1
|
Wu K, Zhou J, Tang Y, Zhang Q, Xiong L, Li X, Zhuo Z, Luo M, Yuan Y, Liu X, Zhong Z, Guo X, Yu Z, Sheng X, Luo G, Chen H. Werner syndrome exonuclease promotes gut regeneration and causes age-associated gut hyperplasia in Drosophila. PLoS Biol 2025; 23:e3003121. [PMID: 40261911 PMCID: PMC12013949 DOI: 10.1371/journal.pbio.3003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Human Werner syndrome (adult progeria, a well-established model of human aging) is caused by mutations in the Werner syndrome (WRN) gene. However, the expression patterns and functions of WRN in natural aging remain poorly understood. Despite the link between WRN deficiencies and progeria, our analyses of human colon tissues, mouse crypts, and Drosophila midguts revealed that WRN expression does not decrease but rather increases in intestinal stem cells (ISCs) with aging. Mechanistically, we found that the Drosophila WRN homologue (WRNexo) binds to Heat shock 70-kDa protein cognate 3 (Hsc70-3/Bip) to regulate the unfolded protein response of the endoplasmic reticulum (UPRER). Activation of the WRNexo-mediated UPRER in ISCs is required for ISC proliferation during injury repair. However, persistent DNA damage during aging leads to chronic upregulation of WRNexo in ISCs, where excessive WRNexo-induced ER stress drives age-associated gut hyperplasia in Drosophila. This study reveals how elevated WRNexo contributes to stem cell aging, providing new insights into organ aging and the pathogenesis of age-related diseases, such as colon cancer.
Collapse
Affiliation(s)
- Kun Wu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Juanyu Zhou
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yiming Tang
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiaoqiao Zhang
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lishou Xiong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mei Luo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Yuan
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xingzhu Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhendong Zhong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - XiaoXin Guo
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zihua Yu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Sheng
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guanzheng Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Puig-Barbe A, Dettmann S, Nirello VD, Moor H, Azami S, Edgar BA, Varga-Weisz P, Korzelius J, de Navascués J. A bHLH interaction code controls bipotential differentiation and self-renewal in the Drosophila gut. Cell Rep 2025; 44:115398. [PMID: 40089983 DOI: 10.1016/j.celrep.2025.115398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/18/2025] Open
Abstract
Multipotent adult stem cells balance self-renewal with differentiation into various cell types. How this balance is regulated at the transcriptional level is poorly understood. Here, we show that a network of basic helix-loop-helix (bHLH) transcription factors controls both stemness and bipotential differentiation in the Drosophila adult intestine. We find that homodimers of Daughterless (Da), a homolog of mammalian E proteins, maintain self-renewal of intestinal stem cells (ISCs), antagonizing the enteroendocrine fate promoted by heterodimers of Da and Scute (Sc; homolog of ASCL). The HLH factor Extramacrochaetae (Emc; homologous to Id proteins) promotes absorptive differentiation by titrating Da and Sc. Emc prevents the committed absorptive progenitor from dedifferentiating, underscoring the plasticity of these cells. Switching physical interaction partners in this way enables the active maintenance of stemness while priming stem cells for differentiation along two alternative fates. Such regulatory logic is likely operative in other bipotent stem cell systems.
Collapse
Affiliation(s)
- Aleix Puig-Barbe
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Svenja Dettmann
- DKFZ/ZMBH Alliance, University of Heidelberg, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; AbbVie Germany GmbH & Co. KG, 81 Mainzer Str., 65189 Wiesbaden, Frankfurt, Germany
| | - Vinícius Dias Nirello
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Helen Moor
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Sina Azami
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9B, 50931 Köln, Germany
| | - Bruce A Edgar
- DKFZ/ZMBH Alliance, University of Heidelberg, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Huntsman Cancer Institute & Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Patrick Varga-Weisz
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Jerome Korzelius
- DKFZ/ZMBH Alliance, University of Heidelberg, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9B, 50931 Köln, Germany; School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| | - Joaquín de Navascués
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
3
|
Plygawko AT, Stephan-Otto Attolini C, Pitsidianaki I, Cook DP, Darby AC, Campbell K. The Drosophila adult midgut progenitor cells arise from asymmetric divisions of neuroblast-like cells. Dev Cell 2025; 60:429-446.e6. [PMID: 39532106 DOI: 10.1016/j.devcel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/21/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
The Drosophila adult midgut progenitor cells (AMPs) give rise to all cells in the adult midgut epithelium, including the intestinal stem cells (ISCs). While they share many characteristics with the ISCs, it remains unclear how they are generated in the early embryo. Here, we show that they arise from a population of endoderm cells, which exhibit multiple similarities with Drosophila neuroblasts. These cells, which we have termed endoblasts, are patterned by homothorax (Hth) and undergo asymmetric divisions using the same molecular machinery as neuroblasts. We also show that the conservation of this molecular machinery extends to the generation of the enteroendocrine lineages. Parallels have previously been drawn between the pupal ISCs and larval neuroblasts. Our results suggest that these commonalities exist from the earliest stages of specification of progenitor cells of the intestinal and nervous systems and may represent an ancestral pathway for multipotent progenitor cell specification.
Collapse
Affiliation(s)
- Andrew T Plygawko
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ioanna Pitsidianaki
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kyra Campbell
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
4
|
Yu Z, Yan J, Liu Z, Wang H, Luo G, Chen H. The Batten disease gene Cln3 is required for the activation of intestinal stem cell during regeneration via JAK/STAT signaling in Drosophila. Front Cell Dev Biol 2025; 13:1508714. [PMID: 39917569 PMCID: PMC11799272 DOI: 10.3389/fcell.2025.1508714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
CLN3 mutation causes Juvenile neuronal ceroid lipofuscinosis (JNCL, also known as Batten disease), an early onset neurodegenerative disorder. Patients who suffer from Batten disease often die at an early age. However, the mechanisms underlying how CLN3 loss develops Batten disease remain largely unclear. Here, using Drosophila midgut system, we demonstrate that Drosophila Cln3 has no effect on midgut homeostasis maintaince, including cellular component, intestinal stem cells (ISCs) proliferation and differentiation, but is necessary for ISC activation upon tissue damage. Cell type-specific Gal4 screening reveals that the failure of ISC activation during regeneration caused by Cln3 loss is ISC-autonomous. Through genetic analyses, we elucidate that JAK/STAT signaling in ISCs is not activated with Cln3 depletion upon tissue damage, and functions downstream of Cln3. Our study provides a potential mechanism underlying the development of CLN3-mediated Batten disease at cellular level.
Collapse
Affiliation(s)
- Zihua Yu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinhua Yan
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiming Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyan Wang
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guanzheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Jiang D, Li P, Lu Y, Tao J, Hao X, Wang X, Wu W, Xu J, Zhang H, Li X, Chen Y, Jin Y, Zhang L. A feedback loop between Paxillin and Yorkie sustains Drosophila intestinal homeostasis and regeneration. Nat Commun 2025; 16:570. [PMID: 39794306 PMCID: PMC11724037 DOI: 10.1038/s41467-024-55255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
Balanced self-renewal and differentiation of stem cells are crucial for maintaining tissue homeostasis, but the underlying mechanisms of this process remain poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Pax, which is orthologous to mammalian PXN, coordinates the proliferation and differentiation of ISCs during both normal homeostasis and injury-induced midgut regeneration in Drosophila. Loss of Pax promotes ISC proliferation while suppressing its differentiation into absorptive enterocytes (ECs). Mechanistically, our findings demonstrate that Pax is a conserved target gene of the Hippo signaling pathway in both Drosophila and mammals. Subsequent investigations have revealed Pax interacts with Yki and enhances its cytoplasmic localization, thereby establishing a feedback regulatory mechanism that attenuates Yki activity and ultimately inhibits ISCs proliferation. Additionally, Pax induces the differentiation of ISCs into ECs by activating Notch expression, thus facilitating the differentiation process. Overall, our study highlights Pax as a pivotal component of the Hippo and Notch pathways in regulating midgut homeostasis, shedding light on this growth-related pathway in tissue maintenance and intestinal function.
Collapse
Affiliation(s)
- Dan Jiang
- The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Pengyue Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiaxin Tao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xue Hao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaodong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Wu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinjin Xu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Haoen Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yixing Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunyun Jin
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China.
| | - Lei Zhang
- The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China.
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China.
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
6
|
Dong W, Zhang Q, Zhao YX, Zhang XB. Sodium carboxymethylcellulose disrupts intestinal cell homeostasis by repressing Notch signaling in Drosophila. Int J Biol Macromol 2025; 286:138419. [PMID: 39647758 DOI: 10.1016/j.ijbiomac.2024.138419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Sodium carboxymethylcellulose (CMC), a cellulose derivative, is mainly used in food industry as additives. However, its supplementation has potentially negative effects on organisms. In this study, the effects of CMC on the physiological parameters and intestinal homeostasis in organisms were investigated using Drosophila melanogaster as a model. The results show that CMC did not affect survival and fecundity in flies at three detected concentrations. The puc activity analysis revealed that the CMC did not induce apoptosis in adult midgut. In adults treated with 5 % CMC, the midgut contained fewer progenitor cells and showed reduced mitosis compared to control flies. In addition, an increased enteroendocrine (EE) cells ratio was observed in midgut of 5 % CMC-fed flies. The RT-qPCR results revealed that notch expression was downregulated in 5 % CMC-fed flies, whereas no significant differences in mRNA expression levels were found for genes involved in midgut development. Consistently, the number of Notch positive clones was reduced in flies treated with 5 % CMC compared to controls. Taken together, our results suggest that CMC disrupts intestinal cell homeostasis by repressing Notch signaling. These findings provide a new perspective on the effects of CMC on organisms.
