1
|
Rigual MDM, Angulo-Aguado M, Zagorac S, Álvarez-Díaz R, Benítez-Mondéjar M, Yi F, Martínez-Garay C, Santos-de-Frutos K, Kim E, Campos-Olivas R, Djouder N. Macrophages harness hepatocyte glutamate to boost liver regeneration. Nature 2025; 641:1005-1016. [PMID: 40140584 DOI: 10.1038/s41586-025-08778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2025] [Indexed: 03/28/2025]
Abstract
Liver regeneration after hepatectomy follows accurate coordination with the body's specific requirements1-3. However, the molecular mechanisms, factors and particular hepatocyte population influencing its efficiency remain unclear. Here we report on a unique regeneration mechanism involving unconventional RPB5 prefoldin interactor 1 (URI1), which exclusively colocalizes with, binds to and activates glutamine synthase (GS) in pericentral hepatocytes. Genetic GS or URI1 depletion in mouse pericentral hepatocytes increases circulating glutamate levels, accelerating liver regeneration after two-third hepatectomy. Conversely, mouse hepatocytic URI1 overexpression hinders liver restoration, which can be reversed by elevating glutamate through supplementation or genetic GS depletion. Glutamate metabolically reprograms bone-marrow-derived macrophages, stabilizing HIF1α, which transcriptionally activates WNT3 to promote YAP1-dependent hepatocyte proliferation, boosting liver regeneration. GS regulation by URI1 is a mechanism that maintains optimal glutamate levels, probably to spatiotemporally fine-tune liver growth in accordance with the body's homeostasis and nutrient supply. Accordingly, in acute and chronic injury models, including in cirrhotic mice with low glutamate levels and in early mortality after liver resection, as well as in mice undergoing 90% hepatectomy, glutamate addition enhances hepatocyte proliferation and survival. Furthermore, URI1 and GS expression co-localize in human hepatocytes and correlate with WNT3 in immune cells across liver disease stages. Glutamate supplementation may therefore support liver regeneration, benefiting patients awaiting transplants or recovering from hepatectomy.
Collapse
Affiliation(s)
- María Del Mar Rigual
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Mariana Angulo-Aguado
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Sladjana Zagorac
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Ruth Álvarez-Díaz
- Bioinformatic Unit, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Marta Benítez-Mondéjar
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Fengming Yi
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Carlos Martínez-Garay
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Karla Santos-de-Frutos
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Eunjeong Kim
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
- KNU G-LAMP Research Center, KNU Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Ramón Campos-Olivas
- Spectroscopy and Nuclear Magnetic Resonance Unit, Structural Biology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain.
| |
Collapse
|
2
|
Hernández-Villa L, Palacios-Abella A, Gómez-Mínguez Y, Costigliolo-Rojas C, Minguet EG, Alabadí D. PDRG1 is essential for early plant development as a component of the prefoldin-like complex. FEBS Lett 2025; 599:1386-1406. [PMID: 40026265 DOI: 10.1002/1873-3468.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
p53 AND DNA DAMAGE-REGULATED GENE1 (PDRG1) is part of the prefoldin-like complex (PFDLc) in plants and animals. Whether PDRG1 acts primarily as a subunit of PFDLc or as an independent subunit is not known in any eukaryote. Here, we show that impairment of PDRG1 activity in Arabidopsis thaliana leads to embryonic lethality, as is the case for the other prefoldin-like proteins UXT and AtURI. The subunits of PFDLc are the main interactors of PDRG1 in vivo, and the interactomes of PDRG1, UXT, and AtURI show strong overlaps, including subunits of nuclear RNA polymerases and various complexes of the spliceosome. Our results show that PDRG1 plays an essential role in Arabidopsis mainly as a subunit of PFDLc.
Collapse
Affiliation(s)
| | | | - Yaiza Gómez-Mínguez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | | | - Eugenio G Minguet
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
- Departament de Biologia Vegetal, Universitat de València, Burjassot, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| |
Collapse
|
3
|
Herranz-Montoya I, Angulo-Aguado M, Perna C, Zagorac S, García-Jimeno L, Park S, Djouder N. p53 protein degradation redefines the initiation mechanisms and drives transitional mutations in colorectal cancer. Nat Commun 2025; 16:3934. [PMID: 40287431 PMCID: PMC12033273 DOI: 10.1038/s41467-025-59282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Incidence of colorectal cancer (CRC) is increasing likely due to different mechanisms driving initiation and progression. The initial model proposed by Fearon and Vogelstein posits it as a multi-hit neoplasia, originating from adenomatous-polyps induced by WNT activation, ultimately progressing to aggressiveness through p53 loss. Integrating human data with mouse genetics, we redefine this paradigm, highlighting pivotal roles of MYC, oncogenic URI and p53 degradation to initiate CRC. Early APC loss activates MYC to transcriptionally upregulate URI, which modulates MDM2 activity, triggering p53 proteasomal degradation, essential for tumour initiation and mutation burden accrual in CRC mice. Remarkably, reinstating p53 levels via genetic URI depletion or p53 super-expression in CRC mice with WNT pathway activation prevents tumour initiation and extends lifespan. Our data reveal a "two-hit" genetic model central to APC loss-driven CRC initiation, wherein MYC/URI axis intricately controls p53 degradation, offering mechanistic insights into transitional mutation acquisition essential for CRC progression.
Collapse
Affiliation(s)
- Irene Herranz-Montoya
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Mariana Angulo-Aguado
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- Universidad de Alcalá, 28801, Madrid, Spain
| | - Sladjana Zagorac
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Luis García-Jimeno
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Solip Park
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
4
|
Sun Y, Aliyari SR, Parvatiyar K, Wang L, Zhen A, Sun W, Han X, Zhang A, Kato E, Shi H, De Schutter E, McBride WH, French SW, Cheng G. STING directly interacts with PAR to promote apoptosis upon acute ionizing radiation-mediated DNA damage. Cell Death Differ 2025:10.1038/s41418-025-01457-z. [PMID: 39939798 DOI: 10.1038/s41418-025-01457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/13/2025] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
Acute ionizing radiation (IR) causes severe DNA damage, leading to cell cycle arrest, cell death, and activation of the innate immune system. The role and signaling pathway of stimulator of interferon genes (STING) in IR-induced tissue damage and cell death are not well understood. This study revealed that STING is crucial for promoting apoptosis in response to DNA damage caused by acute IR both in vitro and in vivo. STING binds to poly (ADP‒ribose) (PAR) produced by activated poly (ADP‒ribose) polymerase-1 (PARP1) upon IR. Compared with that in WT cells, apoptosis was suppressed in Stinggt-/gt- cells. Excessive PAR production by PARP1 due to DNA damage enhances STING phosphorylation, and inhibiting PARP1 reduces cell apoptosis after IR. In vivo, IR-induced crypt cell death was significantly lower in Stinggt-/gt- mice or with low-dose PARP1 inhibitor, PJ34, resulting in substantial resistance to abdominal irradiation. STING deficiency or inhibition of PARP1 function can reduce the expression of the proapoptotic gene PUMA, decrease the localization of Bax on the mitochondrial membrane, and thus reduce cell apoptosis. Our findings highlight crucial roles for STING and PAR in the IR-mediated induction of apoptosis, which may have therapeutic implications for controlling radiation-induced apoptosis or acute radiation symptoms. STING responds to acute ionizing radiation-mediated DNA damage by directly binding to poly (ADP-ribose) (PAR) produced by activated poly (ADP-ribose) polymerase-1 (PARP1), and mainly induces cell apoptosis through Puma-Bax interaction. STING deficiency or reduced production of PAR protected mice against Acute Radiation Syndrome.
Collapse
Affiliation(s)
- Yirong Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA.
| | - Saba R Aliyari
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Kislay Parvatiyar
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lulan Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Anjie Zhen
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Wei Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaobo Han
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Adele Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Ethan Kato
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Helen Shi
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Elena De Schutter
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - William H McBride
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Takashima S, Sharma R, Chang W, Calafiore M, Fu YY, Jansen SA, Ito T, Egorova A, Kuttiyara J, Arnhold V, Sharrock J, Santosa E, Chaudhary O, Geiger H, Iwasaki H, Liu C, Sun J, Robine N, Mazutis L, Lindemans CA, Hanash AM. STAT1 regulates immune-mediated intestinal stem cell proliferation and epithelial regeneration. Nat Commun 2025; 16:138. [PMID: 39746933 PMCID: PMC11697299 DOI: 10.1038/s41467-024-55227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
The role of the immune system in regulating tissue stem cells remains poorly understood, as does the relationship between immune-mediated tissue damage and regeneration. Graft vs. host disease (GVHD) occurring after allogeneic bone marrow transplantation (allo-BMT) involves immune-mediated damage to the intestinal epithelium and its stem cell compartment. To assess impacts of T-cell-driven injury on distinct epithelial constituents, we have performed single cell RNA sequencing on intestinal crypts following experimental BMT. Intestinal stem cells (ISCs) from GVHD mice have exhibited global transcriptomic changes associated with a substantial Interferon-γ response and upregulation of STAT1. To determine its role in crypt function, STAT1 has been deleted within murine intestinal epithelium. Following allo-BMT, STAT1 deficiency has resulted in reduced epithelial proliferation and impaired ISC recovery. Similarly, epithelial Interferon-γ receptor deletion has also attenuated proliferation and ISC recovery post-transplant. Investigating the mechanistic basis underlying this epithelial response, ISC STAT1 expression in GVHD has been found to correlate with upregulation of ISC c-Myc. Furthermore, activated T cells have stimulated Interferon-γ-dependent epithelial regeneration in co-cultured organoids, and Interferon-γ has directly induced STAT1-dependent c-Myc expression and ISC proliferation. These findings illustrate immunologic regulation of a core tissue stem cell program after damage and support a role for Interferon-γ as a direct contributor to epithelial regeneration.
Collapse
Affiliation(s)
- Shuichiro Takashima
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Hematology, NHO Kyushu Medical Center, Fukuoka, Fukuoka, 810-8563, Japan
| | | | - Winston Chang
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Immunology & Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marco Calafiore
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ya-Yuan Fu
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suze A Jansen
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Takahiro Ito
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Anastasiya Egorova
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jason Kuttiyara
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Viktor Arnhold
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jessica Sharrock
- Immunology & Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Endi Santosa
- Immunology & Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ojasvi Chaudhary
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Hiromi Iwasaki
- Department of Hematology, NHO Kyushu Medical Center, Fukuoka, Fukuoka, 810-8563, Japan
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Joseph Sun
- Immunology & Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Linas Mazutis
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Institute of Biotechnology Vilnius University, Vilnius, LT-10257, Lithuania
| | - Caroline A Lindemans
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Alan M Hanash
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Immunology & Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Grazioso TP, del Mar Rigual M, Perna C, Caleiras EJ, Djouder N. Cold exposure reinstates NAD + levels and attenuates hepatocellular carcinoma. Cell Stress 2024; 8:125-139. [PMID: 39781363 PMCID: PMC11708783 DOI: 10.15698/cst2024.12.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Cold exposure has been historically used for medicinal purposes, but its benefits and associated mechanisms in mammalian organisms still remain unclear. Here, we explore the chemoprotective properties of cold temperature using a mouse model of hepatocellular carcinoma (HCC) that recapitulates several human features. Chronic cold exposure is shown to prolong lifespan in diseased mice, enhance liver health, and suppress the development of aggressive HCC, preventing hepatocellular hypertrophy, high-grade oval cell hyperplasia, liver steatosis, and aberrant hepatocyte hyperproliferation. Mechanistically, exposure to cold temperatures reinstates NAD+ levels in the HCC mouse models that originally exhibited low NAD+ levels, a contributing process to the development of liver tumors. These findings uncover the role of cold therapy to attenuate HCC development and potentially other existing malignancies involving NAD+ modulation.
