they serve as cofactors or coribozymes. From a chemical point of view, the overall structure of nucleotides and nucleosides is very similar and simple. However, their unique chemical and structural features render these compounds versatile building blocks that are crucial for life processes in all known organisms. Notably, the universal function of these compounds in encoding genetic information and cellular catalysis strongly suggests their essential role in the origins of life. In this review, we summarize major issues related to the role of N-ribosides in biological systems, especially in the context of the origin of life and its further evolution, through the RNA-based World(s), toward the life we observe today. We also discuss possible reasons why life has arisen from derivatives of β-d-ribofuranose instead of compounds based on other sugar moieties.
Collapse
Affiliation(s)
- Katarzyna Wozniak
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland
| | - Krzysztof Brzezinski
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland
| |
Collapse
|
12
|
Das C, Adhikari S, Bhattacharya A, Chakraborty S, Mondal P, Yadav SS, Adhikary S, Hunt CR, Yadav K, Pandita S, Roy S, Tainer JA, Ahmed Z, Pandita TK. Epigenetic-Metabolic Interplay in the DNA Damage Response and Therapeutic Resistance of Breast Cancer. Cancer Res 2023; 83:657-666. [PMID: 36661847 PMCID: PMC11285093 DOI: 10.1158/0008-5472.can-22-3015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Therapy resistance is imposing a daunting challenge on effective clinical management of breast cancer. Although the development of resistance to drugs is multifaceted, reprogramming of energy metabolism pathways is emerging as a central but heterogenous regulator of this therapeutic challenge. Metabolic heterogeneity in cancer cells is intricately associated with alterations of different signaling networks and activation of DNA damage response pathways. Here we consider how the dynamic metabolic milieu of cancer cells regulates their DNA damage repair ability to ultimately contribute to development of therapy resistance. Diverse epigenetic regulators are crucial in remodeling the metabolic landscape of cancer. This epigenetic-metabolic interplay profoundly affects genomic stability of the cancer cells as well as their resistance to genotoxic therapies. These observations identify defining mechanisms of cancer epigenetics-metabolism-DNA repair axis that can be critical for devising novel, targeted therapeutic approaches that could sensitize cancer cells to conventional treatment strategies.
Collapse
Affiliation(s)
- Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | | | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Shalini S. Yadav
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Clayton R Hunt
- Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Kamlesh Yadav
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, 77030, USA
| | - Shruti Pandita
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, Texas, 78229, USA
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - John A Tainer
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zamal Ahmed
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tej K. Pandita
- Houston Methodist Research Institute, Houston, TX, 77030, USA
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
13
|
Zou J, Yang L, Feng W. Mechanism of Radical Initiation and Transfer in Class Id Ribonucleotide Reductase Based on Density Functional Theory. Inorg Chem 2023; 62:2561-2575. [PMID: 36721875 DOI: 10.1021/acs.inorgchem.2c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Class Id ribonucleotide reductase (RNR) is a newly discovered enzyme, which employs the dimanganese cofactor in the superoxidized state (MnIII/MnIV) as the radical initiator. The dimanganese cofactor of class Id RNR in the reduced state (inactive) is clearly based on the crystal structure of the Fj-β subunit. However, the state of the dimanganese cofactor of class Id RNR in the oxidized state (active) is not known. The X-band EPR spectra have shown that the activated Fj-β subunit exists in two distinct complexes, 1 and 2. In this work, quantum mechanical/molecular mechanical calculations were carried out to study class Id RNR. First, we have determined that complex 2 contains a MnIII-(μ-oxo)2-MnIV cluster, and complex 1 contains a MnIII-(μ-hydroxo/μ-oxo)-MnIV cluster. Then, based on the determined dimanganese cofactors, the mechanism of radical initiation and transfer in class Id RNR is revealed. The MnIII-(μ-oxo)2-MnIV cluster in complex 2 has not enough reduction potential to initiate radical transfer directly. Instead, it needs to be monoprotonated into MnIII-(μ-hydroxo/μ-oxo)-MnIV (complex 1) before the radical transfer. The protonation state of μ-oxo can be regulated by changing the protein microenvironment, which is induced by the protein aggregation and separation of β subunits with α subunits. The radical transfer between the cluster of MnIII-(μ-hydroxo/μ-oxo)-MnIV and Trp30 in the radical-transfer chain of the Fj-β subunit (MnIII/MnIV ↔ His100 ↔ Asp194 ↔ Trp30 ↔ Arg99) is a water-mediated tri-proton-coupled electron transfer, which transfers proton from the ε-amino group of Lys71 to the carboxyl group of Glu97 via the water molecule Wat551 and the bridging μ-hydroxo ligand through a three-step reaction. This newly discovered proton-coupled electron-transfer mechanism in class Id RNR is different from those reported in the known Ia-Ic RNRs. The ε-amino group of Lys71, which serves as a proton donor, plays an important role in the radical transfer.
Collapse
Affiliation(s)
- Jinxin Zou
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lu Yang
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Feng
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Goldman AD, Kaçar B. Very early evolution from the perspective of microbial ecology. Environ Microbiol 2023; 25:5-10. [PMID: 35944516 DOI: 10.1111/1462-2920.16144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023]
Abstract
The universal ancestor at the root of the species tree of life depicts a population of organisms with a surprising degree of complexity, posessing genomes and translation systems much like that of microbial life today. As the first life forms were most likely to have been simple replicators, considerable evolutionary change must have taken place prior to the last universal common ancestor. It is often assumed that the lack of earlier branches on the tree of life is due to a prevalence of random horizontal gene transfer that obscured the delineations between lineages and hindered their divergence. Therefore, principles of microbial evolution and ecology may give us some insight into these early stages in the history of life. Here, we synthesize the current understanding of organismal and genome evolution from the perspective of microbial ecology and apply these evolutionary principles to the earliest stages of life on Earth. We focus especially on broad evolutionary modes pertaining to horizontal gene transfer, pangenome structure, and microbial mat communities.
Collapse
Affiliation(s)
- Aaron D Goldman
- Department of Biology, Oberlin College and Conservatory, Oberlin, Ohio, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Crapitto AJ, Campbell A, Harris AJ, Goldman AD. A consensus view of the proteome of the last universal common ancestor. Ecol Evol 2022; 12:e8930. [PMID: 35784055 PMCID: PMC9165204 DOI: 10.1002/ece3.8930] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/30/2022] Open
Abstract
The availability of genomic and proteomic data from across the tree of life has made it possible to infer features of the genome and proteome of the last universal common ancestor (LUCA). A number of studies have done so, all using a unique set of methods and bioinformatics databases. Here, we compare predictions across eight such studies and measure both their agreement with one another and with the consensus predictions among them. We find that some LUCA genome studies show a strong agreement with the consensus predictions of the others, but that no individual study shares a high or even moderate degree of similarity with any other individual study. From these observations, we conclude that the consensus among studies provides a more accurate depiction of the core proteome of the LUCA and its functional repertoire. The set of consensus LUCA protein family predictions between all of these studies portrays a LUCA genome that, at minimum, encoded functions related to protein synthesis, amino acid metabolism, nucleotide metabolism, and the use of common, nucleotide-derived organic cofactors.
