1
|
Sivasankar VS, Zia RN. The Matter/Life Nexus in Biological Cells. Annu Rev Chem Biomol Eng 2025; 16:409-432. [PMID: 40489303 DOI: 10.1146/annurev-chembioeng-100722-104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The search for what differentiates inanimate matter from living things began in antiquity as a search for a fundamental life force embedded deep within living things-a special material unit owned only by life-later transforming to a more circumspect search for unique gains in function that transform nonliving matter to that which can reproduce, adapt, and survive. Aristotelian thinking about the matter/life distinction and Vitalistic philosophy's vital force persisted well into the Scientific Revolution, only to be debunked by Pasteur and Brown in the nineteenth century. Acceptance of the atomic reality and understanding of the uniqueness of life's heredity, evolution, and reproduction led to formation of the Central Dogma. With startling speed, technological development then gave rise to structural biology, systems biology, and synthetic biology-and a search to replicate and synthesize that gain in function that transforms matter to life. Yet one still cannot build a living cell de novo from its atomic and molecular constituents, and "what I cannot create, I do not understand," in the words of Richard Feynman. In the last two decades, new recognition of old ideas-spatial organization and compartmentalization-has renewed focus on Brownian and flow physics. In this article, we explore how experimental and computational advances in the last decade have embraced the deep coupling between physics and cellular biochemistry to shed light on the matter/life nexus. Whole-cell modeling and synthesis are offering promising new insights that may shed light on this nexus in the cell's watery, crowded milieu.
Collapse
Affiliation(s)
- Vishal S Sivasankar
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, USA;
| | - Roseanna N Zia
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, USA;
| |
Collapse
|
2
|
Ishiguro S, Ishida K, Sakata RC, Ichiraku M, Takimoto R, Yogo R, Kijima Y, Mori H, Tanaka M, King S, Tarumoto S, Tsujimura T, Bashth O, Masuyama N, Adel A, Toyoshima H, Seki M, Oh JH, Archambault AS, Nishida K, Kondo A, Kuhara S, Aburatani H, Klein Geltink RI, Yamamoto T, Shakiba N, Takashima Y, Yachie N. A multi-kingdom genetic barcoding system for precise clone isolation. Nat Biotechnol 2025:10.1038/s41587-025-02649-1. [PMID: 40399693 DOI: 10.1038/s41587-025-02649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/20/2025] [Indexed: 05/23/2025]
Abstract
Cell-tagging strategies with DNA barcodes have enabled the analysis of clone size dynamics and clone-restricted transcriptomic landscapes in heterogeneous populations. However, isolating a target clone that displays a specific phenotype from a complex population remains challenging. Here we present a multi-kingdom genetic barcoding system, CloneSelect, which enables a target cell clone to be triggered to express a reporter gene for isolation through barcode-specific CRISPR base editing. In CloneSelect, cells are first stably tagged with DNA barcodes and propagated so that their subpopulation can be subjected to a given experiment. A clone that shows a phenotype or genotype of interest at a given time can then be isolated from the initial or subsequent cell pools stored during the experiment using CRISPR base editing. CloneSelect is scalable and compatible with single-cell RNA sequencing. We demonstrate the versatility of CloneSelect in human embryonic kidney 293T cells, mouse embryonic stem cells, human pluripotent stem cells, yeast cells and bacterial cells.
Collapse
Affiliation(s)
- Soh Ishiguro
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Rina C Sakata
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Minori Ichiraku
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ren Takimoto
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rina Yogo
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yusuke Kijima
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hideto Mori
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), The University of Osaka, Osaka, Japan
| | - Mamoru Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Samuel King
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shoko Tarumoto
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Taro Tsujimura
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Omar Bashth
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nanami Masuyama
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Arman Adel
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hiromi Toyoshima
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Motoaki Seki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ju Hee Oh
- BC Children's Hospital Research Institute, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anne-Sophie Archambault
- BC Children's Hospital Research Institute, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Keiji Nishida
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- BC Children's Hospital Research Institute, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Satoru Kuhara
- Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Aburatani
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ramon I Klein Geltink
- BC Children's Hospital Research Institute, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Nika Shakiba
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), The University of Osaka, Osaka, Japan
| | - Yasuhiro Takashima
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Nozomu Yachie
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), The University of Osaka, Osaka, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Takamori S, Mimura H, Osaki T, Kondo T, Shintomi M, Shintomi K, Ohsugi M, Takeuchi S. Nuclear Assembly in Giant Unilamellar Vesicles Encapsulating Xenopus Egg Extract. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412126. [PMID: 40390663 DOI: 10.1002/smll.202412126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/17/2025] [Indexed: 05/21/2025]
Abstract
The reconstitution of a cell nucleus in a lipid bilayer-enclosed synthetic cell makes great strides in bottom-up synthetic biology. In this study, a method for assembling a nucleus in giant unilamellar vesicles (GUVs) is proposed. To induce reconstitution of the nucleus, the interphase egg extract of African clawed frogs Xenopus laevis is utilized, known as a biochemically controllable cell-free system capable of transforming an added sperm chromatin into a nucleus in vitro. The GUV formation efficiency is enhanced by the inverted emulsion method through incorporating prolonged waiting time and adding chloroform into lipid-dispersed oil, facilitating subsequent nuclear assembly reactions in the GUVs. Characterization of nucleus-like structures formed in the GUVs revealed the presence of dense DNA and accumulated GFP-NLS in the structure, indicative of functional nuclear import. Immunostaining further validated the presence of nuclear pore complexes on the surfaces of these nucleus-like structures. The approach offers a versatile platform for constructing artificial cellular systems that closely mimic eukaryotic cells.
Collapse
Affiliation(s)
- Sho Takamori
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Hisatoshi Mimura
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Tomo Kondo
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Miyuki Shintomi
- Life Science Network, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Miho Ohsugi
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
4
|
Vollmann DJ, Lernoud L, Nett M. Genome Reduction Improves Recombinant Benzoxazole Production in Myxococcus xanthus. ACS Synth Biol 2025; 14:1756-1765. [PMID: 40257411 DOI: 10.1021/acssynbio.5c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Genome reduction is a fundamental concept in evolution. In synthetic biology, the same strategy has been adopted for the construction of cells with desired physiological and metabolic traits. In this study we report the impact of genome reduction on the biotechnological performance of Myxococcus xanthus. This predatory soil bacterium is a model system for coordinated social behavior, which ranges from cooperative feeding to the formation of fruiting bodies. The complexity of its lifestyle is reflected in a large genome, of which a significant portion harbors biosynthetic gene clusters (BGCs) for the production of secondary metabolites. These compounds are typically considered dispensable for growth under defined laboratory conditions. Therefore, the genomic deletion of these BGCs was expected to eliminate metabolic byproducts and to liberate biosynthetic resources, which could then be supplied to recombinant pathways. Our studies show that the consecutive removal of BGCs from the M. xanthus genome can considerably improve the titer of a recombinantly produced natural product. Furthermore, we observed that M. xanthus does not tolerate the combined elimination of certain BGCs, whereas individual deletions of the same loci are possible.
Collapse
Affiliation(s)
- Dustin Joshua Vollmann
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund 44227, Germany
| | - Lucia Lernoud
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund 44227, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund 44227, Germany
| |
Collapse
|
5
|
Gąsienica P, Toch K, Zając-Garlacz KS, Labocha-Derkowska M. Genetic Background and Gene Essentiality. Genes (Basel) 2025; 16:570. [PMID: 40428392 PMCID: PMC12111165 DOI: 10.3390/genes16050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Essential genes are those required for an organism's survival and reproduction. However, gene essentiality is not absolute; it can be highly context-dependent, varying across genetic and environmental conditions. Most previous studies have assessed gene essentiality in a single genetic background, limiting our understanding of its variability. The objective of this study was to investigate how genetic background influences gene essentiality in the multicellular model organism Caenorhabditis elegans. METHODS We examined gene essentiality in three genetically distinct C. elegans strains: N2, LKC34, and MY16. A total of 294 genes were selected for RNA interference (RNAi) knockdown: 101 previously classified as essential, 175 as nonessential and 18 as conditional (condition-dependent essentiality). Each gene-strain combination was tested in multiple biological and technical replicates, and rigorous quality control and statistical analyses were used to identify strain-specific effects. RESULTS Our results demonstrate substantial variation in gene essentiality across genetic backgrounds. Among the 101 genes previously identified as essential in the N2 strain, only 56% were consistently essential in all three strains. We identified 23 genes that were newly essential across all strains, 13 genes essential in two strains, and 9 genes essential in only one strain. These results reveal that a significant proportion of essential genes exhibit strain-dependent essentiality. CONCLUSIONS This study underscores the importance of genetic context in determining gene essentiality. Our findings suggest that relying on a single genetic background, such as N2, may lead to an incomplete or misleading view of gene essentiality. Understanding context-dependent gene essentiality has important implications for functional genomics, evolutionary biology, and potentially for translational research where genetic background can modulate phenotypic outcomes.
