1
|
Nakazato Y, Hirano K, Mitsuma T, Arimasu Y, Hirokawa T, Chiba T, Fujiwara M, Tanaka R, Kondo H, Kamma H. Regulatory SNP of TERT promoter accompanied by C228T and BRAFV 600E is an exacerbating factor of papillary thyroid carcinoma. Oncol Lett 2025; 29:267. [PMID: 40235685 PMCID: PMC11997643 DOI: 10.3892/ol.2025.15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/09/2024] [Indexed: 04/17/2025] Open
Abstract
Despite the increased incidence of thyroid cancer due to enhanced precision of ultrasound technology and extensive utilization of puncture aspiration cytology, the mortality rate remains low, raising concerns about overdiagnosis. Papillary thyroid carcinoma (PTC) is the most common type, primarily diagnosed through cell nuclei examination. Recent advancements in identifying genetic mutations and tumor classification have refined diagnostic methods. Point mutations in the telomerase reverse transcriptase promoter (TERTp), specifically -124 C >T (C228T) and -146 C >T (C250T), and the regulatory single nucleotide polymorphism -245 T >C, C allele of rs2853669 (TrSNP) are potential thyroid cancer biomarkers. The present study tested the hypothesis that the coexistence of BRAF mutations in driver genes upstream of the MAPK pathway and late mutations unrelated to signaling, such as point mutations in TERTp, increases tumor virulence. A total of 133 patients with PTC who underwent surgery between January 2014 and November 2021 were included in the study. Blood and tumor tissue samples were collected, and DNA was extracted for genetic mutation analysis using PCR and Sanger sequencing. The TrSNP analysis of blood and surgical tissue samples showed a 97.7% agreement rate. TrSNP was detected in 70 of 133 patients (52.6%) and was significantly associated with tumor size, particularly in tumors >2.0 cm. TERTp point mutations were identified in 29 of 133 patients (21.8%), with C228T strongly associated with tumor size, particularly in tumors >4.0 cm, and extraglandular invasion. BRAF V600E was detected in 82 patients (61.7%) but showed no significant association with clinicopathological parameters. However, the coexistence of BRAF V600E with C228T and TrSNP affected tumor size and progression. The findings indicated that TrSNPs, along with C228T and BRAF V600E, may serve as potential molecular markers to predict PTC growth or exacerbation. Notably, coexistence of C228T and TrSNP is a preoperative indicator of disease progression.
Collapse
Affiliation(s)
- Yoko Nakazato
- Department of General Thoracic and Thyroid Surgery, Kyorin University, School of Medicine, Tokyo 181-8611, Japan
| | - Koichi Hirano
- Department of General Thoracic and Thyroid Surgery, Kyorin University, School of Medicine, Tokyo 181-8611, Japan
| | - Tomoya Mitsuma
- Department of General Thoracic and Thyroid Surgery, Kyorin University, School of Medicine, Tokyo 181-8611, Japan
| | - Yu Arimasu
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | | | - Tomohiro Chiba
- Department of Pathology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 112-0012, Japan
| | - Masachika Fujiwara
- Department of Pathology, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Ryota Tanaka
- Department of General Thoracic and Thyroid Surgery, Kyorin University, School of Medicine, Tokyo 181-8611, Japan
| | - Haruhiko Kondo
- Department of General Thoracic and Thyroid Surgery, Kyorin University, School of Medicine, Tokyo 181-8611, Japan
| | - Hiroshi Kamma
- Nasu Institute of Medical Sciences, Kamma Memorial Hospital, Nasushiobara, Tochigi 325-0046, Japan
| |
Collapse
|
2
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2025; 26:297-313. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
3
|
Soni N, Kaur P, Gurjar V, Bhargava A, Tiwari R, Chouksey A, Srivastava RK, Mishra PK. Unveiling the Interconnected Dynamics of Mitochondrial Dysfunction Associated With Age-Related Cardiovascular Risk: A Cross-Sectional Pilot Study. Cureus 2025; 17:e82961. [PMID: 40416162 PMCID: PMC12103716 DOI: 10.7759/cureus.82961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/27/2025] Open
Abstract
Aging, influenced by complex epigenetic mechanisms, significantly contributes to the progression of cardiovascular diseases (CVDs). This cross-sectional pilot study investigated mitochondrial-associated epigenetic stress responses in two age groups: Group I (18-38, n = 154), representing younger adults generally at lower risk for CVD, and Group II (39-65, n = 105), representing middle-aged and older adults with increased biological susceptibility. The age grouping was based on established physiological and cardiovascular risk transitions typically observed around age 40. To assess age-related molecular variations, we examined key mitochondrial and metabolic parameters, including mitochondrial DNA (mtDNA) damage repair capacity, mtDNA copy number (mtDNAcn), methylation status, mitochondrial dynamics (fusion/fission), telomere length, expression of respiratory complex genes, levels of pro-inflammatory cytokines, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentrations. Our results indicated that the older group exhibited higher mtDNA methylation (r² = 0.5205, p < 0.0001), increased mtDNAcn, and elevated NT-proBNP levels, which also showed a weak positive correlation with mtDNA methylation (r² = 0.3218, p < 0.0001). Additionally, a strong negative correlation was observed between telomerase reverse transcriptase (TERT) expression and age (r² = 0.6070, p < 0.0001), suggesting a decline in telomeric maintenance with advancing age. Group II also showed altered inflammatory and telomeric profiles and a notable reduction in the expression of mitochondrial respiratory complex genes (ND6, COXI, ATPase 6 and 8), alongside increased expression of genes involved in mitochondrial stress response pathways. We employed four machine learning models - Logistic Regression, Decision Tree, Random Forest, and Support Vector Machine (SVM) - for CVD risk prediction, using selected mitochondrial and metabolic features. All models demonstrated high classification accuracy, ranging from 0.920 to 1.0, with the Random Forest model achieving the highest accuracy of 0.984. These preliminary findings highlight distinct age-related molecular signatures and illustrate the potential of combining biomarkers with machine-learning approaches to improve cardiovascular risk prediction and therapeutic targeting in aging populations.
Collapse
Affiliation(s)
- Nikita Soni
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Prasan Kaur
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Vikas Gurjar
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Arpit Bhargava
- Faculty of Science, Ram Krishna Dharmarth Foundation (RKDF) University, Bhopal, IND
| | - Rajnarayan Tiwari
- Epidemiology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Apoorva Chouksey
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Rupesh K Srivastava
- Biotechnology, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Pradyumna K Mishra
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| |
Collapse
|
4
|
Lu Z, Chai X, Li S. Machine learning-based identification of telomere-related gene signatures for prognosis and immunotherapy response in hepatocellular carcinoma. Mol Cytogenet 2025; 18:6. [PMID: 40102883 PMCID: PMC11921577 DOI: 10.1186/s13039-025-00705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/06/2025] [Indexed: 03/20/2025] Open
Abstract
Telomere in cancers shows a main impact on maintaining chromosomal stability and unlimited proliferative capacity of tumor cells to promote cancer development and progression. So, we targeted to detect telomere-related genes(TRGs) in hepatocellular carcinoma (HCC) to develop a novel predictive maker and response to immunotherapy. We sourced clinical data and gene expression datasets of HCC patients from databases including TCGA and GEO database. The TelNet database was utilized to identify genes associated with telomeres. Genes with altered expression from TCGA and GSE14520 were intersected with TRGs, and Cox regression analysis was conducted to pinpoint genes strongly linked to survival prognosis. The risk model was developed using the Least Absolute Shrinkage and Selection Operator (LASSO) regression technique. Subsequently, evaluation of the risk model focused on immune cell infiltration, checkpoint genes, drug responsiveness, and immunotherapy outcomes across both high- and low-risk patient groups. We obtained 25 TRGs from the overlapping set of 34 genes using Cox regression analysis. Finally, six TRGs (CDC20, TRIP13, EZH2, AKR1B10, ESR1, and DNAJC6) were identified to formulate the risk score (RS) model, which independently predicted prognosis for HCC. The high-risk group demonstrated worse survival outcomes and showed elevated levels of infiltration by Macrophages M0 and Tregs. Furthermore, a notable correlation was observed between the genes in the risk model and immune checkpoint genes. The RS model, derived from TRGs, has been validated for its predictive value in immunotherapy outcomes. In conclusion, this model not only predicted the prognosis of HCC patients but also their immune responses, providing innovative strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhengmei Lu
- Department of Infectious Diseases, Wenzhou Medical University Affiliated, Zhoushan Hospital, Zhoushan, 316000, China
| | - Xiaowei Chai
- Dermatology, Tongji University, Shanghai, 200040, China
| | - Shibo Li
- Department of Infectious Diseases, Wenzhou Medical University Affiliated, Zhoushan Hospital, Zhoushan, 316000, China.
| |
Collapse
|
5
|
Busquets O, Li H, Syed KM, Jerez PA, Dunnack J, Bu RL, Verma Y, Pangilinan GR, Martin A, Straub J, Du Y, Simon VM, Poser S, Bush Z, Diaz J, Sahagun A, Gao J, Hong S, Hernandez DG, Levine KS, Booth EO, Blanchette M, Bateup HS, Rio DC, Blauwendraat C, Hockemeyer D, Soldner F. iSCORE-PD: an isogenic stem cell collection to research Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.12.579917. [PMID: 38405931 PMCID: PMC10888955 DOI: 10.1101/2024.02.12.579917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by complex genetic and environmental factors. Genome-edited human pluripotent stem cells (hPSCs) offer a unique experimental platform to advance our understanding of PD etiology by enabling the generation of disease-relevant cell types carrying patient mutations along with isogenic control cells. To facilitate this approach, we generated a collection of 65 human stem cell lines genetically engineered to harbor high risk or causal variants in genes associated with PD (SNCA A53T, SNCA A30P, PRKN Ex3del, PINK1 Q129X, DJ1/PARK7 Ex1-5del, LRRK2 G2019S, ATP13A2 FS, FBXO7 R498X/FS, DNAJC6 c.801 A>G/FS, SYNJ1 R258Q/FS, VPS13C A444P/FS, VPS13C W395C/FS, GBA1 IVS2+1/FS). All mutations were introduced into a fully characterized and sequenced female human embryonic stem cell (hESC) line (WIBR3; NIH approval number NIHhESC-10-0079) using different genome editing techniques. To ensure the genetic integrity of these cell lines, we implemented rigorous quality controls, including whole-genome sequencing of each line. Our analysis of the genetic variation in this cell line collection revealed that while genome editing, particularly using CRISPR/Cas9, can introduce rare off-target mutations, the predominant source of genetic variants arises from routine cell culture and are fixed in cell lines during clonal isolation. The observed genetic variation was minimal compared to that typically found in patient-derived iPSC experiments and predominantly affected non-coding regions of the genome. Importantly, our analysis outlines strategies for effectively managing genetic variation through stringent quality control measures and careful experimental design. This systematic approach ensures the high quality of our stem cell collection, highlights advantages of prime editing over conventional CRISPR/Cas9 methods and provides a roadmap for the generation of gene-edited hPSC collections at scale in an academic setting. Our iSCORE-PD collection represents an easily accessible and valuable platform to study PD, which can be used by investigators to understand the molecular pathophysiology of PD in a human cellular setting.