Collapse
Affiliation(s)
- Tatiana P Grazioso
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO)Madrid, ES28029Spain
- Instituto de Investigación Sanitaria HM Hospitales (IISHM)MadridSpain
- Laboratory of Innovation in Oncology, Gynecological, Genitourinary and Skin Cancer Unit, HM CIOCC, Centro Integral Oncológico Clara Campal, Hospital Universitario HM Sanchinarro, HM HospitalesMadrid, ES-28050Spain
| | - Maria del Mar Rigual
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO)Madrid, ES28029Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, IRYCISMadrid, ES28034Spain
- Universidad de AlcaláMadrid, ES28801Spain
| | | | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO)Madrid, ES28029Spain
| |
Collapse
|
7
|
Guo X, Zhou J, La Yan, Liu X, Yuan Y, Ye J, Zhang Z, Chen H, Ma Y, Zhong Z, Luo G, Chen H. Very long-chain fatty acids control peroxisome dynamics via a feedback loop in intestinal stem cells during gut regeneration. Dev Cell 2024; 59:3008-3024.e8. [PMID: 39047737 DOI: 10.1016/j.devcel.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Peroxisome dynamics are crucial for intestinal stem cell (ISC) differentiation and gut regeneration. However, the precise mechanisms that govern peroxisome dynamics within ISCs during gut regeneration remain unknown. Using mouse colitis and Drosophila intestine models, we have identified a negative-feedback control mechanism involving the transcription factors peroxisome proliferator-activated receptors (PPARs) and SOX21. This feedback mechanism effectively regulates peroxisome abundance during gut regeneration. Following gut injury, the released free very long-chain fatty acids (VLCFAs) increase peroxisome abundance by stimulating PPARs-PEX11s signaling. PPARs act to stimulate peroxisome fission and inhibit pexophagy. SOX21, which acts downstream of peroxisomes during ISC differentiation, induces peroxisome elimination through pexophagy while repressing PPAR expression. Hence, PPARs and SOX21 constitute a finely tuned negative-feedback loop that regulates peroxisome dynamics. These findings shed light on the complex molecular mechanisms underlying peroxisome regulation in ISCs, contributing to our understanding of gut renewal and repair.
Collapse
Affiliation(s)
- Xiaoxin Guo
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Juanyu Zhou
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - La Yan
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingzhu Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Yuan
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinbao Ye
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zehong Zhang
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haiou Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongxin Ma
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhendong Zhong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Guanzheng Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
8
|
Zhu R, Li M, Wang D, Liu C, Xie L, Yang Y, Gu X, Zhao K, Tian Y, Cai S. USP15 regulates radiation-induced DNA damage and intestinal injury through K48-linked deubiquitination and stabilisation of ATM. Mol Med 2024; 30:205. [PMID: 39522000 PMCID: PMC11549776 DOI: 10.1186/s10020-024-00984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Radiation-induced intestinal injury (RIII) interrupts the scheduled processes of abdominal and pelvic radiotherapy (RT) and compromises the quality of life of cancer survivors. However, the specific regulators and mechanisms underlying the effects of RIII remain unknown. The biological effects of RT are caused primarily by DNA damage, and ataxia telangiectasia mutated (ATM) is a core protein of the DNA damage response (DDR). However, whether ATM is regulated by deubiquitination signaling remains unclear. METHODS We established animal and cellular models of RIII. The effects of ubiquitin-specific protease 15 (USP15) on DNA damage and radion-induced intestinal injury were evaluated. Mass spectrometry analysis, truncation tests, and immunoprecipitation were used to identify USP15 as a binding partner of ATM and to investigate the ubiquitination of ATM. Finally, the relationship between the USP15/ATM axes was further determined via subsequent experiments. RESULTS In this study, we identified the deubiquitylating enzyme USP15 as a regulator of DNA damage and the pathological progression of RIII. Irradiation upregulates the expression of USP15, whereas pharmacological inhibition of USP15 exacerbates radiation-induced DNA damage and RIII both in vivo and in vitro. Mechanistically, USP15 interacts with, deubiquitinates, and stabilises ATM via K48-linked deubiquitination. Notably, ATM overexpression blocks the effect of USP15 genetic inhibition on DNA damage and RIII progression. CONCLUSIONS These findings describe ATM as a novel deubiquitination target of USP15 upon radiation-induced DNA damage and intestinal injury, and provides experimental support for USP15/ATM axis as a potential target for developing strategies that mitigate RIII.
Collapse
Affiliation(s)
- Ruiqiu Zhu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Mingyue Li
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Difan Wang
- Suzhou Medical College of Soochow University, Suzhou, 215000, China
| | - Chengzhi Liu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Liwei Xie
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yinyin Yang
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xuhao Gu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Kui Zhao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Ye Tian
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Shang Cai
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- PRaG Therapy Center, Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
9
|
Du J, Fang L, Wang Y, Zhao J, Feng Z, Yu Y, Fang D, Huang D, Zhai X, Cheng Y, Min R, Gao F, Liu C. Gelsolin regulates intestinal stem cell regeneration and Th17 cellular function. Cell Commun Signal 2024; 22:524. [PMID: 39472865 PMCID: PMC11520831 DOI: 10.1186/s12964-024-01902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Intestinal stem cells (ISCs) are responsible for intestinal homeostasis and are important for the regeneration of damaged intestine. We established an ionizing radiation (IR)-induced intestinal injury model and observed that Gelsolin KO mice had increased radiosensitivity. The deletion of Gelsolin aggravated intestinal damage and reduced the number of ISCs after lethal IR. The intestinal organoid experiments showed that Gelsolin deletion inhibited ISCs function after IR. Notably, RNA sequencing and RT-PCR results showed IL-17 signaling pathway was down-regulated and Th17 cells differentiation was inhibited in Gelsolin KO mice. Moreover, recombinant IL-17 A ameliorated IR-induced intestinal injury and promoted ISCs regeneration. To figure out the role of Gelsolin in Th17 cells differentiation, flow cytometry was used and we found that Gelsolin targets Th17 cells functionality via the p-STAT3/RORγt axis. By establishing the co-culture system, we proved that Th17 cells promoted self-renewal and budding abilities in Gelsolin-deficient organoids. Finally, we found that Gelsolin was protective against DSS-induced colitis and that this protective effect was not specific or limited to the IR induced intestinal injury model. Based on these results, we proved Gelsolin maintained the regeneration of ISCs by sustaining Th17 cells functions via the p-STAT3/RORγt axis.
Collapse
Affiliation(s)
- Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Lan Fang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Yuedong Wang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Jianpeng Zhao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Zhenlan Feng
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Yike Yu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Duo Fang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Daqian Huang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Xuanlu Zhai
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Rui Min
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China.
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China.
| |
Collapse
|
10
|
Khaleel AQ, Alshahrani MY, Rizaev JA, Malathi H, Devi S, Pramanik A, Mustafa YF, Hjazi A, Muazzamxon I, Husseen B. siRNA-based strategies to combat drug resistance in gastric cancer. Med Oncol 2024; 41:293. [PMID: 39428440 DOI: 10.1007/s12032-024-02528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Chemotherapy is a key treatment option for gastric cancer, but over 50% of patients develop either inherent or acquired resistance to these drugs, resulting in a 5-year survival rate of only about 20%. The primary treatment for advanced gastric cancer typically involves chemotherapy based on platinum or fluorouracil. Several factors can contribute to platinum resistance, including decreased drug uptake, increased drug efflux or metabolism, enhanced DNA repair, activation of pro-survival pathways, and inhibition of pro-apoptotic pathways. In recent years, there has been significant progress in biology aimed at finding innovative and more effective methods to overcome chemotherapy resistance. Small interfering RNAs (siRNAs) have emerged as a significant advancement in gene expression regulation, showing promise in enhancing the sensitivity of gastric cancer cells to chemotherapy drugs. However, siRNA therapies still face major challenges, particularly in terms of stability and efficient delivery in vivo. This article discusses the advances in siRNA therapy and its potential role in overcoming resistance to chemotherapeutic drugs such as cisplatin, 5-FU, doxorubicin, and paclitaxel in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, College of Engineering, University of Al Maarif, Ramadi, Al Anbar, 31001, Iraq.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences Jain (Deemed to be University), Bangalore, Karnataka, India
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ismoilova Muazzamxon
- Department of Propaedeutics of Internal Diseases, Fergana Medical Institute of Public Health, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
11
|
Chen SM, Guo BJ, Feng AQ, Wang XL, Zhang SL, Miao CY. Pathways regulating intestinal stem cells and potential therapeutic targets for radiation enteropathy. MOLECULAR BIOMEDICINE 2024; 5:46. [PMID: 39388072 PMCID: PMC11467144 DOI: 10.1186/s43556-024-00211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Radiotherapy is a pivotal intervention for cancer patients, significantly impacting their treatment outcomes and survival prospects. Nevertheless, in the course of treating those with abdominal, pelvic, or retroperitoneal malignant tumors, the procedure inadvertently exposes adjacent intestinal tissues to radiation, posing risks of radiation-induced enteropathy upon reaching threshold doses. Stem cells within the intestinal crypts, through their controlled proliferation and differentiation, support the critical functions of the intestinal epithelium, ensuring efficient nutrient absorption while upholding its protective barrier properties. Intestinal stem cells (ISCs) regulation is intricately orchestrated by diverse signaling pathways, among which are the WNT, BMP, NOTCH, EGF, Hippo, Hedgehog and NF-κB, each contributing to the complex control of these cells' behavior. Complementing these pathways are additional regulators such as nutrient metabolic states, and the intestinal microbiota, all of which contribute to the fine-tuning of ISCs behavior in the intestinal crypts. It is the harmonious interplay among these signaling cascades and modulating elements that preserves the homeostasis of intestinal epithelial cells (IECs), thereby ensuring the gut's overall health and function. This review delves into the molecular underpinnings of how stem cells respond in the context of radiation enteropathy, aiming to illuminate potential biological targets for therapeutic intervention. Furthermore, we have compiled a summary of several current treatment methodologies. By unraveling these mechanisms and treatment methods, we aspire to furnish a roadmap for the development of novel therapeutics, advancing our capabilities in mitigating radiation-induced intestinal damage.
