1
|
Engelmann AR, Pargalava N, Sadun AA. Blindness following hydrogen peroxide ingestion and recovery with hyperbaric oxygen therapy. Toxicol Rep 2025; 14:101985. [PMID: 40125300 PMCID: PMC11928836 DOI: 10.1016/j.toxrep.2025.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Hydrogen peroxide (HP) poisoning is rare but potentially life-threatening. It can cause tissue damage through oxygen emboli and reactive oxygen species (ROS). This is the first reported case of blindness caused by cerebral infarctions involving the visual pathway due to oxygen emboli from HP ingestion. A monocular patient presented with profound vision loss and no apparent pharyngeal mucosal injury following ingestion of commercial-grade (35 %) HP. CT imaging revealed gastric wall edema and gas in the portal venous system, suggesting gas emboli. Post-treatment MRI of the brain and orbits with and without contrast confirmed multifocal embolic infarcts along the visual pathway, and transcranial doppler studies identified moderate right-to-left shunting to explain the paradoxical emboli. The patient received hyperbaric oxygen therapy, resulting in a rapid improvement in visual acuity from hand motion to 20/20 and near-total resolution of visual field loss. Remarkably, this recovery occurred despite treatment initiation more than 24 h after symptom onset. This case emphasizes the importance of timely recognition and management of HP poisoning. In the authors' minds it also raised questions about the routine use of 100 % oxygen in hyperbaric therapy due to potential additional oxidative stress. It is the authors' opinion that further research should be done to validate treatment protocols and further interrogate possible risks associated with reactive oxygen species and oxygen toxicity.
Collapse
Affiliation(s)
- Alexander R. Engelmann
- University of California Los Angeles, Jules Stein Eye Institute, Department of Ophthalmology, Los Angeles, CA, USA
- University of California Los Angeles, Doheny Eye Center, Department of Ophthalmology, Los Angeles, CA, USA
- Cleveland Clinic Foundation, Cole Eye Institute, Cleveland, OH, USA
| | - Nutsa Pargalava
- University of California Los Angeles, Jules Stein Eye Institute, Department of Ophthalmology, Los Angeles, CA, USA
- University of California Los Angeles, Doheny Eye Center, Department of Ophthalmology, Los Angeles, CA, USA
| | - Alfredo A. Sadun
- University of California Los Angeles, Doheny Eye Center, Department of Ophthalmology, Los Angeles, CA, USA
| |
Collapse
|
2
|
Burtscher J, Motl RW, Berek K, Ehrenreich H, Kopp M, Hohenauer E. Hypoxia in multiple sclerosis. Redox Biol 2025; 83:103666. [PMID: 40347693 DOI: 10.1016/j.redox.2025.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
Low oxygen availability (hypoxia) is a prominent but poorly understood feature in multiple sclerosis (MS). Whether hypoxia causes or drives MS pathology and symptoms or whether it is a consequence of other pathological events, such as inflammation and vascular dysfunction, is unknown. Here, we summarize the available literature on the interplay between hypoxia and both pathological and symptomatic features of MS. Severe environmental hypoxia (i.e., altitude) may trigger or facilitate MS-related events, possibly by exacerbating tissue hypoxia in the central nervous system. Accordingly, increasing oxygen supply can mitigate pathological and clinical parameters in MS models. In contrast, stimulating the endogenous hypoxia response and adaptation systems by controlled exposure to hypoxia (hypoxia conditioning) renders the central nervous system more resistant to hypoxic insults, thereby attenuating pathology and symptomatology in MS models. Overlapping mechanisms likely play a role in the benefits conferred by physical activity in MS. We provide an integrative model to explain the paradoxically beneficial outcomes of both increased and decreased ambient oxygen conditions. In conclusion, controlled exposure to hypoxia, perhaps in combination with exercise, is a promising, possibly disease-course modifying therapeutic approach for MS. However, many open questions remain.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannelore Ehrenreich
- Experimental Medicine, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, Mannheim, Germany
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Kodroń A, Kowalski K, Marins Mussulini BH, Hazir C, Borrero-Landazabal MA, Ngati S, Wasilewski M, Chacinska A. Immunoproteasome-specific subunit alterations as a potential therapeutic target for mitochondriopathies. J Mol Biol 2025:169229. [PMID: 40414596 DOI: 10.1016/j.jmb.2025.169229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/16/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Mitochondria are double-membrane organelles crucial for eukaryotic cells due to their role in ATP production by oxidative phosphorylation (OXPHOS). Most of the ∼1500 proteins of the mitochondrial proteome are encoded in the nuclear genome, synthesized in the cytosol, and actively transported into mitochondria. The proteasome, a major cellular proteolytic machinery, plays an important role in the quality control of their transport by degradation of inefficiently imported mitochondrial proteins in the cytosol. Proteasome inhibition by bortezomib was described as a strategy to alleviate deficiencies stemming from an inefficient import of proteins into the mitochondria. Notably, an impairment of the respiratory complexes was shown to induce a rearrangement of the proteasome composition to incorporate some of the immunoproteasome catalytic subunits, such as PSMB9. In this study, we demonstrated that targeting immunoproteasome inhibited degradation, and thus restored the abundance of inefficiently imported respiratory complex IV proteins in the patient derived fibroblasts. Furthermore, we demonstrated that the immunoproteasome-specific inhibitors displayed a decreased toxicity compared to bortezomib. Our results indicate that immunoproteasome subunits present a novel molecular target for future therapies of mitochondriopathies.
Collapse
Affiliation(s)
- Agata Kodroń
- Laboratory of Mitochondrial Biogenesis, IMol Polish Academy of Sciences, Warsaw, Poland; ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Konrad Kowalski
- Laboratory of Mitochondrial Biogenesis, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Ben Hur Marins Mussulini
- Laboratory of Mitochondrial Biogenesis, IMol Polish Academy of Sciences, Warsaw, Poland; ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Cem Hazir
- Laboratory of Mitochondrial Biogenesis, IMol Polish Academy of Sciences, Warsaw, Poland
| | | | - Sonia Ngati
- Laboratory of Mitochondrial Biogenesis, IMol Polish Academy of Sciences, Warsaw, Poland; ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Michal Wasilewski
- Laboratory of Mitochondrial Biogenesis, IMol Polish Academy of Sciences, Warsaw, Poland; ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial Biogenesis, IMol Polish Academy of Sciences, Warsaw, Poland; ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
4
|
Ryan P, Lee J. In vitro senescence and senolytic functional assays. Biomater Sci 2025. [PMID: 40375674 DOI: 10.1039/d4bm01684j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
A detailed understanding of aging biology and the development of anti-aging therapeutic strategies remain imperative yet inherently challenging due to the protracted nature of aging. Cellular senescence arises naturally through replicative exhaustion and is accelerated by clinical treatments or environmental stressors. The accumulation of senescent cells-defined by a loss of mitogenic potential, resistance to apoptosis, and acquisition of a pro-inflammatory secretory phenotype-has been implicated as a key driver of chronic disease, tissue degeneration, and organismal aging. Recent studies have highlighted the therapeutic promise of senolytic drugs, which selectively eliminate senescent cells. Compelling results from preclinical animal studies and ongoing clinical trials underscore this potential. However, the clinical translation of senolytics requires further pharmacological validation to refine selectivity, minimize toxicity, and determine optimal dosing. Equally important is the evaluation of senolytics' potential to restore tissue structure and function by reducing the senescent cell burden. In vitro tissue culture models offer a powerful platform to advance these efforts. This review summarizes the current landscape of in vitro systems used for inducing cellular senescence-referred to as "senescence assays"-and for screening senolytic drugs-referred to as "senolytic assays". We conclude by discussing key challenges to improving mechanistic insight, predictive accuracy, and clinical relevance in senolytic drug development, as well as emerging applications of senolytic therapies.
Collapse
Affiliation(s)
- Patrick Ryan
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
| | - Jungwoo Lee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
5
|
Arenillas C, Celada L, Ruiz-Cantador J, Calsina B, Datta D, García-Galea E, Fasani R, Moreno-Cárdenas AB, Alba-Linares JJ, Miranda-Barrio B, Martínez-Montes ÁM, Alvarez-Escola C, Lecumberri B, González García A, K. Flores S, Esquivel E, Ding Y, Peitzsch M, Robles-Guirado JÁ, Regojo Zapata RM, Pozo-Kreilinger JJ, Iglesias C, Dwight T, Muir CA, Oleaga A, Garrido-Lestache Rodríguez-Monte ME, Del Cerro MJ, Martínez-Bendayán I, Álvarez-González E, Cubiella T, Lourenço DM, A. Pereira MA, Burnichon N, Buffet A, Broberg C, Dickson PV, Fraga MF, Llorente Pendás JL, Rueda Soriano J, Buendía Fuentes F, Toledo SP, Clifton-Bligh R, Dienstmann R, Villanueva J, Capdevila J, Gimenez-Roqueplo AP, Favier J, Nuciforo P, Young WF, Bechmann N, Opotowsky AR, Vaidya A, Bancos I, Weghorn D, Robledo M, Casteràs A, Dos-Subirà L, Adameyko I, Chiara MD, Dahia PL, Toledo RA. Convergent Genetic Adaptation in Human Tumors Developed Under Systemic Hypoxia and in Populations Living at High Altitudes. Cancer Discov 2025; 15:1037-1062. [PMID: 40199338 PMCID: PMC12046333 DOI: 10.1158/2159-8290.cd-24-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/21/2024] [Accepted: 01/27/2025] [Indexed: 04/10/2025]
Abstract
SIGNIFICANCE This study reveals a broad convergence in genetic adaptation to hypoxia between natural populations and tumors, suggesting that insights from natural populations could enhance our understanding of cancer biology and identify novel therapeutic targets. See related commentary by Lee, p. 875.
