1
|
Pancsa R, Andreev DE, Dean K. The implication of non-AUG-initiated N-terminally extended proteoforms in cancer. RNA Biol 2025; 22:1-18. [PMID: 40276932 PMCID: PMC12045569 DOI: 10.1080/15476286.2025.2498203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/03/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
Dysregulated translation is a hallmark of cancer, and recent genome-wide studies in tumour cells have uncovered widespread translation of non-canonical reading frames that often initiate at non-AUG codons. If an upstream non-canonical start site is located within a frame with an annotated coding sequence (CDS), such translation events can lead to the production of proteoforms with altered N-termini (PANTs). Certain examples of PANTs from oncogenes (e.g. c-MYC) and tumour suppressors (e.g. PTEN) have been previously linked to cancer. We have performed a systematic computational analysis on recently identified non-AUG initiation-derived N-terminal extensions of cancer-associated proteins, and we discuss how these extended proteoforms may acquire new oncogenic properties. We identified a loss of stability for the N-terminally extended proteoforms of oncogenes TCF-4 and SOX2. Furthermore, we discovered likely functional short linear motifs within the N-terminal extensions of oncogenes and tumour suppressors (SOX2, SUFU, SFPQ, TOP1 and SPEN/SHARP) that could provide an explanation for previously described functionalities or interactions of the proteins. In all, we identify novel cases where PANTs likely show different localization, functions, partner binding or turnover rates compared to the annotated proteoforms. Therefore, we propose that alterations in the stringency of translation initiation, often seen under conditions of cellular stress, may result in reprogramming of translation to generate novel PANTs that influence cancer progression.
Collapse
Affiliation(s)
- Rita Pancsa
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dmitry E. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Maillard L, Bensidoun P, Lagha M. Reshaping transcription and translation dynamics during the awakening of the zygotic genome. Curr Opin Genet Dev 2025; 92:102344. [PMID: 40188779 DOI: 10.1016/j.gde.2025.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 05/13/2025]
Abstract
During the oocyte-to-embryo transition, the transcriptome and proteome are dramatically reshaped. This transition entails a shift from maternally inherited mRNAs to newly synthesized transcripts, produced during the zygotic genome activation (ZGA). Furthermore, a crucial transcription and translation selectivity is required for early embryonic development. Studies across various model organisms have revealed conserved cis- and trans-regulatory mechanisms dictating the regimes by which mRNA and proteins are produced during this critical phase. In this article, we highlight recent technological and conceptual advances that deepen our understanding of how the tuning of both transcription and translation evolves during ZGA.
Collapse
Affiliation(s)
- Louise Maillard
- Institut de Génétique de Montpellier, CNRS UMR5535, Univ Montpellier, Montpellier, France
| | - Pierre Bensidoun
- Institut de Génétique de Montpellier, CNRS UMR5535, Univ Montpellier, Montpellier, France
| | - Mounia Lagha
- Institut de Génétique de Montpellier, CNRS UMR5535, Univ Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Reimão-Pinto MM, Castillo-Hair SM, Seelig G, Schier AF. The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis. Dev Cell 2025; 60:1498-1515.e8. [PMID: 39818206 DOI: 10.1016/j.devcel.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/22/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
The 5' UTRs of mRNAs are critical for translation regulation during development, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR suffices to confer temporal dynamics to translation initiation and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities. A quantitative deep learning model, Danio Optimus 5-Prime (DaniO5P), identified a combined role for 5' UTR length, translation initiation site context, upstream AUGs, and sequence motifs on ribosome recruitment. DaniO5P predicts the activities of maternal and zygotic 5' UTR isoforms and indicates that modulating 5' UTR length and motif grammar contributes to translation initiation dynamics. This study provides a first quantitative model of 5' UTR-based translation regulation in development and lays the foundation for identifying the underlying molecular effectors.
Collapse
Affiliation(s)
| | - Sebastian M Castillo-Hair
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA; eScience Institute, University of Washington, Seattle, WA 98195, USA
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Alexander F Schier
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Hayat D, Ogran A, Ashkenazi S, Plotnikov A, Oren R, Zerbib M, Ben-Shmuel A, Dikstein R. Inhibitors of eIF1A-ribosome interaction unveil uORF-dependent regulation of translation initiation and antitumor and antiviral effects. EMBO J 2025:10.1038/s44318-025-00449-6. [PMID: 40355559 DOI: 10.1038/s44318-025-00449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 05/14/2025] Open
Abstract
During translation initiation, eIF1A binds the ribosome through its N- and C-terminal tails, but the functional importance of this temporal interaction in mammalian cells is lacking. Using a high-throughput drug screen targeting eIF1A-RPS10 interaction, we identified inhibitors (1Ais) for eIF1A, RPS10, or both. Applying 1Ais in biochemical assays along specific and global translation experiments, we confirmed known functions of eIF1A and uncovered new roles for both eIF1A and RPS10. Specifically, the eIF1A N-terminal tail (NTT) binding inhibitors revealed the requirement of eIF1A for translation re-initiation. Moreover, a cytosine at position +5 relative to the start codon AUG, located near eIF1A-NTT in the 48S structure, enhances sensitivity to 1Ais, suggesting that the initiating ribosome recognizes a broader AUG context than the conventional Kozak. Additionally, eIF1A-specific 1Ais predominately affect cancer-related pathways. In xenograft models of ovarian cancer, these 1Ais reduced tumor growth without apparent toxicity. Furthermore, inhibition of RPS10, but not eIF1A, modulates a context-dependent regulatory translation initiation at CUG codon of SARS-CoV-2 and impedes infection. Our study underscores 1Ais as effective means to study the role of eIF1A and RPS10 in translation and suggests their targeted inhibition as potential therapies for cancer and viral infections.
Collapse
Affiliation(s)
- Daniel Hayat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ariel Ogran
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shaked Ashkenazi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alexander Plotnikov
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mirie Zerbib
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Amir Ben-Shmuel
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
5
|
Sun Y, Shui K, Li Q, Liu C, Jin W, Ni JQ, Lu J, Zhang L. Upstream open reading frames dynamically modulate CLOCK protein translation to regulate circadian rhythms and sleep. PLoS Biol 2025; 23:e3003173. [PMID: 40354412 DOI: 10.1371/journal.pbio.3003173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
The circadian rhythm is an evolutionarily conserved mechanism with translational regulation increasingly recognized as pivotal in its modulation. In this study, we found that upstream open reading frames (uORFs) are enriched in Drosophila circadian rhythm genes, with particularly conserved uORFs present in core circadian clock genes. We demonstrate evidence that the uORFs of the core clock gene, Clock (Clk), rhythmically and substantially attenuate CLK protein translation in Drosophila, with pronounced suppression occurring during daylight hours. Eliminating Clk uORFs leads to increased CLK protein levels during the day and results in a shortened circadian cycle, along with a broad shift in clock gene expression rhythms. Notably, Clk uORF deletion also augments morning sleep by reducing dopaminergic activity. Beyond daily circadian adjustments, Clk uORFs play a role in modulating sleep patterns in response to seasonal daylight variations. Furthermore, the Clk uORFs act as an important regulator to shape the rhythmic expression of a vast array of genes and influence multifaceted physiological outcomes. Collectively, our research sheds light on the intricate ways uORFs dynamically adjust downstream coding sequences to acclimate to environmental shifts.
Collapse
Affiliation(s)
- Yuanqiang Sun
- State Key Laboratory of Gene Function and Modulation Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Ke Shui
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qinyu Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlu Liu
- State Key Laboratory of Gene Function and Modulation Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Wanting Jin
- State Key Laboratory of Gene Function and Modulation Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Gene Function and Modulation Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
6
|
Kibe A, Buck S, Gribling-Burrer AS, Gilmer O, Bohn P, Koch T, Mireisz CNM, Schlosser A, Erhard F, Smyth RP, Caliskan N. The translational landscape of HIV-1 infected cells reveals key gene regulatory principles. Nat Struct Mol Biol 2025; 32:841-852. [PMID: 39815046 PMCID: PMC12086091 DOI: 10.1038/s41594-024-01468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/03/2024] [Indexed: 01/18/2025]
Abstract
Human immunodeficiency virus-1 (HIV-1) uses a number of strategies to modulate viral and host gene expression during its life cycle. To characterize the transcriptional and translational landscape of HIV-1 infected cells, we used a combination of ribosome profiling, disome sequencing and RNA sequencing. We show that HIV-1 messenger RNAs are efficiently translated at all stages of infection, despite evidence for a substantial decrease in the translational efficiency of host genes that are implicated in host cell translation. Our data identify upstream open reading frames in the HIV-1 5'-untranslated region as well as internal open reading frames in the Vif and Pol coding domains. We also observed ribosomal collisions in Gag-Pol upstream of the ribosome frameshift site that we attributed to an RNA structural fold using RNA structural probing and functional analysis. Antisense oligonucleotides designed to alter the base of this structure decreased frameshift efficiency. Overall, our data highlight the complexity of HIV-1 gene regulation and provide a key resource for decoding of host-pathogen interactions upon HIV-1 infection. Furthermore, we provide evidence for a RNA structural fold including the frameshift site that could serve as a target for antiviral therapy.
Collapse
Affiliation(s)
- Anuja Kibe
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
| | - Stefan Buck
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Anne-Sophie Gribling-Burrer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
- Institute of Molecular and Cellular Biology (CNRS), UPR 9002, University of Strasbourg, Strasbourg, France
| | - Orian Gilmer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
| | - Patrick Bohn
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
| | - Tatyana Koch
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
| | - Chiara Noemi-Marie Mireisz
- Institute of Molecular and Cellular Biology (CNRS), UPR 9002, University of Strasbourg, Strasbourg, France
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Florian Erhard
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
- Institute of Molecular and Cellular Biology (CNRS), UPR 9002, University of Strasbourg, Strasbourg, France
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany.
- Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
7
|
Li H, Min L, Du H, Wei X, Tong A. Cancer mRNA vaccines: clinical application progress and challenges. Cancer Lett 2025; 625:217752. [PMID: 40306545 DOI: 10.1016/j.canlet.2025.217752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/13/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Messenger RNA (mRNA) vaccines have emerged as one of the most promising and rapidly evolving immunotherapeutic approaches due to their ease of production, demonstrated clinical efficacy, and high safety. The coronavirus disease 2019(COVID-19) pandemic has showcased the remarkable therapeutic potential of mRNA vaccines, prompting researchers to explore their use for cancer treatment. Preclinical studies and human clinical trials have indicated their substantial clinical applicability. However, current research faces several challenges, including the complexity of tumor antigen selection, vaccine stability, and the development of resistance. This review summarizes the optimization strategies for cancer mRNA vaccines in preclinical settings, the progress of clinical trials, and the challenges encountered while analyzing various delivery vehicle types, infusion methods, and application cases across different cancer types, highlighting key factors in vaccine design. The findings demonstrate that mRNA vaccines elicit specific immune responses and exhibit favorable safety and tolerability in clinical trials. Moreover, developing personalized neoantigen vaccines offers a novel direction for cancer immunotherapy. The unique contribution of this review lies in its comprehensive overview of the latest advancements in therapeutic mRNA vaccines for cancer treatment while identifying critical areas for future research to propel the field forward.