Collapse
Affiliation(s)
- Si-Min Chen
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China
| | - Bing-Jie Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - An-Qiang Feng
- Department of Digestive Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Xue-Lian Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| |
Collapse
|
12
|
Verma S, Lin X, Coulson-Thomas VJ. The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective. Cells 2024; 13:748. [PMID: 38727284 PMCID: PMC11083486 DOI: 10.3390/cells13090748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Stem cells (SCs) undergo asymmetric division, producing transit-amplifying cells (TACs) with increased proliferative potential that move into tissues and ultimately differentiate into a specialized cell type. Thus, TACs represent an intermediary state between stem cells and differentiated cells. In the cornea, a population of stem cells resides in the limbal region, named the limbal epithelial stem cells (LESCs). As LESCs proliferate, they generate TACs that move centripetally into the cornea and differentiate into corneal epithelial cells. Upon limbal injury, research suggests a population of progenitor-like cells that exists within the cornea can move centrifugally into the limbus, where they dedifferentiate into LESCs. Herein, we summarize recent advances made in understanding the mechanism that governs the differentiation of LESCs into TACs, and thereafter, into corneal epithelial cells. We also outline the evidence in support of the existence of progenitor-like cells in the cornea and whether TACs could represent a population of cells with progenitor-like capabilities within the cornea. Furthermore, to gain further insights into the dynamics of TACs in the cornea, we outline the most recent findings in other organ systems that support the hypothesis that TACs can dedifferentiate into SCs.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Xiao Lin
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
| | | |
Collapse
|
13
|
de la Rosa S, del Mar Rigual M, Vargiu P, Ortega S, Djouder N. Endogenous retroviruses shape pluripotency specification in mouse embryos. SCIENCE ADVANCES 2024; 10:eadk9394. [PMID: 38266080 PMCID: PMC10807815 DOI: 10.1126/sciadv.adk9394] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The smooth and precise transition from totipotency to pluripotency is a key process in embryonic development, generating pluripotent stem cells capable of forming all cell types. While endogenous retroviruses (ERVs) are essential for early development, their precise roles in this transition remains mysterious. Using cutting-edge genetic and biochemical techniques in mice, we identify MERVL-gag, a retroviral protein, as a crucial modulator of pluripotent factors OCT4 and SOX2 during lineage specification. MERVL-gag tightly operates with URI, a prefoldin protein that concurs with pluripotency bias in mouse blastomeres, and which is indeed required for totipotency-to-pluripotency transition. Accordingly, URI loss promotes a stable totipotent-like state and embryo arrest at 2C stage. Mechanistically, URI binds and shields OCT4 and SOX2 from proteasome degradation, while MERVL-gag displaces URI from pluripotent factor interaction, causing their degradation. Our findings reveal the symbiotic coevolution of ERVs with their host cells to ensure the smooth and timely progression of early embryo development.
Collapse
Affiliation(s)
- Sergio de la Rosa
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - María del Mar Rigual
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Pierfrancesco Vargiu
- Mouse Genome Editing Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sagrario Ortega
- Mouse Genome Editing Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| |
Collapse
|
14
|
Wang J, Chang CY, Yang X, Zhou F, Liu J, Bargonetti J, Zhang L, Xie P, Feng Z, Hu W. p53 suppresses MHC class II presentation by intestinal epithelium to protect against radiation-induced gastrointestinal syndrome. Nat Commun 2024; 15:137. [PMID: 38167344 PMCID: PMC10762193 DOI: 10.1038/s41467-023-44390-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Radiation-induced gastrointestinal syndrome is a major complication and limiting factor for radiotherapy. Tumor suppressor p53 has a protective role in radiation-induced gastrointestinal toxicity. However, its underlying mechanism remains unclear. Here we report that regulating the IL12-p40/MHC class II signaling pathway is a critical mechanism by which p53 protects against radiation-induced gastrointestinal syndrome. p53 inhibits the expression of inflammatory cytokine IL12-p40, which in turn suppresses the expression of MHC class II on intestinal epithelial cells to suppress T cell activation and inflammation post-irradiation that causes intestinal stem cell damage. Anti-IL12-p40 neutralizing antibody inhibits inflammation and rescues the defects in intestinal epithelial regeneration post-irradiation in p53-deficient mice and prolongs mouse survival. These results uncover that the IL12-p40/MHC class II signaling mediates the essential role of p53 in ensuring intestinal stem cell function and proper immune reaction in response to radiation to protect mucosal epithelium, and suggest a potential therapeutic strategy to protect against radiation-induced gastrointestinal syndrome.
Collapse
Affiliation(s)
- Jianming Wang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Chun-Yuan Chang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Xue Yang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Fan Zhou
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Jill Bargonetti
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Lanjing Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
- Department of Biological Sciences, Rutgers University, Newark, NJ, 07102, USA
- Department of Pathology, Penn Medicine Princeton Medical Center, Plainsboro, NJ, 08536, USA
| | - Ping Xie
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA.
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
15
|
Yu Z, Xu C, Song B, Zhang S, Chen C, Li C, Zhang S. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med 2023; 21:708. [PMID: 37814303 PMCID: PMC10563272 DOI: 10.1186/s12967-023-04554-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chaoyu Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China
| | - Shihao Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221200, China
| | - Changlong Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Molecular Biology and Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China.
| |
Collapse
|
16
|
Guo L, Da F, Gao Q, Miao X, Guo J, Zhang W, Li J, Wang J, Liu J. Irradiation-Induced Intestinal Injury is Associated With Disorders of Bile Acids Metabolism. Int J Radiat Oncol Biol Phys 2023; 115:490-500. [PMID: 35948117 DOI: 10.1016/j.ijrobp.2022.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Intestinal injury commonly occurs in radiation therapy, but its pathogenesis is not well understood. The relationship between irradiation-induced intestinal injury and bile acids (BAs) metabolism remains elusive. This study intends to clarify the role of BAs metabolism in irradiation-induced intestinal injury and the potential for supplementation with BAs to alleviate this injury. MATERIALS AND METHODS BAs metabolomic analysis of fecal pellets from normal and 12 Gy γ-ray total abdominal irradiation (TAI) treated mice was performed. The effects of a crude bile extract (BAmix) or lithocholic acid (LCA) on mice exposed to 12 Gy γ-ray TAI were determined by analyzing weight loss, colon length, villus length, crypt number, and the expression of leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and yes-associated protein 1 (YAP1). The effects of BAmix or LCA on intestinal organoids after 4 Gy irradiation were analyzed. ELISA assay was applied to test IL-1β, IL-6 and TNF-α levels in mouse intestine. The expression changes of G protein-coupled receptor 1 (TGR5) and YAP1 in the colonic mucosa of patients with radiation-induced intestinal injury were determined by IHC. RESULTS The relative abundance of secondary BAs was decreased while the relative abundance of primary BAs was increased in irradiated mice, and LCA was the most obvious change. BAmix and LCA alleviated irradiation-induced intestinal injury in a mouse model, as reflected by reduced body weight loss, longer colon, higher villus, more crypts, and increased Lgr5 expression. In intestinal organoids, BAmix and LCA enhanced newborn crypts formation after irradiation. LCA treatment improved the expression of TGR5 and YAP1 in mouse intestinal crypts. LCA has potential to reduce the inflammation levels in irradiated mice. Additionally, the expression levels of TGR5 and YAP1 in the colonic mucosa of patients with radiation enteritis were also significantly decreased. CONCLUSIONS Radiation-induced intestinal injury is associated with disorders of BAs metabolism, and treatment with LCA had a protective effect against radiation-induced intestinal injury in mice by modulating TGR5 and YAP1.
Collapse
Affiliation(s)
- Li Guo
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Fei Da
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| | - Qiaohui Gao
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Xia Miao
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Juan Guo
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing Li
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Jin Wang
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.
| | - Junye Liu
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
17
|
Rigual MDM, Sánchez Sánchez P, Djouder N. Is liver regeneration key in hepatocellular carcinoma development? Trends Cancer 2023; 9:140-157. [PMID: 36347768 DOI: 10.1016/j.trecan.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
The liver is the largest organ of the mammalian body and has the remarkable ability to fully regenerate in order to maintain tissue homeostasis. The adult liver consists of hexagonal lobules, each with a central vein surrounded by six portal triads localized in the lobule border containing distinct parenchymal and nonparenchymal cells. Because the liver is continuously exposed to diverse stress signals, several sophisticated regenerative processes exist to restore its functional status following impairment. However, these stress signals can affect the liver's capacity to regenerate and may lead to the development of hepatocellular carcinoma (HCC), one of the most aggressive liver cancers. Here, we review the mechanisms of hepatic regeneration and their potential to influence HCC development.
Collapse
Affiliation(s)
- María Del Mar Rigual
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain
| | - Paula Sánchez Sánchez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain.
| |
Collapse
|
18
|
Wang J, Chang CY, Yang X, Zhou F, Liu J, Feng Z, Hu W. Leukemia inhibitory factor, a double-edged sword with therapeutic implications in human diseases. Mol Ther 2023; 31:331-343. [PMID: 36575793 PMCID: PMC9931620 DOI: 10.1016/j.ymthe.2022.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the interleukin-6 (IL-6) superfamily. LIF was initially discovered as a factor to induce the differentiation of myeloid leukemia cells and thus inhibit their proliferation. Subsequent studies have highlighted the multi-functions of LIF under a wide variety of physiological and pathological conditions in a highly cell-, tissue-, and context-dependent manner. Emerging evidence has demonstrated that LIF plays an essential role in the stem cell niche, where it maintains the homeostasis and regeneration of multiple somatic tissues, including intestine, neuron, and muscle. Further, LIF exerts a crucial regulatory role in immunity and functions as a protective factor against many immunopathological diseases, such as infection, inflammatory bowel disease (IBD), and graft-verse-host disease (GVHD). It is worth noting that while LIF displays a tumor-suppressive function in leukemia, recent studies have highlighted the oncogenic role of LIF in many types of solid tumors, further demonstrating the complexities and context-dependent effects of LIF. In this review, we summarize the recent insights into the roles and mechanisms of LIF in stem cell homeostasis and regeneration, immunity, and cancer, and discuss the potential therapeutic options for human diseases by modulating LIF levels and functions.
Collapse
Affiliation(s)
- Jianming Wang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Chun-Yuan Chang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Xue Yang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Fan Zhou
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA.
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA.
| |
Collapse
|
19
|
Guevara-Garcia A, Soleilhac M, Minc N, Delacour D. Regulation and functions of cell division in the intestinal tissue. Semin Cell Dev Biol 2023:S1084-9521(23)00004-6. [PMID: 36702722 DOI: 10.1016/j.semcdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing epithelial tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs to ensure correct organ formation and functioning. In these processes, proliferation rates and division orientation regulate the speed, timing and direction of tissue expansion but also its proper patterning. Moreover, tissue homeostasis relies on spatio-temporal modulations of daughter cell behavior and arrangement. These aspects are particularly crucial in the intestine, which is one of the most proliferative tissues in adults, making it a very attractive adult organ system to study the role of cell division on epithelial morphogenesis and organ function. Although epithelial cell division has been the subject of intense research for many years in multiple models, it still remains in its infancy in the context of the intestinal tissue. In this review, we focus on the current knowledge on cell division and regulatory mechanisms at play in the intestinal epithelial tissue, as well as their importance in developmental biology and physiopathology.