Collapse
Affiliation(s)
- Wei Dong
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China.
| | - Qian Zhang
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China
| | - Ya Xuan Zhao
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China
| | - Xu-Bo Zhang
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China.
| |
Collapse
|
7
|
Yang Q, Wijaya F, Kapoor R, Chandrasekaran H, Jagtiani S, Moran I, Hime GR. Unusual modes of cell and nuclear divisions characterise Drosophila development. Biochem Soc Trans 2024; 52:2281-2295. [PMID: 39508395 PMCID: PMC11668308 DOI: 10.1042/bst20231341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
The growth and development of metazoan organisms is dependent upon a co-ordinated programme of cellular proliferation and differentiation, from the initial formation of the zygote through to maintenance of mature organs in adult organisms. Early studies of proliferation of ex vivo cultures and unicellular eukaryotes described a cyclic nature of cell division characterised by periods of DNA synthesis (S-phase) and segregation of newly synthesized chromosomes (M-phase) interspersed by seeming inactivity, the gap phases, G1 and G2. We now know that G1 and G2 play critical roles in regulating the cell cycle, including monitoring of favourable environmental conditions to facilitate cell division, and ensuring genomic integrity prior to DNA replication and nuclear division. M-phase is usually followed by the physical separation of nascent daughters, termed cytokinesis. These phases where G1 leads to S phase, followed by G2 prior to M phase and the subsequent cytokinesis to produce two daughters, both identical in genomic composition and cellular morphology are what might be termed an archetypal cell division. Studies of development of many different organs in different species have demonstrated that this stereotypical cell cycle is often subverted to produce specific developmental outcomes, and examples from over 100 years of analysis of the development of Drosophila melanogaster have uncovered many different modes of cell division within this one species.
Collapse
Affiliation(s)
- Qiaolin Yang
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Fernando Wijaya
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ridam Kapoor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Harshaa Chandrasekaran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Siddhant Jagtiani
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Izaac Moran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gary R. Hime
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
8
|
Yu Z, Zhu Y, Chen Y, Feng C, Zhang Z, Guo X, Chen H, Liu X, Yuan Y, Chen H. Nutrient-sensing alteration leads to age-associated distortion of intestinal stem cell differentiating direction. Nat Commun 2024; 15:9243. [PMID: 39455549 PMCID: PMC11512028 DOI: 10.1038/s41467-024-53675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Nutrient-sensing pathways undergo deregulation in aged animals, exerting a pivotal role in regulating the cell cycle and subsequent stem cell division. Nevertheless, their precise functions in governing pluripotent stem cell differentiation remain largely elusive. Here, we uncovered a significant alteration in the cellular constituents of the intestinal epithelium in aged humans and mice. Employing Drosophila midgut and mouse organoid culture models, we made an observation regarding the altered trajectory of differentiation in intestinal stem cells (ISC) during overnutrition or aging, which stems from the erroneous activation of the insulin receptor signaling pathway. Through genetic analyses, we ascertained that the nutrient-sensing pathway regulated the direction of ISC differentiation by modulating the maturation of endosomes and SOX21A transcription factor. This study elucidates a nutrient-sensing pathway-mediated mechanism underlying stem cell differentiation, offering insights into the etiology of stem cell dysfunction in aged animals, including humans.
Collapse
Affiliation(s)
- Zihua Yu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuedan Zhu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenxi Feng
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zehong Zhang
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoxin Guo
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiou Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingzhu Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Yuan
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Zhao L, Luo T, Zhang H, Fan X, Zhang Q, Chen H. Kaempferol enhances intestinal repair and inhibits the hyperproliferation of aging intestinal stem cells in Drosophila. Front Cell Dev Biol 2024; 12:1491740. [PMID: 39450272 PMCID: PMC11499188 DOI: 10.3389/fcell.2024.1491740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Intestinal stem cells (ISCs) are crucial for tissue repair and homeostasis because of their ability to self-renew and differentiate. However, their functionality declines significantly with age, resulting in reduced tissue regeneration and a higher risk of age-related diseases. Addressing this decline in ISC performance during aging presents a substantial challenge. The specific impact of nutrients or dietary elements on ISC adaptive resizing is urgent to explore. Methods Drosophila ISCs are an ideal model for studying development and aging because of their genetic richness, ease of manipulation, and similarity to mammalian tissues. As the primary mitotically active cells in the Drosophila gut, ISCs are flexible in response to dietary and stress signals. Manipulating signaling pathways or dietary restrictions has shown promise in regulating ISC functions and extending lifespan in flies, these approaches face broader applications for aging research. Results Kaempferol is well-regarded for its antioxidant, anti-inflammatory, and potential anticancer effects. However, its impacts on ISCs and the associated mechanisms remain inadequately understood. Our findings indicate that Kaempferol accelerates gut recovery after damage and improves the organism's stress tolerance. Moreover, Kaempferol suppresses the hyperproliferation of aging ISCs in Drosophila. Further investigation revealed that the regulatory effects of Kaempferol on ISCs are mediated through the reduction of endoplasmic reticulum (ER) stress in aging flies and the modulation of excessive reactive oxygen species (ROS) levels via ER-stress pathways. Furthermore, Kaempferol exerts regulatory effects on the insulin signaling pathway, thereby contributing to the attenuation of ISC senescence. Discussion This study reveals that Kaempferol promotes intestinal homeostasis and longevity in aging flies by targeting ER stress and insulin signaling pathways, though the exact molecular mechanisms require further exploration. Future research will aim to dissect the downstream signaling events involved in these pathways to better understand how Kaempferol exerts its protective effects at the molecular level.
Collapse
Affiliation(s)
- Liusha Zhao
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Luo
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhang
- Department of Gastroenterology and Hepatology and Laboratory of Inflammatory Bowel, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xinxin Fan
- Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiaoqiao Zhang
- Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Zhang X, Zhang Q, Song X, Yang W, Cheng A, Zhang J, Dong W. Toxicity Evaluation of Potassium Sorbate In Vivo with Drosophila Melanogaster. INSECTS 2024; 15:703. [PMID: 39336671 PMCID: PMC11432522 DOI: 10.3390/insects15090703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Potassium sorbate (PS) is a preservative widely used in the food, pharmaceutical, and cosmetics industries. Improper and careless use of PS can lead to various health issues and potential environmental problems. Drosophila is capable of making rapid and sensitive responses to stress or other stimuli. Here we utilized Drosophila as a model organism to evaluate the potential toxicity of PS. Our study revealed that PS ingestion reduced the lifespan and fecundity of Drosophila. In addition, excessive PS ingestion led to cell apoptosis and ROS accumulation in the midgut. Furthermore, PS intake also enhanced the mitophagy of midgut cells. Strikingly, PS affected the cell differentiation progression as well, leading to the production of more enteroendocrine (EE) cells. We further demonstrated that the expression of notch (N), a vital player in intestinal stem cell (ISC) differentiation, was down-regulated in the midgut. This indicates that the differentiation progression was affected potentially by repressing the N expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Dong
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
11
|
Arya SK, Harrison DA, Palli SR. Deciphering cellular heterogeneity in Spodoptera frugiperda midgut cell line through single cell RNA sequencing. Genomics 2024; 116:110898. [PMID: 39047877 DOI: 10.1016/j.ygeno.2024.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Using the 10x Genomics Chromium single-cell RNA sequencing (scRNA-seq) platform, we discovered unexpected heterogeneity in an established cell line developed from the midgut of the Fall armyworm, Spodoptera frugiperda, a major global pest. We analyzed the sequences of 18,794 cells and identified ten unique cellular clusters, including stem cells, enteroblasts, enterocytes and enteroendocrine cells, characterized by the expression of specific marker genes. Additionally, these studies addressed an important knowledge gap by investigating the expression of genes coding for respiratory and midgut membrane insecticide targets classified by the Insecticide Resistance Action Committee. Dual-fluorescence tagging method, fluorescence microscopy and fluorescence-activated cell sorting confirmed the expression of midgut cell type-specific genes. Stem cells were isolated from the heterogeneous population of SfMG-0617 cells. Our results, validated by KEGG and Gene Ontology analyses and supported by Monocle 3.0, advance the fields of midgut cellular biology and establish standards for scRNA-seq studies in non-model organisms.
Collapse
Affiliation(s)
- Surjeet Kumar Arya
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Douglas A Harrison
- College of Arts & Science Imaging Center & Department of Biology, University of Kentucky, Lexington, KY 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
12
|
van Luyk ME, Krotenberg Garcia A, Lamprou M, Suijkerbuijk SJE. Cell competition in primary and metastatic colorectal cancer. Oncogenesis 2024; 13:28. [PMID: 39060237 PMCID: PMC11282291 DOI: 10.1038/s41389-024-00530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker "loser" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.
Collapse
Affiliation(s)
- Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Pranoto IKA, Kwon YV. Protocol to analyze Drosophila intestinal tumor cellular heterogeneity using immunofluorescence imaging and nuclear size quantification. STAR Protoc 2024; 5:102946. [PMID: 38470911 PMCID: PMC10945268 DOI: 10.1016/j.xpro.2024.102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Drosophila intestinal tumors show an extended cellular heterogeneity. We devise a protocol to assess tumor cell heterogeneity by employing nuclear size measurement and immunofluorescence-based cell lineage analysis. We describe steps for intestinal dissection, staining, and imaging, followed by detailed procedures for nuclear size analysis. This approach detects overall heterogeneity across the entire tumor cell population and deviations within specific cell populations. The procedure is also applicable for analyzing the heterogeneity of wild-type intestinal cells in various contexts. For complete details on the use and execution of this protocol, please refer to Pranoto et al.1.