Collapse
Affiliation(s)
- Hang Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Lang Min
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haotian Du
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Blandy A, Hopes T, Vasconcelos ER, Turner A, Fatkhullin B, Agapiou M, Fontana J, Aspden J. Translational activity of 80S monosomes varies dramatically across different tissues. Nucleic Acids Res 2025; 53:gkaf292. [PMID: 40331628 PMCID: PMC12056609 DOI: 10.1093/nar/gkaf292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 03/23/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025] Open
Abstract
Translational regulation at the stage of initiation can impact the number of ribosomes translating each mRNA molecule. However, the translational activity of single 80S ribosomes (monosomes) on mRNA is less well understood, even though these 80S monosomes represent the dominant ribosomal complexes in vivo. Here, we used cryo-EM to determine the translational activity of 80S monosomes across different tissues in Drosophila melanogaster. We discovered that while head and embryo 80S monosomes are highly translationally active, testis and ovary 80S monosomes are translationally inactive. RNA-Seq analysis of head monosome- and polysome-translated mRNAs, revealed that head 80S monosomes preferentially translate mRNAs with TOP motifs, short 5'-UTRs, short ORFs and are enriched for the presence of uORFs. Overall, these findings highlight that regulation of translation initiation and protein synthesis is mostly performed by monosomes in head and embryo, while polysomes are the main source of protein production in testis and ovary.
Collapse
Affiliation(s)
- Albert Blandy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Tayah Hopes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Elton J R Vasconcelos
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, UK
| | - Amy Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Bulat Fatkhullin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Michaela Agapiou
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, UK
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
9
|
D’Agostino M, Rol-Moreno J, Bec G, Kuhn L, Ennifar E, Simonetti A. A structural element within the 5'UTR of β-catenin mRNA modulates its translation under hypoxia. Nucleic Acids Res 2025; 53:gkaf321. [PMID: 40309781 PMCID: PMC12044334 DOI: 10.1093/nar/gkaf321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
Tight regulation of translation initiation is crucial for cellular adaptation to environmental changes. Stress conditions like hypoxia trigger translational reprogramming of mRNAs encoding proteins essential for stress recovery and cell survival. Recent studies highlight alternative translation initiation pathways based on specific motifs in mRNA 5' untranslated regions (5'UTRs). Notably, β-catenin is of particular interest since maintaining its translation promotes cancer cell persistence and plasticity. β-Catenin, an oncogenic protein, plays a key role in Wnt signalling. Besides dysregulation of the β-catenin/Wnt pathway, chemotherapy-induced hypoxia leads to abnormal nuclear β-catenin accumulation, modulating gene expression linked to cancer progression and metastasis. However, the mechanism sustaining β-catenin translation in stressed cells remains elusive. To explore how β-catenin mRNA evades global translational blockade in hypoxic cancer cells, we analysed its 5'UTR and identified a translation regulatory element in cellulo. We discovered a GC-rich three-way junction (TWJ) structure within the β-catenin 5'UTR enhancing its hypoxia-driven translation. A polypurine region within the TWJ anchors eIF4B, eIF4A, and eIF4G2. Importantly, the TWJ makes β-catenin mRNA translation eIF4A-dependent and sensitive to silvestrol, a selective eIF4A inhibitor and promising anticancer agent. This study elucidates the 5'UTR-driven β-catenin mechanism under hypoxia, paving the way to inhibit its translation in cancer.
Collapse
Affiliation(s)
- Mattia D’Agostino
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
| | - Javier Rol-Moreno
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
- Sanofi-Aventis R&D, Strasbourg 67000, France
| | - Guillaume Bec
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
| | - Lauriane Kuhn
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme protéomique Strasbourg-Esplanade, Université de Strasbourg, 2 Allée Konrad Roentgen, Strasbourg 67084, France
| | - Eric Ennifar
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
| | - Angelita Simonetti
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
| |
Collapse
|
10
|
Bhardwaj D, Sharma S, Sharma A, Gill R, Gill SS, Verma R, Kaul T, Tuteja N. Decoding the signaling triad: Molecular interactions of G-proteins, MAP kinases, and helicases in environmental stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 357:112514. [PMID: 40228609 DOI: 10.1016/j.plantsci.2025.112514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/21/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Plant signaling and stress response systems depend heavily on the essential functions of heterotrimeric G-proteins, mitogen-activated protein kinases (MAPKs), and helicases. Researchers have thoroughly investigated each molecular component separately but still lack comprehensive knowledge about how they work together functionally. This review investigates the interactions between G-proteins, MAPKs, and helicases as fundamental components of plant stress signaling networks. G-proteins function as molecular switches that perceive stress signals to initiate downstream cascades which activate MAPK pathways. MAPKs trigger phosphorylation of vital target proteins such as transcription factors and helicases which in turn regulate gene expression and RNA metabolism. Helicases, crucial for plant stress response mechanisms, unwind nucleic acid structures. Recent research shows that MAPKs and helicases together manage ribosome loading along with mRNA stability and protein production when plants face environmental stress. The review examines molecular interactions that provide new insights into plant stress physiology, while highlighting the need for further investigation into plant adaptive mechanisms involving G-proteins, MAPKs, and helicases.
Collapse
Affiliation(s)
- Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu and Kashmir 181143, India.
| | - Suvriti Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir 181143, India
| | - Akanksha Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir 181143, India
| | - Ritu Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124 001, India
| | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124 001, India
| | - Rachana Verma
- Nutritional Improvement of Crop, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Tanushri Kaul
- Nutritional Improvement of Crop, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| | - Narendra Tuteja
- Nutritional Improvement of Crop, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
11
|
Kurian AA, Ghiringhelli M, Shalom E, Mainkar G, Żak MM, Adjmi M, Downey J, Yoon S, Dubois N, Swirski FK, Zangi L. Novel Artificial 5'UTR Increase Modified mRNA Translation When Injected into Mouse Heart. Pharmaceutics 2025; 17:490. [PMID: 40284486 PMCID: PMC12030343 DOI: 10.3390/pharmaceutics17040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Modified messenger RNA (modRNA) is a promising gene delivery method used to upregulate genes in cardiac tissue, with applications in both clinical and preclinical settings to prevent cardiac remodeling after ischemic injury. The 5' untranslated region (5'UTR) plays a crucial role in regulating the translation efficiency of mRNA into functional proteins. Due to the high production cost and short half-life of modRNA, it is essential to identify novel 5'UTR designs that enhance modRNA translation in the heart. Methods: Here, we present an artificial 5'UTR, termed "Top Heart 5'UTR", designed based on ribonucleotide frequency analyses of 1000 genes highly expressed in the heart. This novel artificial 5'UTR contains a unique 20-nucleotide sequence, consisting of 11 previously uncharacterized nucleotides (CCCCCGCCCCC) and 9 well-described nucleotides from the Kozak sequence upstream of the start codon (ATG). Results: This design significantly improves modRNA translation efficiency in cardiomyocytes (CMs) and heart cells both in vitro and in vivo. Specifically, the Top Heart 5'UTR increases translation efficiency by approximately 30-60% in both mouse and human CMs compared to a standard 5'UTR control. Moreover, the artificial 5'UTR induces a 2-2.5 times higher translation of modRNA in the mouse heart 24 and 48 h post-delivery. Conclusions: Our findings may contribute to the development of a superior modRNA platform for use in preclinical and clinical studies, potentially allowing reduced dosages or increased gene expression at the same dosage level. This approach can be extended to identify optimized 5'UTRs for various cell types or organs, including applications in cancer therapies.
Collapse
Affiliation(s)
- Ann Anu Kurian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.K.); (M.G.); (E.S.); (G.M.); (M.M.Ż.); (M.A.); (J.D.); (S.Y.); (F.K.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matteo Ghiringhelli
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.K.); (M.G.); (E.S.); (G.M.); (M.M.Ż.); (M.A.); (J.D.); (S.Y.); (F.K.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eyal Shalom
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.K.); (M.G.); (E.S.); (G.M.); (M.M.Ż.); (M.A.); (J.D.); (S.Y.); (F.K.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gayatri Mainkar
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.K.); (M.G.); (E.S.); (G.M.); (M.M.Ż.); (M.A.); (J.D.); (S.Y.); (F.K.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Magdalena M. Żak
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.K.); (M.G.); (E.S.); (G.M.); (M.M.Ż.); (M.A.); (J.D.); (S.Y.); (F.K.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Adjmi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.K.); (M.G.); (E.S.); (G.M.); (M.M.Ż.); (M.A.); (J.D.); (S.Y.); (F.K.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey Downey
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.K.); (M.G.); (E.S.); (G.M.); (M.M.Ż.); (M.A.); (J.D.); (S.Y.); (F.K.S.)
| | - Seonghun Yoon
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.K.); (M.G.); (E.S.); (G.M.); (M.M.Ż.); (M.A.); (J.D.); (S.Y.); (F.K.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Dubois
- Cell, Development/Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Filip K. Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.K.); (M.G.); (E.S.); (G.M.); (M.M.Ż.); (M.A.); (J.D.); (S.Y.); (F.K.S.)
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.K.); (M.G.); (E.S.); (G.M.); (M.M.Ż.); (M.A.); (J.D.); (S.Y.); (F.K.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Liu Q, Liu Z, Qian Y, Wu M, Mo J, Wang C, Xu G, Leng L, Zhang S. Alterations in Gene Expression and Alternative Splicing Induced by Plasmid-Mediated Overexpression of GFP and P2RY12 Within the A549 Cell Line. Int J Mol Sci 2025; 26:2973. [PMID: 40243586 PMCID: PMC11988474 DOI: 10.3390/ijms26072973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Phenotypic modifications and their effects on cellular functions through the up-regulation of target gene expression have frequently been observed in genetic studies, but the unique roles of cell lines and their introduced plasmids in influencing these functions have not been fully revealed. In this research, we developed two distinct cell lines derived from the A549 cell line: one that stably overexpresses GFP and another that is a polyclonal stable line overexpressing both GFP and P2RY12. We then utilized transcriptome sequencing (RNA-seq) technology to screen out differentially expressed genes (DEGs) and genes with differential transcript usage (gDTUs) after GFP overexpression (GFP-OE) and P2RY12 overexpression (P2RY12-OE). We found that, compared with A549, there were more than 1700 differentially expressed genes (DEGs) in both GFP-OE and P2RY12-OE cells, while only 866 DEGs were identified in GFP-OE and P2RY12-OE cells. Notably, the differences in transcript usage were relatively minor, with only over 400 genes exhibiting changes across all three groups. The functional analysis of DEGs and gDTUs showed that they were both highly enriched in the pathways associated with cell proliferation and migration. In summary, we performed an extensive analysis of the transcriptome profile of gene expression and alternative splicing with GFP-OE and P2RY12-OE, enhancing our comprehension of how genes function within cells and the processes that control gene expression.
Collapse
Affiliation(s)
- Qingqing Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.L.); (Y.Q.); (M.W.)
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (C.W.); (G.X.)
| | - Zhaoyu Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (C.W.); (G.X.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yongqi Qian
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.L.); (Y.Q.); (M.W.)
