1
|
Bertram JF, Cullen-McEwen LA, Andrade-Oliveira V, Câmara NOS. The intelligent podocyte: sensing and responding to a complex microenvironment. Nat Rev Nephrol 2025:10.1038/s41581-025-00965-y. [PMID: 40341763 DOI: 10.1038/s41581-025-00965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Podocytes are key components of the glomerular filtration barrier - a specialized structure that is responsible for the filtration of blood by the kidneys. They therefore exist in a unique microenvironment exposed to mechanical force and the myriad molecules that cross the filtration barrier. To survive and thrive, podocytes must continually sense and respond to their ever-changing microenvironment. Sensing is achieved by interactions with the surrounding extracellular matrix and neighbouring cells, through a variety of pathways, to sense changes in environmental factors such as nutrient levels including glucose and lipids, oxygen levels, pH and pressure. The response mechanisms similarly involve a range of processes, including signalling pathways and the actions of specific organelles that initiate and regulate appropriate responses, including alterations in cell metabolism, immune regulation and changes in podocyte structure and cognate functions. These functions ultimately affect glomerular and kidney health. Imbalances in these processes can lead to inflammation, podocyte loss and glomerular disease.
Collapse
Affiliation(s)
- John F Bertram
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Brisbane, Queensland, Australia
| | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vinicius Andrade-Oliveira
- Center for Natural and Human Sciences, Federal University of ABC, Sao Paulo, Brazil.
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | |
Collapse
|
2
|
Mann N, Sun H, Majmundar AJ. Mechanisms of podocyte injury in genetic kidney disease. Pediatr Nephrol 2025; 40:1523-1538. [PMID: 39485497 PMCID: PMC11945604 DOI: 10.1007/s00467-024-06551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
Glomerular diseases are a leading cause of chronic kidney disease worldwide. Both acquired and hereditary glomerulopathies frequently share a common final disease mechanism: disruption of the glomerular filtration barrier, podocyte injury, and ultimately podocyte death and detachment. Over 70 monogenic causes of proteinuric kidney disease have been identified, and most of these genes are highly expressed in podocytes, regulating key processes such as maintenance of the slit diaphragm, regulation of actin cytoskeleton remodeling, and modulation of downstream transcriptional pathways. Collectively, these are increasingly being referred to as hereditary "podocytopathies," in which podocyte injury is the central feature driving proteinuria and kidney dysfunction. In this review, we provide an overview of the monogenic podocytopathies and discuss the molecular mechanisms by which single-gene defects lead to podocyte injury and ultimately glomerulosclerosis. We review how advances in genomic technology and a better understanding of the cell biological basis of disease have led to the development of more targeted and personalized therapeutic strategies, including an overview of small molecule and gene therapy approaches.
Collapse
Affiliation(s)
- Nina Mann
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Hua Sun
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amar J Majmundar
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Xu X, Pastene DO, Qiu J, Schnell B, Maihöfer T, Hettler S, Krämer BK, Hoffmann S, Yard BA. Influence of carnosine supplementation on disease progression in a rat model of focal segmental glomerulosclerosis. Am J Physiol Renal Physiol 2025; 328:F599-F607. [PMID: 40079823 DOI: 10.1152/ajprenal.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 03/06/2025] [Indexed: 03/15/2025] Open
Abstract
In diabetic kidney disease models, carnosine supplementation ameliorates renal pathology, but its influence in other renal pathologies is less explored. Thus, using the transgenic rat TGRNeph-hAT1 with sex-dependent focal segmental glomerulosclerosis, we first tested whether renal expression levels of carnosine system components correlate with disease. Next, we assessed whether carnosine supplementation in male rats improves pathology. In 10-wk-old phenotypically healthy male and female TGRNeph-hAT1 rats, we compared the renal expression of components of the carnosine system by qRT-PCR. Next, male TGRNeph-hAT1 rats were supplemented with carnosine in drinking water for 20 wk. Subsequently, urinary parameters, renal histology, and renal gene expression of renin-angiotensin system components were assessed. Male TGRNeph-hAT1 rats exhibited less renal expression of carnosine synthase 1, oligopeptide transporter 2, and taurine transporter and higher carnosinase 1 expression than female TGRNeph-hAT1 rats at a young age, before disease starts to develop. Male, but not female, TGRNeph-hAT1 rats developed severe albuminuria, glomerular hypertrophy, and focal and segmental glomerulosclerosis on aging. Carnosine supplementation ameliorated the glomerular hypertrophy but did not affect albuminuria, renal fibrosis, and podocyte loss. Moreover, carnosine significantly reduced renin and increased angiotensin-converting enzyme 2 expression within the kidney. Carnosine treatment alleviates glomerular hypertrophy in TGRNeph-hAT1 rats but does not improve other renal pathologies. Although amelioration of glomerular hypertrophy might be explained by changes in renal renin-angiotensin system expression, further studies are warranted to assess causality.NEW & NOTEWORTHY In diabetic kidney disease models, carnosine supplementation ameliorates renal pathology, but its influence in other renal pathologies is less explored. We tested whether renal expression levels of carnosine system components correlate with disease in the model of the transgenic rat TGRNeph-hAT1 with sex-dependent focal segmental glomerulosclerosis and whether carnosine supplementation in male rats improves pathology. Our results provide evidence that carnosine feeding affects the glomerular hypertrophy and renal RAS expression.
Collapse
Affiliation(s)
- Xin Xu
- 5th Medical Department, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
- Department of Geriatrics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Diego O Pastene
- 5th Medical Department, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Jiedong Qiu
- 5th Medical Department, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Bero Schnell
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tim Maihöfer
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steffen Hettler
- 5th Medical Department, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Bernhard K Krämer
- 5th Medical Department, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Mannheim, Germany
| | - Sigrid Hoffmann
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Benito A Yard
- 5th Medical Department, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Mannheim, Germany
| |
Collapse
|
4
|
Zhao Y, Xing W, Chen W, Wang Y. Integrated bioinformatics analysis and biological experiments to identify key immune genes in vascular dementia. Front Immunol 2025; 16:1560438. [PMID: 40196107 PMCID: PMC11973090 DOI: 10.3389/fimmu.2025.1560438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Objectives This study aimed to identify key immune genes to provide new perspectives on the mechanisms and diagnosis of vascular dementia (VaD) based on bioinformatic methods combined with biological experiments in mice. Methods We obtained gene expression profiles from a Gene Expression Omnibus database (GSE186798). The gene expression data were analysed using integrated bioinformatics and machine learning techniques to pinpoint potential key immune-related genes for diagnosing VaD. Moreover, the diagnostic accuracy was evaluated through receiver operating characteristic curve analysis. The microRNA, transcription factor (TF), and drug-regulating hub genes were predicted using the database. Immune cell infiltration has been studied to investigate the dysregulation of immune cells in patients with VaD. To evaluate cognitive impairment, mice with bilateral common carotid artery stenosis (BCAS) were subjected to behavioural tests 30 d after chronic cerebral hypoperfusion. The expression of hub genes in the BCAS mice was determined using a quantitative polymerase chain reaction(qPCR). Results The results of gene set enrichment and gene set variation analyses indicated that immune-related pathways were upregulated in patients with VaD. A total of 1620 immune genes were included in the combined immune dataset, and 323 differentially expressed genes were examined using the GSE186798 dataset. Thirteen potential genes were identified using differential gene analysis. Protein-protein interaction network design and functional enrichment analysis were performed using the immune system as the main subject. To evaluate the diagnostic value, two potential core genes were selected using machine learning. Two putative hub genes, Rac family small GTPase 1(RAC1) and CKLF-like MARVEL transmembrane domain containing 5 (CMTM5) exhibit good diagnostic value. Their high confidence levels were confirmed by validating each biomarker using a different dataset. According to GeneMANIA, VaD pathophysiology is strongly associated with immune and inflammatory responses. The data were used to construct miRNA hub gene, TFs-hub gene, and drug-hub gene networks. Varying levels of immune cell dysregulation were also observed. In the animal experiments, a BCAS mouse model was employed to mimic VaD in humans, further confirmed using the Morris water maze test. The mRNA expression of RAC1 and CMTM5 was significantly reduced in the BCAS group, which was consistent with the results of the integrated bioinformatics analysis. Conclusions RAC1 and CMTM5 are differentially expressed in the frontal lobes of BCAS mice, suggesting their potential as biomarkers for diagnosing and prognosis of VaD. These findings pave the way for exploring novel molecular mechanisms aimed at preventing or treating VaD.
Collapse
Affiliation(s)
- Yilong Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wen Xing
- Department of Clinical Laboratory, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
He C, Peng W, Li S, Xu C, Chen X, Qin Y. ECHS1 as a Lipid Metabolism Biomarker for Pediatric Focal Segmental Glomerulosclerosis. PLoS One 2025; 20:e0319049. [PMID: 40063869 PMCID: PMC11893130 DOI: 10.1371/journal.pone.0319049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/26/2025] [Indexed: 05/13/2025] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common cause of nephrotic syndrome and often leads to end-stage renal disease. However, the underlying pathophysiological mechanisms that contribute to disease progression require further investigation to establish appropriate therapeutic targets and biomarkers. This study aimed to clarify the molecular mechanisms underlying FSGS by focusing on differentially expressed genes (DEGs) and lipid metabolism-related genes (LMRGs). We utilized the GSE69814, GSE129973, and GSE121233 datasets, which comprise glomerular transcriptomes from patients with FSGS, minimal change disease (MCD), and unaffected kidney tissues. We identified 2,459 DEGs from the GSE69814 dataset and 982 DEGs from the GSE129973 dataset. These DEGs intersected 1,450 LMRGs, resulting in 56 differentially expressed LMRGs (DELMRGs). Enrichment analysis revealed that these DELMRGs were primarily involved in fatty acid metabolic processes; localized in microbodies, peroxisomes, and mitochondrial matrices; and exhibited oxidoreductase activity. Protein-protein interaction networks were constructed using Cytoscape, and five hub DELMRGs (enoyl-CoA hydratase, short chain 1 [ECHS1], EHHADH, IDH1, SUCLG1, and ALDH3A2) were identified using multiple algorithms. We assessed the diagnostic performance using receiver operating characteristic curves and expression levels from the GSE121233 dataset, and found that ECHS1 and ALDH3A2 showed strong diagnostic potential. Immunohistochemical verification of clinical specimens from children confirmed significant expression of ECHS1 in FSGS compared with that in normal and MCD tissues. This study highlights ECHS1 as a potential biomarker for pediatric FSGS, suggesting a potential role in early diagnosis or personalized treatment, offering insights into its pathogenesis and paving the way for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Chao He
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University
- The First Affiliated Hospital, Department of Pediatrics, Hengyang Medical School, University of South China
| | - Wei Peng
- Department of Pediatrics, People’s Hospital of Ningxiang City
| | - Sheng Li
- The First Affiliated Hospital, Department of Pediatrics, Hengyang Medical School, University of South China
| | - Can Xu
- The First Affiliated Hospital, Department of Cardiology, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China
| | - Xiuping Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University
| | - Yuanhan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University
| |
Collapse
|
6
|
Kim KH, Park JB, An JN, Bae G, Kim KH, Park SJ, Jung Y, Kim YC, Lee JP, Lee JW, Kim DK, Kim YS, Hong BH, Yang SH. Effects of Graphene Quantum Dots on Renal Fibrosis Through Alleviating Oxidative Stress and Restoring Mitochondrial Membrane Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410747. [PMID: 39739624 PMCID: PMC11904958 DOI: 10.1002/advs.202410747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/13/2024] [Indexed: 01/02/2025]
Abstract
Podocyte injury and proteinuria in glomerular disease are critical indicators of acute kidney injury progression to chronic kidney disease. Renal mitochondrial dysfunction, mediated by intracellular calcium levels and oxidative stress, is a major contributor to podocyte complications. Despite various strategies targeting mitochondria to improve kidney function, effective treatments remain lacking. This study investigates the potential of graphene quantum dots (GQDs) in mitigating renal fibrosis and elucidates their underlying mechanisms. In animal models of Adriamycin-induced nephropathy and 5/6 subtotal nephrectomy, GQDs treatment exhibits anti-inflammatory, anti-fibrotic, and anti-apoptotic effects by restoring podocyte actin structure. These therapeutic benefits are associated with the downregulation of transient receptor potential channel 5 (TRPC5) activity, which is related to kidney fibrosis and mitochondrial dysfunction. In vitro, GQDs suppress TRPC5, enhancing anti-fibrotic and anti-apoptotic effects by lowering calcium levels under oxidative stress and mechanical pressure. Anti-oxidative and anti-senescent effects are also confirmed. Most significantly, transcriptomics and electron microscopy analyses reveal that GQD treatment enhances mitochondrial respiration-related gene profiles and improves mitochondrial cristae morphology. These findings suggest that GQDs are a promising therapeutic nanomaterial for renal cell damage, capable of modulating calcium-dependent apoptosis associated with mitochondrial injury, potentially slowing fibrosis progression.