Collapse
Affiliation(s)
- Carlota Arenillas
- Biomarkers and Clonal Dynamics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lucía Celada
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - José Ruiz-Cantador
- Adult Congenital Heart Disease Unit, Department of Cardiology, Hospital Universitario La Paz, Madrid, Spain
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Debayan Datta
- Biomarkers and Clonal Dynamics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Eduardo García-Galea
- Oncology Data Science (ODysSey) Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roberta Fasani
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana Belén Moreno-Cárdenas
- Biomarkers and Clonal Dynamics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan José Alba-Linares
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Berta Miranda-Barrio
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Integrated Adult Congenital Heart Disease Unit, Department of Cardiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, the Netherlands
| | - Ángel M. Martínez-Montes
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Beatriz Lecumberri
- Department of Endocrinology and Nutrition, Hospital Universitario La Paz, Madrid, Spain
| | - Ana González García
- Adult Congenital Heart Disease Unit, Department of Cardiology, Hospital Universitario La Paz, Madrid, Spain
| | - Shahida K. Flores
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas
| | - Emmanuel Esquivel
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas
| | - Yanli Ding
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - José-Ángel Robles-Guirado
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | | | - Carmela Iglesias
- Department of Pathology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Trisha Dwight
- Cancer Genetics, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
| | - Christopher A. Muir
- Department of Endocrinology, St. Vincent’s Hospital, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Amelia Oleaga
- Department of Endocrinology and Nutrition, Hospital Universitario de Basurto, Bilbao, Spain
| | | | - Maria Jesús Del Cerro
- Department of Pediatric Cardiology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Isaac Martínez-Bendayán
- Department of Pediatric Cardiology, Instituto de Investigación Biomédica (Cardiopatía Estructural y Congénita) and Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Enol Álvarez-González
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Department of Functional Biology, Genetic Area, University of Oviedo, Oviedo, Spain
| | - Tamara Cubiella
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Delmar Muniz Lourenço
- Endocrinology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Maria Adelaide A. Pereira
- Endocrinology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Nelly Burnichon
- AP-HP, Hôpital Européen Georges Pompidou, Département de Médecine Génomique des Tumeurs et des Cancers, Paris, France
- Inserm, Centre de recherche des Cordeliers, Université Paris-Cité, Sorbonne Université, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Alexandre Buffet
- AP-HP, Hôpital Européen Georges Pompidou, Département de Médecine Génomique des Tumeurs et des Cancers, Paris, France
- Inserm, Centre de recherche des Cordeliers, Université Paris-Cité, Sorbonne Université, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Craig Broberg
- Adult Congenital Heart Program, Division of Cardiology, Oregon Health and Science University, Portland, Oregon
| | - Paxton V. Dickson
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mario F. Fraga
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José Luis Llorente Pendás
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Joaquín Rueda Soriano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Adult Congenital Heart Disease Unit, Department of Cardiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Francisco Buendía Fuentes
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Adult Congenital Heart Disease Unit, Department of Cardiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | | | - Roderick Clifton-Bligh
- Department of Endocrinology and Cancer Genetics Unit, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
| | - Rodrigo Dienstmann
- Oncology Data Science (ODysSey) Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- University of Vic – Central University of Catalonia, Vic, Spain
| | - Josep Villanueva
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Jaume Capdevila
- Neuroendocrine and Endocrine Tumor Translational Research Program (NET-VHIO), Vall Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Medical Oncology, Gastrointestinal and Endocrine Tumor Unit, Vall d’Hebron Hospital Universitari, Vall d’Hebron Hospital Campus, Barcelona, Spain
| | - Anne-Paule Gimenez-Roqueplo
- AP-HP, Hôpital Européen Georges Pompidou, Département de Médecine Génomique des Tumeurs et des Cancers, Paris, France
- Inserm, Centre de recherche des Cordeliers, Université Paris-Cité, Sorbonne Université, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Judith Favier
- Inserm, Centre de recherche des Cordeliers, Université Paris-Cité, Sorbonne Université, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alexander R. Opotowsky
- Cincinnati Adult Congenital Heart Disease Program, Heart Institute, Cincinnati Children’s Hospital, University of Cincinnati, Cincinnati, Ohio
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anand Vaidya
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Irina Bancos
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota
| | | | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Anna Casteràs
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Endocrinology and Nutrition, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Dos-Subirà
- Integrated Adult Congenital Heart Disease Unit, Department of Cardiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, the Netherlands
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - María-Dolores Chiara
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Patricia L.M. Dahia
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas
| | - Rodrigo A. Toledo
- Biomarkers and Clonal Dynamics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
6
|
Lin C, He J, Li J, Zou Q, Huang L, Chen N, Ye X, Li X, Cui W, Cheng Q. Metal coordination-based double-network microsphere scaffolds facilitate bone regeneration via oxygen-driven mitochondrial oxidative phosphorylation. CHEMICAL ENGINEERING JOURNAL 2025; 512:162233. [DOI: 10.1016/j.cej.2025.162233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
|
7
|
Willemse L, Terburgh K, Louw R. The therapeutic potential of a polyunsaturated fatty acid-enriched high-fat diet in Leigh syndrome: Insights from a preclinical model. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167873. [PMID: 40288592 DOI: 10.1016/j.bbadis.2025.167873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
INTRODUCTION Leigh syndrome is often caused by Ndufs4 mutations. The Ndufs4 knockout (KO) mouse model recapitulates key disease features, including systemic inflammation, neurodegeneration, and motor deficits. While dietary interventions such as the ketogenic diet show promise in mitigating mitochondrial dysfunction, conflicting results highlight uncertainties regarding its efficacy. Here, we evaluate the therapeutic potential of a polyunsaturated fatty acid (PUFA)-enriched high-fat diet (HFD) in Ndufs4 KO mice. METHODS Dietary intervention began at postnatal day 23, with mice receiving either a normal diet (ND) or a HFD enriched with PUFAs. Phenotypic evaluation, including locomotor function, clasping behaviour, and survival, continued until natural death. In a second group of animals, biochemical analyses were conducted after three weeks on the diets, using Western blot to evaluate neurometabolic and inflammatory regulators, flow cytometry to quantify serum inflammation markers, and metabolic profiling to identify alterations in neurometabolism and the neurolipidome. RESULTS The HFD significantly extended lifespan and improved clasping behaviour in Ndufs4 KO mice but had no effect on locomotor activity or grip strength decline. While whole-brain mTOR (p70S6K1, 4E-BP1) and SIRT1 (PGC1-α, TNF-α) signalling pathways remained unaffected, the diet significantly reduced serum pro-inflammatory markers TNF and IL-6. Furthermore, the PUFA-enriched HFD partially restored disruptions in TCA cycle, ketone body, branched-chain amino acid, and lipid metabolism, indicating potential metabolic reprogramming. CONCLUSION Dietary interventions, such as a PUFA-enriched HFD, may alleviate systemic inflammation, partially correct metabolic imbalances, and mitigate specific disease phenotypes in Leigh syndrome, warranting further investigation into the underlying mechanisms and broader therapeutic applications.
Collapse
Affiliation(s)
- Luciano Willemse
- Mitochondria Research Group, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Karin Terburgh
- Mitochondria Research Group, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Roan Louw
- Mitochondria Research Group, Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
8
|
Tang D, Lin Q, Li PW, Wang S, Xu K, Huang YS, Lu QP. FG-4592 combined with PRP significantly accelerates the healing of refractory diabetic wounds by upregulating HIF-1α. Sci Rep 2025; 15:14292. [PMID: 40275053 PMCID: PMC12022238 DOI: 10.1038/s41598-025-99356-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025] Open
Abstract
Chronic refractory wounds are a common, costly and recurrent complication of diabetes. Platelet-rich plasma (PRP), a new therapy for chronic wounds, is limited by a long treatment period and unstable effects. FG-4592(Roxadustat) is a new prolyl-4-hydroxylation domain(PHD) inhibitor, which can stabilize hypoxia-inducible factor-1α(HIF-1α) effectively. It is a promising drug for wound repair and needs to be demonstrated via various appropriate application scenarios. This study investigated the effects of combining FG-4592 and PRP to promote diabetic wound healing. Diabetic rats were randomly assigned to five groups: nondiabetic control, diabetic untreated, diabetic + PRP, diabetic + FG-4592, and diabetic + PRP + FG-4592. Diabetes was induced with streptozotocin (STZ). A full-thickness skin defect was created, and FG-4592 (peritoneal injection) and PRP (periwound injection) were administered alone or together. Wound healing was assessed by histological analysis (Hematoxylin-Eosin (HE) and Masson staining) and protein expression of HIF-1α, VEGF(vascular endothelial growth factor), α-SMA(α-smooth muscle actin), CoL1α1(collagen type 1 alpha 1), and SDF-1(Stromal Cell-derived Factor 1) via Western blotting and qRT-PCR(Quantitative real time polymerase chain reaction). Immunohistochemistry(IHC) and immunofluorescence(IF) were also used to evaluate CD34 (Cluster of Differentiation 34), CD31(Cluster of Differentiation 31), VEGF(vascular endothelial growth factor), SDF-1(Stromal Cell-derived Factor 1), PCNA(Proliferating Cell Nuclear Antigen), and Integrin-β1 expression. The untreated diabetic group exhibited impaired wound healing, histological damage, and reduced expression of key proteins compared to the nondiabetic control group. Both PRP and FG-4592 alone improved wound healing, reduced damage, and upregulated protein expression. However, the combination of FG-4592 and PRP showed the most significant improvement. This study suggests that FG-4592 combined with PRP accelerates diabetic wound healing by enhancing endothelial progenitor cell recruitment, neovascularization, and cell proliferation and migration via upregulation of HIF-1α and its target genes. This combination therapy may provide a novel approach for treating chronic diabetic wounds.
Collapse
Affiliation(s)
- Di Tang
- Department of Burns and Plastic Surgery, Central Theater General Hospital, Wuhan, 430000, China.
| | - Qiang Lin
- Department of Burns and Plastic Surgery, Central Theater General Hospital, Wuhan, 430000, China
| | - Pei-Wen Li
- Department of Burns and Plastic Surgery, Central Theater General Hospital, Wuhan, 430000, China
| | - Song Wang
- Department of Burns and Plastic Surgery, Central Theater General Hospital, Wuhan, 430000, China
| | - Kai Xu
- Department of Burns and Plastic Surgery, Central Theater General Hospital, Wuhan, 430000, China
| | - Yue-Sheng Huang
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, 518055, China
| | - Qi-Ping Lu
- Department of General Surgery, Central Theater General Hospital, Wuhan, 430000, China.
| |
Collapse
|
9
|
Zhou X, Lv Z, Chen Z, Xu Y, Lin C, Liu L, Chen H, Niu B, Cui W, Zhang Y. Manipulation of Oxygen Tension in Damaged Regions via Hypoxia-Induced IPN Hydrogel Microspheres for Intervertebral Disc Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417570. [PMID: 40231808 DOI: 10.1002/advs.202417570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Disruption of low oxygen tension homeostasis during intervertebral disc degeneration inhibits endogenous stem cell viability and function, posing a challenge for endogenous regeneration. Here, to achieve sustained hypoxia manipulation, constructed hypoxia-inducible interpenetrating polymer network (IPN) hydrogel microspheres (HIMS) are constructed by microfluidics to integrate the hypoxic system with a stabilizing network. The IPN is synthesized through a two-step polymerization process, consisting of rapid photo-crosslinked gelatin methacrylate anhydride (GM) polymer I and slow enzyme-crosslinked vanillin-grafted gelatin (GV) polymer II. The enzymatic reaction between GV and laccase is able to create a hypoxic microenvironment to modulate oxygen tension in situ within the injured region. HIMS can reduce microenvironmental oxygen tension by 1/3 and maintain a hypoxic microenvironment for up to 5 days, thereby activating the PI3K/AKT/HIF-1α signaling pathway in endogenous stem cells to promote differentiation into nucleus pulposus-like cells. Additionally, NSC-Exos are loaded onto HIMS to trigger endogenous progenitor/stem cell recruitment and migration. Both in vitro and in vivo assays demonstrate that NSC-Exos@HIMS facilitates stem cell recruitment, targets differentiation, and stimulates extracellular matrix synthesis. Overall, the microspheres established herein provide a novel strategy for manipulating oxygen tension and enhancing endogenous tissue regeneration in injured regions during intervertebral disc degeneration.
Collapse
Affiliation(s)
- Xingdie Zhou
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- School of Materials Science and Engineering, Shanghai University, Nanchen Road 333, Shanghai, 200444, P. R. China
| | - Zhendong Lv
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Zehao Chen
- Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yiming Xu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Chao Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Li Liu
- School of Materials Science and Engineering, Shanghai University, Nanchen Road 333, Shanghai, 200444, P. R. China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Nanchen Road 333, Shanghai, 200444, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| |
Collapse
|
10
|
Burtscher J, Debertin D, Kopp M, Burtscher M, Djamshidian A, Federolf P. How reducing oxygen-transport may lower the risk of developing Parkinson's disease. NPJ Parkinsons Dis 2025; 11:70. [PMID: 40204748 PMCID: PMC11982292 DOI: 10.1038/s41531-025-00929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Affiliation(s)
- Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
| | - Daniel Debertin
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Atbin Djamshidian
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Federolf
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
He Q, Wang Y, Tan Z, Zhang X, Yu C, Jiang X. Mapping the therapeutic landscape of CRISPR-Cas9 for combating age-related diseases. Front Genome Ed 2025; 7:1558432. [PMID: 40255230 PMCID: PMC12006052 DOI: 10.3389/fgeed.2025.1558432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) has emerged as a transformative genome-editing tool with significant therapeutic potential for age-related diseases, including Alzheimer's disease, Parkinson's disease, cardiovascular disorders, and osteoporosis. This study presents a bibliometric analysis of CRISPR-Cas9 research in age-related diseases, identifying key contributors, major research hotspots, and critical technological advancements. While promising applications have been demonstrated in gene repair, functional regulation, and molecular interventions, significant barriers persist, including off-target effects, low delivery efficiency, and limited editing in non-dividing cells. Ethical concerns over germline editing and gaps in long-term safety data further complicate clinical translation. Future directions emphasize the development of high-precision Cas9 variants, homology-directed repair-independent tools, and efficient delivery systems, alongside the establishment of international regulatory frameworks and multicenter clinical trials. These efforts are essential to fully realize the potential of CRISPR-Cas9 in addressing the global health challenges of aging.