Collapse
Affiliation(s)
- Oriol Busquets
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- These authors contributed equally
| | - Hanqin Li
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- These authors contributed equally
| | - Khaja Mohieddin Syed
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Pilar Alvarez Jerez
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- These authors contributed equally
| | - Jesse Dunnack
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Riana Lo Bu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Yogendra Verma
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gabriella R. Pangilinan
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Annika Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jannes Straub
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - YuXin Du
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vivien M. Simon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Steven Poser
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Zipporiah Bush
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Jessica Diaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Atehsa Sahagun
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jianpu Gao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Samantha Hong
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dena G. Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristin S. Levine
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ezgi O. Booth
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Helen S. Bateup
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Donald C. Rio
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dirk Hockemeyer
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Frank Soldner
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Lead contact
| |
Collapse
|
6
|
Andreikos D, Spandidos DA, Georgakopoulou VE. Telomeres and telomerase in mesothelioma: Pathophysiology, biomarkers and emerging therapeutic strategies (Review). Int J Oncol 2025; 66:23. [PMID: 39981889 PMCID: PMC11844339 DOI: 10.3892/ijo.2025.5729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Malignant mesothelioma (MM) is a rare but aggressive cancer linked to asbestos exposure and characterized by advanced‑stage disease at presentation. Despite advances in treatment, prognosis remains abysmal, highlighting the imperative for the development of novel biomarkers and treatment approaches. Telomere biology plays a pivotal role in the tumorigenic process and has emerged as a key area in oncology research. Short telomeres have been associated with genomic instability, and substantially shorter telomere length (TL) has been identified in MM, showcasing the potential of TL in risk assessment, early detection, and disease progression monitoring. MM predominantly maintains TL through telomerase activity (TA), which in research has been identified in >90% of MM cases, underscoring the potential of TA as a biomarker in MM. Telomerase reverse transcriptase (TERT) polymorphisms may serve as valuable biomarkers, with research identifying associations between single nucleotide polymorphisms (SNPs) and the risk and prognosis of MM. Additionally, TERT promoter mutations have been associated with poor prognosis and advanced‑stage disease, with the non‑canonical functions of TERT hypothesized to contribute to the development of MM. TERT promoter mutations occur in ~12% of MM cases; C228T, C250T and A161C are the most common, while the distribution and frequency differ depending on histological subtype. Research reveals the promise of the various approaches therapeutically targeting telomerase, with favorable results in pre‑clinical models and inconclusive findings in clinical trials. The present review examines the role of telomere biology in MM and its implications in diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Dimitrios Andreikos
- School of Medicine, Democritus University of Thrace, 68110 Alexandroupolis, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
7
|
Rowbottom H, Šmigoc T, Ravnik J. Malignant Meningiomas: From Diagnostics to Treatment. Diagnostics (Basel) 2025; 15:538. [PMID: 40075786 PMCID: PMC11898517 DOI: 10.3390/diagnostics15050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Meningiomas account for approximately 40% of all primary brain tumors, of which 1.5% are classified as grade 3. Whilst meningiomas are discovered on imaging with high-grade meningiomas being associated with certain imaging features, the final diagnosis is based on histopathology in combination with molecular markers. According to the latest World Health Organization (WHO) Classification of Tumors of the Central Nervous System (CNS), grade 3 should be assigned based on criteria for anaplastic meningiomas, which comprise malignant cytomorphology (anaplasia) that resembles carcinoma, high-grade sarcoma or melanoma; elevated mitotic activity; a TERT promoter mutation and/or a homozygous CDKN2A and/or CDKN2B deletion. Surgery remains the mainstay treatment modality for grade 3 meningiomas, followed by radiotherapy. Limited data are available on the effect of stereotactic radiosurgery and systemic therapy for grade 3 meningiomas; however, studies are underway. Despite optimal treatment, the estimated recurrence rate ranges between 50% and 95% with a 5-year survival rate of 66% and a 10-year estimated survival rate of 14% to 24%.
Collapse
Affiliation(s)
| | | | - Janez Ravnik
- Department of Neurosurgery, University Medical Centre Maribor, 2000 Maribor, Slovenia; (H.R.); (T.Š.)
| |
Collapse
|
8
|
Shou S, Maolan A, Zhang D, Jiang X, Liu F, Li Y, Zhang X, Geer E, Pu Z, Hua B, Guo Q, Zhang X, Pang B. Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics. Exp Hematol Oncol 2025; 14:8. [PMID: 39871386 PMCID: PMC11771031 DOI: 10.1186/s40164-025-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging. Many candidate drugs remain in the experimental stage, with only a few advancing to clinical trials. This review explores the relationship between telomeres, telomerase, and cancer, synthesizing their roles as biomarkers and reviewing the outcomes of completed trials. We propose that changes in telomere length and telomerase activity can be used to stratify cancer stages. Furthermore, we suggest that differential expression of telomere and telomerase components at the subcellular level holds promise as a biomarker. From a therapeutic standpoint, combining telomerase-targeted therapies with drugs that mitigate the adverse effects of telomerase inhibition may offer a viable strategy.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ayidana Maolan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiujun Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Iskandar M, Xiao Barbero M, Jaber M, Chen R, Gomez-Guevara R, Cruz E, Westerheide S. A Review of Telomere Attrition in Cancer and Aging: Current Molecular Insights and Future Therapeutic Approaches. Cancers (Basel) 2025; 17:257. [PMID: 39858038 PMCID: PMC11764024 DOI: 10.3390/cancers17020257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer. The purpose of this review is to provide an updated overview of telomere biology and therapeutic tactics to address aging and cancer. METHODS We used the Rayyan platform to review the PubMed database and examined the ClinicalTrial.gov registry to gain insight into clinical trials and their results. RESULTS Cancer cells activate telomerase or utilize alternative lengthening of telomeres to escape telomere shortening, leading to near immortality. Contrarily, normal cells experience telomeric erosion, contributing to premature aging disorders, such as Werner syndrome and Hutchinson-Gilford Progeria, and (2) aging-related diseases, such as neurodegenerative and cardiovascular diseases. CONCLUSIONS The literature presents several promising therapeutic approaches to potentially balance telomere maintenance in aging and shortening in cancer. This review highlights gaps in knowledge and points to the potential of these optimal interventions in preclinical and clinical studies to inform future research in cancer and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandy Westerheide
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (M.X.B.); (M.J.); (R.C.); (R.G.-G.); (E.C.)
| |
Collapse
|
10
|
Fernandopulle MS, Cotty-Fattal Z, Smith H, Mejia Bautista M, Ahrendsen JT, Jennings LJ, Santana-Santos L, Sukhanova M, Conway K, Primdahl D, Dixit K, Castellani RJ, Vormittag-Nocito ER, Jamshidi P. Dual TERT promoter mutations in an oligodendroglioma, IDH-mutant, 1p/19q co-deleted. J Neuropathol Exp Neurol 2025:nlae138. [PMID: 39798150 DOI: 10.1093/jnen/nlae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2025] Open
Affiliation(s)
- Michael S Fernandopulle
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Zachary Cotty-Fattal
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Heather Smith
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Melissa Mejia Bautista
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jared T Ahrendsen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lawrence J Jennings
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lucas Santana-Santos
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Kyle Conway
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Ditte Primdahl
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Karan Dixit
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Rudolph J Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Erica R Vormittag-Nocito
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
11
|
Tu T, McQuaid TJ, Jacobson IM. HBV-Induced Carcinogenesis: Mechanisms, Correlation With Viral Suppression, and Implications for Treatment. Liver Int 2025; 45:e16202. [PMID: 39720865 DOI: 10.1111/liv.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is a common but underdiagnosed and undertreated health condition and is the leading cause of hepatocellular carcinoma (HCC) worldwide. HBV (rated a Grade 1 carcinogen by the International Agency for Research on Cancer) drives the transformation of hepatocytes in multiple ways by inducing viral DNA integrations, genetic dysregulation, chromosomal translocations, chronic inflammation, and oncogenic pathways facilitated by some HBV proteins. Importantly, these mechanisms are active throughout all phases of HBV infection. Nevertheless, most clinical guidelines for antiviral therapy recommend treatment based on a complex combination of HBV DNA levels, transaminasemia, liver histology, and demographic factors, rather than prompt treatment for all people with infection. AIMS To determine if current frameworks for antiviral treatment address the impacts of chronic HBV infection particularly preventing cancer development. MATERIALS AND METHODS We reviewed the recent data demonstrating pro-oncogenic factors acting throughout a chronic HBV infection can be inhibited by antiviral therapy. RESULTS We extensively reviewed Hepatitis B virology data and correlating clinical outcome data. From thi, we suggest that new findings support simplifying and expanding treatment initiation to reduce the incidence ofnew infections, progressive liver disease, and risk of hepatocellular carcinoma. We also consider lessons learned from other blood-borne pathogens, including the benefits of antiviral treatment in preventing transmission, reducing stigma, and reframing treatment as cancer prevention. CONCLUSION Incorporating these practice changes into treatment is likely to reduce the overall burden of chronic HBV infections and HCC. Through this, we may better achieve the World Health Organization's goal of eliminating viral hepatitis as a public health threat and minimise its impact on people's lives.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, Westmead Clinical School, Centre for Infectious Diseases and Microbiology and Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
12
|
Lopes-Bastos B, Nabais J, Ferreira T, Allavena G, El Maï M, Bird M, Targen S, Tattini L, Kang D, Yue JX, Liti G, Carvalho TG, Godinho Ferreira M. The absence of telomerase leads to immune response and tumor regression in zebrafish melanoma. Cell Rep 2024; 43:115035. [PMID: 39643971 DOI: 10.1016/j.celrep.2024.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
Most cancers re-activate telomerase to maintain telomere length and thus acquire immortality. Activating telomerase promoter mutations are found in many cancers, including melanoma. However, it is unclear when and if telomerase is strictly required during tumorigenesis. We combined the telomerase mutant (tert-/-) with two established zebrafish melanoma models. We show that tert-/- melanomas initially develop with similar incidence and invasiveness to tert+/+ tumors. However, they eventually decline in growth and regress. Late tert-/- tumors exhibit reduced cell proliferation, increased apoptosis, and melanocyte differentiation. Notably, these tumors show enhanced immune cell infiltration and can resume growth when transplanted into immunocompromised hosts. We propose that telomerase is required for melanoma in zebrafish, albeit at later stages of progression, to sustain tumor growth while avoiding immune rejection and regression. Thus, the absence of telomerase restricts melanoma through tumor-autonomous mechanisms (cell-cycle arrest, apoptosis, and melanocyte differentiation) and a non-tumor-autonomous mechanism (immune rejection).
Collapse
Affiliation(s)
- Bruno Lopes-Bastos
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Joana Nabais
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Tânia Ferreira
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Giulia Allavena
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Mounir El Maï
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Malia Bird
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Seniye Targen
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Lorenzo Tattini
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Da Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gianni Liti
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | | | - Miguel Godinho Ferreira
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
13
|
Gutierrez-Rodrigues F, Groarke EM, Thongon N, Rodriguez-Sevilla JJ, Catto LFB, Niewisch MR, Shalhoub R, McReynolds LJ, Clé DV, Patel BA, Ma X, Hironaka D, Donaires FS, Spitofsky N, Santana BA, Lai TP, Alemu L, Kajigaya S, Darden I, Zhou W, Browne PV, Paul S, Lack J, Young DJ, DiNardo CD, Aviv A, Ma F, De Oliveira MM, de Azambuja AP, Dunbar CE, Olszewska M, Olivier E, Papapetrou EP, Giri N, Alter BP, Bonfim C, Wu CO, Garcia-Manero G, Savage SA, Young NS, Colla S, Calado RT. Clonal landscape and clinical outcomes of telomere biology disorders: somatic rescue and cancer mutations. Blood 2024; 144:2402-2416. [PMID: 39316766 PMCID: PMC11862815 DOI: 10.1182/blood.2024025023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
ABSTRACT Telomere biology disorders (TBDs), caused by pathogenic germ line variants in telomere-related genes, present with multiorgan disease and a predisposition to cancer. Clonal hematopoiesis (CH) as a marker of cancer development and survival in TBDs is poorly understood. Here, we characterized the clonal landscape of a large cohort of 207 patients with TBD with a broad range of age and phenotype. CH occurred predominantly in symptomatic patients and in signature genes typically associated with cancers: PPM1D, POT1, TERT promoter (TERTp), U2AF1S34, and/or TP53. Chromosome 1q gain (Chr1q+) was the commonest karyotypic abnormality. Clinically, multiorgan involvement and CH in TERTp, TP53, and splicing factor genes were associated with poorer overall survival. Chr1q+ and splicing factor or TP53 mutations significantly increased the risk of hematologic malignancies, regardless of clonal burden. Chr1q+ and U2AF1S34 mutated clones were premalignant events associated with the secondary acquisition of mutations in genes related to hematologic malignancies. Similar to the known effects of Chr1q+ and TP53-CH, functional studies demonstrated that U2AF1S34 mutations primarily compensated for aberrant upregulation of TP53 and interferon pathways in telomere-dysfunctional hematopoietic stem cells, highlighting the TP53 pathway as a canonical route of malignancy in TBD. In contrast, somatic POT1/PPM1D/TERTp mutations had distinct trajectories unrelated to cancer development. With implications beyond TBD, our data show that telomere dysfunction is a strong selective pressure for CH. In TBD, CH is a poor prognostic marker associated with worse overall survival. The identification of key regulatory pathways that drive clonal transformation in TBD allows for the identification of patients at a higher risk of cancer development.