Collapse
Affiliation(s)
| | - Katarzyna Toch
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland (K.S.Z.-G.); (M.L.-D.)
| | | | | |
Collapse
|
6
|
Villalba A, Brassington I, Smajdor A, Cutas D. Synthetic DNA and mitochondrial donation: no need for donor eggs? JOURNAL OF MEDICAL ETHICS 2025:jme-2024-110122. [PMID: 40335280 DOI: 10.1136/jme-2024-110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 04/18/2025] [Indexed: 05/09/2025]
Abstract
Mitochondrial replacement therapy has been developed in order to prevent the transmission of mitochondrial mutations, yet it raises ethical concerns, particularly regarding the involvement of third-party DNA and the risks associated with donor procedures. This paper explores an alternative approach using synthetic DNA (synDNA) to construct mitochondrial organelles, thereby bypassing the need for donor oocytes and bypassing risks to donors. We argue that those who support mitochondrial replacement techniques as an ethically acceptable means of preventing the transmission of mitochondrial disease should consider the use of synthetic mitochondria as a preferable ethical alternative, should it prove technically viable. That this will be viable is more than we can demonstrate here. However, progress in synDNA technology suggests that it is not unreasonable to think that synthetic mitochondria creation is feasible, and perhaps even probable.
Collapse
Affiliation(s)
- Adrian Villalba
- Université Paris Cité, Paris, France
- University of Granada, Granada, Spain
- GIBIO- Bioethics Research Group, Health Department, International University of Valencia, Valencia, Spain
| | | | | | | |
Collapse
|
7
|
Elahi R, Mesones Mancilla S, Sievert ML, Ribeiro Dinis L, Adewale-Fasoro O, Mann A, Zur Y, Prigge ST. Decoding the Minimal Translation System of the Plasmodium falciparum Apicoplast: Essential tRNA-modifying Enzymes and Their Roles in Organelle Maintenance. J Mol Biol 2025:169156. [PMID: 40335414 DOI: 10.1016/j.jmb.2025.169156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Post-transcriptional tRNA modifications are essential for accurate and efficient protein translation across all organisms. The apicoplast organelle genome of Plasmodium falciparum contains a minimal set of 25 complete tRNA isotypes, making it an ideal model for studying minimal translational machinery. Efficient decoding of mRNA codons by this limited tRNA set depends on post-transcriptional modifications. In this study, we sought to define the minimal set of tRNA-modifying enzymes. Using comparative genomics and apicoplast protein localization prediction tools, we identified 16 nucleus-encoded tRNA-modifying enzymes predicted to localize to the apicoplast. Experimental studies confirmed apicoplast localization for 14 enzymes, including two with dual localization. Combining an apicoplast metabolic bypass parasite line with gene disruption tools, we disrupted 12 of the 14 apicoplast-localized enzymes. Six of these enzymes were found to be essential for parasite survival, and six were dispensable. All six essential enzymes are thought to catalyze modifications in the anticodon loop of tRNAs, and their deletions resulted in apicoplast disruption. Of the two genes refractory to deletion, one exhibited dual localization, suggesting essential functions outside the apicoplast. The other, which appears to localize solely to the apicoplast, may play an indispensable role that is not circumvented by our metabolic bypass. Our findings suggest the apicoplast translation system relies on a minimal set of tRNA modifications concentrated in the anticodon loop. This work advances our understanding of minimal translational machinery in reduced organelles, such as the apicoplast, with promising applications in synthetic biology.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Sebastian Mesones Mancilla
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Montana L Sievert
- Johns Hopkins Malaria Research Institute, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Luciana Ribeiro Dinis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Opeoluwa Adewale-Fasoro
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Alexis Mann
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Yonatan Zur
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Malaria Research Institute, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
8
|
Jureček M, Švorcová J. Flowing boundaries in autopoietic systems and microniche construction. Biosystems 2025; 254:105477. [PMID: 40324712 DOI: 10.1016/j.biosystems.2025.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Organismal boundaries might seem like a straightforward and unproblematic organismal feature to study. They serve as fundamental demarcation lines that differentiate life from its environment, define identity, and maintain the functionality of organisms. But do they amount to an actual demarcation of organismal self? In this paper, we examine the philosophical and biological underpinnings of these boundaries, explore the essentialist and non-essentialist perspectives, and categorise organismal boundaries into three types: life-defining, physical, and those based on structural coupling. We shall argue largely against excessive reliance on physical boundaries, point to the inconsistencies and limitations of such thinking with the help of some formal approaches to boundaries (e.g., Markov blankets or theories such as (M, R) systems or the theory of autopoiesis), and try to harmonise the approaches by introducing a concept of boundary based on structural coupling. Autopoietic systems, such as cells, are structurally coupled to their environment, meaning their structures and those of their environment constantly influence each other. Organisms exhibit varying levels of the coupling capacity, of extending beyond their membranes to modify environments on scales ranging from molecular to planetary. Unicellular organisms, colonies, and multicellular entities construct niches that shape their survival and evolution. Building on the niche construction theory, we introduce the concept of microniches to describe various controlled spaces within organisms whose status of 'internal' is not always straightforward from the host perspective (e.g., intercellular spaces, digestive systems, or xylem). In the next step, we explain how these microniches are a direct result of structural coupling and how this concept can explain what is or is not part of a biological entity. We conclude with a discussion of Kantian organic wholes, starting with the cell in its entirety enclosed by a membrane and moving on to higher-order structures such as multicellular organisms or colonies, which differ in how they are established. Organic wholes of various levels are defined by informational boundaries and shared evolutionary norms that enable cohesion, cooperation, and distinction from the external environment across diverse biological and cultural systems. By integrating various philosophical and biological perspectives, we want to deepen our understanding of how life defines and sustains its boundaries and challenge certain established forms of thinking about organismal boundaries, which often rely on the physical or spatial approach.
Collapse
Affiliation(s)
- Matěj Jureček
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, Praha, Czech Republic.
| | - Jana Švorcová
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, Praha, Czech Republic
| |
Collapse
|
9
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2025; 26:298-319. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Elahi R, Prigge ST. tRNA lysidinylation is essential for the minimal translation system in the Plasmodium falciparum apicoplast. EMBO Rep 2025; 26:2300-2322. [PMID: 40113990 PMCID: PMC12069591 DOI: 10.1038/s44319-025-00420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
For decades, researchers have sought to define minimal translation systems to uncover fundamental principles of life and advance biotechnology. tRNAs, essential components of this machinery, decode mRNA codons into amino acids. The apicoplast of malaria parasites contains 25 tRNA isotypes in its organellar genome-the lowest number found in known translation systems. Efficient translation in such minimal systems depends heavily on post-transcriptional tRNA modifications. One such modification, lysidine at the wobble position (C34) of tRNACAU, distinguishes between methionine (AUG) and isoleucine (AUA) codons. tRNA isoleucine lysidine synthetase (TilS) produces lysidine, which is nearly ubiquitous in bacteria and essential for cellular viability. Here, we report a TilS ortholog (PfTilS) targeted to the apicoplast of Plasmodium falciparum. We demonstrate that PfTilS activity is essential for parasite survival and apicoplast function, likely due to its role in protein translation. This study is the first to characterize TilS in an endosymbiotic organelle, contributing to research on eukaryotic organelles and minimal translational systems. Moreover, the absence of lysidine in humans highlights a potential target for antimalarial strategies.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA.
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA.
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| |
Collapse
|
11
|
Bonollo G, Trèves G, Komarov D, Mansoor S, Moroni E, Colombo G. Advancing Molecular Simulations: Merging Physical Models, Experiments, and AI to Tackle Multiscale Complexity. J Phys Chem Lett 2025; 16:3606-3615. [PMID: 40179097 PMCID: PMC12010417 DOI: 10.1021/acs.jpclett.5c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Proteins and protein complexes form adaptable networks that regulate essential biochemical pathways and define cell phenotypes through dynamic mechanisms and interactions. Advances in structural biology and molecular simulations have revealed how protein systems respond to changes in their environments, such as ligand binding, stress conditions, or perturbations like mutations and post-translational modifications, influencing signal transduction and cellular phenotypes. Here, we discuss how computational approaches, ranging from molecular dynamics (MD) simulations to AI-driven methods, are instrumental in studying protein dynamics from isolated molecules to large assemblies. These techniques elucidate conformational landscapes, ligand-binding mechanisms, and protein-protein interactions and are starting to support the construction of multiscale realistic representations of highly complex systems, ranging up to whole cell models. With cryo-electron microscopy, cryo-electron tomography, and AlphaFold accelerating the structural characterization of protein networks, we suggest that integrating AI and Machine Learning with multiscale MD methods will enhance fundamental understating for systems of ever-increasing complexity, usher in exciting possibilities for predictive modeling of the behavior of cell compartments or even whole cells. These advances are indeed transforming biophysics and chemical biology, offering new opportunities to study biomolecular mechanisms at atomic resolution.
Collapse
Affiliation(s)
- Giorgio Bonollo
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Gauthier Trèves
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Denis Komarov
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Samman Mansoor
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Elisabetta Moroni
- National
Research Council of Italy (CNR) - Institute of Chemical Sciences and
Technologies (SCITEC), via Mario Bianco 9, 20131 Milano, Italy
| | - Giorgio Colombo
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
12
|
Álvarez-García LA, Liebermeister W, Leifer I, Makse HA. Complexity reduction by symmetry: Uncovering the minimal regulatory network for logical computation in bacteria. PLoS Comput Biol 2025; 21:e1013005. [PMID: 40273291 PMCID: PMC12048163 DOI: 10.1371/journal.pcbi.1013005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/02/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Symmetry principles play an important role in geometry, and physics, allowing for the reduction of complicated systems to simpler, more comprehensible models that preserve the system's features of interest. Biological systems are often highly complex and may consist of a large number of interacting parts. Using symmetry fibrations, the relevant symmetries for biological "message-passing" networks, we introduce a scheme, called Complexity Reduction by Symmetry or CoReSym, to reduce the gene regulatory networks of Escherichia coli and Bacillus subtilis bacteria to core networks in a way that preserves the dynamics and uncovers the computational capabilities of the network. Gene nodes in the original network that share isomorphic input trees are collapsed by the fibration into equivalence classes called fibers, whereby nodes that receive signals with the same "history" belong to one fiber and synchronize. Then we reduce the networks to its minimal computational core via k-core decomposition. This computational core consists of a few strongly connected components or "signal vortices," in which signals can cycle through. While between them, these "signal vortices" transmit signals in a feedforward manner. These connected components perform signal processing and decision making in the bacterial cell by employing a series of genetic toggle-switch circuits that store memory, plus oscillator circuits. These circuits act as the central computation device of the network, whose output signals then spread to the rest of the network. Our reduction method opens the door to narrow the vast complexity of biological systems to their minimal parts in a systematic way by using fundamental theoretical principles of symmetry.
