1
|
Schmidleithner L, Stüve P, Feuerer M. Transposable elements as instructors of the immune system. Nat Rev Immunol 2025:10.1038/s41577-025-01172-3. [PMID: 40301669 DOI: 10.1038/s41577-025-01172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 05/01/2025]
Abstract
Transposable elements (TEs) are mobile repetitive nucleic acid sequences that have been incorporated into the genome through spontaneous integration, accounting for almost 50% of human DNA. Even though most TEs are no longer mobile today, studies have demonstrated that they have important roles in different biological processes, such as ageing, embryonic development, and cancer. TEs influence these processes through various mechanisms, including active transposition of TEs contributing to ongoing evolution, transposon transcription generating RNA or protein, and by influencing gene regulation as enhancers. However, how TEs interact with the immune system remains a largely unexplored field. In this Perspective, we describe how TEs might influence different aspects of the immune system, such as innate immune responses, T cell activation and differentiation, and tissue adaptation. Furthermore, TEs can serve as a source of neoantigens for T cells in antitumour immunity. We suggest that TE biology is an important emerging field of immunology and discuss the potential to harness the TE network therapeutically, for example, to improve immunotherapies for cancer and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Chair for Immunology, University Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Li C, Li J, Du S, Ma Y, Guo Y, Zhang X, Wang B, Zhu S, An H, Chen M, Guo J, Han L, Ge J, Qian X, Schedl T, Guo X, Wang Q. FTDC1/2, oocyte-specific cofactors of DNMT1 required for epigenetic regulation and embryonic development. Cell Death Differ 2025:10.1038/s41418-025-01518-3. [PMID: 40295817 DOI: 10.1038/s41418-025-01518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
The unique epigenetic patterns during gametogenesis and embryonic development indicate the existence of specialized methylation machinery. In the present study, we describe the discovery of two oocyte-specific cofactors of DNA methyltransferase 1 (DNMT1), encoded by uncharacterized genes, ferritin domain containing 1 and 2 (Ftdc1 and Ftdc2). Genetic ablation of Ftdc1 or Ftdc2 causes midgestation defects and female infertility. FTDC1 or FTDC2 depletion induces the progressive loss of DNA methylation including imprinted regions in early embryos. This loss correlates with a marked reduction in DNMT1 protein due to increased degradation, likely via the ubiquitin-proteasome pathway. Mechanistically, we find that FTDC1, FTDC2 and DNMT1 form a complex by direct interactions, thereby stabilizing each other. Surprisingly, knockout of Ftdc1 or Ftdc2 displayed stronger DNA demethylation phenotypes and earlier embryonic lethality than the Dnmt1-null mutant, implying their unique functions. These data suggest that FTDC1/2 are crucial players specifically involved in maintaining genomic methylation during embryogenesis, offering new insights into the epigenetic control of mammalian development.
Collapse
Affiliation(s)
- Congyang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Jiashuo Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Siyu Du
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Yunfei Ma
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Huiqing An
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Ming Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Junjie Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China.
| | - Qiang Wang
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Patra SK. An epigenetic perspective of viral diseases, including cancer and autophagy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167664. [PMID: 39798819 DOI: 10.1016/j.bbadis.2025.167664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
4
|
Lin Q, Ge X, Li X, Gu F, Gao L, Su T, Chen Y, Yang L, Liu D, Han B, Chen C. Wuzi Yanzong Decoction Ameliorates Oligoasthenozoospermia by Up-Regulating Methyltransferase and Increasing Spata, Bcl, and Pik3 Series Genes Methylation Level. Chem Biodivers 2025; 22:e202401984. [PMID: 39441614 DOI: 10.1002/cbdv.202401984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Wuzi Yanzong decoction (WZYZD) belongs to the traditional formula for treating male infertility caused by oligoasthenozoospermia (OLI). This research aims to elucidate the therapeutic substance basis and potential pharmacological mechanisms of WZYZD in treating OLI. A total of 52 chemical ingredients were identified from WZYZD. HE and TUNEL staining demonstrated that WZYZD can markedly alleviate OLI. Immunofluorescence analysis showed that WZYZD can significantly increase the expression levels of DNMT3 A, PIWIL1, SETDB1, and PRMT5. Methyl capture sequencing proved that WZYZD can markedly upregulate the methylated level of Spata, Bcl, and Pik3 series genes. Network pharmacology analysis proved that WZYZD can ameliorate OLI through BCL-2 and PI3 K-AKT signaling pathways. The immunofluorescence assay of BCL-2 and SPATA18 proved the aforementioned results. The potential mechanism of WZYZD in treating OLI mainly involved recruiting methyltransferase DNMT3 A, PIWIL1, PRMT5, and SETDB1 and increasing the methylation degree of Spata, Bcl, and Pik3 series genes.
Collapse
Affiliation(s)
- Qiyan Lin
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Xiyu Ge
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Xia Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Fangli Gu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Leilei Gao
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Ting Su
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Yanjun Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| |
Collapse
|
5
|
Sorkin J, Tilton K, Lawlor MA, Sarathy SN, Liang S, Albanese A, Rabbani M, Hammoud SS, Ellison CE, Pratto F, Jain D. Intercellular bridges are essential for transposon repression and meiosis in the male germline. Nat Commun 2025; 16:1488. [PMID: 39929837 PMCID: PMC11811169 DOI: 10.1038/s41467-025-56742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Germ cell connectivity via intercellular bridges is a widely conserved feature across metazoans. However, its functional significance is poorly understood. Intercellular bridges are essential for fertility in male mice as genetic ablation of a critical bridge component, TEX14, causes spermatogenic failure, but the underlying reasons are unknown. Here we utilized a Tex14 hypomorph with reduced intercellular bridges along with Tex14-null mice that completely lack bridges to examine the roles of germ cell connectivity during spermatogenesis. We report that in males deficient for TEX14 and intercellular bridges, germ cells fail to complete meiotic DNA replication, synapsis and meiotic double-strand break repair. They also derepress retrotransposons and accumulate retrotransposon-encoded proteins during meiosis. Single-cell RNA-sequencing confirms sharing of transcripts between wild-type spermatids and demonstrates its partial attenuation in Tex14 hypomorphs, indicating that intercellular bridges enable cytoplasmic exchange between connected germ cells in testes. Our findings suggest that regulation of meiosis is non-cell-intrinsic and inform a model in which intercellular bridges influence critical meiotic events and protect germline genome integrity during spermatogenesis.
Collapse
Affiliation(s)
- Julia Sorkin
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Kevin Tilton
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Matthew A Lawlor
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Shreya N Sarathy
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Shun Liang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Angelina Albanese
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Saher S Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Christopher E Ellison
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | | | - Devanshi Jain
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
6
|
Kim DJ. The Role of the DNA Methyltransferase Family and the Therapeutic Potential of DNMT Inhibitors in Tumor Treatment. Curr Oncol 2025; 32:88. [PMID: 39996888 PMCID: PMC11854558 DOI: 10.3390/curroncol32020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Members of the DNA methyltransferase (DNMT) family have been recognized as major epigenetic regulators of altered gene expression during tumor development. They establish and maintain DNA methylation of the CpG island of promoter and non-CpG region of the genome. The abnormal methylation status of tumor suppressor genes (TSGs) has been associated with tumorigenesis, leading to genomic instability, improper gene silence, and immune evasion. DNMT1 helps preserve methylation patterns during DNA replication, whereas the DNMT3 family is responsible for de novo methylation, creating new methylation patterns. Altered DNA methylation significantly supports tumor growth by changing gene expression patterns. FDA-approved DNMT inhibitors reverse hypermethylation-induced gene repression and improve therapeutic outcomes for cancer. Recent studies indicate that combining DNMT inhibitors with chemotherapies and immunotherapies can have synergistic effects, especially in aggressive metastatic tumors. Improving the treatment schedules, increasing isoform specificity, reducing toxicity, and utilizing genome-wide analyses of CRISPR-based editing to create personalized epigenetic therapies tailored to individual patient needs are promising strategies for enhancing therapeutic outcomes. This review discusses the interaction between DNMT regulators and DNMT1, its binding partners, the connection between DNA methylation and tumors, how these processes contribute to tumor development, and DNMT inhibitors' advancements and pharmacological properties.
Collapse
Affiliation(s)
- Dae Joong Kim
- Department of Microbiology, Immunology & Cancer Biology, The University of Virginia, Charlottesville, VA 20908, USA
| |
Collapse
|
7
|
Hu X, Lu J, Ding C, Li J, Zou Q, Xia W, Qian C, Li H, Huang B. The N6-methyladenosine landscape of ovarian development and aging highlights the regulation by RNA stability and chromatin state. Aging Cell 2025; 24:e14376. [PMID: 39410722 PMCID: PMC11822672 DOI: 10.1111/acel.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/22/2024] [Accepted: 09/26/2024] [Indexed: 02/14/2025] Open
Abstract
The versatile epigenetic modification known as N6-methyladenosine (m6A) has been demonstrated to be pivotal in numerous physiological and pathological contexts. Nonetheless, the precise regulatory mechanisms linking m6A to histone modifications and the involvement of transposable elements (TEs) in ovarian development and aging are still not completely understood. First, we discovered that m6A modifications are highly expressed during ovarian aging (OA), with significant contributions from decreased m6A demethylase FTO and overexpressed m6A methyltransferase METTL16. Then, using FTO knockout mouse model and KGN cell line, we also observed that FTO deletion and METTL16 overexpression significantly increased m6A levels. This led to the downregulation of the methyltransferase SUV39H1, resulting in reduced H3K9me3 expression. The downregulation of SUV39H1 and H3K9me3 primarily activated LTR7 and LTR12, subsequently activating ERV1. This resulted in a decrease in cell proliferation, while the levels of apoptosis, cellular aging markers, and autophagy markers significantly increased in OA. In summary, our study offers intriguing insights into the role of m6A in regulating DNA epigenetics, including H3K9me3 and TEs, as well as autophagy, thereby accelerating OA.