Collapse
Affiliation(s)
- Kyu Hong Kim
- Department of Biomedical SciencesSeoul National UniversitySeoulSouth Korea
| | - Jong Bo Park
- Department of Chemistry, College of Natural SciencesSeoul National UniversitySeoulSouth Korea
- R&D Center of Graphene Square Chemical Inc.SeoulSouth Korea
| | - Jung Nam An
- Department of Internal MedicineHallym University Sacred Heart HospitalAnyangSouth Korea
| | - Gaeun Bae
- Department of Chemistry, College of Natural SciencesSeoul National UniversitySeoulSouth Korea
| | - Kyu Hyeon Kim
- Department of Biomedical SciencesSeoul National UniversitySeoulSouth Korea
| | - Seong Joon Park
- Department of Biomedical SciencesSeoul National UniversitySeoulSouth Korea
| | - Youngjin Jung
- Department of Chemistry, College of Natural SciencesSeoul National UniversitySeoulSouth Korea
| | - Yong Chul Kim
- Department of Internal MedicineSeoul National University HospitalSeoulSouth Korea
| | - Jung Pyo Lee
- Department of Internal MedicineSeoul National University Boramae Medical CenterSeoulSouth Korea
| | - Jae Wook Lee
- Nephrology ClinicNational Cancer CenterGoyangSouth Korea
| | - Dong Ki Kim
- Department of Internal MedicineSeoul National University HospitalSeoulSouth Korea
- Department of Kidney Research InstituteSeoul National University Medical Research CenterSeoulSouth Korea
| | - Yon Su Kim
- Department of Internal MedicineSeoul National University HospitalSeoulSouth Korea
- Department of Kidney Research InstituteSeoul National University Medical Research CenterSeoulSouth Korea
| | - Byung Hee Hong
- Department of Chemistry, College of Natural SciencesSeoul National UniversitySeoulSouth Korea
- Graduate School of Convergence Science and TechnologySeoul National UniversitySuwonSouth Korea
- Graphene Research CenterAdvanced Institute of Convergence TechnologySeoul National UniversitySeoulSouth Korea
| | - Seung Hee Yang
- Department of Kidney Research InstituteSeoul National University Medical Research CenterSeoulSouth Korea
- Biomedical Research InstituteSeoul National University HospitalSeoulSouth Korea
| |
Collapse
|
7
|
Wan J, Hu Z, Zhu H, Li J, Zheng Z, Deng Z, Lu J, Chen Y, Chen GL, Zeng B, Zhang J, Duan J. The essential role of sphingolipids in TRPC5 ion channel localization and functionality within lipid rafts. Pharmacol Res 2025; 213:107648. [PMID: 39923924 DOI: 10.1016/j.phrs.2025.107648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
Sphingolipids are critical components of cellular membranes that play a pivotal role in modulating ion channel function by forming lipid rafts that stabilize and localize these channels. These lipids regulate membrane fluidity and protein-lipid interactions, directly influencing ion channel activity, trafficking, and signaling pathways essential for maintaining cellular homeostasis. Despite their fundamental role, the impact of sphingolipids on ion channel functionality, particularly within the nervous system, remains insufficiently understood. This study addresses this gap by examining the influence of sphingolipids on transient receptor potential canonical 5 (TRPC5), a key brain ion channel involved in sensory transduction and linked to conditions such as obesity, anxiety, and postpartum depression when disrupted. In this study, we demonstrate that TRPC5 is localized within lipid rafts. Inhibition of sphingolipid synthesis through myrioncin (Myr), the sphingomyelin synthase 2 inhibitor Ly93, or D,L-erythro-PDMP hydrochloride (PMDP) significantly disrupts TRPC5 localization at the plasma membrane. Treatment with lipid raft disruptors methyl-β-cyclodextrin (MCD) or sphingomyelin phosphodiesterase 3 (SMPD3), in conjunction with sphingolipid synthesis inhibitors, led to decreased TRPC5-mediated calcium flux and currents. This highlights the critical importance of TRPC5 localization in lipid rafts for its functionality. Furthermore, LC-MS/MS-based sphingolipidomics has shown that a balanced sphingolipid profile is crucial for channel function. Alterations in sphingolipid metabolism, especially the deficiency of sphingomyelin and glycosphingolipids, may primarily disrupt lipid raft structure. Interactions between amino acid residues with phenyl ring side chains and lipids at the inner and outer plasma membrane edges serve as 'fixators', anchoring TRPC5 channels within lipid rafts. Given the structural similarities among TRP channels, we propose that sphingolipid metabolic homeostasis may universally influence TRP channel activity, potentially explaining diverse neurological disorder phenotypes associated with sphingolipid metabolism disruptions.
Collapse
Affiliation(s)
- Junliang Wan
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi 330031, China
| | - Zhenying Hu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi 330031, China
| | - Huaiyi Zhu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi 330031, China
| | - Jingyi Li
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi 330031, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Ziyuan Zheng
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi 330031, China
| | - Zhitao Deng
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi 330031, China
| | - Junyan Lu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi 330031, China
| | - Yu Chen
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi 330031, China
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jingjing Duan
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
8
|
El Assar M, García-Gómez B, La Fuente JM, Alonso-Isa M, Martínez-Salamanca JI, Fernández A, Sosa P, Romero-Otero J, Rodríguez-Mañas L, Angulo J. Targeting TRPC-5 Channel Inhibition to Improve Penile Vascular Function in Erectile Dysfunction. Int J Mol Sci 2025; 26:1431. [PMID: 40003900 PMCID: PMC11855833 DOI: 10.3390/ijms26041431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Canonical transient receptor potential (TRPC) channels contribute to calcium homeostasis, which is involved in penile vascular contractility and erectile dysfunction (ED) pathophysiology. We evaluated the impact of TRPC5 inhibition on endothelial function in penile vascular tissue from aging rats and ED patients and its effect on the relaxant efficacy of PDE5 inhibitors. TRPC inhibitor-induced endothelial and neurogenic relaxations were evaluated in corpus cavernosum (RCC) from a rat model of aging-related ED and in human penile resistance arteries (HPRAs) and corpus cavernosum (HCC) from ED patients and organ donors (NoED). The TRPC5 inhibitor, AC1903, was more effective than TRPC3 and TRPC4 inhibitors in relaxing aged RCC and HCC and HPRA from ED patients. In addition to enhancing endothelial and neurogenic relaxations in RCC from aged animals, AC1903 improved endothelium-dependent relaxation in both HCC and HPRA from ED patients but not in tissues from NoED. Cavernosal expression of TRPC5 was not different between ED and NoED subjects. AC1903 potentiated relaxations to the PDE5 inhibitor, tadalafil, in HCC/HPRA from ED patients. TRPC5 inhibition improved penile vascular function in aged rats and patients with ED. TRPC5 inhibition could be a potential therapeutic target for ED, particularly when combined with PDE5 inhibitors to enhance treatment outcomes.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital de Getafe, 28905 Getafe, Spain;
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación IdiPaz, 28046 Madrid, Spain
| | - Borja García-Gómez
- Department of Urology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.G.-G.); (M.A.-I.)
| | - José M. La Fuente
- Serviço de Urologia, Centro Hospitalar e Universitário de Santo António (CHUdSA), 4099-001 Porto, Portugal;
| | - Manuel Alonso-Isa
- Department of Urology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.G.-G.); (M.A.-I.)
| | | | - Argentina Fernández
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología—IRYCIS/UFV, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| | - Patricia Sosa
- Fundación para la Investigación Biomédica del Hospital de Getafe, 28905 Getafe, Spain;
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación IdiPaz, 28046 Madrid, Spain
| | - Javier Romero-Otero
- Servicio de Urología, Hospital Universitario HM Sanchinarro, HM Hospitales, 28050 Madrid, Spain;
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación IdiPaz, 28046 Madrid, Spain
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología—IRYCIS/UFV, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| |
Collapse
|
9
|
Zhou T, Wang Z, Lv X, Guo M, Zhang N, Liu L, Geng L, Shao J, Zhang K, Gao M, Mao A, Zhu Y, Yu F, Feng L, Wang X, Zhai Q, Chen W, Ma X. Targeting gut S. aureofaciens Tü117 serves as a new potential therapeutic intervention for the prevention and treatment of hypertension. Cell Metab 2025; 37:496-513.e11. [PMID: 39908987 DOI: 10.1016/j.cmet.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 09/13/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025]
Abstract
Currently, the regulation of specific gut microbial metabolism for the development and/or treatment of hypertension remains largely unexplored. Here, we show that α-lipomycin, produced by Streptomyces aureofaciens (S. aureofaciens) Tü117, is upregulated in the serum of high-salt diet (HSD) mice and patients with essential hypertension. α-lipomycin causes vasodilation impairment involving transient receptor potential vanilloid 4 (TRPV4)-mediated nitric oxide and endothelium-derived hyperpolarizing factor pathways in mice. We also find that Lactobacillus plantarum (L. plantarum) CCFM639 attenuates the increase in blood pressure (BP) potentially through inhibiting the proliferation of S. aureofaciens Tü117 in mice. An exploratory intervention trial indicates that L. plantarum CCFM639 supplementation reduces BPs in subjects newly diagnosed with pre-hypertension or stage 1 hypertension without antihypertensive medication. Our findings provide evidence for a role of S. aureofaciens Tü117-associated α-lipomycin elevation in the pathogenesis of HSD-induced hypertension, highlighting that targeting gut bacteria serves as a new therapeutic intervention for hypertension.
Collapse
Affiliation(s)
- Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Zhiwei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Xiaowang Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Mengting Guo
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Ning Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Liangju Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Li Geng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Jing Shao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Ka Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Mengru Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Aiqin Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Yifei Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xiaoyan Wang
- Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of medicine, Jiangnan University, Wuxi 214122, China; Affiliated Hospital of Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Rerkrachaneekorn T, Annuur RM, Pornsuwan S, Sukwattanasinitt M, Wacharasindhu S. A mild and scalable one-pot synthesis of N-substituted 2-aminobenzimidazoles via visible light mediated cyclodesulfurization. Sci Rep 2025; 15:4096. [PMID: 39900800 PMCID: PMC11791095 DOI: 10.1038/s41598-025-86772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/14/2025] [Indexed: 02/05/2025] Open
Abstract
A visible light mediated photocatalyst-free synthesis of N-substituted 2-aminobenzimidazoles directly from o-phenylenediamines and isothiocyanates is developed in a one-pot fashion. This one-pot reaction proceeds through three steps: N-substitution of o-phenylenediamines, thiourea formation and visible light mediated cyclodesulfurization. This method enables the rapid and efficient synthesis of structurally diverse N-substituted 2-aminobenzimidazoles, achieving yields up to 92% across 69 examples. The practicality of the reaction is demonstrated by gram-scale synthesis. The key advantages of this method include the use of less toxic solvent in aqueous media, the elimination of photocatalyst, and a simple, practical setup (one-pot, open-flask, and ambient temperature). Mechanistic insights are gathered through control experiments, including light on/off cycles and radical inhibition studies. The results indicate that the reaction involves with radical pathway mediated by visible light.