Collapse
Affiliation(s)
| | - Emma M. Groarke
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Luiz Fernando B. Catto
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marena R. Niewisch
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ruba Shalhoub
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Lisa J. McReynolds
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Diego V. Clé
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bhavisha A. Patel
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xiaoyang Ma
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Dalton Hironaka
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Flávia S. Donaires
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nina Spitofsky
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Barbara A. Santana
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tsung-Po Lai
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Lemlem Alemu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ivana Darden
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paul V. Browne
- Department of Haematology, Trinity College Dublin, Dublin, Ireland
| | - Subrata Paul
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David J. Young
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emmanuel Olivier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Blanche P. Alter
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Carmem Bonfim
- Bone Marrow Transplantation Unit, Federal University of Parana, Curitiba, Brazil
- Pediatric Blood and Marrow Transplantation Program, Pequeno Principe Hospital, Curitiba, Brazil
| | - Colin O. Wu
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Neal S. Young
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rodrigo T. Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
14
|
El Azzouzi M, El Ahanidi H, Hassan I, Tetou M, Ameur A, Bensaid M, Al Bouzidi A, Oukabli M, Alaoui CH, Addoum B, Chaoui I, Benbacer L, Mzibri ME, Attaleb M. Comprehensive behavioural assessment of TERT in bladder cancer. Urol Oncol 2024; 42:451.e19-451.e29. [PMID: 39147693 DOI: 10.1016/j.urolonc.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Telomerase activity plays a crucial role in cancer development and progression. Thus, telomerase activation through the interplay of mutations and epigenetic alterations in the telomerase reverse transcriptase (TERT) promoter may provide further insight into bladder cancer induction and progression. METHODS In this study 100 bladder tumour tissues were selected, and four molecular signatures were analysed: THOR methylation status, TERT promotor mutation, telomere length, and TERT expression. RESULTS In our study, 88% of bladder cancer patients had an hypermethylation of the THOR region and 60% had mutations in the TERT promoter region. TERT promoter methylation was observed in all stages and grades of bladder cancer. While, TERT promoter mutations were detected in advanced stages and grades. In our cohort, high levels of TERT expression and long telomeres have been found in noninvasive cases of bladder cancer, with a significant association between TERT expression and Telomere length. Interestingly, patients with low TERT expression and cases with long telomeres had significantly longer Disease-free survival and overall survival. CONCLUSION The methylation and mutations occurring in the TERT promoter are implicated in bladder carcinogenesis, offering added prognostic and supplying novel insight into telomere biology in cancer.
Collapse
Affiliation(s)
- Meryem El Azzouzi
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Hajar El Ahanidi
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Ilias Hassan
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Mohammed Tetou
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Ahmed Ameur
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Mounia Bensaid
- Laboratory of Pathological Anatomy, Military Hospital Mohamed V, Rabat, Morocco; Royal School of Military Health Service, Rabat, Morocco
| | | | - Mohamed Oukabli
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Laboratory of Pathological Anatomy, Military Hospital Mohamed V, Rabat, Morocco
| | - Chaimae Hafidi Alaoui
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | | | - Imane Chaoui
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco
| | - Laila Benbacer
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco
| | | | | |
Collapse
|
15
|
Gugu Nkosi PW, Chandran R, Abrahamse H. Hypocrellin: A Natural Photosensitizer and Nano-Formulation for Enhanced Molecular Targeting of PDT of Melanoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1997. [PMID: 39568119 PMCID: PMC11579242 DOI: 10.1002/wnan.1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/29/2024] [Accepted: 09/10/2024] [Indexed: 11/22/2024]
Abstract
Nano-formulation has generated attention in the battle against cancer, because of its great flexibility, reduced adverse side effects, and accuracy in delivering drugs to target tissues dependent on the size and surface characteristics of the disease. The field of photodynamic treatment has advanced significantly in the past years. Photodynamic techniques that use nano-formulations have surfaced to further the field of nanotechnology in medicine, especially in cancer treatment. The pharmaceutical industry is seeing a growing trend toward enhanced drug formulation using nano-formulations such as liposomes, polymeric nanoparticles, dendrimers, nano-emulsions, and micelles. Natural extracts have also shown adverse effects when employed as photosensitizers in cancer therapy because they are cytotoxic when activated by light. Still, natural photosensitizers are a big part of cancer treatment. However, some shortcomings can be minimized by combining nano-formulations with these natural photosensitizers. The synergistic improvement in medication delivery that maintains or increases the mechanism of cell death in malignant cells has also been demonstrated by the combination of photodynamic therapy with nano-formulations and natural photosensitizers. Lastly, this review assesses the feasibility and potential of a photodynamic therapy system based on nano-formulations and natural photosensitizers in clinical treatment applications and briefly discusses the removal of toxic compounds associated with nano-formulations within cells.
Collapse
Affiliation(s)
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgDoornfonteinSouth Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgDoornfonteinSouth Africa
| |
Collapse
|
16
|
Frye CC, Tennant L, Yeager A, Azimzadeh P, Bhardwaj P, Xu Y, Liu J, Othoum G, Maher CA, Chernock R, Goedegebuure SP, Gillanders W, Olson JA, Brown TC. Overexpression of human DNA polymerase theta is a biomarker of aggressive and DNA repair-deficient papillary thyroid cancers. Surgery 2024; 176:1380-1387. [PMID: 38897886 DOI: 10.1016/j.surg.2024.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND DNA polymerase theta (POLQ) is an enzyme that repairs double-strand DNA breaks. POLQ is overexpressed in several cancer types, and increased expression is associated with a poor prognosis. Ablating POLQ function in vitro increases drug sensitivity to agents that cause double-strand DNA breaks, including chemotherapies and ionizing radiation. POLQ's role in thyroid cancer remains poorly understood. METHODS Expression of POLQ and other genes of interest were analyzed in 513 papillary thyroid cancers (505 primary tumors and 8 metastatic lesions) and 59 normal thyroid samples available in the Cancer Genome Atlas. The Cancer Genome Atlas RNA and DNA sequencing data were queried with the Xena platform. The Recombination Proficiency Score was calculated to assess DNA repair efficiency. Other signaling events associated with thyroid tumorigenesis and clinical outcomes were analyzed. Univariate and multivariate analyses were performed. Treatment with the POLQ inhibitors ART558 and Novobiocin tested the effect of POLQ inhibition on in vitro thyroid cancer growth. RESULTS POLQ expression was increased in papillary thyroid cancers compared to normal thyroid tissue (P < .05). POLQ expression levels were inversely correlated with Recombination Proficiency Score levels (P < .05). POLQ expression was highest in tall cell papillary thyroid cancers and in metastases. Higher POLQ expression was also associated with dedifferentiation, BRAF signaling, and shorter progression-free intervals (P < .05). Treatment with POLQ inhibitors decreased in vitro thyroid cancer growth (P < .05). CONCLUSION These findings suggest that increased POLQ expression could serve as a valuable clinical marker and a potential therapeutic target in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- C Corbin Frye
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO.
| | - Lena Tennant
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Ashley Yeager
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Pedram Azimzadeh
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Priya Bhardwaj
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Yifei Xu
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO
| | - Jingxia Liu
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO
| | - Ghofran Othoum
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Christopher A Maher
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Rebecca Chernock
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, Saint Louis, MO
| | - S Peter Goedegebuure
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - William Gillanders
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - John A Olson
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Taylor C Brown
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
17
|
Wang JZ, Landry AP, Raleigh DR, Sahm F, Walsh KM, Goldbrunner R, Yefet LS, Tonn JC, Gui C, Ostrom QT, Barnholtz-Sloan J, Perry A, Ellenbogen Y, Hanemann CO, Jungwirth G, Jenkinson MD, Tabatabai G, Mathiesen TI, McDermott MW, Tatagiba M, la Fougère C, Maas SLN, Galldiks N, Albert NL, Brastianos PK, Ehret F, Minniti G, Lamszus K, Ricklefs FL, Schittenhelm J, Drummond KJ, Dunn IF, Pathmanaban ON, Cohen-Gadol AA, Sulman EP, Tabouret E, Le Rhun E, Mawrin C, Moliterno J, Weller M, Bi W(L, Gao A, Yip S, Niyazi M, The International Consortium on Meningiomas (ICOM), Aldape K, Wen PY, Short S, Preusser M, Nassiri F, Zadeh G. Meningioma: International Consortium on Meningiomas consensus review on scientific advances and treatment paradigms for clinicians, researchers, and patients. Neuro Oncol 2024; 26:1742-1780. [PMID: 38695575 PMCID: PMC11449035 DOI: 10.1093/neuonc/noae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and increased access to neuroimaging. While most exhibit nonmalignant behavior, a subset of meningiomas are biologically aggressive and are associated with treatment resistance, resulting in significant neurologic morbidity and even mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system (CNS) tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official World Health Organization (cIMPACT-NOW) working group. Additionally, clinical equipoise still remains on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas including field-leading experts, have prepared this comprehensive consensus narrative review directed toward clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality-of-life studies, and management strategies for unique meningioma patient populations. In each section, we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.
Collapse
Affiliation(s)
- Justin Z Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Alexander P Landry
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - David R Raleigh
- Department of Radiation Oncology, Neurological Surgery, and Pathology, University of California San Francisco, San Francisco, California, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Roland Goldbrunner
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Leeor S Yefet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jörg C Tonn
- Department of Neurosurgery, University Hospital Munich LMU, Munich, Germany
| | - Chloe Gui
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Quinn T Ostrom
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Jill Barnholtz-Sloan
- Center for Biomedical Informatics & Information Technology (CBIIT), National Cancer Institute, Bethesda, Maryland, USA
- Trans Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, Maryland, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Yosef Ellenbogen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - C Oliver Hanemann
- Peninsula Schools of Medicine, University of Plymouth University, Plymouth, UK
| | - Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University, Heidelberg, Germany
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Institute of Translational Medicine, University of Liverpool, UK
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Tiit I Mathiesen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael W McDermott
- Division of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Miami Neuroscience Institute, Baptist Health of South Florida, Miami, Florida, USA
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sybren L N Maas
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (IMN-3), Research Center Juelich, Juelich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Omar N Pathmanaban
- Division of Neuroscience and Experimental Psychology, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Emeline Tabouret
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, Marseille, France
| | - Emelie Le Rhun
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wenya (Linda) Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiation Oncology, University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | | | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Short
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds, UK
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Farshad Nassiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Constantinou SM, Bennett DC. Cell Senescence and the Genetics of Melanoma Development. Genes Chromosomes Cancer 2024; 63:e23273. [PMID: 39422311 DOI: 10.1002/gcc.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Cutaneous malignant melanoma is an aggressive skin cancer with an approximate lifetime risk of 1 in 38 in the UK. While exposure to ultraviolet radiation is a key environmental risk factor for melanoma, up to ~10% of patients report a family history of melanoma, and ~1% have a strong family history. The understanding of causal mutations in melanoma has been critical to the development of novel targeted therapies that have contributed to improved outcomes for late-stage patients. Here, we review current knowledge of the genes affected by familial melanoma mutations and their partial overlap with driver genes commonly mutated in sporadic melanoma development. One theme linking a set of susceptibility loci/genes is the regulation of skin pigmentation and suntanning. The largest functional set of susceptibility variants, typically with high penetrance, includes CDKN2A, RB1, and telomerase reverse transcriptase (TERT) mutations, associated with attenuation of cell senescence. We discuss the mechanisms of action of these gene sets in the biology and progression of nevi and melanoma.
Collapse
Affiliation(s)
- Sophie M Constantinou
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| | - Dorothy C Bennett
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| |
Collapse
|
19
|
Wang N, Hong W, Wu Y, Chen Z, Bai M, Wang W, Zhu J. Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology. MedComm (Beijing) 2024; 5:e765. [PMID: 39376738 PMCID: PMC11456678 DOI: 10.1002/mco2.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The growing advances in spatial transcriptomics (ST) stand as the new frontier bringing unprecedented influences in the realm of translational oncology. This has triggered systemic experimental design, analytical scope, and depth alongside with thorough bioinformatics approaches being constantly developed in the last few years. However, harnessing the power of spatial biology and streamlining an array of ST tools to achieve designated research goals are fundamental and require real-world experiences. We present a systemic review by updating the technical scope of ST across different principal basis in a timeline manner hinting on the generally adopted ST techniques used within the community. We also review the current progress of bioinformatic tools and propose in a pipelined workflow with a toolbox available for ST data exploration. With particular interests in tumor microenvironment where ST is being broadly utilized, we summarize the up-to-date progress made via ST-based technologies by narrating studies categorized into either mechanistic elucidation or biomarker profiling (translational oncology) across multiple cancer types and their ways of deploying the research through ST. This updated review offers as a guidance with forward-looking viewpoints endorsed by many high-resolution ST tools being utilized to disentangle biological questions that may lead to clinical significance in the future.