Collapse
Affiliation(s)
| | - Amy Campbell
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - AJ Harris
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Aaron D. Goldman
- Department of BiologyOberlin CollegeOberlinOhioUSA
- Blue Marble Space Institute of ScienceSeattleWashingtonUSA
| |
Collapse
|
16
|
Qin Y, Yang J, Wu Y, Wang D, Liu X, Du M, He D, Yi N. The degradation of allyl isothiocyanate and its impact on methane production from anaerobic co-digestion of kitchen waste and waste activated sludge. BIORESOURCE TECHNOLOGY 2022; 347:126366. [PMID: 34838636 DOI: 10.1016/j.biortech.2021.126366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Producing methane from anaerobic co-digestion of kitchen waste and waste activated sludge has been widely implemented in real-world situations. However, the fate and impact of allyl isothiocyanate (AITC), a main active component in cruciferous vegetables, in the anaerobic co-digestion has never been documented. This study therefore aims to provide such supports. Experimental results exhibited that AITC was degraded completely by microorganisms and served as a substrate to produce methane. As AITC increased from 0 to 60 mg/L, the maximum methane production decreased from 285.1 to 35.8 mL/g VS, and the optimum digestion time was also prolonged. The mechanism study demonstrated that AITC induced cell apoptosis by modifying the physicochemical properties of cell membrane, which resulted in inhibitions to the procedure of anaerobic co-digestion. The high-throughput sequencing showed that AITC enriched the microorganism for degradation of complex organic compounds such as Bacillus, but lessened anaerobes involved in hydrolysis, acidogenesis, and methanogenesis.
Collapse
Affiliation(s)
- Yu Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jingnan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanxin Wu
- College of Environmental Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Mingting Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Dandan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Neng Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
17
|
Zou J, Chen Y, Feng W. Mechanism of DOPA radical generation and transfer in metal-free class Ie ribonucleotide reductase based on density functional theory. Comput Struct Biotechnol J 2022; 20:1111-1131. [PMID: 35317236 PMCID: PMC8902622 DOI: 10.1016/j.csbj.2022.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/12/2022] Open
Abstract
The mechanism of DOPA radical generation, transfer and regeneration is revealed. The superoxide O2•− should be protonated to HO2• prior to oxidizing Tyr126 to DOPA radical. The protonation of Asp88 is the prerequisite for the DOPA radical generation and radical transfer. Lys213 is a key residue for the transfer of the DOPA radical.
Quantum mechanical/molecular mechanical (QM/MM) calculations were carried out to investigate the mechanisms of the generation, transfer, and regeneration of the DOPA radical for metal-free class Ie ribonucleotide reductase. The crystal structure of MfR2 (Nature, 2018, 563, 416–420) was adopted for the calculations. The QM/MM calculations have revealed several key points that are vital for understanding the mechanisms. The superoxide O2•− provided by the flavoprotein NrdI cannot directly oxidize the residue Tyr126 to the DOPA radical. It should be protonated to HO2•. The calculation results suggest that the covalent modification of Tyr126 and the DOPA radical generation can be carried out with no involvement of metal cofactors. This addresses the concerns of the articles (Nature, 2018, 563, 416–420; PNAS, 2018, 115, 10022–10027). Another concern from the articles is that how the DOPA radical is transferred from the radical trap. The DFT calculations have demonstrated that Lys213 is a key residue for the radical transfer from the DOPA radical. The ε-amino group of Lys213 is used not only as a bridge for the electron transfer but also as a proton donor. It can provide a proton to DOPA126 via a water molecule, and thus the radical transfer from DOPA126 to Trp52 is facilitated. It has also been revealed that the protonation of Asp88 is the prerequisite for the DOPA radical generation and the radical transfer in class Ie. Once the radical is quenched, it can be regenerated via the oxidations by superoxide O2•− and hydroperoxyl radical HO2•.
Collapse
|
18
|
Affiliation(s)
- Brandon L. Greene
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
19
|
Basnet U, Patil AR, Kulkarni A, Roy S. Role of Stress-Survival Pathways and Transcriptomic Alterations in Progression of Colorectal Cancer: A Health Disparities Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5525. [PMID: 34063993 PMCID: PMC8196775 DOI: 10.3390/ijerph18115525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/09/2022]
Abstract
Every year, more than a million individuals are diagnosed with colorectal cancer (CRC) across the world. Certain lifestyle and genetic factors are known to drive the high incidence and mortality rates in some groups of individuals. The presence of enormous amounts of reactive oxygen species is implicated for the on-set and carcinogenesis, and oxidant scavengers are thought to be important in CRC therapy. In this review, we focus on the ethnicity-based CRC disparities in the U.S., the negative effects of oxidative stress and apoptosis, and gene regulation in CRC carcinogenesis. We also highlight the use of antioxidants for CRC treatment, along with screening for certain regulatory genetic elements and oxidative stress indicators as potential biomarkers to determine the CRC risk and progression.
Collapse
Affiliation(s)
- Urbashi Basnet
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
| | - Abhijeet R. Patil
- Computational Science Program, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
20
|
Green NJ, Xu J, Sutherland JD. Illuminating Life's Origins: UV Photochemistry in Abiotic Synthesis of Biomolecules. J Am Chem Soc 2021; 143:7219-7236. [PMID: 33880920 PMCID: PMC8240947 DOI: 10.1021/jacs.1c01839] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 01/15/2023]
Abstract
Solar radiation is the principal source of energy available to Earth and has unmatched potential for the synthesis of organic material from primordial molecular building blocks. As well as providing the energy for photochemical synthesis of (proto)biomolecules of interest in origins of life-related research, light has also been found to often provide remarkable selectivity in these processes, for molecules that function in extant biology and against those that do not. As such, light is heavily implicated as an environmental input on the nascent Earth that was important for the emergence of complex yet selective chemical systems underpinning life. Reactivity and selectivity in photochemical prebiotic synthesis are discussed, as are their implications for origins of life scenarios and their plausibility, and the future directions of this research.
Collapse
Affiliation(s)
- Nicholas J. Green
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| | - Jianfeng Xu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| | - John D. Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| |
Collapse
|
21
|
Yang J, Liu M, Liu J, Liu B, He C, Chen Z. Proteomic Analysis of Stationary Growth Stage Adaptation and Nutritional Deficiency Response of Brucella abortus. Front Microbiol 2020; 11:598797. [PMID: 33384672 PMCID: PMC7769873 DOI: 10.3389/fmicb.2020.598797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/11/2020] [Indexed: 11/15/2022] Open
Abstract
Brucellosis, an important bacterial zoonosis caused by Brucella species, has drawn increasing attention worldwide. As an intracellular pathogen, the ability of Brucella to deal with stress within the host cell is closely related to its virulence. Due to the similarity between the survival pressure on Brucella within host cells and that during the stationary phase, a label-free proteomics approach was used to study the adaptive response of Brucella abortus in the stationary stage to reveal the possible intracellular adaptation mechanism in this study. A total of 182 downregulated and 140 upregulated proteins were found in the stationary-phase B. abortus. B. abortus adapted to adverse environmental changes by regulating virulence, reproduction, transcription, translation, stress response, and energy production. In addition, both exponential- and stationary-phase B. abortus were treated with short-term starvation. The exponential B. abortus restricted cell reproduction and energy utilization and enhanced material transport in response to nutritional stress. Compared with the exponential phase, stationary Brucella adjusted their protein expression to a lesser extent under starvation. Therefore, B. abortus in the two growth stages significantly differed in the regulation of protein expression in response to the same stress. Overall, we outlined the adaptive mechanisms that B. abortus may employ during growth and compared the differences between exponential- and stationary-phase B. abortus in response to starvation.