Collapse
Affiliation(s)
- Tanawat Rerkrachaneekorn
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rose Malina Annuur
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Soraya Pornsuwan
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Mongkol Sukwattanasinitt
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sumrit Wacharasindhu
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Green Chemistry for Fine Chemical Productions and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Bai L, Xiang Y, Shen M, Han Y, Li P, Zuo Z, Li Y. Design, synthesis and activity evaluation of novel quinazolinone compounds as TRPC5 inhibitors. Bioorg Chem 2025; 155:108147. [PMID: 39817997 DOI: 10.1016/j.bioorg.2025.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
The TRPC5 channel plays an important role in regulating various physiological processes, which is related to various human diseases, especially psychiatric and kidney diseases. Although the TRPC5 channel is one of the essential potential target, no drugs against TRPC5 channels have been granted in the market to date. In this study, based on the structure of hit compound ph1, we further synthesied 49 compounds of novel quinazolinone and heterocyclic fusion pyrimidinone derivatives, and their activities were evaluated by electrophysiological assays. After extensive screening, 21 compounds exhibited significant TRPC5 inhibitory activity, and compounds ph8 and ph14 displayed strong inhibitory with IC50 of 1.28 and 2.16 μM, respectively. These identified potential TRPC5 inhibitor may provide lead compounds and experimental evidence for the development of novel TRPC5 inhibitors with potential treatment for anxiety, depression, and progressive kidney disease.
Collapse
Affiliation(s)
- Longhui Bai
- School of Pharmacology Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of the Chinese Academy of Sciences, Beijing 100049 China
| | - Yu Xiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023 China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China
| | - Meiling Shen
- School of Pharmacology Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of the Chinese Academy of Sciences, Beijing 100049 China
| | - Yujun Han
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023 China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China
| | - Penghua Li
- School of Pharmacology Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of the Chinese Academy of Sciences, Beijing 100049 China
| | - Zhili Zuo
- School of Pharmacology Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of the Chinese Academy of Sciences, Beijing 100049 China.
| | - Yang Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023 China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of the Chinese Academy of Sciences, Beijing 100049 China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China.
| |
Collapse
|
12
|
Hackl A, Weber LT. The Ca 2+-actin-cytoskeleton axis in podocytes is an important, non-immunologic target of immunosuppressive therapy in proteinuric kidney diseases. Pediatr Nephrol 2025:10.1007/s00467-025-06670-z. [PMID: 39856247 DOI: 10.1007/s00467-025-06670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025]
Abstract
The integrity of the filtration barrier of the kidney relies on the proper composition of podocyte interdigitating foot processes. Their architecture is supported by a complex actin-cytoskeleton. Following podocyte stress or injury, podocytes encounter structural changes, including rearrangement of the actin network and subsequent effacement of the foot processes. Immunosuppressive drugs, which are currently used as treatment in proteinuric kidney diseases, have been shown to exert not only immune-mediated effects. This review will focus on the direct effects of glucocorticoids, cyclosporine A, tacrolimus, mycophenolate mofetil, and rituximab on podocytes by regulation of Ca2+ ion channels and consecutive downstream signaling which prevent cytoskeletal rearrangements and ultimately proteinuria. In addition, the efficacy of these drugs in genetic nephrotic syndrome will be discussed.
Collapse
Affiliation(s)
- Agnes Hackl
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany.
| | - Lutz T Weber
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany
| |
Collapse
|
13
|
Ke X, Cai H, Chen Y, Chen G. Exploring the therapeutic potential of TRPC channels in chronic pain: An investigation into their mechanisms, functions, and prospects. Eur J Pharmacol 2025; 987:177206. [PMID: 39672226 DOI: 10.1016/j.ejphar.2024.177206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/15/2024]
Abstract
Transient Receptor Potential Canonical (TRPC) channels have received more attention in recent years for their role of in the pathophysiology of chronic pain. These non-selective cation channels, which are predominantly present on cell membranes, play a pivotal role in regulating both physiological and pathological processes. Research advances have shown the critical role of TRPC channels in a variety of chronic pain, including neuropathic, inflammatory, and visceral pain. Activation of TRPC channels increases neuronal excitability, amplifying and prolonging pain signals. Moreover, these channels collaborate with other ion channels and receptors to form complexes that augment the transmission and perception of pain. As research advances, our understanding of TRPC channels' regulation mechanisms and signaling pathways improves. An expanding variety of TRPC modulators has been identified as promising therapeutic agents for chronic pain, opening up novel treatment options. Nevertheless, the diversity and complexity of TRPC channels present challenges in drug development, highlighting the importance of full understanding of their unique properties and activities. This review aims to provide a thorough evaluation of recent breakthrough in TRPC channels research related to chronic pain, with a focus on their mechanisms, functions, and prospective therapeutic application. By integrating existing research findings, we seek to bring new viewpoints and approaches for chronic pain management.
Collapse
Affiliation(s)
- Xinlong Ke
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huajing Cai
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
14
|
Li X, Li C, Wu P, Zhang L, Zhou P, Ma X. Recent status and trends of innate immunity and the gut-kidney aixs in IgAN: A systematic review and bibliometric analysis. Int Immunopharmacol 2024; 143:113335. [PMID: 39423662 DOI: 10.1016/j.intimp.2024.113335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND There is a significant global demand for precise diagnosis and effective treatment of IgA nephropathy (IgAN), with innate immunity, particularly the complement system, exerting a profound influence on its pathogenesis. Additionally, the gut-kidney axis pathway is vital in the emergence and development of IgAN. METHODS We conducted a comprehensive search in the Web of Science database, spanning from January 1, 2000 to December 18, 2023. The gathered literature underwent a visual examination through CiteSpace, VOSviewer, and Scimago Graphica to delve into authors, nations, organizations, key terms, and other pertinent elements. RESULT Between 2000 and 2023, a total of 720 publications were identified, out of which 436 publications underwent screening for highly relevant literature analysis. The average annual number of articles focusing on IgAN, innate immunity, and the gut-kidney axis is approximately 31, with an upward trend observed. In terms of research impact encompassing publication count and authorship, the United States emerged as the leading contributor. Prominent keywords included "complement", "activation", "microbe", "gut-kidney axis", "C4d deposition", "alternative pathway" and "B cells" along with other prospective hot topics. CONCLUSION The correlation between IgAN and innate immunity is a focal point in current scientific research. Recent literature underscores the significance of the gut-kidney axis, where intestinal microorganisms and metabolites may influence IgAN. The complement system, a key component of innate immunity, also has a crucial function.Advancements in prevention, diagnosis, and treatment hinge on unraveling this intricate relationship.
Collapse
Affiliation(s)
- Xun Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Chengni Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Peiwen Wu
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Lifang Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Ping Zhou
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Xin Ma
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
15
|
de Sire R, La Mantia A, Bonacci L, Testa A, Guarino AD, Rispo A, Nardone OM, Castiglione F. Inflammatory Bowel Diseases and Nephropathies: Exploring the Gut-Kidney Axis. Life (Basel) 2024; 14:1541. [PMID: 39768250 PMCID: PMC11678131 DOI: 10.3390/life14121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) can extend beyond the gastrointestinal tract, affecting extraintestinal organs and significantly increasing morbidity and mortality. Despite early studies revealing kidney involvement in nearly a quarter of patients with IBD, renal manifestations have been notably overlooked. Among these manifestations, nephrolithiasis, obstructive uropathy, and fistula formation between the bowel and urinary tract are the most reported occurrences. Additionally, renal parenchymal involvement in IBD, including glomerulonephritis (GN), tubulointerstitial nephritis, and amyloidosis, has been documented. GN is particularly noteworthy, as a significant proportion of patients progress to end-stage kidney disease (ESKD). Although GN has long been recognized as a potential extraintestinal manifestation (EIM) of IBD, it has often been dismissed as an anecdotal association. Recently, several studies highlighted the clinical correlation between GN and IBD, suggesting a pathogenic interplay involving gut inflammation, dysbiosis, and intrinsic glomerular processes. Thus, our objective is to elucidate the basis of IBD-related nephropathies, with a specific focus on IgA nephropathy (IgAN) and the gut-kidney axis.
Collapse
Affiliation(s)
- Roberto de Sire
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
- Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Alessia La Mantia
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
| | - Livio Bonacci
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
| | - Anna Testa
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
| | - Alessia Dalila Guarino
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
| | - Antonio Rispo
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
| | - Olga Maria Nardone
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
| | - Fabiana Castiglione
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
| |
Collapse
|
16
|
Khare P, Chand J, Ptakova A, Liguori R, Ferrazzi F, Bishnoi M, Vlachova V, Zimmermann K. The TRPC5 receptor as pharmacological target for pain and metabolic disease. Pharmacol Ther 2024; 263:108727. [PMID: 39384022 DOI: 10.1016/j.pharmthera.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The transient receptor potential canonical (TRPC) channels are a group of highly homologous nonselective cation channels from the larger TRP channel family. They have the ability to form homo- and heteromers with varying degrees of calcium (Ca2+) permeability and signalling properties. TRPC5 is the one cold-sensitive among them and likewise facilitates the influx of extracellular Ca2+ into cells to modulate neuronal depolarization and integrate various intracellular signalling pathways. Recent research with cryo-electron microscopy revealed its structure, along with clear insight into downstream signalling and protein-protein interaction sites. Investigations using global and conditional deficient mice revealed the involvement of TRPC5 in metabolic diseases, energy balance, thermosensation and conditions such as osteoarthritis, rheumatoid arthritis, and inflammatory pain including opioid-induced hyperalgesia and hyperalgesia following tooth decay and pulpitis. This review provides an update on recent advances in our understanding of the role of TRPC5 with focus on metabolic diseases and pain.
Collapse
Affiliation(s)
- Pragyanshu Khare
- Department of Anesthesiology, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Jagdish Chand
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Alexandra Ptakova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Renato Liguori
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector (Knowledge City), Punjab, India
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Katharina Zimmermann
- Department of Anesthesiology, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
17
|
Skerjanz J, Bauernhofer L, Lenk K, Emmerstorfer-Augustin A, Leitinger G, Reichmann F, Stockner T, Groschner K, Tiapko O. TRPC1: The housekeeper of the hippocampus. Cell Calcium 2024; 123:102933. [PMID: 39116710 DOI: 10.1016/j.ceca.2024.102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
The non-selective cation channel TRPC1 is highly expressed in the brain. Recent research shows that neuronal TRPC1 forms heteromeric complexes with TRPC4 and TRPC5, with a small portion existing as homotetramers, primarily in the ER. Given that most studies have focused on the role of heteromeric TRPC1/4/5 complexes, it is crucial to investigate the specific role of homomeric TRPC1 in maintaining brain homeostasis. This review highlights recent findings on TRPC1 in the brain, with a focus on the hippocampus, and compiles the latest data on modulators and their binding sites within the TRPC1/4/5 subfamily to stimulate new research on more selective TRPC1 ligands.