Collapse
Affiliation(s)
- Nan Wang
- Cosmos Wisdom Biotech Co. LtdHangzhouChina
| | - Weifeng Hong
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | - Yixing Wu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesInstitute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Minghua Bai
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | | | - Ji Zhu
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| |
Collapse
|
20
|
Rubtsova MP, Nikishin DA, Vyssokikh MY, Koriagina MS, Vasiliev AV, Dontsova OA. Telomere Reprogramming and Cellular Metabolism: Is There a Link? Int J Mol Sci 2024; 25:10500. [PMID: 39408829 PMCID: PMC11476947 DOI: 10.3390/ijms251910500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Telomeres-special DNA-protein structures at the ends of linear eukaryotic chromosomes-define the proliferation potential of cells. Extremely short telomeres promote a DNA damage response and cell death to eliminate cells that may have accumulated mutations after multiple divisions. However, telomere elongation is associated with the increased proliferative potential of specific cell types, such as stem and germ cells. This elongation can be permanent in these cells and is activated temporally during immune response activation and regeneration processes. The activation of telomere lengthening mechanisms is coupled with increased proliferation and the cells' need for energy and building resources. To obtain the necessary nutrients, cells are capable of finely regulating energy production and consumption, switching between catabolic and anabolic processes. In this review, we focused on the interconnection between metabolism programs and telomere lengthening mechanisms during programmed activation of proliferation, such as in germ cell maturation, early embryonic development, neoplastic lesion growth, and immune response activation. It is generally accepted that telomere disturbance influences biological processes and promotes dysfunctionality. Here, we propose that metabolic conditions within proliferating cells should be involved in regulating telomere lengthening mechanisms, and telomere length may serve as a marker of defects in cellular functionality. We propose that it is possible to reprogram metabolism in order to regulate the telomere length and proliferative activity of cells, which may be important for the development of approaches to regeneration, immune response modulation, and cancer therapy. However, further investigations in this area are necessary to improve the understanding and manipulation of the molecular mechanisms involved in the regulation of proliferation, metabolism, and aging.
Collapse
Affiliation(s)
- Maria P. Rubtsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Denis A. Nikishin
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (D.A.N.); (A.V.V.)
| | - Mikhail Y. Vyssokikh
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Maria S. Koriagina
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Andrey V. Vasiliev
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (D.A.N.); (A.V.V.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga A. Dontsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| |
Collapse
|
21
|
Kolathur KK, Nag R, Shenoy PV, Malik Y, Varanasi SM, Angom RS, Mukhopadhyay D. Molecular Susceptibility and Treatment Challenges in Melanoma. Cells 2024; 13:1383. [PMID: 39195270 PMCID: PMC11352263 DOI: 10.3390/cells13161383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Melanoma is the most aggressive subtype of cancer, with a higher propensity to spread compared to most solid tumors. The application of OMICS approaches has revolutionized the field of melanoma research by providing comprehensive insights into the molecular alterations and biological processes underlying melanoma development and progression. This review aims to offer an overview of melanoma biology, covering its transition from primary to malignant melanoma, as well as the key genes and pathways involved in the initiation and progression of this disease. Utilizing online databases, we extensively explored the general expression profile of genes, identified the most frequently altered genes and gene mutations, and examined genetic alterations responsible for drug resistance. Additionally, we studied the mechanisms responsible for immune checkpoint inhibitor resistance in melanoma.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India;
| | - Radhakanta Nag
- Department of Microbiology, College of Basic Science & Humanities, Odisha University of Agriculture & Technology (OUAT), Bhubaneswar 751003, Odisha, India;
| | - Prathvi V Shenoy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; (P.V.S.); (Y.M.)
| | - Yagya Malik
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; (P.V.S.); (Y.M.)
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| |
Collapse
|
22
|
Kovács Á, Sükösd F, Kuthi L, Boros IM, Vedelek B. Novel method for detecting frequent TERT promoter hot spot mutations in bladder cancer samples. Clin Exp Med 2024; 24:192. [PMID: 39141194 PMCID: PMC11324672 DOI: 10.1007/s10238-024-01464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Telomerase reverse transcriptase promoter (TERTp) mutations are frequently targeted tumor markers, however, they reside in regions with high GC content, which poses challenges when examined with simple molecular techniques or even with next-generation sequencing (NGS). In bladder cancer (BC), TERTp mutations are particularly frequent, however, none of the available tools have demonstrated efficacy in detecting TERTp mutations via a simple noninvasive technique. Therefore, we developed a novel PCR-based method for the detection of the two most common TERTp mutations and demonstrated its use for the analysis of BC samples. The developed SHARD-PCR TERTp mutation detection technique requires PCR and restriction digestion steps that are easily implementable even in less well-equipped laboratories. Cell lines with known mutational status were utilized for method development. Matching urine and tumor tissue samples from BC patients were analyzed, and the results were validated by next-generation sequencing. Analysis of eighteen urine and corresponding tumor tissue samples by SHARD-PCR revealed perfect matches in sample pairs, which paralleled the corresponding NGS results: fourteen samples exhibited mutations at the -124 position, two samples showed mutations at the -146 position, and no mutations were detected in two samples. Our study serves as a proof-of-concept and is limited by its small sample size, nonetheless, it demonstrates that SHARD-PCR is a simple, economic and highly reliable method for detecting TERTp mutations, which are common in different cancer types. For bladder cancer, SHARD-PCR can be performed with the use of noninvasive samples and could replace or complement currently used techniques.
Collapse
Affiliation(s)
- Ákos Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Farkas Sükösd
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Levente Kuthi
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary.
- Hungarian Research Network Biological Research Center, Institute of Biochemistry, Szeged, Hungary.
| | - Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary.
- Hungarian Research Network Biological Research Center, Institute of Genetics, Szeged, Hungary.
| |
Collapse
|
23
|
Wang M, Fukushima S, Sheen YS, Ramelyte E, Cruz-Pacheco N, Shi C, Liu S, Banik I, Aquino JD, Sangueza Acosta M, Levesque M, Dummer R, Liau JY, Chu CY, Shain AH, Yeh I, Bastian BC. The genetic evolution of acral melanoma. Nat Commun 2024; 15:6146. [PMID: 39034322 PMCID: PMC11271482 DOI: 10.1038/s41467-024-50233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
Acral melanoma is an aggressive type of melanoma with unknown origins. It is the most common type of melanoma in individuals with dark skin and is notoriously challenging to treat. We examine exome sequencing data of 139 tissue samples, spanning different progression stages, from 37 patients. We find that 78.4% of the melanomas display clustered copy number transitions with focal amplifications, recurring predominantly on chromosomes 5, 11, 12, and 22. These complex genomic aberrations are typically shared across all progression stages of individual patients. TERT activating alterations also arise early, whereas MAP-kinase pathway mutations appear later, an inverted order compared to the canonical evolution. The punctuated formation of complex aberrations and early TERT activation suggest a unique mutational mechanism that initiates acral melanoma. The marked intratumoral heterogeneity, especially concerning MAP-kinase pathway mutations, may partly explain the limited success of therapies for this melanoma subtype.
Collapse
Affiliation(s)
- Meng Wang
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Egle Ramelyte
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Noel Cruz-Pacheco
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Chenxu Shi
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Shanshan Liu
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Ishani Banik
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Jamie D Aquino
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | | | - Mitchell Levesque
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Jau-Yu Liau
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - A Hunter Shain
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Iwei Yeh
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Boris C Bastian
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
24
|
Sanchez SE, Gu Y, Wang Y, Golla A, Martin A, Shomali W, Hockemeyer D, Savage SA, Artandi SE. Digital telomere measurement by long-read sequencing distinguishes healthy aging from disease. Nat Commun 2024; 15:5148. [PMID: 38890274 PMCID: PMC11189511 DOI: 10.1038/s41467-024-49007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Telomere length is an important biomarker of organismal aging and cellular replicative potential, but existing measurement methods are limited in resolution and accuracy. Here, we deploy digital telomere measurement (DTM) by nanopore sequencing to understand how distributions of human telomere length change with age and disease. We measure telomere attrition and de novo elongation with up to 30 bp resolution in genetically defined populations of human cells, in blood cells from healthy donors and in blood cells from patients with genetic defects in telomere maintenance. We find that human aging is accompanied by a progressive loss of long telomeres and an accumulation of shorter telomeres. In patients with defects in telomere maintenance, the accumulation of short telomeres is more pronounced and correlates with phenotypic severity. We apply machine learning to train a binary classification model that distinguishes healthy individuals from those with telomere biology disorders. This sequencing and bioinformatic pipeline will advance our understanding of telomere maintenance mechanisms and the use of telomere length as a clinical biomarker of aging and disease.
Collapse
Affiliation(s)
- Santiago E Sanchez
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuchao Gu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Yan Wang
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Anudeep Golla
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Annika Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - William Shomali
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
25
|
Sidali S, Borie R, Sicre de Fontbrune F, El Husseini K, Rautou PE, Lainey E, Goria O, Crestani B, Cadranel J, Cottin V, Bunel V, Dumortier J, Jacquemin E, Reboux N, Hirschi S, Bourdin A, Meszaros M, Dharancy S, Hilaire S, Mallet V, Reynaud-Gaubert M, Terriou L, Gottrand F, Abou Chahla W, Khan JE, Carrier P, Saliba F, Rubbia-Brandt L, Aubert JD, Elkrief L, de Lédinghen V, Abergel A, Olivier T, Houssel P, Jouneau S, Wemeau L, Bergeron A, Leblanc T, Ollivier-Hourmand I, Nguyen Khac E, Morisse-Pradier H, Ba I, Boileau C, Roudot-Thoraval F, Vilgrain V, Bureau C, Nunes H, Naccache JM, Durand F, Francoz C, Roulot D, Valla D, Paradis V, Kannengiesser C, Plessier A. Liver disease in germline mutations of telomere-related genes: Prevalence, clinical, radiological, pathological features, outcome, and risk factors. Hepatology 2024; 79:1365-1380. [PMID: 37934624 DOI: 10.1097/hep.0000000000000667] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND AND AIM Germline mutations of telomere-related genes (TRG) induce multiorgan dysfunction, and liver-specific manifestations have not been clearly outlined. We aimed to describe TRG mutations-associated liver diseases. APPROACH AND RESULTS Retrospective multicenter analysis of liver disease (transaminases > 30 IU/L and/or abnormal liver imaging) in patients with TRG mutations. Main measurements were characteristics, outcomes, and risk factors of liver disease in a TRG mutations cohort. The prevalence of liver disease was compared to a community-based control group (n = 1190) stratified for age and matched 1:3 for known risk factors of liver disease. Among 132 patients with TRG mutations, 95 (72%) had liver disease, with associated lung, blood, skin, rheumatological, and ophthalmological TRG diseases in 82%, 77%, 55%, 39%, and 30% of cases, respectively. Liver biopsy was performed in 52/95 patients, identifying porto-sinusoidal vascular disease in 48% and advanced fibrosis/cirrhosis in 15%. After a follow-up of 21 months (12-54), ascites, hepato-pulmonary syndrome, variceal bleeding, and HCC occurred in 14%, 13%, 13%, and 2% of cases, respectively. Five-year liver transplantation-free survival was 69%. A FIB-4 score ≥ 3·25 and ≥1 risk factor for cirrhosis were associated with poor liver transplantation-free survival. Liver disease was more frequent in patients with TRG mutations than in the paired control group [80/396, (20%)], OR 12.9 (CI 95%: 7.8-21.3, p < 0.001). CONCLUSIONS TRG mutations significantly increase the risk of developing liver disease. Although symptoms may be mild, they may be associated with severe disease. Porto-sinusoidal vascular disease and cirrhosis were the most frequent lesions, suggesting that the mechanism of action is multifactorial.