Collapse
Affiliation(s)
- Xiujuan Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Jiafeng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Chenyue Ding
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Jincheng Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Qinyan Zou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Wenjuan Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Chunfeng Qian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Hong Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| |
Collapse
|
8
|
van der Kuyl AC. Mutation Rate Variation and Other Challenges in 2-LTR Dating of Primate Endogenous Retrovirus Integrations. J Mol Evol 2025; 93:62-82. [PMID: 39715846 DOI: 10.1007/s00239-024-10225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024]
Abstract
The time of integration of germline-targeting Long Terminal Repeat (LTR) retroposons, such as endogenous retroviruses (ERVs), can be estimated by assessing the nucleotide divergence between the LTR sequences flanking the viral genes. Due to the viral replication mechanism, both LTRs are identical at the moment of integration, when the provirus becomes part of the host genome. After that time, proviral sequences evolve within the host DNA. When the mutation rate is known, nucleotide divergence between the LTRs would then be a measure of time elapsed since integration. Though frequently used, the approach has been complicated by the choice of host mutation rate and, to a lesser extent, by the method selected to estimate nucleotide divergence. As a result, outcomes can be incompatible with, for instance, speciation events identified from the fossil record. The review will give an overview of research reporting LTR-retroposon dating, and a summary of important factors to consider, including the quality, assembly, and alignment of sequences, the mutation rate of foreign DNA in host genomes, and the choice of a distance estimation method. Primates will here be the focus of the analysis because their genomes, ERVs, and fossil record have been extensively studied. However, most of the factors discussed have a wide applicability in the vertebrate field.
Collapse
Affiliation(s)
- Antoinette Cornelia van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology & Infectious Diseases, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Jönsson J, Perfilyev A, Kugelberg U, Skog S, Lindström A, Ruhrmann S, Ofori JK, Bacos K, Rönn T, Öst A, Ling C. Impact of excess sugar on the whole genome DNA methylation pattern in human sperm. Epigenomics 2025; 17:89-104. [PMID: 39707713 PMCID: PMC11792836 DOI: 10.1080/17501911.2024.2439782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
AIMS, PATIENTS & METHODS Dietary factors may regulate the epigenome. We aimed to explore whether a diet intervention, including excess sugar, affects the methylome in human sperm, and to describe the sperm methylome. We used Whole Genome Bisulfite Sequencing (WGBS) to analyze DNA methylation in sperm taken at three time points from 15 males during a diet intervention; i) at baseline, ii) after one week on a standardized diet, and iii) after an additional week on a high-sugar diet providing 150% of their estimated total energy expenditure. RESULTS We identified seven nominal diet-associated differentially methylated regions in sperm (p < 0.05). The diet was nominally associated with methylation of 143 sites linked to fertility (e.g. AHRR, GNAS, and HDAC4), 313 sites in imprinted genes (e.g. GLIS3, PEG10, PEG3, and SNURF), and 42 sites in top 1%-expressed genes (e.g. CHD2) (p < 0.05). In sperm, 3'UTRs and introns had the highest levels of methylation, while 5'UTRs and CpG islands had the lowest levels. Non-expressed genes in human sperm were hypomethylated in exons compared with transcribed genes. CONCLUSIONS In human sperm, DNA methylation levels were linked to gene expression, and excess sugar had modest effects on methylation on imprinted and highly expressed genes, and genes affecting fertility.
Collapse
Affiliation(s)
- Josefine Jönsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Unn Kugelberg
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Signe Skog
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Axel Lindström
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Sabrina Ruhrmann
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Jones K. Ofori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Anita Öst
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
10
|
Tóth DM, Szeri F, Ashaber M, Muazu M, Székvölgyi L, Arányi T. Tissue-specific roles of de novo DNA methyltransferases. Epigenetics Chromatin 2025; 18:5. [PMID: 39819598 PMCID: PMC11740433 DOI: 10.1186/s13072-024-00566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
DNA methylation, catalyzed by DNA methyltransferases (DNMT), plays pivotal role in regulating embryonic development, gene expression, adaption to environmental stress, and maintaining genome integrity. DNMT family consists of DNMT1, DNMT3A, DNMT3B, and the enzymatically inactive DNMT3L. DNMT3A and DNMT3B establish novel methylation patterns maintained by DNMT1 during replication. Genetic variants of DNMT3A and DNMT3B cause rare diseases such as Tatton-Brown-Rahman and ICF syndromes. Additionally, somatic mutations cause common conditions such as osteoarthritis, osteoporosis, clonal hematopoiesis of indeterminate potential (CHIP), hematologic malignancies, and cancer. While DNMTs have been extensively studied in vitro, in early development and in disease, their detailed physiologic roles remain less understood as in vivo investigations are hindered by the embryonic or perinatal lethality of the knockout mice. To circumvent this problem, tissue-specific Dnmt3a and Dnmt3b knockouts were engineered. This review explores their diverse molecular roles across various organs and cell types and characterizes the phenotype of the knockout mice. We provide a comprehensive collection of over forty tissue-specific knockout models generated by cre recombinase. We highlight the distinct functions of DNMT3A and DNMT3B in germ cells, early development, uterus, hematopoietic differentiation, musculoskeletal development, visceral organs, and nervous system. Our findings indicate that DNMT3A primarily regulates hematopoietic differentiation, while DNMT3B is crucial for cartilage homeostasis and ossification. We emphasize the context-dependent roles of DNMT3A and DNMT3B and demonstrate that they also complement DNMT1 maintenance methyltransferase activity. Overall, the expression patterns of DNMTs across tissues provide insights into potential therapeutic applications for treating neurologic diseases, cancer, and osteoporosis.
Collapse
Affiliation(s)
- Dániel Márton Tóth
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| | - Flóra Szeri
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Mária Ashaber
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Muhyiddeen Muazu
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Lóránt Székvölgyi
- Department of Molecular and Nanopharmaceutics, Genome Architecture and Recombination Research Group, Faculty of Pharmacy, MTA-DE Momentum, University of Debrecen, Debrecen, Hungary.
| | - Tamás Arányi
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
11
|
Maezawa S, Yukawa M, Sakashita A, Barski A, Namekawa SH. Site-specific DNA demethylation during spermatogenesis presets the sites of nucleosome retention in mouse sperm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632457. [PMID: 39829778 PMCID: PMC11741358 DOI: 10.1101/2025.01.10.632457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
DNA methylation patterns are inherited from the parental germline to the embryo. In mature sperm, the sites of unmethylated DNA are tightly coupled to sites of histone retention at gene regulatory elements that are implicated in paternal epigenetic inheritance. The timing and mechanism of site-specific DNA demethylation in the male germline currently remains unknown. Here, we perform genome-wide profiling of DNA methylation during spermatogenesis by capturing methylated DNA through interaction with a methyl-DNA binding protein domain (MBD). Our data demonstrate that there is a site-specific change in DNA methylation during the mitosis-to-meiosis transition. Importantly, the genomic sites that are demethylated during this transition predetermine nucleosome retention sites in spermatozoa. These results suggest that site-specific DNA demethylation during the mitosis-to-meiosis transition of spermatogenesis prepares embryonic gene expression after fertilization. We therefore propose DNA demethylation during spermatogenesis as a novel phase of epigenetic reprogramming that contributes to embryonic gene regulation.
Collapse
Affiliation(s)
- So Maezawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Chiba 278-8510, Japan
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Masashi Yukawa
- Division of Allergy and immunology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, 160-8582 Japan
| | - Artem Barski
- Division of Allergy and immunology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Satoshi H. Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, 95616, USA
| |
Collapse
|
12
|
Fanourgakis G, Gaspa-Toneu L, Komarov PA, Papasaikas P, Ozonov EA, Smallwood SA, Peters AHFM. DNA methylation modulates nucleosome retention in sperm and H3K4 methylation deposition in early mouse embryos. Nat Commun 2025; 16:465. [PMID: 39774947 PMCID: PMC11706963 DOI: 10.1038/s41467-024-55441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation. Failing de novo DNAme in Dnmt3a/Dnmt3b double deficient spermatogonia is associated with increased nucleosome occupancy in mature sperm, preferentially at sites with higher CpG content, supporting the model that DNAme modulates nucleosome retention in sperm. To assess the impact of altered sperm chromatin in formatting embryonic chromatin, we measure H3K4me3 occupancy at paternal and maternal alleles in 2-cell embryos using a transposon-based tagging approach. Our data show that reduced DNAme in sperm renders paternal alleles permissive for H3K4me3 establishment in early embryos, independently of possible paternal inheritance of sperm born H3K4me3. Together, this study provides evidence that paternally inherited DNAme directs chromatin formation during early embryonic development.
Collapse
Affiliation(s)
- Grigorios Fanourgakis
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Laura Gaspa-Toneu
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Faculty of Sciences, University of Basel, 4056, Basel, Switzerland
| | - Pavel A Komarov
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Faculty of Sciences, University of Basel, 4056, Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Sebastien A Smallwood
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
- Faculty of Sciences, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
13
|
Wang Q, Ma C, Yang B, Zheng W, Liu X, Jian G. Dysregulation of DNA methylation in colorectal cancer: biomarker, immune regulation, and therapeutic potential. Int Immunopharmacol 2025; 145:113766. [PMID: 39644791 DOI: 10.1016/j.intimp.2024.113766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/16/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide, with morbidity and mortality ranking third and second among all cancers, respectively. As a result of a sequence of genetic and DNA methylation alterations that gradually accumulate in the healthy colonic epithelium, colorectal adenomas and invasive adenocarcinomas eventually give rise to CRC. Global hypomethylation and promoter-specific DNA methylation are characteristics of CRC. The pathophysiological role of aberrant DNA methylation in malignant tumors has garnered significant interest in the last few decades. In addition, DNA methylation has been shown to play a critical role in influencing immune cell function and tumor immune evasion. This review summarizes the most recent research on DNA methylation changes in CRC, including the role of DNA methylation-related enzymes in CRC tumorigenesis and biomarkers for diagnosis, predictive and prognostic. Besides, we focus on the emerging potential of epigenetic interventions to enhance antitumor immune responses and improve the CRC clinical practice.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, China; Department of Pathology, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Chen Ma
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Bin Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenxin Zheng
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Xinya Liu
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Gu Jian
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
14
|
Xu Z, Shi J, Chen Q, Yang S, Wang Z, Xiao B, Lai Z, Jing Y, Li Y, Li X. Regulation of de novo and maintenance DNA methylation by DNA methyltransferases in postimplantation embryos. J Biol Chem 2025; 301:107990. [PMID: 39542247 PMCID: PMC11742614 DOI: 10.1016/j.jbc.2024.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
DNA methylation is mainly catalyzed by three DNA methyltransferase (DNMT) proteins in mammals. Usually DNMT1 is considered the primary DNMT for maintenance DNA methylation, whereas DNMT3A and DNMT3B function in de novo DNA methylation. Interestingly, we found DNMT3A and DNMT3B exerted maintenance and de novo DNA methylation in postimplantation mouse embryos. Together with DNMT1, they maintained DNA methylation at some pluripotent genes and lineage marker genes. Germline-derived DNA methylation at the imprinting control regions (ICRs) is stably maintained in embryos. DNMT1 maintained DNA methylation at most ICRs in postimplantation embryos. Surprisingly, DNA methylation was increased at five ICRs after implantation, and two DNMT3 proteins maintained the newly acquired DNA methylation at two of these five ICRs. Intriguingly, DNMT3A and DNMT3B maintained preexisting DNA methylation at four other ICRs, similar to what we found in embryonic stem cells before. These results suggest that DNA methylation is more dynamic than originally thought during embryogenesis including the ICRs of the imprinted regions. DNMT3A and DNMT3B exert both de novo and maintenance DNA methylation functions after implantation. They maintain large portions of newly acquired DNA methylation at variable degrees across the genome in mouse embryos, together with DNMT1. Furthermore, they contribute to maintenance of preexisting DNA methylation at a subset of ICRs as well as in the CpG islands and certain lineage marker gene. These findings may have some implications for the important roles of DNMT proteins in development and human diseases.