Collapse
Affiliation(s)
- Jianghua Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | | | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Baoshan Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chuanyu He
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,Brucellosis Prevention and Treatment Engineering Technology Research Center of Inner Mongolia Autonomous Region, Inner Mongolia University for Nationalities, Tongliao, China.,School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature 2020; 582:60-66. [PMID: 32494078 DOI: 10.1038/s41586-020-2330-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/16/2020] [Indexed: 11/08/2022]
Abstract
The nature of the first genetic polymer is the subject of major debate1. Although the 'RNA world' theory suggests that RNA was the first replicable information carrier of the prebiotic era-that is, prior to the dawn of life2,3-other evidence implies that life may have started with a heterogeneous nucleic acid genetic system that included both RNA and DNA4. Such a theory streamlines the eventual 'genetic takeover' of homogeneous DNA from RNA as the principal information-storage molecule, but requires a selective abiotic synthesis of both RNA and DNA building blocks in the same local primordial geochemical scenario. Here we demonstrate a high-yielding, completely stereo-, regio- and furanosyl-selective prebiotic synthesis of the purine deoxyribonucleosides: deoxyadenosine and deoxyinosine. Our synthesis uses key intermediates in the prebiotic synthesis of the canonical pyrimidine ribonucleosides (cytidine and uridine), and we show that, once generated, the pyrimidines persist throughout the synthesis of the purine deoxyribonucleosides, leading to a mixture of deoxyadenosine, deoxyinosine, cytidine and uridine. These results support the notion that purine deoxyribonucleosides and pyrimidine ribonucleosides may have coexisted before the emergence of life5.
Collapse
|
23
|
Zhang H, Wang YX, Tong XX, Yokoyama W, Cao J, Wang F, Peng C, Guo JL. Overexpression of ribonucleotide reductase small subunit, RNRM, increases cordycepin biosynthesis in transformed Cordyceps militaris. Chin J Nat Med 2020; 18:393-400. [PMID: 32451097 DOI: 10.1016/s1875-5364(20)30046-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 11/25/2022]
Abstract
Cordycepin was the first adenosine analogue used as an anticancer and antiviral agent, which is extracted from Cordyceps militaris and hasn't been biosynthesized until now. This study was first conducted to verify the role of ribonucleotide reductases (RNRs, the two RNR subunits, RNRL and RNRM) in the biosynthesis of cordycepin by over expressing RNRs genes in transformed C. militaris. Quantitative real-time PCR (qRT-PCR) and western blotting results showed that the mRNA and protein levels of RNR subunit genes were significantly upregulated in transformant C. militaris strains compared to the control strain. The results of the HPLC assay indicated that the cordycepin was significantly higher in the C. militaris transformants carrying RNRM than in the wild-type strain, whereas the RNRML was preferentially downregulated. For the C. militaris transformant carrying RNRL, the content of cordycepin wasn't remarkably changed. Furthermore, we revealed that inhibiting RNRs with Triapine (3-AP) almost abrogated the upregulation of cordycepin. Therefore, our results suggested that RNRM can probably directly participate in cordycepin biosynthesis by hydrolyzing adenosine, which is useful for improving cordycepin synthesis and helps to satisfy the commercial demand of cordycepin in the field of medicine.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine, Resources Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Xian Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine, Resources Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin-Xin Tong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine, Resources Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wallace Yokoyama
- USDA, ARS, Western Regional Research Center, Albany, CA 94710, USA
| | - Jing Cao
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine, Resources Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine, Resources Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine, Resources Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Lin Guo
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine, Resources Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
24
|
Moore RM, Harrison AO, McAllister SM, Polson SW, Wommack KE. Iroki: automatic customization and visualization of phylogenetic trees. PeerJ 2020; 8:e8584. [PMID: 32149022 PMCID: PMC7049256 DOI: 10.7717/peerj.8584] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 12/26/2022] Open
Abstract
Phylogenetic trees are an important analytical tool for evaluating community diversity and evolutionary history. In the case of microorganisms, the decreasing cost of sequencing has enabled researchers to generate ever-larger sequence datasets, which in turn have begun to fill gaps in the evolutionary history of microbial groups. However, phylogenetic analyses of these types of datasets create complex trees that can be challenging to interpret. Scientific inferences made by visual inspection of phylogenetic trees can be simplified and enhanced by customizing various parts of the tree. Yet, manual customization is time-consuming and error prone, and programs designed to assist in batch tree customization often require programming experience or complicated file formats for annotation. Iroki, a user-friendly web interface for tree visualization, addresses these issues by providing automatic customization of large trees based on metadata contained in tab-separated text files. Iroki’s utility for exploring biological and ecological trends in sequencing data was demonstrated through a variety of microbial ecology applications in which trees with hundreds to thousands of leaf nodes were customized according to extensive collections of metadata. The Iroki web application and documentation are available at https://www.iroki.net or through the VIROME portal http://virome.dbi.udel.edu. Iroki’s source code is released under the MIT license and is available at https://github.com/mooreryan/iroki.
Collapse
Affiliation(s)
- Ryan M Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States of America
| | - Amelia O Harrison
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States of America
| | - Sean M McAllister
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States of America
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States of America
| | - K Eric Wommack
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States of America
| |
Collapse
|
25
|
Greene BL, Stubbe J, Nocera DG. Selenocysteine Substitution in a Class I Ribonucleotide Reductase. Biochemistry 2019; 58:5074-5084. [PMID: 31774661 DOI: 10.1021/acs.biochem.9b00973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ribonucleotide reductases (RNRs) employ a complex radical-based mechanism during nucleotide reduction involving multiple active site cysteines that both activate the substrate and reduce it. Using an engineered allo-tRNA, we substituted two active site cysteines with distinct function in the class Ia RNR of Escherichia coli for selenocysteine (U) via amber codon suppression, with efficiency and selectivity enabling biochemical and biophysical studies. Examination of the interactions of the C439U α2 mutant protein with nucleotide substrates and the cognate β2 subunit demonstrates that the endogenous Y122• of β2 is reduced under turnover conditions, presumably through radical transfer to form a transient U439• species. This putative U439• species is formed in a kinetically competent fashion but is incapable of initiating nucleotide reduction via 3'-H abstraction. An analogous C225U α2 protein is also capable of radical transfer from Y122•, but the radical-based substrate chemistry partitions between turnover and stalled reduction akin to the reactivity of mechanism-based inhibitors of RNR. The results collectively demonstrate the essential role of cysteine redox chemistry in the class I RNRs and establish a new tool for investigating thiyl radical reactivity in biology.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106 , United States
| | | | - Daniel G Nocera
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
26
|
Abstract
The chemical or prebiotic evolution referred also to as pre-Darwinian evolution describes chemical reactions up to the origin of a self-replicating system that was capable of Darwinian evolution. These chemical processes took place on Earth between about 3.7 and 4.5 billion years ago when cellular life came into being. The pre-Darwinian chemical evolution usually assumes hereditary elements, but does not regard them as self-organizing processes. Physical and chemical self-organization led to uninterrupted pre-Darwinian and Darwinian evolution. Thus, it is not justified to distinguish between different types of evolution. From the many possible solutions, evolution selected among those reactions that generated catalytic networks incorporating chemical sequence information and under gradually changing circumstances produced a reproducible and stable living system that adapted to these conditions. Major issues in this review involve prebiotic reactions leading to genetic evolution involving (1) abiotic sources of components of ribonucleotides and xenobiotic nucleotides, (2) formation of prebiotic RNA, (3) development of genetic RNA from random-sequence noncoding RNA, (4) transition from RNA World to DNA Empire, (5) the role of oxygenic photosynthesis in genetic transitions, and (6) hierarchical arrangement of processes involved in the optimized genetic system.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
27
|
Liu B, Großhans J. The role of dNTP metabolites in control of the embryonic cell cycle. Cell Cycle 2019; 18:2817-2827. [PMID: 31544596 PMCID: PMC6791698 DOI: 10.1080/15384101.2019.1665948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023] Open
Abstract
Deoxyribonucleotide metabolites (dNTPs) are the substrates for DNA synthesis. It has been proposed that their availability influences the progression of the cell cycle during development and pathological situations such as tumor growth. The mechanism has remained unclear for the link between cell cycle and dNTP levels beyond their role as substrates. Here, we review recent studies concerned with the dynamics of dNTP levels in early embryos and the role of DNA replication checkpoint as a sensor of dNTP levels.