Collapse
Affiliation(s)
| | - Young V Kwon
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Taracena-Agarwal ML, Walter-Nuno AB, Bottino-Rojas V, Mejia APG, Xu K, Segal S, Dotson EM, Oliveira PL, Paiva-Silva GO. Juvenile Hormone as a contributing factor in establishing midgut microbiota for fecundity and fitness enhancement in adult female Aedes aegypti. Commun Biol 2024; 7:687. [PMID: 38839829 PMCID: PMC11153597 DOI: 10.1038/s42003-024-06334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Understanding the factors influencing mosquitoes' fecundity and longevity is important for designing better and more sustainable vector control strategies, as these parameters can impact their vectorial capacity. Here, we address how mating affects midgut growth in Aedes aegypti, what role Juvenile Hormone (JH) plays in this process, and how it impacts the mosquito's immune response and microbiota. Our findings reveal that mating and JH induce midgut growth. Additionally, the establishment of a native bacterial population in the midgut due to JH-dependent suppression of the immune response has important reproductive outcomes. Specific downregulation of AMPs with an increase in bacteria abundance in the gut results in increased egg counts and longer lifespans. Overall, these findings provide evidence of a cross-talk between JH response, gut epithelial tissue, cell cycle regulation, and the mechanisms governing the trade-offs between nutrition, immunity, and reproduction at the cellular level in the mosquito gut.
Collapse
Affiliation(s)
- Mabel L Taracena-Agarwal
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA.
| | - Ana Beatriz Walter-Nuno
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Vanessa Bottino-Rojas
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | | | - Kelsey Xu
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Steven Segal
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Ellen M Dotson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pedro L Oliveira
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Gabriela O Paiva-Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
| |
Collapse
|
15
|
Wang J, Xue H, Yi X, Kim H, Hao Y, Jin LH. InR and Pi3K maintain intestinal homeostasis through STAT/EGFR and Notch signaling in enteroblasts. J Cell Biochem 2024; 125:e30545. [PMID: 38436545 DOI: 10.1002/jcb.30545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
To maintain the integrity of the adult gut, the proliferation and differentiation of stem cells must be strictly controlled. Several signaling pathways control the proliferation and differentiation of Drosophila intestinal epithelial cells. Although the modulatory effects of insulin pathway components on cell proliferation have been characterized, their specific role in which cell type and how these components interact with other regulatory signaling pathways remain largely unclear. In this study, we found that InR/Pi3K has major functions in enteroblasts (EBs) that were not previously described. The absence of InR/Pi3K in progenitors leads to a decrease in the number of EBs, while it has no significant effect on intestinal stem cells (ISCs). In addition, we found that InR/Pi3K regulates Notch activity in ISCs and EBs in an opposite way. This is also the reason for the decrease in EB. On the one hand, aberrantly low levels of Notch signaling in ISCs inhibit their proper differentiation into EBs; on the other hand, the higher Notch levels in EBs promote their excessive differentiation into enterocytes (ECs), leading to marked increases in abnormal ECs and decreased proliferation. Moreover, we found that Upd/JAK/STAT signaling acts as an effector or modifier of InR/Pi3K function in the midgut and cooperates with EGFR signaling to regulate cell proliferation. Altogether, our results demonstrate that InR and Pi3K are essential for coordinating stem cell differentiation and proliferation to maintain intestinal homeostasis.
Collapse
Affiliation(s)
- Jiewei Wang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hongmei Xue
- Department of Children's Emergency Medicine, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xinyu Yi
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hyonil Kim
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
- College of Life Science, Kim ll Sung University, Pyongyang, North Korea
| | - Yangguang Hao
- Department of Basic Medical, Shenyang Medical College, Shenyang, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
16
|
Gao J, Zhang S, Deng P, Wu Z, Lemaitre B, Zhai Z, Guo Z. Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat Commun 2024; 15:3514. [PMID: 38664401 PMCID: PMC11045819 DOI: 10.1038/s41467-024-47465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.
Collapse
Affiliation(s)
- Junjun Gao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Deng
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zongzhao Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, PR China.
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Veneti Z, Fasoulaki V, Kalavros N, Vlachos IS, Delidakis C, Eliopoulos AG. Polycomb-mediated silencing of miR-8 is required for maintenance of intestinal stemness in Drosophila melanogaster. Nat Commun 2024; 15:1924. [PMID: 38429303 PMCID: PMC10907375 DOI: 10.1038/s41467-024-46119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
Balancing maintenance of self-renewal and differentiation is a key property of adult stem cells. The epigenetic mechanisms controlling this balance remain largely unknown. Herein, we report that the Polycomb Repressive Complex 2 (PRC2) is required for maintenance of the intestinal stem cell (ISC) pool in the adult female Drosophila melanogaster. We show that loss of PRC2 activity in ISCs by RNAi-mediated knockdown or genetic ablation of the enzymatic subunit Enhancer of zeste, E(z), results in loss of stemness and precocious differentiation of enteroblasts to enterocytes. Mechanistically, we have identified the microRNA miR-8 as a critical target of E(z)/PRC2-mediated tri-methylation of histone H3 at Lys27 (H3K27me3) and uncovered a dynamic relationship between E(z), miR-8 and Notch signaling in controlling stemness versus differentiation of ISCs. Collectively, these findings uncover a hitherto unrecognized epigenetic layer in the regulation of stem cell specification that safeguards intestinal homeostasis.
Collapse
Affiliation(s)
- Zoe Veneti
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece.
- Medical School, University of Crete, Heraklion, Greece.
| | - Virginia Fasoulaki
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Nikolaos Kalavros
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ioannis S Vlachos
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Aristides G Eliopoulos
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
18
|
Lee JH. Host-Microbe Interactions Regulate Intestinal Stem Cells and Tissue Turnover in Drosophila. Int J Stem Cells 2024; 17:51-58. [PMID: 38123486 PMCID: PMC10899887 DOI: 10.15283/ijsc23172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
With the activity of intestinal stem cells and continuous turnover, the gut epithelium is one of the most dynamic tissues in animals. Due to its simple yet conserved tissue structure and enteric cell composition as well as advanced genetic and histologic techniques, Drosophila serves as a valuable model system for investigating the regulation of intestinal stem cells. The Drosophila gut epithelium is in constant contact with indigenous microbiota and encounters externally introduced "non-self" substances, including foodborne pathogens. Therefore, in addition to its role in digestion and nutrient absorption, another essential function of the gut epithelium is to control the expansion of microbes while maintaining its structural integrity, necessitating a tissue turnover process involving intestinal stem cell activity. As a result, the microbiome and pathogens serve as important factors in regulating intestinal tissue turnover. In this manuscript, I discuss crucial discoveries revealing the interaction between gut microbes and the host's innate immune system, closely associated with the regulation of intestinal stem cell proliferation and differentiation, ultimately contributing to epithelial homeostasis.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul, Korea
- The Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
19
|
Parasram K, Zuccato A, Shin M, Willms R, DeVeale B, Foley E, Karpowicz P. The emergence of circadian timekeeping in the intestine. Nat Commun 2024; 15:1788. [PMID: 38413599 PMCID: PMC10899604 DOI: 10.1038/s41467-024-45942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
The circadian clock is a molecular timekeeper, present from cyanobacteria to mammals, that coordinates internal physiology with the external environment. The clock has a 24-h period however development proceeds with its own timing, raising the question of how these interact. Using the intestine of Drosophila melanogaster as a model for organ development, we track how and when the circadian clock emerges in specific cell types. We find that the circadian clock begins abruptly in the adult intestine and gradually synchronizes to the environment after intestinal development is complete. This delayed start occurs because individual cells at earlier stages lack the complete circadian clock gene network. As the intestine develops, the circadian clock is first consolidated in intestinal stem cells with changes in Ecdysone and Hnf4 signalling influencing the transcriptional activity of Clk/cyc to drive the expression of tim, Pdp1, and vri. In the mature intestine, stem cell lineage commitment transiently disrupts clock activity in differentiating progeny, mirroring early developmental clock-less transitions. Our data show that clock function and differentiation are incompatible and provide a paradigm for studying circadian clocks in development and stem cell lineages.
Collapse
Affiliation(s)
- Kathyani Parasram
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Amy Zuccato
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Minjeong Shin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Reegan Willms
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Brian DeVeale
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
20
|
Zhang S, Wu S, Yao R, Wei X, Ohlstein B, Guo Z. Eclosion muscles secrete ecdysteroids to initiate asymmetric intestinal stem cell division in Drosophila. Dev Cell 2024; 59:125-140.e12. [PMID: 38096823 DOI: 10.1016/j.devcel.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024]
Abstract
During organ development, tissue stem cells first expand via symmetric divisions and then switch to asymmetric divisions to minimize the time to obtain a mature tissue. In the Drosophila midgut, intestinal stem cells switch their divisions from symmetric to asymmetric at midpupal development to produce enteroendocrine cells. However, the signals that initiate this switch are unknown. Here, we identify the signal as ecdysteroids. In the presence of ecdysone, EcR and Usp promote the expression of E93 to suppress Br expression, resulting in asymmetric divisions. Surprisingly, the primary source of pupal ecdysone is not from the prothoracic gland but from dorsal internal oblique muscles (DIOMs), a group of transient skeletal muscles that are required for eclosion. Genetic analysis shows that DIOMs secrete ecdysteroids during mTOR-mediated muscle remodeling. Our findings identify sequential endocrine and mechanical roles for skeletal muscle, which ensure the timely asymmetric divisions of intestinal stem cells.