Collapse
Affiliation(s)
- Julia Skerjanz
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria
| | - Lena Bauernhofer
- Biophysics Division, Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria; BioTechMed-Graz, Austria
| | - Kerstin Lenk
- Institute of Neural Engineering, Graz University of Technology, Austria; BioTechMed-Graz, Austria
| | | | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Austria; BioTechMed-Graz, Austria; MEFOgraz, Austria
| | - Florian Reichmann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | - Thomas Stockner
- Department of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus Groschner
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria
| | - Oleksandra Tiapko
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria; BioTechMed-Graz, Austria; MEFOgraz, Austria.
| |
Collapse
|
18
|
Harrison‐Bernard LM, Raij L, Tian RX, Jaimes EA. Genetically conditioned interaction among microRNA-155, alpha-klotho, and intra-renal RAS in male rats: Link to CKD progression. Physiol Rep 2024; 12:e16172. [PMID: 39375174 PMCID: PMC11458328 DOI: 10.14814/phy2.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 10/09/2024] Open
Abstract
Incident chronic kidney disease (CKD) varies in populations with hypertension of similar severity. Proteinuria promotes CKD progression in part due to activation of plasminogen to plasmin in the podocytes, resulting in oxidative stress-mediated injury. Additional mechanisms include deficiency of renal alpha-klotho, that inhibits Wnt/beta-catenin, an up regulator of intra-renal renin angiotensin system (RAS) genes. Alpha-klotho deficiency therefore results in upregulation of the intra-renal RAS via Wnt/beta-catenin. In hypertensive, Dahl salt sensitive (DS) and spontaneously hypertensive rats (SHR), we investigated renal and vascular injury, miR-155, AT1R, alpha-klotho, and TNF-α. Hypertensive high salt DS (DS-HS), but not SHR developed proteinuria, plasminuria, and glomerulosclerosis. Compared to DS low salt (DS-LS), in hypertensive DS-HS alpha-klotho decreased 5-fold in serum and 2.6-fold in kidney, whereas serum mir-155 decreased 3.3-fold and AT1R increased 52% in kidney and 77% in aorta. AT1R, alpha-klotho, and miR-155 remained unchanged in prehypertensive and hypertensive SHR. TNF-α increased by 3-fold in serum and urine of DS-HS rats. These studies unveiled in salt sensitive DS-HS, but not in SHR, a genetically conditioned dysfunction of the intermolecular network integrated by alpha-klotho, RAS, miR-155, and TNF-α that is at the helm of their end-organ susceptibility while plasminuria may participate as a second hit.
Collapse
Affiliation(s)
- L. M. Harrison‐Bernard
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - L. Raij
- Katz Family Division of NephrologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - R. X. Tian
- South Florida Veterans Administration FoundationMiamiFloridaUSA
| | - E. A. Jaimes
- Renal ServiceMemorial Sloan Kettering Cancer Center and Weill Cornell Medical CollegeNew YorkNew YorkUSA
| |
Collapse
|
19
|
Xu Y, Ren Y, Zhang J, Niu B, Liu M, Xu T, Zhang X, Shen J, Wang K, Cao Z. Discovery of pyridazinone derivatives bearing tetrahydroimidazo[1,2-a]pyrazine scaffold as potent inhibitors of transient receptor potential canonical 5 to ameliorate hypertension-induced renal injury in rats. Eur J Med Chem 2024; 275:116565. [PMID: 38878518 DOI: 10.1016/j.ejmech.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/12/2024]
Abstract
Transient receptor potential canonical 5 (TRPC5) is a calcium-permeable non-selective cation channel involved in various pathophysiological processes, including renal injury. Recently, GFB-887, an investigational pyridazinone TRPC5 inhibitor, demonstrated significant therapeutic potential in a Phase II clinical trial for focal segmental glomerulosclerosis (FSGS), a rare and severe form of chronic kidney disease (CKD). In the current study, based on the structure of GFB-887, we conducted extensive structural modification to explore novel TRPC5 inhibitors with desirable drug-like properties and robust nephroprotective efficacy. A series of pyridazinone derivatives featuring a novel tetrahydroimidazo[1,2-a]pyrazine scaffold were synthesized and their activities were evaluated in HEK-293 cells stably expressing TRPC5 using a fluorescence-based Ca2+ mobilization assay. Among these compounds, compound 12 is turned out to be a potent TRPC5 inhibitor with apparent affinity comparable to the parent compound GBF-887. Compound 12 is highly selective on TRPC4/5 over TRPC3/6/7 and hERG channels, along with acceptable pharmacokinetic properties and a favorable safety profile. More importantly, in a rat model of hypertension-induced renal injury, oral administration of compound 12 (10 mg/kg, BID) efficaciously reduced mean blood pressure, inhibited proteinuria, and protected podocyte damage. These findings further confirmed the potential of TRPC5 inhibitors on the CKD treatment and provided compound 12 to be a valuable tool for exploring TRPC4/5 pathophysiology.
Collapse
Affiliation(s)
- Yuanyuan Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Younan Ren
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jie Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Bo Niu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Mengru Liu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Tifei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jianhua Shen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
20
|
Liu Y, Ge RL, Shan ZZ, Wang YJ, Yang YY, Sun X, Luo PL. Adriamycin-induced podocyte injury via the Sema3A/TRPC5/Rac1 pathway. Front Med (Lausanne) 2024; 11:1381479. [PMID: 39301490 PMCID: PMC11410697 DOI: 10.3389/fmed.2024.1381479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Podocytopathies encompass kidney diseases where direct or indirect podocyte injury leads to proteinuria or nephrotic syndrome. Although Semaphorin3A (Sema3A) is expressed in podocytes and tubular cells in adult mammalian kidneys and has a common effect on the progression of podocyte injury, its mechanism remains unclear. Previous studies have shown increased Sema3A expression in various glomerulopathies, indicating a gap in understanding its role. In this study, analysis of human data revealed a positive correlation between the levels of urinary Sema3A and Podocalyxin (PCX), suggesting a close relationship between Sema3A and podocyte loss. Furthermore, the impact of Adriamycin on podocytes was investigated. Adriamycin induced podocyte migration and apoptosis, along with an increase in Sema3A expression, all of which were ameliorated by the inhibition of Sema3A. Importantly, TRPC5 was found to increase the overexpression of Sema3A in podocytes. A TRPC5 inhibitor, AC1903, alleviated podocyte migration and apoptosis, inhibiting the formation of lamellar pseudopodia in the podocyte cytoskeleton by lowering the expression of Rac1. Furthermore, AC1903 relieved massive albuminuria and foot process effacement in the kidneys of Adriamycin-treated mice in vivo. In conclusion, our findings suggest that Sema3A may impact the cytoskeletal stability of podocytes through TRPC5 ion channels, mediated by Rac1, ultimately leading to foot process effacement. Notably, AC1903 demonstrates the potential to reverse Adriamycin-induced foot process fusion and urine protein. These results contribute to a deeper understanding of the mechanisms involved in podocytopathies and highlight the therapeutic potential of targeting the Sema3A-TRPC5 pathway.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Clinical Research Center for Chronic Kidney Disease in Qinghai Province, Xining, China
| | - Ri-Li Ge
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Zhen-Zhen Shan
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Yan-Jun Wang
- Clinical Research Center for Chronic Kidney Disease in Qinghai Province, Xining, China
| | - Yan-Yan Yang
- Clinical Research Center for Chronic Kidney Disease in Qinghai Province, Xining, China
| | - Xue Sun
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Peng-Li Luo
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Clinical Research Center for Chronic Kidney Disease in Qinghai Province, Xining, China
| |
Collapse
|
21
|
Sakaguchi R, Takahashi N, Yoshida T, Ogawa N, Ueda Y, Hamano S, Yamaguchi K, Sawamura S, Yamamoto S, Hara Y, Kawamoto T, Suzuki R, Nakao A, Mori MX, Furukawa T, Shimizu S, Inoue R, Mori Y. Dynamic remodeling of TRPC5 channel-caveolin-1-eNOS protein assembly potentiates the positive feedback interaction between Ca 2+ and NO signals. J Biol Chem 2024; 300:107705. [PMID: 39178948 PMCID: PMC11420454 DOI: 10.1016/j.jbc.2024.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
The cell signaling molecules nitric oxide (NO) and Ca2+ regulate diverse biological processes through their closely coordinated activities directed by signaling protein complexes. However, it remains unclear how dynamically the multicomponent protein assemblies behave within the signaling complexes upon the interplay between NO and Ca2+ signals. Here we demonstrate that TRPC5 channels activated by the stimulation of G-protein-coupled ATP receptors mediate Ca2+ influx, that triggers NO production from endothelial NO synthase (eNOS), inducing secondary activation of TRPC5 via cysteine S-nitrosylation and eNOS in vascular endothelial cells. Mutations in the caveolin-1-binding domains of TRPC5 disrupt its association with caveolin-1 and impair Ca2+ influx and NO production, suggesting that caveolin-1 serves primarily as the scaffold for TRPC5 and eNOS to assemble into the signal complex. Interestingly, during ATP receptor activation, eNOS is dissociated from caveolin-1 and in turn directly associates with TRPC5, which accumulates at the plasma membrane dependently on Ca2+ influx and calmodulin. This protein reassembly likely results in a relief of eNOS from the inhibitory action of caveolin-1 and an enhanced TRPC5 S-nitrosylation by eNOS localized in the proximity, thereby facilitating the secondary activation of Ca2+ influx and NO production. In isolated rat aorta, vasodilation induced by acetylcholine was significantly suppressed by the TRPC5 inhibitor AC1903. Thus, our study provides evidence that dynamic remodeling of the protein assemblies among TRPC5, eNOS, caveolin-1, and calmodulin determines the ensemble of Ca2+ mobilization and NO production in vascular endothelial cells.
Collapse
Affiliation(s)
- Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan; Laboratory of Biomaterials and Chemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Nobuaki Takahashi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Advanced Biomedical Engineering Research Unit, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Nozomi Ogawa
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yoshifumi Ueda
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Satoshi Hamano
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kaori Yamaguchi
- Laboratory of Environmental Systems Biology, Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Seishiro Sawamura
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shinichiro Yamamoto
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Yuji Hara
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Department of Integrative Physiology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tomoya Kawamoto
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Ryosuke Suzuki
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Akito Nakao
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masayuki X Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Laboratory of Biomaterials and Chemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunichi Shimizu
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Ryuji Inoue
- Department of Physiology, Fukuoka University, Fukuoka, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan; Advanced Biomedical Engineering Research Unit, Kyoto University, Kyoto, Japan.
| |
Collapse
|
22
|
Li Y, Cacciottolo TM, Yin N, He Y, Liu H, Liu H, Yang Y, Henning E, Keogh JM, Lawler K, Mendes de Oliveira E, Gardner EJ, Kentistou KA, Laouris P, Bounds R, Ong KK, Perry JRB, Barroso I, Tu L, Bean JC, Yu M, Conde KM, Wang M, Ginnard O, Fang X, Tong L, Han J, Darwich T, Williams KW, Yang Y, Wang C, Joss S, Firth HV, Xu Y, Farooqi IS. Loss of transient receptor potential channel 5 causes obesity and postpartum depression. Cell 2024; 187:4176-4192.e17. [PMID: 38959890 PMCID: PMC11961024 DOI: 10.1016/j.cell.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.