Collapse
Affiliation(s)
- Luis A. Álvarez-García
- Levich Institute and Physics Department, City College of New York, New York, New York 10031, United States of America
| | | | - Ian Leifer
- Levich Institute and Physics Department, City College of New York, New York, New York 10031, United States of America
| | - Hernán A. Makse
- Levich Institute and Physics Department, City College of New York, New York, New York 10031, United States of America
| |
Collapse
|
13
|
Zhang Y, Chen Y, Liao B. Analysis of the intrinsic value of life in the context of synthetic biology. Front Bioeng Biotechnol 2025; 13:1536403. [PMID: 40230464 PMCID: PMC11994678 DOI: 10.3389/fbioe.2025.1536403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/21/2025] [Indexed: 04/16/2025] Open
Abstract
The ongoing advancements in synthetic biology, employing either "bottom-up" or "top-down" approaches to construct synthetic life, are generating significant interest. However, the broad application of these scientific practices remains fraught with ethical controversies. Thus, investigating the intrinsic value associated with synthetic life is crucial for determining whether and how synthetic life should be constructed and utilized. This study draws upon and extends Ronald Sandler's theory of intrinsic value, analyzing the intrinsic subjective value of synthetic life from the perspectives of ecocentrism, human culture, and the structural properties of synthetic life itself. It examines the intrinsic objective value of synthetic life based on its natural purposes. Additionally, the study explores the inherent worth of synthetic life from three angles: biology, subjectivity, and relationships with human beings. We conclude that the intrinsic value of synthetic life increases sequentially from synthetic microorganisms to synthetic plants, synthetic invertebrates, synthetic vertebrates, and synthetic humans. All forms of synthetic life possess intrinsic subjective and objective value. However, only synthetic life above the grade of synthetic microorganisms has inherent worth; thus, humans have moral obligations towards them.
Collapse
Affiliation(s)
- Yi Zhang
- Office of Academic Research, Fujian Institute of Socialism, Fuzhou, China
| | - Yuling Chen
- School of Marxism, Ningbo University of Finance and Economics, Ningbo, China
| | - Bohua Liao
- College of Rural Revitalization, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Zhang Z, Hong P, Li Z, Li B, Chen T, Shen Y, Yang X, Ye Y, Wang Y, Lin Z. Expediting genome synthesis of Corynebacterium glutamicum with an artificial chromosome vector. Trends Biotechnol 2025:S0167-7799(25)00082-4. [PMID: 40155267 DOI: 10.1016/j.tibtech.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 04/01/2025]
Abstract
Recent advances in genome synthesis have relied on scalable DNA assembly and delivery, and efficient recombination techniques. While these methods have enabled rapid progress for Escherichia coli and yeast, they are often inadequate for other microorganisms. Here, we devised a Corynebacterium glutamicum artificial chromosome (CAC), which combines a replicating system from a closely related strain with an innate partitioning system. This CAC vector can efficiently deliver DNA fragments up to 56 kb and maintain stability in C. glutamicum. Leveraging the CAC vector, we developed CAC Excision Enhanced Recombination (CACEXER), a streamlined strategy for iterative genome replacements in C. glutamicum. Using this approach, we integrated 361 kb (11%) of synthetic DNA into the genome, creating semi-synCG-A. This strain paves the way to establish C. glutamicum as the third industrial microorganism, alongside E. coli and Saccharomyces cerevisiae, to undergo large-scale genome synthesis.
Collapse
Affiliation(s)
- Zhanhua Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Peixiong Hong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zebin Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Baitao Li
- BGI Research, Shenzhen, Guangdong 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong 518120, China
| | - Tai Chen
- BGI Research, Changzhou, Jiangsu 213299, China
| | - Yue Shen
- BGI Research, Shenzhen, Guangdong 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong 518120, China; BGI Research, Changzhou, Jiangsu 213299, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Yun Wang
- BGI Research, Shenzhen, Guangdong 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong 518120, China; BGI Research, Changzhou, Jiangsu 213299, China.
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
15
|
Pretorius IS, Dixon TA, Boers M, Paulsen IT, Johnson DL. The coming wave of confluent biosynthetic, bioinformational and bioengineering technologies. Nat Commun 2025; 16:2959. [PMID: 40140397 PMCID: PMC11947079 DOI: 10.1038/s41467-025-58030-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Information and energy flows form the basis of all economic activity, with advanced technologies underpinning both. Profound uncertainties caused by geostrategic forces have accelerated a trillion-dollar race for technological superiority. The result is an onrush of "technovation" at the nexus of synthetic biotechnologies, information technologies, nanotechnologies and engineering technologies. This article explores recent breakthroughs in integrating chip technologies and synthetic bioinformational engineering. It investigates prospects of biomolecules as carriers of stored digital data, synthetic cells-on-a-chip, and hybrid semiconductors and next-generation artificial intelligence processors. Consilience-unity of knowledge-redefines possibilities emerging from the living interface of biologically-inspired engineering and engineering-enabled biology.
Collapse
Affiliation(s)
- Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| | - Thomas A Dixon
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Michael Boers
- Silicon Platforms Laboratory, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Daniel L Johnson
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
16
|
Li H, Xu S, Liu Y, Lu Y, Ning Y. Efficient De Novo Assembly of 100 kb-Scale Human Functional Immunoglobulin Heavy Variable (IGHV) Gene Fragments In Vitro. ACS Synth Biol 2025. [PMID: 40135783 DOI: 10.1021/acssynbio.5c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Synthetic biology provides a powerful approach to functional studies of viral and microbial genomes. However, in vitro, efficient and scarless DNA manipulation on large and complex human genomes remains an inevitable challenge. Here, we de novo design and successfully assemble human functional immunoglobulin heavy variable (IGHV) gene fragments up to hundred-kilobase (kb)-sized, using an iterative in vitro assembly via Escherichia coli (E. coli) based on Gibson isothermal assembly. We describe an efficient method for "scarless" (without leaving any non-native sequences) engineering of the assembled ordered functional IGHV gene fragments, which contain complex and highly repetitive regions. Our method provides a suitable way to construct bacterial artificial chromosomes (BACs) (30-100 kb) with common materials, easy manipulations, and low cost. The construction of ordered functional IGHV gene BACs expands the synthetic biologist's chassis repertoire. It is essential for the adaptive immune response and constructing immunity humanized animal models.
Collapse
Affiliation(s)
- Haiqiong Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, Guangzhou 510515, China
| | - Shuyao Xu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, Guangzhou 510515, China
| | - Yurui Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, Guangzhou 510515, China
| | - Yongqi Lu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, Guangzhou 510515, China
| | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, Guangzhou 510515, China
| |
Collapse
|
17
|
Kotaka Y, Nagai T, Tominaga K, Kurata T, Iwasaki W, Nobe Y, Taoka M, Asano T, Kato JI. Involvement of Escherichia coli unconventional G protein, YchF, in cell growth at the stationary phase. Genes Genet Syst 2025:24-00218. [PMID: 40128973 DOI: 10.1266/ggs.24-00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
YchF is a universally conserved unconventional G protein. It is known to be involved in the translation of leaderless mRNA. However, leaderless mRNA is rare in E. coli under normal culture conditions, so we analyzed E. coli YchF to clarify its function in vivo. First, bioinformatics analysis was performed, and then the growth and survival of the ychF mutant were investigated. The results suggest that the functional domains and important amino acid residues of YchF are conserved. We next found that the E. coli ychF mutant exhibits delayed re-growth in late stationary phase in the presence of oxidative stress. And the growth inhibition by catalase overexpression was suggested to be caused by oxidase activity. We found that the E. coli ychF mutant exhibits reduced growth in early stationary phase and that is associated with decreased ribosomal 70S subunit. In the ychF mutant, we also found that overproduction of the ribosomal protein S18 inhibited growth, which was further suppressed by overproduction of S11. YchF of E. coli is involved in the regulation of ribosomal 70S levels possibly through interaction with ribosomal proteins S18 and S11 as well as IF-3, suggesting that YchF is important for growth and survival in the early and late stationary phase of growth.