Collapse
Affiliation(s)
- Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Song Wu
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruining Yao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueying Wei
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Benjamin Ohlstein
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
21
|
Christensen CF, Laurichesse Q, Loudhaief R, Colombani J, Andersen DS. Drosophila activins adapt gut size to food intake and promote regenerative growth. Nat Commun 2024; 15:273. [PMID: 38177201 PMCID: PMC10767106 DOI: 10.1038/s41467-023-44553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Rapidly renewable tissues adapt different strategies to cope with environmental insults. While tissue repair is associated with increased intestinal stem cell (ISC) proliferation and accelerated tissue turnover rates, reduced calorie intake triggers a homeostasis-breaking process causing adaptive resizing of the gut. Here we show that activins are key drivers of both adaptive and regenerative growth. Activin-β (Actβ) is produced by stem and progenitor cells in response to intestinal infections and stimulates ISC proliferation and turnover rates to promote tissue repair. Dawdle (Daw), a divergent Drosophila activin, signals through its receptor, Baboon, in progenitor cells to promote their maturation into enterocytes (ECs). Daw is dynamically regulated during starvation-refeeding cycles, where it couples nutrient intake with progenitor maturation and adaptive resizing of the gut. Our results highlight an activin-dependent mechanism coupling nutrient intake with progenitor-to-EC maturation to promote adaptive resizing of the gut and further establish activins as key regulators of adult tissue plasticity.
Collapse
Affiliation(s)
- Christian F Christensen
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark
| | - Quentin Laurichesse
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark
| | - Rihab Loudhaief
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark
| | - Julien Colombani
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark.
| | - Ditte S Andersen
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark.
| |
Collapse
|
22
|
Wu S, Tang R, Ohlstein B, Guo Z. A live-imaging protocol for tracking intestinal stem cell divisions in the Drosophila melanogaster pupal midgut. STAR Protoc 2023; 4:102749. [PMID: 38041821 PMCID: PMC10701448 DOI: 10.1016/j.xpro.2023.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
Establishing a long-term ex vivo observation of the intestinal stem cell (ISC) is crucial to help understand the formation and homeostasis of the intestinal epithelium. Here, we present a protocol for tracking the division of Drosophila pupal ISCs during pupal midgut development. We describe steps for dissecting, mounting, and live imaging the pupal midgut. We then detail procedures for fluorescence quantification of each cell. This protocol can be applied to other fluorescently tagged proteins. For complete details on the use and execution of this protocol, please refer to Wu et al.1.
Collapse
Affiliation(s)
- Song Wu
- Department of Pharmacology, Bioengineering and Food College, Hubei University of Technology, Wuhan 430068, China; Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ruizhi Tang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Benjamin Ohlstein
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
23
|
Thottacherry JJ, Chen J, Johnston DS. Apical-basal polarity in the gut. Semin Cell Dev Biol 2023; 150-151:15-22. [PMID: 36670034 DOI: 10.1016/j.semcdb.2022.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
Apical-Basal polarity is a fundamental property of all epithelial cells that underlies both their form and function. The gut is made up of a single layer of intestinal epithelial cells, with distinct apical, lateral and basal domains. Occluding junctions at the apical side of the lateral domains create a barrier between the gut lumen and the body, which is crucial for tissue homeostasis, protection against gastrointestinal pathogens and for the maintenance of the immune response. Apical-basal polarity in most epithelia is established by conserved polarity factors, but recent evidence suggests that the gut epithelium in at least some organisms polarises by novel mechanisms. In this review, we discuss the recent advances in understanding polarity factors by focussing on work in C. elegans, Drosophila, Zebrafish and Mouse.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Jia Chen
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom.
| |
Collapse
|
24
|
Costa AVD, Rattes IC, Goes CP, Lobo LHG, Barreto LBE, Gama P. Breastfeeding lifespan control of growth, maintenance, and metabolism of small intestinal epithelium. J Cell Physiol 2023; 238:2304-2315. [PMID: 37555566 DOI: 10.1002/jcp.31089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Gastrointestinal epithelial cells respond to milk-born molecules throughout breastfeeding, influencing growth, and development. The rapid renewal of the small intestine depends on the proliferation in the crypt that drives cell fates. We used early weaning model to investigate immediate and late effects of breastfeeding on proliferation, differentiation of jejunal epithelial cells. Wistar rats were either allowed to suckle (S) until 21 postnatal days or submitted to early weaning (EW) at 15 days. By comparing ages (18, 60, and 120 days), we found that EW decreased Ki67 indices and villi height at 18 and 60 days (p < 0.05), and at 120 days they were similar between diets. Proliferative reduction and augmented expression of Cdkn1b (p27 gene) were parallel. In the stem cell niche, EW increased the number and activity (Defa24) of Paneth cells at 18 and 60 days (p < 0.05), and Lgr5 and Ascl2 genes showed inverted responses between ages. Among target cells, EW decreased goblet cell number at 18 and 60 days (p < 0.05) and increased it at 120 days (p < 0.05), whereas enteroendocrine marker genes were differentially altered. EW reduced enterocytes density at 18 days (p < 0.05), and at 120 days this population was decreased (vs. 60 days). Among cell fate crypt-controlling genes, Notch and Atoh1 were the main targets of EW. Metabolically, intraperitoneal glucose tolerance was immediately reduced (18 days), being reverted until 120 days (p < 0.05). Currently, we showed that breastfeeding has a lifespan influence on intestinal mucosa and on its stem cell compartment. We suggest that, although jejunum absorptive function is granted after early weaning, the long lasting changes in gene expression might prime the mucosa with a different sensitivity to gut disorders that still have to be further explored.
Collapse
Affiliation(s)
- Aline Vasques da Costa
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isadora Campos Rattes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carolina Purcell Goes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa Honda Greco Lobo
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Laylla Barreto E Barreto
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patricia Gama
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Nagai H, Nagai LAE, Tasaki S, Nakato R, Umetsu D, Kuranaga E, Miura M, Nakajima Y. Nutrient-driven dedifferentiation of enteroendocrine cells promotes adaptive intestinal growth in Drosophila. Dev Cell 2023; 58:1764-1781.e10. [PMID: 37689060 DOI: 10.1016/j.devcel.2023.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/05/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
Post-developmental organ resizing improves organismal fitness under constantly changing nutrient environments. Although stem cell abundance is a fundamental determinant of adaptive resizing, our understanding of its underlying mechanisms remains primarily limited to the regulation of stem cell division. Here, we demonstrate that nutrient fluctuation induces dedifferentiation in the Drosophila adult midgut to drive adaptive intestinal growth. From lineage tracing and single-cell RNA sequencing, we identify a subpopulation of enteroendocrine (EE) cells that convert into functional intestinal stem cells (ISCs) in response to dietary glucose and amino acids by activating the JAK-STAT pathway. Genetic ablation of EE-derived ISCs severely impairs ISC expansion and midgut growth despite the retention of resident ISCs, and in silico modeling further indicates that EE dedifferentiation enables an efficient increase in the midgut cell number while maintaining epithelial cell composition. Our findings identify a physiologically induced dedifferentiation that ensures ISC expansion during adaptive organ growth in concert with nutrient conditions.
Collapse
Affiliation(s)
- Hiroki Nagai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan.
| | | | - Sohei Tasaki
- Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Daiki Umetsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan; Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Erina Kuranaga
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Masayuki Miura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuichiro Nakajima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan.
| |
Collapse
|
26
|
Zhou J, He L, Liu M, Guo X, Du G, Yan L, Zhang Z, Zhong Z, Chen H. Sleep loss impairs intestinal stem cell function and gut homeostasis through the modulation of the GABA signalling pathway in Drosophila. Cell Prolif 2023; 56:e13437. [PMID: 36869584 PMCID: PMC10472530 DOI: 10.1111/cpr.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Sleep is essential for maintaining health. Indeed, sleep loss is closely associated with multiple health problems, including gastrointestinal disorders. However, it is not yet clear whether sleep loss affects the function of intestinal stem cells (ISCs). Mechanical sleep deprivation and sss mutant flies were used to generate the sleep loss model. qRT-PCR was used to measure the relative mRNA expression. Gene knock-in flies were used to observe protein localization and expression patterns. Immunofluorescence staining was used to determine the intestinal phenotype. The shift in gut microbiota was observed using 16S rRNA sequencing and analysis. Sleep loss caused by mechanical sleep deprivation and sss mutants disturbs ISC proliferation and intestinal epithelial repair through the brain-gut axis. In addition, disruption of SSS causes gut microbiota dysbiosis in Drosophila. As regards the mechanism, gut microbiota and the GABA signalling pathway both partially played a role in the sss regulation of ISC proliferation and gut function. The research shows that sleep loss disturbed ISC proliferation, gut microbiota, and gut function. Therefore, our results offer a stem cell perspective on brain-gut communication, with details on the effect of the environment on ISCs.
Collapse
Affiliation(s)
- Juanyu Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Li He
- Department of Neurology, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Mengyou Liu
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Xiaoxin Guo
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Gang Du
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - La Yan
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Zehong Zhang
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Zhendong Zhong
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Haiyang Chen
- Department of Neurology, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
27
|
Zion EH, Ringwalt D, Rinaldi K, Kahney EW, Li Y, Chen X. Old and newly synthesized histones are asymmetrically distributed in Drosophila intestinal stem cell divisions. EMBO Rep 2023; 24:e56404. [PMID: 37255015 PMCID: PMC10328082 DOI: 10.15252/embr.202256404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
We report that preexisting (old) and newly synthesized (new) histones H3 and H4 are asymmetrically partitioned during the division of Drosophila intestinal stem cells (ISCs). Furthermore, the inheritance patterns of old and new H3 and H4 in postmitotic cell pairs correlate with distinct expression patterns of Delta, an important cell fate gene. To understand the biological significance of this phenomenon, we expressed a mutant H3T3A to compromise asymmetric histone inheritance. Under this condition, we observe an increase in Delta-symmetric cell pairs and overpopulated ISC-like, Delta-positive cells. Single-cell RNA-seq assays further indicate that H3T3A expression compromises ISC differentiation. Together, our results indicate that asymmetric histone inheritance potentially contributes to establishing distinct cell identities in a somatic stem cell lineage, consistent with previous findings in Drosophila male germline stem cells.