Collapse
Affiliation(s)
- Boyang Liu
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität, Göttingen, Germany
| | - Jörg Großhans
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität, Göttingen, Germany
- Entwicklungsgenetik, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
28
|
Hammerstad M, Røhr ÅK, Hersleth H. A Research-inspired biochemistry laboratory module-combining expression, purification, crystallization, structure-solving, and characterization of a flavodoxin-like protein. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 47:318-332. [PMID: 30742352 PMCID: PMC6594058 DOI: 10.1002/bmb.21218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/20/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Many laboratory courses consist of short and seemingly unconnected individual laboratory exercises. To increase the course consistency, relevance, and student engagement, we have developed a research-inspired and project-based module, "From Gene to Structure and Function". This 2.5-week full-day biochemistry and structural biology module covers protein expression, purification, structure solving, and characterization. The module is centered around the flavodoxin-like protein NrdI, involved in the activation of the bacterial ribonucleotide reductase enzyme system. Through an in-depth focus on one specific protein, the students will learn the basic laboratory skills needed in order to generate a broader knowledge and breadth within the field. With respect to generic skills, the students report their findings as a scientific article, with the aim to learn to present concise research results and write scientific papers. The current research-inspired project has the potential of being further developed into a more discovery-driven project and extended to include other molecular biological techniques or biochemical/biophysical characterizations. In student evaluations, this research-inspired laboratory course has received very high ratings and been highly appreciated, where the students have gained research experience for more independent future work in the laboratory. © 2019 The Authors. Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 47(3):318-332, 2019.
Collapse
Affiliation(s)
- Marta Hammerstad
- Department of Biosciences, Section for Biochemistry and Molecular BiologyUniversity of OsloNO‐0316 OsloNorway
| | - Åsmund K. Røhr
- Department of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesNO‐1432 ÅsNorway
| | - Hans‐Petter Hersleth
- Department of Biosciences, Section for Biochemistry and Molecular BiologyUniversity of OsloNO‐0316 OsloNorway
- Department of Chemistry, Section for Chemical Life SciencesUniversity of OsloNO‐0315 OsloNorway
| |
Collapse
|
29
|
Rose HR, Maggiolo AO, McBride MJ, Palowitch GM, Pandelia ME, Davis KM, Yennawar NH, Boal AK. Structures of Class Id Ribonucleotide Reductase Catalytic Subunits Reveal a Minimal Architecture for Deoxynucleotide Biosynthesis. Biochemistry 2019; 58:1845-1860. [PMID: 30855138 PMCID: PMC6456427 DOI: 10.1021/acs.biochem.8b01252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Class I ribonucleotide reductases (RNRs) share a common mechanism of nucleotide reduction in a catalytic α subunit. All RNRs initiate catalysis with a thiyl radical, generated in class I enzymes by a metallocofactor in a separate β subunit. Class Id RNRs use a simple mechanism of cofactor activation involving oxidation of a MnII2 cluster by free superoxide to yield a metal-based MnIIIMnIV oxidant. This simple cofactor assembly pathway suggests that class Id RNRs may be representative of the evolutionary precursors to more complex class Ia-c enzymes. X-ray crystal structures of two class Id α proteins from Flavobacterium johnsoniae ( Fj) and Actinobacillus ureae ( Au) reveal that this subunit is distinctly small. The enzyme completely lacks common N-terminal ATP-cone allosteric motifs that regulate overall activity, a process that normally occurs by dATP-induced formation of inhibitory quaternary structures to prevent productive β subunit association. Class Id RNR activity is insensitive to dATP in the Fj and Au enzymes evaluated here, as expected. However, the class Id α protein from Fj adopts higher-order structures, detected crystallographically and in solution. The Au enzyme does not exhibit these quaternary forms. Our study reveals structural similarity between bacterial class Id and eukaryotic class Ia α subunits in conservation of an internal auxiliary domain. Our findings with the Fj enzyme illustrate that nucleotide-independent higher-order quaternary structures can form in simple RNRs with truncated or missing allosteric motifs.
Collapse
Affiliation(s)
- Hannah R. Rose
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Ailiena O. Maggiolo
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Molly J. McBride
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Gavin M. Palowitch
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | | | - Katherine M. Davis
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Neela H. Yennawar
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Amie K. Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
30
|
Becker AM. The flight of the locus of selection: Some intricate relationships between evolutionary elements. Behav Processes 2019; 161:31-44. [DOI: 10.1016/j.beproc.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 01/04/2023]
|
31
|
Xu J, Green NJ, Gibard C, Krishnamurthy R, Sutherland JD. Prebiotic phosphorylation of 2-thiouridine provides either nucleotides or DNA building blocks via photoreduction. Nat Chem 2019; 11:457-462. [PMID: 30936523 DOI: 10.1038/s41557-019-0225-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/25/2019] [Indexed: 11/09/2022]
Abstract
Breakthroughs in the study of the origin of life have demonstrated how some of the building blocks essential to biology could have been formed under various primordial scenarios, and could therefore have contributed to the chemical evolution of life. Missing building blocks are then sometimes inferred to be products of primitive biosynthesis, which can stretch the limits of plausibility. Here, we demonstrate the synthesis of 2'-deoxy-2-thiouridine, and subsequently 2'-deoxyadenosine and 2-deoxyribose, under prebiotic conditions. 2'-Deoxy-2-thiouridine is produced by photoreduction of 2,2'-anhydro-2-thiouridine, which is in turn formed by phosphorylation of 2-thiouridine-an intermediate of prebiotic RNA synthesis. 2'-Deoxy-2-thiouridine is an effective deoxyribosylating agent and may have functioned as such in either abiotic or proto-enzyme-catalysed pathways to DNA, as demonstrated by its conversion to 2'-deoxyadenosine by reaction with adenine, and 2-deoxyribose by hydrolysis. An alternative prebiotic phosphorylation of 2-thiouridine leads to the formation of its 5'-phosphate, showing that hypotheses in which 2-thiouridine was a key component of early RNA sequences are within the bounds of synthetic credibility.