Collapse
Affiliation(s)
| | - Matis Soleilhac
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Delphine Delacour
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| |
Collapse
|
20
|
Chaves-Pérez A, Santos-de-Frutos K, de la Rosa S, Herranz-Montoya I, Perna C, Djouder N. Transit-amplifying cells control R-spondins in the mouse crypt to modulate intestinal stem cell proliferation. J Exp Med 2022; 219:213460. [PMID: 36098959 PMCID: PMC9475298 DOI: 10.1084/jem.20212405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 11/04/2022] Open
Abstract
Intestinal epithelium regenerates rapidly through proliferation of intestinal stem cells (ISCs), orchestrated by potent mitogens secreted within the crypt niche. However, mechanisms regulating these mitogenic factors remain largely unknown. Here, we demonstrate that transit-amplifying (TA) cells, marked by unconventional prefoldin RPB5 interactor (URI), control R-spondin production to guide ISC proliferation. Genetic intestinal URI ablation in mice injures TA cells, reducing their survival capacity, leading to an inflamed tissue and subsequently decreasing R-spondin levels, thereby causing ISC quiescence and disruption of intestinal structure. R-spondin supplementation or restoration of R-spondin levels via cell death inhibition by c-MYC elimination or the suppression of inflammation reinstates ISC proliferation in URI-depleted mice. However, selective c-MYC and p53 suppression are required to fully restore TA cell survival and differentiation capacity and preserve complete intestinal architecture. Our data reveal an unexpected role of TA cells, which represent a signaling platform instrumental for controlling inflammatory cues and R-spondin production, essential for maintaining ISC proliferation and tissue regeneration.
Collapse
Affiliation(s)
- Almudena Chaves-Pérez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| | - Karla Santos-de-Frutos
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| | - Sergio de la Rosa
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| | - Irene Herranz-Montoya
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
21
|
Liu HX, Zhao H, Xi C, Li S, Ma LP, Lu X, Yan J, Tian XL, Gao L, Tian M, Liu QJ. CPT1 Mediated Ionizing Radiation-Induced Intestinal Injury Proliferation via Shifting FAO Metabolism Pathway and Activating the ERK1/2 and JNK Pathway. Radiat Res 2022; 198:488-507. [PMID: 36351324 DOI: 10.1667/rade-21-00174.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 07/07/2022] [Indexed: 06/16/2023]
Abstract
The intestinal compensatory proliferative potential is a key influencing factor for susceptibility to radiation-induced intestinal injury. Studies indicated that the carnitine palmitoyltransferase 1 (CPT1) mediated fatty acid β-oxidation (FAO) plays a crucial role in promoting the survival and proliferation of tumor cells. Here, we aimed to explore the effect of 60Co gamma rays on CPT1 mediated FAO in the radiation-induced intestinal injury models, and investigate the role of CPT1 mediated FAO in the survival and proliferation of intestinal cells after irradiation. We detected the changed of FAO in the plasma and small intestine of Sprague Dawley (SD) rats at 24 h after 60Co gamma irradiation (0, 5 and 10 Gy), using target metabolomics, qRT-PCR, immunohistochemistry (IHC), western blot (WB) and related enzymatic activity kits. We then analyzed the FAO changes in radiation-induced intestinal injury models regardless of ex vivo (mice enteroids), or in vitro (normal human intestinal epithelial cell lines, HIEC-6). HIEC-6 cells were transduced with lentivirus vector GV392 and treated with puromycin for obtaining CPT1 stable knockout cell lines, named CPT1 KO. CPT1 enzymatic activities of HIEC-6 cells and mice enteroids were also inhibited by pharmaceutical inhibitor ST1326 and Etomoxir (ETO), to study the function of CPT1 in the survival and proliferation of HIEC-6 cells after 60Co gamma irradiation. We found that CPT1 mediated FAO was altered in the small intestine of the SD rats after irradiation, especially, the expression level and enzymatic activity of CPT1 were significantly increased. Similarly, the expression levels of CPT1 were also remarkably enhanced in mice enteroids and HIEC-6 cells after irradiation. CPT1 inhibition decreased the proliferation of the HIEC-6 cells and mice enteroids after irradiation partially by reducing the extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways activation, CPT1 inhibition also reduced the proliferation of mice enteroids after irradiation partially by down-regulating the Wnt/β-catenin signaling activity. In conclusion, our study indicated that CPT1 plays a crucial role in promoting intestinal epithelial cell proliferation after irradiation.
Collapse
Affiliation(s)
- Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Cong Xi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Li-Ping Ma
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Juan Yan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
22
|
Yang JY, Liu MJ, Lv L, Guo JR, He KY, Zhang H, Wang KK, Cui CY, Yan BZ, Du DD, Wang JH, Ding Q, Liu GL, Xu ZX, Jian YP. Metformin alleviates irradiation-induced intestinal injury by activation of FXR in intestinal epithelia. Front Microbiol 2022; 13:932294. [PMID: 36312920 PMCID: PMC9608595 DOI: 10.3389/fmicb.2022.932294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Abdominal irradiation (IR) destroys the intestinal mucosal barrier, leading to severe intestinal infection. There is an urgent need to find safe and effective treatments to reduce IR-induced intestinal injury. In this study, we reported that metformin protected mice from abdominal IR-induced intestinal injury by improving the composition and diversity of intestinal flora. The elimination of intestinal microbiota (Abx) abrogated the protective effects of metformin on irradiated mice. We further characterized that treatment of metformin increased the murine intestinal abundance of Lactobacillus, which mediated the radioprotective effect. The administration of Lactobacillus or fecal microbiota transplantation (FMT) into Abx mice considerably lessened IR-induced intestinal damage and restored the radioprotective function of metformin in Abx mice. In addition, applying the murine intestinal organoid model, we demonstrated that IR inhibited the formation of intestinal organoids, and metformin alone bore no protective effect on organoids after IR. However, a combination of metformin and Lactobacillus or Lactobacillus alone displayed a strong radioprotection on the organoid formation. We demonstrated that metformin/Lactobacillus activated the farnesoid X receptor (FXR) signaling in intestinal epithelial cells and hence upregulated tight junction proteins and mucins in intestinal epithelia, increased the number of goblet cells, and augmented the mucus layer thickness to maintain the integrity of intestinal epithelial barrier, which eventually contributed to reduced radiation intestinal injury. In addition, we found that Lactobacillus abundance was significantly increased in the intestine of patients receiving metformin while undergoing abdominal radiotherapy and the abundance was negatively correlated with the diarrhea duration of patients. In conclusion, our results demonstrate that metformin possesses a protective effect on IR-induced intestinal injury by upregulating the abundance of Lactobacillus in the intestine.
Collapse
Affiliation(s)
- Jing-Yu Yang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Meng-Jie Liu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Lin Lv
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jin-Rong Guo
- School of Life Sciences, Henan University, Kaifeng, China
| | - Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Hong Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Ke-Ke Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Cui-Yun Cui
- Department of Blood Transfusion, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Bei-Zhan Yan
- Department of Blood Transfusion, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan-Dan Du
- Department of Internal Medicine, Ningjin County People's Hospital, Dezhou, China
| | - Jin-Hua Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Guo-Long Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Guo-Long Liu
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, China
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Zhi-Xiang Xu
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, China
- Yong-Ping Jian
| |
Collapse
|
23
|
Li X, Liu J, Zhou Y, Wang L, Wen Y, Ding K, Zou L, Liu X, Li A, Wang Y, Fu H, Huang M, Ding G, Zhou J. Jwa participates the maintenance of intestinal epithelial homeostasis via ERK/FBXW7-mediated NOTCH1/PPARγ/STAT5 axis and acts as a novel putative aging related gene. Int J Biol Sci 2022; 18:5503-5521. [PMID: 36147468 PMCID: PMC9461671 DOI: 10.7150/ijbs.72751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022] Open
Abstract
The intestinal epithelium is a rapid self-renewal and regenerated tissue of which the structural integrity is beneficial for maintaining health. The integrity of intestinal epithelium depends on the balance of cell proliferation, differentiation, migration, and the function of intestinal stem cells, which declines due to genetic defect or aging. Jwa participates in multiple cellular processes; it also responds to oxidative stress and repairs DNA damage. However, whether Jwa plays a role in maintaining the homeostasis of intestinal renewal and regeneration is not clear. In the present study, we firstly described that the deletion of Jwa disturbed the homeostasis of intestinal epithelial renewal and regeneration. Jwa deficiency promoted NOTCH1 degradation in the ERK/FBXW7-mediated ubiquitin-proteasome pathway, thus disturbing the PPARγ/STAT5 axis. These mechanisms might partially contribute to the reduction of intestinal stem cell function and alteration of intestinal epithelial cell lineage distribution, finally suppressing the renewal and regeneration of intestinal epithelium. Moreover, our results also revealed that Jwa was a novel putative aging related gene.
Collapse
Affiliation(s)
- Xiong Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jingwen Liu
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yan Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Luman Wang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yifan Wen
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Kun Ding
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Lu Zou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xia Liu
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yun Wang
- Animal Core Facility of Nanjing Medical University, Jiangsu Animal Experimental Center of Medical and Pharmaceutical Research, Nanjing 211166, China
| | - Heling Fu
- Animal Core Facility of Nanjing Medical University, Jiangsu Animal Experimental Center of Medical and Pharmaceutical Research, Nanjing 211166, China
| | - Min Huang
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guoxian Ding
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
24
|
A multi-omics approach based on 1H-NMR metabonomics combined with target protein analysis to reveal the mechanism of RIAISs on cervical carcinoma patients. Aging (Albany NY) 2022; 15:1878-1889. [PMID: 36170024 PMCID: PMC10085587 DOI: 10.18632/aging.204305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
Cervical carcinoma (CC) is the fourth most common cancer in females and radiotherapy is always as the definitive therapy for cervical cancer patients who are not suitable for surgery. Radiation-induced acute intestinal symptoms (RIAISs) occur in 50-80% of cervical cancer patients. Some research shows that RIAISs may relate to inflammatory reaction by radiotherapy but the action mechanism is also not clearly and the details of the molecular mechanism are still urgently needed. In this paper, basing on 1H-NMR metabonomic and bioinformatics analysis, an integrated multi-omics analysis including metabonomics and bioinformatics was performed. We propose a hypothesis about pathogenic mechanism on RIAISs and proofed it through western-blot. Our results indicated significant dysregulation of metabolic pathways in RIAIS patients. Most importantly, we found that RIAISs were associated p53 and PI3K-AKT pathway.