Collapse
Affiliation(s)
- Zhen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiajia Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qian Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuting Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zilin Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Biao Xiao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhijian Lai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yumeng Jing
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yilin Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
15
|
Yan R, Qi M, Zhang P, Shen B, Yin J, Chen C, Tian S, Chen L, Huang X, Wang H, Gao S, Wu Y, Gao Y. Core factor of NEXT complex, ZCCHC8, governs the silencing of LINE1 during spermatogenesis. Natl Sci Rev 2025; 12:nwae407. [PMID: 39758125 PMCID: PMC11697976 DOI: 10.1093/nsr/nwae407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 01/07/2025] Open
Abstract
The overactivation of transposable elements (TEs) is a significant threat to male reproduction, particularly during the delicate process of spermatogenesis. Here, we report that zinc finger protein ZCCHC8-a key component of the nuclear exosome targeting (NEXT) complex that is involved in ribonucleic acid (RNA) surveillance-is required for TE silencing during spermatogenesis. Loss of ZCCHC8 results in delayed meiotic progression and reduced production of round spermatids (RS). We observed that young long-interspersed nuclear element (LINE1, L1) subfamilies that are targeted by ZCCHC8 were upregulated in both spermatogonial stem cells (SSC) and pachytene spermatocytes (PS) of Zcchc8 null testes. Further study found that a reduced H3K9me3 modification in SSC and elevated H3 lysine 4 trimethylation in the PS of Zcchc8 KO mice occurred upon young L1, especially L1Md_A, which may have contributed to impairment of the chromatin condensation from PS to RS during spermatogenesis. This study highlights the crucial role of RNA surveillance-mediated chromatin repression by the NEXT complex during spermatogenesis.
Collapse
Affiliation(s)
- Rushuang Yan
- State Key Laboratory of Cardiology and Medical Innovation Center, Department of Reproductive Medicine Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Meijie Qi
- Reproductive and Genetic Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | | | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Jiqing Yin
- State Key Laboratory of Cardiology and Medical Innovation Center, Department of Reproductive Medicine Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chuan Chen
- State Key Laboratory of Cardiology and Medical Innovation Center, Department of Reproductive Medicine Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Silin Tian
- State Key Laboratory of Cardiology and Medical Innovation Center, Department of Reproductive Medicine Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lin Chen
- State Key Laboratory of Cardiology and Medical Innovation Center, Department of Reproductive Medicine Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | | | - Hong Wang
- State Key Laboratory of Cardiology and Medical Innovation Center, Department of Reproductive Medicine Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- State Key Laboratory of Cardiology and Medical Innovation Center, Department of Reproductive Medicine Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - You Wu
- State Key Laboratory of Cardiology and Medical Innovation Center, Department of Reproductive Medicine Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yawei Gao
- State Key Laboratory of Cardiology and Medical Innovation Center, Department of Reproductive Medicine Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| |
Collapse
|
16
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
17
|
Chera A, Stancu-Cretu M, Zabet NR, Bucur O. Shedding light on DNA methylation and its clinical implications: the impact of long-read-based nanopore technology. Epigenetics Chromatin 2024; 17:39. [PMID: 39734197 DOI: 10.1186/s13072-024-00558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/01/2024] [Indexed: 12/31/2024] Open
Abstract
DNA methylation is an essential epigenetic mechanism for regulation of gene expression, through which many physiological (X-chromosome inactivation, genetic imprinting, chromatin structure and miRNA regulation, genome defense, silencing of transposable elements) and pathological processes (cancer and repetitive sequences-associated diseases) are regulated. Nanopore sequencing has emerged as a novel technique that can analyze long strands of DNA (long-read sequencing) without chemically treating the DNA. Interestingly, nanopore sequencing can also extract epigenetic status of the nucleotides (including both 5-Methylcytosine and 5-hydroxyMethylcytosine), and a large variety of bioinformatic tools have been developed for improving its detection properties. Out of all genomic regions, long read sequencing provides advantages in studying repetitive elements, which are difficult to characterize through other sequencing methods. Transposable elements are repetitive regions of the genome that are silenced and usually display high levels of DNA methylation. Their demethylation and activation have been observed in many cancers. Due to their repetitive nature, it is challenging to accurately estimate DNA methylation levels within transposable elements using short sequencing technologies. The advantage to sequence native DNA (without PCR amplification biases or harsh bisulfite treatment) and long and ultra long reads coupled with epigenetic states of the DNA allows to accurately estimate DNA methylation levels in transposable elements. This is a big step forward for epigenomic studies, and unsolved questions regarding gene expression and transposable elements silencing through DNA methylation can now be answered.
Collapse
Affiliation(s)
- Alexandra Chera
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Carol Davila Nephrology Clinical Hospital, Bucharest, Romania
| | | | - Nicolae Radu Zabet
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| | - Octavian Bucur
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
- Genomics Research and Development Institute, Bucharest, Romania.
- Victor Babes National Institute of Pathology, Bucharest, Romania.
| |
Collapse
|
18
|
Xu C, Fu X, Qin H, Yao K. Traversing the epigenetic landscape: DNA methylation from retina to brain in development and disease. Front Cell Neurosci 2024; 18:1499719. [PMID: 39678047 PMCID: PMC11637887 DOI: 10.3389/fncel.2024.1499719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
DNA methylation plays a crucial role in development, aging, degeneration of various tissues and dedifferentiated cells. This review explores the multifaceted impact of DNA methylation on the retina and brain during development and pathological processes. First, we investigate the role of DNA methylation in retinal development, and then focus on retinal diseases, detailing the changes in DNA methylation patterns in diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. Since the retina is considered an extension of the brain, its unique structure allows it to exhibit similar immune response mechanisms to the brain. We further extend our exploration from the retina to the brain, examining the role of DNA methylation in brain development and its associated diseases, such as Alzheimer's disease (AD) and Huntington's disease (HD) to better understand the mechanistic links between retinal and brain diseases, and explore the possibility of communication between the visual system and the central nervous system (CNS) from an epigenetic perspective. Additionally, we discuss neurodevelopmental brain diseases, including schizophrenia (SZ), autism spectrum disorder (ASD), and intellectual disability (ID), focus on how DNA methylation affects neuronal development, synaptic plasticity, and cognitive function, providing insights into the molecular mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Berger F. Meiosis as a mechanism for epigenetic reprogramming and cellular rejuvenation. Development 2024; 151:dev203046. [PMID: 39399899 DOI: 10.1242/dev.203046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Meiosis is a hallmark of sexual reproduction because it represents the transition from one life cycle to the next and, in animals, meiosis produces gametes. Why meiosis evolved has been debated and most studies have focused on recombination of the parental alleles as the main function of meiosis. However, 40 years ago, Robin Holliday proposed that an essential function of meiosis is to oppose the consequence of successive mitoses that cause cellular aging. Cellular aging results from accumulated defective organelles and proteins and modifications of chromatin in the form of DNA methylation and histone modifications referred to collectively as epigenetic marks. Here, recent findings supporting the hypothesis that meiosis opposes cellular aging are reviewed and placed in the context of the diversity of the life cycles of eukaryotes, including animals, yeast, flowering plants and the bryophyte Marchantia.
Collapse
Affiliation(s)
- Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
20
|
Figueroa-Angulo EE, Puente-Rivera J, Perez-Navarro YF, Condado EM, Álvarez-Sánchez ME. Epigenetic alteration in cervical cancer induced by human papillomavirus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:25-66. [PMID: 39864896 DOI: 10.1016/bs.ircmb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The critical role of a subset of Human Papillomavirus in cervical cancer has been widely acknowledged and studied. Despite progress in our understanding of the viral molecular mechanisms of pathogenesis, knowledge of how infection with HPV oncogenic variants progresses from latent infection to incurable cancer has not been completely elucidated. In this paper we reviewed the relationship between HPV infection and epigenetic mechanisms such as histone acetylation and deacetylation, DNA methylation and non-coding RNAs associated with this infection and the carcinogenic process.