Collapse
Affiliation(s)
- Jianfeng Xu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Clémentine Gibard
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
32
|
Moussa RS, Park KC, Kovacevic Z, Richardson DR. Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity. Free Radic Biol Med 2019; 133:276-294. [PMID: 29572098 DOI: 10.1016/j.freeradbiomed.2018.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Iron (Fe) has become an important target for the development of anti-cancer therapeutics with a number of Fe chelators entering human clinical trials for advanced and resistant cancer. An important aspect of the activity of these compounds is their multiple molecular targets, including those that play roles in arresting the cell cycle, such as the cyclin-dependent kinase inhibitor, p21. At present, the exact mechanism by which Fe chelators regulate p21 expression remains unclear. However, recent studies indicate the ability of chelators to up-regulate p21 at the mRNA level was dependent on the chelator and cell-type investigated. Analysis of the p21 promoter identified that the Sp1-3-binding site played a significant role in the activation of p21 transcription by Fe chelators. Furthermore, there was increased Sp1/ER-α and Sp1/c-Jun complex formation in melanoma cells, suggesting these complexes were involved in p21 promoter activation. Elucidating the mechanisms involved in the regulation of p21 expression in response to Fe chelator treatment in neoplastic cells will further clarify how these agents achieve their anti-tumor activity. It will also enhance our understanding of the complex roles p21 may play in neoplastic cells and lead to the development of more effective and specific anti-cancer therapies.
Collapse
Affiliation(s)
- Rayan S Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
33
|
Harrison AO, Moore RM, Polson SW, Wommack KE. Reannotation of the Ribonucleotide Reductase in a Cyanophage Reveals Life History Strategies Within the Virioplankton. Front Microbiol 2019; 10:134. [PMID: 30804913 PMCID: PMC6370689 DOI: 10.3389/fmicb.2019.00134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/21/2019] [Indexed: 01/16/2023] Open
Abstract
Ribonucleotide reductases (RNRs) are ancient enzymes that catalyze the reduction of ribonucleotides to deoxyribonucleotides. They are required for virtually all cellular life and are prominent within viral genomes. RNRs share a common ancestor and must generate a protein radical for direct ribonucleotide reduction. The mechanisms by which RNRs produce radicals are diverse and divide RNRs into three major classes and several subclasses. The diversity of radical generation methods means that cellular organisms and viruses typically contain the RNR best-suited to the environmental conditions surrounding DNA replication. However, such diversity has also fostered high rates of RNR misannotation within subject sequence databases. These misannotations have resulted in incorrect translative presumptions of RNR biochemistry and have diminished the utility of this marker gene for ecological studies of viruses. We discovered a misannotation of the RNR gene within the Prochlorococcus phage P-SSP7 genome, which caused a chain of misannotations within commonly observed RNR genes from marine virioplankton communities. These RNRs are found in marine cyanopodo- and cyanosiphoviruses and are currently misannotated as Class II RNRs, which are O2-independent and require cofactor B12. In fact, these cyanoviral RNRs are Class I enzymes that are O2-dependent and may require a di-metal cofactor made of Fe, Mn, or a combination of the two metals. The discovery of an overlooked Class I β subunit in the P-SSP7 genome, together with phylogenetic analysis of the α and β subunits confirms that the RNR from P-SSP7 is a Class I RNR. Phylogenetic and conserved residue analyses also suggest that the P-SSP7 RNR may constitute a novel Class I subclass. The reannotation of the RNR clade represented by P-SSP7 means that most lytic cyanophage contain Class I RNRs, while their hosts, B12-producing Synechococcus and Prochlorococcus, contain Class II RNRs. By using a Class I RNR, cyanophage avoid a dependence on host-produced B12, a more effective strategy for a lytic virus. The discovery of a novel RNR β subunit within cyanopodoviruses also implies that some unknown viral genes may be familiar cellular genes that are too divergent for homology-based annotation methods to identify.
Collapse
Affiliation(s)
- Amelia O. Harrison
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Ryan M. Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
| | - Shawn W. Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
| | - K. Eric Wommack
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| |
Collapse
|
34
|
Greene BL, Stubbe J, Nocera DG. Photochemical Rescue of a Conformationally Inactivated Ribonucleotide Reductase. J Am Chem Soc 2018; 140:15744-15752. [PMID: 30347141 DOI: 10.1021/jacs.8b07902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class Ia ribonucleotide reductase (RNR) of Escherichia coli contains an unusually stable tyrosyl radical cofactor in the β2 subunit (Y122•) necessary for nucleotide reductase activity. Upon binding the cognate α2 subunit, loaded with nucleoside diphosphate substrate and an allosteric/activity effector, a rate determining conformational change(s) enables rapid radical transfer (RT) within the active α2β2 complex from the Y122• site in β2 to the substrate activating cysteine residue (C439) in α2 via a pathway of redox active amino acids (Y122[β] ↔ W48[β]? ↔ Y356[β] ↔ Y731[α] ↔ Y730[α] ↔ C439[α]) spanning >35 Å. Ionizable residues at the α2β2 interface are essential in mediating RT, and therefore control activity. One of these mutations, E350X (where X = A, D, Q) in β2, obviates all RT, though the mechanism of control by which E350 mediates RT remains unclear. Herein, we utilize an E350Q-photoβ2 construct to photochemically rescue RNR activity from an otherwise inactive construct, wherein the initial RT event (Y122• → Y356) is replaced by direct photochemical radical generation of Y356•. These data present compelling evidence that E350 conveys allosteric information between the α2 and β2 subunits facilitating conformational gating of RT that specifically targets Y122• reduction, while the fidelity of the remainder of the RT pathway is retained.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | | | - Daniel G Nocera
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
35
|
Metal-free class Ie ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical. Proc Natl Acad Sci U S A 2018; 115:10022-10027. [PMID: 30224458 PMCID: PMC6176560 DOI: 10.1073/pnas.1811993115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conversion of ribonucleotides to the 2′-deoxyribonucleotides required for DNA biosynthesis is catalyzed by ribonucleotide reductases (RNRs) via a free-radical mechanism. Known types of RNRs all depend on redox-active transition metals—manganese, iron, or cobalt—for radical initiation. Pathogenic bacteria are challenged by transition metal sequestration and infliction of oxidative stress by their hosts, and the deployment of multiple RNRs with different metal requirements and radical-initiating oxidants is a known bacterial countermeasure. A class I RNR from two bacterial pathogens completely lacks transition metals in its active state and uses a tyrosine-derived dihydroxyphenylalanine radical as its initiator, embodying a novel tactic to combat transition metal- and oxidant-mediated innate immunity and reinforcing bacterial RNRs as potential antibiotic targets. All cells obtain 2′-deoxyribonucleotides for DNA synthesis through the activity of a ribonucleotide reductase (RNR). The class I RNRs found in humans and pathogenic bacteria differ in (i) use of Fe(II), Mn(II), or both for activation of the dinuclear-metallocofactor subunit, β; (ii) reaction of the reduced dimetal center with dioxygen or superoxide for this activation; (iii) requirement (or lack thereof) for a flavoprotein activase, NrdI, to provide the superoxide from O2; and (iv) use of either a stable tyrosyl radical or a high-valent dimetal cluster to initiate each turnover by oxidizing a cysteine residue in the α subunit to a radical (Cys•). The use of manganese by bacterial class I, subclass b-d RNRs, which contrasts with the exclusive use of iron by the eukaryotic Ia enzymes, appears to be a countermeasure of certain pathogens against iron deprivation imposed by their hosts. Here, we report a metal-free type of class I RNR (subclass e) from two human pathogens. The Cys• in its α subunit is generated by a stable, tyrosine-derived dihydroxyphenylalanine radical (DOPA•) in β. The three-electron oxidation producing DOPA• occurs in Escherichia coli only if the β is coexpressed with the NrdI activase encoded adjacently in the pathogen genome. The independence of this new RNR from transition metals, or the requirement for a single metal ion only transiently for activation, may afford the pathogens an even more potent countermeasure against transition metal-directed innate immunity.