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (C.W.); (G.X.)
| | - Mingxu Wu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.L.); (Y.Q.); (M.W.)
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (C.W.); (G.X.)
| | - Jing Mo
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (C.W.); (G.X.)
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (C.W.); (G.X.)
| | - Guoqing Xu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (C.W.); (G.X.)
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (C.W.); (G.X.)
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
13
|
Connell J, Bates HJ, Geoghegan I, Wilson F, Harrison RJ, Price RJ. Mutation of the LRG1 Rho-GAP gene is responsible for the hyper branching C-variant phenotype in the quorn mycoprotein fungus Fusarium venenatum A3/5. Fungal Biol Biotechnol 2025; 12:3. [PMID: 40128830 PMCID: PMC11934581 DOI: 10.1186/s40694-025-00195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/15/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Quorn mycoprotein, a protein-rich meat alternative, is produced through large-scale fermentation of the fungus Fusarium venenatum. However, a major challenge during F. venenatum fermentation is the consistent appearance of mutants called colonial variants (C-variants). These C-variants have a highly branched morphology, which ultimately lead to a less desirable final product and early termination of the fermentation process. This study aimed to identify the genetic mutations responsible for C-variant morphology. RESULTS We first isolated both C-variant and wild-type strains from commercial fermentation samples and characterised radial growth rates on solid media. Whole genome sequencing facilitated the identification of mutations in a gene called jg4843 in 11 out of 12 C-variant isolates, which were not observed in the wild-type isolates. The jg4843 gene was identified as the ortholog of LRG1, a Rho-GTPase activating protein that regulates the Rho1 signalling pathway affecting fungal growth. Notably, the mutations in jg4843 were primarily located in the RhoGAP domain responsible for LRG1 activity. To confirm the role of these mutations, we used CRISPR/Cas9-mediated homology-directed recombination to introduce the C-variant mutations into the wild-type isolate, which successfully recapitulated the characteristic C-variant morphology. CONCLUSIONS This study identified mutations in the LRG1 ortholog jg4843 as the genetic cause of C-variant morphology in commercial fermentation F. venenatum isolates. Understanding this genetic basis paves the way for developing strategies to prevent C-variants arising, potentially leading to more efficient and sustainable production of Quorn mycoprotein.
Collapse
Affiliation(s)
| | | | | | | | - Richard J Harrison
- Wageningen University and Research, Wageningen, 6708 PB, Netherlands
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | |
Collapse
|
14
|
Chaouki G, Parry L, Vituret C, Jousse C, Leremboure M, Bourgne C, Mosoni L, Delorme Y, Djelloul-Mazouz M, Hermet J, Averous J, Bruhat A, Combaret L, Taillandier D, Papet I, Bindels LB, Fafournoux P, Maurin AC. Pre-cachectic changes in amino acid homeostasis precede activation of eIF2α signaling in the liver at the onset of C26 cancer-induced cachexia. iScience 2025; 28:112030. [PMID: 40124481 PMCID: PMC11928868 DOI: 10.1016/j.isci.2025.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/28/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
The sequence of events associated with cancer cachexia induction needs to be further characterized. Using the C26 mouse model, we found that prior to cachexia, cancer progression was associated with increased levels of IL-6 and growth differentiation factor 15 (GDF15), highly induced production of positive acute phase proteins (APPs) and reduced levels of most amino acids in the systemic circulation, while signal transducer and activator of transcription 3 (STAT3) signaling was induced (1) in the growing spleen, alongside activation of ribosomal protein S6 (rpS6) and alpha subunit of eukaryotic translation initiation factor-2 (eIF2α) signalings, and (2) in the liver, alongside increased positive-APP expression, decreased albumin expression, and upregulation of autophagy. At the onset of cachexia, rpS6 and eIF2α signalings were concomitantly activated in the liver, with increased expression of activating transcription factor 4 (ATF4) target genes involved in amino acid synthesis and transport, as well as autophagy. Data show that pre-cachectic (pre-Cx) alterations in protein/aa homeostasis are followed by activation of eIF2α signaling in the liver, an adaptive mechanism likely regulating protein/amino acid metabolism upon progression to cachexia.
Collapse
Affiliation(s)
- Ghita Chaouki
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Laurent Parry
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Cyrielle Vituret
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Céline Jousse
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Martin Leremboure
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand (ICCF), 63000 Clermont-Ferrand, France
| | - Céline Bourgne
- Digital PCR Platform Facility of the CHU of Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Laurent Mosoni
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Yoann Delorme
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Mehdi Djelloul-Mazouz
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Julien Hermet
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Julien Averous
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Alain Bruhat
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Lydie Combaret
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Daniel Taillandier
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Isabelle Papet
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium
- Welbio Department, WEL Research Institute, Wavre, Belgium
| | - Pierre Fafournoux
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Anne-Catherine Maurin
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| |
Collapse
|
15
|
Chen X, Song M, Tian L, Shan X, Mao C, Chen M, Zhao J, Sami A, Yin H, Ali U, Shi J, Li H, Zhang Y, Zhang J, Wang S, Shi CL, Chen Y, Du XD, Zhu K, Wu L. A plant peptide with dual activity against multidrug-resistant bacterial and fungal pathogens. SCIENCE ADVANCES 2025; 11:eadt8239. [PMID: 40106560 PMCID: PMC11922054 DOI: 10.1126/sciadv.adt8239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Multidrug-resistant (MDR) bacteria pose a major threat to public health, and additional sources of antibacterial candidates are urgently needed. Noncanonical peptides (NCPs), derived from noncanonical small open reading frames, represent small biological molecules with important roles in biology. However, the antibacterial activity of NCPs remains largely unknown. Here, we discovered a plant-derived noncanonical antibacterial peptide (NCBP1) against both Gram-positive and Gram-negative bacteria. NCBP1 is composed of 11 amino acid residues with cationic surface potential and favorable safety and stability. Mechanistic studies revealed that NCBP1 displayed antibacterial activity by targeting phosphatidylglycerol and cardiolipin in bacterial membrane, resulting in membrane damage and dysfunction. Notably, NCBP1 showed promising efficacy in mice. Furthermore, NCBP1 effectively inhibited the growth of plant fungal pathogens and enhanced disease resistance in maize. Our results demonstrate the unexplored antimicrobial potential of plant-derived NCPs and provide an accessible source for the discovery of antimicrobial substances against MDR bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Xueyan Chen
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Meirong Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lei Tian
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinxin Shan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Changsi Mao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Minghui Chen
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiaqi Zhao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Abdul Sami
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Haoqiang Yin
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Usman Ali
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiawei Shi
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Hehuan Li
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuqian Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jinghua Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Shunxi Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Chun-Lin Shi
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanhui Chen
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Liuji Wu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
16
|
Leong KY, Tham SK, Poh CL. Revolutionizing immunization: a comprehensive review of mRNA vaccine technology and applications. Virol J 2025; 22:71. [PMID: 40075519 PMCID: PMC11900334 DOI: 10.1186/s12985-025-02645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
Messenger RNA (mRNA) vaccines have emerged as a transformative platform in modern vaccinology. mRNA vaccine is a powerful alternative to traditional vaccines due to their high potency, safety, and efficacy, coupled with the ability for rapid clinical development, scalability and cost-effectiveness in manufacturing. Initially conceptualized in the 1970s, the first study about the effectiveness of a mRNA vaccine against influenza was conducted in 1993. Since then, the development of mRNA vaccines has rapidly gained significance, especially in combating the COVID-19 pandemic. Their unprecedented success during the COVID-19 pandemic, as demonstrated by the Pfizer-BioNTech and Moderna vaccines, highlighted their transformative potential. This review provides a comprehensive analysis of the mRNA vaccine technology, detailing the structure of the mRNA vaccine and its mechanism of action in inducing immunity. Advancements in nanotechnology, particularly lipid nanoparticles (LNPs) as delivery vehicles, have revolutionized the field. The manufacturing processes, including upstream production, downstream purification, and formulation are also reviewed. The clinical progress of mRNA vaccines targeting viruses causing infectious diseases is discussed, emphasizing their versatility and therapeutic potential. Despite their success, the mRNA vaccine platform faces several challenges, including improved stability to reduce dependence on cold chain logistics in transport, enhanced delivery mechanisms to target specific tissues or cells, and addressing the risk of rare adverse events. High costs associated with encapsulation in LNPs and the potential for unequal global access further complicate their widespread adoption. As the world continues to confront emerging viral threats, overcoming these challenges will be essential to fully harness the potential of mRNA vaccines. It is anticipated that mRNA vaccines will play a major role in defining and shaping the future of global health.
Collapse
Affiliation(s)
- Kai Yuan Leong
- MyGenome, ALPS Global Holding Berhad, Kuala Lumpur, Malaysia
| | - Seng Kong Tham
- MyGenome, ALPS Global Holding Berhad, Kuala Lumpur, Malaysia
| | - Chit Laa Poh
- MyGenome, ALPS Global Holding Berhad, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Ramakrishnan S, Mohan N, Dong Z, Liu M, Qiang L. Unraveling Isoform Complexity: The Roles of M1- and M87-Spastin in Spastic Paraplegia 4 (SPG4). Mov Disord 2025; 40:420-430. [PMID: 39614608 PMCID: PMC11928279 DOI: 10.1002/mds.30072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
Spastic Paraplegia 4 (SPG4) is a debilitating neurodegenerative disorder characterized by progressive muscle weakness and spasticity in the lower limbs, often leading to gait impairment. Central to SPG4 pathology is the die-back degeneration of corticospinal tracts, primarily driven by mutations in the spastin protein encoded by the SPAST gene. SPAST gives rise to two major spastin isoforms, M1- and M87-spastin, which are generated from distinct translation initiation sites. Although spastin is implicated in various cellular functions, the specific roles of each isoform in the pathogenesis of SPG4 remain poorly understood. This review offers an overview of the genetic and structural organization of the M1- and M87-spastin isoforms, highlighting their distinct and overlapping functions, and exploring their potential roles in the haploinsufficiency and gain-of-toxicity mechanisms underlying SPG4. We also present a novel perspective on the evolutionary emergence of M1-spastin and its potential unique involvement in the pathogenesis of SPG4. Drawing upon the latest research, we propose an intriguing hypothesis regarding the hetero-oligomerization of M1- and M87-spastin, exploring how their interaction may drive disease progression and open new avenues for therapeutic intervention. By integrating the current research with these fresh insights, we seek to illuminate the complex molecular mechanisms driving SPG4 and foster the development of innovative therapeutic strategies. This review not only incorporates existing knowledge but also lays the groundwork for future studies aimed at uncovering the isoform-specific roles of spastin in SPG4, with the ultimate goal of advancing targeted treatments for this challenging neurodegenerative disorder. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Skandha Ramakrishnan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Neha Mohan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Zhangji Dong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
18
|
Martinez‐Salas E, Abellan S, Francisco‐Velilla R. Understanding GEMIN5 Interactions: From Structural and Functional Insights to Selective Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70008. [PMID: 40176294 PMCID: PMC11965781 DOI: 10.1002/wrna.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 04/04/2025]
Abstract
GEMIN5 is a predominantly cytoplasmic protein, initially identified as a member of the survival of motor neurons (SMN) complex. In addition, this abundant protein modulates diverse aspects of RNA-dependent processes, executing its functions through the formation of multi-component complexes. The modular organization of structural domains present in GEMIN5 enables this protein to perform various functions through its interaction with distinct partners. The protein is responsible for the recognition of small nuclear (sn)RNAs through its N-terminal region, and therefore for snRNP assembly. Beyond its role in spliceosome assembly, GEMIN5 regulates translation through the interaction with either RNAs or proteins. In the central region, a robust dimerization domain acts as a hub for protein-protein interaction, while a non-canonical RNA-binding site is located towards the C-terminus. Interestingly, GEMIN5 regulates the partitioning of mRNAs into polysomes, likely due to its RNA-binding capacity and its ability to bind native ribosomes. Understanding the functional and structural organization of the protein has brought an increasing interest in the last years with important implications in human disease. Patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. This review discusses recent relevant works aimed at understanding the molecular mechanisms of GEMIN5 activity in gene expression, and also the challenges to discover new functions.