Collapse
Affiliation(s)
- Elisa-Elvira Figueroa-Angulo
- Licenciatura en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de la México, Ciudad de México, México
| | - Jonathan Puente-Rivera
- División de Investigación, Hospital Juárez De México, Ciudad de México, México; Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Yussel Fernando Perez-Navarro
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Edgar Mendieta Condado
- Laboratorio Estatal de Salud Pública, Secretaría de Salud de Jalisco, Guadalajara, Jalisco, México
| | - María-Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México.
| |
Collapse
|
21
|
Dias Mirandela M, Zoch A, Leismann J, Webb S, Berrens RV, Valsakumar D, Kabayama Y, Auchynnikava T, Schito M, Chowdhury T, MacLeod D, Xiang X, Zou J, Rappsilber J, Allshire RC, Voigt P, Cook AG, Barau J, O'Carroll D. Two-factor authentication underpins the precision of the piRNA pathway. Nature 2024; 634:979-985. [PMID: 39294378 PMCID: PMC11499256 DOI: 10.1038/s41586-024-07963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
The PIWI-interacting RNA (piRNA) pathway guides the DNA methylation of young, active transposons during germline development in male mice1. piRNAs tether the PIWI protein MIWI2 (PIWIL4) to the nascent transposon transcript, resulting in DNA methylation through SPOCD1 (refs. 2-5). Transposon methylation requires great precision: every copy needs to be methylated but off-target methylation must be avoided. However, the underlying mechanisms that ensure this precision remain unknown. Here, we show that SPOCD1 interacts directly with SPIN1 (SPINDLIN1), a chromatin reader that primarily binds to H3K4me3-K9me3 (ref. 6). The prevailing assumption is that all the molecular events required for piRNA-directed DNA methylation occur after the engagement of MIWI2. We find that SPIN1 expression precedes that of both SPOCD1 and MIWI2. Furthermore, we demonstrate that young LINE1 copies, but not old ones, are marked by H3K4me3, H3K9me3 and SPIN1 before the initiation of piRNA-directed DNA methylation. We generated a Spocd1 separation-of-function allele in the mouse that encodes a SPOCD1 variant that no longer interacts with SPIN1. We found that the interaction between SPOCD1 and SPIN1 is essential for spermatogenesis and piRNA-directed DNA methylation of young LINE1 elements. We propose that piRNA-directed LINE1 DNA methylation requires a developmentally timed two-factor authentication process. The first authentication is the recruitment of SPIN1-SPOCD1 to the young LINE1 promoter, and the second is MIWI2 engagement with the nascent transcript. In summary, independent authentication events underpin the precision of piRNA-directed LINE1 DNA methylation.
Collapse
Affiliation(s)
- Madeleine Dias Mirandela
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Rebecca V Berrens
- IDRM, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Biochemistry, Oxford University, Oxford, UK
| | - Devisree Valsakumar
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Yuka Kabayama
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tania Auchynnikava
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Martina Schito
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tamoghna Chowdhury
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - David MacLeod
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Xinyu Xiang
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Juan Zou
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Philipp Voigt
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Joan Barau
- Institute of Molecular Biology, Mainz, Germany
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK.
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
22
|
Tomizawa SI, Fellows R, Ono M, Kuroha K, Dočkal I, Kobayashi Y, Minamizawa K, Natsume K, Nakajima K, Hoshi I, Matsuda S, Seki M, Suzuki Y, Aoto K, Saitsu H, Ohbo K. The non-canonical bivalent gene Wfdc15a controls spermatogenic protease and immune homeostasis. Development 2024; 151:dev202834. [PMID: 39222051 DOI: 10.1242/dev.202834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Male infertility can be caused by chromosomal abnormalities, mutations and epigenetic defects. Epigenetic modifiers pre-program hundreds of spermatogenic genes in spermatogonial stem cells (SSCs) for expression later in spermatids, but it remains mostly unclear whether and how those genes are involved in fertility. Here, we report that Wfdc15a, a WFDC family protease inhibitor pre-programmed by KMT2B, is essential for spermatogenesis. We found that Wfdc15a is a non-canonical bivalent gene carrying both H3K4me3 and facultative H3K9me3 in SSCs, but is later activated along with the loss of H3K9me3 and acquisition of H3K27ac during meiosis. We show that WFDC15A deficiency causes defective spermiogenesis at the beginning of spermatid elongation. Notably, depletion of WFDC15A causes substantial disturbance of the testicular protease-antiprotease network and leads to an orchitis-like inflammatory response associated with TNFα expression in round spermatids. Together, our results reveal a unique epigenetic program regulating innate immunity crucial for fertility.
Collapse
Affiliation(s)
- Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Rachel Fellows
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Michio Ono
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazushige Kuroha
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ivana Dočkal
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Yuki Kobayashi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Keisuke Minamizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Koji Natsume
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ikue Hoshi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Shion Matsuda
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Central Laboratory, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
23
|
Davletgildeeva AT, Kuznetsov NA. The Role of DNMT Methyltransferases and TET Dioxygenases in the Maintenance of the DNA Methylation Level. Biomolecules 2024; 14:1117. [PMID: 39334883 PMCID: PMC11430729 DOI: 10.3390/biom14091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
This review deals with the functional characteristics and biological roles of enzymes participating in DNA methylation and demethylation as key factors in epigenetic regulation of gene expression. The set of enzymes that carry out such processes in human cells is limited to representatives of two families, namely DNMT (DNA methyltransferases) and TET (DNA dioxygenases). The review presents detailed information known today about each functionally important member of these families and describes the catalytic activity and roles in the mammalian body while also providing examples of dysregulation of the expression and/or activity of these enzymes in conjunction with the development of some human disorders, including cancers, neurodegenerative diseases, and developmental pathologies. By combining the up-to-date information on the dysfunction of various enzymes that control the DNA "methylome" in the human body, we hope not only to draw attention to the importance of the maintenance of a required DNA methylation level (ensuring epigenetic regulation of gene expression and normal functioning of the entire body) but also to help identify new targets for directed control over the activity of the enzymes that implement the balance between processes of DNA methylation and demethylation.
Collapse
Affiliation(s)
- Anastasiia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
24
|
Khudaverdyan N, Lu J, Chen X, Herle G, Song J. The structure of DNA methyltransferase DNMT3C reveals an activity-tuning mechanism for DNA methylation. J Biol Chem 2024; 300:107633. [PMID: 39098534 PMCID: PMC11401227 DOI: 10.1016/j.jbc.2024.107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
DNA methylation is one of the major epigenetic mechanisms crucial for gene regulation and genome stability. De novo DNA methyltransferase DNMT3C is required for silencing evolutionarily young transposons during mice spermatogenesis. Mutation of DNMT3C led to a sterility phenotype that cannot be rescued by its homologs DNMT3A and DNMT3B. However, the structural basis of DNMT3C-mediated DNA methylation remains unknown. Here, we report the structure and mechanism of DNMT3C-mediated DNA methylation. The DNMT3C methyltransferase domain recognizes CpG-containing DNA in a manner similar to that of DNMT3A and DNMT3B, in line with their high sequence similarity. However, two evolutionary covariation sites, C543 and E590, diversify the substrate interaction among DNMT3C, DNMT3A, and DNMT3B, resulting in distinct DNA methylation activity and specificity between DNMT3C, DNMT3A, and DNMT3B in vitro. In addition, our combined structural and biochemical analysis reveals that the disease-causing rahu mutation of DNMT3C compromises its oligomerization and DNA-binding activities, explaining the loss of DNA methylation activity caused by this mutation. This study provides a mechanistic insight into DNMT3C-mediated DNA methylation that complements DNMT3A- and DNMT3B-mediated DNA methylation in mice, unraveling a regulatory mechanism by which evolutionary conservation and diversification fine-tune the activity of de novo DNA methyltransferases.
Collapse
Affiliation(s)
- Nelli Khudaverdyan
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Xinyi Chen
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Genevieve Herle
- Biophysics Program, University of California, Riverside, California, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, California, USA; Biophysics Program, University of California, Riverside, California, USA.
| |
Collapse
|
25
|
Chen T, Mahdadi S, Vidal M, Desbène-Finck S. Non-nucleoside inhibitors of DNMT1 and DNMT3 for targeted cancer therapy. Pharmacol Res 2024; 207:107328. [PMID: 39079576 DOI: 10.1016/j.phrs.2024.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
DNA methylation can deactivate tumor suppressor genes thus causing cancers. Two DNA methylation inhibitors have been approved by the Food and Drug Administration (FDA) and have entered clinical use. However, these inhibitors are nucleoside analogues that can be incorporated into DNA or RNA and induce significant side effects. DNMT1 and DNMT3 are key enzymes involved in DNA methylation. In the acute myeloid leukemia model, a non-nucleoside DNMT1-specific inhibitor has shown lower toxicity and improved pharmacokinetics compared to traditional nucleoside drugs. DNMT3 is also implicated in certain specific cancers. Thus, developing non-nucleoside inhibitors for DNMT1 or DNMT3 can help in understanding their roles in carcinogenesis and provide targeted treatment options in certain cancers. Although no non-nucleoside inhibitors have yet entered clinical trials, in this review, we focus on DNMT1 or DNMT3 selective inhibitors. For DNMT1 selective inhibitors, we have compiled information on the repurposed drugs, derivative compounds and selective inhibitors identified through virtual screening. Additionally, we have outlined potential targets for DNMT1, including protein-protein complex, RNA mimics and aptamers. Compared to DNMT1, research on DNMT3-specific inhibitors has been less extensive. In this context, our exploration has identified a limited number of molecular inhibitors, and we have proposed specific long non-coding RNAs (lncRNAs) as potential contributors to the selective inhibition of DNMT3. This collective effort aims to offer valuable insights into the development of non-nucleoside inhibitors that selectively target DNMT1 or DNMT3.
Collapse
Affiliation(s)
- Ting Chen
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France
| | - Syrine Mahdadi
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France
| | - Michel Vidal
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France; Toxicology, Cochin Hospital, HUPC, APHP, Paris 75014, France
| | | |
Collapse
|
26
|
Schuff M, Strong AD, Welborn LK, Ziermann-Canabarro JM. Imprinting as Basis for Complex Evolutionary Novelties in Eutherians. BIOLOGY 2024; 13:682. [PMID: 39336109 PMCID: PMC11428813 DOI: 10.3390/biology13090682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
The epigenetic phenomenon of genomic imprinting is puzzling. While epigenetic modifications in general are widely known in most species, genomic imprinting in the animal kingdom is restricted to autosomes of therian mammals, mainly eutherians, and to a lesser extent in marsupials. Imprinting causes monoallelic gene expression. It represents functional haploidy of certain alleles while bearing the evolutionary cost of diploidization, which is the need of a complex cellular architecture and the danger of producing aneuploid cells by mitotic and meiotic errors. The parent-of-origin gene expression has stressed many theories. Most prominent theories, such as the kinship (parental conflict) hypothesis for maternally versus paternally derived alleles, explain only partial aspects of imprinting. The implementation of single-cell transcriptome analyses and epigenetic research allowed detailed study of monoallelic expression in a spatial and temporal manner and demonstrated a broader but much more complex and differentiated picture of imprinting. In this review, we summarize all these aspects but argue that imprinting is a functional haploidy that not only allows a better gene dosage control of critical genes but also increased cellular diversity and plasticity. Furthermore, we propose that only the occurrence of allele-specific gene regulation mechanisms allows the appearance of evolutionary novelties such as the placenta and the evolutionary expansion of the eutherian brain.