Collapse
Affiliation(s)
- Yuto Kotaka
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
- Department of Bacteriology I, National Institute of Infectious Diseases
| | - Takahiro Nagai
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
| | - Kento Tominaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo
| | - Tatsuaki Kurata
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
- Department of Experimental Medicine, Lund University
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo
- Atmosphere and Ocean Research Institute, the University of Tokyo
- Institute for Quantitative Biosciences, the University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, the University of Tokyo
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University
| | - Tsunaki Asano
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
| | - Jun-Ichi Kato
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
| |
Collapse
|
18
|
Mizutani M, Glass JI, Fukatsu T, Suzuki Y, Kakizawa S. Robust and highly efficient transformation method for a minimal mycoplasma cell. J Bacteriol 2025; 207:e0041524. [PMID: 39903184 PMCID: PMC11925241 DOI: 10.1128/jb.00415-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Mycoplasmas have been widely investigated for their pathogenicity, as well as for genomics and synthetic biology. Conventionally, transformation of mycoplasmas was not highly efficient, and due to the low transformation efficiency, large amounts of DNA and recipient cells were required for that purpose. Here, we report a robust and highly efficient transformation method for the minimal cell JCVI-syn3B, which was created through streamlining the genome of Mycoplasma mycoides. When the growth states of JCVI-syn3B were examined in detail by focusing on such factors as pH, color, absorbance, colony forming unit, and transformation efficiency, it was found that the growth phase after the lag phase can be divided into three distinct phases, of which the highest transformation efficiency was observed during the early exponential growth phase. Notably, the transformation efficiency of up to 4.4 × 10-2 transformants per cell per microgram of plasmid DNA was obtained. A method to obtain several hundred to several thousand transformants with less than 0.2 mL of culture with approximately 1 × 107-108 cells and 10 ng of plasmid DNA was developed. Moreover, a transformation method using a frozen stock of transformation-ready cells was established. These procedures and information could simplify and enhance the transformation process of minimal cells, facilitating advanced genetic engineering and biological research using minimal cells. IMPORTANCE Mycoplasmas are parasitic and pathogenic bacteria for many animals. They are also useful bacteria to understand the cellular process of life and for bioengineering because of their simple metabolism, small genomes, and cultivability. Genetic manipulation is crucial for these purposes, but transformation efficiency in mycoplasmas is typically quite low. Here, we report a highly efficient transformation method for the minimal genome mycoplasma JCVI-syn3B. Using this method, transformants can be obtained with only 10 ng of plasmid DNA, which is around one-thousandth of the amount required for traditional mycoplasma transformations. Moreover, a convenient method using frozen stocks of transformation-ready cells was established. These improved methods play a crucial role in further studies using minimal cells.
Collapse
Affiliation(s)
- Masaki Mizutani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture, Japan
| | - John I. Glass
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki Prefecture, Japan
| | - Yo Suzuki
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture, Japan
| |
Collapse
|
19
|
Müller GA. The Transformation Experiment of Frederick Griffith I: Its Narrowing and Potential for the Creation of Novel Microorganisms. Bioengineering (Basel) 2025; 12:324. [PMID: 40150788 PMCID: PMC11939280 DOI: 10.3390/bioengineering12030324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
The construction of artificial microorganisms often relies on the transfer of genomes from donor to acceptor cells. This synthetic biology approach has been considerably fostered by the J. Craig Venter Institute but apparently depends on the use of microorganisms, which are very closely related. One reason for this limitation of the "creative potential" of "classical" transformation is the requirement for adequate "fitting" of newly synthesized polypeptide components, directed by the donor genome, to interacting counterparts encoded by the pre-existing acceptor genome. Transformation was introduced in 1928 by Frederick Griffith in the course of the demonstration of the instability of pneumococci and their conversion from rough, non-pathogenic into smooth, virulent variants. Subsequently, this method turned out to be critical for the identification of DNA as the sole matter of inheritance. Importantly, the initial experimental design (1.0) also considered the inheritance of both structural (e.g., plasma membranes) and cybernetic information (e.g., metabolite fluxes), which, in cooperation, determine topological and cellular heredity, as well as fusion and blending of bacterial cells. In contrast, subsequent experimental designs (1.X) were focused on the use of whole-cell homogenates and, thereafter, of soluble and water-clear fractions deprived of all information and macromolecules other than those directing protein synthesis, including outer-membrane vesicles, bacterial prions, lipopolysaccharides, lipoproteins, cytoskeletal elements, and complexes thereof. Identification of the reasons for this narrowing may be helpful in understanding the potential of transformation for the creation of novel microorganisms.
Collapse
Affiliation(s)
- Günter A. Müller
- Biology and Technology Studies Institute Munich (BITSIM), 80939 Munich, Germany; ; Tel.: +49-151-25216987
- Institute of Media Sociology, Department of Cultural Sciences, University of Paderborn, 33104 Paderborn, Germany
| |
Collapse
|
20
|
Pajares MÁ. Posttranslational Regulation of Mammalian Sulfur Amino Acid Metabolism. Int J Mol Sci 2025; 26:2488. [PMID: 40141131 PMCID: PMC11942099 DOI: 10.3390/ijms26062488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Metabolism of the mammalian proteinogenic sulfur amino acids methionine and cysteine includes the methionine cycle and reverse transsulfuration pathway, establishing many connections with other important metabolic routes. The main source of these amino acids is the diet, which also provides B vitamins required as cofactors for several enzymes of the metabolism of these amino acids. While methionine is considered an essential amino acid, cysteine can be produced from methionine in a series of reactions that also generate homocysteine, a non-proteinogenic amino acid linking reverse transsulfuration with the methionine and folate cycles. These pathways produce key metabolites that participate in synthesizing a large variety of compounds and important regulatory processes (e.g., epigenetic methylations). The impairment of sulfur amino acid metabolism manifests in many pathological processes, mostly correlated with oxidative stress and alterations in glutathione levels that also depend on this part of the cellular metabolism. This review analyzes the current knowledge on the posttranslational regulation of mammalian sulfur amino acid metabolism, highlighting the large number of modification sites reported through high-throughput studies and the surprisingly limited knowledge of their functional impact.
Collapse
Affiliation(s)
- María Ángeles Pajares
- Department of Molecular and Cellular Biosciences, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
21
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
22
|
Li Y, Deng L, Walker EJL, Karas BJ, Mock T. Genetic engineering in diatoms: advances and prospects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70102. [PMID: 40089910 PMCID: PMC11910954 DOI: 10.1111/tpj.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Diatoms are among the most diverse and ecologically significant groups of photosynthetic microalgae, contributing over 20% of global primary productivity. Their ecological significance, unique biology, and genetic tractability make them ideal targets for genetic and genomic engineering and metabolic reprogramming. Over the past few decades, numerous genetic methods have been developed and applied to these organisms to better understand the function of individual genes and how they underpin diatom metabolism. Additionally, the ability of diatoms to synthesize diverse high-value metabolites and elaborate mineral structures offers significant potential for applications in biotechnology, including the synthesis of novel pharmaceuticals, nutraceuticals, and biomaterials. This review discusses the latest developments in diatom genetic engineering and provides prospects not only to promote the use of diatoms in diverse fields of biotechnology but also to deepen our understanding of their role in natural ecosystems.
Collapse
Affiliation(s)
- Yixuan Li
- School of Environmental SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Longji Deng
- School of Environmental SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Emma Jane Lougheed Walker
- Department of Biochemistry, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioN6A 5C1Canada
| | - Bogumil J. Karas
- Department of Biochemistry, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioN6A 5C1Canada
| | - Thomas Mock
- School of Environmental SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
23
|
Thakor A, Charles TC. Recombinant DNA: unlocking untapped microbial potential for innovation in crop agriculture. Trends Biotechnol 2025; 43:533-539. [PMID: 40015250 DOI: 10.1016/j.tibtech.2025.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 03/01/2025]
Abstract
The Asilomar Conference on Recombinant DNA, held in 1975, established guidelines for recombinant DNA (rDNA) research and laid the foundation for biotechnology regulations. While rDNA has driven significant advancements in pharmaceutical and crop biotechnology, the commercialization of plant-beneficial microbials developed using rDNA has lagged behind. This disparity may be attributed to a cumbersome regulatory framework shaped by the perception that rDNA products pose biosafety risks. To unlock the full potential of rDNA technology in addressing global challenges, regulatory reform for rDNA-derived microbial products for crop plants that reduce reliance on chemical fertilizers and pesticides is essential. Streamlining these barriers will enable greater societal benefits from microbial solutions in agriculture and beyond.
Collapse
Affiliation(s)
| | - Trevor C Charles
- University of Waterloo, Waterloo, Ontario, Canada; Metagenom Bio Life Science Inc., Waterloo, Ontario, Canada.
| |
Collapse
|
24
|
Wang JY, Xie ZX, Cui YZ, Li BZ, Yuan YJ. Artificial design of the genome: from sequences to the 3D structure of chromosomes. Trends Biotechnol 2025; 43:304-317. [PMID: 39299833 DOI: 10.1016/j.tibtech.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
Genome design is the foundation of genome synthesis, which provides a new platform for deepening our understanding of biological systems by exploring the fundamental components and structure of the genome. Artificial genome designs can endow unnatural genomes with desired functions. We provide a comprehensive overview of genome design principles ranging from DNA sequences to the 3D structure of chromosomes. Furthermore, we highlight applications of genome design in gene expression, genome structure, genome function, and biocontainment, and discuss the potential of artificial intelligence (AI) in genome design.