Collapse
|
19
|
Shi Y, Mao J, Wang S, Ma S, Luo L, You J. Pharmaceutical strategies for optimized mRNA expression. Biomaterials 2025; 314:122853. [PMID: 39342919 DOI: 10.1016/j.biomaterials.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Messenger RNA (mRNA)-based immunotherapies and protein in situ production therapies hold great promise for addressing theoretically all the diseases characterized by aberrant protein levels. The safe, stable, and precise delivery of mRNA to target cells via appropriate pharmaceutical strategies is a prerequisite for its optimal efficacy. In this review, we summarize the structural characteristics, mode of action, development prospects, and limitations of existing mRNA delivery systems from a pharmaceutical perspective, with an emphasis on the impacts from formulation adjustments and preparation techniques of non-viral vectors on mRNA stability, target site accumulation and transfection efficiency. In addition, we introduce strategies for synergistical combination of mRNA and small molecules to augment the potency or mitigate the adverse effects of mRNA therapeutics. Lastly, we delve into the challenges impeding the development of mRNA drugs while exploring promising avenues for future advancements.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Siyao Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 166 Qiutaobei Road, Hangzhou, Zhejiang, 310017, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| |
Collapse
|
20
|
Shen Y, Zhang L, Yang T, Li X, Liu C, Li H, Hu Y, Shen H, Li H, Orlov YL, Zhou S, Shen Y. Monosome Stalls the Translation Process Mediated by IGF2BP in Arcuate Nucleus for Puberty Onset Delay. Mol Neurobiol 2025; 62:3167-3181. [PMID: 39235646 DOI: 10.1007/s12035-024-04450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Puberty onset through hypothalamic-pituitary-gonad (HPG) axis as an important reproductive event in postnatal development is initiated from hypothalamic arcuate nucleus (ARC). The growing evidence indicates that translational control also plays an essential role in the final expression of gonadotropin genes. To investigate the role of protein translation and behavior of ribosomes in pubertal onset, the global profiles of transcriptome, single ribosome (monosome), polysome, and tandem mass tag proteome were comprehensively investigated in rat hypothalamic ARCs of different pubertal stages using RNA sequencing, polyribo sequencing, and mass spectrum. Transcriptome-wide enrichments of N6-methyladenosine and IGF2BP2 were investigated using meRIP and RIP sequencing. Monosome was robustly enriched on a large proportion of mRNA in early puberty rats (postnatal day (PND)-25) compared to late puberty (PND-35 and PND-45). Monosome-enriched mRNAs, including HPG axis-related genes, had a large number of upstream ORFs (uORF, < 100 nt) and displayed translational repression in early puberty. Furthermore, insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) could particularly interact with and facilitate monosome to bind with mRNA in early puberty. Finally, ectopic over-expression of IGF2BP2 in hypothalamic ARC via lateral ventricle injection in vivo could recruit monosome to aggregate on mRNA and delay puberty onset. We uncovered a novel regulatory mechanism of IGF2BP2 and monosome for translational control in puberty onset, which shed light on the neuroendocrine regulatory network involved in HPG axis activation.
Collapse
Affiliation(s)
- Yifen Shen
- Central Laboratory, Suzhou Bay Clinical College, Xuzhou Medical University, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China
| | - Le Zhang
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, 215009, Jiangsu, China
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Yang
- Department of Medical Cosmetology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China
| | - Xiaosong Li
- Department of Anorectal Surgery, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Chao Liu
- Central Laboratory, Suzhou Bay Clinical College, Xuzhou Medical University, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China
| | - Hongmei Li
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Yanping Hu
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Hao Shen
- Clinical Laboratory, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Hua Li
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, 215009, Jiangsu, China.
| | - Yuriy L Orlov
- The Digital Health Center, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia.
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Shasha Zhou
- Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200040, China.
| | - Yihang Shen
- Central Laboratory, Suzhou Bay Clinical College, Xuzhou Medical University, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China.
| |
Collapse
|
21
|
Mou R, Niu R, Yang R, Xu G. Engineering crop performance with upstream open reading frames. TRENDS IN PLANT SCIENCE 2025; 30:311-323. [PMID: 39472218 DOI: 10.1016/j.tplants.2024.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 03/08/2025]
Abstract
Plants intricately regulate the expression of protein-coding genes at multiple stages - including mRNA transcription, translation, decay, and protein degradation - to control growth, development, and responses to environmental challenges. Recent research highlights the importance of translational reprogramming as a pivotal mechanism in regulating gene expression across diverse physiological scenarios. This regulatory mechanism bears practical implications, particularly in bolstering crop productivity by manipulating RNA regulatory elements (RREs) to modulate heterologous gene expression through transgene and endogenous gene expression through gene editing. Here, we elucidate the potential of upstream open reading frames (uORFs), a prominent and stringent class of RREs, in optimizing crop performance, exemplifying the efficacy of translational control in enhancing agricultural yields.
Collapse
Affiliation(s)
- Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruoying Yang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; RNA Institute, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
22
|
Akirtava C, May G, McManus CJ. Deciphering the landscape of cis-acting sequences in natural yeast transcript leaders. Nucleic Acids Res 2025; 53:gkaf165. [PMID: 40071932 PMCID: PMC11897887 DOI: 10.1093/nar/gkaf165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Protein synthesis is a vital process that is highly regulated at the initiation step of translation. Eukaryotic 5' transcript leaders (TLs) contain a variety of cis-acting features that influence translation and messenger RNA stability. However, the relative influences of these features in natural TLs are poorly characterized. To address this, we used massively parallel reporter assays (MPRAs) to quantify RNA levels, ribosome loading, and protein levels from 11,027 natural yeast TLs in vivo and systematically compared the relative impacts of their sequence features on gene expression. We found that yeast TLs influence gene expression over two orders of magnitude. While a leaky scanning model using Kozak contexts (-4 to +1 around the AUG start) and upstream AUGs (uAUGs) explained half of the variance in expression across TLs, the addition of other features explained ∼80% of gene expression variation. Our analyses detected key cis-acting sequence features, quantified their effects in vivo, and compared their roles to motifs reported from an in vitro study of ribosome recruitment. In addition, our work quantitated the effects of alternative transcription start site usage on gene expression in yeast. Thus, our study provides new quantitative insights into the roles of TL cis-acting sequences in regulating gene expression.
Collapse
Affiliation(s)
- Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- RNA Bioscience Initiative, University of Colorado – Anschutz, Aurora, CO 80045, United States
| | - Gemma E May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| |
Collapse
|
23
|
Schwehn PM, Falter-Braun P. Inferring protein from transcript abundances using convolutional neural networks. BioData Min 2025; 18:18. [PMID: 40016737 PMCID: PMC11866710 DOI: 10.1186/s13040-025-00434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/14/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions and their expression levels influence phenotypic outcomes, we developed a convolutional neural network (CNN) to predict protein abundances from mRNA abundances, protein sequence, and mRNA sequence in Homo sapiens (H. sapiens) and the reference plant Arabidopsis thaliana (A. thaliana). RESULTS After hyperparameter optimization and initial data exploration, we implemented distinct training modules for value-based and sequence-based data. By analyzing the learned weights, we revealed common and organism-specific sequence features that influence protein-to-mRNA ratios (PTRs), including known and putative sequence motifs. Adding condition-specific protein interaction information identified genes correlated with many PTRs but did not improve predictions, likely due to insufficient data. The integrated model predicted protein abundance on unseen genes with a coefficient of determination (r2) of 0.30 in H. sapiens and 0.32 in A. thaliana. CONCLUSIONS For H. sapiens, our model improves prediction performance by nearly 50% compared to previous sequence-based approaches, and for A. thaliana it represents the first model of its kind. The model's learned motifs recapitulate known regulatory elements, supporting its utility in systems-level and hypothesis-driven research approaches related to protein regulation.
Collapse
Affiliation(s)
- Patrick Maximilian Schwehn
- Institute of Network Biology (INET), Molecular Targets and Therapies Center (MTTC), Helmholtz Munich, Neuherberg, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapies Center (MTTC), Helmholtz Munich, Neuherberg, Germany.
- Microbe-Host Interactions, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
24
|
Zappa F, Muniozguren NL, Conrad JE, Acosta-Alvear D. The integrated stress response engages a cell-autonomous, ligand-independent, DR5-driven apoptosis switch. Cell Death Dis 2025; 16:101. [PMID: 39955274 PMCID: PMC11830069 DOI: 10.1038/s41419-025-07403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
The integrated stress response (ISR) is a fundamental signaling network that leverages the cell's biosynthetic capacity against different stresses to restore homeostasis. However, when homeostasis is unattainable, the ISR switches to drive cell death and eliminate irreparably damaged cells. Previous work has shown that persistent activity of the ISR kinase PERK during unyielding endoplasmic reticulum (ER) stress induces apoptosis downstream of death receptor 5 (DR5) [1]. ER stress provides activating signals that engage the ectodomain (ED) of DR5 to drive its unconventional activation in the Golgi apparatus [1, 2]. Here, using chemical genetics to uncouple stress sensing from ISR activation, we found that DR5 signaling from the Golgi apparatus is integral to the ISR and not specific to ER stress. Furthermore, we show that DR5 activation can be driven solely by increased expression and does not require its ED. These findings indicate that a general ISR kill switch eliminates irreversibly injured cells.
Collapse
Affiliation(s)
- Francesca Zappa
- Department of Cellular, Molecular, and Developmental Biology, University of California, Santa Barbara, USA
- Altos Labs Bay Area Institute of Science, Altos Labs, Inc., Redwood City, USA
| | - Nerea L Muniozguren
- Department of Cellular, Molecular, and Developmental Biology, University of California, Santa Barbara, USA
| | - Julia E Conrad
- Altos Labs Bay Area Institute of Science, Altos Labs, Inc., Redwood City, USA
| | - Diego Acosta-Alvear
- Department of Cellular, Molecular, and Developmental Biology, University of California, Santa Barbara, USA.