Collapse
Affiliation(s)
- Sabrina Sidali
- Université de Paris, AP-HP, C, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur l'inflammation, Inserm, Paris, France
- Centre Hospitalier Universitaire Charles Nicolle, Hépato-Gastroentérologie, Rouen, France
| | - Raphaël Borie
- APHP, Service de Pneumologie, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Hôpital Bichat, Paris, France
| | - Flore Sicre de Fontbrune
- Hematology Transplant Unit, Hôpital Saint louis, APHP, Paris, France, and French National Referral Center for Aplastic Anemia, CRMR
| | - Kinan El Husseini
- APHP, Service de Pneumologie, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Hôpital Bichat, Paris, France
- Centre Hospitalier Universitaire Charles Nicolle, Pneumologie, Rouen, France
| | - Pierre-Emmanuel Rautou
- Université de Paris, AP-HP, C, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur l'inflammation, Inserm, Paris, France
| | | | - Odile Goria
- Université de Paris, AP-HP, C, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur l'inflammation, Inserm, Paris, France
- Centre Hospitalier Universitaire Charles Nicolle, Hépato-Gastroentérologie, Rouen, France
| | - Bruno Crestani
- APHP, Service de Pneumologie, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Hôpital Bichat, Paris, France
| | | | - Vincent Cottin
- Centre Hospitalier Universitaire Lyon Sud, Pneumologie, Pierre-Bénite, France
| | - Vincent Bunel
- APHP, Service de Pneumologie, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Hôpital Bichat, Paris, France
| | | | - Emmanuel Jacquemin
- Hôpital Kremlin-Bicêtre AP-HP, Hépatologie Pédiatrique, Le Kremlin-Bicêtre, France
| | - Noémi Reboux
- Centre Hospitalier Régional Universitaire Morvan, Hépatologie, Brest, France
| | - Sandrine Hirschi
- Centre Hospitalier Universitaire de Strasbourg, Pneumologie, Strasbourg, France
| | - Arnaud Bourdin
- Centre Hospitalier Universitaire de Montpellier, Pneumologie, Montpellier, France
| | - Magdalena Meszaros
- Centre Hospitalier Universitaire de Montpellier, Hépatologie, Montpellier, France
| | - Sebastien Dharancy
- Centre Hospitalier Régional Universitaire de Lille, Hépatologie, Lille, France
| | | | | | | | - Louis Terriou
- Centre Hospitalier Régional Universitaire de Lille, Médecine interne- Hématologie, Lille, France
| | - Frédéric Gottrand
- Univ. Lille, CHU Lille, Department of pediatric gastroenterology hepatology and nutrition, Inserm, Lille, France
| | - Wadih Abou Chahla
- Centre Hospitalier Régional Universitaire de Lille, Hémato-Pédiatrie, Lille, France
| | | | - Paul Carrier
- Hôpital Universitaire Dupuytren, Hépatologie, Limoges, France
| | - Faouzi Saliba
- Hôpital Paul-Brousse, AP-HP, Hépatologie, Villejuif, France
| | | | - John-David Aubert
- Centre Hospitalier Universitaire Vaudois, Pneumologie, Lausanne, Suisse
| | - Laure Elkrief
- Centre Hospitalier Régional Universitaire de Tours, Hépatologie, Tours, France
| | - Victor de Lédinghen
- Centre Hospitalier Universitaire - Haut-Lévêque, Hépatologie, Pessac, France
| | - Armand Abergel
- Centre Hospitalier Universitaire, Hépatologie, Clermont-Ferrand, France
| | | | - Pauline Houssel
- Centre Hospitalier Universitaire, Hépatologie, Rennes, France
| | | | - Lidwine Wemeau
- Centre Hospitalier Régional Universitaire de Lille, Pneumologie, Lille, France
| | - Anne Bergeron
- Hôpitaux Universitaires de Genève (HUG), Pneumologie, Genève, Suisse
| | - Thierry Leblanc
- Hematology Transplant Unit, Hôpital Saint louis, APHP, Paris, France, and French National Referral Center for Aplastic Anemia, CRMR
| | | | - Eric Nguyen Khac
- Centre Hospitalier Universitaire Amiens-Picardie Site Sud, Hépatologie, Amiens, France
| | | | - Ibrahima Ba
- Hôpital Bichat-Claude Bernard AP-HP, Génétique, Paris, France
| | | | | | | | | | - Hilario Nunes
- Hôpital Avicenne AP-HP, Pneumologie, Bobigny, France
| | | | - François Durand
- Université de Paris, AP-HP, C, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur l'inflammation, Inserm, Paris, France
| | - Claire Francoz
- Université de Paris, AP-HP, C, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur l'inflammation, Inserm, Paris, France
| | | | - Dominique Valla
- Université de Paris, AP-HP, C, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur l'inflammation, Inserm, Paris, France
| | | | | | - Aurélie Plessier
- Université de Paris, AP-HP, C, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur l'inflammation, Inserm, Paris, France
| |
Collapse
|
26
|
Bennett DC. Review: Are moles senescent? Pigment Cell Melanoma Res 2024; 37:391-402. [PMID: 38361107 DOI: 10.1111/pcmr.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Melanocytic nevi (skin moles) have been regarded as a valuable example of cell senescence occurring in vivo. However, a study of induced nevi in a mouse model reported that the nevi were arrested by cell interactions rather than a cell-autonomous process like senescence, and that size distributions of cell nests within nevi could not be accounted for by a stochastic model of oncogene-induced senescence. Moreover, others reported that some molecular markers used to identify cell senescence in human nevi are also found in melanoma cells-not senescent. It has thus been questioned whether nevi really are senescent, with potential implications for melanoma diagnosis and therapy. Here I review these areas, along with the genetic, biological, and molecular evidence supporting senescence in nevi. In conclusion, there is strong evidence that cells of acquired human benign (banal) nevi are very largely senescent, though some must contain a minor non-senescent cell subpopulation. There is also persuasive evidence that this senescence is primarily induced by dysfunctional telomeres rather than directly oncogene-induced.
Collapse
Affiliation(s)
- Dorothy C Bennett
- Molecular & Clinical Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
27
|
Prime SS, Darski P, Hunter KD, Cirillo N, Parkinson EK. A Review of the Repair of DNA Double Strand Breaks in the Development of Oral Cancer. Int J Mol Sci 2024; 25:4092. [PMID: 38612901 PMCID: PMC11012950 DOI: 10.3390/ijms25074092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
We explore the possibility that defects in genes associated with the response and repair of DNA double strand breaks predispose oral potentially malignant disorders (OPMD) to undergo malignant transformation to oral squamous cell carcinoma (OSCC). Defects in the homologous recombination/Fanconi anemia (HR/FA), but not in the non-homologous end joining, causes the DNA repair pathway to appear to be consistent with features of familial conditions that are predisposed to OSCC (FA, Bloom's syndrome, Ataxia Telangiectasia); this is true for OSCC that occurs in young patients, sometimes with little/no exposure to classical risk factors. Even in Dyskeratosis Congenita, a disorder of the telomerase complex that is also predisposed to OSCC, attempts at maintaining telomere length involve a pathway with shared HR genes. Defects in the HR/FA pathway therefore appear to be pivotal in conditions that are predisposed to OSCC. There is also some evidence that abnormalities in the HR/FA pathway are associated with malignant transformation of sporadic cases OPMD and OSCC. We provide data showing overexpression of HR/FA genes in a cell-cycle-dependent manner in a series of OPMD-derived immortal keratinocyte cell lines compared to their mortal counterparts. The observations in this study argue strongly for an important role of the HA/FA DNA repair pathway in the development of OSCC.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| | - Piotr Darski
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (P.D.); (K.D.H.)
| | - Keith D. Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (P.D.); (K.D.H.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Carlton, Melbourne, VIC 3053, Australia;
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
28
|
Zheng L, Wang Y, Liu Z, Wang Z, Tao C, Wu A, Li H, Xiao T, Li Z, Rong W. Identification of molecular characteristics of hepatocellular carcinoma with microvascular invasion based on deep targeted sequencing. Cancer Med 2024; 13:e7043. [PMID: 38572921 PMCID: PMC10993708 DOI: 10.1002/cam4.7043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND As an indicator of tumor invasiveness, microvascular invasion (MVI) is a crucial risk factor for postoperative relapse, metastasis, and unfavorable prognosis in hepatocellular carcinoma (HCC). Nevertheless, the genetic mechanisms underlying MVI, particularly for Chinese patients, remain mostly uncharted. METHODS We applied deep targeted sequencing on 66 Chinese HCC samples. Focusing on the telomerase reverse transcriptase (TERT) promoter (TERTp) and TP53 co-mutation (TERTp+/TP53+) group, gene set enrichment analysis (GSEA) was used to explore the potential molecular mechanisms of the TERTp+/TP53+ group on tumor progression and metastasis. Additionally, we evaluated the tumor immune microenvironment of the TERTp+/TP53+ group in HCC using multiplex immunofluorescence (mIF) staining. RESULTS Among the 66 HCC samples, the mutated genes that mostly appeared were TERT, TP53, and CTNNB1. Of note, we found 10 cases with TERTp+/TP53+, of which nine were MVI-positive and one was MVI-negative, and there was a co-occurrence of TERTp and TP53 (p < 0.05). Survival analysis demonstrated that patients with the TERTp+/TP53+ group had lower the disease-free survival (DFS) (p = 0.028). GSEA results indicated that telomere organization, telomere maintenance, DNA replication, positive regulation of cell cycle, and negative regulation of immune response were significantly enriched in the TERTp+/TP53+ group (all adjusted p-values (p.adj) < 0.05). mIF revealed that the TERTp+/TP53+ group decreased CD8+ T cells infiltration (p = 0.25) and enhanced PDL1 expression (p = 0.55). CONCLUSIONS TERTp+/TP53+ was significantly enriched in MVI-positive patients, leading to poor prognosis for HCC patients by promoting proliferation of HCC cell and inhibiting infiltration of immune cell surrounding HCC. TERTp+/TP53+ can be utilized as a potential indicator for predicting MVI-positive patients and poor prognosis, laying a preliminary foundation for further exploration of co-mutation in HCC with MVI and clinical treatment.
Collapse
Affiliation(s)
- Linlin Zheng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaru Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhenrong Liu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhihao Wang
- Department of Hepatobiliary Hernia SurgeryLiaocheng Dongcangfu People's HospitalLiaochengChina
| | - Changcheng Tao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Anke Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Haiyang Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhuo Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
29
|
Pérez González S, Heredia-Soto V, Girón de Francisco M, Pérez-Fernández E, Casans-Francés R, Mendiola Sabio M, González-Peramato P. Telomerase Reverse Transcriptase-Promoter Mutation in Young Patients with Bladder Tumors. Curr Issues Mol Biol 2024; 46:2845-2855. [PMID: 38666908 PMCID: PMC11049539 DOI: 10.3390/cimb46040178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The TERT (Telomerase Reverse Transcriptase) gene promoter mutation is one of the most prevalent mutations in urothelial bladder tumors and this mutation is related to bladder tumor progression. Our purpose was to evaluate the presence of this mutation in a population of patients who were first diagnosed at age ≤ 40 years and to examine its relationship with tumor characteristics and progression. A molecular study was performed to detect the two most prevalent mutations in the TERT promoter (C228T and C250T). The study included 29 patients, with a mean follow-up of 152 months. There were no statistically significant differences in the clinical or tumor characteristics according to the presence or absence of the mutation. Although the mutation group showed poorer recurrence-free survival (RFS), there was no statistically significant difference and there was no difference in progression-free survival by group (p > 0.05). The pTERT mutations in bladder tumor cells occurred less frequently in younger patients than in older patients, a finding that could indicate different mechanisms of carcinogenesis. The trend towards lower RFS in patients with mutated pTERT needs to be confirmed by further studies, given the small number of patients included in these studies due to the low incidence of bladder tumors in this age group.
Collapse
Affiliation(s)
| | - Victoria Heredia-Soto
- Translational Oncology Research Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | | | - Rubén Casans-Francés
- Department of Anesthesia and Pain Medicine, Infanta Elena University Hospital, 28342 Madrid, Spain
| | - Marta Mendiola Sabio
- Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Pilar González-Peramato
- Department of Pathology, La Paz University Hospital, 28046 Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Cellular Engineering Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| |
Collapse
|
30
|
Lorbeer FK, Rieser G, Goel A, Wang M, Oh A, Yeh I, Bastian BC, Hockemeyer D. Distinct senescence mechanisms restrain progression of dysplastic nevi. PNAS NEXUS 2024; 3:pgae041. [PMID: 38371417 PMCID: PMC10873501 DOI: 10.1093/pnasnexus/pgae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Telomerase reverse transcriptase (TERT) promoter mutations (TPMs) are frequently found in different cancer types, including ∼70% of sun-exposed skin melanomas. In melanoma, TPMs are among the earliest mutations and can be present during the transition from nevus to melanoma. However, the specific factors that contribute to the selection of TPMs in certain nevi subsets are not well understood. To investigate this, we analyzed a group of dysplastic nevi (DN) by sequencing genes commonly mutated in melanocytic neoplasms. We examined the relationship between the identified mutations, patient age, telomere length, histological features, and the expression of p16. Our findings reveal that TPMs are more prevalent in DN from older patients and are associated with shorter telomeres. Importantly, these TPMs were not found in nevi with BRAF V600E mutations. Conversely, DN with BRAF V600E mutations were observed in younger patients, had longer telomeres and a higher proportion of p16-positive cells. This suggests that these nevi arrest growth independently of telomere shortening through a mechanism known as oncogene-induced senescence (OIS). These characteristics extend to melanoma-sequencing datasets, where melanomas with BRAF V600E mutations were more likely to have a CDKN2A inactivation, overriding OIS. In contrast, melanomas without BRAF V600E mutations showed a higher frequency of TPMs. Our data imply that TPMs are selected to bypass replicative senescence (RS) in cells that were not arrested by OIS. Overall, our results indicate that a subset of melanocytic neoplasms face constraints from RS, while others encounter OIS and RS. The order in which these barriers are overcome during progression to melanoma depends on the mutational context.