Collapse
Affiliation(s)
- Jun-Yi Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Ze-Xiong Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
25
|
Mao Y, Zhao Y, Zhou Q, Li W. Chromosome Engineering: Technologies, Applications, and Challenges. Annu Rev Anim Biosci 2025; 13:25-47. [PMID: 39541223 DOI: 10.1146/annurev-animal-111523-102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Chromosome engineering is a transformative field at the cutting edge of biological science, offering unprecedented precision in manipulating large-scale genomic DNA within cells. This discipline is central to deciphering how the multifaceted roles of chromosomes-guarding genetic information, encoding sequence positional information, and influencing organismal traits-shape the genetic blueprint of life. This review comprehensively examines the technological advancements in chromosome engineering, which center on engineering chromosomal rearrangements, generating artificial chromosomes, de novo synthesizing chromosomes, and transferring chromosomes. Additionally, we introduce the application progress of chromosome engineering in basic and applied research fields, showcasing its capacity to deepen our knowledge of genetics and catalyze breakthroughs in therapeutic strategies. Finally, we conclude with a discussion of the challenges the field faces and highlight the profound implications that chromosome engineering holds for the future of modern biology and medical applications.
Collapse
Affiliation(s)
- Yihuan Mao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Yulong Zhao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| |
Collapse
|
26
|
Eisenstein M. Why is it so hard to rewrite a genome? Nature 2025; 638:848-850. [PMID: 39966637 DOI: 10.1038/d41586-025-00462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
|
27
|
Valentin-Alvarado LE, Knott GJ. From Code to Comprehension: AI Captures the Language of Life. CRISPR J 2025; 8:2-4. [PMID: 39879534 DOI: 10.1089/crispr.2025.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Affiliation(s)
- Luis E Valentin-Alvarado
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Gavin J Knott
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
28
|
Palmer-Rodríguez P, Alberich R, Reyes-Prieto M, Castro JA, Llabrés M. Metadag: a web tool to generate and analyse metabolic networks. BMC Bioinformatics 2025; 26:31. [PMID: 39875845 PMCID: PMC11776228 DOI: 10.1186/s12859-025-06048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND MetaDAG is a web-based tool developed to address challenges posed by big data from omics technologies, particularly in metabolic network reconstruction and analysis. The tool is capable of constructing metabolic networks for specific organisms, sets of organisms, reactions, enzymes, or KEGG Orthology (KO) identifiers. By retrieving data from the KEGG database, MetaDAG helps users visualize and analyze complex metabolic interactions efficiently. RESULTS MetaDAG computes two models: a reaction graph and a metabolic directed acyclic graph (m-DAG). The reaction graph represents reactions as nodes and metabolite flow between them as edges. The m-DAG simplifies the reaction graph by collapsing strongly connected components, significantly reducing the number of nodes while maintaining connectivity. MetaDAG can generate metabolic networks from various inputs, including KEGG organisms or custom data (e.g., reactions, enzymes, KOs). The tool displays these models on an interactive web page and provides downloadable files, including network visualizations. MetaDAG was tested using two datasets. In an eukaryotic analysis, it successfully classified organisms from the KEGG database at the kingdom and phylum levels. In a microbiome study, MetaDAG accurately distinguished between Western and Korean diets and categorized individuals by weight loss outcomes based on dietary interventions. CONCLUSION MetaDAG offers an effective and versatile solution for metabolic network reconstruction from diverse data sources, enabling large-scale biological comparisons. Its ability to generate synthetic metabolisms and its broad application, from taxonomy classification to diet analysis, make it a valuable tool for biological research. MetaDAG is available online, with user support provided via a comprehensive guide. MetaDAG: https://bioinfo.uib.es/metadag/ User guide: https://biocom-uib.github.io/MetaDag/.
Collapse
Affiliation(s)
- Pere Palmer-Rodríguez
- Mathematics and Computer Science Department, University of the Balearic Islands, Ctra Valldemossa, Km 7.5, Palma, 07122, Balearic Islands, Spain.
| | - Ricardo Alberich
- Mathematics and Computer Science Department, University of the Balearic Islands, Ctra Valldemossa, Km 7.5, Palma, 07122, Balearic Islands, Spain
| | - Mariana Reyes-Prieto
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), Avda. de Catalunya, 21, 46020, Valencia, Valencia, Spain
| | - José A Castro
- Biology Department, University of the Balearic Islands, Ctra Valldemossa, Km 7.5, 07122, Palma, Balearic Islands, Spain
| | - Mercè Llabrés
- Mathematics and Computer Science Department, University of the Balearic Islands, Ctra Valldemossa, Km 7.5, Palma, 07122, Balearic Islands, Spain.
| |
Collapse
|
29
|
Semashko TA, Fisunov GY, Shevelev GY, Govorun VM. BAC-browser: the tool for synthetic biology. BMC Bioinformatics 2025; 26:27. [PMID: 39849360 PMCID: PMC11758742 DOI: 10.1186/s12859-025-06049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Currently, synthetic genomics is a rapidly developing field. Its main tasks, such as the design of synthetic sequences and the assembly of DNA sequences from synthetic oligonucleotides, require specialized software. In this article, we present a program with a graphical interface that allows non-bioinformatics to perform the tasks needed in synthetic genomics. RESULTS We developed BAC-browser v.2.1. It helps to design nucleotide sequences and features the following tools: generate nucleotide sequence from amino acid sequences using a codon frequency table for a specific organism, as well as visualization of restriction sites, GC composition, GC skew and secondary structure. To assemble DNA sequences, a fragmentation tool was created: regular breakdown into oligonucleotides of a certain length and breakdown into oligonucleotides with thermodynamic alignment. We demonstrate the possibility of DNA fragments assemblies designed in different modes of BAC-browser. CONCLUSIONS The BAC-browser has a large number of tools for working in the field of systemic genomics and is freely available at the link with a direct link https://sysbiomed.ru/upload/BAC-browser-2.1.zip .
Collapse
Affiliation(s)
- Tatiana A Semashko
- Research Institute for Systems Biology and Medicine, Moscow, Russian Federation.
- Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation.
| | - Gleb Y Fisunov
- Research Institute for Systems Biology and Medicine, Moscow, Russian Federation
- Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Georgiy Y Shevelev
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russian Federation
| | - Vadim M Govorun
- Research Institute for Systems Biology and Medicine, Moscow, Russian Federation
| |
Collapse
|
30
|
Bertelsen A, Ehrmann AK, Bayer C, Batth TS, Olsen JV, Nørholm MHH. Restructuring a Complex Genetic Function on Episomal Vectors in Escherichia coli. ACS Synth Biol 2025; 14:161-170. [PMID: 39703023 PMCID: PMC11745164 DOI: 10.1021/acssynbio.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Genetic functions have evolved over long timescales and can be encoded by multiple genes dispersed in different locations in genomes, and although contemporary molecular biology enables control over single genes, more complex genetic functions remain challenging. Here, we study the restructuring and mobilization of a complex genetic function encoded by 10 genes, originally expressed from four operons and two loci on the Escherichia coli genome. We observe subtle phenotypic differences and reduced fitness when expressed from episomal DNA and demonstrate that mutations in the transcriptional machinery are necessary for successful implementation in different bacteria. The work provides new approaches for advanced genome editing and constitutes a first step toward modularization and genome-level engineering of complex genetic functions.
Collapse
Affiliation(s)
- Andreas
B. Bertelsen
- The Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Anja K. Ehrmann
- The Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Carolyn Bayer
- The Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Tanveer S. Batth
- The Novo
Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen
N 2200, Denmark
| | - Jesper V. Olsen
- The Novo
Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen
N 2200, Denmark
| | - Morten H. H. Nørholm
- The Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
31
|
Chan DC, Winter L, Bjerg J, Krsmanovic S, Baldwin GS, Bernstein HC. Fine-Tuning Genetic Circuits via Host Context and RBS Modulation. ACS Synth Biol 2025; 14:193-205. [PMID: 39754601 PMCID: PMC11744933 DOI: 10.1021/acssynbio.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
The choice of organism to host a genetic circuit, the chassis, is often defaulted to model organisms due to their amenability. The chassis-design space has therefore remained underexplored as an engineering variable. In this work, we explored the design space of a genetic toggle switch through variations in nine ribosome binding site compositions and three host contexts, creating 27 circuit variants. Characterization of performance metrics in terms of toggle switch output and host growth dynamics unveils a spectrum of performance profiles from our circuit library. We find that changes in host context cause large shifts in overall performance, while modulating ribosome binding sites leads to more incremental changes. We find that a combined ribosome binding site and host context modulation approach can be used to fine-tune the properties of a toggle switch according to user-defined specifications, such as toward greater signaling strength, inducer sensitivity, or both. Other auxiliary properties, such as inducer tolerance, are also exclusively accessed through changes in the host context. We demonstrate here that exploration of the chassis-design space can offer significant value, reconceptualizing the chassis organism as an important part in the synthetic biologist's toolbox with important implications for the field of synthetic biology.
Collapse
Affiliation(s)
- Dennis
Tin Chat Chan
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Lena Winter
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Johan Bjerg
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Stina Krsmanovic
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Geoff S. Baldwin
- Department
of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K.
- Imperial
College Centre for Synthetic Biology, Imperial
College London, South
Kensington, London SW7
2AZ, U.K.
| | - Hans C. Bernstein
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
- The
Arctic Centre for Sustainable Energy, UiT—The
Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
32
|
Rumyantseva NA, Shutov VM, Belenkaia DG, Alekseev AA, Morozova NE, Vedyaykin AD. Properties of the Ureaplasma parvum structural maintenance of chromosomes protein related to its interaction with DNA. FEMS Microbiol Lett 2025; 372:fnaf010. [PMID: 39890601 DOI: 10.1093/femsle/fnaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/31/2024] [Accepted: 01/19/2025] [Indexed: 02/03/2025] Open
Abstract
SMC (Structural Maintenance of Chromosomes) ATPase proteins are integral components of complexes bearing the same name, crucial for the spatial organization of DNA across diverse life forms, spanning bacteria, archaea, and eukaryotes. It is proposed that in bacteria, SMC complexes facilitate DNA compaction through loop extrusion and aid in the segregation of daughter nucleoids. In this paper, the properties of the SMC ATPase protein from Ureaplasma parvum were investigated by using a spectrum of methods, including conventional biochemical methods as well as advanced single-molecule techniques. Our findings reveal distinctive properties of this protein compared to its extensively studied homologue from Bacillus subtilis. Notably, our results suggest that U. parvum Smc ATPase facilitates DNA compaction even in the absence of ATP.