- Altos Labs Bay Area Institute of Science, Altos Labs, Inc., Redwood City, USA.
| |
Collapse
|
25
|
Kuse R, Ishii K. Mutations in the 5' untranslated region fine-tune translational control of heterologously expressed genes. Genes Genet Syst 2025; 100:n/a. [PMID: 39662905 DOI: 10.1266/ggs.24-00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Strict control of the expression levels of heterologously introduced protein-coding genes is important for the functional analysis of the protein of interest and its effective use in new situations. For this purpose, various promoters with different expression strengths, codon optimization, and expression stimulation by low-molecular-weight compounds are commonly used. However, methods to control protein expression levels by combining regulation of translation efficiency have not been studied in detail. We previously observed relatively high basal expression of Cre when it was heterologously expressed in fission yeast. Here, we used a fission yeast strain that is susceptible to centromere disruption, and thus highly sensitive to Cre levels, and report successful fine-tuning of heterologous Cre expression by modulating the Cre translation efficiency. To inhibit Cre translation initiation, we generated two mutations in the 5' untranslated region of the Cre mRNAs, both of which interfered with the scanning process of start codon recognition, mediated by specialized ribosomal subunits. These mutations successfully reduced the levels of exogenously expressed Cre to different degrees in fission yeast. Combining them with promoters of different strengths allowed us to conduct centromere disruption experiments in fission yeast. Our data indicate that modification of translational control is an additional tool in heterologous gene expression.
Collapse
Affiliation(s)
- Riku Kuse
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology
| | - Kojiro Ishii
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology
| |
Collapse
|
26
|
Cappato S, Divizia MT, Menta L, Rosti G, Puliti A, Martinheira Da Silva JS, Santamaria G, Di Duca M, Ronchetto P, Faravelli F, Zara F, Bocciardi R. LMX1B haploinsufficiency due to variants in the 5'UTR as a cause of Nail-Patella syndrome. NPJ Genom Med 2025; 10:10. [PMID: 39939609 PMCID: PMC11822002 DOI: 10.1038/s41525-024-00460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/20/2024] [Indexed: 02/14/2025] Open
Abstract
Nail-Patella syndrome (NPS) is a rare autosomal dominant condition due to haploinsufficiency of LMX1B, caused by loss-of-function variants affecting the coding sequence, or partial/whole deletions of the gene. In here, we describe two familial cases of NPS, carrying novel variants of the LMX1B 5'UTR region (-174C>T and -226G>A). To verify their pathogenic role, we carried out a functional characterization, both by reporter gene assays in heterologous systems and in patient's derived cells. We demonstrated that both variants impair LMX1B expression at post-transcriptional level. They introduce two upstream open reading frames (uORFs), out-of-frame with the main LMX1B coding sequence, generating transcripts detected by the non-sense mediated decay (NMD). We also demonstrated that the escape of the altered mRNA from NMD, if any, may lead to the synthesis of an aberrant LMX1B protein.
Collapse
Affiliation(s)
- Serena Cappato
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Teresa Divizia
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ludovica Menta
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Giulia Rosti
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Aldamaria Puliti
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Joana Soraia Martinheira Da Silva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Giuseppe Santamaria
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Di Duca
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Francesca Faravelli
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Renata Bocciardi
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy.
| |
Collapse
|
27
|
Meurs R, De Matos M, Bothe A, Guex N, Weber T, Teleman AA, Ban N, Gatfield D. MCTS2 and distinct eIF2D roles in uORF-dependent translation regulation revealed by in vitro re-initiation assays. EMBO J 2025; 44:854-876. [PMID: 39748120 PMCID: PMC11790910 DOI: 10.1038/s44318-024-00347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Ribosomes scanning from the mRNA 5' cap to the start codon may initiate at upstream open reading frames (uORFs), decreasing protein biosynthesis. Termination at a uORF can lead to re-initiation, where 40S subunits resume scanning and initiate another translation event downstream. The noncanonical translation factors MCTS1-DENR participate in re-initiation at specific uORFs, but knowledge of other trans-acting factors or uORF features influencing re-initiation is limited. Here, we establish a cell-free re-initiation assay using HeLa lysates to address this question. Comparing in vivo and in vitro re-initiation on uORF-containing reporters, we validate MCTS1-DENR-dependent re-initiation in vitro. Using this system and ribosome profiling in cells, we found that knockdown of the MCTS1-DENR homolog eIF2D causes widespread gene deregulation unrelated to uORF translation, and thus distinct to MCTS1-DENR-dependent re-initiation regulation. Additionally, we identified MCTS2, encoded by an Mcts1 retrogene, as a DENR partner promoting re-initiation in vitro, providing a plausible explanation for clinical differences associated with DENR vs. MCTS1 mutations in humans.
Collapse
Affiliation(s)
- Romane Meurs
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Mara De Matos
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Adrian Bothe
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093, Zurich, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, 1015, Lausanne, Switzerland
| | - Tobias Weber
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelio A Teleman
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093, Zurich, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
28
|
Paget‐Bailly P, Helpiquet A, Decourcelle M, Bories R, Bravo IG. Translation of the downstream ORF from bicistronic mRNAs by human cells: Impact of codon usage and splicing in the upstream ORF. Protein Sci 2025; 34:e70036. [PMID: 39840808 PMCID: PMC11751868 DOI: 10.1002/pro.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/19/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
Biochemistry textbooks describe eukaryotic mRNAs as monocistronic. However, increasing evidence reveals the widespread presence and translation of upstream open reading frames preceding the "main" ORF. DNA and RNA viruses infecting eukaryotes often produce polycistronic mRNAs and viruses have evolved multiple ways of manipulating the host's translation machinery. Here, we introduce an experimental model to study gene expression regulation from virus-like bicistronic mRNAs in human cells. The model consists of a short upstream ORF and a reporter downstream ORF encoding a fluorescent protein. We have engineered synonymous variants of the upstream ORF to explore large parameter space, including codon usage preferences, mRNA folding features, and splicing propensity. We show that human translation machinery can translate the downstream ORF from bicistronic mRNAs, albeit reporter protein levels are thousand times lower than those from the upstream ORF. Furthermore, synonymous recoding of the upstream ORF exclusively during elongation significantly influences its own translation efficiency, reveals cryptic splice signals, and modulates the probability of downstream ORF translation. Our results are consistent with a leaky scanning mechanism facilitating downstream ORF translation from bicistronic mRNAs in human cells, offering new insights into the role of upstream ORFs in translation regulation.
Collapse
Affiliation(s)
- Philippe Paget‐Bailly
- Laboratory MIVEGEC (Univ. Montpellier, CNRS, IRD)French National Center for Scientific Research (CNRS)MontpellierFrance
| | - Alexandre Helpiquet
- Laboratory MIVEGEC (Univ. Montpellier, CNRS, IRD)French National Center for Scientific Research (CNRS)MontpellierFrance
| | - Mathilde Decourcelle
- Functional Proteomics PlatformBioCampus Montpellier (University of Montpellier, CNRS, INSERM)MontpellierFrance
| | - Roxane Bories
- Laboratory MIVEGEC (Univ. Montpellier, CNRS, IRD)French National Center for Scientific Research (CNRS)MontpellierFrance
| | - Ignacio G. Bravo
- Laboratory MIVEGEC (Univ. Montpellier, CNRS, IRD)French National Center for Scientific Research (CNRS)MontpellierFrance
| |
Collapse
|
29
|
Bencun M, Spreyer L, Boileau E, Eschenbach J, Frey N, Dieterich C, Völkers M. A novel uORF regulates folliculin to promote cell growth and lysosomal biogenesis during cardiac stress. Sci Rep 2025; 15:3319. [PMID: 39865126 PMCID: PMC11770079 DOI: 10.1038/s41598-025-87107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Abstract
Pathological cardiac remodeling is a maladaptive response that leads to changes in the size, structure, and function of the heart. These changes occur due to an acute or chronic stress on the heart and involve a complex interplay of hemodynamic, neurohormonal and molecular factors. As a critical regulator of cell growth, protein synthesis and autophagy mechanistic target of rapamycin complex 1 (mTORC1) is an important mediator of pathological cardiac remodeling. The tumor suppressor folliculin (FLCN) is part of the network regulating non-canonical mTORC1 activity. FLCN activates mTORC1 by functioning as a guanosine triphosphatase activating protein (GAP). Our work has identified a regulatory upstream open reading frame (uORF) localized in the 5'UTR of the FLCN mRNA. These small genetic elements are important regulators of protein expression. They are particularly important for the regulation of stress-responsive protein synthesis. We have studied the relevance of the FLCN uORF in the regulation of FLCN translation. We show that FLCN downregulation through the uORF is linked to cardiomyocyte growth and increased lysosomal activity. In summary, we have identified uORF-mediated control of RNA translation as another layer of regulation in the complex molecular network controlling cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Maja Bencun
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany.
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Laura Spreyer
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Etienne Boileau
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Jessica Eschenbach
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
30
|
Li S, Noroozizadeh S, Moayedpour S, Kogler-Anele L, Xue Z, Zheng D, Montoya FU, Agarwal V, Bar-Joseph Z, Jager S. mRNA-LM: full-length integrated SLM for mRNA analysis. Nucleic Acids Res 2025; 53:gkaf044. [PMID: 39898548 PMCID: PMC11962594 DOI: 10.1093/nar/gkaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/07/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
The success of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) messenger RNA (mRNA) vaccine has led to increased interest in the design and use of mRNA for vaccines and therapeutics. Still, selecting the most appropriate mRNA sequence for a protein remains a challenge. Several recent studies have shown that the specific mRNA sequence can have a significant impact on the translation efficiency, half-life, degradation rates, and other issues that play a major role in determining vaccine efficiency. To enable the selection of the most appropriate sequence, we developed mRNA-LM, an integrated small language model for modeling the entire mRNA sequence. mRNA-LM uses the contrastive language-image pretraining integration technology to combine three separate language models for the different mRNA segments. We trained mRNA-LM on millions of diverse mRNA sequences from several different species. The unsupervised model was able to learn meaningful biology related to evolution and host-pathogen interactions. Fine-tuning of mRNA-LM allowed us to use it in several mRNA property prediction tasks. As we show, using the full-length integrated model led to accurate predictions, improving on prior methods proposed for this task.
Collapse
Affiliation(s)
- Sizhen Li
- Digital R&D, Sanofi, Cambridge, MA 02141, United States
| | - Shahriar Noroozizadeh
- Digital R&D, Sanofi, Cambridge, MA 02141, United States
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Heinz College, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | | | | | - Zexin Xue
- Digital R&D, Sanofi, Cambridge, MA 02141, United States
- Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Dinghai Zheng
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, United States
| | | | - Vikram Agarwal
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, United States
| | | | - Sven Jager
- Digital R&D, Sanofi, Cambridge, MA 02141, United States
| |
Collapse
|
31
|
Koubek J, Kaur J, Bhandarkar S, Lewis CJT, Niederer RO, Stanciu A, Aitken CE, Gilbert WV. Cellular translational enhancer elements that recruit eukaryotic initiation factor 3. RNA (NEW YORK, N.Y.) 2025; 31:193-207. [PMID: 39626887 PMCID: PMC11789482 DOI: 10.1261/rna.080310.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024]
Abstract
Translation initiation is a highly regulated process that broadly affects eukaryotic gene expression. Eukaryotic initiation factor 3 (eIF3) is a central player in canonical and alternative pathways for ribosome recruitment. Here, we have investigated how direct binding of eIF3 contributes to the large and regulated differences in protein output conferred by different 5'-untranslated regions (5' UTRs) of cellular mRNAs. Using an unbiased high-throughput approach to determine the affinity of budding yeast eIF3 for native 5' UTRs from 4252 genes, we demonstrate that eIF3 binds specifically to a subset of 5' UTRs that contain a short unstructured binding motif, AMAYAA. eIF3-binding mRNAs have higher ribosome density in growing cells and are preferentially translated under certain stress conditions, supporting the functional relevance of this interaction. Our results reveal a new class of translational enhancers and suggest a mechanism by which changes in core initiation factor activity enact mRNA-specific translation programs.