Collapse
Affiliation(s)
- Yongxiang Li
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tessa M Cacciottolo
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Na Yin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hesong Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yuxue Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Taizhou People's Hospital, Medical School of Yangzhou University, Taizhou, Jiangsu, China
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Edson Mendes de Oliveira
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Panayiotis Laouris
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Rebecca Bounds
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - John R B Perry
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK; MRC Epidemiology Unit, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research (EXCEED), University of Exeter Medical School, Exeter, UK
| | - Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan C Bean
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Meng Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kristine M Conde
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Olivia Ginnard
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xing Fang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Lydia Tong
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Junying Han
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tia Darwich
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9077, USA
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chunmei Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Shelagh Joss
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Helen V Firth
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust & Wellcome Sanger Institute, Cambridge, UK
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| |
Collapse
|
23
|
Chen X, Yan Y, Liu Z, Yang S, Li W, Wang Z, Wang M, Guo J, Li Z, Zhu W, Yang J, Yin J, Dai Q, Li Y, Wang C, Zhao L, Yang X, Guo X, Leng L, Xu J, Obukhov AG, Cao R, Zhong W. In vitro and in vivo inhibition of the host TRPC4 channel attenuates Zika virus infection. EMBO Mol Med 2024; 16:1817-1839. [PMID: 39009885 PMCID: PMC11319825 DOI: 10.1038/s44321-024-00103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Zika virus (ZIKV) infection may lead to severe neurological consequences, including seizures, and early infancy death. However, the involved mechanisms are still largely unknown. TRPC channels play an important role in regulating nervous system excitability and are implicated in seizure development. We investigated whether TRPCs might be involved in the pathogenesis of ZIKV infection. We found that ZIKV infection increases TRPC4 expression in host cells via the interaction between the ZIKV-NS3 protein and CaMKII, enhancing TRPC4-mediated calcium influx. Pharmacological inhibition of CaMKII decreased both pCREB and TRPC4 protein levels, whereas the suppression of either TRPC4 or CaMKII improved the survival rate of ZIKV-infected cells and reduced viral protein production, likely by impeding the replication phase of the viral life cycle. TRPC4 or CaMKII inhibitors also reduced seizures and increased the survival of ZIKV-infected neonatal mice and blocked the spread of ZIKV in brain organoids derived from human-induced pluripotent stem cells. These findings suggest that targeting CaMKII or TRPC4 may offer a promising approach for developing novel anti-ZIKV therapies, capable of preventing ZIKV-associated seizures and death.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, 710072, Xi'an, Shanxi, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yunzheng Yan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhiqiang Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shaokang Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhuang Wang
- Institute of Medical Research, Northwestern Polytechnical University, 710072, Xi'an, Shanxi, China
| | - Mengyuan Wang
- Institute of Medical Research, Northwestern Polytechnical University, 710072, Xi'an, Shanxi, China
| | - Juan Guo
- Institute of Medical Research, Northwestern Polytechnical University, 710072, Xi'an, Shanxi, China
| | - Zhenyang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weiyan Zhu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jingjing Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jiye Yin
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qingsong Dai
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuexiang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Cui Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lei Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaotong Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaojia Guo
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ling Leng
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxi Xu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shanxi, China
| | - Alexander G Obukhov
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
24
|
Staruschenko A, Alexander RT, Caplan MJ, Ilatovskaya DV. Calcium signalling and transport in the kidney. Nat Rev Nephrol 2024; 20:541-555. [PMID: 38641658 PMCID: PMC12036682 DOI: 10.1038/s41581-024-00835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
The kidney plays a pivotal role in regulating calcium levels within the body. Approximately 98% of the filtered calcium is reabsorbed in the nephron, and this process is tightly controlled to maintain calcium homeostasis, which is required to facilitate optimal bone mineralization, preserve serum calcium levels within a narrow range, and support intracellular signalling mechanisms. The maintenance of these functions is attributed to a delicate balance achieved by various calcium channels, transporters, and calcium-binding proteins in renal cells. Perturbation of this balance due to deficiency or dysfunction of calcium channels and calcium-binding proteins can lead to severe complications. For example, polycystic kidney disease is linked to aberrant calcium transport and signalling. Furthermore, dysregulation of calcium levels can promote the formation of kidney stones. This Review provides an updated description of the key aspects of calcium handling in the kidney, focusing on the function of various calcium channels and the physiological stimuli that control these channels or are communicated through them. A discussion of the role of calcium as an intracellular second messenger and the pathophysiology of renal calcium dysregulation, as well as a summary of gaps in knowledge and future prospects, are also included.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA.
- James A. Haley Veterans Hospital, Tampa, FL, USA.
| | - R Todd Alexander
- Department of Paediatrics, University of Alberta, Edmonton, AB, Canada
- Women's and Children's Health Institute, Edmonton, AB, Canada
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
25
|
Zhang R, Wang Q, Li Y, Li Q, Zhou X, Chen X, Dong Z. A new perspective on proteinuria and drug therapy for diabetic kidney disease. Front Pharmacol 2024; 15:1349022. [PMID: 39144629 PMCID: PMC11322372 DOI: 10.3389/fphar.2024.1349022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the leading causes of end-stage renal disease worldwide and significantly increases the risk of premature death due to cardiovascular diseases. Elevated urinary albumin levels are an important clinical feature of DKD. Effective control of albuminuria not only delays glomerular filtration rate decline but also markedly reduces cardiovascular disease risk and all-cause mortality. New drugs for treating DKD proteinuria, including sodium-glucose cotransporter two inhibitors, mineralocorticoid receptor antagonists, and endothelin receptor antagonists, have shown significant efficacy. Auxiliary treatment with proprietary Chinese medicine has also yielded promising results; however, it also faces a broader scope for development. The mechanisms by which these drugs treat albuminuria in patients with DKD should be described more thoroughly. The positive effects of combination therapy with two or more drugs in reducing albuminuria and protecting the kidneys warrant further investigation. Therefore, this review explores the pathophysiological mechanism of albuminuria in patients with DKD, the value of clinical diagnosis and prognosis, new progress and mechanisms of treatment, and multidrug therapy in patients who have type 2 diabetic kidney disease, providing a new perspective on the clinical diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Ruimin Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Qian Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Yaqing Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Qihu Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xuefeng Zhou
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xiangmei Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| |
Collapse
|
26
|
Haydak J, Azeloglu EU. Role of biophysics and mechanobiology in podocyte physiology. Nat Rev Nephrol 2024; 20:371-385. [PMID: 38443711 PMCID: PMC12103212 DOI: 10.1038/s41581-024-00815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Podocytes form the backbone of the glomerular filtration barrier and are exposed to various mechanical forces throughout the lifetime of an individual. The highly dynamic biomechanical environment of the glomerular capillaries greatly influences the cell biology of podocytes and their pathophysiology. Throughout the past two decades, a holistic picture of podocyte cell biology has emerged, highlighting mechanobiological signalling pathways, cytoskeletal dynamics and cellular adhesion as key determinants of biomechanical resilience in podocytes. This biomechanical resilience is essential for the physiological function of podocytes, including the formation and maintenance of the glomerular filtration barrier. Podocytes integrate diverse biomechanical stimuli from their environment and adapt their biophysical properties accordingly. However, perturbations in biomechanical cues or the underlying podocyte mechanobiology can lead to glomerular dysfunction with severe clinical consequences, including proteinuria and glomerulosclerosis. As our mechanistic understanding of podocyte mechanobiology and its role in the pathogenesis of glomerular disease increases, new targets for podocyte-specific therapeutics will emerge. Treating glomerular diseases by targeting podocyte mechanobiology might improve therapeutic precision and efficacy, with potential to reduce the burden of chronic kidney disease on individuals and health-care systems alike.
Collapse
Affiliation(s)
- Jonathan Haydak
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
27
|
Liu H, Fu M, Zhang Y, You Q, Wang L. Small molecules targeting canonical transient receptor potential channels: an update. Drug Discov Today 2024; 29:103951. [PMID: 38514041 DOI: 10.1016/j.drudis.2024.103951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Transient receptor potential canonical (TRPC) channels belong to an important class of non-selective cation channels. This channel family consists of multiple members that widely participate in various physiological and pathological processes. Previous studies have uncovered the intricate regulation of these channels, as well as the spatial arrangement of TRPCs and the binding sites for various small molecule compounds. Multiple small molecules have been identified as selective agonists or inhibitors targeting different subtypes of TRPC, including potential preclinical drug candidates. This review covers recent advancements in the understanding of TRPC regulation and structure and the discovery of TRPC small molecules over the past few years, with the aim of facilitating research on TRPCs and small-molecule drug discovery.
Collapse
Affiliation(s)
- Hua Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Min Fu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
28
|
Xiong Y, Alnoud MAH, Ali H, Ali I, Ahmad S, Khan MU, Hassan SSU, Majid M, Khan MS, Ahmad RUS, Khan SU, Khan KA, White A. Beyond the silence: A comprehensive exploration of long non-coding RNAs as genetic whispers and their essential regulatory functions in cardiovascular disorders. Curr Probl Cardiol 2024; 49:102390. [PMID: 38232927 DOI: 10.1016/j.cpcardiol.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are RNA molecules that regulate gene expression at several levels, including transcriptional, post-transcriptional, and translational. They have a length of more than 200 nucleotides and cannot code. Many human diseases have been linked to aberrant lncRNA expression, highlighting the need for a better knowledge of disease etiology to drive improvements in diagnostic, prognostic, and therapeutic methods. Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. LncRNAs play an essential role in the complex process of heart formation, and their abnormalities have been associated with several CVDs. This Review article looks at the roles and relationships of long non-coding RNAs (lncRNAs) in a wide range of CVDs, such as heart failure, myocardial infarction, atherosclerosis, and cardiac hypertrophy. In addition, the review delves into the possible uses of lncRNAs in diagnostics, prognosis, and clinical treatments of cardiovascular diseases. Additionally, it considers the field's future prospects while examining how lncRNAs might be altered and its clinical applications.
Collapse
Affiliation(s)
- Yuchen Xiong
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University),410001,Hunan,China.
| | - Mohammed A H Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000.
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait.
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, 70112, LA, USA
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Syed Shams Ul Hassan
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China.
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad, 45550, Pakistan
| | - Muhammad Shehzad Khan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin city, (HKSAR), Hong Kong
| | - Rafi U Shan Ahmad
- Department of Biomedical Engineering, City university of Hong Kong, Kowloon City, Hong Kong.
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Alexandra White
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China.
| |
Collapse
|
29
|
Kang H, Kim J, Park CH, Jeong B, So I. Direct modulation of TRPC ion channels by Gα proteins. Front Physiol 2024; 15:1362987. [PMID: 38384797 PMCID: PMC10880550 DOI: 10.3389/fphys.2024.1362987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
GPCR-Gi protein pathways are involved in the regulation of vagus muscarinic pathway under physiological conditions and are closely associated with the regulation of internal visceral organs. The muscarinic receptor-operated cationic channel is important in GPCR-Gi protein signal transduction as it decreases heart rate and increases GI rhythm frequency. In the SA node of the heart, acetylcholine binds to the M2 receptor and the released Gβγ activates GIRK (I(K,ACh)) channel, inducing a negative chronotropic action. In gastric smooth muscle, there are two muscarinic acetylcholine receptor (mAChR) subtypes, M2 and M3. M2 receptor activates the muscarinic receptor-operated nonselective cationic current (mIcat, NSCC(ACh)) and induces positive chronotropic effect. Meanwhile, M3 receptor induces hydrolysis of PIP2 and releases DAG and IP3. This IP3 increases intracellular Ca2+ and then leads to contraction of GI smooth muscles. The activation of mIcat is inhibited by anti-Gi/o protein antibodies in GI smooth muscle, indicating the involvement of Gαi/o protein in the activation of mIcat. TRPC4 channel is a molecular candidate for mIcat and can be directly activated by constitutively active Gαi QL proteins. TRPC4 and TRPC5 belong to the same subfamily and both are activated by Gi/o proteins. Initial studies suggested that the binding sites for G protein exist at the rib helix or the CIRB domain of TRPC4/5 channels. However, recent cryo-EM structure showed that IYY58-60 amino acids at ARD of TRPC5 binds with Gi3 protein. Considering the expression of TRPC4/5 in the brain, the direct G protein activation on TRPC4/5 is important in terms of neurophysiology. TRPC4/5 channels are also suggested as a coincidence detector for Gi and Gq pathway as Gq pathway increases intracellular Ca2+ and the increased Ca2+ facilitates the activation of TRPC4/5 channels. More complicated situation would occur when GIRK, KCNQ2/3 (IM) and TRPC4/5 channels are co-activated by stimulation of muscarinic receptors at the acetylcholine-releasing nerve terminals. This review highlights the effects of GPCR-Gi protein pathway, including dopamine, μ-opioid, serotonin, glutamate, GABA, on various oragns, and it emphasizes the importance of considering TRPC4/5 channels as crucial players in the field of neuroscience.