Collapse
Affiliation(s)
- Qiyu He
- Department of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yida Wang
- Key Laboratory of BioResource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Tan
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xian Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chao Yu
- Department of Anesthesiology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xiaoqin Jiang
- Department of Anesthesiology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Anesthesiology, Chengdu Hi-Tech Zone Hospital for Women and Children, Chengdu, China
| |
Collapse
|
12
|
Falk MJ. Small-molecule hypoxia therapy in mitochondrial disease. Cell 2025; 188:1462-1465. [PMID: 40118030 DOI: 10.1016/j.cell.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
In this issue of Cell, Blume et al. provide compelling rationale for pursuing pharmacologic optimization of a small-molecule "HypoxyStat," which left-shifts the oxyhemoglobin dissociation curve in red blood cells in an attempt to induce an effective and sustained reduction of chronic tissue hyperoxia in primary mitochondrial disease (PMD) and was well-tolerated and effective for both pre-symptomatic and advanced disease treatment to extend survival and improve neurologic outcomes in a mouse model of Leigh syndrome spectrum.
Collapse
Affiliation(s)
- Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Blume SY, Garg A, Martí-Mateos Y, Midha AD, Chew BTL, Lin B, Yu C, Dick R, Lee PS, Situ E, Sarwaikar R, Green E, Ramanan V, Grotenbreg G, Hoek M, Sinz C, Jain IH. HypoxyStat, a small-molecule form of hypoxia therapy that increases oxygen-hemoglobin affinity. Cell 2025; 188:1580-1588.e11. [PMID: 39965572 DOI: 10.1016/j.cell.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/11/2024] [Accepted: 01/19/2025] [Indexed: 02/20/2025]
Abstract
We have previously demonstrated that chronic inhaled hypoxia is remarkably therapeutic in the premier animal model of mitochondrial Leigh syndrome, the Ndufs4 knockout (KO) mouse. Subsequent work has extended this finding to additional mitochondrial diseases and more common conditions. However, challenges inherent to gas-based therapies have hindered the rapid translation of our findings to the clinic. Here, we tested a small molecule (hereafter termed HypoxyStat) that increases the binding affinity of hemoglobin for oxygen, thereby decreasing oxygen offloading to tissues. Daily oral dosing of HypoxyStat caused systemic hypoxia in mice breathing normoxic (21% O2) air. When administered prior to disease onset, this treatment dramatically extended the lifespan of Ndufs4 KO mice and rescued additional aspects of disease, including behavior, body weight, neuropathology, and body temperature. HypoxyStat was also able to reverse disease at a very late stage, thereby serving as a clinically tractable form of hypoxia therapy.
Collapse
Affiliation(s)
- Skyler Y Blume
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ankur Garg
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yolanda Martí-Mateos
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ayush D Midha
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brandon T L Chew
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Baiwei Lin
- Maze Therapeutics, 171 Oyster Point Blvd STE 300, South San Francisco, CA 94080, USA
| | - Cecile Yu
- Maze Therapeutics, 171 Oyster Point Blvd STE 300, South San Francisco, CA 94080, USA
| | - Ryan Dick
- Maze Therapeutics, 171 Oyster Point Blvd STE 300, South San Francisco, CA 94080, USA
| | - Patrick S Lee
- Maze Therapeutics, 171 Oyster Point Blvd STE 300, South San Francisco, CA 94080, USA
| | - Eva Situ
- Maze Therapeutics, 171 Oyster Point Blvd STE 300, South San Francisco, CA 94080, USA
| | - Richa Sarwaikar
- Maze Therapeutics, 171 Oyster Point Blvd STE 300, South San Francisco, CA 94080, USA
| | - Eric Green
- Maze Therapeutics, 171 Oyster Point Blvd STE 300, South San Francisco, CA 94080, USA
| | - Vyas Ramanan
- Maze Therapeutics, 171 Oyster Point Blvd STE 300, South San Francisco, CA 94080, USA
| | - Gijsbert Grotenbreg
- Maze Therapeutics, 171 Oyster Point Blvd STE 300, South San Francisco, CA 94080, USA
| | - Maarten Hoek
- Maze Therapeutics, 171 Oyster Point Blvd STE 300, South San Francisco, CA 94080, USA
| | - Christopher Sinz
- Maze Therapeutics, 171 Oyster Point Blvd STE 300, South San Francisco, CA 94080, USA
| | - Isha H Jain
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Arc Institute, 3181 Porter Dr, Palo Alto, CA 94304, USA.
| |
Collapse
|
14
|
Magro G, Laterza V, Tosto F. Leigh Syndrome: A Comprehensive Review of the Disease and Present and Future Treatments. Biomedicines 2025; 13:733. [PMID: 40149709 PMCID: PMC11940177 DOI: 10.3390/biomedicines13030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Leigh syndrome (LS) is a severe neurodegenerative condition with an early onset, typically during early childhood or infancy. The disorder exhibits substantial clinical and genetic diversity. From a clinical standpoint, Leigh syndrome showcases a broad range of irregularities, ranging from severe neurological issues to minimal or no discernible abnormalities. The central nervous system is most affected, resulting in psychomotor retardation, seizures, nystagmus, ophthalmoparesis, optic atrophy, ataxia, dystonia, or respiratory failure. Some patients also experience involvement of the peripheral nervous system, such as polyneuropathy or myopathy, as well as non-neurological anomalies, such as diabetes, short stature, hypertrichosis, cardiomyopathy, anemia, renal failure, vomiting, or diarrhea (Leigh-like syndrome). Mutations associated with Leigh syndrome impact genes in both the mitochondrial and nuclear genomes. Presently, LS remains without a cure and shows limited response to various treatments, although certain case reports suggest potential improvement with supplements. Ongoing preclinical studies are actively exploring new treatment approaches. This review comprehensively outlines the genetic underpinnings of LS, its current treatment methods, and preclinical investigations, with a particular focus on treatment.
Collapse
Affiliation(s)
- Giuseppe Magro
- Department of Neuroscience, “Giovanni Paolo II” Hospital, 88100 Lamezia Terme, Italy
| | - Vincenzo Laterza
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Federico Tosto
- Department of Neuroscience, “Giovanni Paolo II” Hospital, 88100 Lamezia Terme, Italy
| |
Collapse
|
15
|
Han MH, Koh HS, Heo IH, Kim MH, Kim PS, Jeon MU, Kim MJ, Jin WH, Cho KC, Park J, Park JG. The Chemical Deformation of a Thermally Cured Polyimide Film Surface into Neutral 1,2,4,5-Benzentetracarbonyliron and 4,4'-Oxydianiline to Remarkably Enhance the Chemical-Mechanical Planarization Polishing Rate. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:425. [PMID: 40137598 PMCID: PMC11944291 DOI: 10.3390/nano15060425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
The rapid advancement of 3D packaging technology has emerged as a key solution to overcome the scaling-down limitation of advanced memory and logic devices. Redistribution layer (RDL) fabrication, a critical process in 3D packaging, requires the use of polyimide (PI) films with thicknesses in the micrometer range. However, these polyimide films present surface topography variations in the range of hundreds of nanometers, necessitating chemical-mechanical planarization (CMP) to achieve nanometer-level surface flatness. Polyimide films, composed of copolymers of pyromellitimide and diphenyl ether, possess strong covalent bonds such as C-C, C-O, C=O, and C-N, leading to inherently low polishing rates during CMP. To address this challenge, the introduction of Fe(NO3)3 into CMP slurries has been proposed as a polishing rate accelerator. During CMP, this Fe(NO3)3 deformed the surface of a polyimide film into strongly positively charged 1,2,4,5-benzenetetracarbonyliron and weakly negatively charged 4,4'-oxydianiline (ODA). The chemically dominant polishing rate enhanced with the concentration of the Fe(NO3)3 due to accelerated surface interactions. However, higher Fe(NO3)3 concentrations reduce the attractive electrostatic force between the positively charged wet ceria abrasives and the negatively charged deformed surface of the polyimide film, thereby decreasing the mechanically dominant polishing rate. A comprehensive investigation of the chemical and mechanical polishing rate dynamics revealed that the optimal Fe(NO3)3 concentration to achieve the maximum polyimide film removal rate was 0.05 wt%.
Collapse
Affiliation(s)
- Man-Hyup Han
- Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of Korea; (M.-H.H.); (P.-S.K.)
| | - Hyun-Sung Koh
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Il-Haeng Heo
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Myung-Hoe Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Pil-Su Kim
- Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of Korea; (M.-H.H.); (P.-S.K.)
| | - Min-Uk Jeon
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Min-Ji Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Woo-Hyun Jin
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Kyoo-Chul Cho
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Jinsub Park
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Jea-Gun Park
- Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of Korea; (M.-H.H.); (P.-S.K.)
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| |
Collapse
|
16
|
Huff A, Oliveira LM, Karlen-Amarante M, Ebiala F, Ramirez JM, Kalume F. Ndufs4 inactivation in glutamatergic neurons reveals swallow-breathing discoordination in a mouse model of Leigh syndrome. Exp Neurol 2025; 385:115123. [PMID: 39710245 PMCID: PMC11781966 DOI: 10.1016/j.expneurol.2024.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Swallowing, both nutritive and non-nutritive, is highly dysfunctional in children with Leigh Syndrome (LS) and contributes to the need for both gastrostomy and tracheostomy tube placement. Without these interventions aspiration of food, liquid, and mucus occur resulting in repeated bouts of respiratory infection. No study has investigated whether mouse models of LS, a neurometabolic disorder, exhibit dysfunctions in neuromuscular activity of swallow and breathing integration. We used a genetic mouse model of LS in which the NDUFS4 gene is knocked out (KO) specifically in Vglut2 or Gad2 neurons. We found increased variability of the swallow motor pattern, disruption in breathing regeneration post swallow, and water-induced apneas only in Vglut2 KO mice. These physiological changes likely contribute to weight loss and premature death seen in this mouse model. Following chronic hypoxia (CH) exposure, there was no difference in swallow motor pattern, breathing regeneration, weight, and life expectancy in the Vglut2-Ndufs4-KO CH mice compared to control CH, indicating a phenotypic rescue or prevention. These findings show that like patients with LS, Ndufs4 mouse models of LS exhibit swallow impairments as well as swallow-breathing discoordination alongside the other phenotypic traits described in previous studies. Understanding this aspect of LS will open roads for the development of future more efficacious therapeutic intervention for this illness.