Collapse
Affiliation(s)
- Franziska K Lorbeer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gabrielle Rieser
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aditya Goel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Meng Wang
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Areum Oh
- Rebus Biosystems, Santa Clara, CA 95050, USA
| | - Iwei Yeh
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Boris C Bastian
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
31
|
Lasho T, Patnaik MM. Adaptive and Maladaptive Clonal Hematopoiesis in Telomere Biology Disorders. Curr Hematol Malig Rep 2024; 19:35-44. [PMID: 38095828 DOI: 10.1007/s11899-023-00719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE OF REVIEW Telomere biology disorders (TBDs) are germline-inherited conditions characterized by reduction in telomerase function, accelerated shortening of telomeres, predisposition to organ-failure syndromes, and increased risk of neoplasms, especially myeloid malignancies. In normal cells, critically short telomeres trigger apoptosis and/or cellular senescence. However, the evolutionary mechanism by which TBD-related telomerase-deficient cells can overcome this fitness constraint remains elusive. RECENT FINDINGS Preliminary data suggests the existence of adaptive somatic mosaic states characterized by variants in TBD-related genes and maladaptive somatic mosaic states that attempt to overcome hematopoietic fitness constraints by alternative methods leading to clonal hematopoiesis. TBDs are both rare and highly heterogeneous in presentation, and the association of TBD with malignant transformation is unclear. Understanding the clonal complexity and mechanisms behind TBD-associated molecular signatures that lead to somatic adaptation in the setting of defective hematopoiesis will help inform therapy and treatment for this set of diseases.
Collapse
Affiliation(s)
- Terra Lasho
- Division of Hematology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mrinal M Patnaik
- Division of Hematology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
32
|
Abdulfatah E, Al-Obaidy KI, Robinson D, Wu YM, Heider A, Idrees MT, Ulbright TM, Kunju LP, Wu A. Molecular characterization of large cell calcifying sertoli cell tumors: A multi-institutional study of 6 benign and 2 malignant tumors. Hum Pathol 2024; 144:15-21. [PMID: 38154678 DOI: 10.1016/j.humpath.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Large cell calcifying Sertoli cell tumors (LCCSCTs) are rare testicular tumors, representing <1 % of all testicular neoplasms. Almost 40 % of patients with LCCSCTs will present in the context of the inherited tumor predisposition syndrome, the Carney complex. While most LCCSCTs are benign, 10-20 % have malignant behavior. The aim of our study was to analyze LCCSCTs for novel molecular alterations in addition to PRKAR1A mutations and to identify potential drivers for malignant progression. Eight LCCSCTs diagnosed at two institutions were included. Two patients had the Carney complex confirmed on subsequent genetic testing, and two tumors had several adverse pathological findings. One patient presented with metastatic disease at the time of initial diagnosis. Targeted next-generation sequencing detected PRKAR1A alterations in all cases, with heterozygous PRKAR1A mutations in 5 tumors, germline Carney-complex-associated PRKAR1A mutation in 2 patients, and PRKAR1A fusion in 1 tumor. Additionally, sequencing the metastatic case identified CDKN1B and TERT promoter gene mutations. All tumors showed a low tumoral mutational burden and unremarkable copy number alterations except for frequent LOH of 17q24 encompassing the PRKAR1A locus. RNA expression analysis showed increased expression of several markers including novel PRUNE2, and usual markers like inhibin and calretinin. Our study showed that while LCCSCTs have been reported in the setting of cancer predisposition syndromes, the majority of these tumors occur sporadically. PRKAR1A alterations were present in all cases and appear to be the major driver in LCCSCTs. It remains to be determined whether malignant progression may be caused by additional driver mutations.
Collapse
Affiliation(s)
- Eman Abdulfatah
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | - Dan Robinson
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Amer Heider
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | - Lakshmi Pryia Kunju
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Angela Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Zhang T, Yu H, Jiang L, Bai Y, Liu X, Guo Y. Comprehensive Pan-Cancer Mutation Density Patterns in Enhancer RNA. Int J Mol Sci 2023; 25:534. [PMID: 38203707 PMCID: PMC10778997 DOI: 10.3390/ijms25010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Significant advances have been achieved in understanding the critical role of enhancer RNAs (eRNAs) in the complex field of gene regulation. However, notable uncertainty remains concerning the biology of eRNAs, highlighting the need for continued research to uncover their exact functions in cellular processes and diseases. We present a comprehensive study to scrutinize mutation density patterns, mutation strand bias, and mutation burden in eRNAs across multiple cancer types. Our findings reveal that eRNAs exhibit mutation strand bias akin to that observed in protein-coding RNAs. We also identified a novel pattern, in which mutation density is notably diminished around the central region of the eRNA, but conspicuously elevated towards both the beginning and end. This pattern can be potentially explained by a mechanism involving heightened transcriptional activity and the activation of transcription-coupled repair. The central regions of the eRNAs appear to be more conserved, hinting at a potential mechanism preserving their structural and functional integrity, while the extremities may be more susceptible to mutations due to increased exposure. The evolutionary trajectory of this mutational pattern suggests a nuanced adaptation in eRNAs, where stability at their core coexists with flexibility at their extremities, potentially facilitating their diverse interactions with other genetic entities.
Collapse
Affiliation(s)
- Troy Zhang
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (T.Z.); (L.J.)
| | - Hui Yu
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (T.Z.); (L.J.)
| | - Limin Jiang
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (T.Z.); (L.J.)
| | - Yongsheng Bai
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA;
| | - Xiaoyi Liu
- Department of Computer Science, University of South Carolina, Columbia, SC 29208, USA;
| | - Yan Guo
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (T.Z.); (L.J.)
| |
Collapse
|
34
|
Praiss AM, Marra A, Zhou Q, Rios-Doria E, Momeni-Boroujeni A, Iasonos A, Selenica P, Brown DN, Aghajanian C, Abu-Rustum NR, Ellenson LH, Weigelt B. TERT promoter mutations and gene amplification in endometrial cancer. Gynecol Oncol 2023; 179:16-23. [PMID: 37890416 PMCID: PMC10841990 DOI: 10.1016/j.ygyno.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVE To assess the clinicopathologic, molecular profiles, and survival outcomes of patients with endometrial carcinomas (ECs) harboring telomerase reverse transcriptase (TERT) hotspot mutations or gene amplification. METHODS ECs harboring somatic TERT promoter hotspot mutations or gene amplification (TERT-altered) were identified from 1944 ECs that underwent clinical tumor-normal sequencing from 08/2016-12/2021. Clinicopathologic variables, somatic mutation profiles, and survival outcomes of TERT-alt and TERT-wild-type EC were assessed. RESULTS We identified 66 TERT-altered ECs (43 TERT-mutated and 23 TERT-amplified), representing 3% of the unselected ECs across histologic subtypes. Most TERT-altered ECs were of copy number (CN)-high/TP53abn molecular subtype (n = 40, 60%), followed by microsatellite-unstable (MSI-H) or CN-low/no specific molecular profile (NSMP)(n = 13, 20% each). TERT-amplified and TERT-mutated ECs were molecularly distinct, with TERT-amplified ECs being more genomically instable and more frequently harboring TP53 and PPP2R1A alterations (q < 0.1). Compared to TERT-wild-type ECs, TERT-altered ECs were more commonly of CN-H/TP53abn molecular subtype (31% vs 57%, p = 0.001), serous histology (10% vs 26%, p = 0.004), and were significantly enriched for TP53, CDKN2A/B, and DROSHA somatic genetic alterations (q < 0.1). Median progression-free survival was 18.7 months (95% CI 11.8-not estimable [NE]) for patients with TERT-altered EC and 80.9 months (65.8-NE) for patients with TERT-wild-type EC (HR 0.33, 95% CI 0.21-0.51, p < 0.001). Similarly, median overall survival was 46.7 months (95% CI 30-NE) for TERT-altered EC patients and not reached for TERT-wild-type EC patients (HR 0.24, 95% CI 0.13-0.44, p < 0.001). CONCLUSION TERT-altered ECs, although rare, are enriched for CN-high/TP53abn tumors, TP53, CDKN2A/B and DROSHA somatic mutations, and independently predict worse survival outcomes.
Collapse
Affiliation(s)
- Aaron M Praiss
- Gynecology Service, Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Rios-Doria
- Gynecology Service, Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amir Momeni-Boroujeni
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David N Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carol Aghajanian
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem R Abu-Rustum
- Gynecology Service, Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lora H Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
35
|
Sanchez SE, Gu J, Golla A, Martin A, Shomali W, Hockemeyer D, Savage SA, Artandi SE. Digital telomere measurement by long-read sequencing distinguishes healthy aging from disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569263. [PMID: 38077053 PMCID: PMC10705489 DOI: 10.1101/2023.11.29.569263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Telomere length is an important biomarker of organismal aging and cellular replicative potential, but existing measurement methods are limited in resolution and accuracy. Here, we deploy digital telomere measurement by nanopore sequencing to understand how distributions of human telomere length change with age and disease. We measure telomere attrition and de novo elongation with unprecedented resolution in genetically defined populations of human cells, in blood cells from healthy donors and in blood cells from patients with genetic defects in telomere maintenance. We find that human aging is accompanied by a progressive loss of long telomeres and an accumulation of shorter telomeres. In patients with defects in telomere maintenance, the accumulation of short telomeres is more pronounced and correlates with phenotypic severity. We apply machine learning to train a binary classification model that distinguishes healthy individuals from those with telomere biology disorders. This sequencing and bioinformatic pipeline will advance our understanding of telomere maintenance mechanisms and the use of telomere length as a clinical biomarker of aging and disease.
Collapse
Affiliation(s)
- Santiago E. Sanchez
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine; Stanford, CA, USA
- Medical Scientist Training Program, Stanford University; Stanford CA, USA
| | - Jessica Gu
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine; Stanford, CA, USA
| | - Anudeep Golla
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, CA, USA
| | - Annika Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - William Shomali
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
- Chan Zuckerberg Biohub, San Francisco, CA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA
| | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven E. Artandi
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
36
|
Tang TY, Nichetti F, Kaplan B, Lonardi S, Pietrantonio F, Salvatore L, Vivaldi C, Rimassa L, de Braud F, Rizzato MD, Pavlick D, Chu R, Danner De Armas A, Sharaf R, Sokol E, Rodon Ahnert J, Ross JS, Javle M, Niger M. Comparative Genomic Analysis and Clinical Outcomes of BRAF-mutated Advanced Biliary Tract Cancers. Clin Cancer Res 2023; 29:4853-4862. [PMID: 37773629 DOI: 10.1158/1078-0432.ccr-23-1926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE BRAF mutations are rare in biliary tract cancers (BTC), but are of interest given the recent developments in targeted therapy for BTC. We investigated the clinical outcomes in a cohort of BRAF-mutant advanced BTC treated with first-line chemotherapy. Furthermore, we investigated the genomic landscape of BRAF class I, II, and III mutations in the intrahepatic cholangiocarcinoma (iCCA) subgroup of BTC. EXPERIMENTAL DESIGN We analyzed two nonoverlapping cohorts. We examined the genomic landscape of BRAF-mutated iCCA in a "genomic cohort" [187 class I, 82 class II, 113 class III BRAF mutants and 8,026 wildtype (WT)]. We also analyzed median progression-free survival (PFS) and overall survival (OS) on first-line chemotherapy in a separate multi-institutional "clinical cohort" of patients with BTC (including iCCA and extrahepatic cholangiocarcinoma (eCCA) and gallbladder cancer; 41 class I, 32 class II+III BRAF mutants and 1,042 WT). RESULTS In the entire BTC clinical cohort, the median PFS was shorter for class I [HR, 2.11 (P < 0.001)] and class II+III [HR, 1.72 (P = 0.007)] as compared with BRAF WT. OS was also shorter in class I [HR, 2.04 (P = 0.011)] and class II+III [HR, 1.86 (P = 0.002)] as compared with BRAF WT. In the iCCA subgroup, class I alterations were mutually exclusive with FGFR2, IDH1/2, ERBB2, and KRAS mutations. Class II+III mutations appear to be mutually exclusive with FGFR2 and KRAS. CONCLUSIONS In BTC, all classes of BRAF mutations are associated with a worse prognosis. BRAF mutations occur in 5% of iCCA subgroup and may be mutually exclusive with other targetable mutations.