Collapse
|
36
|
Rose HR, Ghosh MK, Maggiolo AO, Pollock CJ, Blaesi EJ, Hajj V, Wei Y, Rajakovich LJ, Chang WC, Han Y, Hajj M, Krebs C, Silakov A, Pandelia ME, Bollinger JM, Boal AK. Structural Basis for Superoxide Activation of Flavobacterium johnsoniae Class I Ribonucleotide Reductase and for Radical Initiation by Its Dimanganese Cofactor. Biochemistry 2018; 57:2679-2693. [PMID: 29609464 DOI: 10.1021/acs.biochem.8b00247] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A ribonucleotide reductase (RNR) from Flavobacterium johnsoniae ( Fj) differs fundamentally from known (subclass a-c) class I RNRs, warranting its assignment to a new subclass, Id. Its β subunit shares with Ib counterparts the requirements for manganese(II) and superoxide (O2-) for activation, but it does not require the O2--supplying flavoprotein (NrdI) needed in Ib systems, instead scavenging the oxidant from solution. Although Fj β has tyrosine at the appropriate sequence position (Tyr 104), this residue is not oxidized to a radical upon activation, as occurs in the Ia/b proteins. Rather, Fj β directly deploys an oxidized dimanganese cofactor for radical initiation. In treatment with one-electron reductants, the cofactor can undergo cooperative three-electron reduction to the II/II state, in contrast to the quantitative univalent reduction to inactive "met" (III/III) forms seen with I(a-c) βs. This tendency makes Fj β unusually robust, as the II/II form can readily be reactivated. The structure of the protein rationalizes its distinctive traits. A distortion in a core helix of the ferritin-like architecture renders the active site unusually open, introduces a cavity near the cofactor, and positions a subclass-d-specific Lys residue to shepherd O2- to the Mn2II/II cluster. Relative to the positions of the radical tyrosines in the Ia/b proteins, the unreactive Tyr 104 of Fj β is held away from the cofactor by a hydrogen bond with a subclass-d-specific Thr residue. Structural comparisons, considered with its uniquely simple mode of activation, suggest that the Id protein might most closely resemble the primordial RNR-β.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yifeng Wei
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | | | | | | | | | | | - Maria-Eirini Pandelia
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | | | | |
Collapse
|
37
|
Papp K, Hungate BA, Schwartz E. Microbial rRNA Synthesis and Growth Compared through Quantitative Stable Isotope Probing with H 218O. Appl Environ Microbiol 2018; 84:e02441-17. [PMID: 29439990 PMCID: PMC5881069 DOI: 10.1128/aem.02441-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/07/2018] [Indexed: 02/01/2023] Open
Abstract
Growing bacteria have a high concentration of ribosomes to ensure sufficient protein synthesis, which is necessary for genome replication and cellular division. To elucidate whether metabolic activity of soil microorganisms is coupled with growth, we investigated the relationship between rRNA and DNA synthesis in a soil bacterial community using quantitative stable isotope probing (qSIP) with H218O. Most soil bacterial taxa were metabolically active and grew, and there was no significant difference between the isotopic composition of DNA and RNA extracted from soil incubated with H218O. The positive correlation between 18O content of DNA and rRNA of taxa, with a slope statistically indistinguishable from 1 (slope = 0.96; 95% confidence interval [CI], 0.90 to 1.02), indicated that few taxa made new rRNA without synthesizing new DNA. There was no correlation between rRNA-to-DNA ratios obtained from sequencing libraries and the atom percent excess (APE) 18O values of DNA or rRNA, suggesting that the ratio of rRNA to DNA is a poor indicator of microbial growth or rRNA synthesis. Our results support the notion that metabolic activity is strongly coupled to cellular division and suggest that nondividing taxa do not dominate soil metabolic activity.IMPORTANCE Using quantitative stable isotope probing of microbial RNA and DNA with H218O, we show that most soil taxa are metabolically active and grow because their nucleic acids are significantly labeled with 18O. A majority of the populations that make new rRNA also grow, which argues against the common paradigm that most soil taxa are dormant. Additionally, our results indicate that relative sequence abundance-based RNA-to-DNA ratios, which are frequently used for identifying active microbial populations in the environment, underestimate the number of metabolically active taxa within soil microbial communities.
Collapse
Affiliation(s)
- Katerina Papp
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
38
|
Ghobashi AH, Kamel MA. Tip60: updates. J Appl Genet 2018; 59:161-168. [PMID: 29549519 DOI: 10.1007/s13353-018-0432-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 12/21/2022]
Abstract
The maintenance of genome integrity is essential for organism survival. Therefore, eukaryotic cells possess many DNA repair mechanisms in response to DNA damage. Acetyltransferase, Tip60, plays a central role in ATM and p53 activation which are involved in DNA repair. Recent works uncovered the roles of Tip60 in ATM and p53 activation and how Tip60 is recruited to double-strand break sites. Moreover, recent works have demonstrated the role of Tip60 in cancer progression. Here, we review the current understanding of how Tip60 activates both ATM and p53 in response to DNA damage and his new roles in tumorigenesis.
Collapse
Affiliation(s)
- Ahmed H Ghobashi
- Human Genetics Department, Medical Research Institute, Alexandria University, 165 El Horreya Street, Alexandria, Egypt.
| | - Maher A Kamel
- Biochemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Ferguson SD, Xiu J, Weathers SP, Zhou S, Kesari S, Weiss SE, Verhaak RG, Hohl RJ, Barger GR, Reddy SK, Heimberger AB. GBM-associated mutations and altered protein expression are more common in young patients. Oncotarget 2018; 7:69466-69478. [PMID: 27579614 PMCID: PMC5342491 DOI: 10.18632/oncotarget.11617] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
Background Geriatric glioblastoma (GBM) patients have a poorer prognosis than younger patients, but IDH1/2 mutations (more common in younger patients) confer a favorable prognosis. We compared key GBM molecular alterations between an elderly (age ≥ 70) and younger (18 < = age < = 45) cohort to explore potential therapeutic opportunities. Results Alterations more prevalent in the young GBM cohort compared to the older cohort (P < 0.05) were: overexpression of ALK, RRM1, TUBB3 and mutation of ATRX, BRAF, IDH1, and TP53. However, PTEN mutation was significantly more frequent in older patients. Among patients with wild-type IDH1/2 status, TOPO1 expression was higher in younger patients, whereas MGMT methylation was more frequent in older patients. Within the molecularly-defined IDH wild-type GBM cohort, younger patients had significantly more mutations in PDGFRA, PTPN11, SMARCA4, BRAF and TP53. Methods GBMs from 178 elderly patients and 197 young patients were analyzed using DNA sequencing, immunohistochemistry, in situ hybridization, and MGMT-methylation assay to ascertain mutational and amplification/expressional status. Conclusions Significant molecular differences occurred in GBMs from elderly and young patients. Except for the older cohort's more frequent PTEN mutation and MGMT methylation, younger patients had a higher frequency of potential therapeutic targets.