Collapse
Affiliation(s)
- Alyssa Huff
- Norecliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America
| | - Luiz Marcelo Oliveira
- Norecliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America
| | - Marlusa Karlen-Amarante
- Norecliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America
| | - Favour Ebiala
- Norecliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98108, USA
| | - Jan Marino Ramirez
- Norecliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98108, USA
| | - Franck Kalume
- Norecliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98108, USA.
| |
Collapse
|
17
|
Lin WS. Two tales of therapeutic innovations for Leigh syndrome spectrum. J Neurogenet 2025; 39:4-6. [PMID: 40050739 DOI: 10.1080/01677063.2025.2473087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/24/2025] [Indexed: 04/12/2025]
Abstract
Leigh syndrome spectrum is the most common form of childhood-onset mitochondrial encephalopathy and is characterized by progressive neurodegeneration. Treatment options for this condition remain limited to date. Nonetheless, two lines of research endeavor in the past decade have shown encouraging results worthy of further investigations. First, therapeutic hypoxia appears to improve neurological outcomes, which is somewhat counterintuitive but supported by preclinical evidence. Furthermore, nicotinic acid or nicotinamide riboside could be an adjunctive therapy that enhances the neuroprotective effect of hypoxia. Second, preclinical studies and preliminary clinical experience suggest that sildenafil is potentially disease-modifying for Leigh syndrome. Sildenafil has already been used to treat pulmonary hypertension, and its repurposing for Leigh syndrome has been endorsed by European Medicines Agency. This perspective aims to raise awareness about these progresses, as well as to call for more clinical studies to ensure safe and effective implementation of these treatment approaches in clinical practice.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
18
|
Nisar A, Khan S, Pan Y, Hu L, Yang P, Gold NM, Zhou Z, Yuan S, Zi M, Mehmood SA, He Y. The Role of Hypoxia in Longevity. Aging Dis 2025:AD.2024.1630. [PMID: 39965249 DOI: 10.14336/ad.2024.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/15/2025] [Indexed: 02/20/2025] Open
Abstract
Aging is marked by a progressive decrease in physiological function and reserve capacity, which results in increased susceptibility to diseases. Understanding the mechanisms of driving aging is crucial for extending health span and promoting human longevity. Hypoxia, marked by reduced oxygen availability, has emerged as a promising area of study within aging research. This review explores recent findings on the potential of oxygen restriction to promote healthy aging and extend lifespan. While the role of hypoxia-inducible factor 1 (HIF-1) in cellular responses to hypoxia is well-established, its impact on lifespan remains complex and context-dependent. Investigations in invertebrate models suggest a role for HIF-1 in longevity, while evidence in mammalian models is limited. Hypoxia extends the lifespan independent of dietary restriction (DR), a known intervention underlying longevity. However, both hypoxia and DR converge on common downstream effectors, such as forkhead box O (FOXO) and flavin-containing monooxygenase (FMOs) to modulate the lifespan. Further work is required to elucidate the molecular mechanisms underlying hypoxia-induced longevity and optimize clinical applications. Understanding the crosstalk between HIF-1 and other longevity-associated pathways is crucial for developing interventions to enhance lifespan and healthspan. Future studies may uncover novel therapeutic strategies to promote healthy aging and longevity in human populations.
Collapse
Affiliation(s)
- Ayesha Nisar
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410083, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Yongzhang Pan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li Hu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Pengyun Yang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Naheemat Modupeola Gold
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhen Zhou
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shengjie Yuan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Meiting Zi
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | - Yonghan He
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
19
|
Kayser EB, Mulholland M, Olkhova EA, Chen Y, Coulson H, Cairns O, Truong V, James K, Johnson BM, Hanaford A, Johnson SC. Evaluating the efficacy of vatiquinone in preclinical models of Leigh syndrome and GPX4 deficiency. Orphanet J Rare Dis 2025; 20:65. [PMID: 39930437 PMCID: PMC11812209 DOI: 10.1186/s13023-025-03582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Genetic mitochondrial diseases are a major challenge in modern medicine. These impact ~ 1:4,000 individuals and there are currently no effective therapies. Leigh syndrome is the most common pediatric presentation of mitochondrial disease. In humans, patients are often treated with antioxidants, vitamins, and strategies targeting energetics. The vitamin-E related compound vatiquinone (EPI-743, α-tocotrienol quinone) has been the subject of at least 19 clinical trials in the US since 2012, but the effects of vatiquinone on an animal model of mitochondrial disease have not yet been reported. Here, assessed the impact of vatiquinone in cellular assays and animal models of mitochondrial disease. METHODS The efficacy of vatiquinone in vitro was assessed using human fibroblasts and HEK293 cells treated with the ferroptosis inducers RSL3 and BSO + Fe(III)Citrate, the mitochondrial oxidative stress inducer paraquat, and the electron transport chain complex I inhibitor rotenone. The therapeutic potential of vatiquinone in vivo was assessed using the tamoxifen-induced mouse model for GPX4 deficiency and the Ndufs4 knockout mouse model of Leigh syndrome. RESULTS Vatiquinone robustly prevented death in cultured cells induced by RSL3 or BSO/iron, but had no effect on paraquat induced cell death. Vatiquinone had no impact on disease onset, progression, or survival in either the tamoxifen-inducible GPX4 deficient model or the Ndufs4(-/-) mouse model, though the drug may have reduced seizure risk. CONCLUSIONS Vatiquinone prevents ferroptosis, but fails to attenuate cell death induced by paraquat or rotenone and provided no significant benefit to survival in two mouse models of disease. Vatiquinone may prevent seizures in the Ndufs4(-/-) model. Our findings are consistent with recent press statements regarding clinical trial results and have implications for drug trial design and reporting in patients with rare diseases.
Collapse
Affiliation(s)
- Ernst-Bernhard Kayser
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Michael Mulholland
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Elizaveta A Olkhova
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Yihan Chen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Holly Coulson
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Owen Cairns
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Vivian Truong
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Katerina James
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Brittany M Johnson
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Allison Hanaford
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA.
- Department of Anesthesia and Pain Medicine, University of Washington, Seattle, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA.
- Department of Neurology, University of Washington, Seattle, USA.
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK.
| |
Collapse
|
20
|
Fang T, Ma C, Yang B, Zhao M, Sun L, Zheng N. Roxadustat improves diabetic myocardial injury by upregulating HIF-1α/UCP2 against oxidative stress. Cardiovasc Diabetol 2025; 24:67. [PMID: 39920720 PMCID: PMC11806548 DOI: 10.1186/s12933-025-02601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Diabetes mellitus (DM), characterized by hyperglycemia, is intricately linked with cardiovascular complications. Hyperglycemia induces oxidative stress, compromising mitochondria energy metabolism disturbances, leading to cardiomyocyte hypoxia and dysregulation of hypoxia-inducible factor-1α (HIF-1α), thereby exacerbating diabetic myocardial injury. Roxadustat (FG-4592), as an inhibitor of HIF-PHD, reduces HIF-1α degradation and regulates the transcription and function of downstream target genes. This study explores the protective effect of FG-4592 on the diabetic myocardium and further investigates the specific mechanisms responsible for this action. METHODS We established diabetic myocardial injury mice and high glucose-induced rat cardiomyocyte models, administered FG-4592 pretreatment to clarify the protective effects and related mechanisms of FG-4592 on diabetic myocardial injury by detecting changes in oxidative stress, mitochondrial function, and related pathways. RESULTS FG-4592 demonstrated cardioprotective effects in diabetic mice by regulating mitochondrial structure and function, as well as maintaining oxidative stress balance in the myocardium. It stabilized HIF-1α, activated UCP2, and enhanced the PI3K/AKT/Nrf2 pathway, reducing mitochondrial superoxide production, improving mitochondrial respiratory potential, and modulating oxidative stress markers in high glucose-induced cardiomyocytes. CONCLUSIONS FG-4592 exerts protective effects against diabetic myocardial injury by reducing oxidative stress. The mechanism is linked with the upregulation of HIF-1α and UCP2, which subsequently activate the PI3K/AKT/Nrf2 signaling pathway.
Collapse
MESH Headings
- Animals
- Oxidative Stress/drug effects
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Male
- Up-Regulation
- Uncoupling Protein 2/metabolism
- Uncoupling Protein 2/genetics
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/prevention & control
- Diabetic Cardiomyopathies/pathology
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Mice, Inbred C57BL
- Signal Transduction/drug effects
- Isoquinolines/pharmacology
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Rats, Sprague-Dawley
- Rats
- Mice
- NF-E2-Related Factor 2/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Antioxidants/pharmacology
Collapse
Affiliation(s)
- Tingting Fang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Congcong Ma
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Bingyun Yang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Meiyu Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Luning Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| | - Ningning Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
21
|
Burtscher J, Denti V, Gostner JM, Weiss AK, Strasser B, Hüfner K, Burtscher M, Paglia G, Kopp M, Dünnwald T. The interplay of NAD and hypoxic stress and its relevance for ageing. Ageing Res Rev 2025; 104:102646. [PMID: 39710071 DOI: 10.1016/j.arr.2024.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential regulator of cellular metabolism and redox processes. NAD levels and the dynamics of NAD metabolism change with increasing age but can be modulated via the diet or medication. Because NAD metabolism is complex and its regulation still insufficiently understood, achieving specific outcomes without perturbing delicate balances through targeted pharmacological interventions remains challenging. NAD metabolism is also highly sensitive to environmental conditions and can be influenced behaviorally, e.g., by exercise. Changes in oxygen availability directly and indirectly affect NAD levels and may result from exposure to ambient hypoxia, increased oxygen demand during exercise, ageing or disease. Cellular responses to hypoxic stress involve rapid alterations in NAD metabolism and depend on many factors, including age, glucose status, the dose of the hypoxic stress and occurrence of reoxygenation phases, and exhibit complex time-courses. Here we summarize the known determinants of NAD-regulation by hypoxia and evaluate the role of NAD in hypoxic stress. We define the specific NAD responses to hypoxia and identify a great potential of the modulation of NAD metabolism regarding hypoxic injuries. In conclusion, NAD metabolism and cellular hypoxia responses are strongly intertwined and together mediate protective processes against hypoxic insults. Their interactions likely contribute to age-related changes and vulnerabilities. Targeting NAD homeostasis presents a promising avenue to prevent/treat hypoxic insults and - conversely - controlled hypoxia is a potential tool to regulate NAD homeostasis.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
| | - Vanna Denti
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Johanna M Gostner
- Medical University of Innsbruck, Biocenter, Institute of Medical Biochemistry, Innsbruck, Austria
| | - Alexander Kh Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria; Faculty of Medicine, Sigmund Freud Private University, Vienna, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Tobias Dünnwald
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL - Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| |
Collapse
|
22
|
Kanemaru E, Ichinose F. Essential role of sulfide oxidation in brain health and neurological disorders. Pharmacol Ther 2025; 266:108787. [PMID: 39719173 PMCID: PMC11806942 DOI: 10.1016/j.pharmthera.2024.108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/21/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Hydrogen sulfide (H2S) is an environmental hazard well known for its neurotoxicity. In mammalian cells, H2S is predominantly generated by transsulfuration pathway enzymes. In addition, H2S produced by gut microbiome significantly contributes to the total sulfide burden in the body. Although low levels of H2S is believed to exert various physiological functions such as neurotransmission and vasomotor control, elevated levels of H2S inhibit the activity of cytochrome c oxidase (i.e., mitochondrial complex IV), thereby impairing oxidative phosphorylation. To protect the electron transport chain from respiratory poisoning by H2S, the compound is actively oxidized to form persulfides and polysulfides by a mitochondrial resident sulfide oxidation pathway. The reaction, catalyzed by sulfide:quinone oxidoreductase (SQOR), is the initial and critical step in sulfide oxidation. The persulfide species are subsequently oxidized to sulfite, thiosulfate, and sulfate by persulfide dioxygenase (ETHE1 or SDO), thiosulfate sulfurtransferase (TST), and sulfite oxidase (SUOX). While SQOR is abundantly expressed in the colon, liver, lung, and skeletal muscle, its expression is notably low in the brains of most mammals. Consequently, the brain's limited capacity to oxidize H2S renders it particularly sensitive to the deleterious effects of H2S accumulation. Impaired sulfide oxidation can lead to fatal encephalopathy, and the overproduction of H2S has been implicated in the developmental delays observed in Down syndrome. Our recent findings indicate that the brain's limited capacity to oxidize sulfide exacerbates its sensitivity to oxygen deprivation. The beneficial effects of sulfide oxidation are likely to be mediated not only by the detoxification of H2S but also by the formation of persulfide, which exerts cytoprotective effects through multiple mechanisms. Therefore, pharmacological agents designed to scavenge H2S and/or enhance persulfide levels may offer therapeutic potential against neurological disorders characterized by impaired or insufficient sulfide oxidation or excessive H2S production.