Collapse
Affiliation(s)
- Jiří Koubek
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jaswinder Kaur
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Shivani Bhandarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Cole J T Lewis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Rachel O Niederer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Andrei Stanciu
- Biology Department and Biochemistry Program, Vassar College, Poughkeepsie, New York 12604, USA
| | - Colin Echeverría Aitken
- Biology Department and Biochemistry Program, Vassar College, Poughkeepsie, New York 12604, USA
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
32
|
Liu D, Liu L, Che X, Wu G. Discovery of paradoxical genes: reevaluating the prognostic impact of overexpressed genes in cancer. Front Cell Dev Biol 2025; 13:1525345. [PMID: 39911323 PMCID: PMC11794808 DOI: 10.3389/fcell.2025.1525345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Oncogenes are typically overexpressed in tumor tissues and often linked to poor prognosis. However, recent advancements in bioinformatics have revealed that many highly expressed genes in tumors are associated with better patient outcomes. These genes, which act as tumor suppressors, are referred to as "paradoxical genes." Analyzing The Cancer Genome Atlas (TCGA) confirmed the widespread presence of paradoxical genes, and KEGG analysis revealed their role in regulating tumor metabolism. Mechanistically, discrepancies between gene and protein expression-affected by pre- and post-transcriptional modifications-may drive this phenomenon. Mechanisms like upstream open reading frames and alternative splicing contribute to these inconsistencies. Many paradoxical genes modulate the tumor immune microenvironment, exerting tumor-suppressive effects. Further analysis shows that the stage- and tumor-specific expression of these genes, along with their environmental sensitivity, influence their dual roles in various signaling pathways. These findings highlight the importance of paradoxical genes in resisting tumor progression and maintaining cellular homeostasis, offering new avenues for targeted cancer therapy.
Collapse
Affiliation(s)
| | | | - Xiangyu Che
- *Correspondence: Guangzhen Wu, ; Xiangyu Che,
| | | |
Collapse
|
33
|
Felder S, Nelson IM, Hatfield BM, Weeks KM. Protein binding in an mRNA 5'-UTR sterically hinders translation. RNA (NEW YORK, N.Y.) 2025; 31:143-149. [PMID: 39662963 PMCID: PMC11789479 DOI: 10.1261/rna.080136.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Structures in the 5' untranslated regions (UTRs) of mRNAs can physically modulate translation efficiency by impeding the scanning ribosome or by sequestering the translational start site. We assessed the impact of stable protein binding in 5'- and 3'-UTRs on translation efficiency by targeting the MS2 coat protein to a reporter RNA via its hairpin recognition site. Translation was assessed from the reporter RNA when coexpressed with MS2 coat proteins of varying affinities for the RNA, and at different expression levels. Binding of high-affinity proteins in the 5'-UTR hindered translation, whereas no effect was observed when the coat protein was targeted to the 3'-UTR. Inhibition of translation increased with coat protein concentration and affinity, reaching a maximum of 50%-70%. MS2 proteins engineered to bind two reporter mRNA sites had a stronger effect than those binding a single site. Our findings demonstrate that protein binding in an mRNA 5'-UTR physically impedes translation, with the effect governed by affinity, concentration, and sterics.
Collapse
Affiliation(s)
- Simon Felder
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Irma M Nelson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Breanne M Hatfield
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| |
Collapse
|
34
|
Zheng D, Persyn L, Wang J, Liu Y, Montoya FU, Cenik C, Agarwal V. Predicting the translation efficiency of messenger RNA in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.11.607362. [PMID: 39149337 PMCID: PMC11326250 DOI: 10.1101/2024.08.11.607362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The degree to which translational control is specified by mRNA sequence is poorly understood in mammalian cells. Here, we constructed and leveraged a compendium of 3,819 ribosomal profiling datasets, distilling them into a transcriptome-wide atlas of translation efficiency (TE) measurements encompassing >140 human and mouse cell types. We subsequently developed RiboNN, a multitask deep convolutional neural network, and classic machine learning models to predict TEs in hundreds of cell types from sequence-encoded mRNA features, achieving state-of-the-art performance (r=0.79 in human and r=0.78 in mouse for mean TE across cell types). While the majority of earlier models solely considered 5' UTR sequence1, RiboNN integrates contributions from the full-length mRNA sequence, learning that the 5' UTR, CDS, and 3' UTR respectively possess ~67%, 31%, and 2% per-nucleotide information density in the specification of mammalian TEs. Interpretation of RiboNN revealed that the spatial positioning of low-level di- and tri-nucleotide features (i.e., including codons) largely explain model performance, capturing mechanistic principles such as how ribosomal processivity and tRNA abundance control translational output. RiboNN is predictive of the translational behavior of base-modified therapeutic RNA, and can explain evolutionary selection pressures in human 5' UTRs. Finally, it detects a common language governing mRNA regulatory control and highlights the interconnectedness of mRNA translation, stability, and localization in mammalian organisms.
Collapse
Affiliation(s)
- Dinghai Zheng
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA
| | - Logan Persyn
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Wang
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA
| | - Yue Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Vikram Agarwal
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA
| |
Collapse
|
35
|
Lewis CJT, Xie LH, Bhandarkar SM, Jin D, Abdallah K, Draycott AS, Chen Y, Thoreen CC, Gilbert WV. Quantitative profiling of human translation initiation reveals elements that potently regulate endogenous and therapeutically modified mRNAs. Mol Cell 2025; 85:445-459.e5. [PMID: 39706187 PMCID: PMC11780321 DOI: 10.1016/j.molcel.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/18/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
mRNA therapeutics offer a potentially universal strategy for the efficient development and delivery of therapeutic proteins. Current mRNA vaccines include chemically modified nucleotides to reduce cellular immunogenicity. Here, we develop an efficient, high-throughput method to measure human translation initiation on therapeutically modified as well as endogenous RNAs. Using systems-level biochemistry, we quantify ribosome recruitment to tens of thousands of human 5' untranslated regions (UTRs) including alternative isoforms and identify sequences that mediate 200-fold effects. We observe widespread effects of coding sequences on translation initiation and identify small regulatory elements of 3-6 nucleotides that are sufficient to potently affect translational output. Incorporation of N1-methylpseudouridine (m1Ψ) selectively enhances translation by specific 5' UTRs that we demonstrate surpass those of current mRNA vaccines. Our approach is broadly applicable to dissecting mechanisms of human translation initiation and engineering more potent therapeutic mRNAs.
Collapse
Affiliation(s)
- Cole J T Lewis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Li H Xie
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Danni Jin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Kyrillos Abdallah
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Austin S Draycott
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Yixuan Chen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Carson C Thoreen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
36
|
Zheng Z, Lin F, Zhao B, Chen G, Wei C, Chen X, Nie R, Zhang R, Zhao Z, Zhou Z, Li Y, Dai W, Lin Y, Chen Y. ALKBH5 suppresses gastric cancer tumorigenesis and metastasis by inhibiting the translation of uncapped WRAP53 RNA isoforms in an m6A-dependent manner. Mol Cancer 2025; 24:19. [PMID: 39815301 PMCID: PMC11734446 DOI: 10.1186/s12943-024-02223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025] Open
Abstract
The N6-methyladenosine (m6A) modification serves as an essential epigenetic regulator in eukaryotic cells, playing a significant role in tumorigenesis and cancer progression. However, the detailed biological functions and underlying mechanisms of m6A regulation in gastric cancer (GC) are poorly understood. Our research revealed that the m6A demethylase ALKBH5 was markedly downregulated in GC tissues, which was associated with poor patient prognosis. Functional studies demonstrated that suppressing ALKBH5 expression enhanced GC cell proliferation, migration, and invasion. Mechanistically, ALKBH5 removed m6A modifications from the 5' uncapped and polyadenylated transcripts (UPTs) of WRAP53. This demethylation decreased WRAP53 stability and translation efficiency. The lower level of WRAP53 disrupts the interaction between USP6 and RALBP1 protein, promoting RALBP1 degradation and thereby suppressing the PI3K/Akt/mTOR signaling cascade, ultimately attenuating the progression of GC. These findings highlight the pivotal role of ALKBH5-mediated m6A demethylation in inhibiting GC progression and the potential role of ALKBH5 as a promising biomarker and therapeutic target for GC intervention.
Collapse
Affiliation(s)
- Ziqi Zheng
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Feizhi Lin
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Baiwei Zhao
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Guoming Chen
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Chengzhi Wei
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xiaojiang Chen
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Runcong Nie
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ruopeng Zhang
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Zhoukai Zhao
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Zhiwei Zhou
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yuanfang Li
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Weigang Dai
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Er Road, Guangzhou, 510060, P. R. China.
| | - Yijia Lin
- Department of General Surgery (Gastrointestinal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, NO. 26 Yuancun Erheng Road, Guangzhou, 510060, People's Republic of China.
| | - Yongming Chen
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
37
|
Martinez-Salas E, Francisco-Velilla R. GEMIN5 and neurodevelopmental diseases: from functional insights to disease perception. Neural Regen Res 2025; 21:01300535-990000000-00666. [PMID: 39819844 DOI: 10.4103/nrr.nrr-d-24-01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025] Open
Abstract
ABSTRACT GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein-protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins. This protein exerts a different role in translation regulation depending on its physiological state, such that while GEMIN5 down-regulates global RNA translation, the C-terminal half of the protein promotes translation of its mRNA. Additionally, GEMIN5 is responsible for the preferential partitioning of mRNAs into polysomes. Besides selective translation, GEMIN5 forms part of distinct ribonucleoprotein complexes, reflecting the dynamic organization of macromolecular complexes in response to internal and external signals. In accordance with its contribution to fundamental cellular processes, recent reports described clinical loss of function mutants suggesting that GEMIN5 deficiency is detrimental to cell growth and survival. Remarkably, patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. Molecular analyses of individual variants, which are defective in protein dimerization, display decreased levels of ribosome association, reinforcing the involvement of the protein in translation regulation. Importantly, the number of clinical variants and the phenotypic spectrum associated with GEMIN5 disorders is increasing as the knowledge of the protein functions and the pathways linked to its activity augments. Here we discuss relevant advances concerning the functional and structural features of GEMIN5 and its separate domains in RNA-binding, protein interactome, and translation regulation, and how these data can help to understand the involvement of protein malfunction in clinical variants found in patients developing neurodevelopmental disorders.