Collapse
Affiliation(s)
- Tin-Yun Tang
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Federico Nichetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ben Kaplan
- Foundation Medicine, Cambridge, Massachusetts
| | - Sara Lonardi
- Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lisa Salvatore
- Oncologia Medica, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Rome, Italy
| | - Caterina Vivaldi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mario Domenico Rizzato
- Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | | | - Randy Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anaemy Danner De Armas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ethan Sokol
- Foundation Medicine, Cambridge, Massachusetts
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey S Ross
- Foundation Medicine, Cambridge, Massachusetts
- Departments of Pathology, Urology and Medicine (Oncology), Upstate Medical University, Syracuse, New York
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
37
|
Chua BH, Zaal Anuar N, Ferry L, Domrane C, Wittek A, Mukundan VT, Jha S, Butter F, Tenen DG, Defossez PA, Kappei D. E4F1 and ZNF148 are transcriptional activators of the -57A > C and wild-type TERT promoter. Genome Res 2023; 33:1893-1905. [PMID: 37918959 PMCID: PMC10760450 DOI: 10.1101/gr.277724.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Point mutations within the TERT promoter are the most recurrent somatic noncoding mutations identified across different cancer types, including glioblastoma, melanoma, hepatocellular carcinoma, and bladder cancer. They are most abundant at -146C > T and -124C > T, and rarer at -57A > C, with the latter originally described as a familial case, but subsequently shown also to occur somatically. All three mutations create de novo E26-specific (ETS) binding sites and result in activation of the TERT gene, allowing cancer cells to achieve replicative immortality. Here, we used a systematic proteomics screen to identify transcription factors preferentially binding to the -146C > T, -124C > T, and -57A > C mutations. Although we confirmed binding of multiple ETS factors to the mutant -146C > T and -124C > T sequences, we identified E4F1 as a -57A > C-specific binder and ZNF148 as a TERT wild-type (WT) promoter binder that showed reduced interaction with the -124C > T allele. Both proteins are activating transcription factors that bind specifically to the -57A > C and WT (at position 124) TERT promoter sequence in corresponding cell lines, and up-regulate TERT transcription and telomerase activity. Our work describes new regulators of TERT gene expression with possible roles in cancer.
Collapse
Affiliation(s)
- Boon Haow Chua
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore
| | - Nurkaiyisah Zaal Anuar
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Cecilia Domrane
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Anna Wittek
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Vineeth T Mukundan
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
- Institute of Molecular Virology and Cell Biology (IMVZ), Friedrich Loeffler Institute, 17493 Greifswald, Germany
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| |
Collapse
|
38
|
Koleilat A, Kumar V, Al Hmada Y, Milosevic D, Zheng G, Lopes MB, Ida CM. Concurrent TERT promoter C228T and C250T mutations in diffuse gliomas: Rare occurrence of intratumoral heterogeneity. J Neuropathol Exp Neurol 2023; 82:1044-1047. [PMID: 37812785 DOI: 10.1093/jnen/nlad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Affiliation(s)
- Alaa Koleilat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vijay Kumar
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Dragana Milosevic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Gang Zheng
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Maria Beatriz Lopes
- Department of Pathology, University of Virginia Health, Charlottesville, VA, USA
| | - Cristiane M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
39
|
Tornesello ML, Cerasuolo A, Starita N, Amiranda S, Bonelli P, Tuccillo FM, Buonaguro FM, Buonaguro L, Tornesello AL. Reactivation of telomerase reverse transcriptase expression in cancer: the role of TERT promoter mutations. Front Cell Dev Biol 2023; 11:1286683. [PMID: 38033865 PMCID: PMC10684755 DOI: 10.3389/fcell.2023.1286683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Telomerase activity and telomere elongation are essential conditions for the unlimited proliferation of neoplastic cells. Point mutations in the core promoter region of the telomerase reverse transcriptase (TERT) gene have been found to occur at high frequencies in several tumour types and considered a primary cause of telomerase reactivation in cancer cells. These mutations promote TERT gene expression by multiple mechanisms, including the generation of novel binding sites for nuclear transcription factors, displacement of negative regulators from DNA G-quadruplexes, recruitment of epigenetic activators and disruption of long-range interactions between TERT locus and telomeres. Furthermore, TERT promoter mutations cooperate with TPP1 promoter nucleotide changes to lengthen telomeres and with mutated BRAF and FGFR3 oncoproteins to enhance oncogenic signalling in cancer cells. TERT promoter mutations have been recognized as an early marker of tumour development or a major indicator of poor outcome and reduced patients survival in several cancer types. In this review, we summarize recent findings on the role of TERT promoter mutations, telomerase expression and telomeres elongation in cancer development, their clinical significance and therapeutic opportunities.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Sara Amiranda
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Anna Lucia Tornesello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
40
|
Wang M, Fukushima S, Sheen YS, Ramelyte E, Pacheco NC, Shi C, Liu S, Banik I, Aquino JD, Acosta MS, Levesque M, Dummer R, Liau JY, Chu CY, Shain AH, Yeh I, Bastian BC. The genetic evolution of acral melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562802. [PMID: 37904969 PMCID: PMC10614839 DOI: 10.1101/2023.10.18.562802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Acral melanoma is an aggressive type of melanoma with unknown origins, arising on the sole, palm, or nail apparatus. It is the most common type of melanoma in individuals with dark skin and is notoriously challenging to treat. Our study examined exome sequencing data from 139 tissue samples, spanning different progression stages, collected from 37 patients. We found that 78.4% of the melanomas displayed one or more clustered copy number transitions with focal amplifications, recurring predominantly on chromosomes 5, 11, 12, and 22. These genomic "hailstorms" were typically shared across all progression stages within individual patients. Genetic alterations known to activate TERT also arose early. By contrast, mutations in the MAP-kinase pathway appeared later during progression, often leading to different tumor areas harboring non-overlapping driver mutations. We conclude that the evolutionary trajectories of acral melanomas substantially diverge from those of melanomas on sun-exposed skin, where MAP-kinase pathway activation initiates the neoplastic cascade followed by immortalization later. The punctuated formation of hailstorms, paired with early TERT activation, suggests a unique mutational mechanism underlying the origins of acral melanoma. Our findings highlight an essential role for telomerase, likely in re-stabilizing tumor genomes after hailstorms have initiated the tumors. The marked genetic heterogeneity, in particular of MAP-kinase pathway drivers, may partly explain the limited success of targeted and other therapies in treating this melanoma subtype.
Collapse
Affiliation(s)
- Meng Wang
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Egle Ramelyte
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Noel Cruz Pacheco
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Chenxu Shi
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Shanshan Liu
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Ishani Banik
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Jamie D. Aquino
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | | | - Mitchell Levesque
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Jau-Yu Liau
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - A. Hunter Shain
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- These authors jointly supervised this project
| | - Iwei Yeh
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- These authors jointly supervised this project
| | - Boris C. Bastian
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- These authors jointly supervised this project
| |
Collapse
|
41
|
Penkova A, Kuziakova O, Gulaia V, Tiasto V, Goncharov NV, Lanskikh D, Zhmenia V, Baklanov I, Farniev V, Kumeiko V. Comprehensive clinical assays for molecular diagnostics of gliomas: the current state and future prospects. Front Mol Biosci 2023; 10:1216102. [PMID: 37908227 PMCID: PMC10613994 DOI: 10.3389/fmolb.2023.1216102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
Glioma is one of the most intractable types of cancer, due to delayed diagnosis at advanced stages. The clinical symptoms of glioma are unclear and due to a variety of glioma subtypes, available low-invasive testing is not effective enough to be introduced into routine medical laboratory practice. Therefore, recent advances in the clinical diagnosis of glioma have focused on liquid biopsy approaches that utilize a wide range of techniques such as next-generation sequencing (NGS), droplet-digital polymerase chain reaction (ddPCR), and quantitative PCR (qPCR). Among all techniques, NGS is the most advantageous diagnostic method. Despite the rapid cheapening of NGS experiments, the cost of such diagnostics remains high. Moreover, high-throughput diagnostics are not appropriate for molecular profiling of gliomas since patients with gliomas exhibit only a few diagnostic markers. In this review, we highlighted all available assays for glioma diagnosing for main pathogenic glioma DNA sequence alterations. In the present study, we reviewed the possibility of integrating routine molecular methods into the diagnosis of gliomas. We state that the development of an affordable assay covering all glioma genetic aberrations could enable early detection and improve patient outcomes. Moreover, the development of such molecular diagnostic kits could potentially be a good alternative to expensive NGS-based approaches.
Collapse
Affiliation(s)
- Alina Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Kuziakova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Nikolay V. Goncharov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Daria Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Ivan Baklanov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Vladislav Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| |
Collapse
|
42
|
Tu KJ, Stewart CE, Hendrickson PG, Regal JA, Kim SY, Ashley DM, Waitkus MS, Reitman ZJ. Pooled genetic screens to identify vulnerabilities in TERT-promoter-mutant glioblastoma. Oncogene 2023; 42:3274-3286. [PMID: 37741952 PMCID: PMC10615780 DOI: 10.1038/s41388-023-02845-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Pooled genetic screens represent a powerful approach to identify vulnerabilities in cancer. Here we used pooled CRISPR/Cas9-based approaches to identify vulnerabilities associated with telomerase reverse transcriptase (TERT) promoter mutations (TPMs) found in >80% of glioblastomas. We first developed a platform to detect perturbations that cause long-term growth defects in a TPM-mutated glioblastoma cell line. However, we could not detect dependencies on either TERT itself or on an E-twenty six transcription (ETS) factor known to activate TPMs. To explore this finding, we cataloged TPM status for 441 cell lines and correlated this with genome-wide screening data. We found that TPM status was not associated with differential dependency on TERT, but that E-twenty six (ETS) transcription factors represent key dependencies in both TPM+ and TPM- lines. Further, we found that TPMs are associated with expression of gene programs regulated by a wide array of ETS-factors in both cell lines and primary glioblastoma tissues. This work contributes a unique TPM cell line reagent, establishes TPM status for many deeply-profiled cell lines, and catalogs TPM-associated vulnerabilities. The results highlight challenges in executing genetic screens to detect TPM-specific vulnerabilities, and suggest redundancy in the genetic network that regulates TPM function with therapeutic implications.
Collapse
Affiliation(s)
- Kevin J Tu
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 21044, USA
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Connor E Stewart
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Peter G Hendrickson
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Joshua A Regal
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David M Ashley
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, 27710, USA
| | - Matthew S Waitkus
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, 27710, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA.
- The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
43
|
Takasugi T, Gu P, Liang F, Staco I, Chang S. Pot1b -/- tumors activate G-quadruplex-induced DNA damage to promote telomere hyper-elongation. Nucleic Acids Res 2023; 51:9227-9247. [PMID: 37560909 PMCID: PMC10516629 DOI: 10.1093/nar/gkad648] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/11/2023] Open
Abstract
Malignant cancers must activate telomere maintenance mechanisms to achieve replicative immortality. Mutations in the human Protection of Telomeres 1 (POT1) gene are frequently detected in cancers with abnormally long telomeres, suggesting that the loss of POT1 function disrupts the regulation of telomere length homeostasis to promote telomere elongation. However, our understanding of the mechanisms leading to elongated telomeres remains incomplete. The mouse genome encodes two POT1 proteins, POT1a and POT1b possessing separation of hPOT1 functions. We performed serial transplantation of Pot1b-/- sarcomas to better understand the role of POT1b in regulating telomere length maintenance. While early-generation Pot1b-/- sarcomas initially possessed shortened telomeres, late-generation Pot1b-/- cells display markedly hyper-elongated telomeres that were recognized as damaged DNA by the Replication Protein A (RPA) complex. The RPA-ATR-dependent DNA damage response at telomeres promotes telomerase recruitment to facilitate telomere hyper-elongation. POT1b, but not POT1a, was able to unfold G-quadruplex present in hyper-elongated telomeres to repress the DNA damage response. Our findings demonstrate that the repression of the RPA-ATR DDR is conserved between POT1b and human POT1, suggesting that similar mechanisms may underly the phenotypes observed in human cancers harboring human POT1 mutations.