Collapse
Affiliation(s)
- Eiki Kanemaru
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
23
|
Rogers RS, Mootha VK. Hypoxia as a medicine. Sci Transl Med 2025; 17:eadr4049. [PMID: 39841808 DOI: 10.1126/scitranslmed.adr4049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025]
Abstract
Oxygen is essential for human life, yet a growing body of preclinical research is demonstrating that chronic continuous hypoxia can be beneficial in models of mitochondrial disease, autoimmunity, ischemia, and aging. This research is revealing exciting new and unexpected facets of oxygen biology, but translating these findings to patients poses major challenges, because hypoxia can be dangerous. Overcoming these barriers will require integrating insights from basic science, high-altitude physiology, clinical medicine, and sports technology. Here, we explore the foundations of this nascent field and outline a path to determine how chronic continuous hypoxia can be safely, effectively, and practically delivered to patients.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute, Cambridge, MA 02142, USA
| | - Vamsi K Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02114, USA
| |
Collapse
|
24
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
25
|
Zhang X, Zhang B, Tao Z, Liang J. Mitochondrial disease and epilepsy in children. Front Neurol 2025; 15:1499876. [PMID: 39850733 PMCID: PMC11754068 DOI: 10.3389/fneur.2024.1499876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
Mitochondria is the cell's powerhouse. Mitochondrial disease refers to a group of clinically heterogeneous disorders caused by dysfunction in the mitochondrial respiratory chain, often due to mutations in mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) that encodes mitochondrial proteins. This dysfunction can lead to a variety of clinical phenotypes, particularly affecting organs with high energy demands, such as the brain and muscles. Epilepsy is a prevalent neurological disorder in children and is also a frequent manifestation of mitochondrial disease. The exact mechanisms underlying epilepsy in mitochondrial disease remain unclear and are thought to involve multiple contributing factors. This review explores common mitochondrial diseases associated with epilepsy, focusing on their prevalence, seizure types, EEG features, therapeutic strategies, and outcomes. It also summarizes the relationship between the molecular genetics of mitochondrial respiratory chain components and the development of epilepsy.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pediatric Neurology, Children's Medical Center, First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China
- Neuromedical Center, First Hospital of Jilin University, Changchun, China
| | - Bo Zhang
- Department of Pediatric Neurology, Children's Medical Center, First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China
- Neuromedical Center, First Hospital of Jilin University, Changchun, China
| | - Zhiming Tao
- Department of Pediatric Neurology, Children's Medical Center, First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China
- Neuromedical Center, First Hospital of Jilin University, Changchun, China
| | - Jianmin Liang
- Department of Pediatric Neurology, Children's Medical Center, First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China
- Neuromedical Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Di Michele M, Attina A, Roux PF, Tabet I, Laguesse S, Florido J, Houdeville M, Choquet A, Encislai B, Arena G, De Blasio C, Wendling O, Frenois FX, Papon L, Stuani L, Fuentes M, Jahannault Talignani C, Rousseau M, Guégan J, Buscail Y, Dupré P, Michaud HA, Rodier G, Bellvert F, Kulyk H, Ferraro Peyret C, Mathieu H, Close P, Rapino F, Chaveroux C, Pirot N, Rubio L, Torro A, Sorg T, Ango F, Hirtz C, Compan V, Lebigot E, Legati A, Ghezzi D, Nguyen L, David A, Sardet C, Lacroix M, Le Cam L. E4F1 coordinates pyruvate metabolism and the activity of the elongator complex to ensure translation fidelity during brain development. Nat Commun 2025; 16:67. [PMID: 39747033 PMCID: PMC11696611 DOI: 10.1038/s41467-024-55444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U34). E4F1-mediated direct transcriptional regulation of Dlat and Elp3, two genes encoding key subunits of the PDC and of the Elongator complex, respectively, ensures proper translation fidelity and cell survival in the central nervous system (CNS) during mouse embryonic development. Furthermore, analysis of PDH-deficient cells highlight a crosstalk linking the PDC to ELP3 expression that is perturbed in LS patients.
Collapse
Affiliation(s)
- Michela Di Michele
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
- Equipe labélisée Ligue Contre le Cancer, Paris, France.
- Institut des Biomolécules Max Mousseron (IBMM), UMR-5247, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Aurore Attina
- IRMB-PPC, Univ. Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Pierre-François Roux
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Imène Tabet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Sophie Laguesse
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | - Javier Florido
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Morane Houdeville
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Armelle Choquet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Betty Encislai
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Carlo De Blasio
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Olivia Wendling
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France
| | | | - Laura Papon
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Lucille Stuani
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Maryse Fuentes
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Céline Jahannault Talignani
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Mélanie Rousseau
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Justine Guégan
- Data Analysis Core Platform, Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, INSERM, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yoan Buscail
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Pierrick Dupré
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Henri-Alexandre Michaud
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- SIMCaT plateform, Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Geneviève Rodier
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Floriant Bellvert
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toulouse Biotechnologie Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Hanna Kulyk
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toulouse Biotechnologie Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Carole Ferraro Peyret
- Univ. Lyon, Claude Bernard University, LBTI UMR CNRS 5305, Faculty of Pharmacy, Lyon, France
- Hospices Civils de Lyon, AURAGEN, Edouard Herriot Hospital, Lyon, France
| | - Hugo Mathieu
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, 4000, Liège, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Francesca Rapino
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, 4000, Liège, Belgium
| | - Cédric Chaveroux
- Univ. Lyon, Claude Bernard University, LBTI UMR CNRS 5305, Faculty of Pharmacy, Lyon, France
| | - Nelly Pirot
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Lucie Rubio
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Adeline Torro
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France
| | - Fabrice Ango
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Christophe Hirtz
- IRMB-PPC, Univ. Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Vincent Compan
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Elise Lebigot
- Biochemistry Department, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre, France
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Alexandre David
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- IRMB-PPC, Univ. Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Matthieu Lacroix
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
- Equipe labélisée Ligue Contre le Cancer, Paris, France.
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
- Equipe labélisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
27
|
Scharenbrock AR, Borchardt LA, Olufs ZPG, Wassarman DA, Perouansky M. Links between mutations in functionally separate arms of mitochondrial complex I and responses to volatile anesthetics. Paediatr Anaesth 2024; 34:1240-1249. [PMID: 39329243 DOI: 10.1111/pan.14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Individuals with mitochondrial defects, especially those in Complex I of the electron transport chain, exhibit behavioral hypersensitivity and toxicity to volatile anesthetics. In Drosophila melanogaster, mutation of ND23 (NDUFS8 in mammals), which encodes a subunit of the matrix arm of Complex I, sensitizes flies to toxicity from isoflurane but not an equipotent dose of sevoflurane. Also, in ND23 flies, both anesthetics activate expression of stress response genes, but to different extents. Here, we investigated the generality of these findings by examining flies mutant for ND2 (ND2 in mammals), which encodes a subunit of the membrane arm of Complex I. METHODS The serial anesthesia array was used to expose ND2del1 and ND2360114 flies to precise doses of isoflurane, sevoflurane, and oxygen. Behavioral sensitivity was assessed by a climbing assay and toxicity by percent mortality within 24 h of exposure. Changes in expression were determined by qRT-PCR of RNA isolated from heads at 0.5 h after anesthetic exposure. RESULTS Unlike ND2360114, ND2del1 did not affect behavioral sensitivity to isoflurane or sevoflurane. Furthermore, sevoflurane in hyperoxia as well as anoxia caused mortality of ND2del1 but not ND2360114 flies. Finally, the mutations had different effects on induction of stress response gene expression by the anesthetics. CONCLUSION Mutations in different arms of Complex I resulted in different behavioral sensitivities and toxicities to isoflurane and sevoflurane, indicating that (i) the anesthetics have mechanisms of action that involve arms of Complex I to different extents and (ii) the lack of behavioral hypersensitivity does not preclude susceptibility to anesthetic toxicity.
Collapse
Affiliation(s)
- Amanda R Scharenbrock
- Department of Anesthesiology, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Luke A Borchardt
- Department of Anesthesiology, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zachariah P G Olufs
- Department of Anesthesiology, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David A Wassarman
- Department of Medical Genetics, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Misha Perouansky
- Department of Anesthesiology, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, CALS, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Berra L, Medeiros KJ, Marrazzo F, Patel S, Imber D, Rezoagli E, Yu B, Sonny A, Bittner EA, Fisher D, Chipman D, Sharma R, Shah H, Gray BE, Harris NS, Ichinose F, Mootha VK. Feasibility of Delivering 5-Day Normobaric Hypoxia Breathing in a Hospital Setting. Respir Care 2024; 69:1400-1408. [PMID: 39079724 PMCID: PMC11549621 DOI: 10.4187/respcare.11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
BACKGROUND Beneficial effects of breathing at [Formula: see text] < 0.21 on disease outcomes have been reported in previous preclinical and clinical studies. However, the safety and intra-hospital feasibility of breathing hypoxic gas for 5 d have not been established. In this study, we examined the physiologic effects of breathing a gas mixture with [Formula: see text] as low as 0.11 in 5 healthy volunteers. METHODS All 5 subjects completed the study, spending 5 consecutive days in a hypoxic tent, where the ambient oxygen level was lowered in a stepwise manner over 5 d, from [Formula: see text] of 0.16 on the first day to [Formula: see text] of 0.11 on the fifth day of the study. All the subjects returned to an environment at room air on the sixth day. The subjects' [Formula: see text], heart rate, and breathing frequency were continuously recorded, along with daily blood sampling, neurologic evaluations, transthoracic echocardiography, and mental status assessments. RESULTS Breathing hypoxia concentration dependently caused profound physiologic changes, including decreased [Formula: see text] and increased heart rate. At [Formula: see text] of 0.14, the mean [Formula: see text] was 92%; at [Formula: see text] of 0.13, the mean [Formula: see text] was 93%; at [Formula: see text] of 0.12, the mean [Formula: see text] was 88%; at [Formula: see text] of 0.11, the mean [Formula: see text] was 85%; and, finally, at an [Formula: see text] of 0.21, the mean [Formula: see text] was 98%. These changes were accompanied by increased erythropoietin levels and reticulocyte counts in blood. All 5 subjects concluded the study with no adverse events. No subjects exhibited signs of mental status changes or pulmonary hypertension. CONCLUSIONS Results of the current physiologic study suggests that, within a hospital setting, delivering [Formula: see text] as low as 0.11 is feasible and safe in healthy subjects, and provides the foundation for future studies in which therapeutic effects of hypoxia breathing are tested.
Collapse
Affiliation(s)
- Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts.
| | - Kyle J Medeiros
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Francesco Marrazzo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Sarvagna Patel
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - David Imber
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Emanuele Rezoagli
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Binglan Yu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Abraham Sonny
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Edward A Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Daniel Fisher
- Department of Respiratory Care, Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel Chipman
- Department of Respiratory Care, Massachusetts General Hospital, Boston, Massachusetts
| | - Rohit Sharma
- Harvard Medical School, Boston, Massachusetts. Department of Systems Biology, Massachusetts General Hospital, Boston, Massachusetts. Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Hardik Shah
- Harvard Medical School, Boston, Massachusetts. Department of Systems Biology, Massachusetts General Hospital, Boston, Massachusetts. Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts. Metabolomics Platform, Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois
| | - Brianna E Gray
- Translational and Clinical Research Centers, Massachusetts General Hospital, Boston, Massachusetts
| | - N Stuart Harris
- Harvard Medical School, Boston, Massachusetts. Division of Wilderness Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Vamsi K Mootha
- Harvard Medical School, Boston, Massachusetts. Department of Systems Biology, Massachusetts General Hospital, Boston, Massachusetts. Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
29
|
Warwick AM, Bomze HM, Wang L, Hao Y, Stinnett SS, Gospe SM. Hypoxia-mediated rescue of retinal ganglion cells deficient in mitochondrial complex I is independent of the hypoxia-inducible factor pathway. Sci Rep 2024; 14:24114. [PMID: 39406814 PMCID: PMC11480089 DOI: 10.1038/s41598-024-75916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Continuous exposure to environmental hypoxia (11% O2) has been shown to markedly slow the progressive degeneration of retinal ganglion cells (RGCs) in a mouse model of mitochondrial optic neuropathy with RGC-specific deletion of the key mitochondrial complex I accessory subunit ndufs4. As a first step toward identifying the therapeutic mechanism of hypoxia in this model, we conducted a series of experiments to investigate the role of the hypoxia-inducible factor (HIF) regulatory pathway in RGC neuroprotection. Vglut2-Cre; ndufs4loxP/loxP mice were crossed with strains bearing floxed alleles of the negative HIF regulatory vhl or of the two major HIF α-subunit isoforms, Hif1α and Hif2α. Deletion of vhl within ndufs4-deficient RGCs failed to prevent RGC degeneration under normoxia, indicating that HIF activation is not sufficient to achieve RGC rescue. Furthermore, the rescue of ndufs4-deficient RGCs by hypoxia remained robust despite genetic inactivation of Hif1α and Hif2α. Our findings demonstrate that the HIF pathway is entirely dispensable to the rescue of RGCs by hypoxia. Future efforts to uncover key HIF-independent molecular pathways induced by hypoxia in this mouse model may be of therapeutic relevance to mitochondrial optic neuropathies such as Leber hereditary optic neuropathy.