Collapse
|
38
|
Chen J, Liu N, Qi H, Neuenkirchen N, Huang Y, Lin H. Piwi regulates the usage of alternative transcription start sites in the Drosophila ovary. Nucleic Acids Res 2025; 53:gkae1160. [PMID: 39657757 PMCID: PMC11724274 DOI: 10.1093/nar/gkae1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/03/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
Alternative transcription initiation, which refers to the transcription of a gene from different transcription start sites (TSSs), is prevalent across metazoans and has important biological functions. Although transcriptional regulation has been extensively studied, the mechanism that selects one TSS over others within a gene remains elusive. Using the Cap Analysis of Gene Expression sequencing (CAGE-seq) method, we discovered that Piwi, an RNA-binding protein, regulates TSS usage in at least 87 genes. In piwi-deficient Drosophila ovaries, these genes displayed significantly altered TSS usage (ATU). The regulation of TSS usage occurred in both germline and somatic cells in ovaries, as well as in cultured ovarian somatic cells (OSCs). Correspondingly, RNA Polymerase II (Pol II) initiation and elongation at the TSSs of ATU genes were affected in germline-piwi-knockdown ovaries and piwi-knockdown OSCs. Furthermore, we identified a Facilitates Chromatin Transcription (FACT) complex component, Ssrp, that is essential for mRNA elongation, as a novel interactor of Piwi in the nucleus. Temporally controlled knockdown of ssrp affected TSS usage in ATU genes, whereas overexpression of ssrp partially rescued the TSS usage of ATU genes in piwi mutant ovaries. Thus, Piwi may interact with Ssrp to regulate TSS usage in Drosophila ovaries by affecting Pol II initiation and elongation.
Collapse
Affiliation(s)
- Jiaying Chen
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Genetics, 333 Cedar St., New Haven, CT 06511, USA
| | - Na Liu
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Hongying Qi
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Nils Neuenkirchen
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Yuedong Huang
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Haifan Lin
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| |
Collapse
|
39
|
Andreev DE, Shatsky IN. A Portrait of Three Mammalian Bicistronic mRNA Transcripts, Derived from the Genes ASNSD1, SLC35A4, and MIEF1. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:32-43. [PMID: 40058972 DOI: 10.1134/s0006297924603630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 05/13/2025]
Abstract
Recent advances in functional genomics have allowed identification of thousands of translated short open reading frames (sORFs) in the 5' leaders of mammalian mRNA transcripts. While most sORFs are unlikely to encode functional proteins, a small number have been shown to have evolved as protein-coding genes. As a result, dozens of these sORFs have already been annotated as protein-coding ORFs. mRNAs that contain both a protein-coding sORF and an annotated coding sequence (CDS) are referred to as bicistronic transcripts. In this study, we focus on three genes - ASNSD1, SLC35A4, and MIEF1 - which give rise to bicistronic mRNAs. We discuss recent findings regarding functional investigation of the corresponding polypeptide products, as well as how their translation is regulated, and how this unusual genetic arrangement may have evolved.
Collapse
Affiliation(s)
- Dmitry E Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
40
|
Jin L, Zhou Y, Zhang S, Chen SJ. mRNA vaccine sequence and structure design and optimization: Advances and challenges. J Biol Chem 2025; 301:108015. [PMID: 39608721 PMCID: PMC11728972 DOI: 10.1016/j.jbc.2024.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
Messenger RNA (mRNA) vaccines have emerged as a powerful tool against communicable diseases and cancers, as demonstrated by their huge success during the coronavirus disease 2019 (COVID-19) pandemic. Despite the outstanding achievements, mRNA vaccines still face challenges such as stringent storage requirements, insufficient antigen expression, and unexpected immune responses. Since the intrinsic properties of mRNA molecules significantly impact vaccine performance, optimizing mRNA design is crucial in preclinical development. In this review, we outline four key principles for optimal mRNA sequence design: enhancing ribosome loading and translation efficiency through untranslated region (UTR) optimization, improving translation efficiency via codon optimization, increasing structural stability by refining global RNA sequence and extending in-cell lifetime and expression fidelity by adjusting local RNA structures. We also explore recent advancements in computational models for designing and optimizing mRNA vaccine sequences following these principles. By integrating current mRNA knowledge, addressing challenges, and examining advanced computational methods, this review aims to promote the application of computational approaches in mRNA vaccine development and inspire novel solutions to existing obstacles.
Collapse
Affiliation(s)
- Lei Jin
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Yuanzhe Zhou
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Sicheng Zhang
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA; Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
41
|
Petrychenko V, Yi SH, Liedtke D, Peng BZ, Rodnina MV, Fischer N. Structural basis for translational control by the human 48S initiation complex. Nat Struct Mol Biol 2025; 32:62-72. [PMID: 39289545 PMCID: PMC11746136 DOI: 10.1038/s41594-024-01378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/24/2024] [Indexed: 09/19/2024]
Abstract
The selection of an open reading frame (ORF) for translation of eukaryotic mRNA relies on remodeling of the scanning 48S initiation complex into an elongation-ready 80S ribosome. Using cryo-electron microscopy, we visualize the key commitment steps orchestrating 48S remodeling in humans. The mRNA Kozak sequence facilitates mRNA scanning in the 48S open state and stabilizes the 48S closed state by organizing the contacts of eukaryotic initiation factors (eIFs) and ribosomal proteins and by reconfiguring mRNA structure. GTPase-triggered large-scale fluctuations of 48S-bound eIF2 facilitate eIF5B recruitment, transfer of initiator tRNA from eIF2 to eIF5B and the release of eIF5 and eIF2. The 48S-bound multisubunit eIF3 complex controls ribosomal subunit joining by coupling eIF exchange to gradual displacement of the eIF3c N-terminal domain from the intersubunit interface. These findings reveal the structural mechanism of ORF selection in human cells and explain how eIF3 could function in the context of the 80S ribosome.
Collapse
Affiliation(s)
- Valentyn Petrychenko
- Project Group Molecular Machines in Motion, Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sung-Hui Yi
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Insempra GmbH, Planegg, Germany
| | - David Liedtke
- Project Group Molecular Machines in Motion, Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Niels Fischer
- Project Group Molecular Machines in Motion, Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
42
|
Materniak-Kornas M, Piórkowska K, Ropka-Molik K, Musiał AD, Kowalik J, Kycko A, Kuźmak J. First Report of SNPs Detection in TMEM154 Gene in Sheep from Poland and Their Association with SRLV Infection Status. Pathogens 2024; 14:16. [PMID: 39860977 PMCID: PMC11768335 DOI: 10.3390/pathogens14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Small ruminant lentiviruses (SRLVs) infect sheep, causing a multiorganic disease called maedi-visna or ovine progressive pneumonia, which significantly affects the production and welfare of sheep, generating serious economic losses. Although not all infected animals develop fully symptomatic disease, they constantly spread the virus in the flock. Since the infection is incurable and no vaccine is available, another approach is necessary to control SRLV infections. In recent years, an alternative for culling infected animals has become the approach based on identifying genetic markers for selecting SRLV-resistant individuals. Recent reports revealed several candidates, including gene encoding transmembrane protein 154 (TMEM154). Several single nucleotide polymorphisms (SNPs) are found within this gene in sheep of different breeds, but only some can be considered as resistant markers. This study aimed to investigate the presence of single polymorphic sites in TMEM154 gene in sheep of selected Polish flocks and assess their association with the infection and proviral load in the context of susceptibility to SRLV infection. In total 107 sheep, representing three breeds, were screened for their SRLV infection status by serological and PCR testing. All these animals were also genotyped to characterize the presence of SNPs in TMEM154 gene and estimate their potential of being the SRLV-resistance marker. The frequency of identified alleles differed among breeds. Moreover, the positive association between TMEM154 genotype and SRLV status was found for E35K polymorphism and two polymorphic sites in 5'UTR in one of analyzed breed. However, when the relationship between SNPs and SRLV proviral load was analyzed, five had a strong association, considering the whole population of tested sheep. Presented data, for the first time, identified the presence of SNPs in TMEM154 gene in sheep housed in Polish flocks and suggested that selecting SRLV-resistant animals based on this analysis might be possible, but further validation in a larger group of sheep is required.
Collapse
Affiliation(s)
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice, Poland (A.D.M.)
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice, Poland (A.D.M.)
| | - Adrianna Dominika Musiał
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice, Poland (A.D.M.)
| | - Joanna Kowalik
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Anna Kycko
- Department of Pathology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
43
|
Aoki-Mutsuro H, Tamukai R, Fukui M, Wajiki M, Imamura T, Ryabova LA, Schepetilnikov MV, Teramura H, Kusano H, Shimada H. Identification of a minimal strong translation enhancer within the 5'-untranslated region of OsMac3 mRNA. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:437-446. [PMID: 40083565 PMCID: PMC11897733 DOI: 10.5511/plantbiotechnology.24.0909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/09/2024] [Indexed: 03/16/2025]
Abstract
The long 5' untranslated region (5'UTR) exhibits enhancer activity in translation of rice OsMac3 mRNA. In this report, we describe elements of OsMac3 5'UTR that may be responsible for its enhancer activity, including a long uORF and several secondary structure elements. OsMac3 5'UTR can be dissected into three stem-loop structures SL1, small SL and SL2, where the uORF starts within SL1 and ends within SL2. As expected, uORF inhibits translation of downstream ORF since deletion of the uORF AUG or the SL1 stem-loop increases translation by approximately two-fold. Thus, the 158 nt 3' region of the 5'UTR lacking SL1 together with the AUG uORF, which has significant enhancer activity, was named dMac3. We investigated two critical regions within dMac3 mRNA that influence its translation: SL2, which destabilization potentially decreases translation activity, and another 13 nt located downstream of SL2. We further confirmed that dMac3 promotes mRNA translation initiation in an in vitro translation system and during transient expression in either cultured cells or Nicotiana benthamiana leaves. Thus, the dMac3 5'UTR is a useful tool for efficient protein production in various in vitro and in vivo translation systems.
Collapse
Affiliation(s)
- Hiromi Aoki-Mutsuro
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Ryoko Tamukai
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Miho Fukui
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Mai Wajiki
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Tomohiro Imamura
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, 67084 Strasbourg, France
| | | | - Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Hiroaki Kusano
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| |
Collapse
|
44
|
Carbonell-Roig J, Aaltonen A, Wilson K, Molinari M, Cartocci V, McGuirt A, Mosharov E, Kehr J, Lieberman OJ, Sulzer D, Borgkvist A, Santini E. Dysregulated acetylcholine-mediated dopamine neurotransmission in the eIF4E Tg mouse model of autism spectrum disorders. Cell Rep 2024; 43:114997. [PMID: 39607825 DOI: 10.1016/j.celrep.2024.114997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Autism spectrum disorder (ASD) consists of diverse neurodevelopmental conditions where core behavioral symptoms are critical for diagnosis. Altered dopamine (DA) neurotransmission in the striatum has been suggested to contribute to the behavioral features of ASD. Here, we examine DA neurotransmission in a mouse model of ASD characterized by elevated expression of eukaryotic initiation factor 4E (eIF4E), a key regulator of cap-dependent translation, using a comprehensive approach that encompasses genetics, behavior, synaptic physiology, and imaging. The results indicate that increased eIF4E expression leads to behavioral inflexibility and impaired striatal DA release. The loss of normal DA neurotransmission is due to a defect in nicotinic receptor signaling that regulates calcium dynamics in dopaminergic axons. These findings provide a mechanistic understanding of ASD symptoms and offer a foundation for targeted therapeutic interventions by revealing the intricate interplay between eIF4E, DA neurotransmission, and behavioral flexibility.