Collapse
Affiliation(s)
- Taylor Takasugi
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peili Gu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fengshan Liang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Isabelle Staco
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sandy Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
44
|
Lorbeer FK, Rieser G, Goel A, Wang M, Oh A, Yeh I, Bastian BC, Hockemeyer D. Distinct senescence mechanisms restrain progression of dysplastic nevi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.548818. [PMID: 37503286 PMCID: PMC10369942 DOI: 10.1101/2023.07.14.548818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
TERT promoter mutations (TPMs) are frequently found in different cancer types, including approximately 70% of sun-exposed skin melanomas. In melanoma, TPMs are among the earliest mutations and can be present during the transition from nevus to melanoma. However, the specific factors that contribute to the selection of TPMs in certain nevi subsets are not well understood. To investigate this, we analyzed a group of dysplastic nevi (DN) by sequencing genes commonly mutated in melanocytic neoplasms. We examined the relationship between the identified mutations, patient age, telomere length, histological features, and the expression of p16. Our findings reveal that TPMs are more prevalent in DN from older patients and are associated with shorter telomeres. Importantly, these TPMs were not found in nevi with BRAF V600E mutations. Conversely, DN with BRAF V600E mutations were observed in younger patients, had longer telomeres, and a higher proportion of p16-positive cells. This suggests that these nevi arrest growth independently of telomere shortening through a mechanism known as oncogene-induced senescence (OIS). These characteristics extend to melanoma sequencing data sets, where melanomas with BRAF V600E mutations were more likely to have CDKN2A inactivation, overriding OIS. In contrast, melanomas without BRAF V600E mutations showed a higher frequency of TPMs. Our data imply that TPMs are selected to bypass replicative senescence (RS) in cells that were not arrested by OIS. Overall, our results indicate that a subset of melanocytic neoplasms face constraints from RS, while others encounter OIS and RS. The order in which these barriers are overcome during progression to melanoma depends on the mutational context.
Collapse
|
45
|
Kuhn CK, Meister J, Kreft S, Stiller M, Puppel SH, Zaremba A, Scheffler B, Ullrich V, Schöneberg T, Schadendorf D, Horn S. TERT expression is associated with metastasis from thin primaries, exhausted CD4+ T cells in melanoma and with DNA repair across cancer entities. PLoS One 2023; 18:e0281487. [PMID: 37418389 PMCID: PMC10328343 DOI: 10.1371/journal.pone.0281487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) promoter mutations occur frequently in cancer, have been associated with increased TERT expression and cell proliferation, and could potentially influence therapeutic regimens for melanoma. As the role of TERT expression in malignant melanoma and the non-canonical functions of TERT remain understudied, we aimed to extend the current knowledge on the impact of TERT promoter mutations and expression alterations in tumor progression by analyzing several highly annotated melanoma cohorts. Using multivariate models, we found no consistent association for TERT promoter mutations or TERT expression with the survival rate in melanoma cohorts under immune checkpoint inhibition. However, the presence of CD4+ T cells increased with TERT expression and correlated with the expression of exhaustion markers. While the frequency of promoter mutations did not change with Breslow thickness, TERT expression was increased in metastases arising from thinner primaries. As single-cell RNA-sequencing (RNA-seq) showed that TERT expression was associated with genes involved in cell migration and dynamics of the extracellular matrix, this suggests a role of TERT during invasion and metastasis. Co-regulated genes found in several bulk tumors and single-cell RNA-seq cohorts also indicated non-canonical functions of TERT related to mitochondrial DNA stability and nuclear DNA repair. This pattern was also evident in glioblastoma and across other entities. Hence, our study adds to the role of TERT expression in cancer metastasis and potentially also immune resistance.
Collapse
Affiliation(s)
- Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Jaroslawna Meister
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sophia Kreft
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Mathias Stiller
- Institute of Pathology, University of Leipzig Medical Center, Leipzig, Germany
| | - Sven-Holger Puppel
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Anne Zaremba
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Björn Scheffler
- DKFZ-Division Translational Neurooncology at the West German Cancer Center, University Hospital Essen/University of Duisburg-Essen, Essen, Germany
| | - Vivien Ullrich
- DKFZ-Division Translational Neurooncology at the West German Cancer Center, University Hospital Essen/University of Duisburg-Essen, Essen, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
46
|
Prasad R, Panchal S, Rani I, Parashar G, Kishan J, Bhatnagar M. Atypical Case of Highly Mutated h-TERT Promoter in Germline Genome from Buccal Mucosa Cancer. Indian J Clin Biochem 2023; 38:400-404. [PMID: 37234183 PMCID: PMC10205942 DOI: 10.1007/s12291-021-01006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
Buccal mucosa cancer has an aggressive nature as it rapidly grows and penetrates with high recurrence rate. Strikingly, carcinoma of buccal mucosa is the most common cancer of oral cavity in India. Recently, telomerase and telomere biology have been implicated in the pathogenesis and progression in various cancers via regulation of telomere maintenance by telomerase expression which is controlled by telomerase reverse transcriptase (TERT) promoter. Strikingly, h-TERT promoter mutations have been incriminated in regulation of telomerase gene expression. Here, we present a 35 years old male with intense coughing, short breathlessness and fever since 15 days, was admitted to the pulmonary unit. He was a chronic smoker and gutka user. The cytopathological analysis of gastric aspirate revealed buccal mucosa carcinoma of IV stage. We identified h-TERT promoter mutations in isolated genomic DNA from whole blood using DNA sequencer. Genetic analysis disclosed that h-TERT promoter region was highly mutated in this patient. Identified mutations include C.-248 del G, C.-272 del G, C.-279 del G, C.-331 del G, C.-349 del G, C.-351 del C, C.-360 G > A, C.-362 T > A, C.-371 del T and C.-372 del T. Further, all identified mutations were subjected to predict the pathologic functional consequences using bioinformatics tools viz TFsitescan and CiiiDER which showed either loss or gain of transcription factors binding sites in h-TERT promoter. This is a unique case in which total 9 mutations were observed in h-TERT promoter in a single case. In conclusion, all together these mutations in h-TERT promoter may alter the epigenetics and subsequently the tenacity of binding transcription factors which are of functional significance.
Collapse
Affiliation(s)
- Rajendra Prasad
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, India
| | - Sonia Panchal
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, India
| | - Isha Rani
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, India
| | - Gaurav Parashar
- Department of Biotechnology, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, India
| | - Jai Kishan
- Department of Respiratory Medicine, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, India
| | - Mini Bhatnagar
- Department of General Medicine, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, India
| |
Collapse
|
47
|
Kurimoto M, Rockenbach Y, Kato A, Natsume A. Prediction of Tumor Development and Urine-Based Liquid Biopsy for Molecule-Targeted Therapy of Gliomas. Genes (Basel) 2023; 14:1201. [PMID: 37372381 DOI: 10.3390/genes14061201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The timing of the acquisition of tumor-specific gene mutations and the systems by which these gene mutations are acquired during tumorigenesis were clarified. Advances in our understanding of tumorigenesis are being made every day, and therapies targeting fundamental genetic alterations have great potential for cancer treatment. Moreover, our research team successfully estimated tumor progression using mathematical modeling and attempted early diagnosis of brain tumors. We developed a nanodevice that enables urinary genetic diagnosis in a simple and noninvasive manner. Mainly on the basis of our research and experience, this review article presents novel therapies being developed for central nervous system cancers and six molecules, which upon mutation cause tumorigenesis and tumor progression. Further understanding of the genetic characteristics of brain tumors will lead to the development of precise drugs and improve individual treatment outcomes.
Collapse
Affiliation(s)
- Michihiro Kurimoto
- Department of Neurosurgery, Aichi Children's Health and Medical Center, Obu 464-8710, Japan
| | - Yumi Rockenbach
- Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | - Akira Kato
- Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | - Atsushi Natsume
- Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
48
|
Selvam K, Sivapragasam S, Poon GMK, Wyrick JJ. Detecting recurrent passenger mutations in melanoma by targeted UV damage sequencing. Nat Commun 2023; 14:2702. [PMID: 37169747 PMCID: PMC10175485 DOI: 10.1038/s41467-023-38265-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Sequencing of melanomas has identified hundreds of recurrent mutations in both coding and non-coding DNA. These include a number of well-characterized oncogenic driver mutations, such as coding mutations in the BRAF and NRAS oncogenes, and non-coding mutations in the promoter of telomerase reverse transcriptase (TERT). However, the molecular etiology and significance of most of these mutations is unknown. Here, we use a new method known as CPD-capture-seq to map UV-induced cyclobutane pyrimidine dimers (CPDs) with high sequencing depth and single nucleotide resolution at sites of recurrent mutations in melanoma. Our data reveal that many previously identified drivers and other recurrent mutations in melanoma occur at CPD hotspots in UV-irradiated melanocytes, often associated with an overlapping binding site of an E26 transformation-specific (ETS) transcription factor. In contrast, recurrent mutations in the promoters of a number of known or suspected cancer genes are not associated with elevated CPD levels. Our data indicate that a subset of recurrent protein-coding mutations are also likely caused by ETS-induced CPD hotspots. This analysis indicates that ETS proteins profoundly shape the mutation landscape of melanoma and reveals a method for distinguishing potential driver mutations from passenger mutations whose recurrence is due to elevated UV damage.
Collapse
Affiliation(s)
- Kathiresan Selvam
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Smitha Sivapragasam
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Gregory M K Poon
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.
- Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
49
|
Ludzik J, Becker AL, Latour E, Lee C, Witkowski A. Dermoscopic features associated with 3-GEP PLA: LINC00518, PRAME, and TERT expression in suspicious pigmented lesions. Skin Res Technol 2023; 29:e13323. [PMID: 37083005 PMCID: PMC10234169 DOI: 10.1111/srt.13323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/26/2023] [Indexed: 04/22/2023]
Abstract
Utilization of dermoscopy and novel molecular triage technologies augments visual triage of pigmented skin lesions, promoting early detection of melanoma. One emerging in vivo genomic test, 3-GEP pigmented lesion assay (3-GEP PLA) aids in pigmented lesion triage by noninvasively detecting the presence of three genes associated with melanoma: LINC00518, PRAME, and TERT. The purpose of our retrospective case-control study was to identify dermoscopic features uniquely associated with the presence of LINC00518, PRAME, or TERT in the stratum corneum as determined by 3-GEP PLA testing. Images of suspicious pigmented lesions that had undergone 3-GEP PLA testing and received a definitive positive or negative result (n = 393) were evaluated for the presence of specific clinical and dermoscopic features associated with melanoma. We found that asymmetry of color was a significant predictor for PRAME expression (Odds Ratio (OR) 5.5, 95% Confidence Interval (CI) 1.6-34.5, p = 0.004), blue color and negative pigment network were significant predictors for LINC00518 expression (adjusted OR 2.7, 95% CI 1.2-5.5, p = 0.014 and adjusted OR 5.4, 95% CI 1.6-16.9, p = 0.010, respectively), and atypical polymorphous vessels present in a pigmented skin lesion were a significant predictor for TERT promoter mutations (OR 5.8, 95% CI 1.3-23.4, p = 0.022). The results presented suggest a hierarchy in the significance of these dermoscopic features and may help guide evaluation and management of pigmented skin lesions.
Collapse
Affiliation(s)
- Joanna Ludzik
- Department of DermatologyOregon Health and Science UniversityPortlandOregonUSA
| | - Alyssa L. Becker
- Department of DermatologyOregon Health and Science UniversityPortlandOregonUSA
- John A. Burns School of MedicineUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
| | - Emile Latour
- Biostatistics Shared Resource, Knight Cancer InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Claudia Lee
- University of California Riverside School of MedicineRiversideCaliforniaUSA
| | - Alexander Witkowski
- Department of DermatologyOregon Health and Science UniversityPortlandOregonUSA
| |
Collapse
|
50
|
Telomere Length Changes in Cancer: Insights on Carcinogenesis and Potential for Non-Invasive Diagnostic Strategies. Genes (Basel) 2023; 14:genes14030715. [PMID: 36980987 PMCID: PMC10047978 DOI: 10.3390/genes14030715] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Telomere dynamics play a crucial role in the maintenance of chromosome integrity; changes in telomere length may thus contribute to the development of various diseases including cancer. Understanding the role of telomeric DNA in carcinogenesis and detecting the presence of cell-free telomeric DNA (cf-telDNA) in body fluids offer a potential biomarker for novel cancer screening and diagnostic strategies. Liquid biopsy is becoming increasingly popular due to its undeniable benefits over conventional invasive methods. However, the organization and function of cf-telDNA in the extracellular milieu are understudied. This paper provides a review based on 3,398,017 cancer patients, patients with other conditions, and control individuals with the aim to shed more light on the inconsistent nature of telomere lengthening/shortening in oncological contexts. To gain a better understanding of biological factors (e.g., telomerase activation, alternative lengthening of telomeres) affecting telomere homeostasis across different types of cancer, we summarize mechanisms responsible for telomere length maintenance. In conclusion, we compare tissue- and liquid biopsy-based approaches in cancer assessment and provide a brief outlook on the methodology used for telomere length evaluation, highlighting the advances of state-of-the-art approaches in the field.
Collapse
|