Collapse
Affiliation(s)
- Alexander M Warwick
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Howard M Bomze
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Luyu Wang
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ying Hao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sandra S Stinnett
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sidney M Gospe
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Ophthalmology, Box 3712 Med Center, Duke University, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
30
|
Yu ZZ, Tu JJ, Ou ML, Cen JX, Xue K, Li SJ, Zhou J, Lu GD. A mechanistic analysis of metformin's biphasic effects on lifespan and healthspan in C. elegans: Elixir in youth, poison in elder. Mech Ageing Dev 2024; 221:111963. [PMID: 38986790 DOI: 10.1016/j.mad.2024.111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Aging, a complex biological process influenced by genetic, environmental, and pharmacological factors, presents a significant challenge in understanding its underlying mechanisms. In this study, we explored the divergent impacts of metformin treatment on the lifespan and healthspan of young and old C. elegans, demonstrating a intriguing "elixir in youth, poison in elder" phenomenon. By scrutinizing the gene expression changes in response to metformin in young (day 1 of adulthood) and old (days 8) groups, we identified nhr-57 and C46G7.1 as potential modulators of age-specific responses. Notably, nhr-57 and C46G7.1 exhibit contrasting regulation patterns, being up-regulated in young worms but down-regulated in old counterparts following metformin treatment. Functional studies employing knockdown approaches targeting nhr-57, a gene under the control of hif-1 with a documented protective function against pore-forming toxins in C. elegans, and C46G7.1, unveiled their critical roles in modulating lifespan and healthspan, as well as in mediating the biphasic effects of metformin. Furthermore, deletion of hif-1 retarded the influence of metformin, implicating the involvement of hif-1/nhr-57 in age-specific drug responses. These findings underscored the necessity of deciphering the mechanisms governing age-related susceptibility to pharmacological agents to tailor interventions for promoting successful aging.
Collapse
Affiliation(s)
- Zhen-Zhen Yu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Jia-Jun Tu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Mei-Ling Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Jin-Xiong Cen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Kun Xue
- School of Public Health, Fudan University, Shanghai 200032, PR China.
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, PR China.
| | - Jing Zhou
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Guo-Dong Lu
- School of Public Health, Fudan University, Shanghai 200032, PR China; Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| |
Collapse
|
31
|
Huff A, Oliveira LM, Karlen-Amarante M, Ebiala F, Ramirez JM, Kalume F. Ndufs4 inactivation in glutamatergic neurons reveals swallow-breathing discoordination in a mouse model of Leigh Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612506. [PMID: 39314482 PMCID: PMC11419062 DOI: 10.1101/2024.09.11.612506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Swallowing, both nutritive and non-nutritive, is highly dysfunctional in children with Leigh Syndrome (LS) and contributes to the need for both gastrostomy and tracheostomy tube placement. Without these interventions aspiration of food, liquid, and mucus occur resulting in repeated bouts of respiratory infection. No study has investigated whether mouse models of LS, a neurometabolic disorder, exhibit dysfunctions in neuromuscular activity of swallow and breathing integration. We used a genetic mouse model of LS in which the NDUFS4 gene is knocked out (KO) specifically in Vglut2 or Gad2 neurons. We found increased variability of the swallow motor pattern, disruption in breathing regeneration post swallow, and water-induced apneas only in Vglut2 KO mice. These physiological changes likely contribute to weight loss and premature death seen in this mouse model. Following chronic hypoxia (CH) exposure, swallow motor pattern, breathing regeneration, weight, and life expectancy were not changed in the Vglut2-Ndufs4-KO CH mice compared to control, indicating a rescue of phenotypes. These findings show that like patients with LS, Ndufs4 mouse models of LS exhibit swallow impairments as well as swallow-breathing dyscoordination alongside the other phenotypic traits described in previous studies. Understanding this aspect of LS will open roads for the development of future more efficacious therapeutic intervention for this illness.
Collapse
Affiliation(s)
- Alyssa Huff
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Luiz Marcelo Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Favour Ebiala
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA, 98108
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA, 98108
| | - Franck Kalume
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA, 98108
| |
Collapse
|
32
|
Puighermanal E, Luna-Sánchez M, Gella A, van der Walt G, Urpi A, Royo M, Tena-Morraja P, Appiah I, de Donato MH, Menardy F, Bianchi P, Esteve-Codina A, Rodríguez-Pascau L, Vergara C, Gómez-Pallarès M, Marsicano G, Bellocchio L, Martinell M, Sanz E, Jurado S, Soriano FX, Pizcueta P, Quintana A. Cannabidiol ameliorates mitochondrial disease via PPARγ activation in preclinical models. Nat Commun 2024; 15:7730. [PMID: 39231983 PMCID: PMC11375224 DOI: 10.1038/s41467-024-51884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
Mutations in mitochondrial energy-producing genes lead to a heterogeneous group of untreatable disorders known as primary mitochondrial diseases (MD). Leigh syndrome (LS) is the most common pediatric MD and is characterized by progressive neuromuscular affectation and premature death. Here, we show that daily cannabidiol (CBD) administration significantly extends lifespan and ameliorates pathology in two LS mouse models, and improves cellular function in fibroblasts from LS patients. CBD delays motor decline and neurodegenerative signs, improves social deficits and breathing abnormalities, decreases thermally induced seizures, and improves neuropathology in affected brain regions. Mechanistically, we identify peroxisome proliferator-activated receptor gamma (PPARγ) as a key nuclear receptor mediating CBD's beneficial effects, while also providing proof of dysregulated PPARγ expression and activity as a common feature in both mouse neurons and fibroblasts from LS patients. Taken together, our results provide the first evidence for CBD as a potential treatment for LS.
Collapse
Affiliation(s)
- Emma Puighermanal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Marta Luna-Sánchez
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Gella
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gunter van der Walt
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andrea Urpi
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Royo
- Institute of Neuroscience, CSIC-UMH, San Juan de Alicante, Spain
| | - Paula Tena-Morraja
- Celltec-UB, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Isabella Appiah
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Fabien Menardy
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Patrizia Bianchi
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | | | | | | | - Giovanni Marsicano
- Inserm Université de Bordeaux, U1215 Neurocentre Magendie, Bordeaux, France
| | - Luigi Bellocchio
- Inserm Université de Bordeaux, U1215 Neurocentre Magendie, Bordeaux, France
| | | | - Elisenda Sanz
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sandra Jurado
- Institute of Neuroscience, CSIC-UMH, San Juan de Alicante, Spain
| | - Francesc Xavier Soriano
- Celltec-UB, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | | | - Albert Quintana
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
33
|
Miyahara S, Ohuchi M, Nomura M, Hashimoto E, Soga T, Saito R, Hayashi K, Sato T, Saito M, Yamashita Y, Shimada M, Yaegashi N, Yamada H, Tanuma N. FDX2, an iron-sulfur cluster assembly factor, is essential to prevent cellular senescence, apoptosis or ferroptosis of ovarian cancer cells. J Biol Chem 2024; 300:107678. [PMID: 39151727 PMCID: PMC11414659 DOI: 10.1016/j.jbc.2024.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Recent studies reveal that biosynthesis of iron-sulfur clusters (Fe-Ss) is essential for cell proliferation, including that of cancer cells. Nonetheless, it remains unclear how Fe-S biosynthesis functions in cell proliferation/survival. Here, we report that proper Fe-S biosynthesis is essential to prevent cellular senescence, apoptosis, or ferroptosis, depending on cell context. To assess these outcomes in cancer, we developed an ovarian cancer line with conditional KO of FDX2, a component of the core Fe-S assembly complex. FDX2 loss induced global downregulation of Fe-S-containing proteins and Fe2+ overload, resulting in DNA damage and p53 pathway activation, and driving the senescence program. p53 deficiency augmented DNA damage responses upon FDX2 loss, resulting in apoptosis rather than senescence. FDX2 loss also sensitized cells to ferroptosis, as evidenced by compromised redox homeostasis of membrane phospholipids. Our results suggest that p53 status and phospholipid homeostatic activity are critical determinants of diverse biological outcomes of Fe-S deficiency in cancer cells.
Collapse
Affiliation(s)
- Shuko Miyahara
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mai Ohuchi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Eifumi Hashimoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Rintaro Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Kayoko Hayashi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Taku Sato
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoji Yamashita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidekazu Yamada
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
34
|
Huang L, Lin R, Chen J, Qi Y, Lin L. Magnesium Ion: A New Switch in Tumor Treatment. Biomedicines 2024; 12:1717. [PMID: 39200180 PMCID: PMC11351748 DOI: 10.3390/biomedicines12081717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
The magnesium ion is an essential cation in the human body and participates in numerous physiological activities. A deficiency in magnesium ions is closely associated with tumor development, and supplementation with magnesium ions has been shown to partially inhibit tumor growth. However, the specific mechanisms by which magnesium ions suppress tumor proliferation remain unclear. Currently, studies have revealed that mitochondria may serve as a crucial intermediate link in the regulation of tumors by magnesium ions. Mitochondria might intervene in the proliferation and invasion of tumor cells by modulating energy metabolism and oxidative stress levels. Regrettably, there has been no comprehensive review of the role of magnesium in cancer therapy to date. Therefore, this article provides a comprehensive scrutiny of the relationship between magnesium ions and tumors, aiming to offer insights for clinical tumor treatment strategies involving magnesium ion intervention.
Collapse
Affiliation(s)
- Leyi Huang
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China;
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
| | - Renxi Lin
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
- Experimental Teaching Center of Basic Medicine, Fujian Medical University, Fuzhou 350122, China
| | - Jiaxi Chen
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
| | - Yuanlin Qi
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
| | - Ling Lin
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
- Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
35
|
Yan S, Lu J, Chen B, Yuan L, Chen L, Ju L, Cai W, Wu J. The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment. Antioxidants (Basel) 2024; 13:897. [PMID: 39199143 PMCID: PMC11351715 DOI: 10.3390/antiox13080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring compound synthesized by mitochondria and widely distributed in both animal and plant tissues. It primarily influences cellular metabolism and oxidative stress networks through its antioxidant properties and is an important drug for treating metabolic diseases associated with oxidative damage. Nevertheless, research indicates that the mechanism by which ALA affects cancer cells is distinct from that observed in normal cells, exhibiting pro-oxidative properties. Therefore, this review aims to describe the main chemical and biological functions of ALA in the cancer environment, including its mechanisms and effects in tumor prevention and anticancer activity, as well as its role as an adjunctive drug in cancer therapy. We specifically focus on the interactions between ALA and various carcinogenic and anti-carcinogenic pathways and discuss ALA's pro-oxidative capabilities in the unique redox environment of cancer cells. Additionally, we elaborate on ALA's roles in nanomedicine, hypoxia-inducible factors, and cancer stem cell research, proposing hypotheses and potential explanations for currently unresolved issues.