Collapse
|
25
|
Feng Z, Xu Q, He X, Wang Y, Fang L, Zhao J, Cheng Y, Liu C, Du J, Cai J. FG-4592 protects the intestine from irradiation-induced injury by targeting the TLR4 signaling pathway. Stem Cell Res Ther 2022; 13:271. [PMID: 35729656 PMCID: PMC9210818 DOI: 10.1186/s13287-022-02945-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022] Open
Abstract
Background Severe ionizing radiation (IR)-induced intestinal injury associates with high mortality, which is a worldwide problem requiring urgent attention. In recent years, studies have found that the PHD-HIF signaling pathway may play key roles in IR-induced intestinal injury, and we found that FG-4592, the PHD inhibitor, has significant radioprotective effects on IR-induced intestinal injury. Methods In the presence or absence of FG-4592 treatment, the survival time, pathology, cell viability, cell apoptosis, and organoids of mice after irradiation were compared, and the mechanism was verified after transcriptome sequencing. The data were analyzed using SPSS ver. 19 software. Results Our results show that FG-4592 had significant radioprotective effects on the intestine. FG-4592 improved the survival of irradiated mice, inhibited the radiation damage of intestinal tissue, promoted the regeneration of intestinal crypts after IR and reduced the apoptosis of intestinal crypt cells. Through organoid experiments, it is found that FG-4592 promoted the proliferation and differentiation of intestinal stem cells (ISCs). Moreover, the results of RNA sequencing and Western blot showed that FG-4592 significantly upregulated the TLR4 signaling pathway, and FG-4592 had no radioprotection on TLR4 KO mice, suggesting that FG-4592 may play protective role against IR by targeting TLR4. Conclusion Our work proves that FG-4592 may promote the proliferation and regeneration of ISCs through the targeted regulation of the TLR4 signaling pathway and ultimately play radioprotective roles in IR-induced injury. These results enrich the molecular mechanism of FG-4592 in protecting cells from IR-induced injury and provide new methods for the radioprotection of intestine.
Collapse
Affiliation(s)
- Zhenlan Feng
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Qinshu Xu
- College of Basic Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiang He
- College of Basic Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yuedong Wang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Lan Fang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jianpeng Zhao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China. .,Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
26
|
Zhou Y, Liu J, Li X, Wang L, Hu L, Li A, Zhou J. JAC4 Protects from X-Ray Radiation-Induced Intestinal Injury by JWA-Mediated Anti-Oxidation/Inflammation Signaling. Antioxidants (Basel) 2022; 11:antiox11061067. [PMID: 35739964 PMCID: PMC9220415 DOI: 10.3390/antiox11061067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Radiation-induced intestinal injury is one of the major side effects in patients receiving radiation therapy. There is no specific treatment for radiation-induced enteritis in the clinic. We synthesized a compound, named JAC4, which is an agonist and can increase JWA protein expression. JWA has been shown to reduce oxidative stress, DNA damage, anti-apoptosis, and anti-inflammatory; in addition, the small intestine epithelium showed dysplasia in JWA knockout mice. We hypothesized that JAC4 might exert a protective effect against radiation-induced intestinal damage. Herein, X-ray radiation models were built both in mice and in intestinal crypt epithelial cells (IEC-6). C57BL/6J mice were treated with JAC4 by gavage before abdominal irradiation (ABI); the data showed that JAC4 significantly reduced radiation-induced intestinal mucosal damage and increased the survival rate. In addition, radiation-induced oxidative stress damage and systemic inflammatory response were also mitigated by JAC4 treatment. Moreover, JAC4 treatment alleviated DNA damage, decreased cell apoptosis, and maintained intestinal epithelial cell proliferation in mice. In vitro data showed that JAC4 treatment significantly inhibited ROS formation and cell apoptosis. Importantly, all the above protective effects of JAC4 on X-ray radiation-triggered intestinal injury were no longer determined in the intestinal epithelium of JWA knockout mice. Therefore, our results provide the first evidence that JAC4 protects the intestine from radiation-induced enteritis through JWA-mediated anti-oxidation/inflammation signaling.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jingwen Liu
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xiong Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Luman Wang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Lirong Hu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing 210042, China;
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Correspondence:
| |
Collapse
|
27
|
Sitagliptin Alleviates Radiation-Induced Intestinal Injury by Activating NRF2-Antioxidant Axis, Mitigating NLRP3 Inf--lammasome Activation, and Reversing Gut Microbiota Disorder. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2586305. [PMID: 35620578 PMCID: PMC9129991 DOI: 10.1155/2022/2586305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Radiation-induced intestinal injury is a common and critical complication of radiotherapy for pelvic or abdominal tumors, with limited therapeutic strategies and effectiveness. Sitagliptin, a dipeptidyl peptidase IV (DPP4) inhibitor, has previously been reported to alleviate total body irradiation- (TBI-) induced damage of hematopoietic system in mice, but its effect on radiation-induced intestinal injury remains unclear. In this study, we confirmed that Sitagliptin could not only protect mice from death and weight loss caused by whole abdominal irradiation (WAI) but also improve the morphological structure of intestine and the regeneration ability of enterocytes. In addition, Sitagliptin significantly inhibited the production of radiation-induced proinflammatory cytokines and reduced the number of apoptotic intestinal epithelial cells and γ-H2AX expression. In vitro, we demonstrated that Sitagliptin protected HIEC-6 cells from ionizing radiation, resulting in increased cell viability and reduced DNA damage. Mechanistically, the radiation protection of Sitagliptin might be related to the upregulation of NRF2 level and the decrease of NLRP3 inflammasome activity. Importantly, Sitagliptin significantly restored radiation-induced changes in bacterial composition. In conclusion, our results suggested that Sitagliptin could reduce WAI-induced intestinal injury in mice, which may provide novel therapeutic strategy for radiation-induced intestinal injury.
Collapse
|
28
|
Liao Z, Hu C, Gao Y. Mechanisms modulating the activities of intestinal stem cells upon radiation or chemical agent exposure. JOURNAL OF RADIATION RESEARCH 2022; 63:149-157. [PMID: 35021216 PMCID: PMC8944320 DOI: 10.1093/jrr/rrab124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/04/2021] [Indexed: 06/14/2023]
Abstract
Intestinal stem cells (ISCs) are essential for the regeneration of intestinal cells upon radiation or chemical agent damage. As for radiation-induced damage, the expression of AIM2, YAP, TLR3, PUMA or BVES can aggravate ISCs depletion, while the stimulation of TLR5, HGF/MET signaling, Ass1 gene, Slit/Robo signaling facilitate the radio-resistance of ISCs. Upon chemical agent treatment, the activation of TRAIL or p53/PUMA pathway exacerbate injury on ISCs, while the increased levels of IL-22, β-arrestin1 can ease the damage. The transformation between reserve ISCs (rISCs) maintaining quiescent states and active ISCs (aISCs) that are highly proliferative has obtained much attention in recent years, in which ISCs expressing high levels of Hopx, Bmi1, mTert, Krt19 or Lrig1 are resistant to radiation injury, and SOX9, MSI2, clusterin, URI are essential for rISCs maintenance. The differentiated cells like Paneth cells and enteroendocrine cells can also obtain stemness driven by radiation injury mediated by Wnt or Notch signaling. Besides, Mex3a-expressed ISCs can survive and then proliferate into intestinal epithelial cells upon chemical agent damage. In addition, the modulation of symbiotic microbes harboring gastrointestinal (GI) tract is also a promising strategy to protect ISCs against radiation damage. Overall, the strategies targeting mechanisms modulating ISCs activities are conducive to alleviating GI injury of patients receiving chemoradiotherapy or victims of nuclear or chemical accident.
Collapse
Affiliation(s)
| | | | - Yue Gao
- Corresponding author. Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine; 27 Taiping Road, Beijing, 100850, People’s Republic of China. E-mail:
| |
Collapse
|
29
|
Gu J, Zhao L, Chen YZ, Guo YX, Sun Y, Guo Q, Duan GX, Li C, Tang ZB, Zhang ZX, Qin LQ, Xu JY. Preventive effect of sanguinarine on intestinal injury in mice exposed to whole abdominal irradiation. Biomed Pharmacother 2021; 146:112496. [PMID: 34959117 DOI: 10.1016/j.biopha.2021.112496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
Intestinal injury is one of the major side effects that are induced by medical radiation exposure, and has limited effective therapies. In this study, we investigated the beneficial effects of sanguinarine (SAN) on intestinal injury induced by ionizing radiation (IR) both in vitro and in vivo. Mice were exposed to whole abdominal irradiation (WAI) to mimic clinical scenarios. SAN was injected intraperitoneally to mitigate IR-induced injury. Histological examination was performed to assess the tissue injuries of the spleen and small intestine. A small intestinal epithelial cell line-6 (IEC-6) was analyzed for its viability and apoptosis in vitro under different treatments. Inflammation-related pathways and serum inflammatory cytokines were detected via Western blot analysis and ELISA, respectively. High-throughput sequencing was used to characterize the gut microbiota profile. High-performance liquid chromatography was performed to assess short-chain fatty acid contents in the colon. In vitro, SAN pretreatment protected cell viability and reduced apoptosis in IEC-6 cells. In vivo, SAN pretreatment protected immune organs, alleviated intestinal injury, and promoted intestinal recovery. SAN also reduced the levels of inflammatory cytokines, suppressed high mobility group box 1 (HMGB1)/ Toll-like receptor 4 (TLR4) pathway activation, and modulated gut microbiota composition. Our findings demonstrate that the beneficial properties of SAN alleviated intestinal radiation injury. Thus, SAN represents a therapeutic option for protecting against IR-induced intestinal injury in preclinical settings.
Collapse
Affiliation(s)
- Jia Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Yu-Zhong Chen
- Yancheng Municipal Center for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Ya-Xin Guo
- Department of Nutrition and Food Hygiene School of Public Health, Soochow University, Suzhou, Jiangsu, China
| | - Yue Sun
- Department of Nutrition and Food Hygiene School of Public Health, Soochow University, Suzhou, Jiangsu, China
| | - Qing Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Guang-Xin Duan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Chao Li
- Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhi-Bing Tang
- Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zi-Xiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene School of Public Health, Soochow University, Suzhou, Jiangsu, China.
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
30
|
Jian YP, Yang G, Zhang LH, Liang JY, Zhou HL, Wang YS, Xu ZX. Lactobacillus plantarum alleviates irradiation-induced intestinal injury by activation of FXR-FGF15 signaling in intestinal epithelia. J Cell Physiol 2021; 237:1845-1856. [PMID: 34881818 DOI: 10.1002/jcp.30651] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/23/2022]
Abstract
Abdominal irradiation (IR) may destroy the intestinal mucosal barrier, leading to severe intestinal infection and multiple organ dysfunction syndromes. The role of intestinal microbiota in the development of IR-induced intestinal injury remains largely unknown. Herein, we reported that abdominal IR altered the composition of the microbiota and reduced the abundance and diversity of the gut microbiome. Alterations of bacteria, in particular reduction of Lactobacillus, played a critical role in IR-induced intestinal injury. Fecal microbiota transplant (FMT) from normal mice or administration of Lactobacillus plantarum to intestinal microbiota-eliminated mice substantially reduced IR-induced intestinal damage and prevented mice from IR-induced death. We further characterized that L. plantarum activated the farnesoid X receptor (FXR) - fibroblast growth factor 15 (FGF15) signaling in intestinal epithelial cells and hence promoted DNA-damage repair. Application of GW4064, an activator of FXR, to microbiota eliminated mice markedly mitigated IR-induced intestinal damage, reduced intestinal epithelial cell death and promoted the survival of IR mice. In contrast, suppression of FXR with Gly-β-MCA, a bile acid and an intestine-selective and high-affinity FXR inhibitor, abrogated L. Plantarum-mediated protection on the ileum of IR mice. Taken together, our findings not only provide new insights into the role of intestinal flora in radiation-induced intestinal injury but also shed new light on the application of probiotics for the protection of radiation-damaged individuals.