Collapse
Affiliation(s)
- Maximillian Schuff
- Next Fertility St. Gallen, Kürsteinerstrasse 2, 9015 St. Gallen, Switzerland
| | - Amanda D Strong
- Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Washington, DC 20059, USA
| | - Lyvia K Welborn
- Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Washington, DC 20059, USA
| | | |
Collapse
|
27
|
Manna I, De Benedittis S, Porro D. A Comprehensive Examination of the Role of Epigenetic Factors in Multiple Sclerosis. Int J Mol Sci 2024; 25:8921. [PMID: 39201606 PMCID: PMC11355011 DOI: 10.3390/ijms25168921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
According to various research, the risk of multiple sclerosis (MS) is strongly influenced by genetic variations. Population, familial, and molecular studies provide strong empirical support for a polygenic pattern of inheritance, mainly due to relatively common allelic variants in the general population. The strongest MS susceptibility locus, which was unmistakably identified in tested populations, is the major histocompatibility complex on chromosome 6p21.3. However, the effect of a given predisposing variant remains modest, so there is the possibility that multiple gene-gene and/or gene-environment interactions could significantly increase the contribution of specific variants to the overall genetic risk. Furthermore, as is known, susceptibility genes can be subject to epigenetic modifications, which greatly increase the complexity of MS heritability. Investigating epigenetic and environmental factors can provide new opportunities for the molecular basis of the MS, which shows complicated pathogenesis. Although studies of epigenetic changes in MS only began in the last decade, a growing body of literature suggests that these may be involved in the development of MS. Here, we summarize recent studies regarding epigenetic changes related to MS initiation and progression. Furthermore, we discuss how current studies address important clinical questions and how future studies could be used in clinical practice.
Collapse
Affiliation(s)
- Ida Manna
- Institute of Bioimaging and Complex Biological Systems (IBSBC), National Research Council (CNR), Section of Catanzaro, 88100 Catanzaro, Italy
| | - Selene De Benedittis
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR) Cosenza, 88100 Catanzaro, Italy
| | - Danilo Porro
- Institute of Bioimaging and Complex Biological Systems (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy
| |
Collapse
|
28
|
Guo X, Yang J. Advances in DNA methylation of imprinted genes and folic acid regulation of growth and development. Epigenomics 2024; 16:1117-1127. [PMID: 39140401 PMCID: PMC11418287 DOI: 10.1080/17501911.2024.2384833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
DNA methylation is closely related to folate levels and acts as a mechanism linking developmental disorders to chronic diseases. Folic acid supplementation can impact DNA methylation levels of imprinted genes crucial for neonatal development. Imprinted genes are vital for regulating embryonic and postnatal fetal growth. This review summarizes imprinted genes, DNA methylation, folic acid's influence on growth and development and their correlation. It aims to provide a comprehensive overview of research advancements on imprinted genes, DNA methylation and folic acid regulation concerning growth and development.
Collapse
Affiliation(s)
- Xiaojing Guo
- Department of Biostatistics, School of Public Health & Management, Guangxi Traditional Chinese Medical University, Nanning, Guangxi, China
| | - Junwei Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, China
| |
Collapse
|
29
|
Liang W, Xu F, Li L, Peng C, Sun H, Qiu J, Sun J. Epigenetic control of skeletal muscle atrophy. Cell Mol Biol Lett 2024; 29:99. [PMID: 38978023 PMCID: PMC11229277 DOI: 10.1186/s11658-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.
Collapse
Affiliation(s)
- Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, China
| | - Li Li
- Nantong Center for Disease Control and Prevention, Medical School of Nantong University, Nantong, 226001, China
| | - Chunlei Peng
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, 226000, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China.
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China.
| |
Collapse
|
30
|
Ito T, Kubiura-Ichimaru M, Miura F, Tajima S, Surani MA, Ito T, Yamaguchi S, Tada M. DNMT1 can induce primary germ layer differentiation through de novo DNA methylation. Genes Cells 2024; 29:549-566. [PMID: 38811355 PMCID: PMC11447926 DOI: 10.1111/gtc.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
DNA methyltransferases and Ten-Eleven Translocation (TET) proteins regulate the DNA methylation and demethylation cycles during mouse embryonic development. Although DNMT1 mainly plays a role in the maintenance of DNA methylation after DNA replication, it is also reported to possess de novo methyltransferase capacity. However, its physiological significance remains unclear. Here, we demonstrate that full-length DNMT1 (FL) and a mutant lacking the N-terminus necessary for its maintenance activity (602) confer the differentiation potential of mouse Dnmt1, Dnmt3a, and Dnmt3b (Dnmts-TKO) embryonic stem cells (ESCs). Both FL and 602 inhibit the spontaneous differentiation of Dnmts-TKO ESCs in the undifferentiated state. Dnmts-TKO ESCs showed loss of DNA methylation and de-repression of primitive endoderm-related genes, but these defects were partially restored in Dnmts-TKO + FL and Dnmts-TKO + 602 ESCs. Upon differentiation, Dnmts-TKO + FL ESCs show increased 5mC and 5hmC levels across chromosomes, including pericentromeric regions. In contrast, Dnmts-TKO + 602 ESCs didn't accumulate 5mC, and sister chromatids showed 5hmC asynchronously. Furthermore, in comparison with DNMT1_602, DNMT1_FL effectively promoted commitment to the epiblast-like cells and beyond, driving cell-autonomous mesendodermal and germline differentiation through embryoid body-based methods. With precise target selectivity achieved by its N-terminal region, DNMT1 may play a role in gene regulation leading to germline development.
Collapse
Affiliation(s)
- Takamasa Ito
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Musashi Kubiura-Ichimaru
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shoji Tajima
- Laboratory of Epigenetics Institute for Protein Research, Osaka University, Suita, Japan
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, UK
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinpei Yamaguchi
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Masako Tada
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| |
Collapse
|
31
|
Lin Q, Ge X, Gao L, Chen Y, Su T, Ma M, Wang H, Chen C, Han B, Liu D. Betaine alleviates spermatogenic cells apoptosis of oligoasthenozoospermia rat model by up-regulating methyltransferases and affecting DNA methylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155713. [PMID: 38735196 DOI: 10.1016/j.phymed.2024.155713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Oligoasthenozoospermia is the most common type of semen abnormality in male infertile patients. Betaine (BET) has been proved to have pharmacological effects on improving semen quality. BET also belongs to endogenous physiological active substances in the testis. However, the physiological function of BET in rat testis and its pharmacological mechanism against oligoasthenozoospermia remain unclear. PURPOSE This research aims to prove the therapeutic effect and potential mechanism of BET on oligoasthenozoospermia rat model induced by Tripterygium wilfordii glycosides (TWGs). METHODS The oligoasthenozoospermia rat model was established by a continuous gavage of TWGs (60 mg/kg) for 28 days. Negative control group, oligoasthenozoospermia group, positive drug group (levocarnitine, 300 mg/kg), and 200 mg/kg, 400 mg/kg, and 800 mg/kg BET groups were created for exploring the therapeutic effect of BET on the oligoasthenozoospermia rat model. The therapeutic effect was evaluated by HE and TUNEL staining. Immunofluorescence assay of DNMT3A, PIWIL1, PRMT5, SETDB1, BHMT2, and METTL3, methylation capture sequencing, Pi-RNA sequencing, and molecular docking were used to elucidate potential pharmacological mechanisms. RESULTS It is proved that BET can significantly restore testicular pathological damage induced by TWGs, which also can significantly reverse the apoptosis of spermatogenic cells. The spermatogenic cell protein expression levels of DNMT3A, PIWIL1, PRMT5, SETDB1, BHMT2, and METTL3 significantly decreased in oligoasthenozoospermia group. 400 mg/kg and 800 mg/kg BET groups can significantly increase expression level of the above-mentioned proteins. Methylation capture sequencing showed that BET can significantly increase the 5mC methylation level of Spata, Spag, and Specc spermatogenesis-related genes. Pi-RNA sequencing proved that the above-mentioned genes produce a large number of Pi-RNA under BET intervention. Pi-RNA can form complexes with PIWI proteins to participate in DNA methylation of target genes. Molecular docking indicated that BET may not directly act as substrate for methyltransferase and instead participates in DNA methylation by promoting the methionine cycle and increasing S-adenosylmethionine synthesis. CONCLUSION BET has a significant therapeutic effect on oligoasthenozoospermia rat model induced by TWPs. The mechanism mainly involves that BET can increase the methylation level of Spata, Specc, and Spag target genes through the PIWI/Pi-RNA pathway and up-regulation of methyltransferases (including DNA methyltransferases and histone methyltransferases).
Collapse
Affiliation(s)
- Qiyan Lin
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China
| | - Xiyu Ge
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China
| | - Leilei Gao
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China
| | - Yanjun Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China
| | - Ting Su
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China
| | - Menghua Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China
| | - Huijun Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China.
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China.
| |
Collapse
|
32
|
Siebert-Kuss LM, Dietrich V, Di Persio S, Bhaskaran J, Stehling M, Cremers JF, Sandmann S, Varghese J, Kliesch S, Schlatt S, Vaquerizas JM, Neuhaus N, Laurentino S. Genome-wide DNA methylation changes in human spermatogenesis. Am J Hum Genet 2024; 111:1125-1139. [PMID: 38759652 PMCID: PMC11179423 DOI: 10.1016/j.ajhg.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024] Open
Abstract
Sperm production and function require the correct establishment of DNA methylation patterns in the germline. Here, we examined the genome-wide DNA methylation changes during human spermatogenesis and its alterations in disturbed spermatogenesis. We found that spermatogenesis is associated with remodeling of the methylome, comprising a global decline in DNA methylation in primary spermatocytes followed by selective remethylation, resulting in a spermatids/sperm-specific methylome. Hypomethylated regions in spermatids/sperm were enriched in specific transcription factor binding sites for DMRT and SOX family members and spermatid-specific genes. Intriguingly, while SINEs displayed differential methylation throughout spermatogenesis, LINEs appeared to be protected from changes in DNA methylation. In disturbed spermatogenesis, germ cells exhibited considerable DNA methylation changes, which were significantly enriched at transposable elements and genes involved in spermatogenesis. We detected hypomethylation in SVA and L1HS in disturbed spermatogenesis, suggesting an association between the abnormal programming of these regions and failure of germ cells progressing beyond meiosis.