Collapse
Affiliation(s)
- Hana Kang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinhyeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Christine Haewon Park
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Byeongseok Jeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
30
|
Khan SU, Khan SU, Suleman M, Khan MU, Alsuhaibani AM, Refat MS, Hussain T, Ud Din MA, Saeed S. The Multifunctional TRPC6 Protein: Significance in the Field of Cardiovascular Studies. Curr Probl Cardiol 2024; 49:102112. [PMID: 37774899 DOI: 10.1016/j.cpcardiol.2023.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Cardiovascular disease is the leading cause of death, medical complications, and healthcare costs. Although recent advances have been in treating cardiovascular disorders linked with a reduced ejection fraction, acutely decompensate cardiac failure remains a significant medical problem. The transient receptor potential cation channel (TRPC6) family responds to neurohormonal and mechanical stress, playing critical roles in cardiovascular diseases. Therefore, TRP C6 channels have great promise as therapeutic targets. Numerous studies have investigated the roles of TRP C6 channels in pain neurons, highlighting their significance in cardiovascular research. The TRPC6 protein exhibits a broad distribution in various organs and tissues, including the brain, nerves, heart, blood vessels, lungs, kidneys, gastrointestinal tract, and other bodily structures. Its activation can be triggered by alterations in osmotic pressure, mechanical stimulation, and diacylglycerol. Consequently, TRPC6 plays a significant role in the pathophysiological mechanisms underlying diverse diseases within living organisms. A recent study has indicated a strong correlation between the disorder known as TRPC6 and the development of cardiovascular diseases. Consequently, investigations into the association between TRPC6 and cardiovascular diseases have gained significant attention in the scientific community. This review explores the most recent developments in the recognition and characterization of TRPC6. Additionally, it considers the field's prospects while examining how TRPC6 might be altered and its clinical applications.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, Pakistan.
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Munir Ullah Khan
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Zhejiang University, Hangzhou, China
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Talib Hussain
- Women Dental College, Khyber Medical University, Abbottabad, Pakistan
| | - Muhammad Azhar Ud Din
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
31
|
Semenikhina M, Fedoriuk M, Stefanenko M, Klemens CA, Cherezova A, Marshall B, Hall G, Levchenko V, Solanki A, Lipschutz JH, Ilatovskaya DV, Staruschenko A, Palygin O. β-Arrestin pathway activation by selective ATR1 agonism promotes calcium influx in podocytes, leading to glomerular damage. Clin Sci (Lond) 2023; 137:1789-1804. [PMID: 38051199 PMCID: PMC11194114 DOI: 10.1042/cs20230313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Angiotensin receptor blockers (ARBs) are the first-line treatment for hypertension; they act by inhibiting signaling through the angiotensin 1 receptor (AT1R). Recently, a novel biased AT1R agonist, TRV120027 (TRV), which selectively activates the β-arrestin cascade and blocks the G-protein-coupled receptor pathway has been proposed as a potential blood pressure medication. Here, we explored the effects of TRV and associated β-arrestin signaling in podocytes, essential cells of the kidney filter. We used human podocyte cell lines to determine β-arrestin's involvement in calcium signaling and cytoskeletal reorganization and Dahl SS rats to investigate the chronic effects of TRV administration on glomerular health. Our experiments indicate that the TRV-activated β-arrestin pathway promotes the rapid elevation of intracellular Ca2+ in a dose-dependent manner. Interestingly, the amplitude of β-arrestin-mediated Ca2+ influx was significantly higher than the response to similar Ang II concentrations. Single-channel analyses show rapid activation of transient receptor potential canonical (TRPC) channels following acute TRV application. Furthermore, the pharmacological blockade of TRPC6 significantly attenuated the β-arrestin-mediated Ca2+ influx. Additionally, prolonged activation of the β-arrestin pathway in podocytes resulted in pathological actin cytoskeleton rearrangements, higher apoptotic cell markers, and augmented glomerular damage. TRV-activated β-arrestin signaling in podocytes may promote TRPC6 channel-mediated Ca2+ influx, foot process effacement, and apoptosis, possibly leading to severe defects in glomerular filtration barrier integrity and kidney health. Under these circumstances, the potential therapeutic application of TRV for hypertension treatment requires further investigation to assess the balance of the benefits versus possible deleterious effects and off-target damage.
Collapse
Affiliation(s)
- Marharyta Semenikhina
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Mykhailo Fedoriuk
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Mariia Stefanenko
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Christine A. Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
| | - Alena Cherezova
- Department of Physiology, Medical College of Georgia, Augusta University, GA
| | - Brendan Marshall
- Department of Physiology, Medical College of Georgia, Augusta University, GA
| | - Gentzon Hall
- Division of Nephrology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Ashish Solanki
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Joshua H. Lipschutz
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | | | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
- James A. Haley Veterans’ Hospital, Tampa, FL
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
32
|
Vasquez-Rios G, De Cos M, Campbell KN. Novel Therapies in APOL1-Mediated Kidney Disease: From Molecular Pathways to Therapeutic Options. Kidney Int Rep 2023; 8:2226-2234. [PMID: 38025220 PMCID: PMC10658239 DOI: 10.1016/j.ekir.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 12/01/2023] Open
Abstract
Apolipoprotein L1 (APOL1) high-risk variants confer an increased risk for the development and progression of kidney disease among individuals of recent African ancestry. Over the past several years, significant progress has been made in understanding the pathogenesis of APOL1-mediated kidney diseases (AMKD), including genetic regulation, environmental interactions, immunomodulatory, proinflammatory and apoptotic signaling processes, as well as the complex role of APOL1 as an ion channel. Collectively, these findings have paved the way for novel therapeutic strategies to mitigate APOL1-mediated kidney injury. Precision medicine approaches are being developed to identify subgroups of AMKD patients who may benefit from these targeted interventions, fueling hope for improved clinical outcomes. This review summarizes key mechanistic insights in the pathogenesis of AMKD, emergent therapies, and discusses future challenges.
Collapse
Affiliation(s)
- George Vasquez-Rios
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marina De Cos
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirk N. Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
33
|
Jiang W, Gan C, Zhou X, Yang Q, Chen D, Xiao H, Dai L, Chen Y, Wang M, Yang H, Li Q. Klotho inhibits renal ox-LDL deposition via IGF-1R/RAC1/OLR1 signaling to ameliorate podocyte injury in diabetic kidney disease. Cardiovasc Diabetol 2023; 22:293. [PMID: 37891556 PMCID: PMC10612302 DOI: 10.1186/s12933-023-02025-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
OBJECTIVE Diabetic kidney disease (DKD) is characterized by the abnormal deposition of oxidized low-density lipoprotein (ox-LDL), which contributes to podocyte damage. Klotho, an aging suppressor that plays a critical role in protecting podocytes in DKD, is mainly expressed in kidney tubular epithelium and secreted in the blood. However, it has not been established whether Klotho can alleviate podocyte injury by inhibiting renal ox-LDL deposition, and the potential molecular mechanisms require further investigation. METHODS We conducted a comprehensive analysis of serum and kidney biopsy samples obtained from patients diagnosed with DKD. Additionally, to explore the underlying mechanism of Klotho in the deposition of ox-LDL in the kidneys, we employed a mouse model of DKD with the Klotho genotype induced by streptozotocin (STZ). Furthermore, we conducted meticulous in vitro experiments on podocytes to gain further insights into the specific role of Klotho in the deposition of ox-LDL within the kidney. RESULTS Our groundbreaking study unveiled the remarkable ability of the soluble form of Klotho to effectively inhibit high glucose-induced ox-LDL deposition in podocytes affected by DKD. Subsequent investigations elucidated that Klotho achieved this inhibition by reducing the expression of the insulin/insulin-like growth factor 1 receptor (IGF-1R), consequently leading to a decrease in the expression of Ras-related C3 botulinum toxin substrate 1 (RAC1) and an enhancement of mitochondrial function. Ultimately, this series of events culminated in a significant reduction in the expression of the oxidized low-density lipoprotein receptor (OLR1), thereby resulting in a notable decrease in renal ox-LDL deposition in DKD. CONCLUSION Our findings suggested that Klotho had the potential to mitigate podocyte injury and reduced high glucose-induced ox-LDL deposition in glomerulus by modulating the IGF-1R/RAC1/OLR1 signaling. These results provided valuable insights that could inform the development of novel strategies for diagnosing and treating DKD.
Collapse
Affiliation(s)
- Wei Jiang
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Chun Gan
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xindi Zhou
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qing Yang
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dan Chen
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Han Xiao
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Lujun Dai
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yaxi Chen
- Department of Infectious Diseases, Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Mo Wang
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Haiping Yang
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| | - Qiu Li
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
34
|
Niu L, Lu YJ, Zu XW, Yang W, Shen FK, Xu YY, Jiang M, Xie Y, Li SY, Gao J, Bai G. Magnolol alleviates pulmonary fibrosis inchronic obstructive pulmonary disease by targeting transient receptor potential vanilloid 4-ankyrin repeat domain. Phytother Res 2023; 37:4282-4297. [PMID: 37282760 DOI: 10.1002/ptr.7907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) plays a role in regulating pulmonary fibrosis (PF). While several TRPV4 antagonists including magnolol (MAG), have been discovered, the mechanism of action is not fully understood. This study aimed to investigate the effect of MAG on alleviating fibrosis in chronic obstructive pulmonary disease (COPD) based on TRPV4, and to further analyze its mechanism of action on TRPV4. COPD was induced using cigarette smoke and LPS. The therapeutic effect of MAG on COPD-induced fibrosis was evaluated. TRPV4 was identified as the main target protein of MAG using target protein capture with MAG probe and drug affinity response target stability assay. The binding sites of MAG at TRPV4 were analyzed using molecular docking and small molecule interaction with TRPV4-ankyrin repeat domain (ARD). The effects of MAG on TRPV4 membrane distribution and channel activity were analyzed by co-immunoprecipitation, fluorescence co-localization, and living cell assay of calcium levels. By targeting TRPV4-ARD, MAG disrupted the binding between phosphatidylinositol 3 kinase γ and TRPV4, leading to hampered membrane distribution on fibroblasts. Additionally, MAG competitively impaired ATP binding to TRPV4-ARD, inhibiting TRPV4 channel opening activity. MAG effectively blocked the fibrotic process caused by mechanical or inflammatory signals, thus alleviating PF in COPD. Targeting TRPV4-ARD presents a novel treatment strategy for PF in COPD.