Collapse
Affiliation(s)
- Shuai Yan
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Jiajie Lu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Bingqing Chen
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Liuxia Yuan
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Lin Chen
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Linglin Ju
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Weihua Cai
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| | - Jinzhu Wu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| |
Collapse
|
36
|
Janssen Daalen JM, Meinders MJ, Mathur S, van Hees HWH, Ainslie PN, Thijssen DHJ, Bloem BR. Randomized controlled trial of intermittent hypoxia in Parkinson's disease: study rationale and protocol. BMC Neurol 2024; 24:212. [PMID: 38909201 PMCID: PMC11193237 DOI: 10.1186/s12883-024-03702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease for which no disease-modifying therapies exist. Preclinical and clinical evidence suggest that repeated exposure to intermittent hypoxia might have short- and long-term benefits in PD. In a previous exploratory phase I trial, we demonstrated that in-clinic intermittent hypoxia exposure is safe and feasible with short-term symptomatic effects on PD symptoms. The current study aims to explore the safety, tolerability, feasibility, and net symptomatic effects of a four-week intermittent hypoxia protocol, administered at home, in individuals with PD. METHODS/DESIGN This is a two-armed double-blinded randomized controlled trial involving 40 individuals with mild to moderate PD. Participants will receive 45 min of normobaric intermittent hypoxia (fraction of inspired oxygen 0.16 for 5 min interspersed with 5 min normoxia), 3 times a week for 4 weeks. Co-primary endpoints include nature and total number of adverse events, and a feasibility-tolerability questionnaire. Secondary endpoints include Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part II and III scores, gait tests and biomarkers indicative of hypoxic dose and neuroprotective pathway induction. DISCUSSION This trial builds on the previous phase I trial and aims to investigate the safety, tolerability, feasibility, and net symptomatic effects of intermittent hypoxia in individuals with PD. Additionally, the study aims to explore induction of relevant neuroprotective pathways as measured in plasma. The results of this trial could provide further insight into the potential of hypoxia-based therapy as a novel treatment approach for PD. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05948761 (registered June 20th, 2023).
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
- Radboud University Medical Center, Department of Medical BioSciences, Nijmegen, The Netherlands.
| | - Marjan J Meinders
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | | | - Hieronymus W H van Hees
- Radboud University Medical Center, Department of Pulmonary Diseases, Nijmegen, The Netherlands
| | - Philip N Ainslie
- University of British Columbia, Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Kelowna, Canada
| | - Dick H J Thijssen
- Radboud University Medical Center, Department of Medical BioSciences, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
| |
Collapse
|
37
|
Kanemaru E, Shimoda K, Marutani E, Morita M, Miranda M, Miyazaki Y, Sinow C, Sharma R, Dong F, Bloch DB, Akaike T, Ichinose F. Exclusion of sulfide:quinone oxidoreductase from mitochondria causes Leigh-like disease in mice by impairing sulfide metabolism. J Clin Invest 2024; 134:e170994. [PMID: 38870029 PMCID: PMC11290971 DOI: 10.1172/jci170994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Leigh syndrome is the most common inherited mitochondrial disease in children and is often fatal within the first few years of life. In 2020, mutations in the gene encoding sulfide:quinone oxidoreductase (SQOR), a mitochondrial protein, were identified as a cause of Leigh syndrome. Here, we report that mice with a mutation in the gene encoding SQOR (SqorΔN/ΔN mice), which prevented SQOR from entering mitochondria, had clinical and pathological manifestations of Leigh syndrome. SqorΔN/ΔN mice had increased blood lactate levels that were associated with markedly decreased complex IV activity and increased hydrogen sulfide (H2S) levels. Because H2S is produced by both gut microbiota and host tissue, we tested whether metronidazole (a broad-spectrum antibiotic) or a sulfur-restricted diet rescues SqorΔN/ΔN mice from developing Leigh syndrome. Daily treatment with metronidazole alleviated increased H2S levels, normalized complex IV activity and blood lactate levels, and prolonged the survival of SqorΔN/ΔN mice. Similarly, a sulfur-restricted diet normalized blood lactate levels and inhibited the development of Leigh syndrome. Taken together, these observations suggest that mitochondrial SQOR is essential to prevent systemic accumulation of H2S. Metronidazole administration and a sulfur-restricted diet may be therapeutic approaches to treatment of patients with Leigh syndrome caused by mutations in SQOR.
Collapse
Affiliation(s)
- Eiki Kanemaru
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kakeru Shimoda
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Maria Miranda
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Claire Sinow
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rohit Sharma
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Fangcong Dong
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Donald B. Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Xia J, Chen H, Wang X, Chen W, Lin J, Xu F, Nie Q, Ye C, Zhong B, Zhao M, Yun C, Zeng G, Mao Y, Wen Y, Zhang X, Yan S, Wang X, Sun L, Liu F, Zhong C, Xia P, Jiang C, Rao H, Pang Y. Sphingosine d18:1 promotes nonalcoholic steatohepatitis by inhibiting macrophage HIF-2α. Nat Commun 2024; 15:4755. [PMID: 38834568 PMCID: PMC11150497 DOI: 10.1038/s41467-024-48954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe type of the non-alcoholic fatty liver disease (NAFLD). NASH is a growing global health concern due to its increasing morbidity, lack of well-defined biomarkers and lack of clinically effective treatments. Using metabolomic analysis, the most significantly changed active lipid sphingosine d18:1 [So(d18:1)] is selected from NASH patients. So(d18:1) inhibits macrophage HIF-2α as a direct inhibitor and promotes the inflammatory factors secretion. Male macrophage-specific HIF-2α knockout and overexpression mice verified the protective effect of HIF-2α on NASH progression. Importantly, the HIF-2α stabilizer FG-4592 alleviates liver inflammation and fibrosis in NASH, which indicated that macrophage HIF-2α is a potential drug target for NASH treatment. Overall, this study confirms that So(d18:1) promotes NASH and clarifies that So(d18:1) inhibits the transcriptional activity of HIF-2α in liver macrophages by suppressing the interaction of HIF-2α with ARNT, suggesting that macrophage HIF-2α may be a potential target for the treatment of NASH.
Collapse
Affiliation(s)
- Jialin Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Xiaoxiao Wang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Weixuan Chen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bitao Zhong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
| | - Min Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Guangyi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yuejian Mao
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yongping Wen
- Mengniu Institute of Nutrition Science, Shanghai, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Shanghai, China
- Shanghai Institute of Nutrition and Health, The Chinese Academy of Sciences, Shanghai, China
| | - Sen Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Xuemei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lulu Sun
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Feng Liu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Chao Zhong
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Huiying Rao
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China.
| | - Yanli Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China.
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China.
| |
Collapse
|
39
|
Kayser EB, Chen Y, Mulholland M, Truong V, James K, Hanaford A, Johnson S. Evaluating the efficacy of vatiquinone in preclinical models of mitochondrial disease. RESEARCH SQUARE 2024:rs.3.rs-4202689. [PMID: 38883711 PMCID: PMC11177993 DOI: 10.21203/rs.3.rs-4202689/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background Genetic mitochondrial diseases are a major challenge in modern medicine, impacting around 1:4,000 individuals. Leigh syndrome is the most common pediatric presentation of mitochondrial disease. There are currently no effective clinical treatments for mitochondrial disease. In humans, patients are often treated with antioxidants, vitamins, and strategies targeting energetics. The vitamin-E related compound vatiquinone (EPI-743, α-tocotrienol quinone) has been the subject of at least 19 clinical trials in the US since 2012, but the effects of vatiquinone on an animal model of mitochondrial disease have not yet been reported. Here, assessed the impact of vatiquinone on disease progression and in two animal models of mitochondrial disease. Methods The efficacy of vatiquinone in vitro was assessed using human fibroblasts treated with the general mitochondrial oxidative stress inducer paraquat, the GPX4 inhibitor RSL3, or the glutathione synthase inhibitor BSO in combination with excess iron. The therapeutic potential of vatiquinone in vivo was assessed using tamoxifen-induced mouse model for GPX4 deficiency and the Ndufs4 knockout mouse model of Leigh syndrome. In both models, animals were treated daily with vatiquinone or vehicle and relevant disease endpoints were assessed. Results Vatiquinone robustly prevented death in cultured cells induced by RSL3 or BSO/iron, but had no effect on paraquat induced cell death. Vatiquinone had no impact on disease onset, progression, or survival in either the tamoxifen-inducible GPX4 deficient model or the Ndufs4(-/-) mouse model, though the drug may have reduced seizure risk. Conclusions Vatiquinone provided no benefit to survival in two mouse models of disease, but may prevent seizures in the Ndufs4(-/-) model. Our findings are consistent with recent press statements regarding clinical trial results and have implications for drug trial design and reporting in patients with rare diseases.
Collapse
|
40
|
Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25:464-487. [PMID: 38308006 DOI: 10.1038/s41580-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.
Collapse
Affiliation(s)
- Lukas Villiger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA
| | - Julia Joung
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
41
|
Suomalainen A, Nunnari J. Mitochondria at the crossroads of health and disease. Cell 2024; 187:2601-2627. [PMID: 38788685 DOI: 10.1016/j.cell.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.
Collapse
Affiliation(s)
- Anu Suomalainen
- University of Helsinki, Stem Cells and Metabolism Program, Faculty of Medicine, Helsinki, Finland; HiLife, University of Helsinki, Helsinki, Finland; HUS Diagnostics, Helsinki University Hospital, Helsinki, Finland.
| | - Jodi Nunnari
- Altos Labs, Bay Area Institute, Redwood Shores, CA, USA.
| |
Collapse
|
42
|
Hughes LA, Rackham O, Filipovska A. Illuminating mitochondrial translation through mouse models. Hum Mol Genet 2024; 33:R61-R79. [PMID: 38779771 PMCID: PMC11112386 DOI: 10.1093/hmg/ddae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
Collapse
Affiliation(s)
- Laetitia A Hughes
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
| | - Oliver Rackham
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Aleksandra Filipovska
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, Clayton, VIC 3168, Australia
| |
Collapse
|
43
|
Spencer KA, Howe MN, Mulholland MT, Truong V, Liao RW, Chen Y, Setha M, Snell JC, Hanaford A, James K, Morgan PG, Sedensky MM, Johnson SC. Impact of dietary ketosis on volatile anesthesia toxicity in a model of Leigh syndrome. Paediatr Anaesth 2024; 34:467-476. [PMID: 38358320 DOI: 10.1111/pan.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Genetic mitochondrial diseases impact over 1 in 4000 individuals, most often presenting in infancy or early childhood. Seizures are major clinical sequelae in some mitochondrial diseases including Leigh syndrome, the most common pediatric presentation of mitochondrial disease. Dietary ketosis has been used to manage seizures in mitochondrial disease patients. Mitochondrial disease patients often require surgical interventions, leading to anesthetic exposures. Anesthetics have been shown to be toxic in the setting of mitochondrial disease, but the impact of a ketogenic diet on anesthetic toxicities in this setting has not been studied. AIMS Our aim in this study was to determine whether dietary ketosis impacts volatile anesthetic toxicities in the setting of genetic mitochondrial disease. METHODS The impact of dietary ketosis on toxicities of volatile anesthetic exposure in mitochondrial disease was studied by exposing young Ndufs4(-/-) mice fed ketogenic or control diet to isoflurane anesthesia. Blood metabolites were measured before and at the end of exposures, and survival and weight were monitored. RESULTS Compared to a regular diet, the ketogenic diet exacerbated hyperlactatemia resulting from isoflurane exposure (control vs. ketogenic diet in anesthesia mean difference 1.96 mM, Tukey's multiple comparison adjusted p = .0271) and was associated with a significant increase in mortality during and immediately after exposures (27% vs. 87.5% mortality in the control and ketogenic diet groups, respectively, during the exposure period, Fisher's exact test p = .0121). Our data indicate that dietary ketosis and volatile anesthesia interact negatively in the setting of mitochondrial disease. CONCLUSIONS Our findings suggest that extra caution should be taken in the anesthetic management of mitochondrial disease patients in dietary ketosis.