Collapse
Affiliation(s)
- Emily H Zion
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Daniel Ringwalt
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | | | | | - Yingying Li
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Xin Chen
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
- Howard Hughes Medical InstituteBaltimoreMDUSA
| |
Collapse
|
28
|
Wang M, Shang Z, Qiao F, Hei J, Ma X, Wang Y. Notch signaling pathway involved in Echinococcus granulosus infection regulates dendritic cell development and differentiation. Front Cell Infect Microbiol 2023; 13:1147025. [PMID: 37274316 PMCID: PMC10235693 DOI: 10.3389/fcimb.2023.1147025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction The Notch signaling pathway is involved in the development of many diseases; it regulates the development of dendritic cells (DCs), and affects the immune response of DC-mediated T cells. We previously found that ferritin and malate dehydrogenase (mMDH) in Echinococcus granulosus (E.granulosus) induced different immune responses through sensitized DCs. Therefore, in the study we explored whether the Notch signaling pathway affects the development and differentiation of DCs, causing changes in the immune response of DCs sensitized with E. granulosus antigens, and clarified whether it is involved in E.granulosus infection. Methods We used the Notch signaling pathway inhibitor [N-[3,5-difluorophenace-tyl] -L-alanyl]-S-phenylglycinet-butyl ester (DAPT) or activator Jagged1 to construct in vitro cell models with blocked or activated Notch signaling respectively. We analyzed the effect of Notch signaling on the development and differentiation of DCs by detecting their morphology, migration function, capacity to promote T cell proliferation, and cytokine secretion. We observed the changes in DC response to E. granulosus antigens and the mediated immune response. Results DAPT inhibited the development and maturation of DCs, which were in a non-responsive or incompetent state, reduced the sensitization of DCs to Eg.ferritin, weakened the migration ability of DCs, disrupted their ability to mediate T-cell proliferation, reduced DC expression of MHCII, CD80, CD60, and CD40 co-stimulatory molecules, prevented the secretion of cytokines and attenuated the expression of Notch1, Notch2, Notch3 receptors, Jagged1, Delta-like 4 (Delta4), and Hes1. Following Jagged1 addition, the function of DCs was restored to some extent, and the expression of Notch1, Delta4 and Hes1 was activated in response to the stimulation of Eg.ferritin. However, Eg.mMDH stimulated DCs to produce an immune response showing weak interference by DAPT and Jagged1. Discussion The study suggests that the Notc h signaling pathway is involved in the Eg.ferritin-sensitized DC-mediated immune response, which may become a new target for treating E.granulosus infection.
Collapse
Affiliation(s)
- Mingxia Wang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Zailing Shang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Fei Qiao
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Junhu Hei
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Xueling Ma
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Yana Wang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
- Key Laboratory of Common Infectious Diseases of Ningxia Autonomous Region, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
29
|
Xu YN, Xu W, Zhang X, Wang DY, Zheng XR, Liu W, Chen JM, Chen GF, Liu CH, Liu P, Mu YP. BM-MSCs overexpressing the Numb enhance the therapeutic effect on cholestatic liver fibrosis by inhibiting the ductular reaction. Stem Cell Res Ther 2023; 14:45. [PMID: 36941658 PMCID: PMC10029310 DOI: 10.1186/s13287-023-03276-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Cholestatic liver fibrosis (CLF) is caused by inflammatory destruction of the intrahepatic bile duct and abnormal proliferation of the small bile duct after cholestasis. Activation of the Notch signaling pathway is required for hepatic stem cells to differentiate into cholangiocytes during the pathogenesis of CLF. Our previous research found that the expression of the Numb protein, a negative regulator of Notch signaling, was significantly reduced in the livers of patients with primary biliary cholangitis and CLF rats. However, the relationship between the Numb gene and CLF is largely unclear. In this study, we investigated the role of the Numb gene in the treatment of bile duct ligation (BDL)-induced CLF. METHODS In vivo, bone marrow-derived mesenchymal stem cells (BM-MSCs) with Numb gene overexpression or knockdown obtained using lentivirus transfection were transplanted into the livers of rats with BDL-induced CLF. The effects of the Numb gene on stem cell differentiation and CLF were evaluated by performing histology, tests of liver function, and measurements of liver hydroxyproline, cytokine gene and protein levels. In vitro, the Numb gene was overexpressed or knocked down in the WB-F344 cell line by lentivirus transfection, Then, cells were subjected immunofluorescence staining and the detection of mRNA levels of related factors, which provided further evidence supporting the results from in vivo experiments. RESULTS BM-MSCs overexpressing the Numb gene differentiated into hepatocytes, thereby inhibiting CLF progression. Conversely, BM-MSCs with Numb knockdown differentiated into biliary epithelial cells (BECs), thereby promoting the ductular reaction (DR) and the progression of CLF. In addition, we confirmed that knockdown of Numb in sodium butyrate-treated WB-F344 cells aggravated WB-F344 cell differentiation into BECs, while overexpression of Numb inhibited this process. CONCLUSIONS The transplantation of BM-MSCs overexpressing Numb may be a useful new treatment strategy for CLF.
Collapse
Affiliation(s)
- Yan-Nan Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Wen Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Xu Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Dan-Yang Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Xin-Rui Zheng
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Wei Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Jia-Mei Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Gao-Feng Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Cheng-Hai Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Ping Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China.
| | - Yong-Ping Mu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China.
| |
Collapse
|
30
|
Qiu X, Deng Z, Wang M, Feng Y, Bi L, Li L. Piezo protein determines stem cell fate by transmitting mechanical signals. Hum Cell 2023; 36:540-553. [PMID: 36580272 DOI: 10.1007/s13577-022-00853-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Piezo ion channel is a mechanosensitive protein on the cell membrane, which contains Piezo1 and Piezo2. Piezo channels are activated by mechanical forces, including stretch, matrix stiffness, static pressure, and shear stress. Piezo channels transmit mechanical signals that cause different downstream responses in the differentiation process, including integrin signaling pathway, ERK1/2 MAPK signaling pathway, Notch signaling, and WNT signaling pathway. In the fate of stem cell differentiation, scientists found differences in Piezo channel expression and found that Piezo channel expression is related to developmental diseases. Here, we briefly review the structure and function of Piezo channels and the relationship between Piezo and mechanical signals, discussing the current understanding of the role of Piezo channels in stem cell fate and associated molecules and developmental diseases. Ultimately, we believe this review will help identify the association between Piezo channels and stem cell fate.
Collapse
Affiliation(s)
- Xiaolei Qiu
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhuoyue Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Meijing Wang
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yuqi Feng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
31
|
Wu S, Yang Y, Tang R, Zhang S, Qin P, Lin R, Rafel N, Lucchetta EM, Ohlstein B, Guo Z. Apical-basal polarity precisely determines intestinal stem cell number by regulating Prospero threshold. Cell Rep 2023; 42:112093. [PMID: 36773292 DOI: 10.1016/j.celrep.2023.112093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/05/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Apical-basal polarity and cell-fate determinants are crucial for the cell fate and control of stem cell numbers. However, their interplay leading to a precise stem cell number remains unclear. Drosophila pupal intestinal stem cells (pISCs) asymmetrically divide, generating one apical ISC progenitor and one basal Prospero (Pros)+ enteroendocrine mother cell (EMC), followed by symmetric divisions of each daughter before adulthood, providing an ideal system to investigate the outcomes of polarity loss. Using lineage tracing and ex vivo live imaging, we identify an interlocked polarity regulation network precisely determining ISC number: Bazooka inhibits Pros accumulation by activating Notch signaling to maintain stem cell fate in pISC apical daughters. A threshold of Pros promotes differentiation to EMCs and avoids ISC-like cell fate, and over-threshold of Pros inhibits miranda expression to ensure symmetric divisions in pISC basal daughters. Our work suggests that a polarity-dependent threshold of a differentiation factor precisely controls stem cell number.
Collapse
Affiliation(s)
- Song Wu
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruizhi Tang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peizhong Qin
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Neus Rafel
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Elena M Lucchetta
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin Ohlstein
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
32
|
Jneid R, Loudhaief R, Zucchini-Pascal N, Nawrot-Esposito MP, Fichant A, Rousset R, Bonis M, Osman D, Gallet A. Bacillus thuringiensis toxins divert progenitor cells toward enteroendocrine fate by decreasing cell adhesion with intestinal stem cells in Drosophila. eLife 2023; 12:e80179. [PMID: 36847614 PMCID: PMC9977296 DOI: 10.7554/elife.80179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
Bacillus thuringiensis subsp. kurstaki (Btk) is a strong pathogen toward lepidopteran larvae thanks to specific Cry toxins causing leaky gut phenotypes. Hence, Btk and its toxins are used worldwide as microbial insecticide and in genetically modified crops, respectively, to fight crop pests. However, Btk belongs to the B. cereus group, some strains of which are well known human opportunistic pathogens. Therefore, ingestion of Btk along with food may threaten organisms not susceptible to Btk infection. Here we show that Cry1A toxins induce enterocyte death and intestinal stem cell (ISC) proliferation in the midgut of Drosophila melanogaster, an organism non-susceptible to Btk. Surprisingly, a high proportion of the ISC daughter cells differentiate into enteroendocrine cells instead of their initial enterocyte destiny. We show that Cry1A toxins weaken the E-Cadherin-dependent adherens junction between the ISC and its immediate daughter progenitor, leading the latter to adopt an enteroendocrine fate. Hence, although not lethal to non-susceptible organisms, Cry toxins can interfere with conserved cell adhesion mechanisms, thereby disrupting intestinal homeostasis and endocrine functions.