Collapse
Affiliation(s)
- Natalia A Rumyantseva
- Peter the Great St.Petersburg Polytechnic University, Institute of Biomedical Systems and Biotechnology, Polytechnicheskaya 29,Saint Petersburg 195251, Russia
| | - Vladimir M Shutov
- Peter the Great St.Petersburg Polytechnic University, Institute of Biomedical Systems and Biotechnology, Polytechnicheskaya 29,Saint Petersburg 195251, Russia
| | - Dina G Belenkaia
- Peter the Great St.Petersburg Polytechnic University, Institute of Biomedical Systems and Biotechnology, Polytechnicheskaya 29,Saint Petersburg 195251, Russia
| | - Aleksandr A Alekseev
- Peter the Great St.Petersburg Polytechnic University, Institute of Biomedical Systems and Biotechnology, Polytechnicheskaya 29,Saint Petersburg 195251, Russia
| | - Natalia E Morozova
- Peter the Great St.Petersburg Polytechnic University, Institute of Biomedical Systems and Biotechnology, Polytechnicheskaya 29,Saint Petersburg 195251, Russia
| | - Alexey D Vedyaykin
- Peter the Great St.Petersburg Polytechnic University, Institute of Biomedical Systems and Biotechnology, Polytechnicheskaya 29,Saint Petersburg 195251, Russia
| |
Collapse
|
33
|
Gu R, Lambertsen Larsen K, Wang A, Tan J. Approaching Dynamic Behaviors of Life through Systems Chemistry. Chemistry 2025; 31:e202403083. [PMID: 39485372 DOI: 10.1002/chem.202403083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/03/2024]
Abstract
The intricate interplay of metabolic reactions and molecular assembly in living systems enables spatiotemporally organization and gives rise to diverse dynamic behaviors that characterize life. Over the last decades, research efforts have increasingly focused on replicating the remarkable properties and characteristics of living systems, driving the rapid growth of systems chemistry. This young discipline which generally studies interacting molecular networks and emergent system-level properties, behaviors, and functions, offers new concepts and tools to tackle the complexity of life. In this review paper, we have explored seminal research and recent advancements in recreating dynamic behaviors of life with systems chemistry. We believe that the recreation of the dynamic behaviors of life through systems chemistry would set the initial steps to obtain synthetic life de novo.
Collapse
Affiliation(s)
- Ruirui Gu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Kim Lambertsen Larsen
- Department of Chemistry and Bioscience, Section of Chemistry Science and Engineering, Aalborg University, Fredrik Bajers Vej 7H, Aalborg Ø, Denmark
| | - Ali Wang
- Department of Chemistry, Section of Biological Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, Denmark
| | - Junjun Tan
- Department of Chemistry, Section of Biological Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, Denmark
| |
Collapse
|
34
|
Elahi R, Dinis LR, Swift RP, Liu HB, Prigge ST. tRNA modifying enzymes MnmE and MnmG are essential for Plasmodium falciparum apicoplast maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.21.629855. [PMID: 39763917 PMCID: PMC11702754 DOI: 10.1101/2024.12.21.629855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The circular genome of the Plasmodium falciparum apicoplast contains a complete minimal set of tRNAs, positioning the apicoplast as an ideal model for studying the fundamental factors required for protein translation. Modifications at tRNA wobble base positions, such as xm5s2U, are critical for accurate protein translation. These modifications are ubiquitously found in tRNAs decoding two-family box codons ending in A or G in prokaryotes and in eukaryotic organelles. Here, we investigated the xm5s2U biosynthetic pathway in the apicoplast organelle of P. falciparum. Through comparative genomics, we identified orthologs of enzymes involved in this process: SufS, MnmA, MnmE, and MnmG. While SufS and MnmA were previously shown to catalyze s2U modifications, we now show that MnmE and MnmG are apicoplast-localized and contain features required for xm5s2U biosynthetic activity. Notably, we found that P. falciparum lacks orthologs of MnmC, MnmL, and MnmM, suggesting that the parasites contain a minimal xm5s2U biosynthetic pathway similar to that found in bacteria with reduced genomes. Deletion of either MnmE or MnmG resulted in apicoplast disruption and parasite death, mimicking the phenotype observed in ΔmnmA and ΔsufS parasites. Our data strongly support the presence and essentiality of xm5s2U modifications in apicoplast tRNAs. This study advances our understanding of the minimal requirements for protein translation in the apicoplast organelle.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Luciana Ribeiro Dinis
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Boger RS, Chithrananda S, Angelopoulos AN, Yoon PH, Jordan MI, Doudna JA. Functional protein mining with conformal guarantees. Nat Commun 2025; 16:85. [PMID: 39747192 PMCID: PMC11695924 DOI: 10.1038/s41467-024-55676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Molecular structure prediction and homology detection offer promising paths to discovering protein function and evolutionary relationships. However, current approaches lack statistical reliability assurances, limiting their practical utility for selecting proteins for further experimental and in-silico characterization. To address this challenge, we introduce a statistically principled approach to protein search leveraging principles from conformal prediction, offering a framework that ensures statistical guarantees with user-specified risk and provides calibrated probabilities (rather than raw ML scores) for any protein search model. Our method (1) lets users select many biologically-relevant loss metrics (i.e. false discovery rate) and assigns reliable functional probabilities for annotating genes of unknown function; (2) achieves state-of-the-art performance in enzyme classification without training new models; and (3) robustly and rapidly pre-filters proteins for computationally intensive structural alignment algorithms. Our framework enhances the reliability of protein homology detection and enables the discovery of uncharacterized proteins with likely desirable functional properties.
Collapse
Affiliation(s)
- Ron S Boger
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Seyone Chithrananda
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Anastasios N Angelopoulos
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Peter H Yoon
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael I Jordan
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute; University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Gladstone Institutes, San Francisco, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
| |
Collapse
|
36
|
Gulsoy IC, Saaki TNV, Wenzel M, Syvertsson S, Morimoto T, Siersma TK, Hamoen LW. Minimization of the Bacillus subtilis divisome suggests FtsZ and SepF can form an active Z-ring, and reveals the amino acid transporter BraB as a new cell division influencing factor. PLoS Genet 2025; 21:e1011567. [PMID: 39869651 PMCID: PMC11790237 DOI: 10.1371/journal.pgen.1011567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/03/2025] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Bacterial cytokinesis begins with polymerization of the tubulin homologue FtsZ into a ring-like structure at midcell, the Z-ring, which recruits the late cell division proteins that synthesize the division septum. Assembly of FtsZ is carefully regulated and supported by a dozen conserved cell division proteins. Generally, these proteins are not essential, but removing more than one is in many cases lethal. Therefore, it is still not fully clear how the different protein components contribute to cell division, and whether there is a minimal set of proteins that can execute cell division. In this study, we tried to find the minimal set of proteins that is required to establish an active Z-ring in the model bacterium Bacillus subtilis. By making use of known suppressor mutations we were able to find a gene deletion route that eventually enabled us the remove eight conserved cell division proteins: ZapA, MinC, MinJ, UgtP, ClpX, Noc, EzrA and FtsA. Only FtsZ and its membrane anchor SepF appeared to be required for Z-ring formation. Interestingly, SepF is also the FtsZ anchor in archaea, and both proteins date back to the Last Universal Common Ancestor (LUCA). Viability of the multiple deletion mutant was not greatly affected, although the frequency of cell division was considerably reduced. Whole genome sequencing suggested that the construction of this minimal divisome strain was also possible due to the accumulation of suppressor mutations. After extensive phenotypic testing of these mutations, we found an unexpected cell division regulation function for the branched chain amino acid transporter BraB, which may be related to a change in fatty acid composition. The implications of these findings for the role of SepF, and the construction of a minimal cell division machinery are discussed.
Collapse
Affiliation(s)
- Ilkay Celik Gulsoy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
| | - Terrens N. V. Saaki
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Michaela Wenzel
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon Syvertsson
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
| | - Taku Morimoto
- Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Tjalling K. Siersma
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Leendert W. Hamoen
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Ma D, Yao H, Liu Y, Gong W, Zhao Y, Wang R, Wu C, Wang W, Wang H. The reduced interaction between SufS and SufU in Mycoplasma penetrans results in diminished sulfotransferase activity. Int J Biol Macromol 2025; 284:138181. [PMID: 39615726 DOI: 10.1016/j.ijbiomac.2024.138181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
Mycoplasma Penetrans (Mpe) is an AIDS-related mycoplasma that is also closely related to respiratory diseases. Proteins involved in the first phase of Fe-S cluster biosynthesis in the SUF-like pathway are essential in Gram-positive bacteria because there is no redundant Fe-S cluster biosynthetic pathway in these proteins. In this study, we characterized two essential proteins: cysteine desulphurase (MpeSufS) and sulfurtransferase (MpeSufU) in Mpe, and resolved their crystal structures. Our results reveal that MpeSufS belongs to type II cysteine desulfurase, and MpeSufU is a Zn2+-containing sulfurtransferase. Residue Q342 in MpeSufS and the zinc atom in MpeSufU mediate sulfur transfer from MpeSufS to MpeSufU. Mutation of Q342 significantly impacts the cysteine desulfurase activity. This study provides new insights into the regulation of the activity of the SufS-SufU complex, which will help guide the design of drugs for the treatment of mycoplasma infections.