Collapse
Affiliation(s)
- Lara M Siebert-Kuss
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Verena Dietrich
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Jahnavi Bhaskaran
- MRC Laboratory of Medical Sciences, London, UK; Institute of Clinical Sciences, Imperial College London, London, UK; Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jann-Frederik Cremers
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Juan M Vaquerizas
- MRC Laboratory of Medical Sciences, London, UK; Institute of Clinical Sciences, Imperial College London, London, UK; Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany.
| |
Collapse
|
33
|
Tabatabaei T, Rezvany MR, Ghasemi B, Vafaei F, Zadeh MK, Zaker F, Salmaninejad A. Effect of DNMT3A R882H Hot Spot Mutations on DDX43 Promoter Methylation in Acute Myeloid Leukemia. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9625043. [PMID: 38807916 PMCID: PMC11132831 DOI: 10.1155/2024/9625043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Epigenetic alterations have been observed in many hematological malignancies, including acute myeloid leukemia (AML). Many of these alterations result from mutations in DNA methyl transferase (DNMT) enzymes, disabling them to methylate target genes in a proper way. In this case-control study, we investigated the association between R882H mutation in DNMT3A gene and DDX43 gene methylation in patients with AML. 47 AML patients and 6 controls were included in this study. After DNA extraction, amplification refractory mutation system (ARMS)-PCR was used to evaluate R882H mutations in DNMT3A gene. The high-resolution melting (HRM) method was used to determine the methylation changes of the DDX43 gene promoter. R882H mutation was only found in 10.6% (5 out of 47) of AML patients. The frequency of DDX43 gene methylation was significantly higher in patients without R882H mutations compared to patients with R882H mutations (P < 0.05). The DNMT3A R882H mutation is typically present in a minority of AML patients. Nevertheless, this mutation is associated with a reduced frequency of methylation in the DDX43 promoter region.
Collapse
Affiliation(s)
- Tahere Tabatabaei
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rezvany
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Bahare Ghasemi
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farzane Vafaei
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Isfahan, Iran
| | - Masoumeh Kiani Zadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Salmaninejad
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Dossmann L, Emperle M, Dukatz M, de Mendoza A, Bashtrykov P, Jeltsch A. Specific DNMT3C flanking sequence preferences facilitate methylation of young murine retrotransposons. Commun Biol 2024; 7:582. [PMID: 38755427 PMCID: PMC11099192 DOI: 10.1038/s42003-024-06252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
The DNA methyltransferase DNMT3C appeared as a duplication of the DNMT3B gene in muroids and is required for silencing of young retrotransposons in the male germline. Using specialized assay systems, we investigate the flanking sequence preferences of DNMT3C and observe characteristic preferences for cytosine at the -2 and -1 flank that are unique among DNMT3 enzymes. We identify two amino acids in the catalytic domain of DNMT3C (C543 and V547) that are responsible for the DNMT3C-specific flanking sequence preferences and evolutionary conserved in muroids. Reanalysis of published data shows that DNMT3C flanking preferences are consistent with genome-wide methylation patterns in mouse ES cells only expressing DNMT3C. Strikingly, we show that CpG sites with the preferred flanking sequences of DNMT3C are enriched in murine retrotransposons that were previously identified as DNMT3C targets. Finally, we demonstrate experimentally that DNMT3C has elevated methylation activity on substrates derived from these biological targets. Our data show that DNMT3C flanking sequence preferences match the sequences of young murine retrotransposons which facilitates their methylation. By this, our data provide mechanistic insights into the molecular co-evolution of repeat elements and (epi)genetic defense systems dedicated to maintain genomic stability in mammals.
Collapse
Affiliation(s)
- Leonie Dossmann
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Max Emperle
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Dukatz
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
35
|
Kubo N, Uehara R, Uemura S, Ohishi H, Shirane K, Sasaki H. Combined and differential roles of ADD domains of DNMT3A and DNMT3L on DNA methylation landscapes in mouse germ cells. Nat Commun 2024; 15:3266. [PMID: 38627502 PMCID: PMC11021467 DOI: 10.1038/s41467-024-47699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
DNA methyltransferase 3A (DNMT3A) and its catalytically inactive cofactor DNA methyltransferase 3-Like (DNMT3L) proteins form functional heterotetramers to deposit DNA methylation in mammalian germ cells. While both proteins have an ATRX-DNMT3-DNMT3L (ADD) domain that recognizes histone H3 tail unmethylated at lysine-4 (H3K4me0), the combined and differential roles of the domains in the two proteins have not been fully defined in vivo. Here we investigate DNA methylation landscapes in female and male germ cells derived from mice with loss-of-function amino acid substitutions in the ADD domains of DNMT3A and/or DNMT3L. Mutations in either the DNMT3A-ADD or the DNMT3L-ADD domain moderately decrease global CG methylation levels, but to different degrees, in both germ cells. Furthermore, when the ADD domains of both DNMT3A and DNMT3L lose their functions, the CG methylation levels are much more reduced, especially in oocytes, comparable to the impact of the Dnmt3a/3L knockout. In contrast, aberrant accumulation of non-CG methylation occurs at thousands of genomic regions in the double mutant oocytes and spermatozoa. These results highlight the critical role of the ADD-H3K4me0 binding in proper CG and non-CG methylation in germ cells and the various impacts of the ADD domains of the two proteins.
Collapse
Affiliation(s)
- Naoki Kubo
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Ryuji Uehara
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shuhei Uemura
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hiroaki Ohishi
- Division of Gene Expression Dynamics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenjiro Shirane
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
36
|
Han C. Gene expression programs in mammalian spermatogenesis. Development 2024; 151:dev202033. [PMID: 38691389 DOI: 10.1242/dev.202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mammalian spermatogenesis, probably the most complex of all cellular developmental processes, is an ideal model both for studying the specific mechanism of gametogenesis and for understanding the basic rules governing all developmental processes, as it entails both cell type-specific and housekeeping molecular processes. Spermatogenesis can be viewed as a mission with many tasks to accomplish, and its success is genetically programmed and ensured by the collaboration of a large number of genes. Here, I present an overview of mammalian spermatogenesis and the mechanisms underlying each step in the process, covering the cellular and molecular activities that occur at each developmental stage and emphasizing their gene regulation in light of recent studies.
Collapse
Affiliation(s)
- Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
37
|
Yamaguchi K, Chen X, Rodgers B, Miura F, Bashtrykov P, Bonhomme F, Salinas-Luypaert C, Haxholli D, Gutekunst N, Aygenli BÖ, Ferry L, Kirsh O, Laisné M, Scelfo A, Ugur E, Arimondo PB, Leonhardt H, Kanemaki MT, Bartke T, Fachinetti D, Jeltsch A, Ito T, Defossez PA. Non-canonical functions of UHRF1 maintain DNA methylation homeostasis in cancer cells. Nat Commun 2024; 15:2960. [PMID: 38580649 PMCID: PMC10997609 DOI: 10.1038/s41467-024-47314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
DNA methylation is an essential epigenetic chromatin modification, and its maintenance in mammals requires the protein UHRF1. It is yet unclear if UHRF1 functions solely by stimulating DNA methylation maintenance by DNMT1, or if it has important additional functions. Using degron alleles, we show that UHRF1 depletion causes a much greater loss of DNA methylation than DNMT1 depletion. This is not caused by passive demethylation as UHRF1-depleted cells proliferate more slowly than DNMT1-depleted cells. Instead, bioinformatics, proteomics and genetics experiments establish that UHRF1, besides activating DNMT1, interacts with DNMT3A and DNMT3B and promotes their activity. In addition, we show that UHRF1 antagonizes active DNA demethylation by TET2. Therefore, UHRF1 has non-canonical roles that contribute importantly to DNA methylation homeostasis; these findings have practical implications for epigenetics in health and disease.
Collapse
Affiliation(s)
- Kosuke Yamaguchi
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France.
| | - Xiaoying Chen
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Brianna Rodgers
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, Epigenetic Chemical Biology, CNRS, UMR 3523, Chem4Life, Paris, France
| | | | - Deis Haxholli
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicole Gutekunst
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | | | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Marthe Laisné
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Andrea Scelfo
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Enes Ugur
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, Epigenetic Chemical Biology, CNRS, UMR 3523, Chem4Life, Paris, France
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
- Department of Biological Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | |
Collapse
|
38
|
Meng WY, Wang ZX, Zhang Y, Hou Y, Xue JH. Epigenetic marks or not? The discovery of novel DNA modifications in eukaryotes. J Biol Chem 2024; 300:106791. [PMID: 38403247 PMCID: PMC11065753 DOI: 10.1016/j.jbc.2024.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/27/2024] Open
Abstract
DNA modifications add another layer of complexity to the eukaryotic genome to regulate gene expression, playing critical roles as epigenetic marks. In eukaryotes, the study of DNA epigenetic modifications has been confined to 5mC and its derivatives for decades. However, rapid developing approaches have witnessed the expansion of DNA modification reservoirs during the past several years, including the identification of 6mA, 5gmC, 4mC, and 4acC in diverse organisms. However, whether these DNA modifications function as epigenetic marks requires careful consideration. In this review, we try to present a panorama of all the DNA epigenetic modifications in eukaryotes, emphasizing recent breakthroughs in the identification of novel DNA modifications. The characterization of their roles in transcriptional regulation as potential epigenetic marks is summarized. More importantly, the pathways for generating or eliminating these DNA modifications, as well as the proteins involved are comprehensively dissected. Furthermore, we briefly discuss the potential challenges and perspectives, which should be taken into account while investigating novel DNA modifications.