Collapse
Affiliation(s)
- Yong-Ping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Li-Hong Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Ji-Yong Liang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China.,School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
31
|
Herranz-Montoya I, Park S, Djouder N. A comprehensive analysis of prefoldins and their implication in cancer. iScience 2021; 24:103273. [PMID: 34761191 PMCID: PMC8567396 DOI: 10.1016/j.isci.2021.103273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prefoldins (PFDNs) are evolutionary conserved co-chaperones, initially discovered in archaea but universally present in eukaryotes. PFDNs are prevalently organized into hetero-hexameric complexes. Although they have been overlooked since their discovery and their functions remain elusive, several reports indicate they act as co-chaperones escorting misfolded or non-native proteins to group II chaperonins. Unlike the eukaryotic PFDNs which interact with cytoskeletal components, the archaeal PFDNs can bind and stabilize a wide range of substrates, possibly due to their great structural diversity. The discovery of the unconventional RPB5 interactor (URI) PFDN-like complex (UPC) suggests that PFDNs have versatile functions and are required for different cellular processes, including an important role in cancer. Here, we summarize their functions across different species. Moreover, a comprehensive analysis of PFDNs genomic alterations across cancer types by using large-scale cancer genomic data indicates that PFDNs are a new class of non-mutated proteins significantly overexpressed in some cancer types.
Collapse
Affiliation(s)
- Irene Herranz-Montoya
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Solip Park
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| |
Collapse
|
32
|
Zhu X, Yang M, Lin Z, Mael SK, Li Y, Zhang L, Kong Y, Zhang Y, Ren Y, Li J, Wang Z, Zhang Y, Yang B, Huang T, Guan F, Li Z, Moses RE, Li L, Wang B, Li X, Zhang B. REGγ drives Lgr5 + stem cells to potentiate radiation induced intestinal regeneration. SCIENCE CHINA. LIFE SCIENCES 2021; 65:1608-1623. [PMID: 34826093 DOI: 10.1007/s11427-021-2018-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5), a marker of intestinal stem cells (ISCs), is considered to play key roles in tissue homoeostasis and regeneration after acute radiation injury. However, the activation of Lgr5 by integrated signaling pathways upon radiation remains poorly understood. Here, we show that irradiation of mice with whole-body depletion or conditional ablation of REGγ in Lgr5+ stem cell impairs proliferation of intestinal crypts, delaying regeneration of intestine epithelial cells. Mechanistically, REGγ enhances transcriptional activation of Lgr5 via the potentiation of both Wnt and Hippo signal pathways. TEAD4 alone or cooperates with TCF4, a transcription factor mediating Wnt signaling, to enhance the expression of Lgr5. Silencing TEAD4 drastically attenuated β-catenin/TCF4 dependent expression of Lgr5. Together, our study reveals how REGγ controls Lgr5 expression and expansion of Lgr5+ stem cells in the regeneration of intestinal epithelial cells. Thus, REGγ proteasome appears to be a potential therapeutic target for radiation-induced gastrointestinal disorders.
Collapse
Affiliation(s)
- Xiangzhan Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Minglei Yang
- Department of Orthopedic Oncology, Changzheng Hospital, the Second Military Medical University, Shanghai, 200003, China
| | - Zaijun Lin
- Department of Spinal Surgery, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Solomon Kibreab Mael
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ya Li
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lili Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yaqi Kong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yaodong Zhang
- Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Yuping Ren
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianhui Li
- Department of Pathology, Xuchang Central Hospital Affiliated to Henan University of Science and Technology, Xuchang, 461000, China
| | - Zimeng Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bo Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tingmei Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenlong Li
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Robb E Moses
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bing Wang
- Department of Oncological Surgery, Minhang Branch, Shanghai Cancer Center, Fudan University, Shanghai, 200240, China.
| | - Xiaotao Li
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 20051, China.
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
33
|
Vitamin D Receptor Protects against Radiation-Induced Intestinal Injury in Mice via Inhibition of Intestinal Crypt Stem/Progenitor Cell Apoptosis. Nutrients 2021; 13:nu13092910. [PMID: 34578802 PMCID: PMC8466099 DOI: 10.3390/nu13092910] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
It is urgent to seek new potential targets for the prevention or relief of gastrointestinal syndrome in clinical radiation therapy for cancers. Vitamin D, mediated through the vitamin D receptor (VDR), has been identified as a protective nutrient against ionizing radiation (IR)-induced damage. This study investigated whether VDR could inhibit IR-induced intestinal injury and explored underlying mechanism. We first found that vitamin D induced VDR expression and inhibited IR-induced DNA damage and apoptosis in vitro. VDR was highly expressed in intestinal crypts and was critical for crypt stem/progenitor cell proliferation under physiological conditions. Next, VDR-deficient mice exposed to IR significantly increased DNA damage and crypt stem/progenitor cell apoptosis, leading to impaired intestinal regeneration as well as shorter survival time. Furthermore, VDR deficiency activated the Pmaip1-mediated apoptotic pathway of intestinal crypt stem/progenitor cells in IR-treated mice, whereas inhibition of Pmaip1 expression by siRNA transfection protected against IR-induced cell apoptosis. Therefore, VDR protects against IR-induced intestinal injury through inhibition of crypt stem/progenitor cell apoptosis via the Pmaip1-mediated pathway. Our results reveal the importance of VDR level in clinical radiation therapy, and targeting VDR may be a useful strategy for treatment of gastrointestinal syndrome.
Collapse
|
34
|
Heat Killed Salmonella typhimurium Protects Intestine Against Radiation Injury Through Wnt Signaling Pathway. JOURNAL OF ONCOLOGY 2021; 2021:5550956. [PMID: 34239563 PMCID: PMC8233082 DOI: 10.1155/2021/5550956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/02/2021] [Accepted: 05/21/2021] [Indexed: 01/05/2023]
Abstract
Gastrointestinal (GI) toxicity caused by ionizing radiation (IR) is a dose limiting factor in radiotherapy and a great threat for individual nuclear-related military missions. However, there are currently no available strategies to effectively prevent the damage on the intestine induced by IR. In the present study, the protective activity of Heat Killed Salmonella typhimurium (HKST) on intestine against IR was investigated. Through mouse intestinal organoids and whole body irradiation of mice, we found that the pretreatment with HKST significantly preserved the structure of small intestine upon IR exposure and promoted the proliferation of intestinal cells post-IR. Further study revealed that the radioprotective effects of HKST were involved in DNA damage response (DDR) signaling. Moreover, the stimulation of DDR signaling by HKST upon radiation damage was mediated by Wnt signaling, in which the inhibition of Wnt signaling diminished the radioprotective effects of HKST. To sum up, our study suggested HKST as a potential radioprotectant used for prevention of IR-induced GI toxicity.
Collapse
|
35
|
Abstract
Tumour recurrence is a serious impediment to cancer treatment, but the mechanisms involved are poorly understood. The most frequently used anti-tumour therapies-chemotherapy and radiotherapy-target highly proliferative cancer cells. However non- or slow-proliferative dormant cancer cells can persist after treatment, eventually causing tumour relapse. Whereas the reversible growth arrest mechanism allows quiescent cells to re-enter the cell cycle, senescent cells are largely thought to be irreversibly arrested, and may instead contribute to tumour growth and relapse through paracrine signalling mechanisms. Thus, due to the differences in their growth arrest mechanism, metabolic features, plasticity and adaptation to their respective tumour microenvironment, dormant-senescent and -quiescent cancer cells could have different but complementary roles in fuelling tumour growth. In this review article, we discuss the implication of dormant cancer cells in tumour relapse and the need to understand how quiescent and senescent cells, respectively, may play a part in this process.
Collapse
|
36
|
Cycling Stem Cells Are Radioresistant and Regenerate the Intestine. Cell Rep 2021; 32:107952. [PMID: 32726617 PMCID: PMC7789978 DOI: 10.1016/j.celrep.2020.107952] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/09/2020] [Accepted: 07/02/2020] [Indexed: 01/17/2023] Open
Abstract
A certain number of epithelial cells in intestinal crypts are DNA damage resistant and contribute to regeneration. However, the cellular mechanism underlying intestinal regeneration remains unclear. Using lineage tracing, we show that cells marked by an Msi1 reporter (Msi1+) are right above Lgr5high cells in intestinal crypts and exhibit DNA damage resistance. Single-cell RNA sequencing reveals that the Msi1+ cells are heterogeneous with the majority being intestinal stem cells (ISCs). The DNA damage-resistant subpopulation of Msi1+ cells is characterized by low-to-negative Lgr5 expression and is more rapidly cycling than Lgr5high radiosensitive crypt base columnar stem cells (CBCs). This enables an efficient repopulation of the intestinal epithelium at early stage when Lgr5high cells are not emerging. Furthermore, relative to CBCs, Msi1+ cells preferentially produce Paneth cells during homeostasis and upon radiation repair. Together, we demonstrate that the DNA damage-resistant Msi1+ cells are cycling ISCs that maintain and regenerate the intestinal epithelium. Quiescent reserve stem cells in the intestine are thought to activate following irradiation to restore the depleted Lgr5high CBCs. Now, Sheng et al. demonstrate that cycling Msi1+ cells represent DNA damage-resistant ISCs that support efficient repopulation of the intestinal epithelium at the early stage of post-radiation repair, ahead of Lgr5high CBCs.
Collapse
|
37
|
Teijeiro A, Garrido A, Ferre A, Perna C, Djouder N. Inhibition of the IL-17A axis in adipocytes suppresses diet-induced obesity and metabolic disorders in mice. Nat Metab 2021; 3:496-512. [PMID: 33859430 DOI: 10.1038/s42255-021-00371-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Overnutrition causes obesity, a global health problem without any effective therapy. Obesity is characterized by low-grade inflammation, which predisposes individuals to metabolic syndrome via unknown mechanisms. Here, we demonstrate that abolishing the interleukin-17A (IL-17A) axis in mice by inhibition of RORγt-mediated IL-17A production by digoxin, or by ubiquitous deletion of IL-17 receptor A (Il17ra), suppresses diet-induced obesity (DIO) and metabolic disorders, and promotes adipose-tissue browning, thermogenesis and energy expenditure. Genetic ablation of Il17ra specifically in adipocytes is sufficient to completely prevent DIO and metabolic dysfunction in mice. IL-17A produced in response to DIO induces PPARγ phosphorylation at Ser273 in adipocytes in a CDK5-dependent manner, thereby modifying expression of diabetogenic and obesity genes, which correlates with IL-17A signalling in white adipose tissues of individuals with morbid obesity. These findings reveal an unanticipated role for IL-17A in adipocyte biology, in which its direct action pathogenically reprograms adipocytes, promoting DIO and metabolic syndrome. Targeting the IL-17A axis could be an efficient antiobesity strategy.