Collapse
Affiliation(s)
- Rouba Jneid
- Universite Cote d'Azur, CNRS, INRAESophia AntipolisFrance
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese UniversityTripoliLebanon
| | | | | | | | - Arnaud Fichant
- Universite Cote d'Azur, CNRS, INRAESophia AntipolisFrance
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & SafetyMaisons-AlfortFrance
| | | | - Mathilde Bonis
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & SafetyMaisons-AlfortFrance
| | - Dani Osman
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese UniversityTripoliLebanon
| | - Armel Gallet
- Universite Cote d'Azur, CNRS, INRAESophia AntipolisFrance
| |
Collapse
|
33
|
Guo X, Zhang Y, Huang H, Xi R. A hierarchical transcription factor cascade regulates enteroendocrine cell diversity and plasticity in Drosophila. Nat Commun 2022; 13:6525. [PMID: 36316343 PMCID: PMC9622890 DOI: 10.1038/s41467-022-34270-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Enteroendocrine cells (EEs) represent a heterogeneous cell population in intestine and exert endocrine functions by secreting a diverse array of neuropeptides. Although many transcription factors (TFs) required for specification of EEs have been identified in both mammals and Drosophila, it is not understood how these TFs work together to generate this considerable subtype diversity. Here we show that EE diversity in adult Drosophila is generated via an "additive hierarchical TF cascade". Specifically, a combination of a master TF, a secondary-level TF and a tertiary-level TF constitute a "TF code" for generating EE diversity. We also discover a high degree of post-specification plasticity of EEs, as changes in the code-including as few as one distinct TF-allow efficient switching of subtype identities. Our study thus reveals a hierarchically-organized TF code that underlies EE diversity and plasticity in Drosophila, which can guide investigations of EEs in mammals and inform their application in medicine.
Collapse
Affiliation(s)
- Xingting Guo
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China
| | - Yongchao Zhang
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China
| | - Huanwei Huang
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China
| | - Rongwen Xi
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China
| |
Collapse
|
34
|
Tian A, Morejon V, Kohoutek S, Huang Y, Deng W, Jiang J. Damage-induced regeneration of the intestinal stem cell pool through enteroblast mitosis in the Drosophila midgut. EMBO J 2022; 41:e110834. [PMID: 35950466 PMCID: PMC9531297 DOI: 10.15252/embj.2022110834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Many adult tissues and organs including the intestine rely on resident stem cells to maintain homeostasis and regeneration. In mammals, the progenies of intestinal stem cells (ISCs) can dedifferentiate to generate ISCs upon ablation of resident stem cells. However, whether and how mature tissue cells generate ISCs under physiological conditions remains unknown. Here, we show that infection of the Drosophila melanogaster intestine with pathogenic bacteria induces entry of enteroblasts (EBs), which are ISC progenies, into the mitotic cycle through upregulation of epidermal growth factor receptor (EGFR)-Ras signaling. We also show that ectopic activation of EGFR-Ras signaling in EBs is sufficient to drive enteroblast mitosis cell autonomously. Furthermore, we find that the dividing enteroblasts do not gain ISC identity as a prerequisite to divide, and the regenerative ISCs are produced through EB mitosis. Taken together, our work uncovers a new role for EGFR-Ras signaling in driving EB mitosis and replenishing the ISC pool during fly intestinal regeneration, which may have important implications for tissue homeostasis and tumorigenesis in vertebrates.
Collapse
Affiliation(s)
- Aiguo Tian
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
- Tulane Aging CenterTulane University School of MedicineNew OrleansLAUSA
| | - Virginia Morejon
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Sarah Kohoutek
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Yi‐Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Wu‐Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Jin Jiang
- Department of Molecular Biology and Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
35
|
Zhai J, Li W, Liu X, Wang D, Zhang D, Liu Y, Liang X, Chen Z. Tiny Drosophila intestinal stem cells, big power. Cell Biol Int 2022; 47:3-14. [PMID: 36177490 DOI: 10.1002/cbin.11911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022]
Abstract
The signaling pathways are highly conserved between Drosophila and mammals concerning intestinal development, regeneration, and disease. The powerful genetic tools of Drosophila make it a valuable and convenient alternative to answer basic biological questions that can not be addressed using mammalian models. In this review, we discuss recent advances in how we use fly midgut to answer the following key questions: (1) How intestine stem cell niches are established; (2) which factors control asymmetric division of stem cells; (3) how intestinal cells interact with environmental factors, such as tissue damage, microbiota, and diet; (4) how to screen aging/cancer-related factors or drugs by fly intestine stem cells.
Collapse
Affiliation(s)
- Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Wanyang Li
- Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Xin Liu
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Di Wang
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Dongli Zhang
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Yanli Liu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Xiuwen Liang
- Hulunbuir City People's Hospital, Hulunbuir City, China
| | - Zeliang Chen
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
36
|
Delta/Notch signaling in glia maintains motor nerve barrier function and synaptic transmission by controlling matrix metalloproteinase expression. Proc Natl Acad Sci U S A 2022; 119:e2110097119. [PMID: 35969789 PMCID: PMC9407389 DOI: 10.1073/pnas.2110097119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have made a surprising discovery linking Delta/Notch signaling in subperineurial glia (SPG) to the regulation of nerve ensheathment and neurotransmitter release at the Drosophila neuromuscular junction (NMJ). SPG, the counterpart of the endothelial layer in the vertebrate blood–brain barrier, form the key cellular layer that is critical for axonal ensheathment and the blood–brain barrier in Drosophila. Our findings demonstrate that Delta/Notch signaling exerts a constitutive negative inhibition on JNK signaling in SPG, thereby limiting the expression of Mmp1, a matrix metalloproteinase. SPG-specific and temporally regulated knockdown of Delta leads to breakdown of barrier function and compromises neurotransmitter release at the NMJ. Our results provide a mechanistic insight into the biology of barrier function and glia–neuron interactions. While the role of barrier function in establishing a protective, nutrient-rich, and ionically balanced environment for neurons has been appreciated for some time, little is known about how signaling cues originating in barrier-forming cells participate in maintaining barrier function and influence synaptic activity. We have identified Delta/Notch signaling in subperineurial glia (SPG), a crucial glial type for Drosophila motor axon ensheathment and the blood–brain barrier, to be essential for controlling the expression of matrix metalloproteinase 1 (Mmp1), a major regulator of the extracellular matrix (ECM). Our genetic analysis indicates that Delta/Notch signaling in SPG exerts an inhibitory control on Mmp1 expression. In the absence of this inhibition, abnormally enhanced Mmp1 activity disrupts septate junctions and glial ensheathment of peripheral motor nerves, compromising neurotransmitter release at the neuromuscular junction (NMJ). Temporally controlled and cell type–specific transgenic analysis shows that Delta/Notch signaling inhibits transcription of Mmp1 by inhibiting c-Jun N-terminal kinase (JNK) signaling in SPG. Our results provide a mechanistic insight into the regulation of neuronal health and function via glial-initiated signaling and open a framework for understanding the complex relationship between ECM regulation and the maintenance of barrier function.
Collapse
|
37
|
Luo H, Li M, Wang F, Yang Y, Wang Q, Zhao Y, Du F, Chen Y, Shen J, Zhao Q, Zeng J, Wang S, Chen M, Li X, Li W, Sun Y, Gu L, Wen Q, Xiao Z, Wu X. The role of intestinal stem cell within gut homeostasis: Focusing on its interplay with gut microbiota and the regulating pathways. Int J Biol Sci 2022; 18:5185-5206. [PMID: 35982910 PMCID: PMC9379405 DOI: 10.7150/ijbs.72600] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Intestinal stem cells (ISCs) play an important role in maintaining intestinal homeostasis via promoting a healthy gut barrier. Within the stem cell niche, gut microbiota linking the crosstalk of dietary influence and host response has been identified as a key regulator of ISCs. Emerging insights from recent research reveal that ISC and gut microbiota interplay regulates epithelial self-renewal. This article reviews the recent knowledge on the key role of ISC in their local environment (stem cell niche) associating with gut microbiota and their metabolites as well as the signaling pathways. The current progress of intestinal organoid culture is further summarized. Subsequently, the key challenges and future directions are discussed.
Collapse
Affiliation(s)
- Haoming Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Yifei Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Qin Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Jiuping Zeng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
38
|
Chen J, St Johnston D. Epithelial Cell Polarity During Drosophila Midgut Development. Front Cell Dev Biol 2022; 10:886773. [PMID: 35846367 PMCID: PMC9281564 DOI: 10.3389/fcell.2022.886773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
The adult Drosophila midgut epithelium is derived from a group of stem cells called adult midgut precursors (AMPs) that are specified during the migration of the endoderm in early embryogenesis. AMPs are maintained and expanded in AMP nests that lie on the basal side of the larval midgut throughout the larval development. During metamorphosis, the larval midgut undergoes histolysis and programmed cell death, while the central cells in the AMP nests form the future adult midgut and the peripheral cells form the transient pupal midgut. Here we review what is known about how cells polarise in the embryonic, larval, pupal and adult midgut, and discuss the open questions about the mechanisms that control the changes in cell arrangements, cell shape and cell polarity during midgut development.