Collapse
Affiliation(s)
- Lin Niu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu-Jie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xing-Wang Zu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Wen Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Fu-Kui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yan-Yan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yang Xie
- The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province and Education Ministry of China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Su-Yun Li
- The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province and Education Ministry of China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
35
|
Polat OK, Isaeva E, Sudhini YR, Knott B, Zhu K, Noben M, Suresh Kumar V, Endlich N, Mangos S, Reddy TV, Samelko B, Wei C, Altintas MM, Dryer SE, Sever S, Staruschenko A, Reiser J. The small GTPase regulatory protein Rac1 drives podocyte injury independent of cationic channel protein TRPC5. Kidney Int 2023; 103:1056-1062. [PMID: 36750145 PMCID: PMC10200725 DOI: 10.1016/j.kint.2023.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Transient receptor potential canonical channels (TRPCs) are non-selective cationic channels that play a role in signal transduction, especially in G -protein-mediated signaling cascades. TRPC5 is expressed predominantly in the brain but also in the kidney. However, its role in kidney physiology and pathophysiology is controversial. Some studies have suggested that TRPC5 drives podocyte injury and proteinuria, particularly after small GTPase Rac1 activation to induce the trafficking of TRPC5 to the plasma membrane. Other studies using TRPC5 gain-of-function transgenic mice have questioned the pathogenic role of TRPC5 in podocytes. Here, we show that TRPC5 over-expression or inhibition does not ameliorate proteinuria induced by the expression of constitutively active Rac1 in podocytes. Additionally, single-cell patch-clamp studies did not detect functional TRPC5 channels in primary cultures of podocytes. Thus, we conclude that TRPC5 plays a role redundant to that of TRPC6 in podocytes and is unlikely to be a useful therapeutic target for podocytopathies.
Collapse
Affiliation(s)
- Onur K Polat
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA; Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yashwanth R Sudhini
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Brenna Knott
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ke Zhu
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Manuel Noben
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Varsha Suresh Kumar
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany; Center of High-End Imaging, NIPOKA GmbH, Greifswald, Germany
| | - Steve Mangos
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Beata Samelko
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA; Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas, USA
| | - Sanja Sever
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
36
|
Szallasi A. "ThermoTRP" Channel Expression in Cancers: Implications for Diagnosis and Prognosis (Practical Approach by a Pathologist). Int J Mol Sci 2023; 24:9098. [PMID: 37240443 PMCID: PMC10219044 DOI: 10.3390/ijms24109098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Temperature-sensitive transient receptor potential (TRP) channels (so-called "thermoTRPs") are multifunctional signaling molecules with important roles in cell growth and differentiation. Several "thermoTRP" channels show altered expression in cancers, though it is unclear if this is a cause or consequence of the disease. Regardless of the underlying pathology, this altered expression may potentially be used for cancer diagnosis and prognostication. "ThermoTRP" expression may distinguish between benign and malignant lesions. For example, TRPV1 is expressed in benign gastric mucosa, but is absent in gastric adenocarcinoma. TRPV1 is also expressed both in normal urothelia and non-invasive papillary urothelial carcinoma, but no TRPV1 expression has been seen in invasive urothelial carcinoma. "ThermoTRP" expression can also be used to predict clinical outcomes. For instance, in prostate cancer, TRPM8 expression predicts aggressive behavior with early metastatic disease. Furthermore, TRPV1 expression can dissect a subset of pulmonary adenocarcinoma patients with bad prognosis and resistance to a number of commonly used chemotherapeutic agents. This review will explore the current state of this rapidly evolving field with special emphasis on immunostains that can already be added to the armoire of diagnostic pathologists.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
37
|
Zhou L, Wu K, Gao Y, Qiao R, Tang N, Dong D, Li XQ, Nong Q, Luo DQ, Xiao Q, Fan X, Duan Q, Cao W. Piperlonguminine attenuates renal fibrosis by inhibiting TRPC6. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116561. [PMID: 37121453 DOI: 10.1016/j.jep.2023.116561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liuwei Dihuang (LWDH) is a classic prescription that has been used to the treatment of "Kidney-Yin" deficiency syndrome for more than 1000 years in China. Recent studies have confirmed that LWDH can prevent the progression of renal fibrosis. Numerous studies have demonstrated the critical role that TRPC6 plays in the development of renal fibrosis. Due to the complex composition of LWDH and its remarkable therapeutic effect on renal fibrosis, it is possible to discover new active ingredients targeting TRPC6 for the treatment of renal fibrosis. AIM OF STUDY This study aimed to identify selective TRPC6 inhibitors from LWDH and evaluate their therapeutical effects on renal fibrosis. MATERIALS AND METHODS Computer-aided drug design was used to screen the biologically active ingredients of LWDH, and their affinities to human TRPC6 protein were detected by microcalorimetry. TRPC6, TRPC3, and TRPC7 over-expressed HEK293 cells were constructed, and the selective activities of the compounds on TRPC6 were determined by measuring [Ca2+]i in these cells. To establish an in vitro model of renal fibrosis, human renal proximal tubular epithelial HK-2 cells were stimulated with TGF-β1. The therapeutic effects of LWDH compounds on renal fibrosis were then tested by detecting the related proteins. TRPC6 was knocked-down in HK-2 cells to investigate the effects of LWDH active ingredients on TRPC6. Finally, a unilateral ureteral obstruction model of renal fibrosis was established to test the therapeutic effect. RESULTS From hundreds of LWDH ingredients, 64 active components with oral bioavailability ≥30% and drug-likeness index ≥0.18 were acquired. A total of 10 active components were obtained by molecular docking with TRPC6 protein. Among them, 4 components had an affinity with TRPC6. Piperlonguminine (PLG) had the most potent affinity with TRPC6 and blocking effect on TRPC6-mediated Ca2+ entry. A 100 μM of PLG showed no detectable inhibition on TRPC1, TRPC3, TRPC4, TRPC5, or TRPC7-mediated Ca2+ influx into cells. In vitro results indicated that PLG concentration-dependently inhibited the abnormally high expression of α-smooth muscle actin (α-SMA), collagen I, vimentin, and TRPC6 in TGF-β1-induced HK-2 cells. Consistently, PLG also could not further inhibit TGF-β1-induced expressions of these protein biomarkers in TRPC6 knocked-down HK-2 cells. In vivo, PLG dose-dependently reduced urinary protein, serum creatinine, and blood urea nitrogen levels in renal fibrosis mice and markedly alleviated fibrosis and the expressions of α-SMA, collagen I, vimentin, and TRPC6 in kidney tissues. CONCLUSION Our results showed that PLG had anti-renal fibrosis effects by selectively inhibiting TRPC6. PLG might be a promising therapeutic agent for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Lei Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Kehan Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Yuxuan Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Ruizhi Qiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Na Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Dianchao Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xiao-Qiang Li
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710000, China
| | - Qiuna Nong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Ding-Qiang Luo
- Shaanxi Institute for Food and Drug Control, Xi'an, 710065, China
| | - Qianhan Xiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xin Fan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Qimei Duan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China.
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710000, China.
| |
Collapse
|
38
|
Fujii W, Shibata S. Mineralocorticoid Receptor Antagonists for Preventing Chronic Kidney Disease Progression: Current Evidence and Future Challenges. Int J Mol Sci 2023; 24:ijms24097719. [PMID: 37175424 PMCID: PMC10178637 DOI: 10.3390/ijms24097719] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Regulation and action of the mineralocorticoid receptor (MR) have been the focus of intensive research over the past 80 years. Genetic and physiological/biochemical analysis revealed how MR and the steroid hormone aldosterone integrate the responses of distinct tubular cells in the face of environmental perturbations and how their dysregulation compromises fluid homeostasis. In addition to these roles, the accumulation of data also provided unequivocal evidence that MR is involved in the pathophysiology of kidney diseases. Experimental studies delineated the diverse pathological consequences of MR overactivity and uncovered the multiple mechanisms that result in enhanced MR signaling. In parallel, clinical studies consistently demonstrated that MR blockade reduces albuminuria in patients with chronic kidney disease. Moreover, recent large-scale clinical studies using finerenone have provided evidence that the non-steroidal MR antagonist can retard the kidney disease progression in diabetic patients. In this article, we review experimental data demonstrating the critical importance of MR in mediating renal injury as well as clinical studies providing evidence on the renoprotective effects of MR blockade. We also discuss areas of future investigation, which include the benefit of non-steroidal MR antagonists in non-diabetic kidney disease patients, the identification of surrogate markers for MR signaling in the kidney, and the search for key downstream mediators whereby MR blockade confers renoprotection. Insights into these questions would help maximize the benefit of MR blockade in subjects with kidney diseases.
Collapse
Affiliation(s)
- Wataru Fujii
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| |
Collapse
|
39
|
Ovsepian SV, Waxman SG. Gene therapy for chronic pain: emerging opportunities in target-rich peripheral nociceptors. Nat Rev Neurosci 2023; 24:252-265. [PMID: 36658346 DOI: 10.1038/s41583-022-00673-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
With sweeping advances in precision delivery systems and manipulation of the genomes and transcriptomes of various cell types, medical biotechnology offers unprecedented selectivity for and control of a wide variety of biological processes, forging new opportunities for therapeutic interventions. This perspective summarizes state-of-the-art gene therapies enabled by recent innovations, with an emphasis on the expanding universe of molecular targets that govern the activity and function of primary sensory neurons and which might be exploited to effectively treat chronic pain.
Collapse
Affiliation(s)
- Saak V Ovsepian
- School of Science, Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, UK.
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
40
|
Lenoir O, Huber TB, Tharaux PL. From bench to bedside: Lessons learned from translational podocyte research. Kidney Int 2023; 103:1018-1020. [PMID: 36948398 DOI: 10.1016/j.kint.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
Polat et al. report that mice with a podocyte-specific expression of a constitutively-active Rac1 form displayed similar injury and albuminuria, irrespectively of Transient Receptor Potential Canonical 5 (TRPC5) activity. This article confirms the pathogenic role of deregulated Rac1 and challenges models involving the role of TRPC5 in podocytes. We take the opportunity to learn from this controversial field and propose a roadmap to help new drug candidates succeed in clinical trials and safely reach patients.
Collapse
Affiliation(s)
- Olivia Lenoir
- Université Paris Cité, Inserm, Paris Cardiovascular research Center (PARCC), 56 rue Leblanc, 75015 Paris, France.
| | - Tobias B Huber
- III. Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Campus Research N27, 20246 Hamburg, Germany
| | - Pierre-Louis Tharaux
- Université Paris Cité, Inserm, Paris Cardiovascular research Center (PARCC), 56 rue Leblanc, 75015 Paris, France; III. Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Campus Research N27, 20246 Hamburg, Germany
| |
Collapse
|
41
|
Li B, Li N, Wang N, Li C, Liu X, Cao Z, Xing C, Wang S. Targeting ROS-sensitive TRP ion channels for relieving oxidative stress-related diseases based on nanomaterials. MATERIALS TODAY ADVANCES 2023; 17:100335. [DOI: 10.1016/j.mtadv.2022.100335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Ochiai K, Mochida Y, Nagase T, Fukuhara H, Yamaguchi Y, Nagase M. Upregulation of Piezo2 in the mesangial, renin, and perivascular mesenchymal cells of the kidney of Dahl salt-sensitive hypertensive rats and its reversal by esaxerenone. Hypertens Res 2023; 46:1234-1246. [PMID: 36810623 DOI: 10.1038/s41440-023-01219-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/23/2023]
Abstract
The recent discovery of mechanosensitive ion channels has promoted mechanobiological research in the field of hypertension and nephrology. We previously reported Piezo2 expression in mouse mesangial and juxtaglomerular renin-producing cells, and its modulation by dehydration. This study aimed to investigate how Piezo2 expression is altered in hypertensive nephropathy. The effects of the nonsteroidal mineralocorticoid receptor blocker, esaxerenone, were also analyzed. Four-week-old Dahl salt-sensitive rats were randomly assigned to three groups: rats fed a 0.3% NaCl diet (DSN), rats fed a high 8% NaCl diet (DSH), and rats fed a high salt diet supplemented with esaxerenone (DSH + E). After six weeks, DSH rats developed hypertension, albuminuria, glomerular and vascular injuries, and perivascular fibrosis. Esaxerenone effectively decreased blood pressure and ameliorated renal damage. In DSN rats, Piezo2 was expressed in Pdgfrb-positive mesangial and Ren1-positive cells. Piezo2 expression in these cells was enhanced in DSH rats. Moreover, Piezo2-positive cells accumulated in the adventitial layer of intrarenal small arteries and arterioles in DSH rats. These cells were positive for Pdgfrb, Col1a1, and Col3a1, but negative for Acta2 (αSMA), indicating that they were perivascular mesenchymal cells different from myofibroblasts. Piezo2 upregulation was reversed by esaxerenone treatment. Furthermore, Piezo2 inhibition by siRNA in the cultured mesangial cells resulted in upregulation of Tgfb1 expression. Cyclic stretch also upregulated Tgfb1 in both transfections of control siRNA and Piezo2 siRNA. Our findings suggest that Piezo2 may have a contributory role in modulating the pathogenesis of hypertensive nephrosclerosis and have also highlighted the therapeutic effects of esaxerenone on salt-induced hypertensive nephropathy. Mechanochannel Piezo2 is known to be expressed in the mouse mesangial cells and juxtaglomerular renin-producing cells, and this was confirmed in normotensive Dahl-S rats. In salt-induced hypertensive Dahl-S rats, Piezo2 upregulation was observed in the mesangial cells, renin cells, and notably, perivascular mesenchymal cells, suggesting its involvement in kidney fibrosis.