Collapse
Affiliation(s)
- Sherise D Ferguson
- Departments of Neurosurgery, Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Joanne Xiu
- Caris Life Sciences, Phoenix, AZ 85040, USA
| | - Shiao-Pei Weathers
- Departments of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Shouhao Zhou
- Departments of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Santosh Kesari
- Department of Translational Neuro-Oncology and Neurotherapeutics, Pacific Neuroscience Institute and John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | | | - Roeland G Verhaak
- Department of Genome Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77054, USA
| | - Raymond J Hohl
- Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
| | - Geoffrey R Barger
- Department of Neurology, Wayne State University, School of Medicine, Karmanos Cancer Center, Detroit, MI 48201, USA
| | | | - Amy B Heimberger
- Departments of Neurosurgery, Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
40
|
Functional assignment for essential hypothetical proteins of Staphylococcus aureus N315. Int J Biol Macromol 2017; 108:765-774. [PMID: 29111265 DOI: 10.1016/j.ijbiomac.2017.10.169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/26/2017] [Accepted: 10/26/2017] [Indexed: 01/05/2023]
Abstract
Staphylococcus aureus, the causative agent of nosocomial infections worldwide, has acquired resistance to almost all antibiotics stressing the need to develop novel drugs against this pathogen. In S. aureus N315, 302 genes have been identified as essential genes, indispensable for growth and survival of the pathogen. The functions of 40 proteins encoded by S. aureus essential genes were found to be hypothetical and thus referred as essential hypothetical proteins (EHPs). The present study aims to carry out functional characterization of EHPs using bioinformatics tools/databases, whose performance was assessed by Receiver operating characteristic curve analysis. Evaluation of physicochemical parameters, homology search against known proteins, domain analysis, subcellular localization analysis and virulence prediction assisted us to characterize EHPs. Functional assignment for 35 EHPs was made with high confidence. They belong to different functional classes like enzymes, binding proteins, miscellaneous proteins, helicases, transporters and virulence factors. Around 35% of EHPs were from hydrolases family. A group of EHPs (32.5%) were predicted as virulence factors. Of 35, 19 essential pathogen-specific proteins were considered as probable drug targets. Two targets were found to be druggable and others were novel targets. Outcome of the study could aid to identify novel drugs for better treatment of S. aureus infections.
Collapse
|
41
|
Ryzhkova EP. Alternative enzymes as a special strategy for the adaptation of procaryotic organisms (Review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Wang F, Becker S, Minier MA, Loas A, Jackson MN, Lippard SJ. Tuning the Diiron Core Geometry in Carboxylate-Bridged Macrocyclic Model Complexes Affects Their Redox Properties and Supports Oxidation Chemistry. Inorg Chem 2017; 56:11050-11058. [DOI: 10.1021/acs.inorgchem.7b01418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Fang Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sabine Becker
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mikael A. Minier
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Megan N. Jackson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Thioredoxin attenuates oxidized low-density lipoprotein induced oxidative stress in human umbilical vein endothelial cells by reducing NADPH oxidase activity. Biochem Biophys Res Commun 2017; 490:1326-1333. [PMID: 28688762 DOI: 10.1016/j.bbrc.2017.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 01/10/2023]
|
44
|
Mannargudi MB, Deb S. Clinical pharmacology and clinical trials of ribonucleotide reductase inhibitors: is it a viable cancer therapy? J Cancer Res Clin Oncol 2017; 143:1499-1529. [PMID: 28624910 DOI: 10.1007/s00432-017-2457-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/09/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Ribonucleotide reductase (RR) enzymes (RR1 and RR2) play an important role in the reduction of ribonucleotides to deoxyribonucleotides which is involved in DNA replication and repair. Augmented RR activity has been ascribed to uncontrolled cell growth and tumorigenic transformation. METHODS This review mainly focuses on several biological and chemical RR inhibitors (e.g., siRNA, GTI-2040, GTI-2501, triapine, gemcitabine, and clofarabine) that have been evaluated in clinical trials with promising anticancer activity from 1960's till 2016. A summary on whether their monotherapy or combination is still effective for further use is discussed. RESULTS Among the RR2 inhibitors evaluated, GTI-2040, siRNA, gallium nitrate and didox were more efficacious as a monotherapy, whereas triapine was found to be more efficacious as combination agent. Hydroxyurea is currently used more in combination therapy, even though it is efficacious as a monotherapy. Gallium nitrate showed mixed results in combination therapy, while the combination activity of didox is yet to be evaluated. RR1 inhibitors that have long been used in chemotherapy such as gemcitabine, cladribine, fludarabine and clofarabine are currently used mostly as a combination therapy, but are equally efficacious as a monotherapy, except tezacitabine which did not progress beyond phase I trials. CONCLUSIONS Based on the results of clinical trials, we conclude that RR inhibitors are viable treatment options, either as a monotherapy or as a combination in cancer chemotherapy. With the recent advances made in cancer biology, further development of RR inhibitors with improved efficacy and reduced toxicity is possible for treatment of variety of cancers.
Collapse
Affiliation(s)
- Mukundan Baskar Mannargudi
- Clinical Pharmacology Program, Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Subrata Deb
- Department of Biopharmaceutical Sciences, Roosevelt University College of Pharmacy, 1400 N. Roosevelt Blvd., Schaumburg, IL, 60173, USA.
| |
Collapse
|
45
|
Alnajar S, Khadka B, Gupta RS. Ribonucleotide Reductases from Bifidobacteria Contain Multiple Conserved Indels Distinguishing Them from All Other Organisms: In Silico Analysis of the Possible Role of a 43 aa Bifidobacteria-Specific Insert in the Class III RNR Homolog. Front Microbiol 2017; 8:1409. [PMID: 28824557 PMCID: PMC5535262 DOI: 10.3389/fmicb.2017.01409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/11/2017] [Indexed: 01/05/2023] Open
Abstract
Bifidobacteria comprises an important group/order of bacteria whose members have widespread usage in the food and health industry due to their health-promoting activity in the human gastrointestinal tract. However, little is known about the underlying molecular properties that are responsible for the probiotic effects of these bacteria. The enzyme ribonucleotide reductase (RNR) plays a key role in all organisms by reducing nucleoside di- or tri- phosphates into corresponding deoxyribose derivatives required for DNA synthesis, and RNR homologs belonging to classes I and III are present in either most or all Bifidobacteriales. Comparative analyses of these RNR homologs have identified several novel sequence features in the forms of conserved signature indels (CSIs) that are exclusively found in bifidobacterial RNRs. Specifically, in the large subunit of the aerobic class Ib RNR, three CSIs have been identified that are uniquely found in the Bifidobacteriales homologs. Similarly, the large subunit of the anaerobic class III RNR contains five CSIs that are also distinctive characteristics of bifidobacteria. Phylogenetic analyses indicate that these CSIs were introduced in a common ancestor of the Bifidobacteriales and retained by all descendants, likely due to their conferring advantageous functional roles. The identified CSIs in the bifidobacterial RNR homologs provide useful tools for further exploration of the novel functional aspects of these important enzymes that are exclusive to these bacteria. We also report here the results of homology modeling studies, which indicate that most of the bifidobacteria-specific CSIs are located within the surface loops of the RNRs, and of these, a large 43 amino acid insert in the class III RNR homolog forms an extension of the allosteric regulatory site known to be essential for protein function. Preliminary docking studies suggest that this large CSI may be playing a role in enhancing the stability of the RNR dimer complex. The possible significances of the identified CSIs, as well as the distribution of RNR homologs in the Bifidobacteriales, are discussed.