Collapse
Affiliation(s)
| | - Alina Aaltonen
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Karin Wilson
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Maya Molinari
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Veronica Cartocci
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Avery McGuirt
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Eugene Mosharov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jan Kehr
- Pronexus Analytical AB, 16733 Stockholm-Bromma, Sweden
| | - Ori J Lieberman
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Anders Borgkvist
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| | - Emanuela Santini
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
45
|
Han G, Cui M, Lu P, Zhang T, Yin R, Hu J, Chai J, Wang J, Gao K, Liu W, Yao S, Cao Z, Zheng Y, Tian W, Guo R, Shen M, Liu Z, Li W, Zhao S, Lin X, Zhang Y, Song K, Sun Y, Zhou F, Zhang H. Selective translation of nuclear mitochondrial respiratory proteins reprograms succinate metabolism in AML development and chemoresistance. Cell Stem Cell 2024; 31:1777-1793.e9. [PMID: 39357516 DOI: 10.1016/j.stem.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Mitochondrial adaptations dynamically reprogram cellular bioenergetics and metabolism and confer key properties for human cancers. However, the selective regulation of these mitochondrial responses remains largely elusive. Here, inspired by a genetic screening in acute myeloid leukemia (AML), we identify RAS effector RREB1 as a translational regulator and uncover a unique translation control system for nuclear-encoded mitochondrial proteins in human cancers. RREB1 deletion reduces mitochondrial activities and succinate metabolism, thereby damaging leukemia stem cell (LSC) function and AML development. Replenishing complex II subunit SDHD rectifies these deficiencies. Notably, inhibition of complex II re-sensitizes AML cells to venetoclax treatment. Mechanistically, a short RREB1 variant binds to a conserved motif in the 3' UTRs and cooperates with elongation factor eEF1A1 to enhance protein translation of nuclear-encoded mitochondrial mRNAs. Overall, our findings reveal a unique translation control mechanism for mitochondrial adaptations in AML pathogenesis and provide a potential strategy for targeting this vulnerability of LSCs.
Collapse
Affiliation(s)
- Guoqiang Han
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Manman Cui
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Pengbo Lu
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Tiantian Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rong Yin
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jin Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jihua Chai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kexin Gao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Weidong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuxin Yao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Ziyan Cao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yanbing Zheng
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Wen Tian
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Min Shen
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Zhao
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangpeng Lin
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhui Zhang
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Kehan Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yan Sun
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Haojian Zhang
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; RNA Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
46
|
Andreev DE, Tierney JAS, Baranov PV. Translation Complex Profile Sequencing Allows Discrimination of Leaky Scanning and Reinitiation in Upstream Open Reading Frame-controlled Translation. J Mol Biol 2024; 436:168850. [PMID: 39486574 DOI: 10.1016/j.jmb.2024.168850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Upstream open reading frames (uORFs) are a class of translated regions (translons) in mRNA 5' leaders. uORFs are believed to be pervasive regulators of the translation of mammalian mRNAs. Some uORFs are highly repressive but others have little or no impact on downstream mRNA translation either due to inefficient recognition of their start codon(s) or/and due to efficient reinitiation after uORF translation. While experiments with uORF reporter constructs proved to be instrumental in the investigation of uORF-mediated mechanisms of translation control, they can have serious limitations as manipulations with uORF sequences can yield various artefacts. Here we propose a general approach for using translation complex profiling (TCP-seq) data for exploring uORF regulatory characteristics. Using several examples, we show how TCP-seq could be used to estimate both repressiveness and modes of action of individual uORFs. We demonstrate how this approach could be used to assess the mechanisms of uORF-mediated translation control in the mRNA of several human genes, including EIF5, IFRD1, MDM2, MIEF1, PPP1R15B, TAF7, and UCP2.
Collapse
Affiliation(s)
- Dmitri E Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, 117997 Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Jack A S Tierney
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland; SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork T12 K8AF, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland.
| |
Collapse
|
47
|
Gummadi ASC, Muppa DK, Yella VR. Dissecting non-B DNA structural motifs in untranslated regions of eukaryotic genomes. Genomics Inform 2024; 22:25. [PMID: 39605082 PMCID: PMC11603647 DOI: 10.1186/s44342-024-00028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
The untranslated regions (UTRs) of genes significantly impact various biological processes, including transcription, posttranscriptional control, mRNA stability, localization, and translation efficiency. In functional areas of genomes, non-B DNA structures such as cruciform, curved, triplex, G-quadruplex, and Z-DNA structures are common and have an impact on cellular physiology. Although the role of these structures in cis-regulatory regions such as promoters is well established in eukaryotic genomes, their prevalence within UTRs across different eukaryotic classes has not been extensively documented. Our study investigated the prevalence of various non-B DNA motifs within the 5' and 3' UTRs across diverse eukaryotic species. Our comparative analysis encompassed the 5'-UTRs and 3'UTRs of 360 species representing diverse eukaryotic domains of life, including Arthropoda (Diptera, Hemiptera, and Hymenoptera), Chordata (Artiodactyla, Carnivora, Galliformes, Passeriformes, Primates, Rodentia, Squamata, Testudines), Magnoliophyta (Brassicales), Fabales (Poales), and Nematoda (Rhabditida), on the basis of datasets derived from the UTRdb. We observed that species belonging to taxonomic orders such as Rhabditida, Diptera, Brassicales, and Hemiptera present a prevalence of curved DNA motifs in their UTRs, whereas orders such as Testudines, Galliformes, and Rodentia present a preponderance of G-quadruplexes in both UTRs. The distribution of motifs is conserved across different taxonomic classes, although species-specific variations in motif preferences were also observed. Our research unequivocally illuminates the prevalence and potential functional implications of non-B DNA motifs, offering invaluable insights into the evolutionary and biological significance of these structures.
Collapse
Affiliation(s)
- Aruna Sesha Chandrika Gummadi
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India
| | - Divya Kumari Muppa
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India
| | - Venakata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India.
| |
Collapse
|
48
|
Pleschka S. Special Issue "Host Targeted Therapeutics Against Virus Infections". Viruses 2024; 16:1825. [PMID: 39772137 PMCID: PMC11680107 DOI: 10.3390/v16121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The COVID-19 pandemic, along with the emergence and sustained transmission of highly pathogenic avian influenza viruses (H5N1) in U [...].
Collapse
Affiliation(s)
- Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, 35392 Giessen, Germany;
- German Center for Infection Research (DZIF), Partner Site Giessen, 35392 Giessen, Germany
| |
Collapse
|
49
|
Shirasaki T, Lenarcic E, Misumi I, Xie L, Fusco WG, Yonish B, Das A, Kim H, Cameron CE, Léger-Abraham M, Chen X, Cullen JM, Whitmire JK, Li Y, Duncan JA, Moorman NJ, Lemon SM. Hepatovirus translation requires PDGFA-associated protein 1, an eIF4E-binding protein regulating endoplasmic reticulum stress responses. SCIENCE ADVANCES 2024; 10:eadq6342. [PMID: 39565848 PMCID: PMC11578187 DOI: 10.1126/sciadv.adq6342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
The overexpression and misfolding of viral proteins in the endoplasmic reticulum (ER) may cause cellular stress, thereby inducing a cytoprotective, proteostatic host response involving phosphorylation of eukaryotic translation initiation factor 2 subunit alpha (eIF2α). Here, we show that hepatitis A virus, a positive-strand RNA virus responsible for infectious hepatitis, adopts a stress-resistant, eIF2α-independent mechanism of translation to ensure the synthesis of viral proteins within the infected liver. Cap-independent translation directed by the hepatovirus internal ribosome entry site and productive hepatovirus infection of mice both require platelet-derived growth factor subunit A (PDGFA)-associated protein 1 (PDAP1), a small phosphoprotein of unknown function with eIF4E-binding activity. PDAP1 also interacts with eIF1A and is essential for translating stress-resistant host messenger RNAs that evade the proteostatic response to ER stress and that encode proteins promoting the survival of stressed cells.
Collapse
Affiliation(s)
- Takayoshi Shirasaki
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erik Lenarcic
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ichiro Misumi
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William G. Fusco
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan Yonish
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anshuman Das
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hyejeong Kim
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig E. Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mélissa Léger-Abraham
- Division of Molecular Medicine, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Xian Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M. Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jason K. Whitmire
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - You Li
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph A. Duncan
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathaniel J. Moorman
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
50
|
Jagannatha P, Tankka AT, Lorenz DA, Yu T, Yee BA, Brannan KW, Zhou CJ, Underwood JG, Yeo GW. Long-read Ribo-STAMP simultaneously measures transcription and translation with isoform resolution. Genome Res 2024; 34:2012-2024. [PMID: 38906680 PMCID: PMC11610582 DOI: 10.1101/gr.279176.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Transcription and translation are intertwined processes in which mRNA isoforms are crucial intermediaries. However, methodological limitations in analyzing translation at the mRNA isoform level have left gaps in our understanding of critical biological processes. To address these gaps, we developed an integrated computational and experimental framework called long-read Ribo-STAMP (LR-Ribo-STAMP) that capitalizes on advancements in long-read sequencing and RNA-base editing-mediated technologies to simultaneously profile translation and transcription at both the gene and mRNA isoform levels. We also developed the EditsC metric to quantify editing and leverage the single-molecule, full-length transcript information provided by long-read sequencing. Here, we report concordance between gene-level translation profiles obtained with long-read and short-read Ribo-STAMP. We show that LR-Ribo-STAMP successfully profiles translation of mRNA isoforms and links regulatory features, such as upstream open reading frames (uORFs), to translation measurements. We apply LR-Ribo-STAMP to discovering translational differences at both the gene and isoform levels in a triple-negative breast cancer cell line under normoxia and hypoxia and find that LR-Ribo-STAMP effectively delineates orthogonal transcriptional and translation shifts between conditions. We also discover regulatory elements that distinguish translational differences at the isoform level. We highlight GRK6, in which hypoxia is observed to increase expression and translation of a shorter mRNA isoform, giving rise to a truncated protein without the AGC Kinase domain. Overall, LR-Ribo-STAMP is an important advance in our repertoire of methods that measures mRNA translation with isoform sensitivity.
Collapse
Affiliation(s)
- Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California 92093, USA
| | - Alexandra T Tankka
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Daniel A Lorenz
- Sanford Laboratories for Innovative Medicine, La Jolla, California 92121, USA
| | - Tao Yu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Kristopher W Brannan
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Cathy J Zhou
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA;
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California 92093, USA
- Sanford Laboratories for Innovative Medicine, La Jolla, California 92121, USA
| |
Collapse
|