Collapse
Affiliation(s)
- Koji Ochiai
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.,Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Yuki Mochida
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.,Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Takashi Nagase
- Kunitachi Aoyagien Tachikawa Geriatric Health Services Facility, Tachikawa, Tokyo, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Yoshihiro Yamaguchi
- Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Miki Nagase
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| |
Collapse
|
43
|
Inhibition of Canonical Transient Receptor Potential Channels 4/5 with Highly Selective and Potent Small-Molecule HC-070 Alleviates Mechanical Hypersensitivity in Rat Models of Visceral and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24043350. [PMID: 36834762 PMCID: PMC9964505 DOI: 10.3390/ijms24043350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Transient receptor potential channels C4/C5 are widely expressed in the pain pathway. Here, we studied the putative analgesic efficacy of the highly selective and potent TRPC4/C5 antagonist HC-070 in rats. Inhibitory potency on human TRPC4 was assessed by using the whole-cell manual patch-clamp technique. Visceral pain sensitivity was assessed by the colonic distension test after intra-colonic trinitrobenzene sulfonic acid injection and partial restraint stress. Mechanical pain sensitivity was assessed by the paw pressure test in the chronic constriction injury (CCI) neuropathic pain model. We confirm that HC-070 is a low nanomolar antagonist. Following single oral doses (3-30 mg/kg in male or female rats), colonic hypersensitivity was significantly and dose-dependently attenuated, even fully reversed to baseline. HC-070 also had a significant anti-hypersensitivity effect in the established phase of the CCI model. HC-070 did not have an effect on the mechanical withdrawal threshold of the non-injured paw, whereas the reference compound morphine significantly increased it. Analgesic effects are observed at unbound brain concentrations near the 50% inhibitory concentration (IC50) recorded in vitro. This suggests that analgesic effects reported here are brought about by TRPC4/C5 blocking in vivo. The results strengthen the idea that TRPC4/C5 antagonism is a novel, safe non-opioid treatment for chronic pain.
Collapse
|
44
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
45
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
46
|
Jiang S, Gu L, Hu Y, Ren Y, Yang Z, Chai C, Yu B, Ge H, Cao Z, Zhao F. Inhibition of TRPC6 suppressed TGFβ-induced fibroblast-myofibroblast transdifferentiation in renal interstitial NRK-49F cells. Exp Cell Res 2022; 421:113374. [PMID: 36206825 DOI: 10.1016/j.yexcr.2022.113374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/29/2022]
Abstract
Renal fibrosis is a global health concern with limited curative treatment. Canonical transient receptor potential channel 6 (TRPC6), a nonselective cation channel, has been shown to regulate the renal fibrosis in murine models. However, the molecular mechanism is unclear. Fibroblast-myofibroblast transdifferentiation is one of the critical steps in the progression of renal fibrosis. In the present study, we demonstrate that transforming growth factor (TGF)-β1 exposure significantly increases the TRPC6 expression in renal interstitial fibroblast NRK-49F cells. Pharmacological inhibition of TRPC6 and knockdown of Trpc6 by siRNA alleviate TGF-β1-increased expression levels of α-smooth muscle actin (α-SMA) and collagen I, two key markers of myofibroblasts. Although direct activation of TRPC6 by 1-oleoyl-2-acetyl-sn-glycerol (OAG) does not affect the expression of α-SMA and collagen I, OAG potentiates TGF-β1-induced fibroblast-myofibroblast transdifferentiation. Further study demonstrates that TGF-β1 exposure increases the phosphorylation level of p38 and Yes-associated protein (YAP) translocation into the nuclei. Inhibition of p38 and YAP decreases TGF-β1-enhanced TRPC6 and α-SMA expression. In conclusion, we demonstrate that TRPC6 is a key regulator of TGF-β1-induced fibroblast-myofibroblast transdifferentiation and provides the mechanism of how TGF-β1 exposure regulates TRPC6 expression in NRK-49F fibroblasts.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Lifei Gu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Yixin Hu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Younan Ren
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Zhao Yang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chengzhi Chai
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Haitao Ge
- Jiangsu Suzhong Pharmaceutical Group Co., Ltd., Taizhou, Jiangsu, 225500, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
47
|
Liu J, Li X, Xu N, Han H, Li X. Role of ion channels in the mechanism of proteinuria (Review). Exp Ther Med 2022; 25:27. [PMID: 36561615 PMCID: PMC9748662 DOI: 10.3892/etm.2022.11726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Proteinuria is a common clinical manifestation of kidney diseases, such as glomerulonephritis, nephrotic syndrome, immunoglobulin A nephropathy and diabetic nephropathy. Therefore, proteinuria is considered to be a risk factor for renal dysfunction. Furthermore, proteinuria is also significantly associated with the progression of kidney diseases and increased mortality. Its occurrence is closely associated with damage to the structure of the glomerular filtration membrane. An impaired glomerular filtration membrane can affect the selective filtration function of the kidneys; therefore, several macromolecular substances, such as proteins, may pass through the filtration membrane and promote the manifestation of proteinuria. It has been reported that ion channels play a significant role in the mechanisms underlying proteinuria. Ion channel mutations or other dysfunctions have been implicated in several diseases, therefore ion channels could be used as major therapeutic targets. The mechanisms underlying the action of ion channels and ion transporters in proteinuria have been overlooked in the literature, despite their importance in identifying novel targets for treating proteinuria and delaying the progression of kidney diseases. The current review article focused on the four key ion channel groups, namely Na+, Ca2+, Cl- and K+ ion channels and the associated ion transporters.
Collapse
Affiliation(s)
- Jie Liu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xuewei Li
- Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Ning Xu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huirong Han
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China,Correspondence to: Professor Xiangling Li, Department of Nephrology, Affiliated Hospital of Weifang Medical University, 2428 Yu He Road, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
48
|
TRPC5 mediates endothelium-dependent contraction in the carotid artery of diet-induced obese mice. Hypertens Res 2022; 45:1945-1953. [PMID: 36123395 DOI: 10.1038/s41440-022-01017-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Little is known about the contribution of the transient receptor potential canonical channel isoform 5 (TRPC5), a Ca2+-sensitive channel, to vasoconstriction in obesity. In this study, we found that the TRPC5 expression and carotid artery contraction of diet-induced obese (DIO) mice were significantly higher than those of wild-type mice. Endothelium-dependent vasocontraction was inhibited by the TRPC5 inhibitor clemizole and the knockout of TRPC5 in DIO mouse carotid arteries, while activation of TRPC5 enhanced contraction in wild-type mice. TRPC5-regulated vasocontraction can be inhibited by the ROS scavenger NAC and the COX-2 inhibitor NS-398. Our study suggested that upregulation of TRPC5 contributes to endothelium-dependent contraction, which is involved in ROS production and COX-2 expression in DIO mouse carotid arteries. From these results, we speculated that TRPC5 mediated endothelium-dependent contraction in the carotid artery of DIO mice, which was achieved by increasing the levels of ROS and COX-2 expression.
Collapse
|
49
|
Wang S, Zhang X, Wang Q, Wang R. Histone modification in podocyte injury of diabetic nephropathy. J Mol Med (Berl) 2022; 100:1373-1386. [PMID: 36040515 DOI: 10.1007/s00109-022-02247-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
Diabetic nephropathy (DN), an important complication of diabetic microvascular disease, is one of the leading causes of end-stage renal disease (ESRD), which brings heavy burdens to the whole society. Podocytes are terminally differentiated glomerular cells, which act as a pivotal component of glomerular filtration barrier. When podocytes are injured, glomerular filtration barrier is damaged, and proteinuria would occur. Dysfunction of podocytes contributes to DN. And degrees of podocyte injury influence prognosis of DN. Growing evidences have shown that epigenetics does a lot in the evolvement of podocyte injury. Epigenetics includes DNA methylation, histone modification, and non-coding RNA. Among them, histone modification plays an indelible role. Histone modification includes histone methylation, histone acetylation, and other modifications such as histone phosphorylation, histone ubiquitination, histone ADP-ribosylation, histone crotonylation, and histone β-hydroxybutyrylation. It can affect chromatin structure and regulate gene transcription to exert its function. This review is to summarize documents about pathogenesis of podocyte injury, most importantly, histone modification of podocyte injury in DN recently to provide new ideas for further molecular research, diagnosis, and treatment.
Collapse
Affiliation(s)
- Simeng Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Xinyu Zhang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China. .,Department of Nephrology, Shandong Provincial Hospital, Shandong First Medical University, No. 324 Jingwu Street, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China. .,Department of Nephrology, Shandong Provincial Hospital, Shandong First Medical University, No. 324 Jingwu Street, Jinan, 250021, Shandong, China.
| |
Collapse
|
50
|
Chen L, Zhang Z, Tian H, Jiang S, Ji Y, Liu M, Shen J, Cao Z, Wang K. Synthesis of AC1903 analogs as potent transient receptor potential canonical channel 4/5 inhibitors and biological evaluation. Bioorg Med Chem 2022; 68:116853. [PMID: 35653869 DOI: 10.1016/j.bmc.2022.116853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
Transient receptor potential canonical (TRPC) channels are a class of non-selective cation channels expressed in a variety of tissues and organ systems where they functionally regulate physiological and pathological processes. TRPC5 has been shown to be a promising target for focal segmental glomerulosclerosis treatment. In this study, we report the synthesis and biological evaluation of a novel series of benzimidazole-based TRPC5 inhibitors. One compound, 8b, is 100-fold more potent than the parent compound, AC1903, in the suppression of TRPC5 channel activity. Interestingly, both AC1903 and 8b also suppressed TRPC4 channel activity with similar potency. Compound 8b also significantly blunts protamine sulfate-induced reorganization of podocyte cytoskeleton, interleukin (IL)-17-induced cell proliferation, and the expression of proinflammatory mediators in human keratinocyte HaCaT cells.
Collapse
Affiliation(s)
- Lili Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhuang Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Long Mian Road, Nanjing, Jiangsu 211198, China
| | - Hongtao Tian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shan Jiang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Long Mian Road, Nanjing, Jiangsu 211198, China
| | - Yunyun Ji
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Long Mian Road, Nanjing, Jiangsu 211198, China
| | - Mengru Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Long Mian Road, Nanjing, Jiangsu 211198, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhengyu Cao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Long Mian Road, Nanjing, Jiangsu 211198, China.
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China.
| |
Collapse
|