Collapse
Affiliation(s)
- Kira A Spencer
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Miranda N Howe
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Michael T Mulholland
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Vivian Truong
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Ryan W Liao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Yihan Chen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Monyreak Setha
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - John C Snell
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Allison Hanaford
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Katerina James
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Margaret M Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
44
|
Liu X, Tang J, Wang Z, Zhu C, Deng H, Sun X, Yu G, Rong F, Chen X, Liao Q, Jia S, Liu W, Zha H, Fan S, Cai X, Gui JF, Xiao W. Oxygen enhances antiviral innate immunity through maintenance of EGLN1-catalyzed proline hydroxylation of IRF3. Nat Commun 2024; 15:3533. [PMID: 38670937 PMCID: PMC11053110 DOI: 10.1038/s41467-024-47814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Oxygen is essential for aerobic organisms, but little is known about its role in antiviral immunity. Here, we report that during responses to viral infection, hypoxic conditions repress antiviral-responsive genes independently of HIF signaling. EGLN1 is identified as a key mediator of the oxygen enhancement of antiviral innate immune responses. Under sufficient oxygen conditions, EGLN1 retains its prolyl hydroxylase activity to catalyze the hydroxylation of IRF3 at proline 10. This modification enhances IRF3 phosphorylation, dimerization and nuclear translocation, leading to subsequent IRF3 activation. Furthermore, mice and zebrafish with Egln1 deletion, treatment with the EGLN inhibitor FG4592, or mice carrying an Irf3 P10A mutation are more susceptible to viral infections. These findings not only reveal a direct link between oxygen and antiviral responses, but also provide insight into the mechanisms by which oxygen regulates innate immunity.
Collapse
Affiliation(s)
- Xing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jinhua Tang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Zixuan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chunchun Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hongyan Deng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xueyi Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Guangqing Yu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Fangjing Rong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoyun Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qian Liao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Shuke Jia
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wen Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Huangyuan Zha
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Sijia Fan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xiaolian Cai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jian-Fang Gui
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China.
- Hubei Hongshan Laboratory, Wuhan, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China.
| |
Collapse
|
45
|
Xiao Y, Liu X, Xie K, Luo J, Zhang Y, Huang X, Luo J, Tan S. Mitochondrial dysfunction induced by HIF-1α under hypoxia contributes to the development of gastric mucosal lesions. Clin Transl Med 2024; 14:e1653. [PMID: 38616702 PMCID: PMC11016940 DOI: 10.1002/ctm2.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION Hypoxia is an important characteristic of gastric mucosal diseases, and hypoxia-inducible factor-1α (HIF-1α) contributes to microenvironment disturbance and metabolic spectrum abnormalities. However, the underlying mechanism of HIF-1α and its association with mitochondrial dysfunction in gastric mucosal lesions under hypoxia have not been fully clarified. OBJECTIVES To evaluate the effects of hypoxia-induced HIF-1α on the development of gastric mucosal lesions. METHODS Portal hypertensive gastropathy (PHG) and gastric cancer (GC) were selected as representative diseases of benign and malignant gastric lesions, respectively. Gastric tissues from patients diagnosed with the above diseases were collected. Portal hypertension (PHT)-induced mouse models in METTL3 mutant or NLRP3-deficient littermates were established, and nude mouse gastric graft tumour models with relevant inhibitors were generated. The mechanisms underlying hypoxic condition, mitochondrial dysfunction and metabolic alterations in gastric mucosal lesions were further analysed. RESULTS HIF-1α, which can mediate mitochondrial dysfunction via upregulation of METTL3/IGF2BP3-dependent dynamin-related protein 1 (Drp1) N6-methyladenosine modification to increase mitochondrial reactive oxygen species (mtROS) production, was elevated under hypoxic conditions in human and mouse portal hypertensive gastric mucosa and GC tissues. While blocking HIF-1α with PX-478, inhibiting Drp1-dependent mitochondrial fission via mitochondrial division inhibitor 1 (Mdivi-1) treatment or METTL3 mutation alleviated this process. Furthermore, HIF-1α influenced energy metabolism by enhancing glycolysis via lactate dehydrogenase A. In addition, HIF-1α-induced Drp1-dependent mitochondrial fission also enhanced glycolysis. Drp1-dependent mitochondrial fission and enhanced glycolysis were associated with alterations in antioxidant enzyme activity and dysfunction of the mitochondrial electron transport chain, resulting in massive mtROS production, which was needed for activation of NLRP3 inflammasome to aggravate the development of the PHG and GC. CONCLUSIONS Under hypoxic conditions, HIF-1α enhances mitochondrial dysfunction via Drp1-dependent mitochondrial fission and influences the metabolic profile by altering glycolysis to increase mtROS production, which can trigger NLRP3 inflammasome activation and mucosal microenvironment alterations to contribute to the development of benign and malignant gastric mucosal lesions.
Collapse
Affiliation(s)
- Yuelin Xiao
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Xianzhi Liu
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Kaiduan Xie
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Jiajie Luo
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yiwang Zhang
- Department of PathologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoli Huang
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Jinni Luo
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Siwei Tan
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
46
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
47
|
Meisel JD, Miranda M, Skinner OS, Wiesenthal PP, Wellner SM, Jourdain AA, Ruvkun G, Mootha VK. Hypoxia and intra-complex genetic suppressors rescue complex I mutants by a shared mechanism. Cell 2024; 187:659-675.e18. [PMID: 38215760 PMCID: PMC10919891 DOI: 10.1016/j.cell.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/09/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
The electron transport chain (ETC) of mitochondria, bacteria, and archaea couples electron flow to proton pumping and is adapted to diverse oxygen environments. Remarkably, in mice, neurological disease due to ETC complex I dysfunction is rescued by hypoxia through unknown mechanisms. Here, we show that hypoxia rescue and hyperoxia sensitivity of complex I deficiency are evolutionarily conserved to C. elegans and are specific to mutants that compromise the electron-conducting matrix arm. We show that hypoxia rescue does not involve the hypoxia-inducible factor pathway or attenuation of reactive oxygen species. To discover the mechanism, we use C. elegans genetic screens to identify suppressor mutations in the complex I accessory subunit NDUFA6/nuo-3 that phenocopy hypoxia rescue. We show that NDUFA6/nuo-3(G60D) or hypoxia directly restores complex I forward activity, with downstream rescue of ETC flux and, in some cases, complex I levels. Additional screens identify residues within the ubiquinone binding pocket as being required for the rescue by NDUFA6/nuo-3(G60D) or hypoxia. This reveals oxygen-sensitive coupling between an accessory subunit and the quinone binding pocket of complex I that can restore forward activity in the same manner as hypoxia.
Collapse
Affiliation(s)
- Joshua D Meisel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Maria Miranda
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Owen S Skinner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Presli P Wiesenthal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Sandra M Wellner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alexis A Jourdain
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Vamsi K Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
48
|
Zhong X, Liang Y, Wang X, Lan H, Bai X, Jin L, Guan BO. Free-moving-state microscopic imaging of cerebral oxygenation and hemodynamics with a photoacoustic fiberscope. LIGHT, SCIENCE & APPLICATIONS 2024; 13:5. [PMID: 38163847 PMCID: PMC10758391 DOI: 10.1038/s41377-023-01348-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
We report the development of a head-mounted photoacoustic fiberscope for cerebral imaging in a freely behaving mouse. The 4.5-gram imaging probe has a 9-µm lateral resolution and 0.2-Hz frame rate over a 1.2-mm wide area. The probe can continuously monitor cerebral oxygenation and hemodynamic responses at single-vessel resolution, showing significantly different cerebrovascular responses to external stimuli under anesthesia and in the freely moving state. For example, when subjected to high-concentration CO2 respiration, enhanced oxygenation to compensate for hypercapnia can be visualized due to cerebral regulation in the freely moving state. Comparative studies exhibit significantly weakened compensation capabilities in obese rodents. This new imaging modality can be used for investigating both normal and pathological cerebrovascular functions and shows great promise for studying cerebral activity, disorders and their treatments.
Collapse
Affiliation(s)
- Xiaoxuan Zhong
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Xiaoyu Wang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Haoying Lan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Xue Bai
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Long Jin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
49
|
Yin Z, Agip ANA, Bridges HR, Hirst J. Structural insights into respiratory complex I deficiency and assembly from the mitochondrial disease-related ndufs4 -/- mouse. EMBO J 2024; 43:225-249. [PMID: 38177503 PMCID: PMC10897435 DOI: 10.1038/s44318-023-00001-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024] Open
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase) is essential for cellular energy production and NAD+ homeostasis. Complex I mutations cause neuromuscular, mitochondrial diseases, such as Leigh Syndrome, but their molecular-level consequences remain poorly understood. Here, we use a popular complex I-linked mitochondrial disease model, the ndufs4-/- mouse, to define the structural, biochemical, and functional consequences of the absence of subunit NDUFS4. Cryo-EM analyses of the complex I from ndufs4-/- mouse hearts revealed a loose association of the NADH-dehydrogenase module, and discrete classes containing either assembly factor NDUFAF2 or subunit NDUFS6. Subunit NDUFA12, which replaces its paralogue NDUFAF2 in mature complex I, is absent from all classes, compounding the deletion of NDUFS4 and preventing maturation of an NDUFS4-free enzyme. We propose that NDUFAF2 recruits the NADH-dehydrogenase module during assembly of the complex. Taken together, the findings provide new molecular-level understanding of the ndufs4-/- mouse model and complex I-linked mitochondrial disease.
Collapse
Affiliation(s)
- Zhan Yin
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Ahmed-Noor A Agip
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
- Max-Planck-Institute of Biophysics, Frankfurt, 60438, Germany
| | - Hannah R Bridges
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK.
- Structura Biotechnology Inc., Toronto, Canada.
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
50
|
Wen L, Shao M, Li Y, Zhang Y, Peng C, Yu H, Zhang K. Unveiling the hypoxia-induced mitophagy process through two-channel real-time imaging of NTR and viscosity under the same excitation. Talanta 2024; 266:125028. [PMID: 37549565 DOI: 10.1016/j.talanta.2023.125028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Mitophagy is an essential physiological process that eliminates damaged mitochondria via lysosomes. It is reported that hypoxia, inflammatory stimuli or other stress conditions could lead to mitochondrial damage and mitochondrial dysfunction, which induces the process of mitophagy. Herein, we report a novel fluorescent probe PC-NTR for imaging hypoxia-induced mitophagy by monitoring the change of nitroreductase and viscosity simultaneously. To our delight, PC-NTR could respond simultaneously to nitroreductase and viscosity at different fluorescence channels with no mutual interference under the same excitation wavelength. The fluorescence emission around 535 nm was enhanced dramatically after addition of nitroreductase while the fluorescence emission around 635 nm heightened as the viscosity increased. The probe would be able to selectively targeting of mitochondria in cells because of the positively charged pyridine salt structure of PC-NTR. The probe was successfully applied to assess the different levels of hypoxia and real-time imaging of mitochondrial autophagy in live cells. More importantly, using dual channel imaging, PC-NTR could be used to distinguish cancer cells from normal cells and was successfully applied to imaging experiments in HeLa-derived tumor-bearing nude mice. Therefore, PC-NTR would be an important molecular tool for hypoxia imaging and detecting solid tumors in vivo.
Collapse
Affiliation(s)
- Lei Wen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Mengqi Shao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yinhui Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Yanjun Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Chao Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Huan Yu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Kai Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|