Collapse
Affiliation(s)
- Ana Teijeiro
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, Spain
| | - Amanda Garrido
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, Spain
| | - Anna Ferre
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, Spain.
| |
Collapse
|
38
|
Wang Z, Yang Y, Hu S, He J, Wu Z, Qi Z, Huang M, Liu R, Lin Y, Tan C, Xu M, Zhang Z. Short-form RON (sf-RON) enhances glucose metabolism to promote cell proliferation via activating β-catenin/SIX1 signaling pathway in gastric cancer. Cell Biol Toxicol 2021; 37:35-49. [PMID: 32399910 PMCID: PMC7851020 DOI: 10.1007/s10565-020-09525-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Recepteur d'origine nantais (RON) has been implicated in cell proliferation, metastasis, and chemoresistance of various human malignancies. The short-form RON (sf-RON) encoded by RON transcripts was overexpressed in gastric cancer tissues, but its regulatory functions remain illustrated. Here, we found that sf-RON promoted gastric cancer cell proliferation by enhancing glucose metabolism. Furthermore, sf-RON was proved to induce the β-catenin expression level through the AKT1/GSK3β signaling pathway. Meanwhile, the binding sites of β-catenin were identified in the promoter region of SIX1 and it was also demonstrated that β-catenin positively regulated SIX1 expression. SIX1 enhanced the promoter activity of key proteins in glucose metabolism, such as GLUT1 and LDHA. Results indicated that sf-RON regulated the cell proliferation and glucose metabolism of gastric cancer by participating in a sf-RON/β-catenin/SIX1 signaling axis and had significant implications for choosing the therapeutic target of gastric cancer.
Collapse
Affiliation(s)
- Ziliang Wang
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Medicine, Shanghai, 200092 China
| | - Yufei Yang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Shuang Hu
- Department of Pharmacy, Eye & Ent Hospital of Fudan University, Shanghai, 200031 China
| | - Jian He
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Zheng Wu
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| | - Zihao Qi
- Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Mingzhu Huang
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| | - Rujiao Liu
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| | - Ying Lin
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| | - Cong Tan
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 China
| | - Midie Xu
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 China
| | - Zhe Zhang
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| |
Collapse
|
39
|
Investigation of an Alternative Marker for Hypermutability Evaluation in Different Tumors. Genes (Basel) 2021; 12:genes12020197. [PMID: 33572856 PMCID: PMC7910966 DOI: 10.3390/genes12020197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/01/2023] Open
Abstract
A growing number of studies have shown immunotherapy to be a promising treatment strategy for several types of cancer. Short tandem repeats (STRs) have been proven to be alternative markers for the evaluation of hypermutability in gastrointestinal (GI) cancers. However, the status of STRs and microsatellite instability (MSI) in other tumors have not yet been investigated. To further compare STR and MSI alterations in different tumors, a total of 407 paired DNAs were analyzed from the following eight tumor types: breast cancer (BC), hepatocellular cancer (HCC), pancreatic cancer (PC), colorectal cancer (CRC), gastric cancer (GC), lung cancer (LC), esophageal cancer (EC), and renal cell cancer (RCC). The STR alteration frequencies varied in different tumors as expected. Interestingly, none of the patients possessed MSI-low (MSI-L) or MSI-high (MSI-H), except for the GI patients. The highest STR alteration was detected in EC (77.78%), followed by CRC (69.77%), HCC (63.33%), GC (54.55%), LC (48.00%), RCC (40.91%), BC (36.11%), and PC (25.71%). The potential cutoff for hypermutability was predicted using the published objective response rate (ORR), and the cutoff of LC and HCC was the same as that of GI cancers (26.32%). The cutoffs of 31.58% and 10.53% should be selected for BC and RCC, respectively. In summary, we compared MSI and STR status in eight tumor types, and predicted the potential threshold for hypermutability of BC, HCC, CRC, GC, LC, EC, and RCC.
Collapse
|
40
|
Hageman JH, Heinz MC, Kretzschmar K, van der Vaart J, Clevers H, Snippert HJG. Intestinal Regeneration: Regulation by the Microenvironment. Dev Cell 2021; 54:435-446. [PMID: 32841594 DOI: 10.1016/j.devcel.2020.07.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023]
Abstract
Damage to the intestinal stem cell niche can result from mechanical stress, infections, chronic inflammation or cytotoxic therapies. Progenitor cells can compensate for insults to the stem cell population through dedifferentiation. The microenvironment modulates this regenerative response by influencing the activity of signaling pathways, including Wnt, Notch, and YAP/TAZ. For instance, mesenchymal cells and immune cells become more abundant after damage and secrete signaling molecules that promote the regenerative process. Furthermore, regeneration is influenced by the nutritional state, microbiome, and extracellular matrix. Here, we review how all these components cooperate to restore epithelial homeostasis in the intestine after injury.
Collapse
Affiliation(s)
- Joris H Hageman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Maria C Heinz
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Kai Kretzschmar
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Mildred-Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Jelte van der Vaart
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Hugo J G Snippert
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
41
|
β-Naphthoflavone Activation of the Ah Receptor Alleviates Irradiation-Induced Intestinal Injury in Mice. Antioxidants (Basel) 2020; 9:antiox9121264. [PMID: 33322705 PMCID: PMC7763649 DOI: 10.3390/antiox9121264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/05/2022] Open
Abstract
Radiotherapy induced gastrointestinal syndrome results from the acute damage of intestinal stem cells, impaired crypts reconstruction, and subsequent breakdown of the mucosal barrier. The toxicity of ionizing radiation is associated with oxidative stress in the intestinal epithelial cells (IECs). Moreover, the rapid proliferation of IECs is a risk factor for radiation damage. β-naphthoflavone (BNF) is an agonist of the aryl hydrocarbon receptor (AhR) and possesses potential antioxidative activity. We investigated BNF radioprotection in IECs experiencing γ-ray exposure, contributed to mitigation of radiation enteritis. BNF significantly enhanced cell viability and suppressed cell apoptosis in an AhR activation-dependent manner. The mechanism of BNF reducing the IECs radiosensitivity was associated with cell cycle arrest and suppression of cell proliferation. In contrast, AhR antagonist CH-223191 significantly blocked BNF-induced cell cycle arrest. Cyp1a1 mRNA levels are induced after irradiation in a dose-dependent manner, and CYP1A1 protein expression increased in the irradiated intestinal tract as well. BNF also reduces DNA strand breaks induced by irradiation. These studies demonstrate that BNF pretreatment prolonged median survival time of mice upon exposure to a lethal dose of radiation and alleviated irradiation-induced toxicity within the bowel.
Collapse
|
42
|
Bachman JF, Blanc RS, Paris ND, Kallenbach JG, Johnston CJ, Hernady E, Williams JP, Chakkalakal JV. Radiation-Induced Damage to Prepubertal Pax7+ Skeletal Muscle Stem Cells Drives Lifelong Deficits in Myofiber Size and Nuclear Number. iScience 2020; 23:101760. [PMID: 33241204 PMCID: PMC7674517 DOI: 10.1016/j.isci.2020.101760] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
During prepubertal development, muscle stem cells (satellite cells, SCs) actively contribute to myofiber growth. Because some SCs are active during this time, they may be particularly susceptible to damage. Using a Small Animal Radiation Research Platform (SARRP), we investigated the effects of local fractionated radiation treatment on prepubertal SCs. Immediately after this regimen, there was a reduction in SC number. Although surviving SCs had deficiencies in function, some myogenic potential remained. Indeed, some muscle regenerative capacity persisted immediately after irradiation. Lastly, we assessed the long-term consequences of radiation-induced SC loss during prepuberty. We observed a reduction of myofiber size and corresponding loss of nuclei in both fast- and slow-contracting muscles 14 months post-irradiation. Notably, prepubertal SC depletion mimicked these lifelong deficits. This work highlights the susceptibility of prepubertal SCs to radiation exposure. We also reveal the importance of prepubertal SC contribution to the lifelong maintenance of skeletal muscle. Increased sensitivity of satellite cells to irradiation during prepubertal growth Prepubertal irradiation leads to lifelong deficits in skeletal muscle regenerative capacity Lifelong reduction in myofiber size and nuclear number is a consequence of prepubertal irradiation Satellite cell ablation mimics the lifelong effects of prepubertal irradiation on myofiber size and nuclear number
Collapse
Affiliation(s)
- John F Bachman
- Department of Pathology and Laboratory Medicine, Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Roméo S Blanc
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nicole D Paris
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacob G Kallenbach
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Carl J Johnston
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Eric Hernady
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacqueline P Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.,Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
43
|
Bernard H, Teijeiro A, Chaves-Pérez A, Perna C, Satish B, Novials A, Wang JP, Djouder N. Coxsackievirus B Type 4 Infection in β Cells Downregulates the Chaperone Prefoldin URI to Induce a MODY4-like Diabetes via Pdx1 Silencing. CELL REPORTS MEDICINE 2020; 1:100125. [PMID: 33205075 PMCID: PMC7659558 DOI: 10.1016/j.xcrm.2020.100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Enteroviruses are suspected to contribute to insulin-producing β cell loss and hyperglycemia-induced diabetes. However, mechanisms are not fully defined. Here, we show that coxsackievirus B type 4 (CVB4) infection in human islet-engrafted mice and in rat insulinoma cells displays loss of unconventional prefoldin RPB5 interactor (URI) and PDX1, affecting β cell function and identity. Genetic URI ablation in the mouse pancreas causes PDX1 depletion in β cells. Importantly, diabetic PDX1 heterozygous mice overexpressing URI in β cells are more glucose tolerant. Mechanistically, URI loss triggers estrogen receptor nuclear translocation leading to DNA methyltransferase 1 (DNMT1) expression, which induces Pdx1 promoter hypermethylation and silencing. Consequently, demethylating agent procainamide-mediated DNMT1 inhibition reinstates PDX1 expression and protects against diabetes in pancreatic URI-depleted mice . Finally, the β cells of human diabetes patients show correlations between viral protein 1 and URI, PDX1, and DNMT1 levels. URI and DNMT1 expression and PDX1 silencing provide a causal link between enterovirus infection and diabetes. Coxsackievirus B type 4 infection downregulates URI and affects β cell function Genetic URI ablation in mouse pancreas recapitulates diabetes URI controls Pdx1 methylation via ERα-activating DNMT1 Coxsackievirus B type 4, URI, PDX1, and DNMT1 expression correlate in human pancreata
Collapse
MESH Headings
- Animals
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Coxsackievirus Infections/genetics
- Coxsackievirus Infections/metabolism
- Coxsackievirus Infections/pathology
- Coxsackievirus Infections/virology
- DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/virology
- Disease Models, Animal
- Enterovirus B, Human/genetics
- Enterovirus B, Human/metabolism
- Enterovirus B, Human/pathogenicity
- Female
- Gene Expression Regulation
- Glucose/metabolism
- Glucose/pharmacology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Insulin-Secreting Cells/transplantation
- Male
- Mice
- Mice, Transgenic
- Procainamide/pharmacology
- Rats
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Hugo Bernard
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Ana Teijeiro
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Almudena Chaves-Pérez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Basanthi Satish