Collapse
Affiliation(s)
| | - Daniel St Johnston
- Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Disruption of the lipolysis pathway results in stem cell death through a sterile immunity-like pathway in adult Drosophila. Cell Rep 2022; 39:110958. [PMID: 35732115 PMCID: PMC9377423 DOI: 10.1016/j.celrep.2022.110958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/26/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
We previously showed that the Arf1-mediated lipolysis pathway sustains stem cells and cancer stem cells (CSCs); its ablation resulted in necrosis of stem cells and CSCs, which further triggers a systemic antitumor immune response. Here we show that knocking down Arf1 in intestinal stem cells (ISCs) causes metabolic stress, which promotes the expression and translocation of ISC-produced damage-associated molecular patterns (DAMPs; Pretaporter [Prtp] and calreticulin [Calr]). DAMPs regulate macroglobulin complement-related (Mcr) expression and secretion. The secreted Mcr influences the expression and localization of enterocyte (EC)-produced Draper (Drpr) and LRP1 receptors (pattern recognition receptors [PRRs]) to activate autophagy in ECs for ATP production. The secreted ATP possibly feeds back to kill ISCs by activating inflammasome-like pyroptosis. We identify an evolutionarily conserved pathway that sustains stem cells and CSCs, and its ablation results in an immunogenic cascade that promotes death of stem cells and CSCs as well as antitumor immunity. Aggarwal et al. show that disruption of Arf1-mediated lipolysis results in stem cell death through a sterile immunity-like pathway in adult Drosophila. They identify an evolutionarily conserved pathway that specifically sustains stem cells and cancer stem cells (CSCs), and its ablation results in an immunogenic cascade that promotes death of stem cells and CSCs as well as antitumor immunity.
Collapse
|
40
|
Du X, Wang Y, Wang J, Liu X, Chen J, Kang J, Yang X, Wang H. d-Chiro-Inositol extends the lifespan of male Drosophila melanogaster better than d-Pinitol through insulin signaling and autophagy pathways. Exp Gerontol 2022; 165:111856. [DOI: 10.1016/j.exger.2022.111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022]
|
41
|
Ho MT, Lu J, Vazquez-Pianzola P, Suter B. α-Phenylalanyl tRNA synthetase competes with Notch signaling through its N-terminal domain. PLoS Genet 2022; 18:e1010185. [PMID: 35486661 PMCID: PMC9094542 DOI: 10.1371/journal.pgen.1010185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/11/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
The alpha subunit of the cytoplasmic Phenylalanyl tRNA synthetase (α-PheRS, FARSA in humans) displays cell growth and proliferation activities and its elevated levels can induce cell fate changes and tumor-like phenotypes that are neither dependent on the canonical function of charging tRNAPhe with phenylalanine nor on stimulating general translation. In intestinal stem cells of Drosophila midguts, α-PheRS levels are naturally slightly elevated and human FARSA mRNA levels are elevated in multiple cancers. In the Drosophila midgut model, elevated α-PheRS levels caused the accumulation of many additional proliferating cells resembling intestinal stem cells (ISCs) and enteroblasts (EBs). This phenotype partially resembles the tumor-like phenotype described as Notch RNAi phenotype for the same cells. Genetic interactions between α-PheRS and Notch suggest that their activities neutralize each other and that elevated α-PheRS levels attenuate Notch signaling when Notch induces differentiation into enterocytes, type II neuroblast stem cell proliferation, or transcription of a Notch reporter. These non-canonical functions all map to the N-terminal part of α-PheRS which accumulates naturally in the intestine. This truncated version of α-PheRS (α-S) also localizes to nuclei and displays weak sequence similarity to the Notch intracellular domain (NICD), suggesting that α-S might compete with the NICD for binding to a common target. Supporting this hypothesis, the tryptophan (W) residue reported to be key for the interaction between the NICD and the Su(H) BTD domain is not only conserved in α-PheRS and α-S, but also essential for attenuating Notch signaling. Aminoacyl tRNA synthetases charge tRNAs with their cognate amino acid to ensure proper decoding of the genetic code during translation. Independent of its aminoacylation function, the alpha subunit of Drosophila cytoplasmic Phenylalanyl tRNA synthetase (α-PheRS, FARSA in humans) has an additional activity that promotes growth and proliferation. Here we describe that elevated α-PheRS levels also induce cell fate changes and tumorous phenotypes in Drosophila midguts. Excessive proliferating cells with stem and progenitor cell characteristics accumulate and the composition of the terminally differentiated cells changes, too. This phenotype together with observed genetic interactions between α-PheRS and Notch levels show that α-PheRS counteracts Notch signaling in many different tissues and developmental stages. This novel activity of α-PheRS maps to its N-terminal part, which is naturally produced. The fragment contains a DNA binding domain, translocates into nuclei, and displays essential similarities to a Notch domain that binds to the downstream transcription factor. This suggests that it might be competing with Notch for binding to a common target. Not only because Notch plays important roles in many tumors, but also because FARSA mRNA levels are considerably upregulated in many tumors, this novel activity deserves more attention for cancer research.
Collapse
Affiliation(s)
- Manh Tin Ho
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Jiongming Lu
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | - Beat Suter
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
42
|
Zhao H, Ren X, Kong R, Shi L, Li Z, Wang R, Ma R, Zhao H, Liu F, Chang HC, Chen CH, Li Z. Auxilin regulates intestinal stem cell proliferation through EGFR. Stem Cell Reports 2022; 17:1120-1137. [PMID: 35427486 PMCID: PMC9133653 DOI: 10.1016/j.stemcr.2022.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Adult tissue homeostasis is maintained by residential stem cells. The proliferation and differentiation of adult stem cells must be tightly balanced to avoid excessive proliferation or premature differentiation. However, how stem cell proliferation is properly controlled remains elusive. Here, we find that auxilin (Aux) restricts intestinal stem cell (ISC) proliferation mainly through EGFR signaling. aux depletion leads to excessive ISC proliferation and midgut homeostasis disruption, which is unlikely caused by defective Notch signaling. Aux is expressed in multiple types of intestinal cells. Interestingly, aux depletion causes a dramatic increase in EGFR signaling, with a strong accumulation of EGFR at the plasma membrane and an increased expression of EGFR ligands in response to tissue stress. Furthermore, Aux co-localizes and associates with EGFR. Finally, blocking EGFR signaling completely suppresses the defects caused by aux depletion. Together, these data demonstrate that Aux mainly safeguards EGFR activation to keep a proper ISC proliferation rate to maintain midgut homeostasis.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xuejing Ren
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lin Shi
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhengran Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Runqi Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Rui Ma
- Department of Neurology, Capital Medical University, Beijing 100053, China
| | - Huiqing Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fuli Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Henry C Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chun-Hong Chen
- Division of Molecular and Genomic Medicine, National Health Research Institute, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
43
|
Medina A, Bellec K, Polcowñuk S, Cordero JB. Investigating local and systemic intestinal signalling in health and disease with Drosophila. Dis Model Mech 2022; 15:274860. [PMID: 35344037 PMCID: PMC8990086 DOI: 10.1242/dmm.049332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Whole-body health relies on complex inter-organ signalling networks that enable organisms to adapt to environmental perturbations and to changes in tissue homeostasis. The intestine plays a major role as a signalling centre by producing local and systemic signals that are relayed to the body and that maintain intestinal and organismal homeostasis. Consequently, disruption of intestinal homeostasis and signalling are associated with systemic diseases and multi-organ dysfunction. In recent years, the fruit fly Drosophila melanogaster has emerged as a prime model organism to study tissue-intrinsic and systemic signalling networks of the adult intestine due to its genetic tractability and functional conservation with mammals. In this Review, we highlight Drosophila research that has contributed to our understanding of how the adult intestine interacts with its microenvironment and with distant organs. We discuss the implications of these findings for understanding intestinal and whole-body pathophysiology, and how future Drosophila studies might advance our knowledge of the complex interplay between the intestine and the rest of the body in health and disease. Summary: We outline work in the fruit fly Drosophila melanogaster that has contributed knowledge on local and whole-body signalling coordinated by the adult intestine, and discuss its implications in intestinal pathophysiology and associated systemic dysfunction.
Collapse
Affiliation(s)
- Andre Medina
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Karen Bellec
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Sofia Polcowñuk
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Julia B Cordero
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
44
|
Shin M, Ferguson M, Willms RJ, Jones LO, Petkau K, Foley E. Immune regulation of intestinal-stem-cell function in Drosophila. Stem Cell Reports 2022; 17:741-755. [PMID: 35303435 PMCID: PMC9023782 DOI: 10.1016/j.stemcr.2022.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/03/2022] Open
Abstract
Intestinal progenitor cells integrate signals from their niche, and the gut lumen, to divide and differentiate at a rate that maintains an epithelial barrier to microbial invasion of the host interior. Despite the importance of evolutionarily conserved innate immune defenses to maintain stable host-microbe relationships, we know little about contributions of stem-cell immunity to gut homeostasis. We used Drosophila to determine the consequences of intestinal-stem-cell immune activity for epithelial homeostasis. We showed that loss of stem-cell immunity greatly impacted growth and renewal in the adult gut. In particular, we found that inhibition of stem-cell immunity impeded progenitor-cell growth and differentiation, leading to a gradual loss of stem-cell numbers with age and an impaired differentiation of mature enteroendocrine cells. Our results highlight the importance of immune signaling in stem cells for epithelial function in the adult gut.