Collapse
Affiliation(s)
- Danyang Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hui Yao
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yuhua Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yaqin Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Ruiying Wang
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
38
|
Yan W, Wu R, Lee Y, Xu L, Li X, Li J, Deng R, Fan X, Wu Y, Zhu H, Mao A, Shen J, Wei CJ. Perturbation of calcium homeostasis invokes eryptosis-like cell death in enucleated bone marrow stem cells. Biochem Cell Biol 2025; 103:1-11. [PMID: 39555650 DOI: 10.1139/bcb-2024-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Enucleated cells, also known as cytoplasts, are valuable tools with a wide range of applications. However, their potential for bio-engineering is greatly restricted by the short lifespan. We postulated that the enucleation process damages the integrity of the plasma membrane and thus activates a cell death program(s). The results showed that a tiny hole was generated transiently on the plasma membrane when the nucleus was spun off, while force-gated ion channels were activated in response to the pulling by the nucleus. Influx of extracellular calcium stimulated the opening of calcium channels and the release of calcium from endoplasmic reticulum and mitochondria. Long lasting calcium transient increased protein phosphorylation and activated caspase 9 and calpain proteinase activities. Subsequently, mitochondria membrane permeability and Reactive Oxygen Species (ROS) levels were significantly elevated, which eventually led to eryptosis-like cell death. When extracellular calcium was maintained at optimal concentration, the lifespan of enucleated cells was extended; however, huge amounts of vacuoles appeared in the cytoplasm, possibly derived from enlarged autophagosomes. Inhibition of vacuolation by inhibitors of autophagy or in co-culture with primary muscle cells did not rescue cells dying from the paraptosis-like pathway. These results offer valuable insights for further investigation into the intricate mechanisms underlying enucleated cell death.
Collapse
Affiliation(s)
- Wei Yan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Ruolan Wu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Yingying Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Liqun Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Xiao Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Junwei Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Ronghao Deng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Xing Fan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Yilang Wu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Haibao Zhu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Aihua Mao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Jianxin Shen
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chi-Ju Wei
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| |
Collapse
|
39
|
Kilinc M, Jia K, Jernigan RL. Improving the Annotations of JCVI-Syn3a Proteins. Methods Mol Biol 2025; 2867:153-168. [PMID: 39576580 DOI: 10.1007/978-1-0716-4196-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The JCVI-Syn3 organism is a minimal organism derived from Mycoplasma mycoides capri, which is capable of self-replication. While the ancestor has 863 genes, the synthetic progeny has only 473, with 434 of these coding for proteins. Despite initial efforts to understand all functions of the organism, a significant number of these protein-coding genes still have unknown functions, and subsequent studies have been only partially successful in elucidating their roles. In this study, we employ our innovative method PROST to identify homologs and better understand these previously unidentified genes. PROST employs protein language embeddings and enables the identification of remote homologs with as low as 16% sequence identity. PROST successfully finds functionally annotated homologs for 93% of the minimal genome with a high level of accuracy, both confirming previously identified functions, as well as proposing new functions for others. The results of our study can be accessed at https://bit.ly/prost-syn3a .
Collapse
Affiliation(s)
- Mesih Kilinc
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, USA
| | - Kejue Jia
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Robert L Jernigan
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, USA.
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
40
|
Lu C, He L, Guo Y, Wang T, Ye Y, Lin Z. Synthesis of Headful Packaging Phages Through Yeast Transformation-Associated Recombination. Viruses 2024; 17:45. [PMID: 39861840 PMCID: PMC11769102 DOI: 10.3390/v17010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of Pseudomonas phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence. Furthermore, we show that S4 can be synthesized from arbitrary starting nucleotides and modified with a red fluorescent protein as a reporter. Additionally, we successfully designed and assembled synthetic S4 phages with reduced genomes, knocking out up to 10 of the 24 hypothetical genes simultaneously, with a combined length of 2883 bp, representing 6.7% of the unit-length genome. This work highlights the potential for engineering simplified, customizable headful packaging phage genomes, providing a foundation for future studies of these phages for potential clinical applications.
Collapse
Affiliation(s)
- Cheng Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (C.L.); (L.H.); (Y.G.); (T.W.)
| | - Lan He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (C.L.); (L.H.); (Y.G.); (T.W.)
| | - Yangyijun Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (C.L.); (L.H.); (Y.G.); (T.W.)
| | - Tingting Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (C.L.); (L.H.); (Y.G.); (T.W.)
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (C.L.); (L.H.); (Y.G.); (T.W.)
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (C.L.); (L.H.); (Y.G.); (T.W.)
- School of Biomedicine, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
41
|
Bao L, Zhu Z, Ismail A, Zhu B, Anandan V, Whiteley M, Kitten T, Xu P. Experimental evolution of gene essentiality in bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.600122. [PMID: 39071448 PMCID: PMC11275930 DOI: 10.1101/2024.07.16.600122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Essential gene products carry out fundamental cellular activities in interaction with other components. However, the lack of essential gene mutants and appropriate methodologies to link essential gene functions with their partners poses significant challenges. Here, we have generated deletion mutants in 32 genes previously identified as essential, with 23 mutants showing extremely slow growth in the SK36 strain of Streptococcus sanguinis. The 23 genes corresponding to these mutants encode components of diverse pathways, are widely conserved among bacteria, and are essential in many other bacterial species. Whole-genome sequencing of 243 independently evolved populations of these mutants has identified >1000 spontaneous suppressor mutations in experimental evolution. Many of these mutations define new gene and pathway relationships, such as F1Fo-ATPase/V1Vo-ATPase/TrkA1-H1 that were demonstrated across multiple Streptococcus species. Patterns of spontaneous mutations occurring in essential gene mutants differed from those found in wildtype. While gene duplications occurred rarely and appeared most often at later stages of evolution, substitutions, deletions, and insertions were prevalent in evolved populations. These essential gene deletion mutants and spontaneous mutations fixed in the mutant populations during evolution establish a foundation for understanding gene essentiality and the interaction of essential genes in networks.
Collapse
Affiliation(s)
- Liang Bao
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Zan Zhu
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Ahmed Ismail
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Bin Zhu
- Massey Cancer Center, Virginia Commonwealth University, Virginia, USA
| | - Vysakh Anandan
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Marvin Whiteley
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Georgia, USA
| | - Todd Kitten
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Ping Xu
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| |
Collapse
|
42
|
Yoshimura A, Seki M. The Possible Crystallization Process in the Origin of Bacteria, Archaea, Viruses, and Mobile Elements. BIOLOGY 2024; 14:3. [PMID: 39857234 PMCID: PMC11763024 DOI: 10.3390/biology14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025]
Abstract
We propose a hypothesis for the simultaneous emergence of bacteria, archaea, viruses, and mobile elements by sequential and concrete biochemical pathways. The emergence process can be considered analogous to crystallization, where genetic and biochemical systems stabilize as organisms evolve from their common ancestor, the LUCA, which was a non-free-living pool of single operon type genomes including double-stranded (ds) DNA at an ancient submarine alkaline vent. Each dsDNA operon was transcribed by different systems in σ, TFIIB, or TBP genomes. Double-stranded DNA operons can fuse and stabilize through the action of specific transcription systems, leading to differentiation between the Bacteria (σ genome) and Archaea (TBP genome) domains. Error catastrophe can be overcome by the parallel gain of DNA replication and DNA repair mechanisms in both genomes. Enlarged DNA enabled efficient local biochemical reactions. Both genomes independently recruited lipids to facilitate reactions by forming coacervates at the chamber of the vent. Bilayer lipid membrane formation, proto-cell formation with a permeable membrane, proto-cell division, and the evolution of membrane-associated biochemistry are presented in detail. Simultaneous crystallization of systems in non-free-living bacteria and non-free-living archaea triggered the co-crystallization of primitive viruses and mobile elements. An arms race between non-free-living cells and primitive viruses finally led to free-living cells with a cell wall and mature viruses.
Collapse
Affiliation(s)
| | - Masayuki Seki
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan;
| |
Collapse
|
43
|
Pigula ML, Ban Y, Schultz PG. Toward a Quadruplet Codon Mitochondrial Genetic Code. ACS Synth Biol 2024; 13:4175-4179. [PMID: 39631441 PMCID: PMC11792677 DOI: 10.1021/acssynbio.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nature has evolved to exclusively use a genetic code consisting of triplet nucleotide codons. The translation system, however, is known to be compatible with 4-nucleotide frameshift or quadruplet codons. In this study, we begin to explore the possibility of a genome made up entirely of quadruplet codons using the minimal mitochondrial genome of Saccharomyces cerevisiae as a model system. We demonstrate that mitochondrial tryptophanyl- and tyrosyl-tRNAs with modified anticodons effectively suppress mutant cox3 genes containing a TAG stop or TAGA quadruplet codon, leading to the production of full-length COX3 and a respiratory-competent phenotype. This work provides a method for introducing heterologous tRNAs into the yeast mitochondria for genetic engineering applications and serves as a starting point for the development of a quadruplet codon genetic code.