Collapse
Affiliation(s)
- Seema Alnajar
- Department of Biochemistry and Biomedical Sciences, McMaster University, HamiltonON, Canada
| | - Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, HamiltonON, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, HamiltonON, Canada
| |
Collapse
|
46
|
Foskolou IP, Jorgensen C, Leszczynska KB, Olcina MM, Tarhonskaya H, Haisma B, D'Angiolella V, Myers WK, Domene C, Flashman E, Hammond EM. Ribonucleotide Reductase Requires Subunit Switching in Hypoxia to Maintain DNA Replication. Mol Cell 2017; 66:206-220.e9. [PMID: 28416140 PMCID: PMC5405111 DOI: 10.1016/j.molcel.2017.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/13/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Cells exposed to hypoxia experience replication stress but do not accumulate DNA damage, suggesting sustained DNA replication. Ribonucleotide reductase (RNR) is the only enzyme capable of de novo synthesis of deoxyribonucleotide triphosphates (dNTPs). However, oxygen is an essential cofactor for mammalian RNR (RRM1/RRM2 and RRM1/RRM2B), leading us to question the source of dNTPs in hypoxia. Here, we show that the RRM1/RRM2B enzyme is capable of retaining activity in hypoxia and therefore is favored over RRM1/RRM2 in order to preserve ongoing replication and avoid the accumulation of DNA damage. We found two distinct mechanisms by which RRM2B maintains hypoxic activity and identified responsible residues in RRM2B. The importance of RRM2B in the response to tumor hypoxia is further illustrated by correlation of its expression with a hypoxic signature in patient samples and its roles in tumor growth and radioresistance. Our data provide mechanistic insight into RNR biology, highlighting RRM2B as a hypoxic-specific, anti-cancer therapeutic target. RRM2B is induced in response to hypoxia in both cell models and patient datasets RRM2B retains activity in hypoxic conditions and is the favored RNR subunit in hypoxia Loss of RRM2B has detrimental consequences for cell fate, specifically in hypoxia RRM2B depletion enhanced hypoxic-specific apoptosis and increased radiosensitivity
Collapse
Affiliation(s)
- Iosifina P Foskolou
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Christian Jorgensen
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Katarzyna B Leszczynska
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Monica M Olcina
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Hanna Tarhonskaya
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Bauke Haisma
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - William K Myers
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Carmen Domene
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK; Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Emily Flashman
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Ester M Hammond
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
47
|
Aoyama T, Miyagi Y, Murakawa M, Yamaoku K, Atsumi Y, Shiozawa M, Ueno M, Morimoto M, Oshima T, Yukawa N, Yoshikawa T, Rino Y, Masuda M, Morinaga S. Clinical implications of ribonucleotide reductase subunit M1 in patients with pancreatic cancer who undergo curative resection followed by adjuvant chemotherapy with gemcitabine. Oncol Lett 2017; 13:3423-3430. [PMID: 28521448 PMCID: PMC5431334 DOI: 10.3892/ol.2017.5935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/07/2017] [Indexed: 12/12/2022] Open
Abstract
To the best of our knowledge, the clinical implications of using ribonucleoside reductase subunit M1 (RRM1) in patients who undergo curative resection and adjuvant chemotherapy have not been established. In the present study, the clinical data from 101 consecutive patients who underwent macroscopically curative resection, and who received adjuvant gemcitabine chemotherapy for pancreatic cancer at the Kanagawa Cancer Centre (Yokohama, Kanagawa, Japan) between April 2005 and December 2014 were retrospectively analyzed. The association between the RRM1 status and survival and clinicopathological features were assessed. Of the 101 patients, 41 patients expressed high levels of RRM1 expression (40.6%). Although a significant difference was observed in lymphatic invasion, there was no difference between the two groups with regard to any other clinicopathological parameters. The median follow-up period was 67.3 months. There was a significant difference between the recurrence-free survival (RFS) rates at 5 years after surgery, which were 12.9 and 0% in the high RRM1 and low RRM1 groups, respectively (P=0.042). Furthermore, there was a significant difference in the 5-year overall survival (OS) rates following surgery, which were 5.1 and 21.5% in the high RRM1 and low RRM1 groups, respectively (P=0.015). The results of the present study indicated that out of the factors assessed, RRM1 was the most important prognostic factor for OS and RFS in patients with pancreatic cancer who underwent curative resection followed by adjuvant chemotherapy with gemcitabine. Adjuvant chemotherapy with gemcitabine alone may be insufficient for the treatment of pancreatic cancer, particularly in patients with relevant risk factors.
Collapse
Affiliation(s)
- Toru Aoyama
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241-8515, Japan
| | - Masaaki Murakawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Koichiro Yamaoku
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Yosuke Atsumi
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Manabu Shiozawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Makoto Ueno
- Department of Hepatobiliary Pancreatic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Manabu Morimoto
- Department of Hepatobiliary Pancreatic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Takashi Oshima
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Norio Yukawa
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Takaki Yoshikawa
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Soichiro Morinaga
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| |
Collapse
|
48
|
Monteverde DR, Gómez-Consarnau L, Suffridge C, Sañudo-Wilhelmy SA. Life's utilization of B vitamins on early Earth. GEOBIOLOGY 2017; 15:3-18. [PMID: 27477998 DOI: 10.1111/gbi.12202] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
Coenzymes are essential across all domains of life. B vitamins (B1 -thiamin, B2 -riboflavin, B3 -niacin, B5 -pantothenate, B6 -pyridoxine, B7 -biotin, and B12 -cobalamin) represent the largest class of coenzymes, which participate in a diverse set of reactions including C1 -rearrangements, DNA repair, electron transfer, and fatty acid synthesis. B vitamin structures range from simple to complex heterocycles, yet, despite this complexity, multiple lines of evidence exist for their ancient origins including abiotic synthesis under putative early Earth conditions and/or meteorite transport. Thus, some of these critical coenzymes likely preceded life on Earth. Some modern organisms can synthesize their own B vitamins de novo while others must either scavenge them from the environment or establish a symbiotic relationship with a B vitamin producer. B vitamin requirements are widespread in some of the most ancient metabolisms including all six carbon fixation pathways, sulfate reduction, sulfur disproportionation, methanogenesis, acetogenesis, and photosynthesis. Understanding modern metabolic B vitamin requirements is critical for understanding the evolutionary conditions of ancient metabolisms as well as the biogeochemical cycling of critical elements such as S, C, and O.
Collapse
Affiliation(s)
- D R Monteverde
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - L Gómez-Consarnau
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - C Suffridge
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - S A Sañudo-Wilhelmy
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
49
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Emerging Targets in Photopharmacology. Angew Chem Int Ed Engl 2016; 55:10978-99. [DOI: 10.1002/anie.201601931] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| |
Collapse
|
50
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Neue Ziele für die Photopharmakologie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601931] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen Niederlande
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen Niederlande
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| |
Collapse
|