Collapse
Affiliation(s)
- Minjeong Shin
- Department of Medical Microbiology and Immunology Faculty of Medicine and Dentistry University of Alberta Edmonton, Edmonton, AB Canada
| | - Meghan Ferguson
- Department of Medical Microbiology and Immunology Faculty of Medicine and Dentistry University of Alberta Edmonton, Edmonton, AB Canada; Department of Cell Biology Faculty of Medicine and Dentistry University of Alberta Edmonton, Edmonton AB, Canada
| | - Reegan J Willms
- Department of Medical Microbiology and Immunology Faculty of Medicine and Dentistry University of Alberta Edmonton, Edmonton, AB Canada
| | - Lena O Jones
- Department of Medical Microbiology and Immunology Faculty of Medicine and Dentistry University of Alberta Edmonton, Edmonton, AB Canada
| | - Kristina Petkau
- Department of Medical Microbiology and Immunology Faculty of Medicine and Dentistry University of Alberta Edmonton, Edmonton, AB Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology Faculty of Medicine and Dentistry University of Alberta Edmonton, Edmonton, AB Canada; Department of Cell Biology Faculty of Medicine and Dentistry University of Alberta Edmonton, Edmonton AB, Canada.
| |
Collapse
|
45
|
Sood C, Justis VT, Doyle SE, Siegrist SE. Notch signaling regulates neural stem cell quiescence entry and exit in Drosophila. Development 2022; 149:274416. [PMID: 35112131 PMCID: PMC8918809 DOI: 10.1242/dev.200275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/13/2022] [Indexed: 12/18/2022]
Abstract
Stem cells enter and exit quiescence as part of normal developmental programs and to maintain tissue homeostasis in adulthood. Although it is clear that stem cell intrinsic and extrinsic cues, local and systemic, regulate quiescence, it remains unclear whether intrinsic and extrinsic cues coordinate to control quiescence and how cue coordination is achieved. Here, we report that Notch signaling coordinates neuroblast intrinsic temporal programs with extrinsic nutrient cues to regulate quiescence in Drosophila. When Notch activity is reduced, quiescence is delayed or altogether bypassed, with some neuroblasts dividing continuously during the embryonic-to-larval transition. During embryogenesis before quiescence, neuroblasts express Notch and the Notch ligand Delta. After division, Delta is partitioned to adjacent GMC daughters where it transactivates Notch in neuroblasts. Over time, in response to intrinsic temporal cues and increasing numbers of Delta-expressing daughters, neuroblast Notch activity increases, leading to cell cycle exit and consequently, attenuation of Notch pathway activity. Quiescent neuroblasts have low to no active Notch, which is required for exit from quiescence in response to nutrient cues. Thus, Notch signaling coordinates proliferation versus quiescence decisions.
Collapse
|
46
|
Neuron-derived neuropeptide Y fine-tunes the splenic immune responses. Neuron 2022; 110:1327-1339.e6. [PMID: 35139365 DOI: 10.1016/j.neuron.2022.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/14/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
The nervous and immune systems are closely entwined to maintain the immune balance in health and disease. Here, we showed that LPS can activate suprarenal and celiac ganglia (SrG-CG) neurons and upregulate NPY expression in rats. Single-cell sequencing analysis revealed that knockdown of the NPY gene in SrG-CG altered the proliferation and activation of splenic lymphocytes. In a neuron and splenocyte coculture system and in vivo experiments, neuronal NPY in SrG-CG attenuated the splenic immune response. Notably, we demonstrated that neuronal NPF in Drosophila exerted a conservative immunomodulatory effect. Moreover, numerous SNPs in NPY and its receptors were significantly associated with human autoimmune diseases, which was further supported by the autoimmune disease patients and mouse model experiments. Together, we demonstrated that NPY is an ancient language for nervous-immune system crosstalk and might be utilized to alleviate inflammatory storms during infection and to modulate immune balance in autoimmune diseases.
Collapse
|
47
|
Liu XJ, Liang XY, Guo J, Shi XK, Merzendorfer H, Zhu KY, Zhang JZ. V-ATPase subunit a is required for survival and midgut development of Locusta migratoria. INSECT MOLECULAR BIOLOGY 2022; 31:60-72. [PMID: 34528734 DOI: 10.1111/imb.12738] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The vacuolar-type H+ -ATPase (V-ATPase) is an ATP-dependent proton pump, which regulates various cellular processes. To date, most functional studies on V-ATPases of insects have focused on subunits of the V1 complex, and there is little information on the VO genes. In this study, two cDNA sequences of LmV-ATPase a were identified in Locusta migratoria. RT-qPCR analysis revealed that LmV-ATPase a1 and LmV-ATPase a2 are differentially expressed in various tissues and developmental stages. Injection of dsRNA for the common region of LmV-ATPase a1 and LmV-ATPase a2 into third-instar nymphs resulted in a significant suppression of LmV-ATPase a. The injected nymphs ceased feeding, lost body weight and finally died at a mortality of 98.6%. Furthermore, aberrations of midgut epithelial cells, the accumulation of electron-lucent vesicles in the cytoplasm, and a partially damaged brush border were observed in dsLmV-ATPase a-injected nymphs using transmission electron microscopy. Especially, the mRNA level of wingles, and notch genes were dramatically down-regulated in the dsLmV-ATPase a-injected nymphs. Taken together, our results suggest that LmV-ATPase a is required for survival and midgut development of L. migratoria. Hence, this gene could be a good target for RNAi-based control against locusts.
Collapse
Affiliation(s)
- X-J Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - X-Y Liang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - J Guo
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - X-K Shi
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - H Merzendorfer
- Institute of Biology, University of Siegen, Siegen, Germany
| | - K Y Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - J-Z Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
48
|
Abstract
In adult insects, as in vertebrates, the gut epithelium is a highly regenerative tissue that can renew itself rapidly in response to changing inputs from nutrition, the gut microbiota, ingested toxins, and signals from other organs. Because of its cellular and genetic similarities to the mammalian intestine, and its relevance as a target for the control of insect pests and disease vectors, many researchers have used insect intestines to address fundamental questions about stem cell functions during tissue maintenance and regeneration. In Drosophila, where most of the experimental work has been performed, not only are intestinal cell types and behaviors well characterized, but numerous cell signaling interactions have been detailed that mediate gut epithelial regeneration. A prevailing model for regenerative responses in the insect gut invokes stress sensing by damaged enterocytes (ECs) as a principal source for signaling that activates the division of intestinal stem cells (ISCs) and the growth and differentiation of their progeny. However, extant data also reveal alternative mechanisms for regeneration that involve ISC-intrinsic functions, active culling of healthy epithelial cells, enhanced EC growth, and even cytoplasmic shedding by infected ECs. This article reviews current knowledge of the molecular mechanisms involved in gut regeneration in several insect models (Drosophila and Aedes of the order Diptera, and several Lepidoptera).
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute, University of Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
49
|
Wang B, Wang H, Li Y, Song L. Lipid metabolism within the bone micro-environment is closely associated with bone metabolism in physiological and pathophysiological stages. Lipids Health Dis 2022; 21:5. [PMID: 34996476 PMCID: PMC8742318 DOI: 10.1186/s12944-021-01615-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances in society have resulted in the emergence of both hyperlipidemia and obesity as life-threatening conditions in people with implications for various types of diseases, such as cardiovascular diseases and cancer. This is further complicated by a global rise in the aging population, especially menopausal women, who mostly suffer from overweight and bone loss simultaneously. Interestingly, clinical observations in these women suggest that osteoarthritis may be linked to a higher body mass index (BMI), which has led many to believe that there may be some degree of bone dysfunction associated with conditions such as obesity. It is also common practice in many outpatient settings to encourage patients to control their BMI and lose weight in an attempt to mitigate mechanical stress and thus reduce bone pain and joint dysfunction. Together, studies show that bone is not only a mechanical organ but also a critical component of metabolism, and various endocrine functions, such as calcium metabolism. Numerous studies have demonstrated a relationship between metabolic dysfunction in bone and abnormal lipid metabolism. Previous studies have also regarded obesity as a metabolic disorder. However, the relationship between lipid metabolism and bone metabolism has not been fully elucidated. In this narrative review, the data describing the close relationship between bone and lipid metabolism was summarized and the impact on both the normal physiology and pathophysiology of these tissues was discussed at both the molecular and cellular levels.
Collapse
Affiliation(s)
- Bo Wang
- Department of Orthopedics, The first affiliated Hospital of Army Medical University, Army Medical University, Gaotanyan Street No. 30, Chongqing, 400038, China
| | - Heng Wang
- Department of Orthopedics, The first affiliated Hospital of Army Medical University, Army Medical University, Gaotanyan Street No. 30, Chongqing, 400038, China
- Battalion of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yuancheng Li
- Battalion of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Lei Song
- Department of Orthopedics, The first affiliated Hospital of Army Medical University, Army Medical University, Gaotanyan Street No. 30, Chongqing, 400038, China.
| |
Collapse
|
50
|
Interleukin-10 regulates goblet cell numbers through Notch signaling in the developing zebrafish intestine. Mucosal Immunol 2022; 15:940-951. [PMID: 35840681 PMCID: PMC9385495 DOI: 10.1038/s41385-022-00546-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
Cytokines are immunomodulatory proteins that orchestrate cellular networks in health and disease. Among these, interleukin (IL)-10 is critical for the establishment of intestinal homeostasis, as mutations in components of the IL-10 signaling pathway result in spontaneous colitis. Whether IL-10 plays other than immunomodulatory roles in the intestines is poorly understood. Here, we report that il10, il10ra, and il10rb are expressed in the zebrafish developing intestine as early as 3 days post fertilization. CRISPR/Cas9-generated il10-deficient zebrafish larvae showed an increased expression of pro-inflammatory genes and an increased number of intestinal goblet cells compared to WT larvae. Mechanistically, Il10 promotes Notch signaling in zebrafish intestinal epithelial cells, which in turn restricts goblet cell expansion. Using murine organoids, we showed that IL-10 modulates goblet cell frequencies in mammals, suggesting conservation across species. This study demonstrates a previously unappreciated IL-10-Notch axis regulating goblet cell homeostasis in the developing zebrafish intestine and may help explain the disease severity of IL-10 deficiency in the intestines of mammals.
Collapse
|