Collapse
Affiliation(s)
| | | | - Peter G. Schultz
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
44
|
Peng H, Zhao M, Liu X, Tong T, Zhang W, Gong C, Chowdhury R, Wang Q. Biomimetic Materials to Fabricate Artificial Cells. Chem Rev 2024; 124:13178-13215. [PMID: 39591535 PMCID: PMC11671219 DOI: 10.1021/acs.chemrev.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
As the foundation of life, a cell is generally considered an advanced microreactor with a complicated structure and function. Undeniably, this fascinating complexity motivates scientists to try to extricate themselves from natural living matter and work toward rebuilding artificial cells in vitro. Driven by synthetic biology and bionic technology, the research of artificial cells has gradually become a subclass. It is not only held import in many disciplines but also of great interest in its synthesis. Therefore, in this review, we have reviewed the development of cell and bionic strategies and focused on the efforts of bottom-up strategies in artificial cell construction. Different from starting with existing living organisms, we have also discussed the construction of artificial cells based on biomimetic materials, from simple cell scaffolds to multiple compartment systems, from the construction of functional modules to the simulation of crucial metabolism behaviors, or even to the biomimetic of communication networks. All of them could represent an exciting advance in the field. In addition, we will make a rough analysis of the bottlenecks in this field. Meanwhile, the future development of this field has been prospecting. This review may bridge the gap between materials engineering and life sciences, forming a theoretical basis for developing various life-inspired assembly materials.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College of Shaoxing University, 508 Huancheng Western Road, Shaoxing 312099, China
| | - Man Zhao
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyuan Zhang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Chen Gong
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
45
|
Dudek NK, Precup D. Towards AI-designed genomes using a variational autoencoder. Proc Biol Sci 2024; 291:20241457. [PMID: 39657811 PMCID: PMC11631412 DOI: 10.1098/rspb.2024.1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Genomes encode elaborate networks of genes whose products must seamlessly interact to support living organisms. Humans' capacity to understand these biological systems is limited by their sheer size and complexity. In this article, we develop a proof of concept framework for training a machine learning (ML) algorithm to model bacterial genome composition. To achieve this, we create simplified representations of genomes in the form of binary vectors that indicate the encoded genes, henceforth referred to as genome vectors. A denoising variational autoencoder was trained to accept corrupted genome vectors, in which most genes had been masked, and reconstruct the original. The resulting model, DeepGenomeVector, effectively captures complex dependencies in genomic networks, as evaluated by both qualitative and quantitative metrics. An in-depth functional analysis of a generated genome vector shows that its encoded pathways are interconnected, near complete, and ecologically cohesive. On the test set, where the model's ability to reconstruct uncorrupted genome vectors was evaluated, Area Under the Receiver Operating Curve (AUROC) and F1 scores of 0.98 and 0.83, respectively, support the model's strong performance. This article showcases the power of ML approaches for synthetic biology and highlights the possibility that artifical intelligence agents may one day be able to design genomes that animate carbon-based cells.
Collapse
Affiliation(s)
- Natasha K. Dudek
- School of Computer Science, McGill University, Montreal, QCH3A 0G4, Canada
- Mila—Québec Artificial Intelligence Institute, Montreal, QCH2S 3H1, Canada
| | - Doina Precup
- School of Computer Science, McGill University, Montreal, QCH3A 0G4, Canada
- Mila—Québec Artificial Intelligence Institute, Montreal, QCH2S 3H1, Canada
| |
Collapse
|
46
|
Xu T, Wang S, Ma T, Dong Y, Ashby CR, Hao GF. The identification of essential cellular genes is critical for validating drug targets. Drug Discov Today 2024; 29:104215. [PMID: 39428084 DOI: 10.1016/j.drudis.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Accurately identifying biological targets is crucial for advancing treatment options. Essential genes, vital for cell or organism survival, hold promise as potential drug targets in disease treatment. Although many studies have sought to identify essential genes as therapeutic targets in medicine and bioinformatics, systematic reviews on their relationship with drug targets are relatively rare. This work presents a comprehensive analysis to aid in identifying essential genes as potential targets for drug discovery, encompassing their relevance, identification methods, successful case studies, and challenges. This work will facilitate the identification of essential genes as therapeutic targets, thereby boosting new drug development.
Collapse
Affiliation(s)
- Ting Xu
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Shuang Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Ma
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Yawen Dong
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China.
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, USA.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
47
|
Hayashi M, Takaoka C, Higashi K, Kurokawa K, Margolin W, Oshima T, Shiomi D. Septal wall synthesis is sufficient to change ameba-like cells into uniform oval-shaped cells in Escherichia coli L-forms. Commun Biol 2024; 7:1569. [PMID: 39587276 PMCID: PMC11589767 DOI: 10.1038/s42003-024-07279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
A cell wall is required to control cell shape and size to maintain growth and division. However, some bacterial species maintain their morphology and size without a cell wall, calling into question the importance of the cell wall to maintain shape and size. It has been very difficult to examine the dispensability of cell wall synthesis in rod-shaped bacteria such as Escherichia coli for maintenance of their shape and size because they lyse without cell walls under normal culture conditions. Here, we show that wall-less E. coli L-form cells, which have a heterogeneous cell morphology, can be converted to a mostly uniform oval shape solely by FtsZ-dependent division, even in the absence of cylindrical cell wall synthesis. This FtsZ-dependent control of cell shape and size in the absence of a cell wall requires at least either the Min or nucleoid occlusion systems for positioning FtsZ at mid cell division sites.
Collapse
Affiliation(s)
- Masafumi Hayashi
- Rikkyo University, Tokyo, Japan
- Gakushuin University, Tokyo, Japan
| | | | | | | | | | - Taku Oshima
- Toyama Prefectural University, Toyama, Japan.
| | | |
Collapse
|
48
|
Villalba A, Smajdor A, Brassington I, Cutas D. The ethics of synthetic DNA. JOURNAL OF MEDICAL ETHICS 2024:jme-2024-110124. [PMID: 39567177 DOI: 10.1136/jme-2024-110124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/13/2024] [Indexed: 11/22/2024]
Abstract
In this paper, we discuss the ethical concerns that may arise from the synthesis of human DNA. To date, only small stretches of DNA have been constructed, but the prospect of generating human genomes is becoming feasible. At the same time, the significance of genes for identity, health and reproduction is coming under increased scrutiny. We examine the implications of DNA synthesis and its impact on debates over the relationship with our DNA and the ownership of our genes, its potential to disrupt common understandings of reproduction and privacy, and the way in which synthetic DNA challenges traditional associations between genes and identity. We explore the degree to which synthetic DNA may further undermine overgeneticised accounts of identity, health, reproduction, parenthood and privacy that are prevalent in the public domain and in some areas of policy-making. While avoiding making normative claims of our own, we conclude that there is a need for reflection on the ethical implications of these developing technologies before they are on us.
Collapse
Affiliation(s)
- Adrian Villalba
- Université Paris Cité, Paris, France
- University of Granada, Granada, Spain
| | | | | | | |
Collapse
|
49
|
Greenblatt JF, Alberts BM, Krogan NJ. Discovery and significance of protein-protein interactions in health and disease. Cell 2024; 187:6501-6517. [PMID: 39547210 PMCID: PMC11874950 DOI: 10.1016/j.cell.2024.10.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
The identification of individual protein-protein interactions (PPIs) began more than 40 years ago, using protein affinity chromatography and antibody co-immunoprecipitation. As new technologies emerged, analysis of PPIs increased to a genome-wide scale with the introduction of intracellular tagging methods, affinity purification (AP) followed by mass spectrometry (MS), and co-fractionation MS (CF-MS). Now, combining the resulting catalogs of interactions with complementary methods, including crosslinking MS (XL-MS) and cryogenic electron microscopy (cryo-EM), helps distinguish direct interactions from indirect ones within the same or between different protein complexes. These powerful approaches and the promise of artificial intelligence applications like AlphaFold herald a future where PPIs and protein complexes, including energy-driven protein machines, will be understood in exquisite detail, unlocking new insights in the contexts of both basic biology and disease.
Collapse
Affiliation(s)
- Jack F Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Bruce M Alberts
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
50
|
Justice I, Kiesel P, Safronova N, von Appen A, Saenz JP. A tuneable minimal cell membrane reveals that two lipid species suffice for life. Nat Commun 2024; 15:9679. [PMID: 39516463 PMCID: PMC11549477 DOI: 10.1038/s41467-024-53975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
All cells are encapsulated by a lipid membrane that facilitates their interactions with the environment. How cells manage diverse mixtures of lipids, which dictate membrane property and function, is experimentally challenging to address. Here, we present an approach to tune and minimize membrane lipid composition in the bacterium Mycoplasma mycoides and its derived 'minimal cell' (JCVI-Syn3A), revealing that a two-component lipidome can support life. Systematic reintroduction of phospholipids with different features demonstrates that acyl chain diversity is more important for growth than head group diversity. By tuning lipid chirality, we explore the lipid divide between Archaea and the rest of life, showing that ancestral lipidomes could have been heterochiral. However, in these simple organisms, heterochirality leads to impaired cellular fitness. Thus, our approach offers a tunable minimal membrane system to explore the fundamental lipidomic requirements for life, thereby extending the concept of minimal life from the genome to the lipidome.
Collapse
Affiliation(s)
- Isaac Justice
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany
| | - Petra Kiesel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 107, Dresden, Germany
| | - Nataliya Safronova
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany
| | - Alexander von Appen
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 107, Dresden, Germany
| | - James P Saenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany.
- Technische Universität Dresden, Faculty of Medicine, Dresden, Germany.
| |
Collapse
|