Collapse
Affiliation(s)
- Wei-Ying Meng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zi-Xin Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yujun Hou
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jian-Huang Xue
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
39
|
Zhang Y, Chen J, Zheng B, Teng J, Lou Z, Feng H, Zhao S, Xue L. Genome-wide identification, evolution of DNA methyltransferases and their expression under salinity stress in Larimichthys crocea. Int J Biol Macromol 2024; 264:130603. [PMID: 38447841 DOI: 10.1016/j.ijbiomac.2024.130603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024]
Abstract
DNA methyltransferases (Dnmts) are responsible for DNA methylation which influences patterns of gene expression and plays a crucial role in response to environmental changes. In this study, 7 LcDnmt genes were identified in the genome of large yellow croaker (Larimichthys crocea). The comprehensive analysis was conducted on gene structure, protein and location site of LcDnmts. LcDnmt proteins belonged to three groups (Dnmt1, Dnmt2, and Dnmt3) according to their conserved domains and phylogenetic analysis. Although Dnmt3 can be further divided into three sub groups (Dnmt3a, Dnmt3b, and Dnmt3l), there is no Dnmnt3l member in the large yellow croaker. Phylogenetic analysis revealed that the Dnmt family was highly conserved in teleosts. Expression patterns derived from the RNA-seq, qRT-PCR and Western blot analysis revealed that 2 LcDnmt genes (LcDnmt1 and LcDnmt3a2) significantly regulated under salinity stress in the liver, which was found to be dominantly expressed in the intestine and brain, respectively. These two genes may play an important role in the salinity stress of large yellow croaker and represent candidates for future functional analysis. Our results revealed the conservation of Dnmts during evolution and indicated a potential role of Dnmts in epigenetic regulation of response to salinity stress.
Collapse
Affiliation(s)
- Yu Zhang
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Jiaqian Chen
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Baoxiao Zheng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jian Teng
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Zhengjia Lou
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Huijie Feng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Shiqi Zhao
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Liangyi Xue
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.
| |
Collapse
|
40
|
Bhattacharya I, Sharma SS, Majumdar SS. Etiology of Male Infertility: an Update. Reprod Sci 2024; 31:942-965. [PMID: 38036863 DOI: 10.1007/s43032-023-01401-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Spermatogenesis is a complex process of germ cell division and differentiation that involves extensive cross-talk between the developing germ cells and the somatic testicular cells. Defective endocrine signaling and/or intrinsic defects within the testes can adversely affect spermatogenic progression, leading to subfertility/infertility. In recent years, male infertility has been recognized as a global public health concern, and research over the last few decades has elucidated the complex etiology of male infertility. Congenital reproductive abnormalities, genetic mutations, and endocrine/metabolic dysfunction have been demonstrated to be involved in infertility/subfertility in males. Furthermore, acquired factors like exposure to environmental toxicants and lifestyle-related disorders such as illicit use of psychoactive drugs have been shown to adversely affect spermatogenesis. Despite the large body of available scientific literature on the etiology of male infertility, a substantial proportion of infertility cases are idiopathic in nature, with no known cause. The inability to treat such idiopathic cases stems from poor knowledge about the complex regulation of spermatogenesis. Emerging scientific evidence indicates that defective functioning of testicular Sertoli cells (Sc) may be an underlying cause of infertility/subfertility in males. Sc plays an indispensable role in regulating spermatogenesis, and impaired functional maturation of Sc has been shown to affect fertility in animal models as well as humans, suggesting abnormal Sc as a potential underlying cause of reproductive insufficiency/failure in such cases of unexplained infertility. This review summarizes the major causes of infertility/subfertility in males, with an emphasis on infertility due to dysregulated Sc function.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology, Central University of Kerala, Periye Campus, Kasaragod, 671320, Kerala, India.
| | - Souvik Sen Sharma
- National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India
| | - Subeer S Majumdar
- National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India.
- Gujarat Biotechnology University, Gandhinagar, GIFT City, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
41
|
Caldwell BA, Li L. Epigenetic regulation of innate immune dynamics during inflammation. J Leukoc Biol 2024; 115:589-606. [PMID: 38301269 PMCID: PMC10980576 DOI: 10.1093/jleuko/qiae026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Innate immune cells play essential roles in modulating both immune defense and inflammation by expressing a diverse array of cytokines and inflammatory mediators, phagocytizing pathogens to promote immune clearance, and assisting with the adaptive immune processes through antigen presentation. Rudimentary innate immune "memory" states such as training, tolerance, and exhaustion develop based on the nature, strength, and duration of immune challenge, thereby enabling dynamic transcriptional reprogramming to alter present and future cell behavior. Underlying transcriptional reprogramming are broad changes to the epigenome, or chromatin alterations above the level of DNA sequence. These changes include direct modification of DNA through cytosine methylation as well as indirect modifications through alterations to histones that comprise the protein core of nucleosomes. In this review, we will discuss recent advances in our understanding of how these epigenetic changes influence the dynamic behavior of the innate immune system during both acute and chronic inflammation, as well as how stable changes to the epigenome result in long-term alterations of innate cell behavior related to pathophysiology.
Collapse
Affiliation(s)
- Blake A. Caldwell
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| |
Collapse
|
42
|
Zoch A, Konieczny G, Auchynnikava T, Stallmeyer B, Rotte N, Heep M, Berrens RV, Schito M, Kabayama Y, Schöpp T, Kliesch S, Houston B, Nagirnaja L, O'Bryan MK, Aston KI, Conrad DF, Rappsilber J, Allshire RC, Cook AG, Tüttelmann F, O'Carroll D. C19ORF84 connects piRNA and DNA methylation machineries to defend the mammalian germ line. Mol Cell 2024; 84:1021-1035.e11. [PMID: 38359823 PMCID: PMC10960678 DOI: 10.1016/j.molcel.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
In the male mouse germ line, PIWI-interacting RNAs (piRNAs), bound by the PIWI protein MIWI2 (PIWIL4), guide DNA methylation of young active transposons through SPOCD1. However, the underlying mechanisms of SPOCD1-mediated piRNA-directed transposon methylation and whether this pathway functions to protect the human germ line remain unknown. We identified loss-of-function variants in human SPOCD1 that cause defective transposon silencing and male infertility. Through the analysis of these pathogenic alleles, we discovered that the uncharacterized protein C19ORF84 interacts with SPOCD1. DNMT3C, the DNA methyltransferase responsible for transposon methylation, associates with SPOCD1 and C19ORF84 in fetal gonocytes. Furthermore, C19ORF84 is essential for piRNA-directed DNA methylation and male mouse fertility. Finally, C19ORF84 mediates the in vivo association of SPOCD1 with the de novo methylation machinery. In summary, we have discovered a conserved role for the human piRNA pathway in transposon silencing and C19ORF84, an uncharacterized protein essential for orchestrating piRNA-directed DNA methylation.
Collapse
Affiliation(s)
- Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Gabriela Konieczny
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Tania Auchynnikava
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Birgit Stallmeyer
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Nadja Rotte
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Madeleine Heep
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Rebecca V Berrens
- Institute for Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Oxford OX37TY, UK
| | - Martina Schito
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Yuka Kabayama
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Theresa Schöpp
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Brendan Houston
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Kenneth I Aston
- Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA; Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, USA
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK; Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
43
|
Kordowitzki P, Graczyk S, Haghani A, Klutstein M. Oocyte Aging: A Multifactorial Phenomenon in A Unique Cell. Aging Dis 2024; 15:5-21. [PMID: 37307833 PMCID: PMC10796106 DOI: 10.14336/ad.2023.0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
The oocyte is considered to be the largest cell in mammalian species. Women hoping to become pregnant face a ticking biological clock. This is becoming increasingly challenging as an increase in life expectancy is accompanied by the tendency to conceive at older ages. With advancing maternal age, the fertilized egg will exhibit lower quality and developmental competence, which contributes to increased chances of miscarriage due to several causes such as aneuploidy, oxidative stress, epigenetics, or metabolic disorders. In particular, heterochromatin in oocytes and with it, the DNA methylation landscape undergoes changes. Further, obesity is a well-known and ever-increasing global problem as it is associated with several metabolic disorders. More importantly, both obesity and aging negatively affect female reproduction. However, among women, there is immense variability in age-related decline of oocytes' quantity, developmental competence, or quality. Herein, the relevance of obesity and DNA-methylation will be discussed as these aspects have a tremendous effect on female fertility, and it is a topic of continuous and widespread interest that has yet to be fully addressed for the mammalian oocyte.
Collapse
Affiliation(s)
- Pawel Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Szymon Graczyk
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego, CA, USA.
| | - Michael Klutstein
- Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
44
|
Ilık İA, Glažar P, Tse K, Brändl B, Meierhofer D, Müller FJ, Smith ZD, Aktaş T. Autonomous transposons tune their sequences to ensure somatic suppression. Nature 2024; 626:1116-1124. [PMID: 38355802 PMCID: PMC10901741 DOI: 10.1038/s41586-024-07081-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Transposable elements (TEs) are a major constituent of human genes, occupying approximately half of the intronic space. During pre-messenger RNA synthesis, intronic TEs are transcribed along with their host genes but rarely contribute to the final mRNA product because they are spliced out together with the intron and rapidly degraded. Paradoxically, TEs are an abundant source of RNA-processing signals through which they can create new introns1, and also functional2 or non-functional chimeric transcripts3. The rarity of these events implies the existence of a resilient splicing code that is able to suppress TE exonization without compromising host pre-mRNA processing. Here we show that SAFB proteins protect genome integrity by preventing retrotransposition of L1 elements while maintaining splicing integrity, via prevention of the exonization of previously integrated TEs. This unique dual role is possible because of L1's conserved adenosine-rich coding sequences that are bound by SAFB proteins. The suppressive activity of SAFB extends to tissue-specific, giant protein-coding cassette exons, nested genes and Tigger DNA transposons. Moreover, SAFB also suppresses LTR/ERV elements in species in which they are still active, such as mice and flies. A significant subset of splicing events suppressed by SAFB in somatic cells are activated in the testis, coinciding with low SAFB expression in postmeiotic spermatids. Reminiscent of the division of labour between innate and adaptive immune systems that fight external pathogens, our results uncover SAFB proteins as an RNA-based, pattern-guided, non-adaptive defence system against TEs in the soma, complementing the RNA-based, adaptive Piwi-interacting RNA pathway of the germline.