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Novials
- IDIBAPS, August Pi i Sunyer Biomedical Research Institute and, CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain
| | - Jennifer P. Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
- Corresponding author
| |
Collapse
|
44
|
Wang X, Wang J, Wu J. Emerging roles for HMGA2 in colorectal cancer. Transl Oncol 2020; 14:100894. [PMID: 33069103 PMCID: PMC7563012 DOI: 10.1016/j.tranon.2020.100894] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
HMGA2 (High Mobility Group AT-hook 2) has been reported to promote colorectal cancer (CRC) development by regulating the transcription of target genes. It participates in nearly all aspects of cellular processes, including cell transformation, proliferation, apoptosis, senescence, metastasis, epithelial-to-mesenchymal transition (EMT), DNA repair and stem cell self-renewal. In the past decades, a group of downstream targets and binding partners have been identified in a wide range of cancers. Our findings of HMGA2 as a key factor in the MDM2/p53, IL11/STAT3 and Wnt/β-catenin signaling pathways prompt us to summarize current advances in the functional and molecular basis of HMGA2 in CRC. In this review, we address the roles of HMGA2 in the oncogenic networks of CRC based on recent advances. We review its aberrant expression, explore underlying mechanisms, discuss its pro-tumorigenic effects, and highlight promising small-molecule inhibitors based on targeting HMGA2 here. However, the understanding of HMGA2 in CRC progression is still elusive, thus we also discuss the future perspectives in this review. Collectively, this review provides novel insights into the oncogenic properties of HMGA2, which has potential implications in the diagnosis and treatment of CRC. HMGA2 promotes colorectal cancer (CRC) development by regulating the transcriptions of target genes. Circulating cell-free HMGA2 mRNA has been identified as a potential screening marker in CRC. HMGA2 appears to be a key factor in the networks of MDM2/p53, IL11/STAT3 and Wnt/β-catenin signaling pathways in CRC. Many agents and siRNAs serve as potential therapeutic approaches by targeting HMGA2 for the treatment of CRC. Deciphering HMGA2-mediated machinery helps to conceive effective therapy strategies and develop novel inhibitors in CRC.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathology & Pathophysiology, Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jingjing Wu
- Department of Pathology & Pathophysiology, Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
45
|
Chu X, Zheng W, Wang J, Zhang J, Pan Y, Shao C. CDK6 inhibition targeted by miR-378a-3p protects against intestinal injury induced by ionizing radiation. Biochem Biophys Res Commun 2020; 531:328-334. [PMID: 32800335 DOI: 10.1016/j.bbrc.2020.07.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
Radiotherapy combined with chemotherapy is a common modality in abdominal cancer treatment. However, intestinal syndrome induced by radiation is a main factor leading to the poor prognosis of radiotherapy. In this work, we found that miR-378a-3p was markedly up-regulated in the small intestines of mice after total abdominal irradiation. Knocking-down (or overexpression) of miR-378a-3p increased (or decreased) the radiosensitivity of the small intestine cells HIEC and FHs-74-Int. Comet assay and γ-H2AX staining demonstrated that miR-378a-3p exerted its radioprotective function by reducing the accumulation of DNA damage in the cells and tissues of the small intestines. Mechanistically, miR-378a-3p could interact with the 3' UTR of CDK6 through complementary sequences and thus inhibited CDK6 expression in the small intestine cells. Rescue experiments suggested that the repression of miR-378a-3p overexpression on cell radiosensitivity and DNA damage accumulation was abrogated by the forced expression of CDK6. In summary, our results revealed for the first time that miR-378a-3p regulated the radiosensitivity and DNA damage response of small intestines by targeting CDK6. MiR-378a-3p may serve as a promising biomarker and radioprotective target in abdominal cancer.
Collapse
Affiliation(s)
- Xiaofei Chu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, China
| | - Wang Zheng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, China
| | - Juan Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, China.
| |
Collapse
|
46
|
Liang J, Xia L, Oyang L, Lin J, Tan S, Yi P, Han Y, Luo X, Wang H, Tang L, Pan Q, Tian Y, Rao S, Su M, Shi Y, Cao D, Zhou Y, Liao Q. The functions and mechanisms of prefoldin complex and prefoldin-subunits. Cell Biosci 2020; 10:87. [PMID: 32699605 PMCID: PMC7370476 DOI: 10.1186/s13578-020-00446-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
The correct folding is a key process for a protein to acquire its functional structure and conformation. Prefoldin is a well-known chaperone protein that regulates the correct folding of proteins. Prefoldin plays a crucial role in the pathogenesis of common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and Huntington's disease). The important role of prefoldin in emerging fields (such as nanoparticles, biomaterials) and tumors has attracted widespread attention. Also, each of the prefoldin subunits has different and independent functions from the prefoldin complex. It has abnormal expression in different tumors and plays an important role in tumorigenesis and development, especially c-Myc binding protein MM-1. MM-1 can inhibit the activity of c-Myc through various mechanisms to regulate tumor growth. Therefore, an in-depth analysis of the complex functions of prefoldin and their subunits is helpful to understand the mechanisms of protein misfolding and the pathogenesis of diseases caused by misfolded aggregation.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Jinguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Pin Yi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yaqian Han
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Xia Luo
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Lu Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Qing Pan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Shan Rao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yingrui Shi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| |
Collapse
|
47
|
Chen F, Zhang Y, Hu S, Shi X, Wang Z, Deng Z, Lin L, Zhang J, Pan Y, Bai Y, Liu F, Zhang H, Shao C. TIGAR/AP-1 axis accelerates the division of Lgr5 - reserve intestinal stem cells to reestablish intestinal architecture after lethal radiation. Cell Death Dis 2020; 11:501. [PMID: 32632140 PMCID: PMC7338449 DOI: 10.1038/s41419-020-2715-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022]
Abstract
During radiologic or nuclear accidents, high-dose ionizing radiation (IR) can cause gastrointestinal syndrome (GIS), a deadly disorder that urgently needs effective therapy. Unfortunately, current treatments based on natural products and antioxidants have shown very limited effects in alleviating deadly GIS. Reserve intestinal stem cells (ISCs) and secretory progenitor cells are both reported to replenish damaged cells and contribute to crypt regeneration. However, the suppressed β-catenin/c-MYC axis within these slow-cycling cells leads to limited regenerative response to restore intestinal integrity during fatal accidental injury. Current study demonstrates that post-IR overexpression of TIGAR, a critical downstream target of c-MYC in mouse intestine, mounts a hyperplastic response in Bmi1-creERT+ reserve ISCs, and thus rescues mice from lethal IR exposure. Critically, by eliminating damaging reactive oxygen species (ROS) yet retaining the proliferative ROS signals, TIGAR-overexpression enhances the activity of activator protein 1, which is indispensable for initiating reserve-ISC division after lethal radiation. In addition, it is identified that TIGAR-induction exclusively gears the Lgr5− subpopulation of reserve ISCs to regenerate crypts, and intestinal TIGAR-overexpression displays equivalent intestinal reconstruction to reserve-ISC-restricted TIGAR-induction. Our findings imply that precise administrations toward Lgr5− reserve ISCs are promising strategies for unpredictable lethal injury, and TIGAR can be employed as a therapeutic target for unexpected radiation-induced GIS.
Collapse
Affiliation(s)
- Fei Chen
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Yushuo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Songling Hu
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China
| | - Xiaolin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Interventional Radiology, The Third Affiliated Hospital of the Medical College of Shihezi University, Xinjiang, 832008, China
| | - Zicheng Deng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Longxin Lin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China
| | - Fenju Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Haowen Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China.
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
48
|
MiR-122-5p increases radiosensitivity and aggravates radiation-induced rectal injury through CCAR1. Toxicol Appl Pharmacol 2020; 399:115054. [DOI: 10.1016/j.taap.2020.115054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
|
49
|
Murata K, Jadhav U, Madha S, van Es J, Dean J, Cavazza A, Wucherpfennig K, Michor F, Clevers H, Shivdasani RA. Ascl2-Dependent Cell Dedifferentiation Drives Regeneration of Ablated Intestinal Stem Cells. Cell Stem Cell 2020; 26:377-390.e6. [PMID: 32084390 DOI: 10.1016/j.stem.2019.12.011] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/07/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022]
Abstract
Ablation of LGR5+ intestinal stem cells (ISCs) is associated with rapid restoration of the ISC compartment. Different intestinal crypt populations dedifferentiate to provide new ISCs, but the transcriptional and signaling trajectories that guide this process are unclear, and a large body of work suggests that quiescent "reserve" ISCs contribute to regeneration. By timing the interval between LGR5+ lineage tracing and lethal injury, we show that ISC regeneration is explained nearly completely by dedifferentiation, with contributions from absorptive and secretory progenitors. The ISC-restricted transcription factor ASCL2 confers measurable competitive advantage to resting ISCs and is essential to restore the ISC compartment. Regenerating cells re-express Ascl2 days before Lgr5, and single-cell RNA sequencing (scRNA-seq) analyses reveal transcriptional paths underlying dedifferentiation. ASCL2 target genes include the interleukin-11 (IL-11) receptor Il11ra1, and recombinant IL-11 enhances crypt cell regenerative potential. These findings reveal cell dedifferentiation as the principal means for ISC restoration and highlight an ASCL2-regulated signal that enables this adaptive response.
Collapse
Affiliation(s)
- Kazutaka Murata
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Unmesh Jadhav
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Johan van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands
| | - Justin Dean
- Department of Cancer Data Sciences, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alessia Cavazza
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Kai Wucherpfennig
- Department of Cancer Immunology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Franziska Michor
- Department of Cancer Data Sciences, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
50
|
Grazioso TP, Brandt M, Djouder N. Diet, Microbiota, and Colorectal Cancer. iScience 2019; 21:168-187. [PMID: 31669832 PMCID: PMC6889474 DOI: 10.1016/j.isci.2019.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/03/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium is a very dynamic tissue under a high regenerative pressure, which makes it susceptible to malignant transformation. Proper integration of various cell signaling pathways and a balanced cross talk between different cell types composing the organ are required to maintain intestinal homeostasis. Dysregulation of this balance can lead to colorectal cancer (CRC). Here, we review important insights into molecular and cellular mechanisms of CRC. We discuss how perturbation in complex regulatory networks, including the Wnt, Notch, BMP, and Hedgehog pathways; and how variations in inflammatory signaling, nutrients, and microbiota can affect intestinal homeostasis contributing to the malignant transformation of intestinal cells.
Collapse
Affiliation(s)
- Tatiana P Grazioso
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Marta Brandt
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, CNIO, Madrid 28029, Spain.
| |
Collapse
|