Collapse
Affiliation(s)
- İbrahim Avşar Ilık
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Petar Glažar
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kevin Tse
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Björn Brändl
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie, Kiel, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Joint Facilities Scientific Service, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Franz-Josef Müller
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie, Kiel, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Tuğçe Aktaş
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
45
|
Sepulveda H, Li X, Yue X, Carlos Angel J, Arteaga-Vazquez LJ, Brown C, Brunelli M, Jansz N, Puddu F, Scotcher J, Creed P, Kennedy P, Manriquez C, Myers SA, Crawford R, Faulkner GJ, Rao A. OGT prevents DNA demethylation and suppresses the expression of transposable elements in heterochromatin by restraining TET activity genome-wide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578097. [PMID: 38352366 PMCID: PMC10862820 DOI: 10.1101/2024.01.31.578097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The O- GlcNAc transferase OGT interacts robustly with all three mammalian TET methylcytosine dioxygenases. We show here that deletion of the Ogt gene in mouse embryonic stem cells (mESC) results in a widespread increase in the TET product 5-hydroxymethylcytosine (5hmC) in both euchromatic and heterochromatic compartments, with concomitant reduction of the TET substrate 5-methylcytosine (5mC) at the same genomic regions. mESC engineered to abolish the TET1-OGT interaction likewise displayed a genome-wide decrease of 5mC. DNA hypomethylation in OGT-deficient cells was accompanied by de-repression of transposable elements (TEs) predominantly located in heterochromatin, and this increase in TE expression was sometimes accompanied by increased cis -expression of genes and exons located 3' of the expressed TE. Thus, the TET-OGT interaction prevents DNA demethylation and TE expression in heterochromatin by restraining TET activity genome-wide. We suggest that OGT protects the genome against DNA hypomethylation and impaired heterochromatin integrity, preventing the aberrant increase in TE expression observed in cancer, autoimmune-inflammatory diseases, cellular senescence and ageing.
Collapse
|
46
|
Yang G, Li S, Cai S, Zhou J, Ye Q, Zhang S, Chen F, Wang F, Zeng X. Dietary methionine supplementation during the estrous cycle improves follicular development and estrogen synthesis in rats. Food Funct 2024; 15:704-715. [PMID: 38109056 DOI: 10.1039/d3fo04106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The follicle is an important unit for the synthesis of steroid hormones and the oocyte development and maturation in mammals. However, the effect of methionine supply on follicle development and its regulatory mechanism are still unclear. In the present study, we found that dietary methionine supplementation during the estrous cycle significantly increased the number of embryo implantation sites, as well as serum contents of a variety of amino acids and methionine metabolic enzymes in rats. Additionally, methionine supplementation markedly enhanced the expression of rat ovarian neutral amino acid transporters, DNA methyltransferases (DNMTs), and cystathionine gamma-lyase (CSE); meanwhile, it significantly increased the ovarian concentrations of the metabolite S-adenosylmethionine (SAM) and glutathione (GSH). In vitro data showed that methionine supply promotes rat follicle development through enhancing the expression of critical gene growth differentiation factor 9 and bone morphogenetic protein 15. Furthermore, methionine enhanced the relative protein and mRNA expression of critical genes related to estrogen synthesis, ultimately increasing estrogen synthesis in primary ovarian granulosa cells. Taken together, our results suggested that methionine promoted follicular growth and estrogen synthesis in rats during the estrus cycle, which improved embryo implantation during early pregnancy. These findings provided a potential nutritional strategy to improve the reproductive performance of animals.
Collapse
Affiliation(s)
- Guangxin Yang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Junyan Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Qianhong Ye
- State Key Laboratory of Agricultural Microbiology, Hu Hubei Hongshan Laboratory. College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shihai Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fang Chen
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| |
Collapse
|
47
|
Liao J, Szabó PE. Role of transcription in imprint establishment in the male and female germ lines. Epigenomics 2024; 16:127-136. [PMID: 38126127 PMCID: PMC10825728 DOI: 10.2217/epi-2023-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The authors highlight an area of research that focuses on the establishment of genomic imprints: how the female and male germlines set up opposite instructions for imprinted genes in the maternally and paternally inherited chromosomes. Mouse genetics studies have solidified the role of transcription across the germline differentially methylated regions in the establishment of maternal genomic imprinting. One work now reveals that such transcription is also important in paternal imprinting establishment. This allows the authors to propose a unifying mechanism, in the form of transcription across germline differentially methylated regions, that specifies DNA methylation imprint establishment. Differences in the timing, genomic location and nature of such transcription events in the male versus female germlines in turn explain the difference between paternal and maternal imprints.
Collapse
Affiliation(s)
- Ji Liao
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Piroska E Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
48
|
Feng Q, Duan H, Zhou X, Wang Y, Zhang J, Zhang H, Chen G, Bao X. DNA Methyltransferase 3A: A Significant Target for the Discovery of Inhibitors as Potent Anticancer Drugs. Mini Rev Med Chem 2024; 24:507-520. [PMID: 37642180 DOI: 10.2174/1389557523666230825100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
DNA methyltransferase (DNMT) is a conserved family of Cytosine methylases, which plays a crucial role in the regulation of Epigenetics. They have been considered promising therapeutic targets for cancer. Among the DNMT family, mutations in the DNMT3A subtype are particularly important in hematologic malignancies. The development of specific DNMT3A subtype inhibitors to validate the therapeutic potential of DNMT3A in certain diseases is a significant task. In this review, we summarized the small molecule inhibitors of DNMT3A discovered in recent years and their inhibitory activities, and classified them based on their inhibitory mechanisms.
Collapse
Affiliation(s)
- Qixun Feng
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Honggao Duan
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinglong Zhou
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuning Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinda Zhang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Haoge Zhang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xuefei Bao
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
49
|
Kumar V, Dhanjal JK, Sari AN, Khurana M, Kaul SC, Wadhwa R, Sundar D. Effect of Withaferin-A, Withanone, and Caffeic Acid Phenethyl Ester on DNA Methyltransferases: Potential in Epigenetic Cancer Therapy. Curr Top Med Chem 2024; 24:379-391. [PMID: 37496252 DOI: 10.2174/1568026623666230726105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND DNA methyltransferases (DNMTs) have been reported to be potential drug targets in various cancers. The major hurdle in inhibiting DNMTs is the lack of knowledge about different DNMTs and their role in the hypermethylation of gene promoters in cancer cells. Lack of information on specificity, stability, and higher toxicity of previously reported DNMT inhibitors is the major reason for inadequate epigenetic cancer therapy. DNMT1 and DNMT3A are the two DNMTs that are majorly overexpressed in cancers. OBJECTIVE In this study, we have presented computational and experimental analyses of the potential of some natural compounds, withaferin A (Wi-A), withanone (Wi-N), and caffeic acid phenethyl ester (CAPE), as DNMT inhibitors, in comparison to sinefungin (SFG), a known dual inhibitor of DNMT1 and DNMT3A. METHODS We used classical simulation methods, such as molecular docking and molecular dynamics simulations, to investigate the binding potential and properties of the test compounds with DNMT1 and DNMT3A. Cell culture-based assays were used to investigate the inactivation of DNMTs and the resulting hypomethylation of the p16INK4A promoter, a key tumour suppressor that is inactivated by hypermethylation in cancer cells, resulting in upregulation of its expression. RESULTS Among the three test compounds (Wi-A, Wi-N, and CAPE), Wi-A showed the highest binding affinity to both DNMT1 and DNMT3A; CAPE showed the highest affinity to DNMT3A, and Wi-N showed a moderate affinity interaction with both. The binding energies of Wi-A and CAPE were further compared with SFG. Expression analysis of DNMTs showed no difference between control and treated cells. Cell viability and p16INK4A expression analysis showed a dose-dependent decrease in viability, an increase in p16INK4A, and a stronger effect of Wi-A compared to Wi-N and CAPE. CONCLUSION The study demonstrated the differential binding ability of Wi-A, Wi-N, and CAPE to DNMT1 and DNMT3A, which was associated with their inactivation, leading to hypomethylation and desilencing of the p16INK4A tumour suppressor in cancer cells. The test compounds, particularly Wi-A, have the potential for cancer therapy.
Collapse
Affiliation(s)
- Vipul Kumar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, Okhla Industrial Estate, Phase III, New Delhi, 110020, India
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Anissa Nofita Sari
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Mallika Khurana
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Sunil C Kaul
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Renu Wadhwa
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
50
|
Gill ME, Rohmer A, Erkek-Ozhan S, Liang CY, Chun S, Ozonov EA, Peters AHFM. De novo transcriptome assembly of mouse male germ cells reveals novel genes, stage-specific bidirectional promoter activity, and noncoding RNA expression. Genome Res 2023; 33:2060-2078. [PMID: 38129075 PMCID: PMC10760527 DOI: 10.1101/gr.278060.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/29/2023] [Indexed: 12/23/2023]
Abstract
In mammals, the adult testis is the tissue with the highest diversity in gene expression. Much of that diversity is attributed to germ cells, primarily meiotic spermatocytes and postmeiotic haploid spermatids. Exploiting a newly developed cell purification method, we profiled the transcriptomes of such postmitotic germ cells of mice. We used a de novo transcriptome assembly approach and identified thousands of novel expressed transcripts characterized by features distinct from those of known genes. Novel loci tend to be short in length, monoexonic, and lowly expressed. Most novel genes have arisen recently in evolutionary time and possess low coding potential. Nonetheless, we identify several novel protein-coding genes harboring open reading frames that encode proteins containing matches to conserved protein domains. Analysis of mass-spectrometry data from adult mouse testes confirms protein production from several of these novel genes. We also examine overlap between transcripts and repetitive elements. We find that although distinct families of repeats are expressed with differing temporal dynamics during spermatogenesis, we do not observe a general mode of regulation wherein repeats drive expression of nonrepetitive sequences in a cell type-specific manner. Finally, we observe many fairly long antisense transcripts originating from canonical gene promoters, pointing to pervasive bidirectional promoter activity during spermatogenesis that is distinct and more frequent compared with somatic cells.
Collapse
Affiliation(s)
- Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Alexia Rohmer
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Serap Erkek-Ozhan
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Ching-Yeu Liang
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Sunwoo Chun
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland;
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|